BAB V

HASIL PENELITIAN DAN PEMBAHASAN

Bab ini memaparkan hasil penelitian yang telah dilakukan, dimulai dari evaluasi tier 1 hingga evaluasi tier 3. Pembahasan dari hasil penelitian juga akan dipaparkan pada bab ini.

5.1. Evaluasi Tier 1 (Screening phase)

Evaluasi tier I (*Screening phase*) ini dilakukan dengan *Rapid Visual Screening* (RVS) yang mengacu pada pedoman FEMA 154 (1998) dan FEMA 310 (1998). Gedung Fakultas Teknik Industri Universitas Atma Jaya Yogyakarta ini terletak pada daerah gempa zona tinggi sesuai Tabel 2-1 FEMA 154. Menurut FEMA 302 (1997), gedung Fakultas Teknik Industri Universitas Atma Jaya Yogyakarta termasuk dalam kategori *seismic use group* II dan diharapkan memiliki tingkat kinerja *Immediate Occupancy (IO)* ketika terjadi gempa besar.

5.1.1. RVS Menurut Prosedur FEMA 154 (2002)

Screening phase dilakukan menggunakan form evaluasi FEMA 154 berdasarkan daerah seismisitasnya serta terhadap nilai S_{DS} dan S_{DI} yang ditunjukkan dalam Gambar 5.1.

Gambar 5. 1 Nilai Respons Spektra SNI 1726-2012 (www.puskim.pu.go.id)

Dari Gambar 5.1 didapatkan nilai S_{DS} sebesar 0,862 g > 0,5 g dan nilai S_{DI} sebesar 0,479 g > 0,2 g, sehingga berdasarkan Tabel 2-1 FEMA 154, form yang digunakan adalah *High Seismicity*. Hasil evaluasi *screening* menggunakan form evaluasi FEMA 154 pada gedung ini dapat dilihat pada Tabel 5.1.

Untuk melakukan *Rapid Visual Screening* (RVS) maka perlu dilakukan pengumpulan data, mulai dari tahun pembuatan, jumlah lantai, alamat bangunan, luas total lantai, dan fungsi bangunan.

Pada kolom (*Address*) menunjukkan alamat atau lokasi bangunan tersebut didirikan dan kode (*Zip*) wilayah kegempaan tempat bangunan didirikan. Kolom *Other Identifiers* dikosongkan karena dalam penelitian tidak ada personil lain yang ikut mengidentifikasi bangunan Fakultas Teknik Industry Universitas Atma Jaya Yogyakarta (FTI UAJY). Jumlah lantai (*No. Stories*) total ada 5 lantai termasuk lantai *basement*. Kolom *Year Built* yaitu tahun bangunan didirikan/dibangun berguna untuk mengetahui peraturan (*code*) yang digunakan dalam perencanaan dan pelaksanaan bangunan, sehingga bisa diketahui bahwa Fakultas Teknik Industri Universitas Atma Jaya Yogyakarta yang dibangun tahun 1997 sudah mengacu pada standar perencanaan ketahanan gempa SNI 1991. Pada kolom *screener* diisi nama peneliti dan kolom *Date* yaitu tanggal pelaksanaan pengamatan diisi. Kolom *Total Floor Area* merupakan luas total bangunan. Kolom *Use* merupakan kegunaan dari bangunan yang berguna untuk mengetahui fungsi keutamaan bangunan.

Berikut akan dijabarkan satu per satu parameter penilaian dalam form RVS, meliputi *Occupancy, Number of Person, Soil Type, Falling Hazards, Building Type,* dan nilai akhir (*Score*). Hasil evaluasi RVS menurut Tabel FEMA 154 dapat dilihat dalam Tabel 5.1 dan penjelasannya dapat dilihat pada Tabel 5.2.

1. Occupancy

Bangunan Fakultas Teknik Industri Universitas Atma Jaya Yogyakarta termasuk dalam *School* atau sekolah dimana terdapat banyak orang yang menggunakan di dalamnya sebagai sarana belajar mengajar.

2. Number of Person

Jumlah orang yang menghuni Fakultas Teknik Industri Universitas Atma Jaya Yogyakarta rata-rata 1000 orang lebih.

3. Soil Type

Berdasarkan data N-SPT dari hasil penyelidikan tanah, bangunan Fakultas Teknik Industri Universitas Atma Jaya Yogyakarta terletak di atas tanah sedang (*stiff soil*) *type* D karena nilai N-SPT rata-rata di dasar pondasi sebesar 30.77. (dapat dilihat di Lampiran 2)

4. Falling Hazards

Ancaman kejatuhan material non struktur pada Fakultas Teknik Industri Universitas Atma Jaya Yogyakarta berupa plafon.

5. Building Type

Gedung Fakultas Teknik Industri Universitas Atma Jaya Yogyakarta termasuk dalam kelompok bangunan C1 yaitu *concrete moment resisting-frame building* atau rangka beton bertulang.

6. Score

Tipe bangunan C1, mempunyai basic score	= 2,5
Terdiri dari 5 lantai sehingga termasuk mid rise	=+0,4
Termasuk bangunan <i>post benchmark</i>	=+1,4
Soil Type D	= -0,6 +
Sehingga Final Score	= 3.7 > 2,0

Final score evaluasi RVS bangunan Fakultas Teknik Industri Universitas Atma Jaya Yogyakarta pada Tabel 5.1 adalah sebesar 3,7 yang berarti pada gedung tersebut tidak memiliki probabilitas akan terjadinya keruntuhan jika terjadi gerakan tanah atau gempa bumi. Karena menurut FEMA 154 (2002) batas skor untuk bangunan yang perlu dilakukan evaluasi lebih lanjut adalah bangunan yang memiliki skor ≤ 2 . Akan tetapi bangunan ini didesain dengan menggunakan SNI 1991 maka gedung ini akan tetap di evaluasi lebih lanjut dengan menggunakan peraturan terbaru yaitu SNI 1726-2012 sehingga dapat mengetahui level kinerja sesuai dengan fungsi kegunaan bangunan.

FEMA-154 Data Collection Form

HIGH Seismicity

kegunaan bangunan

Tabel 5. 2 Hasil Isian Referensi Pengisian Formulir RVS

Rapid Visual Screening of Buildings for Potential Seismic Hazards (FEMA 154) Quick Reference Guide (for use with Data Collection Form)

1. Mode and E	I Building Types and Critical Code Adoption Inforcement Dates	Year Seismic Codes Initially Adopted	Benchmark Year when
<u>Structura</u>	I Types	and Enforced*	Codes Improved
W1	Light wood frame, residential or commercial, ≤ 5000 square feet		
W2	Wood frame buildings, > 5000 square feet.		
S1	Steel moment-resisting frame		
S2	Steel braced frame		
S3	Light metal frame		
S4	Steel frame with cast-in-place concrete shear walls		
S5	Steel frame with unreinforced masonry infill		
C1	Concrete moment-resisting frame		1997
C2	Concrete shear wall		
C3	Concrete frame with unreinforced masonry infill		
PC1	Tilt-up construction		
PC2	Precast concrete frame		
RM1	Reinforced masonry with flexible floor and roof diaphragms		
RM2	Reinforced masonry with rigid diaphragms		
URM	Unreinforced masonry bearing-wall buildings		
*Not applic	able in regions of low seismicity		

2. Anchorage of Heavy Cladding

Year in which seismic anchorage requirements were adopted:

3. Occupancy Loads						
Use	<u>Square Feet, Per Person</u>	<u>Use</u>	<u>Square Feet, Per Person</u>			
Assembly	varies, 10 minimum	Industrial	200-500			
Commercial	50-200	Office	100-200			
Emergency Services	100	Residential	100-300			
Government	100-200	School	50-100			
4. Score Modifier Def	initions					
Mid-Rise:	4 to 7 stories					
High-Rise:	8 or more stories					
Vertical Irregularity:	Steps in elevation view; inclined w building with short columns; unbra	valls; building on hill; soft s aced cripple walls.	tory (e.g., house over garage);			
Plan Irregularity	Buildings with re-entrant corners (L, T, U, E, + or other irregular building plan); buildings with good lateral resistance in one direction but not in the other direction; eccentric stiffness in plan, (e.g. corner building, or wedge-shaped building, with one or two solid walls and all other walls open).					
Pre-Code:	Building designed and constructer adopted and enforced in the juriso 1941, except for PC1, which is 19	d prior to the year in which diction; use years specified 173.	seismic codes were first above in Item 1; default is			
Post-Benchmark:	Building designed and constructer requirements (e.g., ductile detailir codes improved may be different above in Item 1 (see Table 2-2 of	d after significant improver ng) were adopted and enfo for each building type and FEMA 154 <i>Handbook</i> for	nents in seismic code rced; the benchmark year wher jurisdiction; use years specified additional information).			
Soil Type C:	Soft rock or very dense soil; S-wa	ve velocity: 1200 – 2500 f	t/s; blow count > 50; or			
Soil Type D:	Stiff soil; S-wave velocity: 600 – 1 1000 – 2000 psf.	200 ft/s; blow count: 15 –	50; or undrained shear strength			
Soil Type E:	Soft soil; S-wave velocity < 600 ft/ water content > 40%, and undrain	/s; or more than 100 ft of s ned shear strength < 500 p	oil with plasticity index > 20, sf.			

5.1.2. Screening Menurut FEMA 310 (1998)

Screening menurut prosedur FEMA 310 (1998) pada evaluasi tier 1 merupakan tahap pertama dari evaluasi bangunan secara rinci. Gedung Fakultas Teknik Industri Universitas Atma Jaya Yogyakarta ini diharapkan memiliki tingkat kinerja *Immediate Occupancy* sesuai dengan SNI 1726 2012 ketika terjadi gempa besar. Gedung ini terletak pada daerah dengan tingkat seismisitas tinggi (high seismicity). Gedung ini termasuk dalam kelompok C1 yaitu MRF (concrete moment resisting-frame buildings) karena gedung ini berupa rangka beton bertulang.

5.1.2.1. Hasil Quick Check RVS

Pada tahapan ini dilakukan perhitungan untuk mendapatkan nilai kekakuan dan kekuatan struktur yang akan menentukan hasil dari evaluasi tahap 1.

1. Kekakuan Tingkat

Analisis dimulai dengan mencari nilai *pseudo lateral force* (V). Untuk mendapatkan nilai V diperlukan data-data seperti faktor modifikasi bangunan (C), respon spektrum pada periode getar alami (Sa) dan berat total struktur (W).

Peta gempa yang digunakan adalah peta gempa SNI 1726-2012, sehingga data-data yang akan digunakan diambil dari peta yang dapat diakses online melalui website Puskim. Data-data pada tabel didapatkan dengan memasukan koordinat kota atau tempat bangunan berada pada peta, sehingga muncul tabel yang berisi data-data yang akan digunakan untuk perhitungan gempa. Grafik spektral percepatan untuk wilayah gempa Yogyakarta dengan jenis tanah sedang ditampilkan dalam Gambar 5.2.

Variabel-variabel yang akan digunakan pada perhitungan gempa disajikan dalam Tabel 5.3.

Tabel 5.3	Variabel	perhitungan	gempa	wilayah	Yogyakarta	dengan	tanah	sedang
-----------	----------	-------------	-------	---------	------------	--------	-------	--------

variabel	nilai
PGA (g)	0.558
$S_{S}(g)$	1.292
S ₁ (g)	0.469
C _{RS}	0.915
C _{R1}	1.000
F _{PGA}	1.000
F _A	1.000
F _V	1.531
PSA (g)	0.558
S _{MS} (g)	1.292
S _{M1} (g)	0.718
S _{DS} (g)	0.862
$S_{D1}(g)$	0.479
T ₀ (detik)	0.111
T _S (detik)	0.556

Berat total struktur (*W*) dihitung melalui penjumlahan berat setiap elemen struktur yang ada di setiap lantai, dimana untuk data berat total struktur secara rinci hitungannya terdapat pada Lampiran 3. Berat total struktur ditunjukan dalam Tabel 5.4

Berat total struktur								
Nama	Nama Lantai Hc (m) Berat tiap lantai							
Atap	5	4.25	6710.4960	6710.49600				
3	4	4.09	8734.5348	15445.0308				
2	3	3.90	8681.5704	24126.6012				
1	2	4.16	8754.0480	32880.6492				
Dasar	1	4.17	8756.8356	41637.4848				

Tabel 5. 4 Berat total struktur

Kemudian tinggi bangunan (H) dalam satuan meter (m) dikonversi ke satuan *feet* untuk mendapatkan nilai *T*, Karena perhitungan FEMA menggunakan rumus yang hanya untuk satuan *feet*. Nilai *Ct* didapatkan 0,03 karena bangunan merupakan tipe *Concrete moment-reisisting frame* (*C1*). Diambil nilai faktor modifikasi 1 karena bangunan merupakan bangunan yang lebih dari 4 lantai dan merupakan tipe *moment frame* C1. Nilai *C* didapat dari Tabel 5.5 yang didapat dari FEMA 310.

Tabel 5. 5 Faktor Modifikasi Bangunan (FEMA 310)

	Number of Stories					
Building Type ¹	1	2	3	<u>></u> 4		
Wood (W1, W1A, W2)	1.3	1.1	1.0	1.0		
Moment Frame (S1, S3, C1, PC2A)						
Shear Wall (S4, S5, C2, C3, PC1A, PC2, RM2, URMA) Braced Frame (S2)	1.4	1.2	1.1	1.0		
Unreinforced Masonry (URM)	1.0	1.0	1.0	1.0		
Flexible Diaphragms (S1A, S2A, S5A, C2A, C3A, PC1, RM1)						

Nilai H = 20.75 m dikonversi menjadi 67.49ft.

Kemudian dari tinggi bangunan tersebut dicari nilai T, dimana rumus T didapat dari FEMA 310 subbab 3.5.2.4.

$$T = C_t H^{\frac{3}{4}} = (0.03).(67.49)^{\frac{3}{4}} = 0.71$$

$$S_a = \frac{S_{D1}}{T} = \frac{0.479}{0.71} = 0.678$$

Nilai S_{D1} yang didapatkan dari Tabel 5.3

Sehingga nilai pseudo lateral force (V) menurut FEMA 310 yaitu

Karena bangunan Fakultas Teknik Industri Universitas Atma Jaya Yogyakarta dibangun di Indonesia maka disesuaikan dengan SNI Indonesia.

Tinggi bangunan H = 20,57 m, dan menurut SNI 1726-2012 periode getar struktur fundamental T dapat diijinkan mengggunakan :

$$T = 0,0466.H^{0.9} = 0,0466.20,57^{0.9} = 0,708429 dt$$

Dari data Gedung FTI UAJY, diperoleh $S_{DS} = 0.862$, $S_{D1} = 0,479$, I = 1,5 (Berdasarkan Tabel 2 SNI 1726-2012 untuk gedung perkuliahan), dan R = 8 (Berdasarkan Tabel 9 SNI 1726-2012 untuk SRPMK).

$$C_{\rm s} = \frac{S_{DS}}{(R/Ie)} = \frac{0.862}{(8/1.5)} = 0.161625$$

Namun demikian nilai C_s tidak perlu diambil lebih besar dari

$$C_{s} = \frac{S_{D1}}{T.(R/le)} = \frac{0,479}{0,708429(8/1.5)} = 0,1268$$

Tetapi Nilai C_S harus lebih besar dari,

$$C_s = 0.044 \cdot S_{DS} \cdot I = 0.044 \cdot 0.862 \cdot 1.5 = 0.0569$$

Maka diambil nilai $C_s = 0,1268$

Berat total bangunan Wt = 41637,48 kN

$$V = C_{s} . Wt$$

= 0,1268 x 41637.48
= 5278.67 kN

Nilai V kemudian didistribusikan ke tiap tingkat menjadi gaya geser tiap tingkat (V_j) yang nilainya diperoleh dengan menggunakan persamaan 3.7. Hasil perhitungan gaya geser tingkat (V_j) untuk tiap tingkat disajikan dalam Tabel 5.6

Hitungan gaya geser tiap tingkat (Vj) Lantai 1 :

$$V_j = \left(\frac{n+j}{n+1}\right) \left(\frac{W_j}{W}\right) V$$

$$V_j = \left(\frac{5+1}{5+1}\right) \left(\frac{41637.48}{41637.48}\right) 5278.67 = 5278.67 \text{ KN}$$

Tabel 5. 6 Nilai	gaya	geser tiap	tingkat	(Vj)
------------------	------	------------	---------	------

Perhitungan gaya geser dasar									
Nama	Lantai	j	n+j	n+1	W	wj	Vj (KN)		
atap	5	5	10	6	41637.485	6710.4960	1417.8927		
3	4	4	9	6	41637.485	15445.0308	2937.1089		
2	3	3	8	6	41637.485	24126.6012	4078.2598		
1	2	2	7	6	41637.485	32880.6492	4863.2565		
Dasar	1	1	6	6	41637.485	41637.4848	5278.6698		

Dari hasil Tabel 5.6 gaya lateral tiap tingkat, selanjutnya bisa didapatkan perbandingan gaya lateral tiap tingkat. Persentase gaya lateral tiap tingkat ditunjukan pada Tabel 5.7

Tabel 5. 7 Persentase gaya lateral tiap tingkat

Vj(KN)	Persentase (%)				
1417.893					
2937.109	Tk 4-5	207.1461			
4078.260	Tk 3-4	138.8529			
4863.257	Tk 2-3	119.2483			
5278.670	Tk 1-2	108.5419			

Hitungan persentase gaya lateral tiap tingkat 1-2 : $\frac{5278.67}{4863.257}$ x 100 = 108.5419 %

Perhitungan gaya lateral tiap tingkat dilakukan untuk mengetahui adanya tingkat lemah (*weak story*). Dari perhitungan gaya lateral tiap tingkat pada Tabel 5.7 dapat dilihat bahwa gaya geser pada tingkat-tingkat tersebut memenuhi yang disyaratkan FEMA 310 yaitu sebesar 80%, sehingga gedung ini tidak memiliki tingkat lemah.

Selanjutnya dilakukan perhitungan *Drift Ratio* (DR) yaitu menyelidiki adanya tingat lunak (*soft story*). tingkat lunak adalah suatu tingkat dimana kekakuan sistem penahan gaya lateralnya adalah kurang dari 70% kekakuan lateral tingkat di atasnya atau kurang dari 80% kekakuan lateral rata-rata 3 tingkat di atasnya. Nilai *Drift Ratio* ditentukan berdasarkan persamaan 3.6, untuk tiap tingkat disajikan dalam Tabel 5.8.

Hitungan nilai Drift Ratio (DR), Lantai 1 :

$$Ec = 4700 \sqrt{f'c} = 4700 \sqrt{25} = 23500 \text{ Mpa} = 23500000 \text{ kN/m} = 23.5 \text{ kN,mm}$$

$$B_b = 300 \text{ mm}$$

$$H_b = 650 \text{ mm}$$

$$L_{lantai 1} = 9800 \text{ mm}$$

$$I_b = (1/12).b.h^3$$

$$= 6866000000 \text{ mm}^4$$

$$B_c = 500 \text{ mm}$$

$$H_c = 650 \text{ mm}$$

$$L_{lantai 1} = 4170 \text{ mm}$$

$$I_c = (1/12).b.h^3$$

$$= 6771000000 \text{ mm}^4$$

$$kb = I/L \text{ (kekakuan relatif balok)}$$

$$= 6866000000/9800$$

$$= 700612.24 \text{ mm}^3$$

$$kc = I/h \text{ (kekakuan relatif kolom)}$$

= 6771000000/4170

$$= 1623741.007 mm^{3}$$

$$Vc = Vj/jumlah \ kolom \ (n)$$

$$= 5278,67 \ . \ 1000/41$$

$$= 128748.04 \ N$$

$$DR = \left(\frac{k_{b} + k_{c}}{k_{b} \cdot k_{c}}\right) \left(\frac{h}{12E}\right) V_{c}$$

$$DR = \left(\frac{700612.24 + 1623741.007}{700612.24.1623741.007}\right) \left(\frac{4170}{12.23500}\right) 128748.04 = 0.00389\%$$

Perhitungan nilai Drift Ratio (DR)										
Nama	Lantai	Ib	Lb (mm)	Ic	Hc (mm)	kb	kc	nc	Vc (N)	DR
atap	5	5E+08	4800	5.208E+09	4250	108500.0000	919058.824	37	38321.425	0.00595
3	4	7E+09	9800	6.771E+09	4090	700612.2449	1241625.92	41	71636.802	0.00232
2	3	7E+09	9800	6.771E+09	3900	700612.2449	1302115.38	41	99469.751	0.00302
1	2	7E+09	9800	6.771E+09	4160	700612.2449	1220733.17	41	118616.01	0.00393
Dasar	1	7E+09	9800	6.771E+09	4170	700612.2449	1623741.01	41	128748.04	0.00389

Tabel 5.8 Nilai Drift Ratio (DR) tiap tingkat

Selanjutnya perbandingan nilai DR antar tingkat yang digunakan untuk menyelidiki adanya tingkat lunak (*soft* story) disajikan dalam Tabel 5.9

Tabel 5. 9 Persentase perubahan Drift Ratio (DR) tiap tingkat

DR	Persent	Ket	
0.00595			
0.00232	Tk 4-5	38.9789	NG
0.00302	Tk 3-4	130.1838	ОК
0.00393	Tk 2-3	130.1647	ОК
0.00389	Tk 1-2	98.9557	ОК

Hitungan persentase *Drift Ratio* (DR) tingkat 1-2 : $\frac{0.00389}{0.00393}$ x 100 = 98,9557 %

Hasil dari Tabel 5.9 diketahui bahwa terdapat tingkat lunak (*soft story*) pada gedung ini karena ada kekakuan sistem penahan gaya lateral yang kurang dari 70% kekakuan lateral tingkat di atasnya atau kurang dari 80% kekakuan lateral rata-rata 3 tingkat di atasnya. Hal ini dikarenakan terdapat perubahan kekakuan yang signifikan pada tingkat 4 ke tingkat 5.

2. Tegangan Geser Kolom Pada Struktur Beton

Menurut FEMA 310 (1998), kekuatan tingkat dapat diketahui dengan melakukan perhitungan cepat terhadap tegangan geser pada kolom menggunakan rumus pada Persamaan 3.10, seperti yang telah diuraikan pada subbab 3.4.1.2

$$V_{avg} = \frac{1}{m} \left(\frac{n_c}{n_c - n_f} \right) \left(\frac{V_j}{A_c} \right)$$

Hasil perhitungan tegangan geser rata-rata kolom pada tiap tingkat ditunjukan dalam Tabel 5.10.

Dimana

nc = 41 buah (jumlah kolom pada lantai 1)

nfx = 12 buah (jumlah rangka pada pembebanan arah Y pada Gambar 5.3)

- nfy = 5 buah (jumlah rangka pada pembebanan arah X pada Gambar 5.3)
- Ac = b.h.nc

 $= 0.4 \cdot 0.55 \cdot 12 + 0.5 \cdot 0.65 \cdot 23 + 0.5 \cdot 0.5 \cdot 6 = 11615000 \text{ mm}^2$

m = Faktor modifikasi komponen. Untuk bangunan dengan tingkat kinerja
 Life safety menggunakan nilai 2,0 dan untuk bangunan dengan tingkat
 kinerja *immediate occupancy* menggunakan nilai 1,3.

$$V_{avg} = \frac{1}{m} \left(\frac{n_c}{n_c - n_f} \right) \left(\frac{V_j}{A_c} \right)$$

$$V_{avg-x} = \frac{1}{1.3} \left(\frac{41}{41 - 12} \right) \left(\frac{5278,67 \times 1000}{11615000} \right)$$

$$V_{avg}-x = 0.494 \text{ N/mm}^2$$

$$V_{avg-y} = \frac{1}{1.3} \left(\frac{41}{41 - 5} \right) \left(\frac{5278,67 \times 1000}{11615000} \right)$$

$$V_{avg}-y = 0.398 \text{ N/mm}^2$$

Nilai gaya geser dasar Vavg-x dan Vavg-y :

 V_{avg} -x= 0.49425 N/mm² < Vc-max = 0.84 mpa V_{avg} -y= 0.39814 N/mm² < Vc-max = 0.84 mpa

	Cek status geser kolom											
Nama	Lantai	nf-x	nf-y	Ac	V-Avg-x	V-Avg-y	Vc-max	Status-x	Status-y			
atap	5	11	5	7880000	0.1891631	0.1576359	0.8430214	OK	OK			
3	4	12	5	11615000	0.2750067	0.2215332	0.8430214	OK	OK			
2	3	12	5	11615000	0.3818547	0.3076052	0.8430214	OK	OK			
1	2	12	5	11615000	0.4553554	0.3668141	0.8430214	OK	OK			
Dasar	1	12	5	11615000	0.4942513	0.3981468	0.8430214	OK	OK			

Tabel 5. 10 Nilai geser rata-rata dalam kolom

Dari Tabel 5.10 menunjukkan bahwa nilai geser kolom untuk tingkat 1 sampai tingkat 5 adalah *Good (G)* karena geser kolom rata-ratanya tidak melebihi gaya geser maksimal yang diijinkan yaitu *Vc-max* sebesar $2.\sqrt{f'c} = 0,84$ MPa. Nilai *Vc-max* dapat dilihat pada Tabel 5.11.

Tabel 5. 11 Variabel mutu bahan untuk menentukan nilai Vc-max

Variabel mutu bahan											
Variabel	Nilai	satuan	Nilai	satuan							
m	1.3										
F'c	25	mPa	3625.9445	psi							
Ec	23500.00	mPa	3408387.83	psi							
Vc-max	120.4316321	psi	0.843021424	mPa							

3. Gaya Aksial Pada Kolom Akibat Guling

Menurut FEMA 310 (1998), kekuatan tingkat dapat diketahui dengan melakukan perhitungan cepat terhadap tegangan geser pada kolom menggunakan rumus pada Persamaan 3.11, seperti yang telah diuraikan pada subbab 3.4.1.2

$$P_{ot} = \frac{1}{m} \left(\frac{2}{3}\right) \left(\frac{Vh_n}{L_t n_f}\right)$$

/

Hasil perhitungan gaya aksial kolom pada tiap tingkat ditunjukan dalam Tabel 5.12 dan Tabel 5.13.

$$V = 5278.67 \text{ kN}$$

$$n_{f-x} = 12$$

$$n_{f-x} = 5$$

$$h_{n \text{ lantai } l} = 4.17 \text{ m } /0.3048 = 13.68 \text{ ft}$$

$$L = 9.8 \text{ m } /0.3048 = 32.15 \text{ ft}$$

$$m = 1,3.$$

$$P_{ot-x} = \frac{1}{m} \left(\frac{2}{3}\right) \left(\frac{V.h_n}{L.n_f}\right)$$

= $\frac{1}{1.3} \left(\frac{2}{3}\right) \left(\frac{5278,67.\ 13.68}{32.15.\ 12}\right)$
= 95,988 (kN/m²) < 7500 kN/m².
$$P_{ot-y} = \frac{1}{m} \left(\frac{2}{3}\right) \left(\frac{V.h_n}{L.n_f}\right)$$

= $\frac{1}{1.3} \left(\frac{2}{3}\right) \left(\frac{5278,67.\ 13.68}{32.15.\ 5}\right)$
= 230.37209 (kN/m²) < 7500 kN/m²

Tabel 5. 12 Gaya aksial kolom pada tiap tingkat arah-x

Gaya aksial pada kolom arah x												
Nama	Lantai	nf-x	Vj (KN)	hn (ft) L (ft)		Pot (kn/m2)	0,3 f'c	Status				
atap	5	11	1417.893	13.94357	15.7480315	58.52801214	7500	OK				
3	4	12	2937.109	13.41864	32.1522310	52.38433305	7500	OK				
2	3	12	4078.260	12.79528	32.1522310	69.35815987	7500	OK				
1	2	12	4863.257	13.64829	32.1522310	88.22234089	7500	OK				
Dasar	1	12	5278.670	13.68110	32.1522310	95.98836965	7500	OK				

Tabel 5. 13 Gaya aksial kolom pada tiap tingkat arah-y

	Gaya aksial pada kolom arah y												
Nama	ama Lantai nf-x		Vj (KN)	hn (ft)	L (ft)	Pot (kn/m2)	0,3 f'c	Status					
atap	5	5	1417.893	13.94357	15.7480315	128.7616267	7500	ОК					
3	4	5	2937.109	13.41864	32.1522310	125.7223993	7500	OK					
2	3	5	4078.260	12.79528	32.1522310	166.4595837	7500	ОК					
1	2	5	4863.257	13.64829	32.1522310	211.7336181	7500	OK					
Dasar	1	5	5278.670	13.68110	32.1522310	230.3720872	7500	ОК					

Dari hasil perhitungan gaya aksial kolom pada tiap tingkat arah-x dan arah-y, keduanya telah memenuhi persyaratan yaitu kurang dari 0,3 fc yaitu sebesar 7500 kN/m².

5.1.2.2. Hasil Checklist Evaluasi *Tier 1* Menurut FEMA 310 (1998)

Berdasarkan Tabel 3.5 mengacu pada FEMA 310 (1998), evaluasi tahap *screening (Tier 1)* yang harus dilakukan untuk gedung yang diharapkan memiliki

tingkat kinerja *Immediate Occupancy* adalah komponen struktur utama dan tambahan, serta komponen nonstruktur utama dan tambahan.

1. Komponen Struktur

Evaluasi secara visual untuk komponen struktur dilakukan pada komponen struktur tipe C1 dengan menggunakan form checklist FEMA 310 (1998), terdapat beberapa bagian yang harus dievaluasi yaitu sistem bangunan dan sistem penahan gaya lateral. Sedangkan untuk komponen struktur tambahan antara lain sistem penahan gaya lateral, diafragma dan sambungan.

a. Sistem bangunan

Struktur gedung Fakultas Teknik Industri Universitas Atma Jaya Yogyakarta ini berupa struktur rangka (*frame*) yang memiliki sistem penyaluran beban (*load path*) yang menerus sampai pondasi. Jarak antar bangunan antara gedung ini dengan gedung sebelahnya adalah 2 cm dan tidak memenuhi persyaratan yang berlaku yaitu minimal 4% dari tinggi bangunan. Tinggi (*h*) gedung ini adalah 20.57 m, sehingga jarak antar bangunan minimal 82 cm.

Secara visual, konfigurasi bangunan gedung ini tidak terlihat memiliki tingkat lemah (*weak story*) dan tingkat lunak (*soft story*). Namun dapat dilakukan perhitungan secara cepat untuk mengetahui adanya tingkat lemah dan tingkat lunak. Tingkat lemah (*weak story*) struktur dapat diketahui melalui persentase gaya lateral yang terjadi pada tiap tingkat dari Tabel 5.7 dapat dilihat tingkat lemah sudah memenuhi persyaratan FEMA 310 yaitu sebesar 80%. Sedangkan tingkat lunak pada Tabel 5.9 dapat dilihat tingkat lunak pada tingkat 4 - 5 sebesar 38,97 % artinya tidak memenuhi syarat FEMA 310 yaitu sebesar 70%, sehingga gedung ini memiliki tingkat lunak pada tingkat tersebut.

Dari perhitungan berat struktur dapat diketahui persentase perubahan massa antar lantai seperti terlihat pada Tabel 5.14 bahwa perubahan massa tingkat 4 ke tingkat 5 tidak memenuhi persyaratan perubahan massa antar lantai yaitu tidak lebih dari sebesar 50%.

Wj (KN)	Massa (kg.dt2/cm)	Persentase (%)			
6710.50	68.4465				
15445.03	157.5381	Tk 4-5	56.5524		
24126.60	246.0894	Tk 3-4	35.9834		
32880.65	335.3799	Tk 2-3	26.6237		
41637.48	424.6989	Tk 1-2	21.0311		

Tabel 5. 14 Persentase perubahan massa

Hitungan perubahan massa tingkat 1-2 : $\frac{41637.48}{98.1} = 424.6989 \text{ kg.dt2/cm}$

b. Checklist Pelengkap Evaluasi Komponen Struktur

Sesuai Tabel 3.3 untuk bangunan dengan tingkat kinerja *Immediate Occupancy* dan terletak pada wilayah gempa tinggi, maka juga harus dievaluasi struktur dasar dengan melengkapi checklist pelengkap evaluasi komponen struktur.

Secara visual tidak terlihat adanya kerusakan geser tetapi setelah melakukan analisis hitungan secara cepat dapat diketahui cek geser kolom good (ok) terlihat pada Tabel 5.10 dan gedung ini memenuhi prinsip *strong columns weak beams*. Dari *as-built drawing* yang dapat dilihat pada Lampiran 1 terlihat telah memenuhi persyaratan minimal jumlah tulangan balok dan memenuhi persyaratan spasi sengkang kolom dan balok.

2. Komponen Nonstruktur

Hasil evaluasi cepat pada komponen non-struktur dapat dilihat pada lampiran 4. Pada gedung ini, tidak banyak terlihat adanya komponen non-struktur.

5.1.3. Kesimpulan Evaluasi Tahap 1 (*Tier 1 Evaluation*)

Menurut FEMA 310 (1998) pada tahap evaluasi *screening* diharapkan gedung harus memiliki tingkat kinerja *Immediate Occupancy* (IO). Tiap komponen yang dievaluasi ditandai dengan 3 variabel yaitu (C) untuk *Compliant* (memenuhi persyaratan), (NC) untuk *Not Compliant* (tidak memenuhi persyaratan) dan (N/A) untuk *Not Applicable* (tidak terpasang). Evaluasi secara rinci dijabarkan dalam Lampiran 4 mengacu pada FEMA 310 (1998). Dari hasil perhitungan *quick check* disimpulkan bahwa terdapat tingkat yang tidak memenuhi sebagian dari persyaratan yang ditetapkan dalam FEMA 310 (1998). Oleh karena itu, perlu dilakukan evaluasi ke tahap berikutnya, yaitu pada evaluasi tahap (*tier*) 2. Beberapa kesimpulan dari hasil cek konfigurasi bangunan disajikan dalam Tabel 5.15

No	Hasil evaluasi	Check	Keterangan						
1.	С	Load path	Struktur gedung kuliah umum ini berupa struktur rangka (<i>frame</i>) yang memiliki sistem penyaluran beban (<i>load path</i>) yang menerus sampai pondasi.						
2.	NC	Geometri	Geometri pada arah vertical gaya lateral terdapat perubahan dimensi kolom lebih dari 30% pada lantai 4-5.						
3.	C	Tingkat lemah (weak story)	Tidak ada tingkat lemah						
4.	NC	Tingkat lunak (<i>soft story</i>)	Diwaspadai adanya tingkat lunak (<i>soft story</i>) pada tingkat 4-5.						
6.	NC	Massa	Perubahan massa antar lantai 4-5 sebesar 56,55%, sehingga lebih dari yang disyaratkan yaitu sebesar 50%.						
7.	NC	Bangunan bersebelahan	Jarak antar bangunan antara gedung ini dengan gedung sebelahnya adalah 2 cm dan tidak memenuhi persyaratan yang berlaku yaitu minimal 4% dari tinggi bangunan yaitu 82 cm						

Tabel 5. 15 Hasil cek konfigurasi bangunan

5.2. Evaluasi Tier 2 (Step 2 Evaluation)

Evaluasi tahap 2 ini dilakukan karena dari hasil evaluasi tahap 1 ditemukan adanya kelemahan/kerentanan pada bangunan. Evaluasi yang dilakukan pada tahap 2 adalah analisis linier statik dan analisis linier dinamik pada permodelan numerik gedung yang dievaluasi dengan bantuan program komputer yaitu SAP2000 v.14. Kemudian hasil dari kedua analisis tersebut dilakukan untuk mendapatkan nilai *Demand Capacity Ratio* (DCR) pada balok dan kolom. Nilai DCR digunakan sebagai syarat apakah evaluasi perlu dilanjutkan ke tahap 3 atau tidak.

5.2.1. Analisis Statik Linier

Analisis statik linier elastik dilakukan untuk mengetahui kekuatan struktur pada kondisi linier. Pada analisis ini, diperlukan perhitungan pembebanan struktur bangunan terlebih dahulu, dimana data gempa seperti faktor keutamaan gempa, faktor reduksi maupun nilai C dan k terdapat pada Tabel 5.16 dan hasil pembebanan tersebut digunakan untuk analisis beban gempa yang mengacu pada SNI 3-1726-2012. Selanjutnya Nilai distribusi beban gempa tiap lantai (F_i) dihitung berdasarkan persamaan 3.15 dan hasilnya seperti disajikan dalam Tabel 5.17.

Tabel 5. 16 Data gempa SNI 03 1726 2012

Data Gempa SNI 1726-2012	
SDS (Tabel 5.3)	0.862
SD1 (Tabel 5.3)	0.479
Ct (periode pendekatan SNI 1726-2012)	0.047
H (m)(tinggi bangunan)	20.57
x (periode pendekatan SNI 1726-2012)	0.900
Ta (periode fundamental)	0.708
R (faktor reduksi)	8.000
Ie (keutamaan bangunan)	1.500
Cs = SDS/(R/Ie)	0.162
Cs = SD1/(T(R/Ie))	0.127
Cs min = 0.044.SDS.Ie	0.057
CS min = 0.01	0.010
k	1.104
CS pakai	0.127

$$Fi = \frac{Wi.H_i^k}{\sum_{i=1}^n Wi.H_i^k} V$$

Tabel 5. 17	' Distribusi	beban	gempa
-------------	--------------	-------	-------

	Beban gempa lateral tiap lantai SNI 1726-2012 (KN)												
Lantai	Lantai Wi H		$W_i \cdot H_i^{k}$	Fi (pusat massa)	n kolom	Fi (per join)							
5	6710.496	20.57	189167.9	1533.82853	37	41.454825							
4	8734.535 16.32 1906		190696.8	1546.22526	41	37.712811							
3	8681.570	12.23	137832.2	1117.58384	41	27.258142							
2	8754.048	8.33	90949.2	737.44253	41	17.986403							
1	8756.836 4.17 423		42375.1	343.58960	41	8.380234							
		total	651021.2										

5.2.1.1. Titik Pusat Massa

Titik pusat massa dapat diketahui dari program SAP2000 dimana titik pusat massa digunakan untuk meletakkan beban lateral *pushover*. Distribusi beban pada masing-masing lantai dimasukkan pada titik bukan hanya pada pusat massa tetapi juga pada setiap joint struktur bangunan dengan arah pembebanan x dan y. Titik pusat massa lantai disajikan pada Tabel 5.18, Gambar 5.3 dan Gambar 5.4.

PUSAT MASSA									
TANTAT	KOORDINAT (M)								
	X	Y							
ATAP	24.76446	6.30841							
4	25.08903	7.03923							
3	25.07619	7.00507							
2	25.08507	6.99264							
1	25.06215	6.97197							

Tabel 5. 18 Titik pusat massa tiap lantai

Koordinat titik pusat massa lantai pada Tabel 5.18 diukur dari titik (0,0) yang terletak pada titik A dalam Gambar 5.3 Titik A (0,0) ditentukan sama untuk semua lantai.

Gambar 5.3 Letak titik pusat massa lantai basement s/d lantai 4

Gambar 5. 4 Letak titik pusat massa lantai atap

5.2.1.2. Hasil Analisis Statik Ekivalen

A. Simpangan struktur dan simpangan tingkat (storey-drift ratio)

Rasio simpangan struktur dan simpangan tingkat dari hasil statik ekuivalen pada arah X dan arah Y dilihat pada Tabel 5.19, Gambar 5.5 dan Gambar 5.6.

Tingkat	Hi	Arah X	K	Arah Y			
Пшдкаг	(m)	Simpangan (m)	% DR	Simpangan (m)	% DR		
5	4.25	0.038321	0.157812	0.054894	0.23320		
4	4.09	0.031614	0.184841	0.044983	0.28599		
3	3.90	0.024054	0.239590	0.033286	0.34303		
2	4.16	0.014710	0.274760	0.019908	0.34111		
1	4.17	0.003280	0.078657	0.005718	0.13712		
0	0	0	0	0	0		

 Tabel 5. 19 Nilai storey-drift ratio
 pada masing-masing tingkat

Hitungan storey drif ratio arah X tingkat 2 : $\frac{0.01471 - 0.00328}{4.16}$ x 100 = 0.274 %

Gambar 5. 5 Simpangan struktur pada masing-masing tingkat akibat gempa ekivalen statik

Gambar 5. 6 *Storey-drift ratio* pada masing-masing tingkat akibat gempa ekivalen statik

Pada Tabel 5.19, Gambar 5.5 dan Gambar 5.6 dapat dilihat struktur dengan arah Y lebih lemah dibandingkan dengan struktur arah X disebabkan karena kekakuan struktur arah X lebih besar dibandingan kekakuan struktur arah Y, sehingga simpangan dan *drif ratio* struktur arah Y lebih besar dari arah X. Simpangan struktur (*structural drift*) maksimum yang terjadi pada arah X yaitu sebesar 0.0383 m dan arah Y sebesar 0.0548 m. Sedangkan rasio simpangan

tingkat maksimum (*story-drift-ratio*) yang terjadi pada arah X adalah sebesar 0.274 % pada tingkat 2, sedangkan pada arah Y sebesar 0.343 % terjadi pada tingkat 3.

B. Demand capacity ratio (DCR) akibat gempa statik ekivalen

Demand Capacity Ratio (DCR) elemen balok dan kolom untuk hasil analisis beban elastik statik ekivalen dapat dihitung dengan bantuan SAP 2000 untuk menentukan nilai DCR, selanjutnya akan dibandingkan dengan nilai DCR ijin yang disyaratkan oleh FEMA 356 (2000) untuk prosedur Linier, yaitu sebesar 2,0.

Dari perhitungan nilai DCR hasil analisis beban gempa statik ekivalen, diperoleh bahwa terdapat elemen balok dan kolom dengan nilai DCR yang lebih besar dari 1 dan kurang 2 yang menunjukan bahwa elemen tersebut sudah berada kedalam kondisi inelastik. Hal ini menunjukkan bahwa diperlukannya evaluasi ke tahap selanjutnya yaitu evaluasi *tier 3*. Dari gambar tersebut, akan diberikan keterangan E dan IN pada setiap frame balok maupun kolom. E berarti Elastik, yaitu memiliki nilai DCR < 1. Sedangkan IN berarti Inelastik, memiliki nilai DCR > 1.

Berikut adalah hasil perhitungan DCR untuk elemen balok dan kolom akibat gempa statik ekivalen terhadap momen dan gaya geser pada elemen balok dan kolom pada lantai 1 yang disajikan pada Tabel 5.20 sampai Tabel 5.22 dan Gambar 5.7 sampai Gambar 5.9. Kemudian untuk hasil perhitungan DCR untuk elemen balok dan kolom akibat gempa statik ekivalen terhadap momen dan gaya geser pada elemen balok dan kolom pada lantai 2 sampai lantai 5 ditabelkan secara rinci dalam Lampiran 5.

		DEMAND			CAPACITY			DCR			STATUS						
NO	ТҮРЕ	M tum	puan	M lapa	angan	M tum	npuan	M lap	angan	M tun	npuan	M lapa	angan	M tun	npuan	M lap	angan
	BALOK	-	+	-	+	-	+	-	+	-	+	-	+	_	+	_	+
		Kn.m	Kn.m	Kn.m	Kn.m	Kn.m	Kn.m	Kn.m	Kn.m	Kn.m	Kn.m	Kn.m	Kn.m				
1	L1_B30X40_1	-174.5755	162.2663	-121.4159	119.2712	-299.657	325.365	-230.083	333.5422	0.58258	0.49872	0.52771	0.35759	Elastik	Elastik	Elastik	Elastik
2	L1_B30X40_2	-171.3487	158.9982	-120.0011	116.9332	-299.657	325.365	-230.083	333.5422	0.57182	0.48868	0.52155	0.35058	Elastik	Elastik	Elastik	Elastik
3	L1_B30X40_3	-168.7163	153.9295	-118.1421	113.3113	-299.657	325.365	-230.083	333.5422	0.56303	0.4731	0.51347	0.33972	Elastik	Elastik	Elastik	Elastik
4	L1_B30X40_4	-167.4689	155.0891	-117.0741	114.1345	-299.657	325.365	-230.083	333.5422	0.55887	0.47666	0.50883	0.34219	Elastik	Elastik	Elastik	Elastik
5	L1_B30X40_5	-167.9661	155.4845	-116.7194	114.4025	-299.657	325.365	-230.083	333.5422	0.56053	0.47788	0.50729	0.34299	Elastik	Elastik	Elastik	Elastik
6	L1_B30X40_6	-166.0205	153.5121	-115.3337	112.9898	-299.657	325.365	-230.083	333.5422	0.55404	0.47182	0.50127	0.33876	Elastik	Elastik	Elastik	Elastik
7	L1_B30X40_7	-164.0403	151.4888	-113.9253	111.5384	-299.657	325.365	-230.083	333.5422	0.54743	0.46551	0.49515	0.33441	Elastik	Elastik	Elastik	Elastik
8	L1_B30X40_8	-162.0895	149.5059	-112.5365	110.1175	-299.657	325.365	-230.083	333.5422	0.54092	0.45951	0.48911	0.33015	Elastik	Elastik	Elastik	Elastik
9	L1_B30X40_9	-160.0227	147.4297	-111.0616	108.6331	-299.657	325.365	-230.083	333.5422	0.53402	0.45312	0.48271	0.32569	Elastik	Elastik	Elastik	Elastik
10	L1_B25X55_1	-200.1937	181.7374	-106.2531	111.1123	-276.793	298.066	-188.278	415.0867	0.72326	0.60972	0.56434	0.26768	Elastik	Elastik	Elastik	Elastik
11	L1_B25X55_2	-183.7634	158.8841	-95.1859	95.1737	-276.793	298.066	-188.278	415.0867	0.66391	0.53305	0.50556	0.22929	Elastik	Elastik	Elastik	Elastik
12	L1_B25X55_3	-157.9491	125.3731	-86.8845	82.3117	-276.793	298.066	-188.278	415.0867	0.57064	0.42062	0.46147	0.19831	Elastik	Elastik	Elastik	Elastik
13	L1_B25X55_4	-158.0577	125.7436	-86.9661	82.5431	-276.793	298.066	-188.278	415.0867	0.57103	0.42186	0.46191	0.19886	Elastik	Elastik	Elastik	Elastik
14	L1_B25X55_5	-184.5474	159.2154	-95.7221	95.2573	-276.793	298.066	-188.278	415.0867	0.66673	0.53416	0.50841	0.22949	Elastik	Elastik	Elastik	Elastik
15	L1_B25X55_6	-187.3078	162.6476	-97.1064	97.3133	-276.793	298.066	-188.278	415.0867	0.67671	0.54568	0.51576	0.23444	Elastik	Elastik	Elastik	Elastik
16	L1_B25X55_7	-186.7014	162.4941	-96.6688	97.3286	-276.793	298.066	-188.278	415.0867	0.67452	0.54516	0.51343	0.23448	Elastik	Elastik	Elastik	Elastik
17	L1_B25X55_8	-186.8307	162.5483	-96.7573	97.3421	-276.793	298.066	-188.278	415.0867	0.67498	0.54534	0.51391	0.23451	Elastik	Elastik	Elastik	Elastik
18	L1_B25X55_9	-186.9261	162.6451	-96.8111	97.3962	-276.793	298.066	-188.278	415.0867	0.67533	0.54567	0.51418	0.23464	Elastik	Elastik	Elastik	Elastik
19	L1_B25X55_10	-186.6121	162.0578	-96.7712	97.2219	-276.793	298.066	-188.278	415.0867	0.72457	0.54369	0.51398	0.23422	Elastik	Elastik	Elastik	Elastik
20	L1_B25X55_11	-200.5565	181.6131	-106.5653	111.1492	-276.793	298.066	-188.278	415.0867	0.72457	0.60931	0.56599	0.26777	Elastik	Elastik	Elastik	Elastik
21	L1_B25X55_12	-415.1211	399.9201	-295.5272	289.7811	-276.793	298.066	-188.278	415.0867	1.49975	1.34172	1.56963	0.69812	Inelastik	Inelastik	Inelastik	Elastik
22	L1_B25X55_13	-428.0614	427.3813	-307.2783	309.4549	-276.793	298.066	-188.278	415.0867	1.54651	1.43385	1.63204	0.74552	Inelastik	Inelastik	Inelastik	Elastik
23	L1_B25X55_14	-393.5573	393.2955	-282.7052	285.6682	-276.793	298.066	-188.278	415.0867	1.42185	1.31949	1.50152	0.68821	Inelastik	Inelastik	Inelastik	Elastik
24	L1_B30X50_1	-413.5725	402.5304	-294.1275	291.6311	-409.625	438.852	-212.183	467.2651	1.00964	0.91723	1.38619	0.62412	Inelastik	Elastik	Inelastik	Elastik
25	L1_B30X50_2	-249.0277	243.2357	-175.8111	179.1524	-409.625	438.852	-212.183	467.2651	0.60794	0.55425	0.82858	0.38341	Elastik	Elastik	Elastik	Elastik
26	L1_B30X50_3	-425.6198	430.1796	-304.5659	312.5769	-409.625	438.852	-212.183	467.2651	1.03905	0.98024	1.43539	0.66895	Inelastik	Elastik	Inelastik	Elastik
27	L1_B30X50_4	-247.0611	254.6159	-177.8363	188.0206	-409.625	438.852	-212.183	467.2651	0.60314	0.58019	0.83813	0.40239	Elastik	Elastik	Elastik	Elastik
28	L1_B30X50_5	-165.0878	161.0878	-89.8345	90.4628	-409.625	438.852	-212.183	467.2651	0.40302	0.36707	0.42338	0.19361	Elastik	Elastik	Elastik	Elastik
29	L1_B30X50_6	-166.1321	161.1346	-89.9124	90.3455	-409.625	438.852	-212.183	467.2651	0.40557	0.36717	0.42375	0.19335	Elastik	Elastik	Elastik	Elastik
30	L1_B30X50_7	-167.1762	161.1814	-89.9903	90.2282	-409.625	438.852	-212.183	467.2651	0.40812	0.36728	0.42412	0.19309	Elastik	Elastik	Elastik	Elastik
31	L1_B30X50_8	-168.2204	161.2282	-90.0682	90.1109	-409.625	438.852	-212.183	467.2651	0.41067	0.36739	0.42448	0.19285	Elastik	Elastik	Elastik	Elastik
32	L1_B30X50_9	-169.2646	161.2751	-90.1461	89.9936	-409.625	438.852	-212.183	467.2651	0.41322	0.36749	0.42485	0.19259	Elastik	Elastik	Elastik	Elastik
33	L1_B30X50_10	-170.3088	161.3218	-90.2241	89.8763	-409.625	438.852	-212.183	467.2651	0.41577	0.36759	0.42522	0.19235	Elastik	Elastik	Elastik	Elastik
34	L1_B30X50_11	-171.3531	161.3686	-90.3019	89.759	-409.625	438.852	-212.183	467.2651	0.41832	0.36771	0.42558	0.19209	Elastik	Elastik	Elastik	Elastik
35	L1_B30X50_12	-172.3972	161.4154	-90.3798	89.6417	-409.625	438.852	-212.183	467.2651	0.42087	0.36781	0.42595	0.19184	Elastik	Elastik	Elastik	Elastik

Tabel 5. 20 Nilai Demand Capacity Ratio (DCR) Balok lantai 1 akibat momen

				DEM	DEMAND			CAPACITY				D	CR		STATUS			
		TYPE	M tun	ipuan	M lap	angan	M tun	npuan	M lap	angan	M tur	npuan	M lap	angan	M tur	npuan	M lap	angan
I	υ	BALOK	-	+	-	+	-	+	-	+	-	+	-	+				
			Kn.m	Kn.m	Kn.m	Kn.m	Kn.m	Kn.m	Kn.m	Kn.m	Kn.m	Kn.m	Kn.m	Kn.m	-	+	-	+
	36	L1_B30X50_13	-173.4414	161.4622	-90.4577	89.5244	-409.625	438.852	-212.183	467.2651	0.42341	0.36792	0.42632	0.19159	Elastik	Elastik	Linier	Linier
	37	L1_B30X50_14	-174.4856	161.5091	-90.5356	89.4071	-409.625	438.852	-212.183	467.2651	0.42596	0.36803	0.42669	0.19134	Elastik	Elastik	Linier	Linier
	38	L1_B30X50_15	-376.1977	366.8283	-267.7432	266.1519	-409.625	438.852	-212.183	467.2651	0.91839	0.83588	1.26185	0.56959	Elastik	Elastik	Linier	Linier
	39	L1_B30X50_16	-205.1903	191.1455	-144.2981	138.7989	-409.625	438.852	-212.183	467.2651	0.50092	0.43556	0.68006	0.29705	Elastik	Elastik	Linier	Linier
4	10	L1_B30X50_17	-501.7571	511.6407	-308.3063	317.1894	-409.625	438.852	-212.183	467.2651	1.22492	1.16586	1.45302	0.67882	Inelastik	Inelastik	Linier	Linier
4	11	L1_B30X50_18	-328.9387	329.5956	-207.9144	210.8642	-409.625	438.852	-212.183	467.2651	0.80302	0.75104	0.97988	0.45127	Elastik	Elastik	Linier	Linier
4	12	L1_B30X65_1	-334.6927	224.3751	-178.4567	167.6417	-707.212	597.981	-436.274	625.1386	0.47326	0.37522	0.40905	0.26817	Elastik	Elastik	Linier	Linier
4	13	L1_B30X65_2	-291.1418	174.7303	-148.4252	130.4407	-707.212	597.981	-436.274	625.1386	0.41168	0.29221	0.34021	0.20866	Elastik	Elastik	Linier	Linier
4	14	L1_B30X65_3	-291.7039	175.6634	-148.5206	130.5386	-574.577	609.083	-436.274	625.1386	0.50768	0.28841	0.34043	0.20882	Elastik	Elastik	Linier	Linier
4	45	L1_B30X65_4	-291.3427	175.5791	-148.2686	130.4442	-574.577	609.083	-436.274	625.1386	0.50706	0.28827	0.33985	0.20866	Elastik	Elastik	Linier	Linier
4	16	L1_B30X65_5	-291.3105	175.2603	-148.2329	130.2205	-574.577	609.083	-436.274	625.1386	0.50699	0.28774	0.33977	0.20831	Elastik	Elastik	Linier	Linier
4	17	L1_B30X65_6	-291.2032	175.2858	-148.1421	130.2146	-574.577	609.083	-436.274	625.1386	0.50681	0.28779	0.33956	0.20829	Elastik	Elastik	Linier	Linier
4	18	L1_B30X65_7	-291.2823	175.3711	-148.2151	130.2864	-574.577	609.083	-436.274	625.1386	0.50695	0.28793	0.33973	0.20841	Elastik	Elastik	Linier	Linier
4	19	L1_B30X65_8	-291.4445	175.5068	-148.2874	130.3808	-574.577	609.083	-436.274	625.1386	0.50723	0.28793	0.33989	0.20856	Elastik	Elastik	Linier	Linier
,	50	L1_B30X65_9	-291.6278	175.8103	-148.3887	130.5785	-574.577	609.083	-436.274	625.1386	0.50755	0.28865	0.34013	0.20888	Elastik	Elastik	Linier	Linier
,	51	L1_B30X65_10	-288.4989	179.6776	-145.2297	134.1889	-574.577	609.083	-436.274	625.1386	0.50211	0.29499	0.33289	0.21465	Elastik	Elastik	Linier	Linier
,	52	L1_B30X65_11	-301.5891	271.4663	-167.2398	165.1512	-574.577	609.083	-436.274	625.1386	0.52489	0.44569	0.38334	0.26418	Elastik	Elastik	Linier	Linier
,	53	L1_B30X65_12	-345.3686	187.2506	-198.2988	168.9605	-831.968	589.952	-437.368	981.6255	0.41512	0.31739	0.45339	0.17212	Elastik	Elastik	Linier	Linier
,	54	L1_B30X65_13	-341.7687	184.8782	-195.8175	167.3127	-831.968	589.952	-437.368	981.6255	0.41079	0.31338	0.44772	0.17044	Elastik	Elastik	Linier	Linier
Ţ.	55	L1_B30X65_14	-338.3473	181.7206	-193.4615	165.1151	-831.968	589.952	-437.368	981.6255	0.40668	0.30803	0.44233	0.16821	Elastik	Elastik	Linier	Linier
,	56	L1_B30X65_15	-335.8284	178.0928	-191.7516	162.6657	-831.968	589.952	-437.368	981.6255	0.40366	0.30188	0.43842	0.16571	Elastik	Elastik	Linier	Linier
5	57	L1_B30X65_16	-332.4201	174.7173	-189.4156	160.3703	-831.968	589.952	-437.368	981.6255	0.39956	0.29616	0.43308	0.16337	Elastik	Elastik	Linier	Linier
,	58	L1_B30X65_17	-328.9749	171.4731	-187.0481	158.1419	-831.968	589.952	-437.368	981.6255	0.39542	0.29066	0.42767	0.16113	Elastik	Elastik	Linier	Linier
,	59	L1_B30X65_18	-324.6391	168.4611	-184.0523	156.0558	-831.968	589.952	-437.368	981.6255	0.39021	0.28555	0.42082	0.15898	Elastik	Elastik	Linier	Linier
e	50	L1_B30X65_19	-321.2354	165.1985	-181.7123	153.8131	-831.968	589.952	-437.368	981.6255	0.38612	0.28002	0.41547	0.15669	Elastik	Elastik	Linier	Linier
e	51	L1_B30X65_20	-318.2663	161.2067	-179.6911	151.0684	-831.968	589.952	-437.368	981.6255	0.38255	0.27325	0.41085	0.15389	Elastik	Elastik	Linier	Linier
e	52	L1_B30X65_21	-281.3845	268.3636	-150.2445	155.1712	-409.625	597.981	-436.274	625.1386	0.39788	0.44878	0.34438	0.24822	Elastik	Elastik	Linier	Linier
e	53	L1_B30X65_22	-407.8561	315.7557	-222.7661	216.2779	-409.625	438.852	-212.183	467.2651	0.57671	0.52804	0.51061	0.34597	Elastik	Elastik	Linier	Linier
e	54	L1_B30X65_23	-386.0433	274.7131	-208.9376	187.1583	-409.625	438.852	-212.183	467.2651	0.54587	0.45941	0.47891	0.29939	Elastik	Elastik	Linier	Linier
e	55	L1_B30X65_24	-376.3694	263.8462	-203.4152	179.0064	-409.625	438.852	-212.183	467.2651	0.53219	0.44123	0.46626	0.28635	Elastik	Elastik	Linier	Linier
e	56	L1_B30X65_25	-387.2845	275.5331	-209.7859	186.7331	-409.625	438.852	-212.183	467.2651	0.54762	0.46077	0.48086	0.29871	Elastik	Elastik	Linier	Linier
6	57	L1_B30X65_26	-395.0319	289.4568	-213.3792	195.8602	-409.625	438.852	-212.183	467.2651	0.55858	0.48406	0.48909	0.31331	Elastik	Elastik	Linier	Linier
e	58	L1_B30X65_27	-395.5761	289.1814	-213.7063	195.5306	-409.625	438.852	-212.183	467.2651	0.55935	0.48359	0.48909	0.31278	Elastik	Elastik	Linier	Linier
6	59	L1_B30X65_28	-386.7758	275.0466	-209.4756	187.0497	-409.625	438.852	-212.183	467.2651	0.54691	0.45996	0.48015	0.29921	Elastik	Elastik	Linier	Linier
	70	L1_B30X65_29	-375.9927	263.7144	-203.1169	179.0011	-409.625	438.852	-212.183	467.2651	0.53166	0.44101	0.46557	0.28634	Elastik	Elastik	Linier	Linier
	71	L1_B30X65_30	-387.1893	275.6451	-209.6637	186.5663	-409.625	438.852	-212.183	467.2651	0.54749	0.46096	0.48058	0.29844	Elastik	Elastik	Linier	Linier
1.7	72	L1 B30X65 31	-405.8731	317.0351	-221.4576	217.0513	-409.625	438.852	-212.183	467.2651	0.57391	0.53018	0.50761	0.34721	Elastik	Elastik	Linier	Linier

No	Fromo	Geser	Ve	<u>لا</u> ل	DCR	Keterangan
INO	Frame	Statik	v n	φvn	statik	Statik
1	L1_B30X40_1	-124.178	372.416	279.3121	0.4446	Elastik
2	L1_B30X40_2	-122.026	372.416	279.3121	0.4369	Elastik
3	L1_B30X40_3	-118.678	372.416	279.3121	0.4249	Elastik
4	L1_B30X40_4	-119.456	372.416	279.3121	0.4277	Elastik
5	L1_B30X40_5	-119.751	372.416	279.3121	0.4287	Elastik
6	L1_B30X40_6	-118.456	372.416	279.3121	0.4241	Elastik
7	L1_B30X40_7	-117.133	372.416	279.3121	0.4194	Elastik
8	L1_B30X40_8	-115.832	372.416	279.3121	0.4147	Elastik
9	L1_B30X40_9	-114.463	372.416	279.3121	0.4098	Elastik
10	L1_B25X55_1	100.231	530.954	398.2158	0.2517	Elastik
11	L1_B25X55_2	-93.157	530.954	398.2158	0.2339	Elastik
12	L1_B25X55_3	-75.246	530.954	398.2158	0.1890	Elastik
13	L1_B25X55_4	-72.181	530.954	398.2158	0.1813	Elastik
14	L1_B25X55_5	-90.833	530.954	398.2158	0.2281	Elastik
15	L1_B25X55_6	-94.818	530.954	398.2158	0.2381	Elastik
16	L1_B25X55_7	-94.645	530.954	398.2158	0.2377	Elastik
17	L1_B25X55_8	-94.687	530.954	398.2158	0.2378	Elastik
18	L1_B25X55_9	-94.731	530.954	398.2158	0.2379	Elastik
19	L1_B25X55_10	-94.449	530.954	398.2158	0.2372	Elastik
20	L1_B25X55_11	-100.064	530.954	398.2158	0.2513	Elastik
21	L1_B25X55_12	-273.479	530.954	398.2158	0.6868	Elastik
22	L1_B25X55_13	284.011	530.954	398.2158	0.7132	Elastik
23	L1_B25X55_14	-254.429	530.954	398.2158	0.6389	Elastik
24	L1_B30X50_1	277.584	487.894	365.9205	0.7586	Elastik
25	L1_B30X50_2	-175.404	487.894	365.9205	0.4794	Elastik
26	L1_B30X50_3	291.986	487.894	365.9205	0.7979	Elastik
27	L1_B30X50_4	173.952	487.894	365.9205	0.4754	Elastik
28	L1_B30X50_5	-86.757	487.894	365.9205	0.2371	Elastik
29	L1_B30X50_6	-86.755	487.894	365.9205	0.2371	Elastik
30	L1_B30X50_7	-86.892	487.894	365.9205	0.2375	Elastik
31	L1_B30X50_8	-87.030	487.894	365.9205	0.2378	Elastik
32	L1_B30X50_9	-87.167	487.894	365.9205	0.2382	Elastik
33	L1_B30X50_10	-87.304	487.894	365.9205	0.2386	Elastik
34	L1_B30X50_11	-87.441	487.894	365.9205	0.2390	Elastik
35	L1_B30X50_12	-87.578	487.894	365.9205	0.2393	Elastik

Tabel 5. 21 Nilai Demand Capacity Ratio (DCR) Balok lantai 1 akibat geser

No Framo		Geser	Vn	d\/n	DCR	Keterangan
INO	Frame	Statik	vn	φvn	statik	Statik
36	L1_B30X50_13	-87.715	487.894	365.9205	0.2397	Elastik
37	L1_B30X50_14	-87.852	487.894	365.9205	0.2401	Elastik
38	L1_B30X50_15	248.238	487.894	365.9205	0.6784	Elastik
39	L1_B30X50_16	-139.106	487.894	365.9205	0.3802	Elastik
40	L1_B30X50_17	-492.791	487.894	365.9205	1.3467	Inelastik
41	L1_B30X50_18	-305.828	487.894	365.9205	0.8358	Elastik
42	L1_B30X65_1	-185.216	661.111	495.8331	0.3735	Elastik
43	L1_B30X65_2	169.496	661.111	495.8331	0.3418	Elastik
44	L1_B30X65_3	-170.039	661.111	495.8331	0.3429	Elastik
45	L1_B30X65_4	-169.923	661.111	495.8331	0.3427	Elastik
46	L1_B30X65_5	-169.916	661.111	495.8331	0.3427	Elastik
47	L1_B30X65_6	-169.899	661.111	495.8331	0.3427	Elastik
48	L1_B30X65_7	-169.941	661.111	495.8331	0.3427	Elastik
49	L1_B30X65_8	-170.008	661.111	495.8331	0.3429	Elastik
50	L1_B30X65_9	-170.104	661.111	495.8331	0.3431	Elastik
51	L1_B30X65_10	-170.234	661.111	495.8331	0.3433	Elastik
52	L1_B30X65_11	-145.146	661.111	495.8331	0.2927	Elastik
53	L1_B30X65_12	108.606	661.111	495.8331	0.2190	Elastik
54	L1_B30X65_13	107.832	661.111	495.8331	0.2175	Elastik
55	L1_B30X65_14	107.094	661.111	495.8331	0.2160	Elastik
56	L1_B30X65_15	106.534	661.111	495.8331	0.2149	Elastik
57	L1_B30X65_16	105.792	661.111	495.8331	0.2134	Elastik
58	L1_B30X65_17	105.046	661.111	495.8331	0.2119	Elastik
59	L1_B30X65_18	104.119	661.111	495.8331	0.2100	Elastik
60	L1_B30X65_19	103.383	661.111	495.8331	0.2085	Elastik
61	L1_B30X65_20	102.726	661.111	495.8331	0.2072	Elastik
62	L1_B30X65_21	-139.923	661.111	495.8331	0.2822	Elastik
63	L1_B30X65_22	220.306	661.111	495.8331	0.4443	Elastik
64	L1_B30X65_23	-208.918	661.111	495.8331	0.4213	Elastik
65	L1_B30X65_24	-203.787	661.111	495.8331	0.4110	Elastik
66	L1_B30X65_25	-201.572	661.111	495.8331	0.4065	Elastik
67	L1_B30X65_26	-214.205	661.111	495.8331	0.4320	Elastik
68	L1_B30X65_27	-213.88	661.111	495.8331	0.4314	Elastik
69	L1_B30X65_28	-209.144	661.111	495.8331	0.4218	Elastik
70	L1_B30X65_29	-203.857	661.111	495.8331	0.4111	Elastik
71	L1_B30X65_30	-201.497	661.111	495.8331	0.4064	Elastik
72	L1_B30X65_31	-220.981	661.111	495.8331	0.4457	Elastik

					DEM	AND			CAPACITY						
NO	LANTAI	TYPE KOLOM		ARAH X			ARAH Y			ARAH X			ARAH Y		
			Mu (KNm)	Pu (KN)	Vu (KN)	Mu (KNm)	Pu (KN)	Vu (KN)	Mu (KNm)	Pu (KN)	Vu (KN)	Mu (KNm)	Pu (KN)	Vu (KN)	
1	AS:1_B1	L1_K11 50X65_1	-77.9914	-1264.652	875.337	643.6902	-1264.652	-17.493	2567.080	3013.565	1145.489	2567.080	3013.565	1145.489	
2	AS:2_B2	L1_K11 50X65_2	-106.6562	-1613.022	-50.367	-244.6053	-1613.022	-34.889	2567.080	3013.565	1145.489	2567.080	3013.565	1145.489	
3	AS:3_B3	L1_K11 50X65_3	103.0383	-1616.569	-53.304	-248.4079	-1616.569	32.208	2567.080	3013.565	1145.489	2567.080	3013.565	1145.489	
4	AS:4_B4	L1_K11 50X65_4	103.4924	-1597.191	-55.851	-251.6931	-1597.19	32.546	2567.080	3013.565	1145.489	2567.080	3013.565	1145.489	
5	AS:5_B5	L1_K11 50X65_5	103.2098	-1589.991	-59.512	-256.4551	-1589.99	32.336	2567.080	3013.565	1145.489	2567.080	3013.565	1145.489	
6	AS:6_B6	L1_K11 50X65_6	103.3486	-1582.716	-63.105	-261.1282	-1582.716	32.439	2567.080	3013.565	1145.489	2567.080	3013.565	1145.489	
7	AS:7_B7	L1_K11 50X65_7	-103.2866	-1574.822	-66.252	-265.2091	-1574.822	-32.384	2567.080	3013.565	1145.489	2567.080	3013.565	1145.489	
8	AS:8_B8	L1_K11 50X65_8	-103.2432	-1567.035	-69.412	-269.3059	-1567.035	-32.352	2567.080	3013.565	1145.489	2567.080	3013.565	1145.489	
9	AS:9_B9	L1_K11 50X65_9	103.3399	-1561.246	-72.529	-273.3476	-1561.246	32.432	2567.080	3013.565	1145.489	2567.080	3013.565	1145.489	
10	AS:10_B10	L1_K1150X65_10	103.7754	-1518.782	-75.477	-277.1648	-1518.782	32.756	2567.080	3013.565	1145.489	2567.080	3013.565	1145.489	
11	AS:11_B11	L1_K1150X65_11	111.8036	-891.055	92.053	299.4119	-891.055	38.723	2567.080	3013.565	1145.489	2567.080	3013.565	1145.489	
12	AS:12_B12	L1_K11 50X65_12	65.8672	-954.842	983.299	626.7528	-954.842	7.634	2567.080	3013.565	1145.489	2567.080	3013.565	1145.489	
13	AS:1_C1	L1_K1150X65_13	207.1376	-1896.413	-507.839	-452.2071	-1896.413	-229.772	2567.080	3013.565	1145.489	2567.080	3013.565	1145.489	
14	AS:2_C2	L1_K11 50X65_14	-273.1319	-1483.849	27.166	208.7951	-1483.849	-451.211	2567.080	3013.565	1145.489	2567.080	3013.565	1145.489	
15	AS:3_C3	L1_K1150X65_15	-218.9307	-1338.321	27.891	212.9355	-1338.321	-380.788	2567.080	3013.565	1145.489	2567.080	3013.565	1145.489	
16	AS:4_C4	L1_K11 50X65_16	219.5669	-1326.589	31.199	217.0429	-1326.589	382.256	2567.080	3013.565	1145.489	2567.080	3013.565	1145.489	
17	AS:5_C5	L1_K11 50X65_17	275.8452	-1337.134	36.706	220.8235	-1337.134	456.134	2567.080	3013.565	1145.489	2567.080	3013.565	1145.489	
18	AS:6_C6	L1_K11 50X65_18	276.6001	-1321.004	40.079	224.8841	-1321.01	461.254	2567.080	3013.565	1145.489	2567.080	3013.565	1145.489	
19	AS:7_C7	L1_K11 50X65_19	-275.2883	-1322.549	43.457	228.9442	-1322.549	-454.998	2567.080	3013.565	1145.489	2567.080	3013.565	1145.489	
20	AS:8_C8	L1_K1150X65_20	-219.1966	-1298.672	44.621	233.5765	-1298.672	-381.357	2567.080	3013.565	1145.489	2567.080	3013.565	1145.489	
21	AS:9_C9	L1_K1150X65_21	219.1479	-1289.881	47.963	237.7329	-1289.88	381.641	2567.080	3013.565	1145.489	2567.080	3013.565	1145.489	
22	AS:10_C10	L1_K11 50X65_22	273.4611	-1348.307	53.621	241.2154	-1348.307	451.138	2567.080	3013.565	1145.489	2567.080	3013.565	1145.489	
23	AS:11_C11	L1_K1150X65_23	-207.5515	-1646.772	66.225	260.8648	-1646.772	226.542	2567.080	3013.565	1145.489	2567.080	3013.565	1145.489	
24	AS:1_B'1	L1_K4 50X50_1	105.0161	-360.601	706.423	423.5136	-360.60	-27.891	1189.736	2274.346	575.6863	1189.736	2274.346	575.6863	
25	AS:11_B'11	L1_K4 50X50_2	-102.3683	-364.936	70.837	176.2578	-364.94	22.223	1189.736	2274.346	575.6863	1189.736	2274.346	575.6863	
26	AS:12_B'12	L1_K4 50X50_3	-107.0805	-334.668	-769.619	446.6915	-334.67	29.155	1189.736	2274.346	575.6863	1189.736	2274.346	575.6863	
27	AS:1_C'1	L1_K4 50X50_4	105.6614	-907.277	-726.396	438.8363	-907.28	-28.344	1189.736	2274.346	575.6863	1189.736	2274.346	575.6863	

Tabel 5. 22 Nilai Demand Capacity Ratio (DCR) Kolom lantai 1 akibat momen, aksial, dan geser

		TYPE KOLOM	DEMAND							CAPACITY						
NO	LANTAI		ARAH X				ARAH Y			ARAH X			ARAH Y			
			Mu (KNm)	Pu (KN)	Vu (KN)	Mu (KNm)	Pu (KN)	Vu (KN)	Mu (KNm)	Pu (KN)	Vu (KN)	Mu (KNm)	Pu (KN)	Vu (KN)		
28	AS:11_C'11	L1_K4 50X50_5	-55.0182	-762.749	-74.821	181.3531	-762.75	-7.557	1189.736	2274.346	575.6863	1189.736	2274.346	575.6863		
29	AS:12_C'12	L1_K4 50X50_6	56.8956	-1171.757	-450.097	-289.5845	-1171.757	10.476	1189.736	2274.346	575.6863	1189.736	2274.346	575.6863		
30	AS:2_A2	L1_K6 40X55_1	-171.0754	-1201.172	-28.771	-94.4254	-1201.172	-282.967	969.515	2055.569	577.3359	969.515	2055.569	577.3359		
31	AS:3_A3	L1_K6 40X55_2	-137.5365	-1087.872	-26.573	-96.3738	-1087.872	-230.976	969.515	2055.569	577.3359	969.515	2055.569	577.3359		
32	AS:4_A4	L1_K6 40X55_3	-51.4949	-1057.394	-24.861	-98.1288	-1057.394	-20.398	969.515	2055.569	577.3359	969.515	2055.569	577.3359		
33	AS:5_A5	L1_K6 40X55_4	138.1248	-1053.248	-28.771	-99.1121	-1053.248	231.971	969.515	2055.569	577.3359	969.515	2055.569	577.3359		
34	AS:6_A6	L1_K6 40X55_5	171.6736	-1048.902	-32.643	-99.8129	-1048.902	282.919	969.515	2055.569	577.3359	969.515	2055.569	577.3359		
35	AS:7_A7	L1_K6 40X55_6	-172.2581	-1028.485	-33.769	-101.1458	-1028.485	-284.651	969.515	2055.569	577.3359	969.515	2055.569	577.3359		
36	AS:8_A8	L1_K6 40X55_7	-172.4471	-1014.227	-34.881	-102.4463	-1014.227	-284.887	969.515	2055.569	577.3359	969.515	2055.569	577.3359		
37	AS:9_A9	L1_K6 40X55_8	-172.4791	-998.641	-35.997	-103.7501	-998.64	-284.976	969.515	2055.569	577.3359	969.515	2055.569	577.3359		
38	AS:10_A10	L1_K6 40X55_9	-172.4185	-996.999	-36.975	-105.0538	-996.99	-284.837	969.515	2055.569	577.3359	969.515	2055.569	577.3359		
39	AS:1_A1	L1_K7 40X55_1	126.1408	-1183.228	384.086	256.8879	-1183.228	158.706	1294.645	2013.819	575.1354	1294.645	2013.819	575.1354		
40	AS:11_A11	L1_K7 40X55_2	-172.5065	-1179.441	-53.447	-123.3505	-1179.44	-286.874	1294.645	2013.819	575.1354	1294.645	2013.819	575.1354		
41	AS:12_A12	L1_K7 40X55_3	-125.3773	-1162.573	429.092	253.5252	-1162.573	-158.838	1294.645	2013.819	575.1354	1294.645	2013.819	575.1354		

					D	CR			STATUS						
NO	LANTAI	TYPE KOLOM		ARAH X		1	ARAH Y		1	ARAH X			ARAH Y		
			Mu (KNm)	Pu (KN)	Vu (KN)	Mu (KNm)	Pu (KN)	Vu (KN)	Mu (KNm)	Pu (KN)	Vu (KN)	Mu (KNm)	Pu (KN)	Vu (KN)	
1	AS:1_B1	L1_K11 50X65_1	0.03038	0.41965	0.76416	0.25075	0.41965	0.01527	Elastik	Elastik	Elastik	Elastik	Elastik	Elastik	
2	AS:2_B2	L1_K11 50X65_2	0.04155	0.53525	0.04397	0.09529	0.53525	0.03046	Elastik	Elastik	Elastik	Elastik	Elastik	Elastik	
3	AS:3_B3	L1_K11 50X65_3	0.04014	0.53643	0.04653	0.09677	0.53643	0.02812	Elastik	Elastik	Elastik	Elastik	Elastik	Elastik	
4	AS:4_B4	L1_K11 50X65_4	0.04032	0.53000	0.04876	0.09805	0.53000	0.02841	Elastik	Elastik	Elastik	Elastik	Elastik	Elastik	
5	AS:5_B5	L1_K11 50X65_5	0.04021	0.52761	0.05195	0.09990	0.52761	0.02823	Elastik	Elastik	Elastik	Elastik	Elastik	Elastik	
6	AS:6_B6	L1_K11 50X65_6	0.04026	0.52520	0.05509	0.10172	0.52520	0.02832	Elastik	Elastik	Elastik	Elastik	Elastik	Elastik	
7	AS:7_B7	L1_K11 50X65_7	0.04024	0.52258	0.05784	0.10331	0.52258	0.02827	Elastik	Elastik	Elastik	Elastik	Elastik	Elastik	
8	AS:8_B8	L1_K11 50X65_8	0.04022	0.51999	0.06060	0.10491	0.51999	0.02824	Elastik	Elastik	Elastik	Elastik	Elastik	Elastik	
9	AS:9_B9	L1_K11 50X65_9	0.04026	0.51807	0.06332	0.10648	0.51807	0.02831	Elastik	Elastik	Elastik	Elastik	Elastik	Elastik	
10	AS:10_B10	L1_K11 50X65_10	0.04043	0.50398	0.06589	0.10797	0.50398	0.02860	Elastik	Elastik	Elastik	Elastik	Elastik	Elastik	
11	AS:11_B11	L1_K11 50X65_11	0.04355	0.29568	0.08036	0.11664	0.29568	0.03380	Elastik	Elastik	Elastik	Elastik	Elastik	Elastik	
12	AS:12_B12	L1_K11 50X65_12	0.02566	0.31685	0.85841	0.24415	0.31685	0.00666	Elastik	Elastik	Elastik	Elastik	Elastik	Elastik	
13	AS:1_C1	L1_K11 50X65_13	0.08069	0.62929	0.44334	0.17616	0.62929	0.20059	Elastik	Elastik	Elastik	Elastik	Elastik	Elastik	
14	AS:2_C2	L1_K11 50X65_14	0.10640	0.49239	0.02372	0.08134	0.49239	0.39390	Elastik	Elastik	Elastik	Elastik	Elastik	Elastik	
15	AS:3_C3	L1_K11 50X65_15	0.08528	0.44410	0.02435	0.08295	0.44410	0.33242	Elastik	Elastik	Elastik	Elastik	Elastik	Elastik	
16	AS:4_C4	L1_K11 50X65_16	0.08553	0.44021	0.02724	0.08455	0.44021	0.33371	Elastik	Elastik	Elastik	Elastik	Elastik	Elastik	
17	AS:5_C5	L1_K11 50X65_17	0.10745	0.44371	0.03204	0.08602	0.44371	0.39820	Elastik	Elastik	Elastik	Elastik	Elastik	Elastik	
18	AS:6_C6	L1_K11 50X65_18	0.10775	0.43835	0.03499	0.08760	0.43835	0.40267	Elastik	Elastik	Elastik	Elastik	Elastik	Elastik	
19	AS:7_C7	L1_K11 50X65_19	0.10724	0.43887	0.03794	0.08918	0.43887	0.39721	Elastik	Elastik	Elastik	Elastik	Elastik	Elastik	
20	AS:8_C8	L1_K11 50X65_20	0.08539	0.43094	0.03895	0.09099	0.43094	0.33292	Elastik	Elastik	Elastik	Elastik	Elastik	Elastik	
21	AS:9_C9	L1_K11 50X65_21	0.08537	0.42802	0.04187	0.09261	0.42802	0.33317	Elastik	Elastik	Elastik	Elastik	Elastik	Elastik	
22	AS:10_C10	L1_K11 50X65_22	0.10653	0.44741	0.04681	0.09396	0.44741	0.39384	Elastik	Elastik	Elastik	Elastik	Elastik	Elastik	
23	AS:11_C11	L1_K11 50X65_23	0.08085	0.54645	0.05781	0.10162	0.54645	0.19777	Elastik	Elastik	Elastik	Elastik	Elastik	Elastik	
24	AS:1_B'1	L1_K4 50X50_1	0.08827	0.15855	1.22710	0.35597	0.15855	0.04845	Elastik	Elastik	Inelastik	Elastik	Elastik	Elastik	
25	AS:11_B'11	L1_K4 50X50_2	0.08604	0.16046	0.12305	0.14815	0.16046	0.03860	Elastik	Elastik	Elastik	Elastik	Elastik	Elastik	
26	AS:12_B'12	L1_K4 50X50_3	0.09000	0.14715	1.33687	0.37545	0.14715	0.05064	Elastik	Elastik	Inelastik	Elastik	Elastik	Elastik	
27	AS:1_C'1	L1_K4 50X50_4	0.08881	0.39892	1.26179	0.36885	0.39892	0.04924	Elastik	Elastik	Inelastik	Elastik	Elastik	Elastik	

		TYPE KOLOM			D	CR		STATUS						
NO	LANTAI		ARAH X			ARAH Y			1	ARAH X		ARAH Y		
			Mu (KNm)	Pu (KN)	Vu (KN)	Mu (KNm)	Pu (KN)	Vu (KN)	Mu (KNm)	Pu (KN)	Vu (KN)	Mu (KNm)	Pu (KN)	Vu (KN)
28	AS:11_C'11	L1_K4 50X50_5	0.04624	0.33537	0.12997	0.15243	0.33537	0.01313	Elastik	Elastik	Elastik	Elastik	Elastik	Elastik
29	AS:12_C'12	L1_K4 50X50_6	0.04782	0.51521	0.78184	0.24340	0.51521	0.01820	Elastik	Elastik	Elastik	Elastik	Elastik	Elastik
30	AS:2_A2	L1_K6 40X55_1	0.17645	0.58435	0.04983	0.09739	0.58435	0.49013	Elastik	Elastik	Elastik	Elastik	Elastik	Elastik
31	AS:3_A3	L1_K6 40X55_2	0.14186	0.52923	0.04603	0.09940	0.11237	0.40007	Elastik	Elastik	Elastik	Elastik	Elastik	Elastik
32	AS:4_A4	L1_K6 40X55_3	0.05311	0.51440	0.04306	0.10121	0.51440	0.03533	Elastik	Elastik	Elastik	Elastik	Elastik	Elastik
33	AS:5_A5	L1_K6 40X55_4	0.14247	0.51239	0.04983	0.10223	0.51239	0.40180	Elastik	Elastik	Elastik	Elastik	Elastik	Elastik
34	AS:6_A6	L1_K6 40X55_5	0.17707	0.51027	0.05654	0.10295	0.51027	0.49004	Elastik	Elastik	Elastik	Elastik	Elastik	Elastik
35	AS:7_A7	L1_K6 40X55_6	0.17767	0.50034	0.05849	0.10433	0.50034	0.49304	Elastik	Elastik	Elastik	Elastik	Elastik	Elastik
36	AS:8_A8	L1_K6 40X55_7	0.17787	0.49340	0.06042	0.10567	0.49340	0.49345	Elastik	Elastik	Elastik	Elastik	Elastik	Elastik
37	AS:9_A9	L1_K6 40X55_8	0.17790	0.48582	0.06235	0.10701	0.48582	0.49361	Elastik	Elastik	Elastik	Elastik	Elastik	Elastik
38	AS:10_A10	L1_K6 40X55_9	0.17784	0.48502	0.06404	0.10836	0.48502	0.49336	Elastik	Elastik	Elastik	Elastik	Elastik	Elastik
39	AS:1_A1	L1_K7 40X55_1	0.09743	0.58755	0.66782	0.19842	0.58755	0.27595	Elastik	Elastik	Elastik	Elastik	Elastik	Elastik
40	AS:11_A11	L1_K7 40X55_2	0.13325	0.58567	0.09293	0.09528	0.58567	0.49879	Elastik	Elastik	Elastik	Elastik	Elastik	Elastik
41	AS:12_A12	L1_K7 40X55_3	0.09684	0.57730	0.74607	0.19583	0.57730	0.27617	Elastik	Elastik	Elastik	Elastik	Elastik	Elastik

Gambar 5. 7 DCR momen lentur balok lantai 1 akibat gempa ekuivalen statik

Keterangan: E = Elastik = DCR < 1 IN = Inelastik = DCR > 1

Gambar 5.8 DCR gaya geser balok lantai 1 akibat gempa ekuivalen statik

Dari Gambar 5.7 dan Gambar 5.8 menunjukan bahwa kondisi balok bangunan Fakultas Teknik Industri Universitas Atma Jaya Yogyakarta dari gaya geser maupun momen lentur banyak yang mengalami kondisi inelastik. Hal ini menunjukkan bahwa balok masih perlu di evaluasi ke tahap selanjutnya

Gambar 5. 9 (a) DCR momen lentur kolom portal As 5, (b) DCR gaya geser kolom portal As 5 dan (c) DCR gaya aksial kolom portal As 5 akibat gempa ekuivalen statik

Berdasarkan Gambar 5.9 menunjukan bahwa kondisi kolom bangunan Fakultas Teknik Industri Universitas Atma Jaya Yogyakarta mengalami kondisi elastik dan juga ada beberapa kolom pada Tabel 5.22 yang mengalami kondisi inelastik, hal ini berarti bahwa kolom masih perlu di evaluasi ke tahap selanjutnya apabila menerima beban gempa baik dari hasil momen lentur, aksial, maupun gaya geser.

Hasil perhitungan nilai DCR menggunakan analisis statik ekuivalen akan disajikan dalam Gambar 5.10 sampai Gambar 5.12, adalah grafik DCR dari perwakilan beberapa elemen balok dan kolom hasil analisis statik ekuivalen.

Gambar 5. 10 *Demand Capacity Ratio* (DCR) pada beberapa kolom menggunakan beban statik ekuivalen

Gambar 5. 11 *Demand Capacity Ratio* (DCR) pada beberapa balok menggunakan beban statik ekuivalen

Gambar 5. 12 *Demand Capacity Ratio* (DCR) pada gaya geser balok menggunakan beban statik ekuivalen

Berdasarkan Gambar – gambar tersebut hasil presentase analisis ekivalen statik pada setiap balok dan kolom terhadap gaya aksial, momen dan geser, diperoleh bahwa terdapat beberapa elemen balok dan kolom masih banyak terdapat inelastik dengan nilai *DCR* yang lebih besar dari 1 dan kurang dari 2 untuk secara rinci dapat dilihat pada Lampiran 5, karena bangunan Fakultas Teknik Industri Universitas Atma Jaya Yogyakarta dibangun dengan SNI lama, sehingga perlu dilakukan prosedur analisis nonlinier pada tahap selanjutnya yaitu evaluasi tahap (*tier*) 3.

5.2.2. Analisis Dinamik Respon Spektrum

Pada penelitian ini, beban gempa dinamik yang digunakan adalah beban gempa spektrum respon sesuai dengan SNI 1726-2012 untuk wilayah Yogyakarta dengan tipe tanah sedang terlihat pada Gambar 5.13. Nilai *Ie* yang digunakan adalah 1.5 dan didapatkan dari Tabel 5.23, nilai ini sesuai dengan keutamaan gempa untuk gedung Sekolah maupun Universitas yang masuk kategori risiko IV. Analisis dinamik linier dilakukan tanpa menggunakan faktor reduksi, sehingga digunakan R=8.

Gambar 5. 13 Kurva spektrum respon kota Yogyakarta pada Program SAP2000 untuk tipe tanah sedang

5.2.2.1 Arah Pembebanan Gempa Dinamik Respons Spektrum

Arah pembebanan untuk gempa dinamik pada bangunan Fakultas Teknik Industri Universitas Atma Jaya Yogyakarta diberikan dalam dua arah, yaitu arah sumbu x dan arah sumbu y. Pada setiap arah pembebanan, diberikan beban gempa 100% arah sumbu utama ditambah dengan 30% beban tegak lurus arah sumbu utama. Untuk lebih jelasnya, dapat dilihat pada Gambar 5.14 dan Gambar 5.15. Koefisien koreksi untuk arah utama, pembebanan gempa harus dianggap efektif 100% : $\frac{l}{R} = \frac{1.5}{8} = 0.1875$. Pembebanan gempa harus dianggap efektif 30% adalah : $\frac{l}{R} = 0.3 \times \frac{1.5}{8} = 0.05625$. Dikarenakan pada SAP2000 nilai input grafitasi bumi (g) tidak secara otomatis sehingga input nilai (g) ditambahkan sebagai faktor pengali g =9.81 m/dtk², sehingga faktor pengali yaitu 0.1875 x 9.81= 1.8393 dan 0.05625 x 9.81 = 0.5518.
Load Case Nan	ne		Notes	Load Case Type	
RSX 2012		Set Def Name	Modify/Show	Response Spectrum	▼ Design.
Modal Combina	tion		l	Directional Combination	
C CQC		GMC	n 1.	SRSS	
SRSS		CHC	12 D	C Absolute	
C Absolute		GMC	rz ju.	Scale Factor	
C GMC		Periodic + Rigid Ty	pe SRSS 🔄		
C NRC 10 P	ercent				
C Double Su	m				
Modal Load Ca Use Modes fro Loads Applied	se om this Mod	al Load Case	MODAL		
Modal Load Ca Use Modes fro Loads Applied Load Type Accel	se om this Mod Loac U1	al Load Case IName Functio	MODAL -	I	
Modal Load Ca Use Modes fro Loads Applied- Load Type Accel	se om this Mod Loac U1 U1	al Load Case	MODAL -		
Modal Load Ca Use Modes fro Loads Applied- Load Type Accel Accel	se om this Mod Loac U1 U1 U2	al Load Case	MODAL Scale Factor 4 0.1875 1 SE(0.0563	Add	
Modal Load Ca Use Modes fro Loads Applied Load Type Accel Accel	se In this Mod Load U1 U2	al Load Case	MODAL Scale Factor 1 V 0.1875 1 (0.1875 1 (0.1875 1 (0.1875) 1 (0.1875)	Add	
Modal Load Ca Use Modes fro Loads Applied- Load Type Accel Accel	se Mod m this Mod Loac U1 U1 U2	I Name Functio	MDDAL	Add Modify	
Modal Load Ca Use Modes fro Loads Applied Load Type Accel Accel	se Loac U1U2	al Load Case I Name Function INS TANAI RS TANAI RS TANAI	MDDAL	Add Modiy Delete	
Modal Load Ca Use Modes fro Loads Applied Load Type Accel Accel Accel	se Loac U1 U1 U2 U2 U2U2 U2U2 U2U2 U2U2 U2 U2U2 U2 U2U2 U2 U	IName Function RS TANAI RS TANAI RS TANAI A Parameters	MODAL	Add Modfy Delete	
Modal Load Ca Use Modes fro Loads Applied Load Type Accel Accel	se Mod	I Load Case I Name Functio RS TANAI RS TANAI RS TANAI d Parameters	MODAL	Add Modiy Delete	
Modal Load Ca Use Modes fro Loads Applied- Load Type Accel Accel Accel	se Loac U1 U1 U2 vanced Loa	al Load Case I Name Functio RS TANAI RS TANAI RS TANAI d Parameters	MODAL MODAL	Add	ОК

Gambar 5. 14 Pengaturan beban gempa dinamik linier arah-x

Load Case Nam	e		Notes	Load Case Type	
RSY 2012		Set Def Name	Modify/Show	Response Spectrum 💌 Des	sign.
Modal Combina	ion		1	Directional Combination	
C CQC		GM	- n 1	SRSS	
SRSS		Chil	- 10 D	C Absolute	
C Absolute		GMC	. 12 0.	Scale Factor	
C GMC		Periodic + Rigid T	ype SRSS 🔄		
C NRC 10 P	ercent				
C Double Su	m				
Modal Load Ca: Use Modes fro Loads Applied-	e m this Moda	l Load Case	MODAL		
Modal Load Ca Use Modes fro Loads Applied Load Type Accel	e Moda m this Moda Load	I Load Case Name Functi	MODAL on Scale Factor AH0.1875		
Modal Load Ca: Use Modes fro Loads Applied Load Type Accel	this Mode Load	I Load Case Name Functi TANA PS TANA	MDDAL on Scale Factor AH0.1875		
Modal Load Ca Use Modes fro Loads Applied - Load Type Accel Accel	this Moda Load U2 U1	I Load Case Name Functi VI RS TANA RS TANA	MODAL	Add	
Modal Load Ca: Use Modes fro Loads Applied - Load Type Accel Accel	this Moda Load U2 U1	Name Functi RS TANA RS TANA RS TANA	MODAL	Add	
Modal Load Ca: Use Modes fro Loads Applied Load Type Accel Accel	e Load U2 U2 U1	Name Functi RS TANA RS TANA RS TANA	MDDAL on Scale Factor NH[0.1875 341 SE(0.1675 341 SE(0.0563	Add Modfy Delete	
Modal Load Ca: Use Modes fro Loads Applied - Load Type Accel	e Load U2 U2 U1 U1	I Load Case Name Functi RS TANA RS TANA RS TANA	MODAL	Add Modify Delete	
Modal Load Ca: Use Modes fro Loads Applied - Load Type Accel Accel	e Load U2 U2 U2 V1 vanced Load	Name Functi RS TANA RS TANA RS TANA S TANA	MODAL on Scale Factor 처부01875 처부 5€[0.0563	Add Modfy Delete	
Modal Load Ca: Use Modes fro Loads Applied Load Type Accel Accel Accel Colore Show Adh	Load	Name Function RS TANA RS TANA RS TANA RS TANA RS TANA RS TANA	MODAL	Add 	

Gambar 5. 15 Pengaturan beban gempa dinamik linier arah-y

5.2.2.2 Hasil Analisis Gempa Dinamik Respon Spektrum

A. Evaluasi gaya geser dasar hasil analisis dinamik respon spectrum

Reaksi total pada tumpuan atau gaya geser dasar (*base reaction*) hasil analisis SAP2000 akibat pembebanan gempa respon spektrum (RS) dapat dilihat pada Tabel 5.24.

Cava Cocor Dacar	Arah Pembebanan		
Gaya Gesel Dasal	Arah X (kn)	Arah Y (kn)	
Statik ekuivalen	7105.390	7105.390	
Dinamik respon spektrum	3492.873	2870.89	

 Tabel 5. 24 Gaya geser dasar (belum dikoreksi)

Setelah itu, dilakukan pengecekan gaya geser dasar berdasarkan peraturan SNI 1726 2012 Pasal 7.9.4.1, bahwa gaya geser dasar respons ragam tidak boleh lebih kecil dari 85 % gaya geser dasar gempa lateral ekivalen, jika lebih kecil maka gaya respons ragam harus dikalikan dengan 0,85. Sehingga perlu dilakukan evaluasi terhadap respon gempa sebagai berikut.

a) Evaluasi gempa arah-X

Fx-statik = 7105.390 kN Fx - RS = 3492.873 kN < 0,85 Fx-statik = 6039.581 kN (Perlu Koreksi) dengan pengali 1.729

b) Evaluasi gempa arah-Y

Fx-statik = 7105.390 kN

Fx - RS = 2870.89 kN < 0.85 Fx-statik = 6039.581 kN (Perlu Koreksi) dengan pengali 2.103

Dari evaluasi gempa, maka spektrum respon pada arah-X dan arah-Y dalam analisis ragam spektrum perlu diperbesar dari 85% nilai respon akibat beban statik.

B. Demand capacity ratio (DCR) akibat gempa respon spektrum

DCR elemen balok dan kolom untuk hasil analisis beban respon spektrum dapat dihitung dengan bantuan SAP 2000 untuk menentukan nilai DCR, selanjutnya akan dibandingkan dengan nilai DCR ijin yang disyaratkan oleh FEMA 356 (2000) untuk prosedur Linier, yaitu DCR ≤ 2 .

Dari perhitungan nilai DCR hasil analisis beban gempa respon spektrum, diperoleh bahwa terdapat elemen balok dan kolom dengan nilai DCR yang lebih besar dari 1 dan kurang dari 2 yang menunjukan bahwa elemen tersebut sudah berada kedalam kondisi inelastik. Dari gambar denah balok dan kolom, akan diberikan keterangan E dan IN pada setiap frame balok maupun kolom. E berarti Elastik, yaitu memiliki nilai DCR < 1. Sedangkan IN berarti Inelastik, memiliki nilai DCR > 1.

Hasil perhitungan nilai DCR untuk tiap tipe balok dan kolom akibat momen, gaya geser dan gaya aksial disajikan pada Gambar 5.16 sampai Gambar 5.18, untuk secara rinci dapat dilihat dalam Lampiran 5.

Gambar 5. 16 DCR momen lentur balok lantai 1 (respon spektrum)

Gambar 5. 17 DCR gaya geser balok lantai 1 (respon spektrum)

Gambar 5. 18 (a) DCR momen lentur kolom portal As 5, (b) DCR gaya geser kolom portal As 5 dan (c) DCR gaya aksial kolom portal As 5 akibat gempa respon spectrum

Berdasarkan Gambar 5.16 sampai Gambar 5.18 menunjukan bahwa kondisi kolom dan balok bangunan Fakultas Teknik Industri Universitas Atma Jaya Yogyakarta ada beberapa balok dalam kondisi inelastik terutama pada momen balok, hal ini berarti bahwa kolom dan balok masih perlu di evaluasi ke tahap selanjutnya apabila menerima beban gempa baik dari hasil momen lentur, aksial, maupun gaya geser.

Hasil perhitungan nilai DCR menggunakan analisis respon spektrum akan disajikan dalam Gambar 5.19 sampai Gambar 5.21, berikut adalah grafik DCR dari perwakilan beberapa elemen balok dan kolom hasil analisis respon spektrum.

Gambar 5. 19 *Demand Capacity Ratio* (DCR) pada beberapa kolom (respon spektrum)

Gambar 5. 20 *Demand Capacity Ratio* (DCR) pada beberapa balok (respon spektrum)

Berdasarkan hasil analisis dapat dilihat DCR balok ekuivalen statik lebih besar dari DCR balok respon spektrum hal ini disebabkan kombinasi SNI 1726-2012 gempa statik ekivalen lebih besar dari gempa respon spektrum.

Gambar 5. 21 Demand Capacity Ratio (DCR) pada gaya geser balok (respon spektrum)

Hasil DCR dari elemen balok dan kolom pada grafik Gambar 5.19 sampai Gambar 5.21 Dari grafik tersebut dapat diketahui 3 kesimpulan yang terjadi pada elemen struktur, yaitu:

- Pertama, yaitu elemen struktur mempunyai DCR < 1,0 yang berarti secara *Strength Based Design* sudah memenuhi syarat dan tidak memerlukan evaluasi non-linier (*pushover*);
- Kedua, yaitu elemen struktur mempunyai 1,0 < DCR < 2,0 yang berarti secara *Strength Based Design* tidak memenuhi syarat namun tidak memerlukan evaluasi non-linier (*pushover*); dan
- Ketiga, yaitu elemen struktur mempunyai DCR > 2,0 yang berarti secara *Strength Based Design* tidak memenuhi syarat dan memerlukan evaluasi non-linier (*pushover*).

Berdasarkan hasil perhitungan DCR menunjukan bahwa elemen balok dan kolom sudah dalam kondisi inelastik, dan juga bangunan Fakultas Teknik Industri Universitas Atma Jaya Yogyakarta dibangun dengan SNI lama sehinga hal ini merupakan *deficiency* tahap 2, sehingga perlu dilakukan prosedur analisis pushover pada tahap selanjutnya yaitu evaluasi tahap (*tier*) 3.

5.3 EVALUASI TIER 3

Tahapan 3 pada evaluasi bangunan sesuai FEMA 310 (1998) adalah analisis nonlinier. Analisis non linier dilakukan karena hasil analisis Tier 2 menunjukkan adanya elemen struktur yang nilai DCR nya lebih dari 2 sehingga diperlukan analisis nonlinier untuk mengevaluasi kinerja bangunan. Beban dorong lateral yang digunakan untuk analisis nonlinier (*pushover*) akan ditampilkan pada Sub bab 5.3.1. Untuk mengetahui perilaku pasca leleh pada elemen struktur maka ditempatkan sendi plastis pada ujung elemen struktur balok dan kolom.

Analisis statik nonlinier (*pushover*) dilakukan dengan menggunakan 2 metode yaitu Metode Spektrum Kapasitas (*Capacity Spectrum Method*) sesuai dengan ketentuan prosedur B yang terdapat dalam dokumen ATC 40 (1996) untuk mengetahui level kinerja seismiknya dan Metode Koefisien Perpindahan (*Displacement Coefficient Method*) yang sesuai dengan dokumen FEMA 356 (2000). Analisis *pushover* ini dilakukan dengan menggunakan program SAP2000 versi 14.

5.3.1. Beban Dorong Lateral

Beban gempa statik yang digunakan dalam analisis statik nonlinier pada penelitian ini yaitu menggunakan 3 model beban yaitu beban segitiga SNI 1726-2012, beban segitiga SNI 1726-2002 dan beban seragam untuk wilayah Yogyakarta dengan tipe tanah sedang. Analisis statik nonlinier dilakukan tanpa menggunakan faktor reduksi, sehingga digunakan R=1. Beban dorong lateral ditentukan dari beban gempa statik nonlinier, dengan nilai gaya geser dasar seperti terlihat dalam Gambar 5.22, nilai gaya geser dasar diketahui dari hasil SAP2000 kemudian di distribusikan pada seluruh joint pada setiap lantai yang didefiniskan sebagai beban lateral (*Lat*) pada analisis dengan menggunakan program SAP 2000. Arah pembebanan lateral (*Lat*) pada seluruh joint kolom pada setiap lantai diinputkan dalam dua arah, yaitu arah X dan Y.

Gambar 5. 22 Nilai gaya geser dasar (V) hasil SAP2000

Pada gambar 5.22 menunjukkan perbedaan gaya geser dasar SNI 1726-2012, SNI 1726-2002 dan beban seragam disebabkan karena T (periode) yang berbeda-beda pula.

Selanjutnya nilai beban dorong lateral pada tiap join pada tiap lantai ditunjukkan dalam Tabel 5.25, Tabel 5.26, Tabel 5.27 dan Gambar 5.23.

Beban gempa lateral tiap lantai SNI 1726-2012 (KN)						
Lantai	Wi	Hi	$W_i \cdot H_i^k$	Fi (pusat massa)	n kolom	Fi (per join)
5	6710.496	20.57	189167.9026	12270.62824	37	331.6386011
4	8734.535	16.32	190696.7984	12369.8021	41	301.7024903
3	8681.57	12.23	137832.2198	8940.67072	41	218.0651395
2	8754.048	8.33	90949.18675	5899.540271	41	143.8912261
1	8756.836	4.17	42375.0913	2748.7168	41	67.04187318
		Σ Wi.Hi	651021.1988			

Tabel 5. 25 Beban lateral SNI 1726-2012 arah-X dan arah-Y

Beban gempa lateral tiap lantai SNI 1726-2002 (KN)						
Lantai	Wi	Hi	Wi. Hi	Fi (pusat massa)	n kolom	Fi (per join)
5	6710.496	20.57	138034.9027	6712.706945	37	181.424512
4	8734.535	16.32	142547.6079	6932.162076	41	169.0771238
3	8681.57	12.23	106175.606	5163.373275	41	125.9359335
2	8754.048	8.33	72921.21984	3546.195703	41	86.49257812
1	8756.836	4.17	36516.00445	1775.791715	41	43.31199306
		Σ Wi.Hi	496195.3409			

	Beban ge	mpa latera	al tiap lantai untuk	x beban seragam (KN)
Lantai	Wi	Hi	V / n lantai	n kolom	Fi (per join)
5	6710.496	20.57	8445.871627	37	228.2668007
4	8734.535	16.32	8445.871627	41	205.9968689
3	8681.57	12.23	8445.871627	41	205.9968689
2	8754.048	8.33	8445.871627	41	205.9968689
1	8756.836	4.17	8445.871627	41	205.9968689

Tabel 5. 27 Beban lateral beban seragam arah-X dan arah-Y

Gambar 5. 23 Nilai beban dorong lateral tiap join pada tiap lantai

5.3.2. Pemodelan SAP2000 Untuk Analisis Statik Nonlinier (Pushover)

Pada penelitian ini, analisis pushover dilakukan dengan dua tahap. Tahap pertama analisis belum memperhitungkan kondisi non-linier dimana struktur diberi pembebanan beban mati dan beban hidup yaitu pushover gravitasi (POGRAV). Tahap kedua analisis dilanjutkan dengan memberikan pola beban lateral yaitu pushover lateral (POLAT) yang diberikan secara monotonic bertahap dengan pola beban lateral. Tahapan-tahapan dalam pemodelan SAP2000 untuk analisis *pushover* adalah sebagai berikut ini.

Define Load Case Click to: Load Cases Load Case Name Load Case Type Add New Load Case.. MODAL Modal * ٠ LIVE EQX EQY Linear Static Add Copy of Load Case.. Linear Static Linear Static Modify/Show Load Case. BEBAN MATI P BEBAN MATI D RSX 2012 RSY 2012 Linear Static Linear Static Response Spectrum + Delete Load Case 2 Response Spectrum = POGRAV POLATX POLATX POLATX + Display Load Cases Linear Static Linear Static Show Load Case Tree. Nonlinear Static Nonlinear Static Nonlinear Static 1D+0.25L ÷ Linear Static ΟK Cancel

1. Menentukan Load Case untuk Static nonlinier POGRAV

Load Case Name —			Notes	Load Case Type
POGRAV	Set D	ef Name	Modify/Show	Static 🗾 Design
Initial Conditions				Analysis Type
Zero Initial Cond	ditions - Start fro	m Unstressed	State	C Linear
C Continue from S	tate at End of N	onlinear Case		Nonlinear
Important Note:	Loads from thi	s previous ca	se are included in the	C Nonlinear Staged Construction
	current case			
Modal Load Case —				Geometric Nonlinearity Parameters
All Modal Loads Ap	plied Use Mode	s from Case	MODAL -	• None
			• • •	C P-Delta
Loads Applied	LandMana	Carly Fra	L	C P-Delta plus Large Displacements
Load Type		5 cale Fac		
Load Pattern		1		
Load Pattern L	.IVE	0.25	Add	
			Modify	
			Delete	
I		I		
Ollhas Davamakasa				
otner Faranieters			-	
Load Application	Full	Load	Modity/Show	
Results Saved	Final S	tate Only	Modify/Show	Cancel
	D	Enab	Madifu/Chau	

Gambar 5. 25 Pendefinisian Load case POGRAV

Load Case POGRAV ditambahkan pada *Define Load cases*, seperti ditunjukan dalam Gambar 5.24. Selanjutnya nilai POGRAV dimodifikasi (ditunjukkan dalam Gambar 5.25) sebagai berikut ini.

a. Memasukkan data gravitasi

- 1) Faktor pengali untuk *Dead* = 1
- 2) Faktor pengali untuk *Live* = 0,25
- b. Other parameters dibiarkan pada nilai default
- c. Analysis type pilih analisis nonlinear
- d. Geometric nonlinear parameter dipilih none

2. Menentukan Load Case untuk Static nonlinier POLAT

	2 22 C		
Load Case Nam	e Load Case Type		Add New Load Case
MODAL LIVE FOX	Modal Linear Static	•	Add Copy of Load Case
EQY BEBAN MATLE	Linear Static		Modify/Show Load Case
SEBAN MATI D RSX 2012	Linear Static Response Spectrum		Delete Load Case
ATX	Response Spectrum Linear Static	•	Display Load Cases
	Nonlinear Static		Show Load Case Tree

Gambar 5. 26 Load case POLAT

Load Case POLAT-X dan POLAT-Y ditambahkan pada Define Load cases, seperti ditunjukan dalam Gambar 5.26.

Load Case Name		Notes	Load Case Type
POLATY	Set Def Name	Modify/Show	Static 💌 Design
Initial Conditions			Analysis Type
C Zero Initial Condition:	s - Start from Unstresse	d State	C Linear
Continue from State	at End of Nonlinear Cas	e POGRAV 💌	Nonlinear
Important Note: Loa curr	ds from this previous ca ent case	ase are included in the	C Nonlinear Staged Construction
Modal Load Case			Geometric Nonlinearity Parameters
All Modal Loads Applied	Use Modes from Case	MODAL -	@ None
1 1 4 1 1		5	C P-Delta
Loads Applied	d Name Carls Fr		C P-Delta plus Large Displacements
Load Pattern VI ATX			
Load Pattern LATY			
The second se			
		Modify	
		Delete	
I			
Other Parameters			
Load Application	Displ Control	Modify/Show	OK
Results Saved	Multiple States	Modify/Show	Cancel

Gambar 5. 27 Pendefinisian Load case POLAT-Y

Selanjutnya nilai POLAT-Y dimodifikasi (ditunjukkan dalam Gambar 5.27) sebagai berikut ini.

- a. Initial conditions dipilih continue from state at end of nonlinear case = POGRAV
- b. Analysis type pilih analisis nonlinear
- c. Geometric nonlinear parameter dipilih none
- d. Load application dimodifikasi seperti ditampilkan dalam Gambar 5.28
- e. Result saved dimodifikasi seperti ditampilkan dalam Gambar 5.29

_oad Applic	ation Control	
C Full Lo	ad	
📀 Displa	cement Control	
Control Disp	placement	
C Use C	onjugate Displacement	
Ise M	onitored Displacement	
03010	onicida proplacement	
		_
Load to a N	Nonitored Displacement Magnitude of 0.62	_
Load to a M Aonitored E	Nonitored Displacement Magnitude of 0.62	
Load to a M Monitored E IP DOF	Aonitored Displacement Magnitude of 0.62 Displacement U2 at Joint 290	
Load to a M Monitored E I DOF	Monitored Displacement Magnitude of 0.62 Displacement U2	

Gambar 5. 28 Modifikasi Load application untuk POLAT-Y

Nilai *load application* diubah sesuai dengan yang ditunjukkan dalam Gambar 5.28. Nilai *load to a monitored displacement magnitude of* diisi dengan 3% dari tinggi total bangunan, yaitu $20.57m \ge 0.03 = 0.62m$

Untuk POLAT-Y digunakan *monitored displacement* dengan nilai DOF = U2pada *at joint* 290 (pusat massa di lantai atap). Untuk POLAT-X caranya sama dengan POLAT-Y hanya dibedakan untuk DOF = U1

esults Saved	
C Final State Only 🔹 Multiple Sta	ites
or Each Stage	
Minimum Number of Saved States 10	
Maximum Number of Saved States 100	1
Save positive Displacement Increments	Only 1

Gambar 5. 29 Modifikasi Result saved untuk POLAT-Y

3. Menentukan Modal Case

Load Case Name-		- No	otes	Load Case Type
MODAL	Set D	ef Name	Modify/Show	Modal 💌 Design.
Stiffness to Use Zero Initial Co Stiffness at En Important Not	nditions - Unstress nd of Nonlinear Ca e: Loads from the in the current (sed State ise Nonlinear Case a case	are NOT included	Type of Modes C Eigen Vectors C Ritz Vectors
Number of Modes Maximum Nu Minimum Nu Loads Applied	mber of Modes mber of Modes		15 1 Target Dynamic Participation	
Accel •	UX •	0	99.	
Accel	UX.	0	99.	
Accel			33.	OK

Gambar 5. 30 Modifikasi modal case

Nilai *maximum number of modes* diisi dengan 3 kali jumlah lantai yaitu 15, hal ini dikarenakan terdapat 3 sumbu sehingga 5 lantai dikalikan 3 (ditunjukkan dalam Gambar 5.30.

4. Menentukkan properti sendi plastis di balok (auto)

Semua balok di-*select* lalu dimasukkan properti sendi plastisnya, seperti ditampilkan dalam Gambar 5.31.

Frame Hi	Frame Hinge Assignments				
Frame Hinge Assignment Data Hinge Property Auto Auto M3 Auto M3	Relative Distance				
	Modify Delete				
Auto Hinge Assignment Data Type: From Tables In FEMA 356 Table: Table 6-7 (Concrete Bear DOF: M3) ns - Flexure) Item i				
Modify/Show Au	DUF: M3 Modify/Show Auto Hinge Assignment Data OK Cancel				

Gambar 5. 31 Frame hinge assignments pada balok

Nilai *relative distance* mewakili tiap ujung balok, nilai 0 artinya ada di jarak 0, sedangkan nilai 1 artinya ada di jarak sesuai bentang balok. Selanjutnya di jarak 0 dan jarak 1 dimodifikasi seperti dalam Gambar 5.32.

Auto Hinge Type	
From Tables In FEMA 356	•
Select a FEMΔ356 Table	
Table 6-7 (Concrete Beams - Flexure) Item i	
Component Type	V Value From
Primary C M2	© Case/Combo 1D+0.25L ▼
C Secondary © M3	C User Value V2
Transverse Reinforcing	Reinforcing Ratio (p - p') / pbalanced
✓ Transverse Reinforcing is Conforming	From Current Design
	C User Value
Deformation Controlled Hinge Load Carrying Capacity	
Orops Load After Point E	
C Is Extrapolated After Point E	

Gambar 5. 32 Modifikasi sendi plastis pada balok

Degree of freedom = M3 dipilih karena momen pada balok hanya pada arah x yaitu pada sumbu 3. Untuk *case/combo* dipilih kombinasi 1D+0,25L.

5. Menentukkan properti sendi plastis di kolom (auto)

Semua kolom di-*select* lalu dimasukkan properti sendi plastisnya, seperti ditampilkan dalam Gambar 5.33.

Frame Hing	Fram e Assignment Da	e Hinge Assignm ^{ta}	ents
Hi Hi	nge Property	Relative Distance	<u>.</u>
Auto		▼ 0	
Auto P-N	12-M3	0	Add
Auto P-N	12-M3	1	
			Modify
			Delete
- Auto Hinge Type: Fro Table: Ta DOF: P-M	Assignment Data n Tables In FEM/ ble 6-8 (Concrete 2-M3 Modify/Sho	A 356 Columns - Flexure) Item ow Auto Hinge Assignme	ni ent Data

Gambar 5. 33 Frame hinge assignments pada kolom

Nilai *relative distance* mewakili tiap ujung kolom, nilai 0 artinya ada di jarak 0, sedangkan nilai 1 artinya ada di jarak sesuai bentang balok. Selanjutnya di jarak 0 dan jarak 1 dimodifikasi seperti dalam Gambar 5.34.

[Auto Hinge A	Assignment Data	- 🗆 🗙
Auto Hinge Type From Tables In FEN Select a FEMA356 Ta Table 6-8 (Concrete	1A 356 able e Columns - Flexure) It	emi		
Component Type	C M2 C M3 C M2-M3	om C P-M2 C P-M3 @ P-M2-M3	P and V Values From C Case/Combo C User Value V2	1D+0.25L ▼ V3
Transverse Reinforcing ☑ Transverse Reinforcing is Conforming		Deformation Controlled Hin Orops Load After Poin Is Extrapolated After P	ige Load Larrying Lapacity t E 'oint E	
		ОК	Cancel	

Gambar 5. 34 Modifikasi sendi plasti pada kolom

Dipilih *degree of freedom* = P-M2-M3 karena pada kolom terdapat gaya aksial (P) dan momen untuk arah x (M3) dan arah y (M2). Untuk *case/combo* dipilih kombinasi 1D+0,25L.

6. Menentukkan properti sendi plastis menggunakan fiber

Untuk melakukan pendefinisian sendi plastis dengan *fiber* maka harus dibuat terlebih dahulu properti *fiber* untuk frame yang akan dipakai. Hal ini bisa dilakukan dengan men*define frame hinge properties*. Pendefinisian *frame hinge* bisa dilihat dalam Gambar 5.35 dan Gambar 5.36.

fined Hinge Props	Click to:
Name	Add New Property
FK1_40X40	
FK3_50×50	Add Copy of Property.
FK4_50×50	
FK6_40×55	Modify/Show Property.
FK7_40×55	Dislate Presents
FK9_50×65	Delete Floperty
FK11_50×65	
FB_30×65	Show Hinge Details
FB_30×50	Show Generated Prop
FB_30×45	1 Show denerated hop
FB_30×40	
FB_25×55	
FB_25×40	
FB_20×40	
FB_15×50	OK
	Coursel 1
	Lancel

Gambar 5. 35 Pendefinisian property Fiber

Hinge Property Name	1
FK1_40×40	
Hinge Type	
C Force Controlled	(Brittle)
Deformation Con	trolled (Ductile)
Fiber P-M2-M3	Ŧ
Modify/Show	Hinge Property
	Canad

Gambar 5. 36 Frame hinge property data

Diberikan nama FK1_40x40 (*frame kolom 1_40x40*) sehingga mempermudah dalam pencarian *fiber* yang sesuai dengan kolom yang akan dipakai. Dipakai *fiber P-M2-M3* lalu selanjutnya pendefinisian dilakukan dengan 145 mengklik tombol *modify/show hinge property*, sehingga muncuk kotak dialog seperti ditunjukkan dalam Gambar 5.37.

iber Definition Options C Default From Section G User Defined	Hinge Length Hinge Length 0.2
Del	ine/Show Fibers

Gambar 5. 37 Frame hinge property data

Hinge Length diisi sama dengan setengah tinggi kolom 0.4/2 yaitu 0,2 meter. Setelah itu lalu klik tombol *define/show fibers*, selanjutnya *fiber* dilakukan dengan membagi penampang kolom menjadi 400 pias *fiber* seperti ditunjukkan dalam Gambar 5.38.

Control					
Number of	Elboro	14	18		
Number of	ribeis	140			
Verl	av Section on Plot	K1 40×40	•		
				34	
Cort Eibor I) -		ta Incomplete Douis		
JUIL FIDEL D'ALA		, Deler	te incomplete nows		
By Co	ord3 By Coo	ord2	Clean Fiber Data		
- 66	18 - 18 				
Fiber Defin	ition Data				
Fiber	Area	Coord3	Coord2	Material	
1	4.000E-04	-0.01	0.01	F'C 25 MPA	
2	4.000E-04	-0.03	0.01	F'C 25 MPA	
3	4.000E-04	-0.05	0.01	F'C 25 MPA	
4	4.000E-04	-0.07	0.01	F'C 25 MPA	
5	4.000E-04	-0.09	0.01	F'C 25 MPA	
6	4.000E-04	-0.11	0.01	F'C 25 MPA	
7	4.000E-04	-0.13	0.01	F'C 25 MPA	
8	4.000E-04	-0.15	0.01	F'C 25 MPA	
9	4.000E-04	-0.17	0.01	F'C 25 MPA	
10	4.000E-04	-0.19	0.01	F'C 25 MPA	
11	4.000E-04	-0.01	0.03	F'C 25 MPA	
12	4.000E-04	-0.03	0.03	F'C 25 MPA	
	4.000E-04	-0.05	0.03	F'C 25 MPA	
13		0.07	0.03	F'C 25 MPA	
13 14	4.000E-04	-0.07			
13 14 15	4.000E-04 4.000E-04	-0.07	0.03	F'C 25 MPA	

Gambar 5. 38 Pembagian pias *fiber* pada penampang kolom K1_40x40

Selanjutnya bisa dilakukan *assign hinge* terhadap kolom yang dipakai dengan memasukkan jarak 0 dan jarak 1 secara *relative* yang ditunjukkan dalam Gambar 5.39.

	ity nelative Distance	
FK1_40×40	• 1	
FK1_40X40	0	6dd
FK1_40X40	1	
		Modify
		Delete
ito Hinge Assignmen	it Data	
ito Hinge Assignmen	it Data	
ito Hinge Assignmen	it Data	
ito Hinge Assignmen	it Data	

Gambar 5. 39 Assign hinge pada kolom 40x40

5.3.3 Hasil Analisis Statik Nonlinier (*Pushover*)

Hasil analisis *pushover* yaitu berupa kurva kapasitas bangunan dan titik kinerja dengan 3 metode: ATC-40, FEMA 356, dan manual. Hasil akhir analisis *pushover* adalah berupa level kinerja struktur.

5.3.3.1 Hasil *Pushover* Dengan Menggunakan Beban SNI 1726-2012

1. Kurva Kapasitas

Kurva kapasitas (*capacity curve*) menunjukkan hubungan antara perpindahan lateral pada titik kontrol dan gaya geser dasar oleh peningkatan beban statik sampai pada kondisi ultimit atau target peralihan yang diharapkan. Kurva berbentuk nonlinier yang menunjukkan peningkatan beban pasca-elastik sampai dengan kondisi plastis. Kurva kapasitas dapat disebut juga dengan kurva *pushover*. Kurva yang terlihat pada Gambar 5.40 dan Gambar 5.41 berbentuk nonlinier akibat peningkatan beban yang mengakibatkan elemen struktur bangunan berubah dari kondisi elastik menjadi kondisi plastis. Nilai perpindahan dan gaya geser dasar dapat diketahui dari data kurva kapasitas dalam Tabel 5.28.

Gambar 5. 40 Kurva kapasitas arah-X SNI 1726-2012

Gambar 5. 41 Kurva kapasitas arah-Y SNI 1726-2012

Pada Gambar 5.40 pushover pada pembebanan arah-X SNI 1726-2012, analisis berhenti pada langkah (*step*) 11, yaitu pada saat perpindahan titik kontrol sebesar 0,358 m dan gaya geser dasar sebesar 11413.48 kN. Pada Gambar 5.41 pushover pada pembebanan arah-Y SNI 1726-2012, analisis berhenti pada langkah (*step*) 17, yaitu pada saat perpindahan titik kontrol sebesar 0,487 m dan gaya geser dasar sebesar 9576.945 kN.

Analisis pada SNI 1726-2012 tidak dapat dilanjutkan lagi untuk mencapai perpindahan ultimit (δu) yang ditentukan, yaitu sebesar 0,62 m. Hal ini terjadi karena telah terlampauinya kapasitas deformasi pada tiap elemen struktur yang sebelumnya telah didefinisikan pada properti sendi plastis. Perbandingan kurva *pushover* pada arah-X dan arah-Y dapat dilihat pada Gambar 5.42.

Dari Gambar 5.42 dapat dilihat perbandingan kurva kapasitas pushover arah X lebih besar dari kapasitas pushover arah Y hal ini disebabkan karena kekuatan maupun kekakuan arah X relatif lebih kaku karena ukuran kolom arah X relatif lebih besar dari kebutuhan yang diperlukan.

Tabel 5. 28 Data Pushover Curve arah-X dan arah-Y (SNI 1726-2012)

Arah-X

Arah-Y

Stop	Displacement	BaseForce
Step	m	KN
0	-0.000065	0
1	0.016508	2501.558
2	0.029095	4123.971
3	0.064181	5920.634
4	0.12934	7741.354
5	0.193013	9257.944
6	0.256261	10427.706
7	0.321387	11206.914
8	0.335906	11326.141
9	0.356463	11412.159
10	0.358683	11413.462
11	0.358723	11413.48

Ston	Displacement	BaseForce
Step	m	KN
0	0.000395	0
1	0.02164	1305.729
2	0.053496	3164.275
3	0.071465	3902.031
4	0.119355	5286.035
5	0.182436	6565.628
6	0.249167	7672.211
7	0.314365	8574.764
8	0.367004	9230.662
9	0.37757	9306.92
10	0.389656	9346.786
11	0.396747	9353.398
12	0.404653	9381.185
13	0.430199	9430.306
14	0.464362	9529.513
15	0.481575	9561.546
16	0.483895	9569.474
17	0.487859	9576.945

2. Titik Kinerja Metode Spektrum Kapasitas (ATC-40)

Analisis *static non-linier (pushover)* dilakukan dengan metode spektrum kapasitas (*capacity spectrum method*) sesuai prosedur B dokumen ATC 40 (1996). Dalam penelitian ini, proses analisis pushover dilakukan dengan bantuan program SAP 2000 yang menghasilkan hubungan gaya geser dasar dan perpindahan dan kemudian dikonversi ke dalam bentuk Spektrum kapasitas dengan format ADRS (*acceleration displacement response spectrum*), yaitu dalam hubungan Sa dan Sd. Parameter spektrum respon yang digunakan sebagai *seismic demand* oleh program SAP2000 juga dikonversi ke dalam format ADRS sebagai *spectrum demand*.

Parameter-parameter yang berpengaruh sesuai dengan kondisi tanah dilokasi bangunan didirikan dipengaruhi oleh fungsi keutamaan gedung. Nilai skala faktor yang dimasukkan kedalam parameter respon spektrum ATC-40 yang digunakan untuk koreksi ordinat spektrum respon adalah sebesar 9,81 di kalikan dengan faktor skala yang merupakan hasil pembagian antara faktor keutamaan bangunan (I) dengan nilai daktilitas bangunan (R) dan dikalikan dengan percepatan gravitasi (g) yang digunakan untuk koreksi ordinat spektrum respon 150 sebesar $\frac{l}{R}g = \frac{1.5}{1}$ 9.81 = 14.715. Untuk tipe perilaku struktur ditentukan sesuai Tabel 8-4 ATC-40 dimana struktur tipe B merupakan struktur dengan kondisi eksisting sedang (*average*) dan durasi goyangan struktur (*shaking ground*) yang pendek (*short*). Modifikasi parameter spektrum kapasitas ATC-40 sesuai SNI 1726-2012 dapat dilihat pada Gambar 5.43.

Sedangkan titik kinerja (*performance point*) yang terlihat pada kurva kapasitas ATC-40 di Gambar 5.44 dan Gambar 5.45 merupakan titik pertemuan antara kurva kapasitas dengan kurva *demand*. Dengan demikian titik tersebut menunjukkan besar kapasitas struktur dapat memenuhi *demand* berupa beban gempa sesuai SNI 1726-2012. Nilai *performance point*, waktu getar alami efektif, dan redaman viskous efektif, berdasarkan metode ATC-40 dapat dilihat dalam Tabel 5.29.

Pushover Parame	ters Name		Units
Name A	40P01		KN, m, C 💌
Plot Axes		Axis I	_abels and Range
G Sa Sd ⊂	Sa-T C Sd-	т 📗	Set Axis Data
Demand Spectrur	n Definition		
Function	RS TANAH SI	EDANG 🔻	SF 14.715
C User Coeffs	Ca		Cv
Damping Paramet	ers Definition		
Inherent + Additi	onal Damping		0.05
Structural Behav	vior Type		
CA @	в сс	C User	Modify/Show
Items Visible On F	lot		
🔽 Show Capac	ty Curve		Color
🔽 Show Family	of Demand Spectra	3	Color 📕
Damping R	atios		
0.05	0.17	0.05	0.05
,	Demand Spectrum ble Damping)	n (ADRS)	Color 🧮
Show Const	ant Period Lines at		Color
0.5	1.	1.5	2.
	Reset	Default Colors	

Gambar 5. 43 Modifikasi parameter spektrum kapasitas ATC-40

Hasil analisis pushover didapatkan nilai target gaya geser dasar (V_t) dan target *displacement* (δ_t) . Target *displacement* (δ_t) dianggap sebagai perpindahan maksimum yang terjadi saat bangunan mengalami gempa rencana. Dari kurva

kapasitas, didapatkan nilai target gaya geser dasar (V_t) berdasarkan dari nilai target *displacement* (δ_t) pada kurva tersebut.

Gambar 5. 44 Kurva *pushover* dan titik kinerja pembebanan arah-X dengan metode spektrum kapasitas ATC-40 dengan menggunakan spektrum respon SNI 1726-2012

Gambar 5. 45 Kurva *pushover* dan titik kinerja pembebanan arah-Y dengan metode spektrum kapasitas ATC-40 dengan menggunakan spektrum respon SNI 1726-2012

Arah	Gaya	Performance Point					
Beban Latera l	geser dasar (V ₁) (kN)	V_t (kN)	δ_t (m)	Sa	Sd	Teff	$eta_{e\!f\!f}$
Х	23429.013	9567.606	0.21	0.473	0.117	0.995	0.181
Y	19536.774	8069.602	0.284	0.397	0.149	1.226	0.165

 Tabel 5. 29 Performance point dengan metode ATC-40 (SNI 1726-2012)

Dari Tabel 5.29 dapat dilihat besarnya nilai gaya geser dasar akibat beban laretal arah X sebesar V_t = 9567.606 kN < V_I = 23429.013 kN dan akibat beban laretal arah Y V_t = 8069.602 kN < V_I = 19536.774 kN. Berdasarkan metode spektrum kapasitas (ATC 40, 1996) perilaku struktur X dan arah Y pada gempa rencana masih dalam kondisi elastis. Menurut SNI 03-1726-2012 Pasal 12.6.4.4 bahwa batasan maksimum simpangan (δu) adalah 0,02 H = 0,02 x 20,57 m = 0.4114 m. *Displacement* atap (δt) hasil analisis *pushover* akibat beban lateral arah X adalah sebesar 0,21 m < 0,4114 m dan akibat beban lateral arah Y sebesar 0,284 m < 0,4114 m, sehingga struktur tersebut memenuhi syarat keamanan.

Berdasarkan Tabel 5.29 dapat diketahui level kinerja bangunan dengan melihat batasan rasio *drift* atap yang dievaluasi pada *performance point*, dengan parameter yang ditinjau adalah maksimum total *drfit*. Dari hasil maksimum total drift, akan dikoreksi pada batasan *ratio drift* atap menurut ATC 40 (1996) pada Tabel 3.4.

a) Arah X

Drift maksimum akibat beban lateral arah X = ^{0.21}/_{20.57} = 0.0102
 Level kinerja gedung adalah *Immediate Occupancy* (IO).
 Drift inelastik maksimum arah X = ^(0,21-0,016508)/_{20.57} = 0,00940
 Level kinerja gedung *nonlinier* adalah *Damage Control*.
 b) Arah Y

Drift maksimum akibat beban lateral arah Y $=\frac{0.284}{20.57} = 0.0138$ Level kinerja gedung adalah *Damage Control. Drift* inelastik maksimum arah Y $=\frac{(0,284-0,02164)}{20.57} = 0,0127$ Level kinerja gedung nonlinier adalah Damage Control.

Berdasarkan batasan *ratio drift* atap menurut ATC 40 (1996), hasil hitungan diatas menunjukkan bahwa struktur gedung Fakultas Teknik Industri Universitas Atma Jaya Yogyakarta untuk arah-X termasuk didalam level kinerja *Immadiate Occupancy* (IO), sedangkan untuk arah Y termasuk kedalam level *Damage Control* karena nilai *Drift* maksimum akibat beban lateral kurang dari 0,02. Batasan *drift ratio* inelastik untuk arah X termasuk kedalam level kinerja *Damage Control*, sedangkan untuk arah Y termasuk kedalam level kinerja *Damage Control*, sedangkan untuk arah Y termasuk kedalam level besar dari 0,005. Hal ini menunjukan bahwa apabila gempa terjadi gedung akan mengalami beberapa kerusakkan kecil pada struktur, sehingga bangunan belum dapat beroperasi dan diperlukan beberapa perbaikan pada struktur yang mengalami kerusakan.

Gaya geser pada saat pelelehan pada struktur (Vy) dan simpangan saat terjadi pelelehan pada struktur (δ_y) pada pembebanan arah-X dan arah-Y dapat dilihat pada Gambar 5.46 dan Gambar 5.47.

Gambar 5. 46 Gaya geser dasar saat terjadi pelelehan pada struktur (Vy) pembebanan arah-X (SNI 1726-2012)

Gambar 5. 47 Gaya geser dasar saat terjadi pelelehan pada truktur (Vy) pembebanan arah-Y (SNI 1726-2012)

Berdasarkan Gambar 5.46 dan Gambar 5.47 untuk menentukan pelelehan pada struktur (Vy) garis perpotongan diambil dari *performance point* antara Vt dan δ_t dimana sesuai dengan hasil SAP2000 pada gambar 5.44 dan gambar 5.45. Hal ini terjadi karena telah terlampauinya kapasitas gaya geser dasar dan deformasi pada tiap elemen struktur sehingga menyebabkan performance point dari hasil SAP2000 berhenti secara automatis pada titik yang ditentukan.

Selanjutnya hubungan gaya geser targer (*Vt*), target displacement (δ_t), Gaya geser pada saat pelelehan pada struktur (*Vy*) dan simpangan saat terjadi pelelehan pada struktur (δ_y) pada pembebanan arah-X dan arah-Y dapat dilihat pada Gambar 5.48.

Gambar 5. 48 Hubungan Vt, Vy, δ_t , dan δ_y (SNI 1726-2012)

Berdasarkan cara menentukan redaman viskous, maka nilai daktilitas struktur (μ) dan redaman viskous ekuivalen (ξ) menurut NZNSEE (1996) didapatkan secara automatis didalam SAP2000 nilai redaman (ξ) pada pembebanan arah-X adalah sebesar 18.1% dan arah Y adalah sebesar 16.5% dapat dilihat pada Gambar 5.44, Gambar 5.45 dan perbandingan nilai daktalitas dan redaman dapat dilihat pada Tabel 5.30.

Arah	Vt	Vy	δt	δy		5 (0/)
Pembebanan	(kN)	(kN)	(m)	(m)	μ	5(%)
	Riyono (2016)					
Arah-X	9567.606	5423	0.21	0.037	5.676	18.1
Arah-Y	8069.602	5489	0.284	0.087	3.264	16.5
Mayhendra (2015)						
arah-x	10,198,735	8152,85	0,177	0,0645	2,744	17
arah-y	7,145,862	5667,91	0,208	0,0921	2,258	16

Tabel 5. 30 Perbandingan daktilitas struktur (μ) dan redaman (ξ) menurut NZNSEE (1996)

Pada Gambar 5.48 dan Tabel 5.30 dapat dilihat displacement untuk arah X lebih kecil dari arah Y tetapi memiliki daktalitas sangat besar hal ini dikarenakan kekuatan maupun kekakuan struktur arah X lebih besar dari arah Y serta jarak portal yang sangant dekat yakni 4.8 m dan ukuran kolom arah X relatif besar dari kebutuhan yang diperlukan.

3. Titik Kinerja Metode Koefisien Perpindahan (FEMA 356)

Analisis *pushover* dalam FEMA 356 menggunakan metode koefisien perpindahan dengan memodifikasi respons elastik linier dari sistem SDOF ekivalen. Faktor koefisien yang dimodifikasi yaitu C₀, C₁, C₂, dan C₃ yang kemudian dihitung untuk mendapatkan target perpindahan, δ_T , baik dalam kondisi elastis maunpun inelastis. Metode koefisien perpindahan sudah di *built in* di dalam program SAP2000.

Asumsi yang digunakan adalah gaya geser gedung memakai tipe *uniform load pattern* dan gedung direncanakan berdasarkan tingkat kinerja struktur *Immediate Occupancy* (IO). Parameter untuk metode FEMA 356 (2000) yang digunakan adalah seperti yang disajikan dalam Gambar 5.49.

Pushover Parameters Na Name F356P0	me1	Units KN, m, C
Demand Spectrum Defini	ition	
Effective Viscous Dam	ping (O < Damp < 1)	0.05
Operation Function	RS T	ANAH SEDANG 🔍 👻
Scale Factor		14.715
Characteristic Per	iod of Resp Spec, Ts	0.2
C FEMA 356 General	Response Spectrum	
Mapped Spectral	Accel at Short Period, S	is
Mapped Spectral Accel at 1 Sec Period, S1		S1
Site Class		
Selected Coefficients		
🔽 User Value for C2		1.
🔽 User Value for C3		1.
🔽 User Value for Cm		0.9
Items Visible On Plot		
Show Capacity Curv	ve	Color
🔽 Show Idealized Bilin	near Force-Displ Curve	Color 📕
	Reset Default Col	ors
Update Plot	Set	Axis Labels and Range

Gambar 5. 49 Parameter analisis Pushover Metode FEMA 356

Pada Gambar 5.49, parameter diambil berdasarkan Tabel 3-1 FEMA 356, digunakan nilai R = 14.715 karena ada koreksi ordinat dan faktor keutamaan gempa (I_e) = 1.5, dan Characteristic Period of Respon Spectrum (Ts) ditentukan 0,2 detik, sedangkan diperoleh nilai Cm = 0,9 untuk tipe bangunan CMF (concrete moment frame) > 3 lantai, dari Tabel 3-3 FEMA 356 diperoleh nilai C2 = 1,0untuk bangunan dengan level performance immediate occupancy (IO) dan nilai C3 = 1,0 diambil berdasarkan pertimbangan engineering judgement, dimana perilaku hubungan gaya geser dasar-lendutan pada kondisi pasca leleh kekakuannya positif (kurva meningkat). Kurva pushover serta titik kinerja (performance point) dari hasil analisis dengan metode koefisien perpindahan (FEMA 356) yang dihasilkan program SAP2000 untuk pembebanan arah-X dan pembebanan arah-Y dapat dilihat pada Gambar 5.50 dan Gambar 5.51.

Gambar 5. 50 Kurva pushover Metode FEMA 356 akibat beban lateral arah-X

Gambar 5. 51 Kurva *pushover* Metode FEMA 356 akibat beban lateral arah-Y

Dari Gambar 5.50 dan Gambar 5.51 dapat dilihat kurva *pushover* berdasarkan metode FEMA 356 (2000) dengan *target displacement* akibat pembebanan arah-X dan pembebanan arah-Y pada Tabel 5.31 sebagai berikut.

Arah Gava geser		Target Perpindahan (FEMA 356)		
Beban	dasar (V_1)	V_t	δ_t	
Pushover	(kN)	(k N)	(m)	
Х	23429.013	8866.504	0.177	
Y	19536.774	7155.941	0.232	

Tabel 5. 31 Target perpindahan dengan metode FEMA 356

Dari Tabel 5.31 dapat dilihat besarnya nilai gaya geser dasar akibat beban laretal arah X sebesar $V_t = 8866.504$ kN $< V_1 = 23429.013$ kN dan akibat beban laretal arah Y $V_t = 7155.941$ kN $< V_1 = 19536.774$ kN. Maka berdasarkan metode Koefisien perpindahan (FEMA 356, 2000) perilaku struktur X dan arah Y pada gempa rencana masih dalam dalam kondisi elastis. Menurut SNI 03-1726-2012 Pasal 12.6.4.4 bahwa batasan maksimum simpangan (δu) adalah 0.02 H = 0.02 x 20.57 m = 0.4114 m. *Displacement* atap (δt) hasil analisis *pushover* akibat beban lateral arah X adalah sebesar 0,177 m < 0,4114 m dan akibat beban lateral arah Y sebesar 0,232 m < 0,4114 m, sehingga struktur tersebut memenuhi syarat keamanan.

Berdasarkan Tabel 5.31 juga dapat diketahui level kinerja bangunan dengan melihat batasan rasio *drift* atap yang dievaluasi pada *performance point*, dengan parameter yang ditinjau adalah maksimum total *drfit*. Dari hasil maksimum total drift, akan dikoreksi pada batasan *ratio drift* atap menurut FEMA 356 (2000).

1) Arah X

Drift maksimum akibat beban lateral arah X $=\frac{0,177}{20.57}=0,008604$ Level kinerja gedung adalah *Immediate Occupancy* (IO).

2) Arah Y

Drift maksimum akibat beban lateral arah Y $=\frac{0.232}{20.57} = 0,011278$ Level kinerja gedung adalah *Life Safety* (LS).

Dengan bantuan kurva hasil analisa *pushover* berdasarkan Koefisien perpindahan FEMA 356, dapat memperhitungkan waktu getar alami dalam kondisi in-elastis atau waktu getar efektif (T_e). Nilai getar alami awal elastis (T_i) dan kekakuan awal bangunan pada arah yang ditinjau (K_i), kekakuan lateral 159 efektif bangunan (K_e), dan waktu getar alami efektif (T_e). Hasil analisis *pushover* dengan metode Koefisien Perpindahan FEMA 356 pada pembebanan *pushover* arah-X dan arah-Y dapat dilihat pada Tabel 5.32, Gambar 5.52 dan Gambar 5.53 berikut.

Arah Pembebanan Pushover	Ti (det)	Ki (kN/m)	Ke (kN/m)	- α _k K _e
arah-X	0.5734	151538.78	147388.37	0.16688
arah-Y	0.6881	94995 96	90101 74	0 12759

Tabel 5. 32 Nilai waktu getar alami efektif dengan metode Koefisien PerpindahanFEMA 356

Selanjutnya, nilai getar waktu alami efektif (T_e) dan kondisi inelastis (αK_e) dihitung sebagai berikut.

1) Arah-X

$$T_e = 0.5734 \sqrt{\frac{151538.78}{147388.37}} = 0.5814 \text{ detik}$$
$$Kp = \frac{(Vt - Vy)}{(\delta t - \delta y)} = \frac{(8866.504 - 5423)}{(0,177 - 0,037)} = 24596.46 \text{ kN/m}$$
$$\alpha_k = \frac{Kp}{Ke} = \frac{24596.46}{147388.37} = 0,16688$$

2) Arah-Y

$$T_e = 0.6881 \sqrt{\frac{94995.96}{90101.74}} = 0.7066 \text{ detik}$$
$$Kp = \frac{(Vt - Vy)}{(\delta t - \delta y)} = \frac{(7155.941 - 5489)}{(0.232 - 0.087)} = 11496.14 \text{ kN/m}$$
$$\alpha_k = \frac{Kp}{Ke} = \frac{11496.14}{90101.74} = 0.12759$$

Gambar 5. 52 Parameter waktu getar alami efektif dari kurva *pushover* pada pembebananan arah-X (SNI 1726-2012)

Gambar 5. 53 Parameter waktu getar alami efektif dari kurva *pushover* pada pembebananan arah-Y (SNI 1726-2012)

5.3.3.2 Hasil Pushover Dengan Menggunakan Beban SNI 1726-2002

1. Kurva Kapasitas

Kurva kapasitas (*capacity curve*) menunjukkan hubungan antara perpindahan lateral pada titik kontrol dan gaya geser dasar oleh peningkatan beban statik sampai pada kondisi ultimit atau target peralihan yang diharapkan. Kurva berbentuk nonlinier yang menunjukkan peningkatan beban pasca-elastik sampai dengan kondisi plastis. Kurva kapasitas dapat disebut juga dengan kurva *pushover*. Kurva yang terlihat pada Gambar 5.54 dan Gambar 5.55 berbentuk nonlinier akibat peningkatan beban yang mengakibatkan elemen struktur bangunan berubah dari kondisi elastik menjadi kondisi plastis. Nilai perpindahan dan gaya geser dasar dapat diketahui dari data kurva kapasitas dalam Tabel 5.33.

Gambar 5. 54 Kurva kapasitas arah-X SNI 1726-2002

Gambar 5. 55 Kurva kapasitas arah-Y SNI 1726-2002

Pada Gambar 5.54 pushover pada pembebanan arah-X SNI 1726-2002, analisis berhenti pada langkah (*step*) 9, yaitu pada saat perpindahan titik kontrol sebesar 0,356 m dan gaya geser dasar sebesar 11830.511 kN. Pada Gambar 5.55 pushover pada pembebanan arah-Y SNI 1726-2002, analisis berhenti pada langkah (*step*) 14, yaitu pada saat perpindahan titik kontrol sebesar 0,470 m dan gaya geser dasar sebesar 9958.025 kN.

Analisis pada SNI 1726-2002 tidak dapat dilanjutkan lagi untuk mencapai perpindahan ultimit (δu) yang ditentukan, yaitu sebesar 0,62 m. Hal ini terjadi karena telah terlampauinya kapasitas deformasi pada tiap elemen struktur yang sebelumnya telah didefinisikan pada properti sendi plastis. Perbandingan kurva *pushover* pada arah-X dan arah-Y dapat dilihat pada Gambar 5.56.

Gambar 5. 56 Perbandingan kurva kapasitas pushover (SNI 1726-2002)

Dari Gambar 5.56 dapat dilihat perbandingan kurva kapasitas pushover arah X lebih besar dari kapasitas pushover arah Y hal ini disebabkan karena kekuatan maupun kekakuan arah X relatif lebih kaku karena ukuran kolom arah X relatif lebih besar dari kebutuhan yang diperlukan.

Tabel 5. 33 Data Pushover Curve arah-X dan arah-Y (SNI 1726-2002)

Displacement **BaseForce** Step KN m 0 -0.000045 0 0.016116 2534.703 1 2 0.028452 4184.968 3 0.064574 6093.053 4 0.130659 7996.734 5 0.196634 9600.451 0.260628 10794.094 6 7 0.322923 11562.902 8 0.350363 11801.571 9 0.356017 11830.511 Arah-Y

Ston	Displacement	BaseForce	
Step	m	KN	
0	0.000264	0	
1	0.01062	1110.528	
2	0.032002	3019.87	
3	0.050602	3806.213	
4	0.116823	5234.186	
5	0.183969	6543.933	
6	0.253575	7850.618	
7	0.316038	8941.882	
8	0.379457	9670.441	
9	0.383094	9695.635	
10	0.394025	9735.634	
11	0.400843	9748.51	
12	0.446667	9906.547	
13	0.463498	9929.474	
14	0.470057	9958.025	

2. Titik Kinerja Metode Spektrum Kapasitas (ATC-40)

Analisis *static non-linier (pushover)* dilakukan dengan metode spektrum kapasitas (*capacity spectrum method*) sesuai prosedur B dokumen ATC 40 (1996). Dalam penelitian ini, proses analisis pushover dilakukan dengan bantuan program SAP 2000 yang menghasilkan hubungan gaya geser dasar dan perpindahan dan kemudian dikonversi ke dalam bentuk Spektrum kapasitas dengan format ADRS (*acceleration displacement response spectrum*), yaitu dalam hubungan Sa dan Sd. Parameter spektrum respon yang digunakan sebagai *seismic demand* oleh program SAP2000 juga dikonversi ke dalam format ADRS sebagai *spectrum demand*.

Parameter-parameter yang berpengaruh sesuai dengan kondisi tanah dilokasi bangunan didirikan dipengaruhi oleh fungsi keutamaan gedung. Nilai skala faktor yang dimasukkan kedalam parameter respon spektrum ATC-40 yang digunakan untuk koreksi ordinat spektrum respon adalah sebesar 9,81 di kalikan dengan faktor skala yang merupakan hasil pembagian antara faktor keutamaan bangunan (I) dengan nilai daktilitas bangunan (R) dan dikalikan dengan percepatan gravitasi (g) yang digunakan untuk koreksi ordinat spektrum respon sebesar $\frac{I}{R}g = \frac{1}{1}9.81 = 9.81$. Untuk tipe perilaku struktur ditentukan sesuai Tabel 8-4 ATC-40 dimana struktur tipe B merupakan struktur dengan kondisi eksisting sedang (*average*) dan durasi goyangan struktur (*shaking ground*) yang pendek (*short*). Modifikasi parameter spektrum kapasitas ATC-40 sesuai SNI 1726-2002 dapat dilihat pada Gambar 5.57.

Sedangkan titik kinerja (*performance point*) yang terlihat pada kurva kapasitas ATC-40 di Gambar 5.58 dan Gambar 5.59 merupakan titik pertemuan antara kurva kapasitas dengan kurva *demand*. Dengan demikian titik tersebut menunjukkan besar kapasitas struktur dapat memenuhi *demand* berupa beban gempa sesuai SNI 1726-2002. Nilai *performance point*, waktu getar alami efektif, dan redaman viskous efektif, berdasarkan metode ATC-40 dapat dilihat dalam Tabel 5.34.
Pushover Paramet	ers Name		Units
Name 🖂	10P01		KN, m, C 💌
Plot Axes		Axis	Labels and Range
Ga→Sd C C C	Sa∙T ⊂ Sd	•T	Set Axis Data
Demand Spectrum	Definition		
Function	RS 2002 TAM	IAH SED/	SF 9.81
C User Coeffs	Ca		Cv
Damping Paramete	ers Definition		
Inherent + Additio	onal Damping		0.05
Structural Behavi	or Type		
CA @	B C C	C User	Modify/Show
Items Visible On Pl	ot		
🔽 Show Capaci	ty Curve		Color
🔽 Show Family	of Demand Spect	ra	Color 📕
Damping Ra	atios		
0.05	0.165	0.05	0.05
☑ Show Single (Variab	Demand Spectru le Damping)	m (ADRS)	Color
🔽 Show Consta	ant Period Lines a	t	Color
0.5	1.	1.5	2.
	Rese	t Default Colors	
			1

Gambar 5. 57 Modifikasi parameter spektrum kapasitas ATC-40

Gambar 5. 58 Kurva *pushover* dan titik kinerja pembebanan arah-X dengan metode spektrum kapasitas ATC-40 dengan menggunakan spektrum respon SNI 1726-2002

Gambar 5. 59 Kurva *pushover* dan titik kinerja pembebanan arah-Y dengan metode spektrum kapasitas ATC-40 dengan menggunakan spektrum respon SNI 1726-2002

 Tabel 5. 34 Performance point dengan metode ATC-40 (SNI 1726-2002)

Arah	Gaya		Pe	erforman	nce Poin	nt	
Beban Lateral	geser dasar (V ₁) (kN)	V_t (kN)	δ_t (m)	Sa	Sd	Teff	$eta_{e\!f\!f}$
Х	17952.839	6324.03	0.073	0.294	0.045	0.778	0.171
Y	14478.096	4906.994	0.102	0.232	0.056	0.973	0.166

Dari Tabel 5.34 dapat dilihat besarnya nilai gaya geser dasar akibat beban laretal arah X sebesar $V_t = 6324.03$ kN $< V_I = 17952.839$ kN dan akibat beban laretal arah Y $V_t = 4906.994$ kN $< V_I = 14478.096$ kN. Berdasarkan metode spektrum kapasitas (ATC 40, 1996) perilaku struktur X dan arah Y pada gempa rencana masih dalam kondisi elastis. Menurut SNI 03-1726-2002 Pasal 12.6.4.4 bahwa batasan maksimum simpangan (δu) adalah 0,02 H = 0,02 x 20,57 m = 0.4114 m. *Displacement atap* (δt) hasil analisis *pushover* lateral akibat beban arah X adalah sebesar 0,073 m < 0,4114 m dan akibat beban lateral arah Y sebesar 0,102 m < 0,4114 m, sehingga struktur tersebut memenuhi syarat keamanan.

Berdasarkan Tabel 5.34 dapat diketahui level kinerja bangunan dengan melihat batasan rasio *drift* atap yang dievaluasi pada *performance point*, dengan parameter yang ditinjau adalah maksimum total *drfit*. Dari hasil maksimum total drift, akan dikoreksi pada batasan *ratio drift* atap menurut ATC 40 (1996) pada Tabel 3.4.

a) Arah X

 $Drift \text{ maksimum akibat beban lateral arah X} = \frac{0.073}{20.57} = 0.00355$ Level kinerja gedung adalah *Immediate Occupancy* (IO). $Drift \text{ inelastik maksimum arah X} = \frac{(0,073-0,016116)}{20.57} = 0,002765$ Level kinerja gedung *nonlinier* adalah *Immediate Occupancy* (IO).
b) Arah Y

Drift maksimum akibat beban lateral arah Y $=\frac{0.102}{20.57} = 0.00496$ Level kinerja gedung adalah *Immediate Occupancy* (IO). *Drift* inelastik maksimum arah Y $=\frac{(0,102-0,01062)}{20.57} = 0,00444$ Level kinerja gedung *nonlinier* adalah *Immediate Occupancy* (IO).

Berdasarkan batasan *ratio drift* atap menurut ATC 40 (1996), hasil hitungan diatas menunjukkan bahwa struktur gedung Fakultas Teknik Industri Universitas Atma Jaya Yogyakarta untuk arah-X termasuk didalam level kinerja *Immadiate Occupancy* (IO), sedangkan untuk arah Y termasuk kedalam level *Immadiate Occupancy* (IO), karena nilai *Drift* maksumum akibat beban lateral kurang dari 0,01. Batasan *drift ratio* inelastik untuk arah X termasuk kedalam level kinerja *Immadiate Occupancy* (IO), sedangkan untuk arah X termasuk kedalam level kinerja *Immadiate Occupancy* (IO), sedangkan untuk arah Y termasuk kedalam level kinerja *Immadiate Occupancy* (IO), sedangkan untuk arah Y termasuk kedalam level kinerja *Immadiate Occupancy* (IO), karena nilai *Drift* inelastik maksimum akibat beban lateral kurang dari 0,005. Hal ini menunjukan bahwa apabila terjadi gempa gedung akan mengalami beberapa kerusakan kecil pada nonstruktur, sehingga bangunan dapat beroperasi / dihuni secara langsung.

Sedangkan gaya geser pada saat pelelehan pada struktur (*Vy*) dan simpangan saat terjadi pelelehan pada struktur (δ_y) apda pembebanan arah-X dan arah-Y dapat dilihat pada Gambar 5.60 dan Gambar 5.61.

Gambar 5. 60 Gaya geser dasar saat terjadi pelelehan pada struktur (Vy) pembebanan arah-X (SNI 1726-2002)

Gambar 5. 61 Gaya geser dasar saat terjadi pelelehan pada struktur (Vy) pembebanan arah-Y (SNI 1726-2002)

Berdasarkan Gambar 5.60 dan Gambar 5.61 untuk menentukan pelelehan pada struktur (Vy) garis perpotongan diambil dari *performance point* antara Vt dan δ_t dimana sesuai dengan hasil SAP2000 pada gambar 5.58 dan gambar 5.59. 169 Hal ini terjadi karena telah terlampauinya kapasitas gaya geser dasar dan deformasi pada tiap elemen struktur sehingga menyebabkan performance point dari hasil SAP2000 berhenti secara automatis pada titik yang ditentukan.

Selanjutnya hubungan gaya geser targer (*Vt*), target displacement (δ_t), Gaya geser pada saat pelelehan pada struktur (*Vy*) dan simpangan saat terjadi pelelehan pada struktur (δ_y) pada pembebanan arah-X dan arah-Y dapat dilihat pada Gambar 5.62.

Gambar 5. 62 hubungan Vt, Vy, δ_t , dan δ_y (SNI 1726-2002)

Berdasarkan cara menentukan redaman viskous, maka nilai daktilitas struktur (μ) dan redaman viskous ekuivalen (ξ) menurut NZNSEE (1996) didapatkan secara automatis didalam SAP2000 nilai redaman (ξ) pada pembebanan arah-X adalah sebesar 17.1% dan arah Y adalah sebesar 16.6% dapat dilihat pada Gambar 5.58, Gambar 5.59 dan nilai daktalitas dan redaman dapat dilihat pada Tabel 5.35.

Tabel 5. 35 Daktilitas struktur (μ) dan redaman (ξ) menurut NZNSEE (1996)

Arah	Vt	Vy	δt	δу		٤ (%)
Pushover	(kN)	(kN)	(m)	(m)	μ	S (70)
arah-x	6324.03	4132	0.073	0.025	2.92	17.1
arah-y	4906.994	3698	0.102	0.037	2.76	16.6

Pada Gambar 5.62 dan Tabel 5.35 dapat dilihat displacement untuk arah X lebih kecil dari arah Y tetapi memiliki daktalitas sangat besar hal ini dikarenakan kekuatan maupun kekakuan struktur arah X lebih besar dari arah Y serta jarak portal 4.8 m dan ukuran kolom arah X relatif besar dari kebutuhan yang diperlukan.

3. Titik Kinerja Metode Koefisien Perpindahan (FEMA 356)

Analisis *pushover* dalam FEMA 356 menggunakan metode koefisien perpindahan dengan memodifikasi respons elastik linier dari sistem SDOF ekivalen. Faktor koefisien yang dimodifikasi yaitu C₀, C₁, C₂, dan C₃ yang kemudian dihitung untuk mendapatkan target perpindahan, δ_{T} , baik dalam kondisi elastis maupun inelastis. Metode koefisien perpindahan sudah di *built in* di dalam program SAP2000.

Asumsi yang digunakan adalah gaya geser gedung memakai tipe *uniform load pattern* dan gedung direncanakan berdasarkan tingkat kinerja struktur *Immediate Occupancy* (IO). Parameter untuk metode FEMA 356 (2000) yang digunakan adalah seperti yang disajikan dalam Gambar 5.63.

Pushover Parameters Name	Units
Name F356P01	KN, m, C 💌
Demand Spectrum Definition	
Effective Viscous Damping (0 < Damp <	1) 0.05
Defined Function	RS 2002 TANAH SEDANG 🔄
Scale Factor	9.81
Characteristic Period of Resp Spec	, Ts 0.2
C FEMA 356 General Response Spectr	um
Mapped Spectral Accel at Short Pe	riod, Ss
Mapped Spectral Accel at 1 Sec P	eriod, S1
Site Class	
Selected Coefficients	
🔽 User Value for C2	1.
🔽 User Value for C3	1.
🔽 User Value for Cm	0.9
Items Visible On Plot	
🔽 Show Capacity Curve	Color
Show Idealized Bilinear Force-Displ C	urve Color 💻
Reset Defa	ult Colors
Update Plot	Set Axis Labels and Range
ОК	Cancel

Gambar 5. 63 Parameter analisis Pushover Metode FEMA 356

Pada Gambar 5.63, parameter diambil berdasarkan Tabel 3-1 FEMA 356, digunakan nilai R = 9.81 karena ada koreksi ordinat dan faktor keutamaan gempa $(I_e) = 1$, dan *Characteristic Period of Respon Spectrum (Ts)* ditentukan 0,2 detik, sedangkan diperoleh nilai Cm = 0,9 untuk tipe bangunan CMF (*concrete moment frame*) 3 lantai, dari Tabel 3-3 FEMA 356 diperoleh nilai C2 = 1,0 untuk bangunan dengan level performance *immediate occupancy* (IO) dan nilai C3 = 1,0diambil berdasarkan pertimbangan engineering judgement, dimana perilaku hubungan gaya geser dasar-lendutan pada kondisi pasca leleh kekakuannya positif (kurva meningkat). Kurva *pushover* serta titik kinerja (*performance* point) dari hasil analisis dengan metode koefisien perpindahan (FEMA 356) yang dihasilkan program SAP2000 untuk pembebanan arah-X dan pembebanan arah-Y dapat dilihat pada Gambar 5.64 dan Gambar 5.65.

Gambar 5. 64 Kurva pushover Metode FEMA 356 akibat beban lateral arah-X

Gambar 5. 65 Kurva *pushover* Metode FEMA 356 akibat beban lateral arah-Y

Dari Gambar 5.64 dan Gambar 5.65 dapat dilihat kurva *pushover* berdasarkan metode FEMA 356 (2000) dengan *target displacement* akibat pembebanan arah-X dan pembebanan arah-Y pada Tabel 5.36 sebagai berikut.

	Gava geser	Target Perpinda	han (FEMA 356)
Arah Beban Pushover	dasar (V_1)	V_t	δ_t
I USHOVCI	(kN)	(k N)	(m)
Х	17952.839	6257.936	0.070
Y	14478.096	4997.493	0.106

Tabel 5. 36 Target perpindahan dengan metode FEMA 356

Dari Tabel 5.36 dapat dilihat besarnya nilai gaya geser dasar akibat beban laretal arah X sebesar V_t = 6257.936 kN < V_I = 17952.839 kN dan akibat beban laretal arah Y V_t = 4997.493 kN < V_I = 14478.096 kN. Maka berdasarkan metode Koefisien perpindahan (FEMA 356, 2000) perilaku struktur X dan arah Y pada gempa rencana masih dalam dalam kondisi elastis. Menurut SNI 03-1726-2002 bahwa batasan maksimum simpangan (δu) adalah 0.02 H = 0.02 x 20.57 m = 0.4114 m. Displacement atap (δt) hasil analisis pushover akibat beban lateral arah X adalah sebesar 0,07 m < 0,4114 m dan akibat beban lateral arah Y sebesar 0,106 m < 0,4114 m, sehingga struktur tersebut memenuhi syarat keamanan.

Berdasarkan Tabel 5.36 juga dapat diketahui level kinerja bangunan dengan melihat batasan rasio *drift* atap yang dievaluasi pada *performance point*, dengan parameter yang ditinjau adalah maksimum total *drfit*. Dari hasil maksimum total drift, akan dikoreksi pada batasan *ratio drift* atap menurut FEMA 356 (2000).

1) Arah X

Drift maksimum akibat beban lateral arah X $=\frac{0.07}{20.57}=0,0034$ Level kinerja gedung adalah *Immediate Occupancy* (IO).

2) Arah Y

Drift maksimum akibat beban lateral arah Y $=\frac{0.106}{20.57} = 0,0051$ Level kinerja gedung adalah *Immediate Occupancy* (IO).

Dengan bantuan kurva hasil analisa *pushover* berdasarkan Koefisien perpindahan FEMA 356, dapat memperhitungkan waktu getar alami dalam kondisi in-elastis atau waktu getar efektif (T_e). Nilai getar alami awal elastis (T_i) dan kekakuan awal bangunan pada arah yang ditinjau (K_i), kekakuan lateral efektif bangunan (K_e), dan waktu getar alami efektif (T_e). Hasil analisis *pushover* dengan metode Koefisien Perpindahan FEMA 356 pada pembebanan *pushover* arah-X dan arah-Y dapat dilihat pada Tabel 5.37, Gambar 5.66 dan Gambar 5.67 berikut.

Tabel 5. 37 Nilai waktu getar alami efektif dengan metode Koefisien PerpindahanFEMA 356

Arah Pembebanan Pushover	Ti (det)	Ki (kN/m)	Ke (kN/m)	- α _k K _e
arah-X	0.5693	157280.16	157280.16	0.3003
arah-Y	0.683	104565.04	97599.07	0.1929

Selanjutnya, nilai getar waktu alami efektif (T_e) dan kondisi inelastis (αK_e) dihitung sebagai berikut.

1) Arah-X

$$T_e = 0.5693 \sqrt{\frac{157280.16}{157280.16}} = 0.5693 \text{ detik}$$
$$Kp = \frac{(Vt - Vy)}{(\delta t - \delta y)} = \frac{(6257.936 - 4132.00)}{(0.07 - 0.025)} = 47243.022 \text{ kN/m}$$
$$\alpha_k = \frac{Kp}{Ke} = \frac{47243.022}{157280.16} = 0,3003$$

2) Arah-Y

$$T_e = 0.683 \sqrt{\frac{104565.04}{97599.07}} = 0.7069 \text{ detik}$$
$$Kp = \frac{(Vt - Vy)}{(\delta t - \delta y)} = \frac{(4997.493 - 3698.00)}{(0,106 - 0,037)} = 18833.232 \text{ kN/m}$$
$$\alpha_k = \frac{Kp}{Ke} = \frac{18833.232}{97599.07} = 0,1929$$

Gambar 5. 66 Parameter waktu getar alami efektif dari kurva *pushover* pada pembebananan arah-X (SNI 1726-2002)

Gambar 5. 67 Parameter waktu getar alami efektif dari kurva *pushover* pada pembebananan arah-Y (SNI 1726-2002)

5.3.3.3 Hasil Pushover Dengan Menggunakan Beban Seragam

1. Kurva Kapasitas

Kurva kapasitas (*capacity curve*) menunjukkan hubungan antara perpindahan lateral pada titik kontrol dan gaya geser dasar oleh peningkatan beban statik sampai pada kondisi ultimit atau target peralihan yang diharapkan. Kurva berbentuk nonlinier yang menunjukkan peningkatan beban pasca-elastik sampai dengan kondisi plastis. Kurva kapasitas dapat disebut juga dengan kurva *pushover*. Kurva yang terlihat pada Gambar 5.68 dan Gambar 5.69 berbentuk nonlinier akibat peningkatan beban yang mengakibatkan elemen struktur bangunan berubah dari kondisi elastik menjadi kondisi plastis. Nilai perpindahan dan gaya geser dasar dapat diketahui dari data kurva kapasitas dalam Tabel 5.38.

Gambar 5. 68 Kurva kapasitas arah-X Beban Seragam

Gambar 5. 69 Kurva kapasitas arah-Y Beban Seragam

Pada Gambar 5.68 pushover pada pembebanan arah-X Beban Seragam, analisis berhenti pada langkah (*step*) 8, yaitu pada saat perpindahan titik kontrol sebesar 0,336 m dan gaya geser dasar sebesar 15326.041 kN. Pada Gambar 5.69 pushover pada pembebanan arah-Y Beban Seragam, analisis berhenti pada langkah (*step*) 19, yaitu pada saat perpindahan titik kontrol sebesar 0,556 m dan gaya geser dasar sebesar 13739.258 kN.

Analisis pada Beban Seragam menggunakan SNI 1726-2012 tidak dapat dilanjutkan lagi untuk mencapai perpindahan ultimit (δu) yang ditentukan, yaitu sebesar 0,62 m. Hal ini terjadi karena telah terlampauinya kapasitas deformasi pada tiap elemen struktur yang sebelumnya telah didefinisikan pada properti sendi plastis. Perbandingan kurva *pushover* pada arah-X dan arah-Y dapat dilihat pada Gambar 5.70.

Dari Gambar 5.70 dapat dilihat perbandingan kurva kapasitas pushover arah X lebih besar dari kapasitas pushover arah Y hal ini disebabkan karena kekuatan maupun kekakuan arah X relatif lebih kaku karena ukuran kolom arah X relatif lebih besar dari kebutuhan yang diperlukan.

 Tabel 5. 38 Data Pushover Curve arah-X dan arah-Y (Beban Seragam)

Arah-X

Arah-Y

Stop	Displacement	BaseForce
Step	m	KN
0	-0.000045	0
1	0.01453	2906.567
2	0.029198	5288.242
3	0.074508	8229.876
4	0.138873	10608.377
5	0.201058	12564.408
6	0.265206	14175.302
7	0.327207	15178.92
8	0.336784	15326.041

Stop	Displacement	BaseForce
Step	m	KN
0	0.000264	0
1	0.009042	1196.281
2	0.040907	3914.333
3	0.06448	5341.065
4	0.125091	7444.521
5	0.204318	9163.614
6	0.272273	10526.36
7	0.334971	11785.65
8	0.397983	12713.29
9	0.460463	13375.33
10	0.464403	13406.57
11	0.466524	13412.4
12	0.486618	13507.69
13	0.500919	13543.35
14	0.507537	13579.99
15	0.519394	13613.74
16	0.52527	13641.86
17	0.528531	13646.5
18	0.554341	13736.7
19	0.55666	13739.26

2. Titik Kinerja Metode Spektrum Kapasitas (ATC-40)

Analisis *static non-linier (pushover)* dilakukan dengan metode spektrum kapasitas (*capacity spectrum method*) sesuai prosedur B dokumen ATC 40 (1996). Dalam penelitian ini, proses analisis pushover dilakukan dengan bantuan program SAP 2000 yang menghasilkan hubungan gaya geser dasar dan perpindahan dan kemudian dikonversi ke dalam bentuk Spektrum kapasitas dengan format ADRS (*acceleration displacement response spectrum*), yaitu dalam hubungan Sa dan Sd. Parameter spektrum respon yang digunakan sebagai *seismic demand* oleh program SAP2000 juga dikonversi ke dalam format ADRS sebagai *spectrum demand*. Parameter-parameter yang berpengaruh sesuai dengan kondisi tanah dilokasi bangunan didirikan dipengaruhi oleh fungsi keutamaan gedung. Nilai skala faktor yang dimasukkan kedalam parameter respon spektrum ATC-40 yang digunakan untuk koreksi ordinat spektrum respon adalah sebesar 9,81 di kalikan dengan faktor skala yang merupakan hasil pembagian antara faktor keutamaan bangunan (I) dengan nilai daktilitas bangunan (R) dan dikalikan dengan percepatan gravitasi (g) yang digunakan untuk koreksi ordinat spektrum respon sebesar $\frac{I}{R}g = \frac{1.5}{1}$ 9.81 = 14.715. Untuk tipe perilaku struktur ditentukan sesuai Tabel 8-4 ATC-40 dimana struktur tipe B merupakan struktur dengan kondisi eksisting sedang (*average*) dan durasi goyangan struktur (*shaking ground*) yang pendek (*short*). Modifikasi parameter spektrum kapasitas ATC-40 dengan Beban Seragam menggunakan SNI 1726-2012 dapat dilihat pada Gambar 5.71.

Sedangkan titik kinerja (*performance point*) yang terlihat pada kurva kapasitas ATC-40 dilihat Gambar 5.72 dan Gambar 5.73 merupakan titik pertemuan antara kurva kapasitas dengan kurva *demand*. Dengan demikian titik tersebut menunjukkan besar kapasitas struktur dapat memenuhi *demand* berupa beban gempa sesuai SNI 1726-2012. Nilai *performance point*, waktu getar alami efektif, dan redaman viskous efektif, berdasarkan metode ATC-40 dapat dilihat dalam Tabel 5.39

Pushover Paramel	ers Name		Units
Name 🗛	40P01		KN, m, C 💌
Plot Axes		- Axis l	_abels and Range
☞ Sa-Sd C	Sa∙T ⊂ Sd∙T		Set Axis Data
Demand Spectrum	Definition		
Function	RS TANAH SEC	ANG 💌	SF 14.715
C User Coeffs	Ca		Cv 🗌
Damping Paramet	ers Definition		
Inherent + Additi	onal Damping		0.05
Structural Behav	ior Type		
CA @	B C C	C User	Modify/Show
Items Visible On P	ot		
🔽 Show Capac	ity Curve		Color
🔽 Show Family	of Demand Spectra		Color 📕
Damping R	atios		
0.05	0.17	0.05	0.05
☞ Show Single (Variat	Demand Spectrum (/ le Damping)	ADRS)	Color
🔽 Show Const	ant Period Lines at		Color
0.5	1.	1.5	2.
	Reset De	efault Colors	
	11		1

Gambar 5. 71 Modifikasi parameter spektrum kapasitas ATC-40

Gambar 5. 72 Kurva *pushover* dan titik kinerja pembebanan arah-X dengan metode spektrum kapasitas ATC-40 (Beban Seragam)

Gambar 5. 73 Kurva *pushover* dan titik kinerja pembebanan arah-Y dengan metode spektrum kapasitas ATC-40 (Beban Seragam)

 Tabel 5. 39 Performance point dengan metode ATC-40 (Beban Seragam)

Arah	Gaya	Performance Point					
Beban Lateral	geser dasar (V ₁) (kN)	V _t (kN)	δ_t (m)	Sa	Sd	Teff	$eta_{e\!f\!f}$
Х	26299.665	11616.716	0.171	0.545	0.103	0.87	0.175
Y	22604.671	9634.405	0.235	0.456	0.130	1.07	0.163

Dari Tabel 5.39 dapat dilihat besarnya nilai gaya geser dasar akibat beban laretal arah X sebesar $V_t = 11616.716$ kN $< V_I = 26299.665$ kN dan akibat beban laretal arah Y $V_t = 9634.405$ kN $< V_I = 22604.671$ kN. Berdasarkan metode spektrum kapasitas (ATC 40, 1996) perilaku struktur X dan arah Y pada gempa rencana masih dalam kondisi elastis. Menurut SNI 03-1726-2012 Pasal 12.6.4.4 bahwa batasan maksimum simpangan (δu) adalah 0,02 H = 0,02 x 20,57 m = 0.4114 m. *Displacement atap* (δt) hasil analisis *pushover* akibat beban lateral arah X adalah sebesar 0,171 m < 0,4114 m dan akibat beban lateral arah Y sebesar 0,235 m < 0,4114 m, sehingga struktur tersebut memenuhi syarat keamanan. Berdasarkan Tabel 5.39 dapat diketahui level kinerja bangunan dengan melihat batasan rasio *drift* atap yang dievaluasi pada *performance point*, dengan parameter yang ditinjau adalah maksimum total *drfit*. Dari hasil maksimum total drift, akan dikoreksi pada batasan *ratio drift* atap menurut ATC 40 (1996) pada Tabel 3.4.

a) Arah X

Drift maksimum akibat beban lateral arah X $=\frac{0.171}{20.57} = 0.0083$ Level kinerja gedung adalah *Immediate Occupancy* (IO). Drift inelastik maksimum arah X $=\frac{(0,171-0,01453)}{20.57} = 0,0076$ Level kinerja gedung *nonlinier* adalah *Damage Control*.

b) Arah Y

Drift maksimum akibat beban lateral arah Y $=\frac{0.235}{20.57} = 0.0114$ Level kinerja gedung adalah **Damage Control.** Drift inelastik maksimum arah Y $=\frac{(0,235-0,009042)}{20.57} = 0,0109$ Level kinerja gedung *nonlinier* adalah **Damage Control.**

Berdasarkan batasan *ratio drift* atap menurut ATC 40 (1996), hasil hitungan diatas menunjukkan bahwa struktur gedung Fakultas Teknik Industri Universitas Atma Jaya Yogyakarta untuk arah-X termasuk didalam level kinerja *Immadiate Occupancy* (IO), sedangkan untuk arah Y termasuk kedalam level *Damage Control* karena nilai *Drift* maksumum akibat beban lateral kurang dari 0,02. Batasan *drift ratio* inelastik untuk arah X termasuk kedalam level kinerja *Damage Control*, sedangkan untuk arah Y termasuk kedalam level kinerja *Damage Control*, sedangkan untuk arah Y termasuk kedalam level bamage *Control*, sedangkan untuk arah Y termasuk kedalam level *Damage Control*, sedangkan untuk arah Y termasuk kedalam level *Damage Control*, sedangkan untuk arah Y termasuk kedalam level *Damage Control* karena nilai *Drift* inelastik maksimum akibat beban lateral lebih besar dari 0,005. Hal ini menunjukan bahwa apabila gempa terjadi gedung akan mengalami beberapa kerusakkan kecil pada struktur, sehingga bangunan belum dapat beroperasi dan diperlukan beberapa perbaikan pada struktur yang mengalami kerusakan.

Gaya geser pada saat pelelehan pada struktur (Vy) dan simpangan saat terjadi pelelehan pada struktur (δ_y) apda pembebanan arah-X dan arah-Y dapat dilihat pada Gambar 5.74 dan Gambar 5.75.

Gambar 5. 74 Gaya geser dasar saat terjadi pelelehan pada truktur (Vy) pembebanan arah-X (Beban Seragam)

Gambar 5. 75 Gaya geser dasar saat terjadi pelelehan pada truktur (Vy) pembebanan arah-Y (Beban Seragam)

Berdasarkan Gambar 5.74 dan Gambar 5.75 untuk menentukan pelelehan pada struktur (Vy) garis perpotongan diambil dari *performance point* antara Vt dan δ_t dimana sesuai dengan hasil SAP2000 pada gambar 5.72 dan gambar 5.73. Hal ini terjadi karena telah terlampauinya kapasitas gaya geser dasar dan deformasi pada tiap elemen struktur sehingga menyebabkan *performance point* dari hasil SAP2000 berhenti secara automatis pada *performance point* yang ditentukan.

Selanjutnya hubungan gaya geser targer (*Vt*), target displacement (δ_t), Gaya geser pada saat pelelehan pada struktur (*Vy*) dan simpangan saat terjadi pelelehan pada struktur (δ_y) pada pembebanan arah-X dan arah-Y dapat dilihat pada Gambar 5.76.

Gambar 5. 76 hubungan Vt, Vy, δ_t dan δ_v (beban seragam)

Berdasarkan cara menentukan redaman viskous, maka nilai daktilitas struktur (μ) dan redaman viskous ekuivalen (ξ) menurut NZNSEE (1996) didapatkan secara automatis didalam SAP2000 nilai redaman (ξ) pada pembebanan arah-X adalah sebesar 17.5% dan arah Y adalah sebesar 16.3% dapat dilihat pada Gambar 5.72, Gambar 5.73 dan nilai daktalitas dan redaman dapat dilihat pada Tabel 5.40.

Arah	Vt	Vy	δt	δу		٤ (0/.)
Pushover	(kN)	(kN)	(m)	(m)	μ	S (70)
arah-x	11616.716	7559	0.171	0.04	4.275	17.5
arah-y	9634.405	7044	0.235	0.078	3.013	16.3

Tabel 5. 40 Daktilitas struktur (μ) dan redaman (ξ) menurut NZNSEE (1996)

Pada Gambar 5.76 dan Tabel 5.40 dapat dilihat displacement untuk arah X lebih kecil dari arah Y tetapi memiliki daktalitas sangat besar hal ini dikarenakan kekuatan maupun kekakuan struktur arah X lebih besar dari arah Y serta jarak portal 4.8 m dan ukuran kolom arah X relatif besar dari kebutuhan yang diperlukan.

3. Titik Kinerja Metode Koefisien Perpindahan (FEMA 356)

Analisis *pushover* dalam FEMA 356 menggunakan metode koefisien perpindahan dengan memodifikasi respons elastik linier dari sistem SDOF ekivalen. Faktor koefisien yang dimodifikasi yaitu C₀, C₁, C₂, dan C₃ yang kemudian dihitung untuk mendapatkan target perpindahan, δ_T , baik dalam kondisi elastis maunpun inelastis. Metode koefisien perpindahan sudah di *built in* di dalam program SAP2000.

Asumsi yang digunakan adalah gaya geser gedung memakai tipe *uniform load pattern* dan gedung direncanakan berdasarkan tingkat kinerja struktur *Immediate Occupancy* (IO). Parameter untuk metode FEMA 356 (2000) yang digunakan adalah seperti yang disajikan dalam Gambar 5.77.

Pushover P	arameters Name		Units
Name	F356P01		KN, m, C 💌
Demand Sp	ectrum Definition		L
Effective	Viscous Damping (0 < Damp	< 1)	0.05
O Define	d Function	RS TANAH	I SEDANG 📃 💌
Scal	e Factor		14.715
Char	acteristic Period of Resp Spe	ic, Ts	0.2
O FEMA	356 General Response Spec	trum	
Map	ped Spectral Accel at Short F	Period, Ss	
Мар	ped Spectral Accel at 1 Sec	Period, S1	
Site	Class		
Selected Co	efficients		
🔽 User V	alue for C2		1.
🔽 User V	alue for C3		1.
🔽 User V	alue for Cm		0.9
Items Visible	On Plot		
Show	Capacity Curve		Color
Show	dealized Bilinear Force-Displ	Curve	Color 📕
	Reset Def	ault Colors	
	Update Plot	Set Axis I	abels and Range
			1

Gambar 5. 77 Parameter analisis Pushover Metode FEMA 356

Pada Gambar 5.77, parameter diambil berdasarkan Tabel 3-1 FEMA 356, digunakan nilai R = 14.715 karena ada koreksi ordinat dan faktor keutamaan gempa (I_e) = 1.5, dan Characteristic Period of Respon Spectrum (Ts) ditentukan 0,2 detik, sedangkan diperoleh nilai Cm = 0,9 untuk tipe bangunan CMF (concrete moment frame) 3 lantai, dari Tabel 3-3 FEMA 356 diperoleh nilai C2 = 1,0untuk bangunan dengan level performance immediate occupancy (IO) dan nilai C3 = 1,0 diambil berdasarkan pertimbangan engineering judgement, dimana perilaku hubungan gaya geser dasar-lendutan pada kondisi pasca leleh kekakuannya positif (kurva meningkat). Kurva pushover serta titik kinerja (performance point) dari hasil analisis dengan metode koefisien perpindahan (FEMA 356) yang dihasilkan program SAP2000 untuk pembebanan arah-X dan pembebanan arah-Y dapat dilihat pada Gambar 5.78 dan Gambar 5.79.

Gambar 5. 78 Kurva pushover Metode FEMA 356 akibat beban lateral arah-X

Gambar 5. 79 Kurva *pushover* Metode FEMA 356 akibat beban lateral arah-Y

Dari Gambar 5.78 dan Gambar 5.79 dapat dilihat kurva *pushover* berdasarkan metode FEMA 356 (2000) dengan *target displacement* akibat pembebanan arah-X dan pembebanan arah-Y pada Tabel 5.41 sebagai berikut.

Arah Beban Pushover	Gava geser	Target Perpindahan (FEMA 356)			
	$\frac{\text{dasar}(V_l)}{(\text{kN})}$	V_t	δ_t		
		(k N)	(m)		
X	26299.665	10677.004	0.141		
Y	22604.671	8785.095	0.200		

Tabel 5. 41 Target perpindahan dengan metode FEMA 356

Dari Tabel 5.41 dapat dilihat besarnya nilai gaya geser dasar akibat beban laretal arah X sebesar V_t = 10677.004 kN < V_I = 26299.665 kN dan akibat beban laretal arah Y V_t = 8785.095 kN < V_I = 22604.671 kN. Maka berdasarkan metode Koefisien perpindahan (FEMA 356, 2000) perilaku struktur X dan arah Y pada gempa rencana masih dalam dalam kondisi elastis. Menurut SNI 03-1726-2012 Pasal 12.6.4.4 bahwa batasan maksimum simpangan (δu) adalah 0.02 H = 0.02 x 20.57 m = 0.4114 m. *Displacement atap* (δt) hasil analisis *pushover* akibat beban lateral arah X adalah sebesar 0,141 m < 0,4114 m dan akibat beban lateral arah Y sebesar 0,200 m < 0,4114 m, sehingga struktur tersebut memenuhi syarat keamanan.

Berdasarkan Tabel 5.41 juga dapat diketahui level kinerja bangunan dengan melihat batasan rasio *drift* atap yang dievaluasi pada *performance point*, dengan parameter yang ditinjau adalah maksimum total *drfit*. Dari hasil maksimum total drift, akan dikoreksi pada batasan *ratio drift* atap menurut FEMA 356 (2000).

1) Arah X

Drift maksimum akibat beban lateral arah X $= \frac{0.141}{20.57} = 0,00685$ Level kinerja gedung adalah *Immediate Occupancy* (IO).

2) Arah Y

Drift maksimum akibat beban lateral arah Y $=\frac{0.200}{20.57} = 0,00972$ Level kinerja gedung adalah *Immediate Occupancy* (IO).

Dengan bantuan kurva hasil analisa *pushover* berdasarkan Koefisien perpindahan FEMA 356, dapat memperhitungkan waktu getar alami dalam kondisi in-elastis atau waktu getar efektif (T_e). Nilai getar alami awal elastis (T_i) 189 dan kekakuan awal bangunan pada arah yang ditinjau (K_i), kekakuan lateral efektif bangunan (K_e), kondisi inelastis (αK_e) dan waktu getar alami efektif (T_e). Hasil analisis *pushover* dengan metode Koefisien Perpindahan FEMA 356 pada pembebanan *pushover* arah-X dan arah-Y dapat dilihat pada Tabel 5.42, Gambar 5.80 dan Gambar 5.81 berikut.

Tabel 5. 42 Nilai waktu getar alami efektif dengan metode Koefisien PerpindahanFEMA 356

Arah Pembebanan Pushover	Ti (det)	Ki (kN/m)	Ke (kN/m)	α _k K _e
arah-X	0.5211	200042.62	191369.7	0.161
arah-Y	0.6251	132302	122366.85	0.117

Selanjutnya, nilai getar waktu alami efektif (T_e) dan kondisi inelastis (αK_e) dihitung sebagai berikut.

1) Arah-X

$$T_e = 0.5211 \sqrt{\frac{200042.62}{191369.7}} = 0.5328 \text{ detik}$$
$$Kp = \frac{(Vt - Vy)}{(\delta t - \delta y)} = \frac{(10677.004 - 7559.00)}{(0.141 - 0.04)} = 30871.33 \text{ kN/m}$$
$$\alpha_k = \frac{Kp}{Ke} = \frac{30871.33}{191369.7} = 0,161$$

2) Arah-Y

$$T_e = 0.6251 \sqrt{\frac{132302.00}{122366.85}} = 0.6499 \text{ detik}$$
$$Kp = \frac{(Vt - Vy)}{(\delta t - \delta y)} = \frac{(8785.095 - 7044)}{(0,200 - 0,078)} = 14271.27 \text{ kN/m}$$
$$\alpha_k = \frac{Kp}{Ke} = \frac{14271.27}{122366.85} = 0,117$$

Gambar 5. 80 Parameter waktu getar alami efektif dari kurva *pushover* pada pembebananan arah-X

Gambar 5. 81 Parameter waktu getar alami efektif dari kurva *pushover* pada pembebananan arah-Y

5.3.3.4 Hasil Pushover Dengan Menggunakan Beban SNI 1726-2012 - Fiber

1. Kurva Kapasitas

Kurva kapasitas (*capacity curve*) menunjukkan hubungan antara perpindahan lateral pada titik kontrol dan gaya geser dasar oleh peningkatan beban statik sampai pada kondisi ultimit atau target peralihan yang diharapkan. Kurva berbentuk nonlinier yang menunjukkan peningkatan beban pasca-elastik sampai dengan kondisi plastis. Kurva kapasitas dapat disebut juga dengan kurva *pushover*. Kurva yang terlihat pada Gambar 5.82 dan Gambar 5.83 berbentuk nonlinier akibat peningkatan beban yang mengakibatkan elemen struktur bangunan berubah dari kondisi elastik menjadi kondisi plastis. Nilai perpindahan dan gaya geser dasar dapat diketahui dari data kurva kapasitas dalam Tabel 5.43.

Gambar 5.82 Kurva kapasitas arah-X SNI 1726-2012 - Fiber

Gambar 5. 83 Kurva kapasitas arah-Y SNI 1726-2012 - Fiber

Pada Gambar 5.82 pushover pada pembebanan arah-X SNI 1726-2012 dengan menggunakan fiber, analisis berhenti pada langkah (*step*) 31, yaitu pada saat perpindahan titik kontrol sebesar 0,318 m dan gaya geser dasar sebesar 22638.835 kN. Pada Gambar 5.83 pushover pada pembebanan arah-Y SNI 1726-2012 dengan menggunakan fiber, analisis berhenti pada langkah (*step*) 6, yaitu pada saat perpindahan titik kontrol sebesar 0,222 m dan gaya geser dasar sebesar 14095.283 kN.

Analisis pada SNI 1726-2012 tidak dapat dilanjutkan lagi untuk mencapai kontrol perpindahan (δk) yang ditentukan, yaitu sebesar 0,62 m. Hal ini terjadi karena telah terlampauinya kapasitas deformasi pada tiap elemen struktur yang sebelumnya telah didefinisikan pada properti sendi plastis. Perbandingan kurva *pushover* pada arah-X dan arah-Y dapat dilihat pada Gambar 5.84 dan Gambar 5.85.

Gambar 5. 84 Kurva kapasitas pushover arah-X (SNI 1726-2012) – Fiber

Dari Gambar 5.84 dan Gambar 5.85 dapat dilihat perbandingan kurva kapasitas pushover arah X lebih besar dari kapasitas pushover arah Y hal ini disebabkan karena kekuatan maupun kekakuan arah X relatif lebih kaku karena ukuran kolom arah X relatif lebih besar dari kebutuhan yang diperlukan.

Tabel 5. 43 Data Pushover Curve arah-X dan arah-Y (SNI 1726-2012) - Fiber

Arah-X

Arah-Y

Ston	Displacement	BaseForce		
Step	m	KN		
0	-0.000067	0		
1	0.015407	2064.054		
2	0.077677	9271.19		
3	0.148876	15997.984		
4	0.205792	19751.057		
5	0.245781	21277.905		
6	0.252421	21446.122		
7	0.252422	21446.158		
8	0.252543	21449.142		
9	0.29184	22088.278		
10	0.291844	22088.305		
11	0.291957	22089.869		
12	0.296633	22115.354		
13	0.296691	22115.506		
14	0.296933	22116.513		
15	0.296932	22116.514		
16	0.296966	22118.789		
17	0.296981	22119.194		
18	0.296996	22119.413		
19	0.297123	22119.9		
20	0.297122	22119.902		
21	0.297134	22120.956		
22	0.297226	22123.766		
23	0.305506	22270.638		
24	0.305862	22274.244		
25	0.305869	22274.255		
26	0.30587	22274.257		
27	0.306161	22276.246		
28	0.306159	22276.257		
29	0.306182	22277.728		
30	0.318427	22638.102		
31	0.318503	22638.835		

Stop	Displacement	BaseForce
Step	m	KN
0	0.000478	0
1	0.031059	2700.309
2	0.094513	7615.275
3	0.166276	11884.29
4	0.222642	14095.201
5	0.222642	14095.201
6	0.222644	14095.283

2. Titik Kinerja Metode Spektrum Kapasitas (ATC-40)

Analisis *static non-linier (pushover)* dilakukan dengan metode spektrum kapasitas (*capacity spectrum method*) sesuai prosedur B dokumen ATC 40 (1996). Dalam penelitian ini, proses analisis pushover dilakukan dengan bantuan program SAP 2000 yang menghasilkan hubungan gaya geser dasar dan perpindahan dan kemudian dikonversi ke dalam bentuk Spektrum kapasitas dengan format ADRS (*acceleration displacement response spectrum*), yaitu dalam hubungan Sa dan Sd. Parameter spektrum respon yang digunakan sebagai *seismic demand* oleh program SAP2000 juga dikonversi ke dalam format ADRS sebagai *spectrum demand*.

Parameter-parameter yang berpengaruh sesuai dengan kondisi tanah dilokasi bangunan didirikan dipengaruhi oleh fungsi keutamaan gedung. Nilai skala faktor yang dimasukkan kedalam parameter respon spektrum ATC-40 yang digunakan untuk koreksi ordinat spektrum respon adalah sebesar 9,81 di kalikan dengan faktor skala yang merupakan hasil pembagian antara faktor keutamaan bangunan (I) dengan nilai daktilitas bangunan (R) dan dikalikan dengan percepatan gravitasi (g) yang digunakan untuk koreksi ordinat spektrum respon sebesar $\frac{I}{R}g = \frac{1.5}{1}$ 9.81 = 14.715. Untuk tipe perilaku struktur ditentukan sesuai Tabel 8-4 ATC-40 dimana struktur tipe B merupakan struktur dengan kondisi eksisting sedang (*average*) dan durasi goyangan struktur (*shaking ground*) yang pendek (*short*). Modifikasi parameter spektrum kapasitas ATC-40 sesuai SNI 1726-2012 dapat dilihat pada Gambar 5.86.

Sedangkan titik kinerja (*performance point*) yang terlihat pada kurva kapasitas ATC-40 di Gambar 5.87 dan Gambar 5.88 merupakan titik pertemuan antara kurva kapasitas dengan kurva *demand*. Dengan demikian titik tersebut menunjukkan besar kapasitas struktur dapat memenuhi *demand* berupa beban gempa sesuai SNI 1726-2012. Nilai *performance point*, waktu getar alami efektif, dan redaman viskous efektif, berdasarkan metode ATC-40 dapat dilihat dalam Tabel 5.44.

Pushover Parame	ters Name		Units
Name 🛛	KN, m, C 💌		
Plot Axes		Axis	_abels and Range
Ga→Sd C C	Sa·T C Sd·T		Set Axis Data
Demand Spectrur	n Definition		
Function	RS TANAH SEE	DANG 💌	SF 14.715
C User Coeffs	Ca		Cv 🔽
Damping Paramet	ers Definition		
Inherent + Additi	ional Damping		0.05
Structural Behav	vior Type		
CA @	B C C	C User	Modify/Show
Items Visible On F	'lot		
🔽 Show Capac	city Curve		Color
🔽 Show Family	of Demand Spectra		Color
	atios		
Damping R			
Damping R 0.05	0.095	0.05	0.05
Damping R 0.05 V Show Single (Varial	0.095 Demand Spectrum (ble Damping)	0.05 ADRS)	Color
Damping R 0.05 V Show Single (Varial	0.095 Demand Spectrum (ble Damping) tant Period Lines at	0.05 ADRS)	0.05 Color Color
Damping R 0.05 Show Single (Varial Show Const 0.5	0.095 Demand Spectrum (ble Damping) tant Period Lines at 1.	0.05 ADRS)	0.05 Color Color Color 2.
Damping R 0.05 Show Single Varial Show Const 0.5	0.095 Demand Spectrum (ble Damping) tant Period Lines at 1. Reset D	0.05 ADRS) 1.5 efault Colors	0.05 Color Color [2.

Gambar 5.86 Modifikasi parameter spektrum kapasitas ATC-40

Gambar 5. 87 Kurva *pushover* dan titik kinerja pembebanan arah-X dengan metode spektrum kapasitas ATC-40 dengan menggunakan spektrum respon SNI 1726-2012-fiber

Gambar 5. 88 Kurva *pushover* dan titik kinerja pembebanan arah-Y dengan metode spektrum kapasitas ATC-40 dengan menggunakan spektrum respon SNI 1726-2012-fiber

Tabel 5.	44 <i>Performance</i>	<i>point</i> dengan	metode ATC-40	(SNI 1726-2012-fiber)
				· · · · · · · · · · · · · · · · · · ·

	Gaya	Performance Point					
Arah Beban Lateral	geser dasar (V ₁) (kN)	V _t (kN)	δ_t (m)	Sa	Sd	Teff	$m{eta}_{e\!f\!f}$
Х	23429.013	17942.91	0.178	0.835	0.103	0.704	0.092
Y	19536.774	13986.162	0.220	0.647	0.119	0.859	0.111

Dari Tabel 5.44 dapat dilihat besarnya nilai gaya geser dasar akibat beban laretal arah X sebesar $V_t = 17942.91$ kN $< V_1 = 23429.013$ kN dan akibat beban laretal arah Y $V_t = 13986.162$ kN $< V_1 = 19536.774$ kN. Berdasarkan metode spektrum kapasitas (ATC 40, 1996) perilaku struktur X dan arah Y pada gempa rencana masih dalam kondisi elastis. Menurut SNI 03-1726-2012 Pasal 12.6.4.4 bahwa batasan maksimum simpangan (δu) adalah 0,02 H = 0,02 x 20,57 m = 0.4114 m. D*isplacement atap* (δt) hasil analisis *pushover* akibat beban lateral arah X adalah sebesar 0,178 m < 0,4114 m dan akibat beban lateral arah Y sebesar 0,22 m < 0,4114 m, sehingga struktur tersebut memenuhi syarat keamanan. Berdasarkan Tabel 5.44 dapat diketahui level kinerja bangunan dengan melihat batasan rasio *drift* atap yang dievaluasi pada *performance point*, dengan parameter yang ditinjau adalah maksimum total *drfit*. Dari hasil maksimum total drift, akan dikoreksi pada batasan *ratio drift* atap menurut ATC 40 (1996) pada Tabel 3.4.

a) Arah X

Drift maksimum akibat beban lateral arah X $=\frac{0.178}{20.57} = 0.00865$ Level kinerja gedung adalah *Immediate Occupancy* (IO). *Drift* inelastik maksimum arah X $=\frac{(0,178-0,015407)}{20.57} = 0,007904$ Level kinerja gedung *nonlinier* adalah *Damage Control*.

b) Arah Y

Drift maksimum akibat beban lateral arah Y $=\frac{0.22}{20.57}=0.01069$ Level kinerja gedung adalah *Damage Control. Drift* inelastik maksimum arah Y $=\frac{(0,22-0,031059)}{20.57}=0,009185$ Level kinerja gedung *nonlinier* adalah *Damage Control.*

Berdasarkan batasan *ratio drift* atap menurut ATC 40 (1996), hasil hitungan diatas menunjukkan bahwa struktur gedung Fakultas Teknik Industri Universitas Atma Jaya Yogyakarta untuk arah-X termasuk didalam level kinerja *Immadiate Occupancy* (IO), sedangkan untuk arah Y termasuk kedalam level *Damage Control* karena nilai *Drift* maksumum akibat beban lateral kurang dari 0,02. Batasan *drift ratio* inelastik untuk arah X termasuk kedalam level kinerja *Damage Control*, sedangkan untuk arah Y termasuk kedalam level kinerja *Damage Control*, sedangkan untuk arah Y termasuk kedalam level kinerja *Damage Control*, sedangkan untuk arah Y termasuk kedalam level kinerja *Damage Control*, sedangkan untuk arah Y termasuk kedalam level *Damage Control* karena nilai *Drift* inelastik maksimum akibat beban lateral lebih besar dari 0,005. . Hal ini menunjukan bahwa apabila gempa terjadi gedung akan mengalami beberapa kerusakkan kecil pada struktur, sehingga bangunan belum dapat beroperasi dan diperlukan beberapa perbaikan pada struktur yang mengalami kerusakan.

Gaya geser pada saat pelelehan pada struktur (Vy) dan simpangan saat terjadi pelelehan pada struktur (δ_y) pada pembebanan arah-X dan arah-Y dapat dilihat pada Gambar 5.89 dan Gambar 5.90.

Gambar 5. 89 Gaya geser dasar saat terjadi pelelehan pada truktur (Vy) pembebanan arah-X (SNI 1726-2012-fiber)

Gambar 5. 90 Gaya geser dasar saat terjadi pelelehan pada truktur (Vy) pembebanan arah-Y (SNI 1726-2012-fiber)

Selanjutnya hubungan gaya geser targer (*Vt*), target displacement (δ_t), Gaya geser pada saat pelelehan pada struktur (*Vy*) dan simpangan saat terjadi pelelehan pada struktur (δ_y) pada pembebanan arah-X dan arah-Y dapat dilihat pada Gambar 5.91.

Gambar 5. 91 Hubungan Vt, Vy, $\delta_t \operatorname{dan} \delta_y$ (SNI 1726-2012-fiber)

Berdasarkan cara menentukan redaman viskous, maka nilai daktilitas struktur (μ) dan redaman viskous ekuivalen (ξ) menurut NZNSEE (1996) didapatkan secara automatis didalam SAP2000 nilai redaman (ξ) pada pembebanan arah-X adalah sebesar 9.2 % dan arah Y adalah sebesar 11.1 % dapat dilihat pada Gambar 5.87, Gambar 5.88 dan nilai daktalitas dan redaman dapat dilihat pada Tabel 5.45.

Tabel 5. 45 Daktilitas struktur (μ) dan redaman (ξ) menurut NZNSEE (1996)

Arah	Vt	Vy	δt	δy		
Pembebanan					μ	ξ(%)
Pushover	(kN)	(kN)	(m)	(m)		
arah-x	17942.910	11324.21	0.178	0.09	1.9778	9.2
arah-y	13986.162	10482.39	0.220	0.125	1.7600	11.1

Pada Gambar 5.91 dan Tabel 5.45 dapat dilihat displacement untuk arah X lebih kecil dari arah Y tetapi memiliki daktalitas sangat besar hal ini dikarenakan kekuatan maupun kekakuan struktur arah X lebih besar dari arah Y serta jarak portal 4.8 m dan ukuran kolom arah X relatif besar dari kebutuhan yang diperlukan.

3. Titik Kinerja Metode Koefisien Perpindahan (FEMA 356)

Analisis *pushover* dalam FEMA 356 menggunakan metode koefisien perpindahan dengan memodifikasi respons elastik linier dari sistem SDOF ekivalen. Faktor koefisien yang dimodifikasi yaitu C_0 , C_1 , C_2 , dan C_3 yang
kemudian dihitung untuk mendapatkan target perpindahan, δ_T , baik dalam kondisi elastis maunpun inelastis. Metode koefisien perpindahan sudah di *built in* di dalam program SAP2000.

Asumsi yang digunakan adalah gaya geser gedung memakai tipe *uniform load pattern* dan gedung direncanakan berdasarkan tingkat kinerja struktur *Immediate Occupancy* (IO). Parameter untuk metode FEMA 356 (2000) yang digunakan adalah seperti yang disajikan dalam Gambar 5.92.

rameters For FEMA 356 Coefficient N	Method
Pushover Parameters Name Name F356P01	Units KN, m, C
Demand Spectrum Definition	
Effective Viscous Damping (0 < Da	mp < 1) 0.05
Defined Function	RS TANAH SEDANG
Scale Factor	14.715
Characteristic Period of Resp S	ipec, Ts 0.2
C FEMA 356 General Response Sp	pectrum
Mapped Spectral Accel at Sho	rt Period, Ss
Mapped Spectral Accel at 1 Se	ec Period, S1
Site Class	
Selected Coefficients	
User Value for C2	1.
User Value for C3	1.
🔽 User Value for Cm	0.9
Items Visible On Plot	
🔽 Show Capacity Curve	Color
Show Idealized Bilinear Force-Dis	spl Curve Color 💻
Reset [efault Colors
Update Plot	Set Axis Labels and Range
ОК	Cancel

Gambar 5. 92 Parameter analisis Pushover Metode FEMA 356

Pada Gambar 5.92, parameter diambil berdasarkan Tabel 3-1 FEMA 356, digunakan nilai R = 14.715 karena ada koreksi ordinat dan faktor keutamaan gempa (I_e) = 1.5, dan *Characteristic Period of Respon Spectrum* (*Ts*) ditentukan 0,2 detik, sedangkan diperoleh nilai Cm = 0,9 untuk tipe bangunan CMF (*concrete moment frame*) > 3 lantai, dari Tabel 3-3 FEMA 356 diperoleh nilai C2 = 1,0untuk bangunan dengan level performance *immediate occupancy* (IO) dan nilai C3 = 1,0 diambil berdasarkan pertimbangan engineering judgement, dimana perilaku hubungan gaya geser dasar-lendutan pada kondisi pasca leleh kekakuannya positif (kurva meningkat). Kurva *pushover* serta titik kinerja 202 (*performance* point) dari hasil analisis dengan metode koefisien perpindahan (FEMA 356) yang dihasilkan program SAP2000 untuk pembebanan arah-X dan pembebanan arah-Y dapat dilihat pada Gambar 5.93 dan Gambar 5.94.

Gambar 5. 93 Kurva pushover Metode FEMA 356 akibat beban lateral arah-X

Gambar 5. 94 Kurva pushover Metode FEMA 356 akibat beban lateral arah-Y

Dari Gambar 5.93 dan Gambar 5.94 dapat dilihat kurva *pushover* berdasarkan metode FEMA 356 (2000) dengan *target displacement* akibat pembebanan arah-X dan pembebanan arah-Y pada Tabel 5.46.

Arah Reban	Gaya geser	Target Perpindahan (FEMA 356)	
Pushover	dasar (V_1) (kN)	V_t	δ_t
		(kN)	(m)
X	23429.013	18700.99	0.190
Y	19536.774	14095.28	0.231

Tabel 5. 46 Target perpindahan dengan metode FEMA 356

Dari Tabel 5.46 dapat dilihat besarnya nilai gaya geser dasar akibat beban laretal arah X sebesar $V_t = 18700.99$ kN $< V_1 = 23429.013$ kN dan akibat beban laretal arah Y $V_t = 14095.28$ kN $< V_1 = 19536.774$ kN. Maka berdasarkan metode Koefisien perpindahan (FEMA 356, 2000) perilaku struktur X dan arah Y pada gempa rencana masih dalam dalam kondisi elastis. Menurut SNI 03-1726-2012 Pasal 12.6.4.4 bahwa batasan maksimum simpangan (δu) adalah 0.02 H = 0.02 x 20.57 m = 0.4114 m. *Displacement atap* (δt) hasil analisis *pushover* akibat beban lateral arah X adalah sebesar 0,190 m < 0,4114 m dan akibat beban lateral arah Y sebesar 0,231 m < 0,4114 m, sehingga struktur tersebut memenuhi syarat keamanan.

Berdasarkan Tabel 5.46 juga dapat diketahui level kinerja bangunan dengan melihat batasan rasio *drift* atap yang dievaluasi pada *performance point*, dengan parameter yang ditinjau adalah maksimum total *drfit*. Dari hasil maksimum total drift, akan dikoreksi pada batasan *ratio drift* atap menurut FEMA 356 (2000).

1) Arah X

Drift maksimum akibat beban lateral arah X $=\frac{0,190}{20.57}=0,00923$ Level kinerja gedung adalah *Immediate Occupancy* (IO).

2) Arah Y

Drift maksimum akibat beban lateral arah Y $=\frac{0.231}{20.57} = 0,01123$ Level kinerja gedung adalah *Life Safety* (LS). Dengan bantuan kurva hasil analisa *pushover* berdasarkan Koefisien perpindahan FEMA 356, dapat memperhitungkan waktu getar alami dalam kondisi in-elastis atau waktu getar efektif (T_e). Nilai getar alami awal elastis (T_i) dan kekakuan awal bangunan pada arah yang ditinjau (K_i), kekakuan lateral efektif bangunan (K_e), dan waktu getar alami efektif (T_e). Hasil analisis *pushover* dengan metode Koefisien Perpindahan FEMA 356 pada pembebanan *pushover* arah-X dan arah-Y dapat dilihat pada Tabel 5.47, Gambar 5.95 dan Gambar 5.96.

Tabel 5. 47 Nilai waktu getar alami efektif dengan metode Koefisien PerpindahanFEMA 356

Arah Pembebanan Pushover	Ti (det)	Ki (kN/m)	Ke (kN/m)	α _k K _e
arah-X	0.7286	86941.33	82756.88	0.891381
arah-Y	0.6119	133966.92	120950.95	0.281799

Selanjutnya, nilai getar waktu alami efektif (T_e) dan kondisi inelastis (αK_e) dihitung sebagai berikut.

1) Arah-X

$$T_e = 0.7286 \sqrt{\frac{86941.33}{82756.88}} = 0.7467 \text{ detik}$$
$$Kp = \frac{(Vt - Vy)}{(\delta t - \delta y)} = \frac{(18700.997 - 11324.21)}{(0,190 - 0,09)} = 73767.87 \text{ kN/m}$$
$$\alpha_k = \frac{Kp}{Ke} = \frac{73767.87}{82756.88} = 0.891381$$

2) Arah-Y

$$T_e = 0.6119 \sqrt{\frac{133966.92}{120950.95}} = 0.6439 \text{ detik}$$
$$Kp = \frac{(Vt - Vy)}{(\delta t - \delta y)} = \frac{(14095.283 - 10482.39)}{(0.231 - 0.125)} = 34083.8962 \text{ kN/m}$$
$$\alpha_k = \frac{Kp}{Ke} = \frac{34083.8962}{120950.95} = 0.281799$$

Gambar 5. 95 Parameter waktu getar alami efektif dari kurva *pushover* pada pembebananan arah-X (SNI 1726-2012-fiber)

Gambar 5. 96 Parameter waktu getar alami efektif dari kurva *pushover* pada pembebananan arah-Y (SNI 1726-2012-fiber)

5.3.3.5 Perbandingan Hasil Analisis

Perbandingan hasil analisis kurva kapasitas dari pembebanan SNI 1726-2012, SNI 1726-2002, beban seragam dan SNI 1726-2012 menggunakan fiber dapat dilihat pada Gambar 5.97 dan Gambar 5.98.

Gambar 5. 97 Perbandingan kurva kapasitas pembebanan Pushover arah-X

Dari Gambar 5.97 dan Gambar 5.98 menunjukan kekuatan struktur untuk arah X lebih besar daripada arah Y.

Perbandingan hasil analisis dengan Metode ATC-40 dan Metode FEMA 356 dari SNI 1726-2012, SNI 1726-2002, BEBAN SERAGAM dan SNI 1726-2012 dengan menggunakan *fiber* dapat dilihat pada Tabel 5.48 sampai Tabel. 5.51.

Jenis	s $ATC-40$ s $Arah-X$ anan V_t δ_t		Keterangan Level
Pembebanan			Kinerja
	(kN)	(m)	
SNI 1726-2012	9567.606	0.210	Immediate occupancy
SNI 1726-2002	6324.030	0.073	Immediate occupancy
B.Seragam	11616.716	0.171	Immediate occupancy
SNI 1726-2012 (fiber)	17942.910	0.178	Immediate occupancy

Tabel 5. 48 Perbandingan titik kinerja hasil analisis pushover dengan MetodeATC-40 (1996) arah-X

Tabel 5. 49 Perbandingan titik kinerja hasil analisis *pushover* dengan MetodeATC-40 (1996) arah-Y

Jenis	ATC-40 Arah-Y		Keterangan Level
Pembebanan	V_t δ_t		Kinerja
	(kN)	(m)	
SNI 1726-2012	8069.602	0.284	Damage control
SNI 1726-2002	4906.994	0.102	Immediate occupancy
B.Seragam	9634.405	0.235	Damage control
SNI 1726-2012 (fiber)	13986.162	0.220	Damage control

Tabel 5. 50 Perbandingan titik kinerja hasil analisis *pushover* dengan MetodeFEMA 356 (2000) Arah-X

Jenis	is FEMA 356		Keterangan Level
Pembebanan	V_t δ_t		Kinerja
	(kN)	(m)	
SNI 1726-2012	8866.504	0.177	Immediate occupancy
SNI 1726-2002	6257.936	0.070	Immediate occupancy
B.Seragam	10677.004	0.141	Immediate occupancy
SNI 1726-2012 (fiber)	18700.997	0.190	Immediate occupancy

Jenis	FEMA 356 Arah-Y		Keterangan Level
Pembebanan	V_t δ_t		Kinerja
	(kN)	(m)	
SNI 1726-2012	7155.941	0.232	Life safety
SNI 1726-2002	4997.493	0.106	Immediate occupancy
B.Seragam	8785.095	0.200	Immediate occupancy
SNI 1726-2012 (fiber)	14095.283	0.231	Life safety

Tabel 5. 51 Perbandingan titik kinerja hasil analisis pushover dengan MetodeFEMA 356 (2000) Arah-Y

Pada Gambar 5.97 dan Gambar 5.98 terlihat bahwa kurva kapasitas pada pembebanan SNI 1726-2012 dengan menggunakan *fiber* memiliki kapasitas yang paling besar dibandingkan pembebanan auto, hal ini disebabkan karena fiber menggunakan pembagian pias-pias pada kolom dan balok yang sangat banyak sehingga kurva kapasitas yang dihasilkan lebih lebih halus dan detail. Kemudian pada Tabel 5.48 dan Tabel 5.49 berdasarkan ATC-40 nilai simpangan terbesar yaitu pada pembebanan SNI 1726-2012 arah Y dengan simpangan 0.284 m, dari hasil analisis pada masing-masing pembebanan didapatkan arah Y dengan pembebanan SNI 1726-2012, B.Seragam, SNI 1726-2012 (*fiber*) memiliki level kinerja *damage control* sedangkan arah X semua pembebanan memiliki level kinerja *Immediate Occupancy*.

Pada Tabel 5.50 dan Tabel 5.51 berdasarkan FEMA 356 nilai simpangan terbesar yaitu pada pembebanan SNI 1726-2012 pada arah Y dengan simpangan 0.232 m, dari hasil analisis pada masing-masing pembebanan didapatkan arah Y dengan pembebanan SNI 1726-2012, SNI 1726-2012 (*fiber*) memiliki level kinerja *Life Safety* sedangkan arah X semua pembebanan memiliki level kinerja *Immediate Occupancy*.

5.3.4 Analisis Statik *Pushover* dengan Cara Manual

Untuk mengecek nilai *Performance Point* dari hasil analisis SAP2000 apakah sudah sesuai dengan teori, maka dilakukan analisis *pushover* dengan cara manual yaitu sesuai dengan metode ATC 40. Pada pengecekan hitungan ini di cek analisis *pushover* arah X dan arah Y. Analisis manual *pushover* dijelaskan dengan langkah-langkah sebagai berikut.

5.3.4.1 Analisis Statik Pushover dengan Cara Manual Arah X

1) Menghitung Modal Effective Mass dan Modal Participation Factor

Berdasarkan data bangunan yang didapatkan nilai berat bangunan, massa dan untuk nilai *mode shape* dicari dengan bantuan program MATLAB sehingga didapatkan hasil pada Tabel 5.52 dan hasil capacity curve dari Sap2000 ditampilkan pada Gambar 5.99.

Gambar 5. 99 Capacity curve

Tabel 5. 52 Berat Bangunan, Massa dan Mode Shape Bangunan FTI UAJY

No	Lantai	W(ton)	m (kg.dt ² /m)	φ	φ^2	m x φ	$m x \varphi^2$
1	atap	73.4851	74.9083164	1.532623993	2.3489363	114.806283	175.9549
2	Lantai 4	170.986	174.297248	1.471387888	2.1649823	256.458859	377.3505
3	Lantai 3	170.986	174.297248	1.352223797	1.8285092	235.688886	318.7041
4	Lantai 2	170.986	174.297248	1.20983725	1.4637062	210.871303	255.12
5	Lantai 1	170.986	174.297248	1	1	174.297248	174.2972
	jumlah	757.427	772.097307	6.566072927	8.806134	992.122579	1301.427

$$\Sigma$$
{m_i.} = 772.097307 kg.dt²/m

$$\Sigma{\{m_i.\phi_i\}}^2 = (992.122579)^2$$

 $= 984307.211 \text{ kg.dt}^2/\text{m}$

$$\Sigma{m_i.\phi^2} = 1301.427 \text{ kg.dt}^2/m$$

Persentase Modal Effective Mass untuk mode ke-1:

$$\alpha_1 = \frac{\sum (\text{mi.}\phi\text{i1})^2}{\sum (\text{mi.}\phi\text{i1}^2)\text{x}\sum \text{mi}} = \frac{984307.211}{1301.427\text{x}772.097307} = 0.97957$$

Modal Participation Factor untuk mode ke-1:

$$\Gamma_1 = \frac{\sum(\text{mi.}\phi\text{i}1)}{\sum(\text{mi.}\phi\text{i}1^2)} = 0.76233$$

2) Konversi Capacity Curve ke Capacity Spectrum (SA-SD)

Untuk menentukan nilai Transfer *Base Shear Coeff.* ke a_y dan Transfer *roof displacement*, data V_b/Wt dan D_r didapatkan dari grafik kurva kapasitas hasil analisis *pushover* SAP2000 pada Tabel 5.53 dan Tabel 5.54 berikut.

Tabel 5. 53 Transfer *Base Shear Coeff.* ke a_y

Vb	Vb/Wt	Vb (kg)	α1	(Vb/α)/Wt
Vby=	0.14	106039.8	0.979578	0.1429 /Wt
Vbu=	0.24	181782.6	0.979578	0.2450 /Wt

Tabel 5. 54 Transfer roof displacement

Dr(mm)	Γ ₁	φr	SD=D/($\Gamma_1.\phi_r$)
D _{ry} =	37	0.7623	1.53262	31.66798757
$D_{ru} =$	210	0.7623	1.53262	179.7372267

Dari Hasil Transfer *Base Shear Coeff.* ke a_y dan Transfer *roof displacement* didapatkan nilai *SD* dan *SA* dalam Tabel 5.55 sebagai berikut.

Tabel 5. 55 Nilai SD dan SA

Titik	SD	SA
а	0	0
b	31.668	0.143
С	179.737	0.245

Dari data di atas bisa didapatkan grafik pada Gambar 5.100 sebagai berikut.

Gambar 5. 100 Transfer capacity curve SA- SD curve

Dari Gambar 5.100 diperoleh Persamaan garis bagian a-b adalah:

$$SA^* = \frac{Ay}{Dy}SD$$
$$SA^* = \frac{0.14292}{31.667987}.SD = 0.004513.SD$$

Persamaan garis bagian b-c dicari dengan 2 tahap, pertama menghitung slope, sl:

$$sl = \frac{(0.245 - 0.14292)}{(179.737 - 31.668)}SD = 0,00068944.SD$$

pada saat Sd=dy = 31.668 maka SA* = 0,00068944 (31.668) = 0,02183, sehingga titik c = (0,14292 - 0,02183) = 0,12109. Dengan demikian persamaan garis b-c menjadi:

SA * = 0,00068944.SD + 0,12109

3) Transfer Spectrum Response ke SD-SA Spectrum Demand

Lokasi : Babarsari, Yogyakarta Jenis Tanah : Tanah Sedang T = 0,5613 detik $S_a = 0,823$

$$S_{d} = \frac{S_{a}}{\left(\frac{2\pi}{T}\right)^{2}} = \frac{0.823.(9810)}{\left(\frac{2\pi}{0.5613}\right)^{2}} = 64.4456 \text{ mm}$$

Persamaan pada bagian lengkung :

$$T = 0,8613 \text{ detik}$$

$$S_a^* = 0,5557$$

$$S_d = \frac{S_a}{\left(\frac{2\pi}{T}\right)^2} = \frac{0,5557.(9810)}{\left(\frac{2\pi}{0,8613}\right)^2} = 102.563 \text{ mm}$$

$$C = S_a^* \cdot S_d = 0,5557 \cdot 102.563 = 56.998$$

$$S_a^* = 56.998/S_d$$

Dari Nilai S_a*, didapatkan nilai SD-SA *Spectrum demand* pada Tabel 5.56 dan Gambar 5.101 sebagai berikut.

Т	SA*	SD	С
0.0100	0.3290	0.00818	0
0.1123	0.8230	2.57782	0.31926
0.5614	0.8230	64.44562	0.01277
0.8614	0.5557	102.5632	0.00542
1.0000	0.4350	131.0310	0.00332
1.2000	0.3980	143.2123	0.00278
1.4000	0.3400	167.6426	0.00203
1.6000	0.2960	192.5624	0.00154
1.8000	0.2620	217.5514	0.00120
2.0000	0.2360	241.5190	0.00098

Tabel 5. 56 Tabel SD-SA Spectrum Demand

Gambar 5. 101 Transfer Respon spektrum ke SD-SA Spektrum demand

4) Menentukan Performance Point (Sd)

Titik kinerja (*Performance point*) adalah perpotongan antara *demand-spectra* dengan *capacity curve*. Untuk menentukan *performance point*, dilakukan beberapa kali iterasi sehingga diperoleh nilai Sd yang *converged*. Proses iterasi akan dijelaskan di bawah ini.

a) Iterasi 1

Prediksi garis b-c pada *capacity curve* akan membuat perpotongan dengan *curva spectra-demand*

Setelah didapatkan nilai $d_{pi} dan a_{pi}$ dapat dicari nilai β_0 .

$$\beta_0 \qquad = \frac{63,7 \left(a_y d_{pi} - d_y a_{pi} \right)}{a_{pi} d_{pi}} = 19.6118\% > 16,25\%$$

Dalam analisis ini, kestabilan histeretik struktur dianggap masuk kedalam kategori *intremediate* atau bangunan termasuk kedalam tipe A, sehingga diambil nilai *damping modification factor* K = 0.8.

Maka,
$$\beta_{eff} = K\beta_0 + 5 = \frac{63.7 K(a_y d_{pi} - d_y a_{pi})}{a_{pi} d_{pi}} + 5 = 24.6118$$

 $SRA = \frac{3.21 - 0.68.Ln(\beta eff)}{2.12} = 0.48670118$
 $SRV = \frac{2.31 - 0.41.Ln(\beta eff)}{1.65} = 0.72525906$

Sehingga didapatkan nilai Sa* reduce sebesar :

$$(SRA); Sa^* = SRA \ x \ 56.99848/Sd = 27.7412/Sd$$

 $(SRV); Sa^* = SRV \ x \ 56.99848/Sd = 41.3387/Sd$

Diambil nilai Sa* = 56.99848/Sd, dengan nilai Sa* akan dimasukan kedalam persamaan pada iterasi kedua.

b) Iterasi 2

$$\begin{array}{ll} 0,00068944.SD + 0,1210855 & = 41.33866/Sd \\ 0,00068944.SD + 0,1210855 - 41.33866 & = 0 \end{array}$$

$$1.Sd^2 + 175.629.SD - 59959.8 = 0$$

Didapat nilai Sd = 172.322 mm < 212.8265 mm \longrightarrow % sel = 40.504%

Untuk menentukan nilai sd selanjutnya, maka perhitungan proses iterasi dilakukan secara skematis yang hasilnya disajikan secara rinci dalam Tabel 5.57 sebagai berikut.

Iterasi	sdi	βeff	SRA	SRV	sd i+1	% sel	Keterangan
1	212.826541	24.611794	0.486701	0.725259	102.56322	110.2633	Not Coverged
2	212.826541	25.995133	0.469161	0.711671	172.32239	40.50415	Not Coverged
3	172.322387	26.06617	0.468286	0.710993	170.15416	2.168232	Not Coverged
4	170.154155	26.069714	0.468242	0.710959	170.04547	0.108683	Not Coverged
5	170.045472	26.06989	0.46824	0.710957	170.04006	0.005415	Not Coverged
6	170.040057	26.069899	0.46824	0.710957	170.03979	0.00027	CONVERGED

 Tabel 5. 57 Proses iterasi penentuan performance point

Berdasarkan hasil dari iterasi ke-6 maka didapatkan grafik Gambar 5.102 sebagai berikut.

Gambar 5. 102 Iterasi pada penentuan Performance Point

Setelah *converged* pada iterasi ke-6, maka didapatkan nilai $sd_i = 170.04$ mm, dengan demikian simpangan horisontal atap menjadi,

 $Y_{r,1} = sd \ x \ \Gamma_1 \ x \ \varphi_{r,1} = 170.04 \ x \ 0.7623 \ x \ 1.53262 = 198.67010 \ mm$

Global drift ratio menjadi,

Drift Ratio (DR) = $\frac{198.67010}{20,57 x (1000)} = 0,966\% < 1\%$

Batasan *ratio drift* atap menurut ATC 40 (1996) pada Tabel 3.4, hasil hitungan diatas menunjukkan bahwa struktur gedung FTI UAJY arah X termasuk didalam level kinerja *Immediate Occupancy* (IO).

5) Cara ke-2, Menentukan Performance Point (Sd)

Cara ke-2 yaitu dengan memperkirakan nilai Sd. Kemudian berturut-turut dihitung Sa*, βeff, SRA, SRV, Sd dan Sa* yang baru. Rumus-rumus yang dipakai tetap sama dengan rumus sebelumnya. Perhitungan kemudian ditabelkan sebagaimana pada Tabel 5.58 dan grafis Gambar 5.103.

Diketahui data sebelumnya :

 $Sa^* = 0.00068944$.SD + 0.121086

K = 0.8

 $a_y = 0.142918715$

dy = 31.66798757

 $Sa^* = 56.99847925$

Untuk mencari Sa* baru dilakukan dengan persamaan kuadrat

*Sa**.*SRV* = 40.4787188

 $0.00068944 \ .SD^2 + 0.121086 \ Sd - 40.4787188 = 0$

 $Sd \text{ baru} = \frac{-0.121086 \sqrt{0.121086^2 - 4.0.00068944.40.4787}}{2.0.00068944} = 169.9138$

Sd	Sa*	β0	βeff	SRA	SRV	Sd baru	Sa* (Demand Sp)
80	0.176240718	21.1524354	26.15244	0.46723	0.71017	169.9138	0.23823087
90	0.183135114	21.8380857	26.83809	0.45893	0.70374	168.8803	0.237518343
100	0.19002951	22.1883446	27.18834	0.45477	0.70052	168.361	0.237160267
110	0.196923906	22.313613	27.31361	0.45329	0.69938	168.1766	0.237033148
120	0.203818301	22.2851437	27.28514	0.45363	0.69964	168.2184	0.237061995
130	0.210712697	22.1504527	27.15045	0.45521	0.70087	168.4169	0.237198816
140	0.217607093	21.9420634	26.94206	0.45768	0.70278	168.7256	0.237411635
150	0.224501489	21.6827071	26.68271	0.46079	0.70518	169.1126	0.237678453
160	0.231395885	21.3885394	26.38854	0.46434	0.70794	169.5554	0.237983748
170	0.238290281	21.0711958	26.0712	0.46822	0.71095	170.0378	0.238316337
180	0.245184677	20.7391426	25.73914	0.47234	0.71413	170.5479	0.238668027
190	0.252079073	20.3985866	25.39859	0.47661	0.71744	171.0769	0.239032733
200	0.258973469	20.0541004	25.0541	0.48099	0.72083	171.6181	0.239405885
210	0.265867865	19.7090598	24.70906	0.48544	0.72428	172.1666	0.239784022
220	0.272762261	19.3659552	24.36596	0.48992	0.72775	172.7185	0.240164504
230	0.279656657	19.0266163	24.02662	0.49442	0.73124	173.2708	0.240545309

Tabel 5. 58 Proses Iterasi Cara 2

Gambar 5. 103 Proses Iterasi Sa*-Sd

Berdasarkan Tabel 5.58, maka simpangan horisontal atap menjadi,

 $Y_{r,1} = sd \ x \ \Gamma_1 \ x \ \varphi_{r,1} = 170 \ x \ 0.7623 \ x \ 1.53262 = 198.658345 \ mm$

Global drift ratio menjadi,

$$Drift \ Ratio \ (DR) = \frac{198.658345}{20,57 \ x \ (1000)} = 0,9657\% < 1\%$$

Batasan *ratio drift* atap menurut ATC 40 (1996) pada Tabel 3.4, hasil hitungan diatas menunjukkan bahwa struktur gedung FTI UAJY arah X termasuk didalam level kinerja *Immediate Occupancy* (**IO**).

Berdasarkan hitungan manual dan SAP2000 diketahui hasilnya sama yaitu *Immediate Occupancy* (IO).

5.3.4.2 Analisis Statik Pushover dengan Cara Manual Arah Y

1) Menghitung Modal Effective Mass dan Modal Participation Factor

Berdasarkan data bangunan yang didapatkan nilai berat bangunan, massa dan untuk nilai *mode shape* dicari dengan bantuan program MATLAB sehingga didapatkan hasil pada Tabel 5.59 hasil capacity curve dari Sap2000 ditampilkan pada Gambar 5.104.

Gambar 5. 104 Capacity curve

Tabel 5. 59 Berat Bangunan, Massa dan Mode Shape Bangunan FTI UAJY

No	Lantai	W(ton)	m (kg.dt ² /m)	φ	φ ²	m x φ	$m x \varphi^2$
1	atap	9.37708	9.55869758	2.823160927	7.9702376	26.9857415	76.18509
2	Lantai 4	87.1629	88.8510933	2.756153324	7.5963811	244.887236	674.9468
3	Lantai 3	87.1629	88.8510933	2.410134354	5.8087476	214.143072	516.1136
4	Lantai 2	87.1629	88.8510933	1.873834409	3.5112554	166.492236	311.9789
5	Lantai 1	87.1629	88.8510933	1	1	88.8510933	88.85109
	jumlah	358.0288	364.9630707	10.86328301	25.8866218	741.3593792	1668.0754

$$\begin{split} \Sigma\{m_i.\} &= 364.96307 \text{ kg.dt}^2/\text{m} \\ \Sigma\{m_i.\varphi_i\}^2 &= (741.3593792)^2 \\ &= 549613.7291 \text{ kg.dt}^2/\text{m} \\ \Sigma\{m_i.\varphi^2\} &= 1668.0754 \text{ kg.dt}^2/\text{m} \end{split}$$

Persentase Modal Effective Mass untuk mode ke-1:

$$\alpha_1 = \frac{\sum (\text{mi.}\phi\text{i}1)^2}{\sum (\text{mi.}\phi\text{i}1^2)\text{x}\sum \text{mi}} = \frac{549613.7291}{1668.0754\text{x}364.96307} = 0.90280295$$

Modal Participation Factor untuk mode ke-1:

$$\Gamma_1 = \frac{\sum(\min \phi i1)}{\sum(\min \phi i1^2)} = 0.44443997$$

2) Konversi Capacity Curve ke Capacity Spectrum (SA-SD)

Untuk menentukan nilai Transfer *Base Shear Coeff.* ke a_y dan Transfer *roof displacement*, data V_b/Wt dan D_r didapatkan dari grafik kurva kapasitas hasil analisis *pushover* SAP2000 pada Tabel 5.60 dan Tabel 5.61 berikut.

Tabel 5. 60 Transfer *Base Shear Coeff.* ke a_y

Vb	Vb/Wt	Vb (kg)	α1	(Vb/a)/Wt
$V_{by} =$	0.12	42963.45	0.902802952	0.13292 /Wt
$V_{bu} =$	0.21	75186.04	0.902802952	0.23261 /Wt

 Tabel 5. 61 Transfer roof displacement

Dr(mm)	Γ_1	φr	SD=D/($\Gamma_1.\phi_r$)
D _{ry} =	87	0.4444	2.82316	69.33787248
$D_{ru}=$	284	0.4444	2.82316	226.3443194

Dari Hasil Transfer *Base Shear Coeff.* ke a_y dan Transfer *roof displacement* didapatkan nilai *SD* dan *SA* dalam Tabel 5.62 sebagai berikut.

Tabel 5. 62 Nilai SD dan SA

Titik	SD	SA
a	0	0
b	69.3379	0.1329
c	226.344	0.2326

Dari data di atas bisa didapatkan grafik pada Gambar 5.105 sebagai berikut.

Gambar 5. 105 Transfer capacity curve SA- SD curve

Dari gambar 5.105 diperoleh Persamaan garis bagian a-b adalah:

$$SA^* = \frac{Ay}{Dy}SD$$
$$SA^* = \frac{0.13292}{69.33787248}.SD = 0.001917.SD$$

Persamaan garis bagian b-c dicari dengan 2 tahap, pertama menghitung slope, sl:

$$sl = \frac{(0.23261 - 0.13292)}{(226.344319 - 69.3378724)} SD = 0,0006349 .SD$$

pada saat Sd=dy = 69.33787 maka SA* = 0,0006349 (69.33787) = 0,04403, sehingga titik c = (0,13292 - 0,04403) = 0,08889. Dengan demikian persamaan garis b-c menjadi:

SA * = 0,0006349.SD + 0,08889

3) Transfer Spectrum Response ke SD-SA Spectrum Demand

Lokasi : Babarsari, Yogyakarta Jenis Tanah : Tanah Sedang T = 0,5613 detik $S_a = 0,823$

$$S_d = \frac{S_a}{\left(\frac{2\pi}{T}\right)^2} = \frac{0.823.(9810)}{\left(\frac{2\pi}{0.5613}\right)^2} = 64.4456 \text{ mm}$$

Persamaan pada bagian lengkung :

$$T = 0,8613 \text{ detik}$$

$$S_a^* = 0,5557$$

$$S_d = \frac{S_a}{\left(\frac{2\pi}{T}\right)^2} = \frac{0,5557.(9810)}{\left(\frac{2\pi}{0,8613}\right)^2} = 102.563 \text{ mm}$$

$$C = S_a^* \cdot S_d = 0,5557 \cdot 102.563 = 56.998$$

$$S_a^* = 56.998/S_d$$

Dari Nilai S_a*, didapatkan nilai SD-SA *Spectrum demand* pada Tabel 5.63 dan Gambar 5.106 sebagai berikut.

Т	SA*	SD	С	
0.0100	0.3290	0.00818	0	
0.1123	0.8230	2.57782	0.31926	
0.5614	0.8230	64.44562	0.01277	
0.8614	0.5557	102.5632	0.00542	
1.0000	0.4350	131.0310	0.00332	
1.2000	0.3980	143.2123	0.00278	
1.4000	0.3400	167.6426	0.00203	
1.6000	0.2960	192.5624	0.00154	
1.8000	0.2620	217.5514	0.00120	
2.0000	0.2360	241.5190	0.00098	

Tabel 5. 63 SD-SA Spectrum Demand

Gambar 5. 106 Transfer Respon spektrum ke SD-SA Spektrum demand

4) Menentukan Performance Point (Sd)

Titik kinerja (*Performance point*) adalah perpotongan antara *demand-spectra* dengan *capacity curve*. Untuk menentukan *performance point*, dilakukan beberapa kali iterasi sehingga diperoleh nilai Sd yang *converged*. Proses iterasi akan dijelaskan di bawah ini.

c) Iterasi 1

Prediksi garis b-c pada *capacity curve* akan membuat perpotongan dengan *curva spectra-demand*

$$0,000634939.SD + 0,088894 = 56.99848/S_d$$

$$0,000634939.Sd^2 + 0,088894 - 56.99848 = 0$$

$$1.Sd^2 + 140.0040567.SD - 89770 = 0$$

Maka, didapatkan $Sd = 237.6833$ mm (= " d_{pi} ")

Sehingga, Sa* =
$$0,000634939.SD + 0,088894 = 0,240 \ (="a_{pi}")$$

Setelah didapatkan nilai $d_{pi} dan a_{pi}$ dapat dicari nilai β_0 .

$$\beta_0 \qquad = \frac{63.7 \left(a_y d_{pi} - d_y a_{pi} \right)}{a_{pi} d_{pi}} = 13.3795 \%$$

Dalam analisis ini, kestabilan histeretik struktur dianggap masuk kedalam kategori *intremediate* atau bangunan termasuk kedalam tipe A, sehingga diambil nilai *damping modification factor* K = 0.8.

Maka,
$$\beta_{eff} = K\beta_0 + 5 = \frac{63.7 K(a_y d_{pi} - d_y a_{pi})}{a_{pi} d_{pi}} + 5 = 18.3795$$

 $SRA = \frac{3.21 - 0.68 Ln(\beta eff)}{2.12} = 0.5803581$
 $SRV = \frac{2.31 - 0.41 Ln(\beta eff)}{1.65} = 0.797814$

Sehingga didapatkan nilai Sa* reduce sebesar :

$$(SRA); Sa^* = SRA x 56.99848/Sd = 33.0795/Sd$$

 $(SRV); Sa^* = SRV x 56.99848/Sd = 45.4742/Sd$

Diambil nilai Sa* = 56.99848/Sd, dengan nilai Sa* akan dimasukan kedalam persamaan pada iterasi kedua.

d) Iterasi 2

$$\begin{array}{ll} 0,0006349.SD + 0,08889 & = 45.47418/Sd \\ 0,0006349.SD + 0,08889 - 45.47418 & = 0 \end{array}$$

$$1.Sd^2 + 140.004.SD - 71619.8 = 0$$

Didapat nilai Sd = 206.621 mm < 237.6833 mm \longrightarrow % sel = 31.063%

Untuk menentukan nilai sd selanjutnya, maka dilakukan perhitungan proses iterasi secara skematis yang hasilnya disajikan secara rinci dalam Tabel 5.64 sebagai berikut.

Iterasi	sdi	βeff	SRA	SRV	sd i+1	% sel	Keterangan
1	237.6833	18.37951	0.58036	0.79781	102.5632	135.1201162	Not Coverged
2	237.6833	18.6758	0.57523	0.79384	206.6205	31.06280038	Not Coverged
3	206.6205	18.67963	0.57516	0.79379	205.975	0.645552457	Not Coverged
4	205.975	18.67968	0.57516	0.79379	205.9667	0.008284105	Not Coverged
5	205.9667	18.67968	0.57516	0.79379	205.9666	0.000104586	CONVERGED

Tabel 5. 64 Proses iterasi penentuan performance point

Berdasarkan hasil dari iterasi ke-5 maka didapatkan grafik Gambar 5.107 sebagai berikut.

Gambar 5. 107 Iterasi pada penentuan Performance Point

Setelah *converged* pada iterasi ke-5, maka didapatkan nilai $sd_i = 205.9$ mm, maka simpangan horisontal atap menjadi,

$$Y_{r,1} = sd \ x \ \Gamma_1 \ x \ \varphi_{r,1} = 205.9667 \ x \ 0.4444 \ x \ 2.82316 = 258.43168 \ mm$$

Global drift ratio menjadi,

Drift Ratio (DR) = $\frac{258.43168}{20,57 x (1000)} = 1.256\% < 2\%$

Batasan *ratio drift* atap menurut ATC 40 (1996) pada Tabel 3.4, hasil hitungan diatas menunjukkan bahwa struktur gedung FTI UAJY arah Y termasuk didalam level kinerja *Damege control.*

5) Cara ke-2, Menentukan Performance Point (Sd)

Cara ke-2 yaitu dengan memperkirakan nilai Sd. Kemudian berturut-turut dihitung Sa*, βeff, SRA, SRV, Sd dan Sa* yang baru. Rumus-rumus yang dipakai tetap sama dengan rumus sebelumnya. Perhitungan kemudian ditabelkan sebagimana pada Tabel 5.65 dan Gambar 5.108.

Diketahui data sebelumnya :

 $Sa^* = 0.0006349$.SD + 0.08889

K = 0.8

 $a_y = 0.13291937$

dy = 69.33797248

 $Sa^* = 56.99847925$

Untuk mencari Sa* baru dilakukan dengan persamaan kuadrat

Sd	Sa*	β0	βeff	SRA	SRV	Sd baru	Sa* (Demand Sp)
80	0.139689172	4.322084	9.322084	0.7981	0.9665	232.7566	0.236680324
90	0.146038563	7.121428	12.12143	0.71388	0.90125	222.9235	0.2304369
100	0.152387953	9.114938	14.11494	0.66504	0.86341	217.0677	0.226718796
110	0.158737344	10.54922	15.54922	0.634	0.83937	213.2827	0.224315596
120	0.165086735	11.58489	16.58489	0.61331	0.82334	210.7325	0.222696375
130	0.171436125	12.33031	17.33031	0.59921	0.81242	208.9804	0.221583878
140	0.177785516	12.86069	17.86069	0.58954	0.80493	207.7726	0.220817015
150	0.184134907	13.22953	18.22953	0.58299	0.79985	206.9507	0.220295133
160	0.190484298	13.47562	18.47562	0.57869	0.79652	206.4102	0.219951922
170	0.196833688	13.62761	18.62761	0.57606	0.79448	206.0794	0.219741894
180	0.203183079	13.70696	18.70696	0.57469	0.79343	205.9076	0.219632836
190	0.20953247	13.72992	18.72992	0.5743	0.79312	205.858	0.219601341
200	0.215881861	13.709	18.709	0.57466	0.7934	205.9032	0.219630038
210	0.222231251	13.65384	18.65384	0.57561	0.79413	206.0225	0.219705801
220	0.228580642	13.57201	18.57201	0.57702	0.79523	206.2001	0.219818565
230	0.234930033	13.46943	18.46943	0.57879	0.7966	206.4237	0.21996051

Tabel 5. 65Proses Iterasi Cara 2

Gambar 5. 108 Proses Iterasi Sa*-Sd

Berdasarkan Tabel 5.65, maka simpangan horisontal atap menjadi,

 $Y_{r,1} = sd \ x \ \Gamma_1 \ x \ \varphi_{r,1} = 206 \ x \ 0.4444 \ x \ 2.82316 = 258.4735 \ mm$

Global drift ratio menjadi,

Drift Ratio (DR) = $\frac{258.4735}{20,57 x (1000)} = 1.256\% < 2\%$

Batasan *ratio drift* atap menurut ATC 40 (1996) pada Tabel 3.4, hasil hitungan diatas menunjukkan bahwa struktur gedung FTI UAJY arah Y termasuk didalam level kinerja *Damage control*

Berdasarkan hitungan manual dan SAP2000 diketahui hasilnya sama yaitu *Damage control.*

5.3.5 Daktalitas dan Faktor Reduksi Gempa Aktual

Dari hasil analisis *pushover* pada kurva kapasitas kemudian dilakukan perhitungan nilai daktilitas (R_{μ}) dan faktor reduksi gempa aktual (R_{aktual}) yang disajikan dengan tiga model pembebanan yaitu SNI 1726-2012, SNI 1726-2002 dan beban seragam serta SNI 1726-2012 menggunakan *fiber* sebagai berikut.

1. Pembebanan SNI 1726-2012

Perhitungan nilai daktilitas (R_{μ}) dan faktor reduksi gempa aktual (R_{aktual}) pada pembebanan SNI 1726-2012 disajikan dengan pendekatan melalui persamaan dibawah ini, sehingga diperoleh pada Gambar 5.109, Gambar 5.110, dan Tabel 5.66 berikut untuk pembebanan arah-X dan arah-Y.

$$R_{aktual} = \frac{Q_e}{Q_y} \cdot \frac{Q_y}{Q_s} = R_{\mu} \cdot \Omega$$

Dimana:

Q_e atau V_e	= gaya geser elastik struktur
Q_y atau V_y	= gaya geser pada titik leleh
Q_S atau V_s	= gaya geser pada saat terjadi pelelehan pertama
R_{μ}	= daktilitas struktur
Ω	= faktor reduksi karena overstrength

Tabel 5. 66 Daktilitas struktur aktual (R_{μ}) dan faktor reduksi gempa aktual (R_{aktual})

ARAH BEBAN	Ve, R=1	Vy	Vt	Vs	Du	0	Delatural	
PUSHOVER	(kN)	(kN)	(kN)	(kN)	Кμ	52	Naktuai	Rcode
	Gambar 5.22	Tabel 5.30	Tabel 5.31	(0.6)*(Vy)	(2)/(3)	(3)/(5)	(6)*(7)	
1	2	3	4	5	6	7	8	9
Arah-X	23429.01325	5423	8866.504	3253.8	4.320305	1.666667	7.20051	8
Arah-Y	19536.774	5489	7155.941	3293.4	3.559259	1.666667	5.9321	8

Dari Tabel 5.66, Gambar 5.109, dan Gambar 5.110 dapat diketahui bahwa daktilitas aktual struktur (R_{μ}) bangunan FTI UAJY pada arah-X sebesar 4.32 dan pada arah-Y sebesar 3.55. Faktor reduksi gempa aktual (R_{aktual}) pada arah-X sebesar 7.2 dan pada arah-Y sebesar 5.93 maka taraf kinerja struktur termasuk dalam daktilitas terbatas sesuai dengan SNI 1726-2012.

Gambar 5. 109 Penentuan daktilitas dan faktor reduksi gempa aktual untuk pembebanan arah-X

Gambar 5. 110 Penentuan daktilitas dan faktor reduksi gempa aktual untuk pembebanan arah-Y

2. Pembebanan SNI 1726-2002

Perhitungan nilai daktilitas (R_{μ}) dan faktor reduksi gempa aktual (R_{aktual}) pada pembebanan SNI 1726-2002 disajikan pada Gambar 5.111, Gambar 5.112, dan Tabel 5.67 berikut untuk pembebanan arah-X dan arah-Y

Tabel 5. 67 Daktilitas struktur aktual (R_{μ}) dan faktor reduksi gempa aktual (R_{aktual})

ARAH BEBAN PUSHOVER	Ve, R=1 (kN)	Vy (kN)	Vt (kN)	Vs (kN)	Rμ	Ω	Raktual	Rcode
	Gambar 5.22	Tabel 5.35	Tabel 5.36	(0.6)*(Vy)	(2)/(3)	(3)/(5)	(6)*(7)	
1	2	3	4	5	6	7	8	9
Arah-x	17952.839	4132	6257.936	2479.2	4.34483	1.666667	7.241384	8
Arah-y	14478.096	3698	4997.493	2218.8	3.915115	1.666667	6.525192	8

Gambar 5. 111 Penentuan daktilitas dan faktor reduksi gempa aktual untuk pembebanan arah-X

Gambar 5. 112 Penentuan daktilitas dan faktor reduksi gempa aktual untuk pembebanan arah-Y

Dari Tabel 5.67, Gambar 5.111, dan Gambar 5.112 dapat diketahui bahwa daktilitas aktual struktur (R_{μ}) bangunan FTI UAJY pada arah-X sebesar 4.34 dan pada arah-Y sebesar 3.91. Faktor reduksi gempa aktual (R_{aktual}) pada arah-X sebesar 7.24 dan pada arah-Y sebesar 6.525 maka taraf kinerja struktur termasuk dalam daktilitas terbatas sesuai dengan SNI 1726-2002.

3. Pembebanan Beban Seragam

Perhitungan nilai daktilitas (R_{μ}) dan faktor reduksi gempa aktual (R_{aktual}) pada pembebanan Seragam disajikan pada Gambar 5.113, Gambar 5.114, dan Tabel 5.68 berikut untuk pembebanan arah-X dan arah-Y

Tabel 5. 68 Daktilitas struktur aktual (R_{μ}) dan faktor reduksi gempa aktual (R_{aktual})

ARAH BEBAN	Ve, R=1	Vy	Vt	Vs	D.,	0	Raktual	Rcode	
PUSHOVER	(kN)	(kN)	(k N)	(kN)	Кμ	52			
	Gambar 5.22	Tabel 5.40	Tabel 5.41	(0.6)*(Vy)	(2)/(3)	(3)/(5)	(6)*(7)		
1	2	3	4	5	6	7	8	9	
Arah-x	26299.665	7559	10677.004	4535.4	3.47925	1.66667	5.79875	8	
Arah-y	22604.671	7044	8785.095	4226.4	3.20907	1.66667	5.34845	8	

Gambar 5. 113 Penentuan daktilitas dan faktor reduksi gempa aktual untuk pembebanan arah-X

Gambar 5. 114 Penentuan daktilitas dan faktor reduksi gempa aktual untuk pembebanan arah-Y

Dari Tabel 5.68, Gambar 5.113, dan Gambar 5.114 dapat diketahui bahwa daktilitas aktual struktur (R_{μ}) bangunan FTI UAJY pada arah-X sebesar 3.479 dan

pada arah-Y sebesar 3.209. Faktor reduksi gempa aktual (R_{aktual}) pada arah-X sebesar 5.79 dan pada arah-Y sebesar 4.34 maka taraf kinerja struktur termasuk dalam daktilitas terbatas sesuai dengan SNI 1726-2012.

4. Pembebanan SNI 1726-2012 menggunakan fiber

Perhitungan nilai daktilitas (R_{μ}) dan faktor reduksi gempa aktual (R_{aktual}) pada pembebanan Seragam disajikan pada Gambar 5.115, Gambar 5.116, dan Tabel 5.69 berikut untuk pembebanan arah-X dan arah-Y

Tabel 5. 69 Daktilitas struktur aktual (R_{μ}) dan faktor reduksi gempa aktual (R_{aktual})

ARAH BEBAN PUSHOVER	Ve, R=1 (kN)	Vy (kN)	Vt (kN)	Vs (kN)	Rμ	Ω	Raktual	Rcode	
	Gambar 5.22	Tabel 5.45	Tabel 5.46	(0.6)*(Vy)	(2)/(3)	(3)/(5)	(6)*(7)		
1	2	3	4	5	6	7	8	9	
Arah-x	23429.0133	11324.21	18700.997	6794.53	2.06893	1.66667	3.44822	8	
Arah-y	19536.774	10482.39	14095.283	6289.43	1.86377	1.66667	3.10628	8	

Gambar 5. 115 Penentuan daktilitas dan faktor reduksi gempa aktual untuk pembebanan arah-X

Gambar 5. 116 Penentuan daktilitas dan faktor reduksi gempa aktual untuk pembebanan arah-Y

Dari Tabel 5.69, Gambar 5.115, dan Gambar 5.116 dapat diketahui bahwa daktilitas aktual struktur (R_{μ}) bangunan FTI UAJY pada arah-X sebesar 2.06 dan pada arah-Y sebesar 1.86. Faktor reduksi gempa aktual (R_{aktual}) pada arah-X sebesar 3.44 dan pada arah-Y sebesar 3.10 maka taraf kinerja struktur termasuk dalam daktilitas terbatas sesuai dengan SNI 1726-2012. Pada analisis ini tidak diketahui apakah bangunan tersebut pada saat desain menggunakan daktilitas penuh atau daktilitas terbatas, ada kemungkinan terjadi perubahan tingkat daktilitas dari yang dipakai saat disain dan hasil evaluasi kinerja struktur. Hal ini dapat dipakai untuk bahan penelitian berikutnya.

Dari hasil penelitian ini didapatkan hasil bahwa $R_{aktual} < R_{code}$, yang berarti bahwa faktor reduksi gempa aktual pada gedung Fakultas Teknik Industri Universitas Atma Jaya dalam kondisi terbatas. Apabila didapatkan hasil faktor reduksi gempa $R_{aktual} > R_{code}$, maka struktur bangunan tersebut semakin kecil menyerap gaya gempa, semakin kecil bangunan menyerap gaya gempa maka semakin kecil pula kerusakan atau tidak ada kerusakan pada bangunan. Hasil penelitian diatas kemudian dibandingkan dengan penelitianpenelitian lain untuk membandingkan nilai daktilitas struktur (R_{μ}) dan faktor reduksi gempa aktual (R_{aktual}) yang ditampilkan dalam Tabel 5.70.

No	Peneliti	Bangunan	R_{μ}	Raktual	R _{code}
1.	Ulfa, Atika (2011)	4 tingkat	$R_{\mu-x} = 2,502$	$R_{aktual-x} = 6,14$	85
		Bangunan sekolah	$R_{\mu - y} = 2,33$	$R_{aktual-y} = 4,17$	0,5
2.	Zahrudin (2010)	5 tingkat	$R_{\mu-x} = 2,86$	$R_{aktual-x} = 4.76$	85
		Bang. rumah sakit	$R_{\mu - y} = 2,22$	$R_{aktual-y} = 3.69$	0,5
3.	Rizky, Mayhendra	5 lantai	$R_{\mu-x} = 2,837$	$R_{aktual-x} = 4,73$	8.0
	(2015)	Bangunan sekolah	$R_{\mu - y} = 3,884$	$R_{aktual-y} = 6,47$	8,0
4.	Yunus (2015)	19 lantai	$R_{\mu-x} = 5,85$	$R_{aktual-x} = 9.74$	7.0
		Bangunan hotel	$R_{\mu - y} = 4.36$	$R_{aktual-y} = 7.26$	7,0
5.	Riyono (2015)	5 lantai	$R_{\mu-x} = 4.32$	$R_{aktual-x} = 7.20$	8.0
		Bangunan sekolah	$R_{\mu - y} = 3.55$	$R_{aktual-y} = 5.93$	8,0

Tabel 5. 70 Perbandingan nilai R_{μ} dan R_{aktual} pada penelitian-penelitian yang telah
dilakukan

Dari Tabel 5.70 diketahui penelitian yang dilakukan Ulfa, Atika (2011), Zahrudin (2010), dan Rizky (2015) pada gedung *mid-rise* diperoleh nilai R_{aktual} lebih kecil dibandingkan dengan $R_{code.}$ Sedangkan pada penelitian yang dilakukan Yunus (2015) termasuk *high-rise building* diperoleh nilai R_{aktual} lebih besar $R_{code.}$

Dari Tabel 5.70 hasil penelitian tersebut dapat diindikasikan untuk bangunan tinggi (*high-rise*) nilai R_{aktual} nya lebih besar, sedangkan pada bangunan *mid-rise* nilai R_{aktual} nya tergolong sedang dan bisa lebih rendah daripada R_{code}. Hal tersebut mengindikasikan bangunan *high-rise* menyerap gaya gempa lebih kecil dibandingkan dengan bangunan *mid-rise*. Namun perlu dibuktikan dengan penelitian-penelitian lanjutan dengan menggunakan sampel bangunan tinggi dan bangunan rendah yang jumlahnya sangat banyak untuk mendapatkan kesimpulan yang valid.

Sedangkan pada Gambar 5.109, Gambar 5.110, Gambar 5.111, Gambar 5.112, Gambar 5.113, Gambar 5.114, Gambar 5.115, dan Gambar 5.116 tidak menggunakan prinsip *equal displacement* dan *equal energy* dalam mencari nilai daktilitas dan reduksi gempa. Widodo (2015), menjelaskan prinsip *equal displacement* dan *equal energy* pada hakikatnya diterapkan pada analisis dinamik

inelastik (*time history*). Pada analisis tersebut, simpangan struktur salah satunya dipengaruhi oleh redaman viskous yang merupakan fungsi dari kecepatan massa. Pada asumsi *equal displacement* simpangan inelastik struktur diasumiskan kurang lebih sama dengan simpangan elastik. Hal ini terjadi karena kondisi inelastik akan menurunkan kekakuan struktur yang dapat memperbesar simpangan. Disisi lain, terjadinya sendi-sendi plastis pada respon inelastik akan terjadi *absorb energy* sehingga kebalikan dengan keterangan sebelumnya akan menurunkan simpangan. Pertambahan dan penurunan simpangan masing-masing akibat penurunan kekakuan dan *absorb energy* diasumsikan hampir sama. Oleh karena itu, secara keseluruhan simpangan inelastik struktur sering diasumsikan sama atau dekat dengan simpangan inelastik yang disebut dengan *equal displacement*. Pada *pushover analisys* tidak terdapat sistem *absorb energy*.

Simpangan struktur sepenuhnya tergantung pada kekakuan yang dapat menurun akibat terbentuknya sendi-sendi plastis. Karena pada *pushover analisys* tidak terdapat sistem penyerapan energi, maka kondisi ini berbeda dengan analisis dinamik inelastik. Dengan demikian, *prinsip equal displacement* tidak dapat diterapkan pada bahasan *pushover analisys*.

5.3.6 Plastifikasi

Dari hasil analisis *pushover* menggunakan SAP2000 dapat diprediksi elemen struktur yang rusak dengan melihat elemen struktur yang mengalami kondisi sendi plastis pada level tertentu sesuai dengan level kinerja. Berdasarkan titik kinerja (*performance point*) maka dapat diketahui pada *step* keberapa titik kinerja tercapai dan jumlah elemen struktur yang mengalami plastifikasi. Hirarki plastifikasi untuk pembebanan SNI 1726-2012 *pushover* arah-X dan arah-Y pada permodelan 1 dapat dilihat pada Tabel 5.71 dan Tabel 5.72.

	TABLE: Pushover Curve - ARAH X										
Ston	Displacement	BaseForce	AtoB	BtolO	IOtoLS	LStoCP	CPtoC	CtoD	DtoE	BeyondE	Total
Step	m	KN									
0	-0.000065	0	1094	0	0	0	0	0	0	0	1094
1	0.016508	2501.558	1093	1	0	0	0	0	0	0	1094
2	0.029095	4123.971	968	126	0	0	0	0	0	0	1094
3	0.064181	5920.634	783	311	0	0	0	0	0	0	1094
4	0.12934	7741.354	760	334	0	0	0	0	0	0	1094
5	0.193013	9257.944	723	273	98	0	0	0	0	0	1094
6	0.256261	10427.706	663	167	264	0	0	0	0	0	1094
7	0.321387	11206.914	613	179	236	53	0	13	0	0	1094
8	0.335906	11326.141	597	179	252	12	0	54	0	0	1094
9	0.356463	11412.159	594	163	265	6	0	66	0	0	1094
10	0.358683	11413.462	594	163	261	10	0	66	0	0	1094
11	0.358723	11413.48	594	163	261	10	0	66	0	0	1094

 Tabel 5. 71 Plastifikasi pada pembebanan pushover arah-X

Tabel 5. 72 Plastifikasi pada pembebanan pushover arah-Y

TABLE: Pushover Curve - ARAH Y											
Ston	Displacement	BaseForce	AtoB	BtolO	IOtoLS	LStoCP	CPtoC	CtoD	DtoE	BeyondE	Total
Step	m	KN									
0	0.000395	0	1094	0	0	0	0	0	0	0	1094
1	0.02164	1305.729	1093	1	0	0	0	0	0	0	1094
2	0.053496	3164.275	959	135	0	0	0	0	0	0	1094
3	0.071465	3902.031	855	239	0	0	0	0	0	0	1094
4	0.119355	5286.035	820	274	0	0	0	0	0	0	1094
5	0.182436	6565.628	810	234	50	0	0	0	0	0	1094
6	0.249167	7672.211	799	77	218	0	0	0	0	0	1094
7	0.314365	8574.764	767	87	209	29	0	2	0	0	1094
8	0.367004	9230.662	706	144	171	54	0	19	0	0	1094
9	0.37757	9306.92	692	154	164	56	0	28	0	0	1094
10	0.389656	9346.786	691	151	162	54	0	36	0	0	1094
11	0.396747	9353.398	691	147	163	55	0	38	0	0	1094
12	0.404653	9381.185	691	141	167	56	0	39	0	0	1094
13	0.430199	9430.306	691	118	178	65	0	42	0	0	1094
14	0.464362	9529.513	689	114	158	89	0	44	0	0	1094
15	0.481575	9561.546	689	114	141	103	0	47	0	0	1094
16	0.483895	9569.474	689	114	138	105	0	48	0	0	1094
17	0.487859	9576.945	689	114	136	106	0	49	0	0	1094

Pada Tabel 5.71 menunjukan bahwa analisis *pushover* pada arah X berhenti pada step ke 11, yang berarti distribusi sendi plastis sudah pada kondisi maksimum. Kondisi tersebut dapat disebabkan karena adanya ketidak-stabilan dari adanya sendi plastis yang terbentuk. Hasil analisis *pushover* arah X dapat diketahui titik kinerja struktur tercapai pada step ke 5, terdapat 98 elemen yang telah melewati batas *Immediate Occupancy* (IO).

Pada Tabel 5.72 menunjukan bahwa analisis *pushover* pada arah Y berhenti pada step ke 17, yang berarti distribusi sendi plastis sudah pada kondisi maksimum. Hasil analisis *pushover* arah Y dapat diketahui titik kinerja struktur tercapai pada step ke 5, terdapat 50 elemen yang telah melewati batas *Immediate Occupancy* (IO).

Elemen-elemen struktur yang telah mencapai batas IO dapat dikategorikan mengalami kerusakan (leleh). Untuk dapat melihat letak elemen struktur tersebut, pada tampilan SAP2000 dibuka dengan meng-klik ikon *Show Deformed Shape*. Lalu dipilih *case* yang diinginkan. dalam laporan ini ditampilkan untuk arahX dan arahY.

1) Kondisi Pertama (Step 2)

Gambar 5. 117 Posisi sendi plastis step 2 untuk pembebanan *pushover* arah-Y Pada As-2

Berdasarkan hasil analisa *pushover* pada Gambar 5.117 dapat dilihat bahwa sendi plastis yang pertama terdapat pada balok dimana menunjukkan batas linier yang kemudian diikuti terjadi pelelehan pertama pada struktur. Gedung ini masuk ke dalam kategori B-IO (*Operational Level* menuju *Immediate Occupancy Level*), gedung mengalami *displacement* sebesar 0,02164 m dengan gaya geser 1305,729 kN.

2) Kondisi Pertama (Step 6)

Gambar 5. 118 Posisi sendi plastis step 6 untuk pembebanan *pushover* arah-Y Pada As-2

Berdasarkan hasil analisa *pushover* pada Gambar 5.118 dapat dilihat bahwa kondisi tersebut sudah dalam kondisi plastis, semua balok pada lantai 1 sampai 5 dalam kondisi plastis. Gedung masih masuk ke dalam kategori *IO-LS* (*Immediate Occupancy* menuju *Life Safety Level*), gedung mengalami *displacement* sebesar 0,249167 m dengan gaya geser 7672,211 kN.

3) Kondisi Pertama (Step 8)

Gambar 5. 119 Posisi sendi plastis step 8 untuk pembebanan *pushover* arah-Y Pada As-2
Berdasarkan hasil analisa *pushover* pada Gambar 5.119 dapat dilihat bahwa semua kolom dan balok pada lantai 1, sampai 4 dalam kondisi plastis. Kemudian pada lantai 5 sudah mengalami sendi plastis pada balok. Gedung masih masuk ke dalam kategori *LS-CP (Life Safety* menuju *Collapse Prevention Level)*, gedung mengalami *displacement* sebesar 0,367004 m dengan gaya geser 9230,662 kN.

4) Kondisi Pertama (Step 14)

Gambar 5. 120 Posisi sendi plastis step 14 untuk pembebanan *pushover* arah-Y Pada As-2

Berdasarkan hasil analisa *pushover* pada Gambar 5.120 dapat dilihat bahwa beberapa kolom dan balok pada lantai 2 sampai 4 mengalami sendi plastis. Kemudian pada lantai 5 sudah mengalami sendi plastis pada balok pada level ultimate point. Gedung masuk ke dalam kategori *C (Ultimate point)*, gedung mengalami *displacement* sebesar 0,4643 m dengan gaya geser 9529.513 kN.

5) Kondisi Pertama (Step 17)

Gambar 5. 121 Posisi sendi plastis step 17 untuk pembebanan *pushover* arah-Y Pada As-2

Berdasarkan hasil analisa *pushover* pada Gambar 5.121 dapat dilihat bahwa beberapa kolom dan balok pada lantai 2 sampai 4 mengalami sendi plastis. Kemudian pada lantai 5 sudah mengalami sendi plastis pada balok pada level ultimate point. Gedung masuk ke dalam kategori *C (Ultimate point)*, gedung mengalami *displacement* sebesar 0,4878 m dengan gaya geser 9575.945 kN.

6) Kondisi sendi plastis pada dinding geser

Gambar 5. 122 Sendi plastis pada step 17 arah Y pada As 1

Gambar 5. 123 Sendi plastis pada step 11 arah X pada As A

7) Kondisi sendi plastis 3D

Gambar 5. 124 Posisi sendi plastis step 11 untuk pembebanan pushover arah-X

Gambar 5. 125 Posisi sendi plastis step 11 untuk pembebanan *pushover* arah-X pada As-B

Gambar 5. 126 Posisi sendi plastis step 17 untuk pembebanan pushover arah-Y

Gambar 5. 127 Posisi sendi plastis step 17 untuk pembebanan *pushover* arah-Y Pada As-2

Pada Gambar 5.124 sampai Gambar 5.127 merupakan posisi elemen struktur yang mengalami kerusakan (sendi plastis) pada saat titik kinerja tercapai. Posisi elemen-elemen yang telah mengalami plastifikasi yaitu sebagai indikator elemen telah mengalami kerusakan dapat dilihat pada Program SAP2000. Dari kedua arah pembebanan tersebut, terlihat pada posisi sendi plastis untuk pembebanan *pushover* arah-Y cukup banyak terdapat sendi plastis yang berwarna biru muda atau berada pada level Life Safety (LS) dan juga berwarna kuning atau berada pada level ultimate point (C). Untuk level Life Safety (LS) Hal ini berarti gedung mengalami kerusakan namun struktur tetap stabil, misalnya terjadi kerusakan ringan seperti retak rambut pada kolom, balok, dinding partisi, pelat, retak pada beberapa joint kolom, dan kerusakan pada bagian non struktur. Kerusakan masih dapat terkontrol dan dalam tingkat yang aman untuk dihuni. Sedangkan level *ultimate point* (C) merupakan batas maksimum gaya geser yang masih mampu ditahan gedung sehingga kerusakannya parah dan terjadi kecelakaan akibat kejatuhan material. Dalam kondisi ini gedung tidak dapat beroperasi. Berikut adalah contoh proses pembentukan sendi plastis pada portal As 2 untuk pembebanan *pushover* arah Y.

5.3.7 Sendi Plastis

Sendi plastis pada elemen struktur diperoleh dari grafik *moment curvature* atau *moment rotation* yang dihasilkan oleh program SAP2000. Penentuan kondisi sendi plastis pada SAP2000 berdasarkan pada pedoman FEMA 356 untuk menentukan kriteria kinerja. Kriteria batasan kinerja menurut FEMA 356 ditampilkan dalam Tabel 5.73, kemudian hasil kinerja pada SAP2000 akan dibandingkan dengan hasil *moment-curvature* dari aplikasi response-2000, kriteria kondisi didasarkan pada besarnya nilai *Plastic Rotation (rad)* di suatu elemen struktur.

Tabel 5. 73 Kriteria batasan kinerja	a plastic rotation	menurut FEMA 3	56
	D 1 1	IZ 1	

Kineria	Balok	Kolom
Kinerju	Rotation (rad)	Rotation (rad)
Immediate Occupancy (IO)	0,01	0,003
Life Safety (LS)	0,02	0,012
Collapse Prevention (CP)	0,025	0,015

1. Sendi Plastis Pada Balok

Hasil sendi plastis pada balok dari analisis *pushover* pada SAP2000 untuk Balok L4_30x65_12 Lantai 4 dapat dilihat pada Gambar 5.128 sampai Gambar 5.131 serta Tabel 5.74 dan Tabel 5.75, kemudian hasil kinerja pada SAP2000 akan dibandingkan dengan hasil *moment-curvature* dari aplikasi response-2000.

Gambar 5. 128 Posisi sendi plastis Balok L4_30x65_12 step 17 untuk pembebanan *pushover* arah-Y pada As-2

Gambar 5. 129 *Hinge result* pada Balok L4_30x65_12 As.2 Lantai 4 (lihat inset pada Gambar 5.128)

Gambar 5. 130 Grafik *Moment rotation* pada Balok L4_30x65_12 As.2 Lantai 4 (lihat inset pada Gambar 5.128)

Gambar 5. 131 Grafik *Moment curvature* pada Balok L4_30x65_12 As.2 Lantai 4 (lihat inset pada Gambar 5.128)

Ston	M3	Rotation	Curvature	R3State	D2Status
Step	KN-m	rad	rad/m		KSStatus
0	-34.7611	0	0	A to <=B	A to <=IO
1	12.9091	0	0	A to <=B	A to <=IO
2	104.1455	0	0	A to <=B	A to <=IO
3	139.1647	0.00079	0.00122	B to <=C	A to <=IO
4	141.4028	0.00483	0.00742	B to <=C	A to <=IO
5	143.4041	0.00843	0.01297	B to <=C	A to <=IO
6	145.5139	0.01224	0.01882	B to <=C	IO to <=LS
7	147.5269	0.01586	0.02440	B to <=C	IO to <=LS
8	148.9832	0.01849	0.02844	B to <=C	IO to <=LS
9	149.2349	0.01894	0.02914	B to <=C	IO to <=LS
10	149.3777	0.01920	0.02954	B to <=C	IO to <=LS
11	149.4106	0.01926	0.02963	B to <=C	IO to <=LS
12	149.5091	0.01943	0.02990	B to <=C	IO to <=LS
13	149.6831	0.01975	0.03038	B to <=C	IO to <=LS
14	150.0622	0.02043	0.03143	B to <=C	LS to <=CP
15	150.1975	0.02068	0.03181	B to <=C	LS to <=CP
16	150.2264	0.02073	0.03189	B to <=C	LS to <=CP
17	150.2587	0.02079	0.03198	B to <=C	LS to <=CP

Tabel 5. 74 Hinge result pada Balok L4_30x65_12 (+) As.2 Lantai 4

Tabel 5. 75 Hinge result pada Balok L4_30x65_12 (-) As.2 Lantai 4

Ston	M3	Rotation	Curvature	D2State	D2Status
Step	KN-m			KSState	KəStatus
0	-45.5144	0	0	A to <=B	A to <=IO
1	-96.9949	0	0	A to <=B	A to <=IO
2	-195.6902	0	0	A to <=B	A to <=IO
3	-260.3852	0	0	A to <=B	A to <=IO
4	-274.8608	-0.00398	-0.00613	B to <=C	A to <=IO
5	-279.2008	-0.00781	-0.01201	B to <=C	A to <=IO
6	-283.7695	-0.01183	-0.01820	B to <=C	IO to <=LS
7	-287.9981	-0.01555	-0.02393	B to <=C	IO to <=LS
8	-291.0503	-0.01824	-0.02806	B to <=C	LS to <=CP
9	-291.5714	-0.01870	-0.02877	B to <=C	LS to <=CP
10	-291.8619	-0.01896	-0.02916	B to <=C	LS to <=CP
11	-291.9398	-0.01903	-0.02927	B to <=C	LS to <=CP
12	-292.1381	-0.01921	-0.02956	B to <=C	LS to <=CP
13	-292.4852	-0.01951	-0.03001	B to <=C	LS to <=CP
14	-293.2749	-0.02020	-0.03108	B to <=C	LS to <=CP
15	-293.5452	-0.02044	-0.03144	B to <=C	LS to <=CP
16	-293.6068	-0.02049	-0.03153	B to <=C	LS to <=CP
17	-293.6755	-0.02055	-0.03162	B to <=C	LS to <=CP

Pada Gambar 5.129, Gambar 5.130, Gambar 5.131, Tabel 5.74 dan Tabel 5.75 adalah hasil momen rotasi dari hasil pendetailan *hinge result* pada balok L4_30x65_12 Lantai 4. Dari hasil tersebut, terlihat bahwa sendi plastis pada hasil analisis *pushover* berhenti pada step ke-17 dimana sendi plastis sudah mengalami plastifikasi pada level *LS* menuju ke level *CP* dengan momen sebesar 150.258 kN dan rotasi sebesar 0,02078 rad untuk rotasi (+) sedangkan momen sebesar -293.6755 kN dan rotasi sebesar -0.02055 rad untuk rotasi (-). Untuk hasil momen curvature dari hasil pendetailan *hinge result* pada balok L4_30x65_12 lantai 4. Dari hasil tersebut, terlihat bahwa sendi plastis pada hasil analisis *pushover* berhenti pada step ke-17 dimana sendi plastis sudah mengalami plastifikasi pada level *LS* menuju ke level *CP* dengan momen sebesar 150.258 kN dan rotasi sebesar 0,0319 rad untuk rotasi (+) sedangkan momen sebesar -293.6755 kN dan rotasi sebesar -0.0316 rad untuk rotasi (-).

Dari Gambar 5.132 ditunjukan hasil momen rotasi dari beberapa elemen balok, dimana terdapat balok yang masuk kedealam level *Life Safety* karena nilai rotasi balok tersebut masuk ke dalam kriteria LS sesuai yang disajikan didalam Tabel 5.74 pada balok 30x65 yaitu sebesar 0,0207 rad, untuk sebagian elemen balok yang mengalami rotasi dapat dilihat pada Gambar 5.133.

Gambar 5. 133 Plastic rotation angel pada balok lantai 3

Pada Gambar 5.133 dapat dilihat hasil analisis pushover berupa platistic rotation angel pada balok lantai 3 masih banyak balok yang mengalami level kinerja IO (*immediate occupancy*) dan LS (*life safety*), untuk seluruh elemen balok yang mengalami rotasi dapat dilihat pada lampiran 6.

Kemudian dilakukan perbandingan antara momen curvature dari SAP2000 dengan aplikasi Respon 2000 dapat dilihat pada Gambar 5.134.

Gambar 5. 134 Hasil momen curvature (a) nilai dari Response2000 moment curvature positif dan negatif pada balok (b) dan nilai dari SAP2000 moment curvature negatif dan positif pada balok L4_30x65_12

Pada Gambar 5.134 Grafik yang diperoleh dari perbandingan *moment curvature* menggunakan program SAP2000 dan program Response 2000 adalah mendekati sama. Hal ini membuktikan bahwa ketelitian input untuk sendi plastis sudah benar

2. Sendi Plastis Pada Kolom

Hasil sendi plastis pada kolom dari analisis *pushover* pada SAP2000 untuk Kolom L5_K1 40x40_3 Lantai 5 dapat dilihat pada Gambar 5.135 sampai Gambar 5.137 dan Tabel 5.76, kemudian hasil kinerja pada SAP2000 akan dibandingkan dengan hasil *moment-curvature* dari aplikasi response-2000.

Gambar 5. 135 Posisi sendi plastis Kolom L5_K1 40x40_3 step 17 untuk pembebanan *pushover* arah-Y pada As-2

Gambar 5. 136 *Hinge result* pada Kolom L5_K1 40x40_3 Lantai 5 (lihat inset pada Gambar 5.135)

Gambar 5. 137 Momen rotation pada Kolom L5_K1 40x40_3 Lantai 5 (lihat inset pada Gambar 5.135)

Sten	M2	Rotation	Curvature	R2State	R2Status
Sup	KN-m	rad	rad/m		K2 Status
0	-4.6581	0	0	A to <=B	A to <=IO
1	14.0066	0	0	A to <=B	A to <=IO
2	49.5578	0	0	A to <=B	A to <=IO
3	67.9354	0	0	A to <=B	A to <=IO
4	112.924	0	0	A to <=B	A to <=IO
5	152.8933	0	0	A to <=B	A to <=IO
6	193.3849	0	0	A to <=B	A to <=IO
7	226.3872	0.00036	0.0009	B to <=C	A to <=IO
8	232.6728	0.002872	0.00718	B to <=C	A to <=IO
9	235.0184	0.003757	0.0093925	B to <=C	A to <=IO
10	238.5486	0.005334	0.013335	B to <=C	IO to <=LS
11	239.9154	0.006435	0.0160875	B to <=C	IO to <=LS
12	242.7063	0.007357	0.0183925	B to <=C	IO to <=LS
13	248.9848	0.01097	0.027425	B to <=C	IO to <=LS
14	260.1651	0.01517	0.037925	B to <=C	LS to <=CP
15	268.7357	0.017357	0.0433925	B to <=C	LS to <=CP
16	269.3387	0.017615	0.0440375	B to <=C	LS to <=CP
17	270.2135	0.018869	0.0471725	C to <=D	>CP

Tabel 5. 76 Hinge result pada Kolom L5_K1 40x40_3 Lantai 5

Pada Gambar 5.136, Gambar 5.137, dan Tabel 5.76 adalah hasil momen rotasi dari hasil pendetailan *hinge result* pada balok L5_K1 40x40_3 Lantai 5. Dari

hasil tersebut, terlihat bahwa sendi plastis pada hasil analisis *pushover* berhenti pada step ke-17 dimana sendi plastis sudah mengalami plastifikasi pada level *CP* dengan momen sebesar 270.2135 kN dan rotasi sebesar 0,018869 rad untuk rotasi.

Gambar 5. 138 Level kinerja momen rotasi kolom

Dari Gambar 5.138 ditunjukan hasil momen rotasi dari beberapa elemen kolom, dimana terdapat kolom yang masuk ke dalam level *collaps prefention* karena nilai rotasi kolom tersebut masuk ke dalam kriteria CP sesuai yang disajikan didalam Tabel 5.76 pada kolom K1_40x40_3 yaitu sebesar 0,018869 rad.

Gambar 5. 139 Plastic rotation angel pada kolom As 3

Pada Gambar 5.139 dapat dilihat hasil analisis pushover berupa platistic rotation angel pada kolom As 3 ada beberapa balok yang mengalami level kinerja IO (*immediate occupancy*) dan CP (*collaps prefention*) pada kolom atap, untuk seluruh elemen kolom yang mengalami rotasi dapat dilihat pada lampiran 6.

Kemudian dilakukan perbandingan antara momen curvature dari SAP2000 dengan aplikasi Respon 2000 dapat dilihat pada Gambar 5.140.

Gambar 5. 140 Hasil momen curvature (a) nilai dari Response2000 moment curvature positif dan negatif pada kolom (b) dan nilai dari SAP2000 moment curvature positif pada kolom L5_40x40_3

Grafik yang diperoleh dari Gambar 5.140 perbandingan *moment curvature* menggunakan program SAP2000 dan program Response 2000 adalah mendekati sama. Hal ini membuktikan bahwa ketelitian input untuk sendi plastis sudah benar.

5.3.8 Kritik Desain Gambar Struktur

Gambar 5. 141 Potongan melintang as 3 pada lantai 5

Gambar 5. 142 Eksentrisitas pada kolom

Banyak bangunan struktur yang runtuh disebabkan oleh kegagalan struktur pada kolom. Sebab, komponen struktur utama pada bangunan adalah kolom sebagai penerima beban bangunan maupun beban luar yang bekerja pada struktur yang selanjutnya akan diteruskan ke dalam pondasi. Oleh sebab itu, perencanaan kolom harus mendapat perhatian lebih. Terlebih kolom menerima kombinasi beban yaitu beban aksial serta momen lentur yang diakibatkan oleh beban eksentris maupun beban lateral akibat angin dan gempa atau dapat pula akibat beban lantai yang tidak seimbang.

Pada kasus Gambar 5.141 kolom akan melentur akibat momen dan momen tersebut akan cenderung menimbulkan tekanan pada satu sisi kolom dan tarikan pada sisi lainnya, tergantung pada besar relatif momen dan beban aksial. Pada 253 Gambar 5.142 memperlihatkan kolom yang memikul beban *P*n. Beban aksial besar dan momen kecil sehingga seluruh penampang tertekan. Jika suatu kolom menerima momen lentur kecil (yaitu eksentrisitas kecil), seluruh kolom akan tertekan tetapi tekanan di satu sisi akan lebih besar dari sisi lainnya. Tegangan tekan maksimum dalam kolom akan sebesar 0,85 f²c dan pada kondisi ini keruntuhan akan terjadi oleh runtuhnya beton dan semua tulangan tertekan.

2) Kolom pendek

Gambar 5. 143 Kolom pendek pada lantai 1

Gambar 5. 144 Contoh kerusakan pada kolom pendek

Pada Gambar 5.143 dan Gambar 5.144 dapat dilihat terdapat kolom pendek pada lantai 1, kolom pendek perlu dihindari karena kurang mampu menahan gaya lateral apalagi kolom dijepit oleh *shearwall*. Terjadi kerusakan pada kolom pendek disebabkan karena besarnya gaya geser akibat beban gempa dan juga pada bagian kolom sebagian dijepit oleh *shearwall* dan sebagian tidak menggunakan *shearwall* oleh sebab itu kolom yang tidak dijepit oleh *shearwall* mempunyai resiko lebih besar untuk patah geser.