THE ANALYSIS OF FASHION-ORIENTED IMPULSE BUYING ON COLLEGE STUDENTS

A THESIS

Presented as Partial Fulfillment of the Requirement to Obtain the Bachelor Degree in Management Department

Written By: DYAN DD MUHAMMAD

Student Number: 13311306


DEPARTMENT OF MANAGEMENT INTERNATIONAL PROGRAM FACULTY OF ECONOMICS AND BUSINESS UNIVERSITAS ISLAM INDONESIA YOGYAKARTA 2018

THE ANALYSIS OF FASHION-ORIENTED IMPULSE BUYING ON COLLEGE STUDENTS

A BACHELOR DEGREE THESIS

THE ANALYSIS OF FASHION-ORIENTED IMPULSE BUYING ON COLLEGE STUDENTS

DECLARATION OF AUTHENTICITY

Herein I declare the originality of the thesis; I have not presented anyone else's work to obtain my university degree, nor have I presented anyone else's words, ideas or expression without acknowledgement. All quotations are cited and listed in the bibliography of the thesis.

If in the future this statement is proven to be false, I am willing to accept any sanction complying with the determined regulation or its consequence.

ACKNOWLEDGMENTS

بِنْ صِلْلَا إِلَيْهِمْ الْجَيْمُ

Asssalamualaikum Wr. Wb.

Alhamdulillahi rabbil'alamin, the researcher feels gratitude to Allah SWT, because of His blessing and grace, the researcher can complete writing the thesis with the title "THE ANALYSIS OF FASHION-ORIENTED IMPULSE BUYING ON COLLEGE STUDENTS". This thesis writing is one of the requirements to complete the study and to get an undergraduate degree in Marketing Study, Department of Management, Faculty of Economics, Universitas Islam Indonesia.

The preparation of this research is not separated from the encouragement and the support from several parties. In this occasion, the researcher wants to give his gratitude to the following:

- Allah SWT, for all Your Kindness, Mercy, and Lessons that You always give to me.
- 2. Prophet Muhammad SAW, for being a great figure as the Last Prophet and making this life becomes better than before.
- Mr. Anas Hidayat, Drs., M.B.A., Ph.D. as the Head of Business and Economics Department, International Program UII and Mr. Rokhedi Priyo Santoso, S.E., MIDEc., as the Deputy Head of Business and Economics Department, International Program UII.
- 4. Raden Roro Ratna Roostika, S.E., MAC., Ph.D.as the Content Advisor that

has provided time, energy, and thought in giving a direction in the thesis preparation.

- 5. Ms. Alfi Zakiya, S.Kom., S.Pd. as the language advisor who has provided time, energy, and willingness to correct my grammar.
- 6. Mr. Anas Hidayat, Drs., M.B.A., Ph.D. as the examiner for thesis exam who has provided suggestion and advice to my thesis.
- 7. My Family who always support me whenever and wherever I need. My mother and father, Riyanti Dwi Nastiti and Suhardianto for the life guidance. My beloved sisters, Fahanny and Fahaliza for always being there when I need someone to joke with. Thank you for your unconditional love.
- 8. My broskies, xFBCx. Augi, Fatra, Gifi, and Lukas who always support me, and also trash talk me.
- Seta, Avi, Robot, Serge, Agiv, Fajar, Ayang, Beruk, Nur, Midut, Hanif. Thank you for making my Uni life feels much more fun.
- All of IP Management 2013 students: Adhiya, Miftah, Budi, Alma, Anan, Annis, Seta, Astrid, Asya, Avi, Agiv, Dhito, Citra, Dina, Batman, Ayang, Robot, Hady, Henry, Ayik, Upit, Nur, Midut, Serge, Roppun, Winny. Thank you for the togetherness and cheerfulness during this time.
- 11. All members of International Buddy, MARCOMM IP UII, and OMT Facilitators that have worked together with me.
- 12. Furthermore, great thanks dedicated for all of you who always give me support, help and pray for all this time, so that I can complete this thesis.

This research is not perfect yet but hopefully, this research may be useful for the management study, especially in marketing study.

Wassalamualaikum Wr. Wb.

Yogyakarta, February 12th, 2018

Dyan DD Muhammad

TABLE OF CONTENTS

TITLE PAGE	i
APPROVAL PAGE	ii
LEGALIZATION PAGE	iii
DECLARATION OF AUTHENTICITY	iv
ACKNOWLEDGMENTS	v
TABLES OF CONTENT	viii
LIST OF TABLES	xi
LIST OF FIGURES	xii
LIST OF APPENDICES	xiii
ABSTRACT	xiv
ABSTRAK	XV
CHAPTER I: INTRODUCTION	1
1.1 Background	
1.2 Problems Statement	
1.3 Research Objectives.	5
1.4 Benefits of Research	
1.5 Limitations of The Study	6
1.6 Systematical Writing	
CHAPTER II: LITERATURE REVIEW	9
2.1 Impulse Buying	9
2.2 Fashion Involvement	11
2.3 Hedonic Consumption	13
2.4 Positive Emotion	
2.5 Theoritical Framework	

CHA	APTER II	I: RESEARCH METHODOLOGY	18
3	.1 Type of	of Study	18
3	.2 Resear	ch Location	18
3	.3 Popula	ation And Sample	.19
3	.4 Data T	Sypes And Collection Method	.20
3	.5 Instrur	nentation	.20
3	.6 Variabl	les Definition and Measurement	.21
3	.7 Validi	ty and Reliability Test of the Instrument	.26
3	.8 Analys	sis Technique	.28
	3.8.1	Respondents' Characteristic	.29
	3.8.2	Descriptive Analysis	.29
	3.8.3	Model Development on Theory	.29
CHA	APTER IV	: DATA ANALYSIS AND DISCUSSION	37
4	.1 Charao	cteristics of Respondents	.38
	4.1.1	Respondents Classification Based on Number of Fashion Product Bought Every Year	38
	4.1.2	Respondents Classification Based on Gender	.39
	4.1.3	Respondents Classification Based on Age	.40
	4.1.4	Respondents Classification Based on Expenses Per Month	.41
	4.1.5	Respondents Classification Based on University	42
	4.1.6	Respondents Classification Based on Field Taken	43
4	.2 Measu	rement Analysis	44
4	.3 Descri	ptive Analysis	46
	4.3.1	Descriptive Analysis Variable of Fashion Involvement	.47
	4.3.2	Descriptive Analysis Variable of Positive Emotion	.48
	4.3.3	Descriptive Analysis Variable of Hedonic Consumption	50
	4.3.4	Descriptive Analysis Variable of Fashion-oriented Impulse Buying	51
4	.4 Goodne	ess of Structural Model Measurement	52
4	.5 Hypoth	leses Testing	.54
4	.6 Result	And Discussion	58

CHAPTER V: CONCLUSIONS AND RECOMMENDATIONS	65
5.1 Conclusions	65
5.2 Research Limitations	66
5.3 Suggestions	67
REFERENCES	68
APPENDICES	74

LIST OF TABLES

Table 3.1Empirical Support For The Questionnaire.	25
Table 3.2Initial Questionnaire Validity And Reliability	27
Table 3.3Goodness of Fit Index	
Table 4.1 Respondents Classification Based on Number of Fashion Product E	Bought
Every Year	38
Table 4.2 Respondents Classification Based on Gender	39
Table 4.3 Respondents Classification Based on Age	40
Table 4.4 Respondents Classification Based on Expenses Per Month	41
Table 4.5 Respondents Classification Based on University	42
Table 4.6 Respondents Classification Based on Study Field Taken	43
Table 4.7 Validity and Reliability Test.	45
Table 4.8 Descriptive Analysis of Fashion Involvement.	47
Table 4.9 Descriptive Analysis of Positive Emotion	49
Table 4.10 Descriptive Analysis of Hedonic Consumption.	50
Table 4.11 Descriptive Analysis of Fashion-oriented Impulse Buying	51
Table 4.12 Goodness of Fit Analysis	53
Table 4.13 Hypothesis Testing.	

LIST OF FIGURES

Figure 2.1 Theoritical Framework	17
Figure 4.1Hypothesis Testing Model	55

LIST OF APPENDICES

APPENDIX A: Questionnaire	75
APPENDIX B: Validity & Reliability Test (AMOS)	
APPENDIX C: Output Analysis of Full Model (AMOS)	85
APPENDIX D: Descriptive Analysis Output	101

THE ANALYSIS OF FASHION-ORIENTED IMPULSE BUYING ON COLLEGE STUDENTS

Dyan DD Muhammad Faculty of Economics and Business Universitas Islam Indonesia dyanddm@gmail.com

ABSTRACT

The aim of this research was to determine the role of fashion involvement, positive emotion, and hedonic consumption in explaining college students' fashion-oriented impulse buying toward fashion products. This research was conducted in Indonesia. The sample of the research was college students who follows fashion trend and have experiences regarding impulse buying. The data was collected by using questionnaire based on Likert scale. The method of sample was purposive sampling with 219 respondents that were chosen to represent overall users. The data was analyzed by using Structural Equation Modeling analysis with the help of SPSS and AMOS. The result of this research showed that there were positive influences both directly and indirectly on fashion involvement toward fashion-oriented impulse. There were positive influence of positive emotion and hedonic consumption as mediating variables toward fashion-oriented impulse buying.

Keyword: Fashion Involvement, Positive Emotion, Hedonic Consumption, Fashion-oriented Impulse Buying

ANALISIS FASHION-ORIENTED IMPULSE BUYING TERHADAP MAHASISWA

Dyan DD Muhammad Faculty of Economics and Business Universitas Islam Indonesia dyanddm@gmail.com

ABSTRAK

Tujuan dari penelitian ini adalah untuk mengetahui peran keterlibatan fashion, emosi positif, dan konsumsi hedonis dalam menjelaskan perilaku impulse buying mahasiswa terhadap produk fashion. Penelitian ini dilakukan di Indonesia. Sampel penelitian adalah mahasiswa yang mengikuti perkembangan fashion dan pernah mengalami impulse buying. Data dikumpulkan dengan menggunakan kuesioner berdasarkan skala Likert. Metode sampel menggunakan purposive sampling dengan 219 responden yang dipilih untuk mewakili keseluruhan pengguna. Data kemudian dianalisis dengan menggunakan analisis Structural Equation Modeling dengan bantuan SPSS dan AMOS. Hasil penelitian ini menunjukkan bahwa keterlibatan fashion berpengaruh positif baik secara langsung maupun tidak langusng pada impulse buying, terdapat dampak positif pada emosi positif dan konsumsi hedonis sebagai mediating variables terhadap impulse buying.

Kata Kunci: Keterlibatan Fashion, Emosi Positif, Konsumsi Hedonis, Impulse Buying

CHAPTER I

INTRODUCTION

1.1. BACKGROUND

As in many other countries in South East Asia, economic growth in Indonesia continues to be driven by private or household consumption (Sugandi, 2017). According to Indonesian Synthetic Fiber Producers Association (APSyFI), the purchasing power continues to increase, where textile consumption rose from 1.21 million tons in 2009 to 1.75 million tons in 2014, and encouraged by increases in population, consumer spending also caused by the increase in per capita consumption, which rose from 5.03 kg in the year 2009 to 6.82 kg in the year 2014 (Maizer, 2016). This resulted in the growth of textile and fashion industry in Indonesia. Moreover, young consumer group have caught significance attention from marketers as their purchasing power and money attitude has been growing and changing (Schor, 1998). Therefore, the consumer behavior of young consumer group, college students, is worth to be researched also the vast rise of fashion trends and product has opened up an alternative for young consumer group to express themselves.

Nowadays, shopping is not only an activity to acquire necessary goods or to fulfill needs, instead shopping has become a leisure and lifestyle activity (Lury, 1996; Bayley and Nancarrow, 1998), it may also fulfill psychological needs (Dittmar, Beattie, and Friese, 1996; Dittmar, 2005). Therefore, contrary to the 'rational economic man' view, it has been recognized that many consumer behaviors are not carefully considered at all. One particular spontaneous consumer style is known as impulse buying.

Impulse buying is a pervasive and distinctive lifestyle phenomenon that has been on a significant growth, thus; it received increasing attention from consumer researchers (Rook and Fisher, 1995). The increasing of personal disposable incomes and the availability of credit has made impulse buying behavior a common consumer behavior (Dittmar and Drury, 2000). Moreover, many store purchases are made when consumer follow their urge and give in to impulse buying (Underhill, 1999). Impulse buying behavior are more likely to occur when consumer evaluate their purchase which happened when consumer experienced an impulse buying stimulus (O'Guinn and Faber, 1989). Impulse buying has been suggested as an important field of study because of its powerful influence on consumer behavior (Bayley and Nancarrow, 1998 and Hausmann, 2000).

Researchers who studied impulse buying has been focused on defining the difference between impulse and non-impulse buying behavior (Cobb and Hoyer, 1986 and Piron, 1991). Many previous studies also provide theoretical framework for examining impulse buying related to psychological variables, hedonic experiences, and situational variables in shopping context (Beatty and Ferrell, 1998; Burroughs,

1996; Rook and Fisher, 1995; Park and Kim, 2008 and Herabadi *et al.*, 2009). Generally, researchers found that impulse buying satisfied hedonic or emotional needs for fun, social interaction, and gratification (Hausmann, 2000 and Piron, 1991).

Previous studies have implied that consumer impulse buying can be encouraged by a hedonic consumption tendency and emotional factors. An aligned issue with hedonic consumption is to determine product-specific impulse buying behavior. Jones *et al.* (2003) stated that product-specific impulse buying is affected significantly by product involvement and it is an important factor supporting impulse buying tendencies. Impulse buying of fashion products (e.g. clothing, apparel) shows a variety of pattern that include pure, reminded, emotional, and fashion-oriented impulse buying behaviors (Cha, 2001; Han *et al.*, 1991 and Ko, 1993).

Han *et al.* (1991) found that textile and clothing students had significantly higher impulse buying scores than students in other major. Thus, their findings clearly revealed that fashion-oriented impulse buying is related strongly to fashion involvement. It also supports the notion that sensory and experiential cues of fashion product might affect fashion involvement. Therefore, it encourages fashion-oriented impulse buying. Fashion-oriented impulse buying can also be predicted by hedonic consumption tendency (Hausmann, 2000) and positive emotion which occurs when shopping (Mattila and Enz, 2002; Herabadi *et al.*, 2009). Sensory experiential products (e.g. apparel, accessories, jewelry) have a major role in symbolic interaction with consumers' hedonic or emotional experiences in market environments (Park *et al.*, 2006). The importance of experiential aspect of consumption shows that it is important for marketers to understand impulse buying behavior for fashion products from an experiential perspective.

This research explored a model of fashion-oriented impulse buying related to product involvement and experiential aspect of consumption including hedonic consumption tendency and positive emotion among college students. Understanding fashion impulse buying behavior can help marketers or retailers in developing strategies that create shopping opportunities. These marketing strategies may help retailers manage highly involved fashion customers and encourage their purchase intentions. The benefits include an increased market share for fashion retailers and positive perceptions of impulse buying by fashion consumers.

1.2. PROBLEM STATEMENT

- 1) Does fashion involvement have a significant influence on positive emotion?
- 2) Does fashion involvement have a significant influence on hedonic consumption?
- 3) Does fashion involvement have a significant direct influence on fashion-oriented impulse buying?
- 4) Does positive emotion have a significant influence on fashion-oriented impulse buying?

- 5) Does hedonic consumption have a significant influence on positive emotion?
- 6) Does hedonic consumption have a significant influence on fashion-oriented impulse buying?

1.3. RESEARCH OBJECTIVE

The objectives of this research are to determine:

- 1) Whether fashion involvement has a significant influence on positive emotion.
- 2) Whether involvement has a significant influence on hedonic consumption.
- Whether fashion involvement has a significant direct influence on fashionoriented impulse buying.
- Whether positive emotion has a significant influence on fashion-oriented impulse buying.
- 5) Whether hedonic consumption has a significant influence on positive emotion.
- Whether consumption has a significant influence on fashion-oriented impulse buying.

1.4. BENEFITS OF RESEARCH

Theoretical Benefits

This research will provide information on the causal relationship among fashion involvement, hedonic consumption, positive emotion, and impulse buying on apparel. Thus, it provides contribution to further research of impulse buying in the field of consumer marketing and fashion marketing and provide additional literature on both studies.

Practical Benefits

This research can provide the information for retailer to further understand fashion involvement, hedonic consumption, and positive emotion as the variables that might affect impulse buying behavior. Understanding fashion impulse buying behavior offers retailers guidance in developing strategies that create shopping opportunities. These marketing strategies may help retailers manage highly involved fashion customers and encourage their purchase intentions.

1.5. LIMITATION OF THE STUDY

Due to the conditions and existing limitation during this research process, there are several limitations of this research, as follow:

- 1. The sample was geographically limited and the age range was narrow. The Data collected in other areas might produce different results.
- 2. This research only took Indonesian college students that were located within Yogyakarta area which were familiar with fashion.

3. The instrument was limited to a quantitative method. The survey asked participants to answer the questions based on their interest toward fashion and their impulse buying experiences. The qualitative research methods might bring different results.

1.6. SYSTEMATICAL WRITING

This thesis consists of five chapters while each chapter consists of several section, as follow:

CHAPTER I: INTRODUCTION

This chapter discusses the background of the research study, the formulation of the problems, the objectives of the research study, the benefits or contributions of the research, the limitation and the systematical writing of the research.

CHAPTER II: LITERATURE REVIEW

The chapter includes the theoretical foundation of the variables examined, which are fashion involvement, positive emotion, hedonic consumption tendency, and fashion-oriented impulse buying with the researchers' hypotheses, the framework of the research and several previous study related to this research study.

CHAPTER II: RESEARCH METHOD

This chapter explains the models and method used in this research to examined the variables, population, sample, sampling method/technique, the variables of the study, the measurement of the instrument, and the testing methods used.

CHAPTER IV: DATA ANALYSIS AND DISCUSSION

This chapter shows data analysis and discussion of the result obtained from statistical calculation using theoretical concepts and interpretation of research theories that are already existed.

CHAPTER V: CONCLUSIONS AND RECCOMENDATIONS

This chapter explains the conclusions of the research, analysis, and calculation of the obtained data from the research. In addition, this chapter also describes the weaknesses of the research and recommendations for future research.

CHAPTER II

LITERATURE REVIEW

2.1 IMPULSE BUYING

2.1.1 IMPULSE BUYING BEHAVIOR

Impulse buying behavior is a sudden, compelling, hedonically complex buying behavior in which the fastness urge of an impulse decision process moves past thoughtful and deliberate consideration of other information (Bayley and Nancarrow, 1998). Several previous studies have reported that consumer might not view impulse buying as a wrong act, instead consumer feel favorable toward their impulse buying behavior (Dittmar *et al.*, 1996; Hausmann, 2000 and Rook, 1987). Researchers have treated impulse buying behavior as an individual's variables differences that is likely to influence their decision making process (Beatty and Ferrell, 1998; Rook and Fisher, 1995 and Weun *et al.*, 1997). Impulse buying is considered as a reasonable unplanned behavior when it is related to objective evaluation and emotional preferences when shopping (Ko, 1993).

2.1.2 FASHION-ORIENTED IMPULSE BUYING

According to Jones *et al.* (2003), consumer impulse buying is an important concept as well as product involvement as they are involved with a specific product. Fashion-oriented impulse buying refers to an individual's awareness or

perception of fashionable attributes, design, or style of clothing (Park et al., 2006). Thus, fashion-oriented impulse buying is more likely to occur when consumers see or find new fashion products and buy it because they are motivated by the suggestion to buy new products which has new design or style (Han et al., 1991). Early researches on impulse buying behavior are more concentrated on the typology of impulse buying behavior. According to Han et al. (1991), impulse buying is classified into four types: (1) planned impulse buying, (2) reminded impulse buying, (3) fashion-oriented impulse buying, and (4) pure impulse buying. Han et al. (1991) found high evidence of fashion-oriented impulse buying for college students majoring in related field of fashion (e.g. textile and clothing) compared to students in other major. Thus, their findings suggested that fashionoriented impulse buying might be related and more likely to occur on students with majors having high fashion involvement. Subsequent research focused on impulse buying which was based on consumers' decision making process. Impulse buying behavior on apparel products was distinguished from reasonable unplanned buying that was based on emotional preference or objective evaluation rather than rational evaluation (Ko, 1993). Ko's (1993) finding implied that emotional factors might lead to fashion-oriented impulse buying behavior when shopping. According to Park et al., (2006) limited studies have reported that consumers are likely to be motivated to impulse buying by high involvement and emotional preference of products. The lack of research focused on the experiential aspects of consumption underscore the need to understand how fashion-oriented impulse buying relates to hedonic consumption tendency or the emotional factor in retail environments.

2.2 FASHION INVOLVEMENT

Involvement is a helpful metric for examining and explaining consumer behavior and segmenting consumer market (Kapferer and Laurent, 1985; Martin, 1998 and Kim, 2005). Involvement is the motivational arousal or interest triggered by a particular stimulus or situation, and displayed through drive (O'Cass, 2004). To simplified, involvement is a conceptualized interaction between an individual (consumer) and object (product).

In marketing, involvement refers to the extent interest with a certain product. Specifically, in fashion marketing, involvement refers to the interest toward fashion product (e.g. apparel) (Park *et al.*, 2006). According to Fairhusrt, *et al.* (1989), fashion involvement is primarily used to predict behavioral variables related to apparel products such as; product involvement, buying behavior, and consumer characteristic. O'Cass (2000, 2004) found that fashion involvement related highly to personal characteristic and fashion knowledge which influenced consumers' confidence in making purchase decision which is positive relation between fashion involvement and apparel purchasing. Fairhurst *et al.*, 1989 and Seo *et al.*, 2001, suggested that consumers with high fashion involvement were more likely to buy

apparel. Thus, it can be assumed that consumers with high fashion involvement are more likely to induce themselves in fashion-oriented impulse buying. Haq *et al.* (2014) found that there is a mediating relationship between fashion involvement and impulse buying. Therefore, it is suggested that there is a positive relationship between fashion involvement and hedonic consumption.

H1: Fashion involvement has a positive influence on positive emotion during shopping.

H2: Fashion involvement has a positive influence on fashion-oriented impulse buying during shopping.

H3: Fashion involvement has a positive influence on hedonic consumption tendency.

Park, E. J., E.	A Structural	-	Fashion	1)	Fashion involvement
Y. Kim, and	Model of		Involvement		and positive emotion
J. C. Forney	Fashion-	-	Hedonic		had positive
(2006)	oriented		Consumption		influences on
	Impulse	-	Positive Emotion		consumers' fashion-
	Buying	-	Impulse Buying		oriented impulse
	Behavior				buying behavior with
					fashion involvement
					having the greatest
					influence.

2.3 HEDONIC CONSUMPTION

Hirschman and Holbrook (1982) defined hedonic consumption as behavioral aspect related to multi-sensory fantasy, and emotional consumption, which is driven by benefits such as fun (using the product) and aesthetic appeal. Moreover, Sherry (1990) stated that bargaining and haggling are two shopping experiences associated with shopping enjoyment. These suggest that the experiences while shopping may be more important than the product acquisition.

Impulse buying has an important role in fulfilling hedonic desires associated with hedonic consumption (Hausman, 2000; Piron, 1991 and Rook, 1987). Haq *et al.* (2014) stated that hedonic consumption fully mediates the relationship between fashion involvement and impulse buying. These findings support a conceptual link between hedonic shopping motivation, impulse buying behavior, and also fashion involvement. Consumers are more likely to engage in impulse buying when they are motivated by hedonic desire or by non-economic reasons, such as fun, fantasy, and social or emotional gratification (Hausman, 2000 and Rook, 1987).

Since shopping experiences goals are mostly referred as an activity to satisfy hedonic needs, the products purchased during these excursions appear to be selected without prior planning and they represent an impulse buying event. Moreover, Goldsmith and Emmert (1991) stated that fashion-oriented impulse buying behavior is motivated by new versions of fashion styles and brand image salience which drives consumers' hedonic desires toward hedonic shopping experiences.

H4: Hedonic consumption tendency has positive influence on positive emotion during shopping.

H5: Hedonic consumption tendency has a positive influence on fashion-oriented impulse buying behavior during shopping.

Haq, M. A.,	Measuring the	-	Fashion	1)	Hedonic
N. R. Khan,	Mediating		Involvement		consumption fully
and A. M.	Impact of	-	Hedonic		mediates the
Ghouri	Hedonic		Consumption		relationship between
(2014)	Consumption	-	Impulse Buying		fashion involvement
	on Fashion				and impulse buying .
	Involvement				
	and Impulse				
	Buying				
	Behavior				

2.4 POSITIVE EMOTION

Emotion that encompasses affect and mood is an important factor in consumer decision making. Typically, emotion is classified into two orthogonal dimensions, which are positive and negative (Watson and Tellegen, 1985). Several previous studies reported that consumers felt uplifted or energized after shopping experiences (Bayley and Nancarrow, 1998; Dittmar *et al.*, 1996 and Rook, 1987). Emotion especially positive emotion can be generated by an individual's pre-existing mood, affective disposition, and reaction toward current environmental encounters (e.g. desired items, sales promotions).

Several previous studies stated that emotion strongly influences actions including impulse buying (Beatty and Ferrell, 1998; Hausman, 2000; Rook and Gardner, 1993 and Youn and Faber, 2000). Consumers in more positive emotional states are more likely to have reduced decision complexity and shorter decision time (Isen, 1984). Moreover, on comparison with negative emotion, consumers with positive emotion exhibited greater impulse buying because of feeling of beings unconstrained, a desire to reward themselves, and higher energy levels (Rook and Gardner, 1993).

While shopping, in-store emotion can influence purchase intentions and spending as well as perceptions of quality, satisfaction, and value (Babin and Babin, 2001). Beatty and Ferrell (1998) found that consumer's positive was associated with the urge to buy impulsively. This support earlier finding that impulse buyers are more emotional compared to non-impulse buyers (Weinberg and Gottwald, 1982). Moreover, because impulse buyers exhibit greater positive feelings (e.g. pleasure, excitement, joy). They often over spend when shopping (Donovan and Rossiter, 1982). Furthermore, unplanned apparel purchases satisfy the emotional need derived from the social interaction inherent in the shopping experience (Cha, 2001). Thus, consumer emotion can be an important determinant for predicting impulse buying in a retail store.

H6: Positive emotion has a positive influence on fashion-oriented impulse buying behavior during shopping.

Chang, H. J.,	Application of	-	Retail	1)	Consumers' positive
M. Eckman,	Stimulus-		Environment		emotional responses
& R. N. Yan	Organism-	-	Positive Emotion		influenced positively
(2011)	Response	-	Impulse Buying		their impulse buying
	Model to The	-	Hedonic		behavior
	Retail		Motivation		
	Environment:				
	The Role of				
	Hedonic				
	Motivation in				
	Impulse				
	Buying				
	Behavior				

2.5 THEORITICAL FRAMEWORK

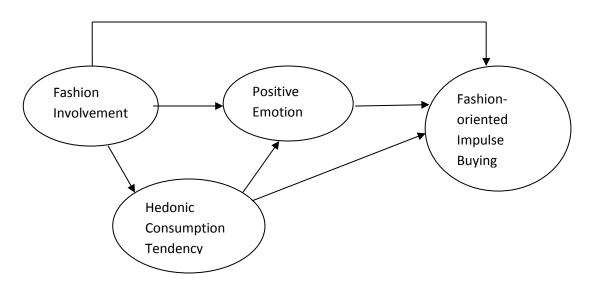


Figure 2.1 Theoritical Framework

The research model depicted in Figure 1 was developed to examine consumers' impulse buying behavior toward fashion products (Park *et al.*, 2006). It illustrates the causal relationships among four variables (fashion involvement, positive emotion, hedonic consumption tendency, and fashion-oriented impulse buying) in a shopping context. In this causative relationship, fashion involvement is assumed to influence positive emotion, hedonic consumption tendency, and fashion-oriented impulse buying. In addition, emotion and hedonic consumption tendency are assumed to influence fashion-oriented impulse buying behavior.

CHAPTER III

RESEARCH METHODOLOGY

3.1 TYPE OF STUDY

The purpose of this research is to examine the causal relationship and to test the hypothesis. This research examined the relationship and/or correlation among fashion involvement, positive emotion, and hedonic consumption tendency in influencing college students' fashion-oriented impulse buying. The results of this research were expected to give a better understanding about the relationship among variables, and provide an insight for fashion marketing based on the variables. The approach used in this research was quantitative approach, conducted by spreading questionnaire as the research instrument and Likert scale was used as the itemized rating scale to assess data from 219 respondents who were familiar with fashion.

3.2 RESEARCH LOCATION

The location of this research was Yogyakarta without specific regional characteristics. Yogyakarta was choosen for its number of students and universities. With a high population of students, the fashion trend around students has shown to be significant. Moreover, Yogyakarta area is undergoing a very significant development regarding with business retail, especially fashion retails which will be a great circumstance for this research.

3.3 POPULATION AND SAMPLE

Population is the scope or magnitude characteristic of the whole object under study. The sample is the amount of certain characteristics of the part of the population that has the same characteristics of the population ("Populations and Sampling", n.d). The population was college students who lives within Yogyakarta, Indonesia and who were familiar with fashion. The range of age followed the common age of college students from freshman to senior.

The method of purposive sampling was used to develop the sample for the research. Purposive sampling belongs to the non-probability sampling technique. The members of the sample was selected based on their knowledge, relationships, and expertise regarding a research subject (Black, 2010). In this research the samples that were selected knew about the phenomenon under investigation and involve actively in the fashion trend. The sample in this research was 219 people. The number of the samples is based on the analysis tool, which is Structural Equation Modeling (SEM). SEM required the sample size to be 5-10 times the number of observation for each estimated parameters or indicators used (Ferdinand, 2006).

3.4 DATA TYPES AND COLLECTION TECHNIQUES

The data used in this research was both primary and secondary data. The primary data obtained directly using a questionnaire distributed to 400 respondents, 200 in a private university the other half in public university. However, questionnaire that passed the purposive sampling was only 219. All questions in the questionnaire were translated into *Bahasa Indonesia* to help the respondent understand the questions. The questionnaires were distributed both offline or directly (print out) and online (Google forms) to the respondents. The secondary data used in this research was obtained from previous literature review and journal relevant to the research.

3.5 INSTRUMENTATION

The instrument used to obtain the primary data in this research was in survey format. Questions were adopted from previous research with the consent and help of the researcher's thesis committee. Variables investigated were mostly related with internal factors. The research, therefore, focused on the influences of both involvement, and emotion on college students' fashion-oriented impulse buying behavior.

The questionnaire consisted of five major sections measuring college students' fashion involvement, positive emotion, hedonic consumption tendency, fashionoriented impulse buying tendency, and demographics. The first section of the survey consisted of questions to determine the respondents' demographic profile, such as age, gender, disposable income, university, and major. Sections two through section four consisted of questions measuring the independent variables that were expected to influence college students' fashion-oriented impulse buying. These were fashion involvement, positive emotion, and hedonic consumption. Finally, the last section includes questions measuring the college students' fashion-oriented impulse buying.

A six-point Likert scale, ranging from strongly unlikely=1 to strongly likely=6 was used to measure each variable, in order to avoid neutral answer. Participants were asked to circle the number that best described their response. Demographic items were measured using multiple choices formats. All instructions and consent information were included in the questionnaire both offline and online.

3.6 VARIABLES DEFINITION AND MEASUREMENT

The variables that was be analyzed in this research were fashion involvement as the independent variables and 3 dependent variables which were positive emotion, hedonic consumption and fashion-oriented impulse buying which affected by the independent variable. Then, to measure those variables, this research used Six-Points Likert Scale, where 1 indicated very unlikely and6 showed very likely.

1) Fashion involvement

Involvement is a helpful metric for explaining consumer behavior and segmenting consumer markets (Kapferer and Laurent, 1985; Kim, 2005; Martin, 1998). Involvement is the motivational state of arousal or interest evoked by a particular stimulus or situation, and displayed through protiperties of drive (O'Cass, 2004). This variable is measured by these indicators (Fairhurst *et al.*, 1989):

- a) I usually have one or more outfits of the very latest style.
- b) An important part of my life and activities is dressing smartly.
- c) I am interested in shopping at boutique or fashion specialty stores rather than at department stores for my fashion needs.
- d) I usually dress for fashion, not comfort, if I must choose between two.
- e) I am interested in fashion trend every year.

2) *Positive Emotion*

Positive emotion can be elicited by an individual's pre-existing mood, affective disposition, and reaction to current environmental encounters (e.g. desired items, sales promotions). This variable was measured by these indicators (Beatty and Ferrell, 1998, and Dawson *et al.*, 1990):

- a) I tend to feel excited when and after shopping.
- b) I tend to feel satisfied when and after shopping.
- c) I tend to feel happy when and after shopping
- d) I tend to feel uplifted when and after shopping

e) I tend to feel more self-rewarded when and after shopping

3) *Hedonic Consumption Tendency*

Hedonic consumption includes those behavioral aspects related to multisensory, fantasy, and emotional consumption, which are driven by benefits such as fun using the product and aesthetic appeal (Hirschman and Holbrook, 1982). Bargaining and haggling are two shopping experiences associated with shopping enjoyment (Sherry, 1990). This variable was measured by these indicators (Hausman, 2000 and Chang *et al.*, 2011):

- a) I want to satisfy my sense of curiosity.
- b) I want to be offered new experiences.
- c) I want to feel like I am exploring new world.
- d) Shopping is one of the activities to spend my leisure time.
- e) Shopping is an exciting activity.

4) Fashion Oriented Impulse Buying

Fashion-oriented impulse buying refers to a person's awareness or perception of fashion ability attributed to an innovative design or style. That is, fashion-oriented impulse buying occurs when consumers see a new fashion product and buy it because they are motivated by the suggestion to buy new products (Han *et al.*, 1991). This variable was measured by these indicators (Han *et al.*, 1991 and Chang *et al.*, 2011):

- a) I buy clothing with a new style if I see it.
- b) I buy to try out a garment with a new feature.
- c) I like to buy new clothing that just comes out.
- d) Sometimes I buy clothes which I did not plan to.
- e) I feel excited when I see new clothes.

Table 3.1: Empirical Support for the Questionnaire

Questionnaire	Empirical Support (Question Number)
Section 1: Fashion Involvement	Fairhurst <i>et al.</i> , 1989 (1-5)
1. I usually have one or more outfits of the very latest	
style.	
2. An important part of my life and activities is	
dressing smartly.	
3. I am interested in shopping at boutique or fashion	
specialty stores rather than at department stores for	
my fashion needs.	
4. I usually dress for fashion, not comfort, if I must	
choose between two.	
5. I am interested in fashion trend every year.	
Section 2: Positive Emotion	Beatty and Ferrell, 1998 (1-2)
1. I tend to feel excited when and after shopping.	Dawson et al., 1990 (3-5)
2. I tend to feel satisfied when and after shopping.	
3. I tend to feel happy when and after shopping	
4. I tend to feel uplifted when and after shopping	
5. I tend to feel more self-rewarded when and after	
shopping	
Section 3: Hedonic Consumption Tendency	Hausman, 2000 (1-3)
1. I want to satisfy my sense of curiosity.	Chang <i>et al.</i> , 2011 (4-5)
2. I want to be offered new experiences.	
3. I want to feel like I am exploring new worlds.	
4. Shopping is one of activity to spend my leisure time.	
5. Shopping is an exciting activity.	
Section 4: Fashion-oriented Impulse Buying	Han <i>et al.</i> , 1991 (1-3)
1. I buy clothing with a new style if I see it.	Chang <i>et al.</i> , 2011 (4-5)
2. I buy to try out a garment with a new feature.	
3. I like to buy new clothing that just came out.	
4. Sometimes I buy clothes, which I did not plan to.	
5. I feel excited when I see new clothes.	

3.7 VALIDITY AND RELIABILITY TEST OF THE INSTRUMENT

Validity test indicates the extent to which an indicator could explain the observed variables. A valid indicator is an indicator with a value corrected item of total correlation equal or more than .30. An indicator which has a value corrected item total correlation below .30 it will be considered as an invalid indicator. The reliability test was conducted to analyze the consistency of the measurement tool. The value of Cronbach Alpha need to be greater than .60 to be considered reliable (Sekaran, 2000).

Before distributing questionnaire to the samples as a data collection tool, it needed to be tested for its validity and reliability. The initial questionnaire was distributed to 38 respondents as a pilot test, to test its validity and reliability. Table 3.2 below presents the detail result of the validity and reliability test using SPSS.

Table 3.2: Initial Questio				I
Constructs/Indicator	Item-Total Correlation	Cronbach Alpha	Minimal Score	Status
FASHION INVOLVEMENT		.649	.6	Reliable
I usually have one or more outfits of the very latest style.	.673		.3	Valid
An important part of my life and activities is dressing smartly.	.784		.3	Valid
I am interested in shopping at boutique or fashion specialty stores rather than at department stores for my fashion needs.	.451		.3	Valid
I usually dress for fashion, not comfort, if I must choose between two.	.818		.3	Valid
I am interested in fashion trend every year.	.750		.3	Valid
POSITIVE EMOTION		.917	.6	Reliable
I tend to feel excited when and after shopping.	.893		.3	Valid
I tend to feel satisfied when and after shopping.	.934		.3	Valid
I tend to feel happy when and after shopping.	.944		.3	Valid
I tend to feel uplifted when and after shopping.	.857		.3	Valid
I tend to feel more self-rewarded when and after shopping.	.709		.3	Valid
HEDONIC CONSUMPTION TENDENCY		.747	.6	Reliable
I want to satisfy my sense of curiosity.	.663		.3	Valid
I want to be offered new experiences.	.730		.3	Valid
I want to feel like I am exploring new worlds.	.765		.3	Valid
Shopping is one of activity to spend my leisure time.	.770		.3	Valid
Shopping is an exciting activity.	.623		.3	Valid
FASHION-ORIENTED IMPULSE BUYING		.653	.6	Reliable
I buy clothing with a new style if I see it.	.807		.3	Valid
I buy to try out a garment with a new feature.	.693		.3	Valid
I like to buy new clothing that just come out.	.682		.3	Valid
Sometimes I buy clothes, which I did not plan to.	.455		.3	Valid
I feel excited when I see new clothes.	.654		.3	Valid

Table 3.2: Initial Questionnaire Validity and Reliability Test

3.8 ANALYSIS TECHNIQUE

This research mainly used AMOS and SPSS to conduct data analysis. This research consisted of two steps of data analysis. The first step of analysis was conduct pilot test. Pilot test was conducted to test the validity and reliability of the indicators used in the questionnaire. Pilot test was conducted by spreading questionnaire for 38 respondents, and the results was analyzed by using SPSS. Once the pilot test completed, the next step is measuring the error, testing the structural model as well as research hypotheses, and analyzing the model fitness by using AMOS (Ghozali & Fuad, 2008).

Structural equation modeling (SEM) is used as the technical analysis in this research, by considering the conceptual model of this research. It has three dependent variables, two mediating variables, and one independent variable. This model cannot be analyzed using multiple regression analysis. Therefore, this research used AMOS, which is one of the programs for SEM analysis. It is an analysis technique that allows the researcher to analyze the influence of several variables against other variables simultaneously (Ghozali *et al.*, 2008).

3.8.1. RESPONDENTS' CHARACTERISTIC

In this part, this research describes the demographic characteristic of the respondents. The demographic characteristics explain the number of fashion products bought every year, gender, age, expenses per month, university, and study field taken.

3.8.2. DESCRIPTIVE ANALYSIS

Descriptive analysis is a set of brief descriptive coefficients that summarizes a given data set, which can either be a representation of the entire population or a sample. Descriptive analysis is used for describing the average of respondents' responds toward each item in the questioner ("Descriptive Statistics," n.d).

3.8.3. MODEL DEVELOPMENT BASED ON THEORY

Structural Equation Modeling (SEM) were statistical techniques that one can use to reduce the number of observed variables into a smaller number of latent variables by examining the covariation among the observed variables. SEM has been described as a combination of exploratory factor analysis and multiple regression which is more of a confirmatory technique, but it can also be used for exploratory purposes. SEM allows researchers to test theoretical propositions regarding how constructs are theoretically linked and the directionality of significant relationships (Schreiber *et al.*, 2006).

3.8.3.1. PATH DIAGRAM AND STRUCTURAL EQUATION

SEM extends the possibility of relationships among the latent variables and encompasses two components: (a) a measurement model (essentially the CFA) and (b) a structural model. In addition to the above terms (measurement and structural model), two other terms are associated with SEM: *exogenous* which is similar to independent variables and*endogenous* which is similar to dependent or outcome variables. Exogenous and endogenous variables can be observed or unobserved depend on the model being tested. Within the context of structural modeling, exogenous variables represent those constructs that exert an influence on other constructs under researchand are not influenced by other factors in the quantitative model. Those constructs identified as endogenous are affected by exogenous and other endogenous variables in the model (Schreiber et al., 2006).

3.8.3.2. CHOOSING INPUT MATRIX AND ESTIMATION MODEL

SEM procedures give more emphasis on the use of covariance than individual cases. In SEM, the difference between the sample covariance and covariance of the predicted model is minimized. In other way, SEM was interpreted as the difference between the predicted/fitted covariance with the observed covariance. The covariance matrix has more advantages than other correlation matrix in giving comparison about validity between different population and different sample. The use of correlation is best suited if the researcher objectives are simply to understand the pattern of construct relationship, but do not describe the total variance of the construct (Ghozali *et al.*, 2008).

3.8.3.3. STRUCTURAL EQUATION MODEL (SEM) IDENTIFICATION

SEM focus on finding unique value that can be estimated. If the model cannot be estimated, more or less there is no unique value in the model coefficient. In contrast, parameter estimation will be arbiter if a model has some estimates that may fit in the model. SEM models can be said to be good if it has a unique solution for parameter estimation (Kasanah, 2015).

In identification of the SEM, as mentioned in Haryono & Wardoyo (2012), the researcher found the identification problem. Identification problem is the incapability of the proposed model to result the estimation model. In order to see identification model, it can be done by examining the estimation result which can be concluded as:

- 1. *Unidentified model*, if estimated parameter value is bigger than the amount of variance and covariance among the manifest variables.
- 2. *Just identified*, estimated parameter value is the same as the amount of variance and covariance among the manifest variables.
- 3. *Over identified*, estimated parameter value is smaller than the amount of variance and covariance among the manifest variables.

3.8.3.4. GOODNESS OF FIT CRITERIA

There are six types of measurement in Goodness of Fit:

A. Chi-square (X²)

The chi-square test statistic is used for hypothesis testing to evaluate the appropriateness of a structural equation model. If the distributional assumptions are fulfilled, the chi-square test evaluates whether the population covariance matrix is equal to the modelimplied covariance matrix (Schermelleh-Engel *et al.*, 2003).

In general, high chi-square values in relation to the number of degrees of freedom indicate that the population covariance matrix and the model-implied covariance matrix differ significantly from each other. As the residuals, the elements of empirical covariance matrix minus the model implied covariance matrix should be close to zero for a good model fit. The researcher is interested in obtaining a nonsignificant chi-square value with the associated degrees of freedom. If the *p*-value associated with the chi-square value is larger than 0.05, the null hypothesis is accepted and the model is regarded as compatible with the population covariance matrix. In this case the test states that the model fits the data, but still an uncertainty exists that other models may fit the data equally well (Schermelleh-Engel *et al.*, 2003).

B. RMSEA (Root Mean Square Error of Approximation)

Root Mean Square Error of Approximation (RMSEA) is a measurement of approximate fit in the population and is therefore concerned with the discrepancy due to approximation. RMSEA is estimated by the square root of the estimated discrepancy due to approximation per degree of freedom. RMSEA is regarded as relatively independent of sample size, and additionally favors parsimonious models (Schermelleh-Engel *et al.*, 2003).

The RMSEA is bounded below zero. Schermelleh-Engel *et al.* (2003) defined a "close fit" as a RMSEA value less than or equal to 0.05. It explained that, the value of ≤ 0.05 can be considered as a good fit, the value between 0.05 and 0.08 as an adequate fit, and the value between 0.08 and 0.10 as a mediocre fit. While, the value of >0.10 is not acceptable. Although there is a general agreement that the value of

RMSEA for a good model should be less than 0.05, an RMSEA of less than 0.06 is a cutoff criterion.

C. GFI (Goodness of Fit Index)

The Goodness-of-Fit-Index (GFI) measures the relative amount of the variances and covariance in the empirical covariance matrix that is predicted by the model-implied covariance matrix. GFI could imply to test on how good the model fits as compared to "no model at all" (null model), or it can be said when all parameters are fixed to zero (Schermelleh-Engel *et al.*, 2003).

In some cases, a negative GFI may occur. However, the usual rule is that 0.95 is an indicator of good fit relative to the baseline model, while the value which is greater than 0.90 is usually interpreted as indicating an acceptable fit (Schermelleh-Engel *et al.*, 2003).

D. AGFI (Adjusted Goodness of Fit)

The main function of Adjusted Goodness-of-Fit Index (AGFI) is to adjust bias as a result of model complexity. The AGFI adjusts the model's degrees of freedom relative to the number of observed variables and therefore rewards the less complex models with fewer parameters. The AGFI approaches the GFI. A rule for this index is that 0.90 is an indicator of good fit relative to the baseline model, while the value which is greater than 0.85 may be considered as an acceptable fit (Schermelleh-Engel *et al.*, 2003).

E. TLI (Tucker Lewis Index)

Tucker–Lewis index (TLI) is also called the *non-normed fit index* (NNFI) while adjustment to the TLI is called the *relative fit index* (RFI). According to Haryono & Wardoyo (2012), TLI was originally used as a tool to evaluate the factor analysis which is later developed to SEM. This measurement combines parsimony size into comparison index between the proposed model and null model and the TLI value that ranges from 0 to 1.0. TLI recommended value is equal to or greater than 0.09.

F. CFI (Comparative Fit Index)

As mentioned by Schermelleh-Engel *et al.* (2003), the Comparative Fit Index (CFI), an adjusted version of the Relative No Centrality Index (RNI) which is developed by McDonald and Marsh (1990), avoids the underestimation of fit. This is often noted in small samples of Bentler and Bonett's (1980) normed fit index (NFI).

The CFI ranges from zero to one with higher value that indicates better fit. A rule for this index is that 0.97 is an indicator of good fit relative to the independence model, while the value which is greater than 0.95 can be interpreted as an acceptable fit. The value of 0.97 seemed to be more reasonable as an indication of a good model fit than the often stated cut off value of 0.95. Compared to the NNFI, the CFIis one of the fit indices which is less affected by sample size (Schermelleh-Engel et al., 2003)

	1
Goodness of Fit Index	Cut off Value
Degree of Freedom (DF)	Positive (+)
X ² (Chi-Square)	Small value
Goodness of Fit Index	Cut off Value
Significance Probability	≥ 0.05
CMIN/DF	≤ 2.00
GFI (Goodness of Fit Index)	≥ 0.90
RMSEA (Root Mean Square Error of Approximation)	≤ 0.08
AGFI (Adjusted Goodness of Fit)	≥ 0.90
TLI (Tucker Lewis Index)	≥ 0.90
CFI (Comparative Fit Index)	≥ 0.90
Source: primary data processed 2017	I

Table 3.3Goodness of Fit Index

Source: primary data processed, 2017

CHAPTER IV

DATA ANALYSIS AND DISCUSSION

This chapter explains the data analysis of "College Students' Fashion Oriented Impulse Buying in Relation to Fashion Involvement, Positive Emotion, and Hedonic Consumption". The result of this analysis was presented through descriptive analysis of respondents' characteristics, descriptive analysis of respondents' responses, and SEM analysis. Structural Equation Modeling (SEM) was used as the data analysis tool in this research. Besides that, this research used AMOS as the SEM program.

The analysis was conducted in accordance with the stages in the SEM analysis as described in the previous chapter. In this research, SEM was used to evaluate the proposed model. After obtaining all the results from data processing, this research obtained proof of the hypotheses that had been developed previously. This research also found additional findings as a result of research model modification, which were then summarized into few conclusions.

As had already been explained in the previous chapter, 220 questionnaires had been spread out to 220 respondents to collect the data. The questionnaire details can be seen in appendix. The population in this research was student who studied and lived in Yogyakarta. In this research, the focus was college student. Thus, the range of age was set around the age of college students. In addition, the population in this research was also college students who were interested in fashion. The method of sample selection in this research was non-probability purposive sampling with convenient technique.

4.1. CHARACTERISTIC OF RESPONDENTS

This section explains the descriptive data obtained from respondents. Descriptive data were presented research, in order to see the profile of research data and the relationships that exist among the variables used in the research.

4.1.1. RESPONDENTS CLASSIFICATION BASED ON NUMBER OF FASHION PRODUCT BOUGHT EVERY YEAR

The percentage of respondents by number of fashion product bought every year can be seen in table 4.1 below:

	Frequency	Percent	Valid Percent	Cumulative Percent
< 5	49	22.4	22.4	22.4
> 10	101	46.1	46.1	68.5
5 - 10	69	31.5	31.5	100.0
Total	219	100.0	100.0	

Table 4.1 Respondents Classification Based on Number of FashionProduct Bought Every Year

Source: primary data processed, 2017

Based on Table 4.1, it can be concluded that the respondents in this research mostly bought more than 10 fashion products every year. There were 101

respondents or 58.9% of the total respondents who bought more than 10 fashion products every year and 69 or 31.5% respondents who bought between 5 - 10fashion product every year. In addition, there were 49 or 46.1% respondents who bought less than 5 fashion products every year. It showed that the majority of the respondents who were interested and had prior impulse buying on fashion were students who bought more than 10 fashion products every year.

4.1.2. RESPONDENTS CLASSIFICATION BASED ON GENDER

The percentage of respondents by gender can be seen in table 4.2 below:

	Frequency	Percent	Valid Percent	Cumulative Percent
Male	90	41.1	41.1	41.1
Female	129	58.9	58.9	100.0
Total	219	100.0	100.0	

Table 4.2Respondents Classification Based on Gender

Source: primary data processed, 2017

Based on Table 4.2, it can be concluded that the respondents in this research were mostly women. There were 129 female respondents or 58.9% of the total respondents. In addition, there were 90 male respondents or 41.1% of the total respondents. It showed that the majority of the respondents who were interested and had prior impulse buying experiences on fashion products were women.

4.1.3. RESPONDENTS CLASSIFICATION BASED ON AGE

Based on age, the respondents in this research were classified as follows:

	Frequency	Percent	Valid Percent	Cumulative Percent
< 20	6	2.7	2.7	2.7
> 22	91	41.6	41.6	44.3
20 - 22	122	55.7	55.7	100.0
Total	219	100.0	100.0	

Table 4.3 Respondents Classification Based on Age

Source: primary data processed, 2017

Based on Table 4.3, it can be concluded that the respondents in this research were mostly between 20-22 years old, with the total number 122 respondents or 55.7% of the total respondents. Meanwhile, the smallest percentage was for respondents aged <20 years old, which were 2.7% of the total respondents or 6 respondents.

4.1.4. RESPONDENTS CLASSIFICATION BASED ON EXPENSES PER MONTH

Based on expenses per month, the respondents in this research were classified as follow:

	Frequency	Percent	Valid Percent	Cumulative Percent
< Rp.1,000,000	70	32.0	32.0	32.0
> Rp. 3,000,000	60	27.4	27.4	59.4
Rp. 1,000,000 - Rp. 1,499,999	21	9.6	9.6	68.9
Rp. 1,500,000 - Rp. 1,999,999	34	15.5	15.5	84.5
Rp. 2,000,000 - Rp. 2,499,999	19	8.7	8.7	93.2
Rp. 2,500,000 - Rp. 3,000,000	15	6.8	6.8	100.0
Total	219	100.0	100.0	

 Table 4.4 Respondents Classification Based on Expenses per month

Source: primary data processed, 2017

Based on Table 4.4, it can be concluded that the respondents in this research mostly had expenses per month below Rp. 1,000,000 of 70 respondents or 32%, 60 or 27.4% respondents had expenses per month above Rp. 3,000,000, 34 or 15.5% respondents had expenses per month between Rp. 1,500,000 – Rp. 1,999,999, 21 or 9.6% respondents had expenses per month Rp. 1,000,000 – Rp. 1,499,999, 19 or 8.7% respondents had expenses per month between Rp. 2,000,000 – Rp. 2,499,999, and, 15 or 6.8% respondents had expenses per month between Rp. 2,500,000 – Rp.

3,000,000. This result showed that people who were interested and had prior impulse buying experiences on fashion product were mostly people who were had expenses per month under Rp. 1,000,000.

4.1.5. RESPONDENTS CLASSIFICATION BASED ON UNIVERSITY

The percentage of respondents by university can be seen in table 4.2 below:

	Frequency	Percent	Valid Percent	Cumulative Percent
Public University	69	31.5	31.5	31.5
Private University	150	68.5	68.5	100.0
Total	219	100.0	100.0	

Table 4.5 Respondents Classification Based on University

Source: primary data processed, 2017

Based on Table 4.5, it can be concluded that the respondents in this research were mostly private university students. There were 150 respondents from private universities or 68.5% of the total respondents. In addition, there were 69 respondents from public universities or 41.1% of the total respondents. It showed that the majority of the respondents who were interested and had prior impulse buying experiences on fashion products were students from private university.

4.1.6. RESPONDENTS CLASSIFICATION BASED ON FIELD TAKEN

The percentage of respondents by field taken can be seen in table 4.2 below:

	Frequency	Percent	Valid Percent	Cumulative Percent
Non-Social Science	133	60.7	60.7	60.7
Social-Science	86	39.3	39.3	100.0
Total	219	100.0	100.0	

Table 4.6Respondents Classification Based on Field Taken

Source: primary data processed, 2017

Based on Table 4.6, it can be concluded that the respondents in this research were mostly non-social science students. There were 133 respondents from non-social science or 68.5% of the total respondents. In addition, there were 86 respondents from social science or 41.1% of the total respondents. It showed that the majority of the respondents who were interested and had prior impulse buying experiences on fashion products were non-social science students.

4.2. MEASUREMENT ANALYSIS

In the application of AMOS, the retest of validity and reliability of the data was required. In this test, 219 responses were used as the sample. This test was used to determine whether the data were reliable and valid or not. In this test, the software of AMOS version 22.0 was used. The evaluation was assessed using Confirmatory Factor Analysis or CFA. The objective was to understand how good variables could be used to measure the construct. If the value of loading factor from each construct was more than 0.5 (λ >0.5), it was considered as valid. Moreover, if the value of construct reliability from each construct was more than 0.7, it was considered as reliable. The formula is as follows:

		• anany ana	11000000			
Indicator	Loading Factor (λ)	Standard Error (ε)	Σ(λ)	Σ(ε)	Construct Reliability	Label
			3.045	1.318	0.87	Reliable
						Valid
FI2	0.62	0.25				Valid
FI3	0.58	0.32				Valid
FI4	0.72	0.18				Valid
FI5	0.56	0.29				Valid
			3.581	1.184	0.91	Reliable
PE1	0.74	0.20				
PE2	0.65	0.23				Valid
PE3	0.68	0.32				Valid
PE4	0.76	0.19				Valid
PE5	0.73	0.23				Valid
			2.975	1.719	0.83	Reliable
HC1	0.52	0.35				Valid
HC2	0.50	0.45				Valid
HC3	0.60	0.32				Valid
HC4	0.69	0.28				Valid
HC5	0.65	0.30				
			3.276	1.417	0.88	Reliable
IB1	0.60	0.29				Valid
IB2	0.67	0.28				Valid
IB3	0.74	0.24				Valid
IB4	0.73	0.21				Valid
IB5	0.51	0.37				
	FI1 FI2 FI3 FI4 FI5 PE1 PE2 PE3 PE4 PE5 PE4 PE5 PE4 PE5 HC1 HC2 HC3 HC4 HC2 HC3 HC4 HC5 IB1 IB1 IB2 IB3 IB4	Loading Factor (λ) Factor (λ) F11 0.54 F12 0.62 F13 0.58 F14 0.72 F15 0.56 PE1 0.74 PE2 0.65 PE3 0.68 PE4 0.76 PE5 0.73 HC1 0.52 HC2 0.60 HC3 0.60 HC4 0.65 IB1 0.60 IB2 0.73 IB4 0.73	Loading Factor (λ) Standard Error (ε) IndicatorFactor (λ) Standard Error (ε) F110.540.26F120.620.25F130.580.32F140.720.18F150.560.29PE10.740.20PE20.650.23PE30.680.32PE40.760.19PE50.730.23HC10.520.35HC20.600.32HC40.690.28HC50.650.30IB10.600.29IB20.670.28IB30.740.24IB40.730.21IB50.510.37	IndicatorLoading Factor (λ)Standard Error (ε) Σ (λ)ImbodyStandard (λ) Σ (λ)FI10.540.26FI20.620.25FI30.580.32FI40.720.18FI50.560.29FI30.560.29FI40.740.20PE10.740.20PE20.650.23PE30.680.32PE40.760.19PE50.730.23HC10.520.35HC20.600.32HC30.600.32HC40.690.28HC50.650.30IB10.600.29IB20.670.28IB30.740.24IB40.730.21IB50.510.37	IndicatorLoading Factor (λ) Standard Error (ε) Σ (λ) Σ (ε) Imbox Σ (λ) Σ (ε) Σ (ε) Σ (ε) FI10.540.261.318FI10.540.261FI20.620.251FI30.580.321FI40.720.181FI50.560.291FI10.740.201FI20.650.231FI30.680.321PE10.740.201PE20.650.231PE30.680.321PE40.760.191PE50.730.231HC10.520.351HC30.600.321HC40.690.281HC50.650.301IB10.600.291.417IB20.670.281IB30.740.241IB40.730.211IB50.510.371	IndicatorFactor (λ)Standard Error (ε)Σ (λ)Σ (ε)Construct ReliabilityImage: Standard (λ)Srore (ε)S (λ)Σ (ε)S (ε)SImage: Standard (λ)Image: Standard (λ)S (ε)S (ε)S (ε)SImage: Standard (λ)O.54O.26Image: Standard (ε)Image: Standard (ε)Image: Standard (ε)F110.540.26Image: Standard (ε)Image: Standard (ε)Image: Standard (ε)Image: Standard (ε)F120.620.25Image: Standard (ε)Image: Standard (ε)Image: Standard (ε)Image: Standard (ε)F130.580.32Image: Standard (ε)Image: Standard (ε)Image: Standard (ε)Image: Standard (ε)F140.740.20Image: Standard (ε)Image: Standard (ε)Image: Standard (ε)Image: Standard (ε)F140.760.23Image: Standard (ε)Image: Standard (ε)Image: Standard (ε)Image: Standard (ε)Image: Standard (ε)F140.730.23Image: Standard (ε)Image: Standard (ε)Image: Standard (ε)Image: Standard (ε)Image: Standard (ε)F150.650.30Image: Standard (ε)Image: Standard (ε)Image: Standard (ε)Image: Standard (ε)F140.600.28Image: Standard (ε)Image: Standard (ε)Image: Standard (ε)Image: Standard (ε)F150.67<

Table 4.7Validity and Reliability Test

Source: primary data processed, 2017

In Table 4.7, the data indicated that all of the items on every variable were valid because the loading factors were more than 0.5 (λ >0.5). The data showed in Table 4.5

also indicated that all variables on the questionnaire for hypothesis testing model 1 were reliable because the construct reliability was more than 0.7.

4.3. DESCRIPTIVE ANALYSIS

The value-average score was assisted to determine respondents' assessment criteria. The interval score could be found by calculation the following:

Lowest perception score = 1

Highest perception score = 6

Interval = Interval = (6 - 1) / 6 = 1

With the detail interval as follows:

1.00 - 2.00 =	Very Bad
2.01 - 3.00 =	Bad
3.01 – 4.00 =	Fair (Neutral)
4.01 – 5.00 =	Good
5.01 - 6.00 =	Very Good

4.3.1. DESCRIPTIVE ANALYSIS VARIABLE OF FASHION INVOLVEMENT

From the results of respondents that had been collected, it can be explained that the variable distribution of respondents rating on fashion involvement is shown in Table 4.8 below:

No	Indicator	Average	Criteria
1	I usually have one or more outfits of the very latest style.	5.12	Very Good
2	An important part of my life and activities is dressing smartly.	4.94	Good
3	I am interested in shopping at boutique or fashion specialty stores rather than at department stores for my fashion needs.	4.84	Good
4	I usually dress for fashion, not comfort, if I must choose between two.	4.73	Good
5	I am interested in fashion trend every year.	4.77	Good
	Average	4.88	Good

Table 4.8 Descriptive Analysis of Fashion Involvement

Source: primary data processed, 2017

Based on the results of descriptive analysis shown in Table 4.8, the average assessment of respondents' fashion involvement was 4.88 (Good). The highest

rating occurred on "I usually have one or more outfits of the very latest style" which had the value of 5.12 (Very Good). While the lowest rating occurred on "I usually dress for fashion, not comfort, if I must choose between two" of 4.73 (Good). This means that the respondents had given judgment that "I usually have one or more outfits of the very latest style" was the most important factors in assessing the fashion involvement variables.

4.3.2 DESCRIPTIVE ANALYSIS VARIABLE OF POSITIVE EMOTION

From the results of respondents that had been collected, it can be explained that the variable distribution of respondents rating on positive emotion is shown in Table 4.9 below:

No	Indicator	Average	Criteria
1	I tend to feel excited when and after shopping.	4.94	Good
2	I tend to feel satisfied when and after shopping.	4.91	Good
3	I tend to feel happy when and after shopping	4.94	Good
4	I tend to feel uplifted when and after shopping	4.97	Good
5 I tend to feel more self- rewarded when and after shopping		4.93	Good
	Average	4.93	Good

 Table 4.9 Descriptive Analysis of Positive Emotion

Source: primary data processed, 2017

Based on the results of descriptive analysis shown in Table 4.7, the average assessment of respondents' positive emotion was 4.93 (Good). The highest rating occurred on "I tend to feel uplifted when and after shopping" of 4.97 (Good). While the lowest ratings occurred on "I tend to feel satisfied when and after shopping." of 4.91 (Good). This means that the respondents had given judgment that "I tend to feel uplifted when and after shopping" is the most important factor in assessing the positive emotion variables.

4.3.3 DESCRIPTIVE ANALYSIS VARIABLE OF HEDONIC CONSUMPTION

From the results of respondents that have been collected, it can be explained that on the variable distribution of respondents rating on hedonic consumption is shown in Table 4.10 below:

No	Indicator	Average	Criteria
1	I want to satisfy my sense of curiosity.	4.76	Good
2	I want to be offered new experiences.	4.67	Good
3	I want to feel like I am exploring new worlds.	4.76	Good
4	Shopping is one of activity to spend my leisure time.	4.72	Good
5	Shopping is an exciting activity.	4.86	Good
	Average	4.75	Good

Table 4.10Descriptive Analysis of Hedonic Consumption

Source: primary data processed, 2017

Based on the results of descriptive analysis shown in Table 4.8, the average assessment of respondents' hedonic consumption was 4.75 (Good). The highest rating occurred on "Shopping is an exciting activity." which had the value of 4.86 (Good). While the lowest rating occurred on "I want to be offered new

experiences." of 4.67 (Good). This means that the respondents had given judgment that "Shopping is an exciting activity." was the most important factors in assessing the fashion involvement variables.

4.3.4 DESCRIPTIVE ANALYSIS VARIABLE OF FASHION-ORIENTED IMPULSE BUYING

From the results of respondents that had been collected, it can be explained that on the variable distribution of respondents rating on fashion-oriented impulse buying is shown in Table 4.11 below:

No	Indicator	Average	Criteria
1	I buy clothing with a new style if I see it.	4.73	Good
2	I buy to try out a garment with a new feature.	4.85	Good
3	I like to buy new clothing that just came out.	4.90	Good
4	Sometimes I buy clothes, which I did not plan to.	4.94	Good
5	I feel excited when I see new clothes.	4.92	Good
	Average	4.86	Good

Table 4.11 Descriptive Analysis of Fashion-Oriented Impulse Buying

Source: primary data processed, 2017

Based on the results of descriptive analysis shown in Table 4.9, the average assessment of respondents' fashion-oriented impulse buying was 4.86 (Good). The highest rating occurred on "Sometimes I buy clothes, which I didn't plan to." which had the value of 4.94 (Good). While the lowest rating occurred on "I buy clothing with a new style if I see it." of 4.73 (Good). This means that the respondents had given judgment that "Sometimes I buy clothes, which I didn't plan to." was the most important factors in assessing the fashion involvement variables.

4.4. GOODNESS OF FIT

On the Structural Equation Modelling (SEM), Goodness of Fit measurement was required to determine whether the constructed model was already good or not. Therefore, Goodness of Fit Index was used to measure the goodness of the proposed model. To determine the criteria, the index used Degree of Freedom, X² (Chi-Square), Probability, RMSEA, GFI, AGFI, CMIN/DF, TLI, and CFI.

Goodness of Fit Index	Cut off Value	Result	Model Valuation
Degree of Freedom (DF)	Positive	148	Good Fit
X ² (Chi-Square)	Small value	172.983	Good Fit
Probability	≥.05	.078	Good Fit
RMSEA (Root Mean Square Error of Approximation)	≤.08	.028	Good Fit
GFI (Goodness of Fit Index)	≥.90	0.929	Good Fit
AGFI (Adjusted Goodness of Fit)	≥.90	.899	Nearly Good Fit
CMIN/DF	\leq 2.00	1.169	Good Fit
TLI (Tucker Lewis Index)	≥.90	.976	Good Fit
CFI (Comparative Fit Index)	≥.90	.982	Good Fit

Table 4.12 Goodness of Fit Analysis

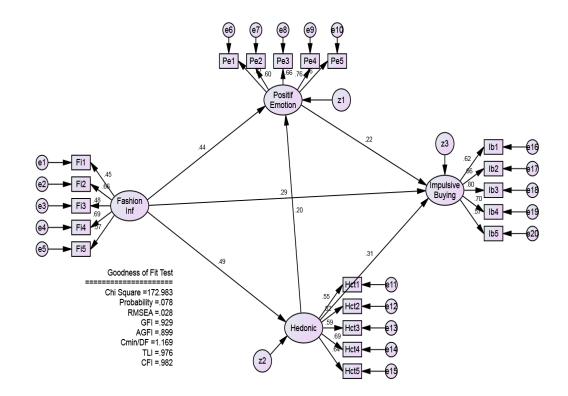

Source: primary data processed, 2017

Table 4.12 shows the result of the data analysis of Goodness of Fit measurement. The model was considered to have fulfilled the minimum criteria of the Goodness of Fit Index. One index was nearly good fit, which was AGFI (Adjusted Goodness of Fit). The result of the analysis was; Degree of Freedom with the score of 148 score, X^2 (Chi-Square) with the score of 172.983, Probability with the score of .078, RMSEA with the score of .028, GFI with the score of .929, AGFI with the score of .899, CMIN/DF with the score of 1.169, TLI with the score of .976, and CFI with the score of .982.

4.5. HYPOTHESES TESTING

Based on the previous discussion, there were six hypotheses in this framework. In order to investigate whether the hypotheses were supported or unsupported, the probability result of standardized regression weight estimate was analyzed. If the value of probability is less than 0.05 (p<0.05), the hypothesis is supported. The testing result of the research model could be seen in the model below:

Figure 4.1 Hypothesis Testing Model

Source: primary data, 2017

According to the analysis of AMOS version 22.0, the following was the hypothesis testing that indicated the causal relationship among the variables:

Hypothesis	Variable Relationship		Estimate	p-Value	Status	
H1	Positive_Emotion	۲	Fashion_Involvement	.439	***	Supported
H2	Impulse_Buying	<	Fashion_Involvement	.285	.005	Supported
Н3	Hedonic	<	Fashion_Involvement	.487	***	Supported
H4	Positive_Emotion	<	Hedonic	.203	.039	Supported
H5	Impulse_Buying	<	Hedonic	.307	***	Supported
H6	Impulse_Buying	<	Positive_Emotion	.222	.016	Supported

Source: primary data processed, 2017

In the first hypothesis, fashion involvement has a significant and positive influence on positive emotion. In Table 4.14, it could be seen that p-value of fashion involvement on positive emotion while shopping was .000 (p<.05) and the path estimate was .439 (H1 was supported) which means that the hypothesis was accepted.

In the second hypothesis, fashion involvement has a positive influence on fashionoriented impulse buying. In table 4.14, it could be seen that the p-value of fashion involvement on fashion-oriented impulse buying was .005 (p<.05) and the path estimate was .285 (H2 was supported), which means that the hypothesis was accepted. However, the value of the p-value shows that the direct influence of fashion involvement on fashion-oriented impulse buying is not significant.

In the third hypothesis, fashion involvement has a positive influence on hedonic consumption. In table 4.14, it could be seen that the p-value of fashion involvement

on hedonic consumption was .000 (p<.05) and the path estimate was .487 (H3 was supported), which means that the hypothesis was accepted.

In the fourth hypothesis, hedonic consumption has a positive influence on positive emotion while shopping. In Table 4.14, it could be seen that p-value of hedonic consumption on positive emotion was .039 (p<.05) and the path estimate was .203 (H4 was supported), which means that the hypothesis was accepted. However, the influence of hedonic consumption on positive emotion while shopping was not significant.

In the fifth hypothesis, hedonic consumption has a positive influence on fashionoriented impulse buying. In Table 4.14, it could be seen that p-value of hedonic consumption on fashion-oriented impulse buying was .000 (p<.05) and the path estimate was .307 (H5 was supported), which means that the hypothesis was accepted.

In the sixth hypothesis, positive emotion has a positive influence on fashionoriented impulse buying. In table 4.14, it could be seen that the p-value of positive emotion on fashion-oriented impulse buying was .016 (p<.05) and the path estimate was .222 (H6 was supported), which means that the hypothesis was accepted. However, the influence was not significant.

4.6. RESULT AND DISCUSSION

The result of hypotheses testing can be seen in table 4.14. For further explanation, the result is explained below:

H1: Fashion involvement has a positive influence on positive emotion during shopping

Table 4.14 showed the analysis result of fashion involvement which had positive influence on positive emotion. Based on the analysis result, statistically fashion involvement significantly affects positive emotion, which was acceptable. It was shown by the p-values, which were obtained from structural Equation Modeling (SEM) calculation of .00, which was lower than the p-value of .05 with path estimate equal to .439. Thus, the hypothesis H1, which stated that fashion involvement has a positive influence on positive emotion during shopping, was acceptable.

This result was in line with the previous research by O'Cass (2000, 2004), which found that fashion involvement related highly to personal characteristic and fashion knowledge, which influenced consumers' confidence in making purchase decision. Therefore, the higher of confidence the more positive the emotion will be. Previous research suggested that there is a mediating relationship between fashion involvement and impulse buying (Haq *et al.*, 2014). Fashion involvement and positive emotion had positive influence on consumers' fashion-oriented impulse buying behavior with fashion involvement having the greatest influence. Fashion involvement can lead toward a positive emotion during shopping which can trigger an impulsive buying behavior (Park *et al.*, 2006). Moreover, the more positive the items within fashion involvement such as "I'm interested in fashion trend every year" the more positive the influence on positive emotion will be.

H2: Fashion involvement has a positive influence on fashion-oriented impulse buying during shopping.

Table 4.14 showed the analysis result of fashion involvement which had positive influence on fashion-oriented impulse buying. Based on the analysis result, statistically fashion involvement showed its affecting fashion-oriented impulse buying, which was acceptable. It was shown by the p-values, which were obtained from structural Equation Modeling (SEM) calculation of .005, which was lower than the p-value of .05 with path estimate equal to .285. Thus, the hypothesis H2, which stated that fashion involvement has a positive influence on fashion-oriented impulse buying during shopping, was acceptable.

This result was in line with Park *et al.* (2006), which found that both fashion involvement and positive emotion had a positive influence on fashion-oriented impulse buying. Rather than maximizing product functionality, consumers tend to look for a more personal, experimental and symbolic gain in high involvement situations, (Solomon *et al.*, 1985). Thus, consumers were more likely to have the urge on fashion-oriented impulse buying when they have a higher fashion involvement

(Nooreini, 2014). Moreover, the more positive the items within fashion involvement such as "I usually have one or more outfits of the very latest style." the more positive the influence on fashion-oriented impulse buying will be.

H3: Fashion involvement has a positive influence on hedonic consumption tendency.

Table 4.14 showed the analysis result of fashion involvement which had positive influence on hedonic consumption. Based on the analysis result, statistically fashion involvement showed its affecting hedonic consumption, which was acceptable. It was shown by the p-values, which were obtained from structural Equation Modeling (SEM) calculation of .00, which was lower than the p-value of .05 with path estimate equal to .487. Thus, the hypothesis H3, which stated that fashion involvement has a positive influence on hedonic consumption tendency, was acceptable.

When consumers are motivated by hedonic desire or by non-economic reasons, such as fun, fantasy, and social or emotional gratification the are more likely to have the urge to buy impulse (Hausman, 2000 and Rook, 1987). Consumers who had high involvement with the latest fashion, shopping for their fashion needs, or dressing for fashion are more likely exhibited a hedonic tendency (e.g. sense of curiosity, new experiences, exploring new worlds) during their shopping trip (Park *et al.*, 2008). This finding implied that clothing as an experiential sensory product plays an important role in fulfilling hedonic needs (e.g. novelty, diversion, stimulation) for

shopping (Hausman, 2000). Moreover, the more positive the items within fashion involvement such as "I am interested in shopping at boutique or fashion specialty stores rather than at department stores for my fashion needs" the more positive the influence on hedonic consumption will be.

H4: Hedonic consumption tendency has positive influence on positive emotion during shopping.

Table 4.14 showed the analysis result of hedonic consumption which had positive influence on positive emotion. Based on the analysis result, statistically hedonic consumption showed its affecting positive emotion, which was acceptable. It was shown by the p-values, which were obtained from structural Equation Modeling (SEM) calculation of .039, which was lower than the p-value of .05 with path estimate equal to .203. Thus, the hypothesis H4, which stated that hedonic consumption tendency has positive influence on positive emotion during shopping, was acceptable.

Consumers felt more excited and satisfied during their shopping trips when they expressed curiosity, the need for new experience, and feeling like they were exploring new worlds (Park *et al.*, 2006). This finding supported the involvement of hedonic or experiential shopping motivations in satisfying emotional or expressive needs, such as fun, relaxation, and gratification (Bloch et al., 1991 and Roy, 1994). Moreover, this finding was consistent with previous research that found consumers' positive feelings

(e.g. fun, psychological lift) were associated with hedonic shopping experiences and the novelty aspects of hedonic shopping (Hausman, 2000). Moreover, the more positive the items within hedonic consumption such as "Shopping is one of activity to spend my leisure time" or "Shopping is an exciting activity" the more positive the influence on positive emotion will be.

H5: Hedonic consumption tendency has a positive influence on fashion-oriented impulse buying behavior during shopping.

Table 4.14 showed the analysis result of hedonic consumption which had positive influence on fashion-oriented impulse buying. Based on the analysis result, statistically hedonic consumption showed its affecting fashion-oriented impulse buying, which was acceptable. It was shown by the p-values, which were obtained from structural Equation Modeling (SEM) calculation of .00, which was lower than the p-value of .05 with path estimate equal to .307. Thus, the hypothesis H5, which stated that hedonic consumption tendency has a positive influence on fashion-oriented impulse buying behavior during shopping, was acceptable.

This result did not support a notion that hedonic consumption may only be a mediating variable in order to influence impulse buying (Park *et* al., 2006). This result did support a notion that impulse buying behavior is a form of hedonically-related consumption (Bayley and Nancarrow, 1998). It showed that impulse buying behavior as a sudden, compelling, hedonically complex buying behavior in which the

fastness urge of an impulse decision process moves past thoughtful and deliberate consideration of other information (Bayley and Nancarrow, 1998) that led toward the impulsive decision to purchase a product. Moreover, fashion-oriented impulse buying is much likely motivated by consumers' perception of a new design or style (Han et al., 1991) through their fashion involvement. Furthermore, hedonic consumption tendency is more likely to increase consumers' shopping motivations to fulfill their hedonic desires (Hausman, 2000; Piron, 1991), such as an in-store emotional experience (Yoo *et al.*, 1998) that eventually leads to impulse buying behavior. This supported the importance of consumers' emotional response in encouraging apparel impulse buying. Moreover, the more positive the items within hedonic consumption such as "I want to satisfy my sense of curiosity" or "I want to be offered new experiences" the more positive the influence on fashion-oriented impulse buying will be.

H6: Positive emotion has a positive influence on fashion-oriented impulse buying behavior during shopping.

Table 4.14 showed the analysis result of positive emotion which had positive influence on fashion-oriented impulse buying. Based on the analysis result, statistically positive emotion showed its affecting fashion-oriented impulse buying, which was acceptable. It was shown by the p-values, which were obtained from structural Equation Modeling (SEM) calculation of .016, which was lower than the p-

value of .05 with path estimate equal to .222. Thus, the hypothesis H6, which stated that positive emotion has a positive influence on fashion-oriented impulse buying behavior during shopping, was acceptable.

This result was in line with Isen (1984), which found that positive emotional state is more likely to have a shorter decision time, in which it will more likely to act impulsively. Thus, the more positive the emotional state of the consumers in, the more likely they have the urge to buy impulsively (Beatty and Ferrell, 1998). In this case, positive emotion showed that it had an influence as a mediating variable that led fashion involvement toward impulse buying (Park *et al.*, 2008). Several previous studies also showed a similar result (Nooreini, 2014; Chang *et al.*, 2011; Donovan and Rossiter, 1982). Moreover, the more positive the items within positive emotion such as "I tend to feel excited when and after shopping" or "I tend to feel happy when and after shopping" the more positive the influence on fashion-oriented impulse buying will be.

CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

5.1 CONCLUSIONS

These conclusions and suggestions are the result of a research entitled "College students' fashion-oriented impulse buying in relation to fashion involvement, positive emotion, and hedonic consumption". This research examined whether Fashion involvement has a positive influence on positive emotion, hedonic consumption and fashion-oriented impulse buying on college students. Then, this research also examined whether positive emotion and hedonic consumption have a positive influence on fashion-oriented as mediating variables between fashion involvement and fashion-oriented impulse buying. Based on the data analysis results, from the six hypotheses that proposed, all hypotheses were supported.

Fashion involvement positively affect positive emotion, hedonic consumption, and fashion-oriented impulse buying. Thus, it can be interpreted that the attributes contained within fashion involvement have an influence on college students' positive emotion, hedonic consumption and even directly affect college students' fashion-oriented impulse buying.

The result of this research also showed that fashion involvement had a positive influence on fashion-oriented impulse buying, both directly and indirectly through positive emotion and hedonic consumption as mediating variables. Positive emotion and hedonic consumption tendency also had a positive influence on fashion-oriented impulse buying. According to the results of this research, fashion marketers need to pay attention on their after sales service and their customers in order to develop a sense of involvement between the company or brand and the customers themselves. Moreover, fashion marketer can emphasize the ambient of their company or brand whether the brand image, the store layout, or the product itself to create a fun, interesting, and positive influence on the customers' emotional state.

5.2. RESEARCH LIMITATIONS

The limitations of the research are as follow:

- 1. The results were based on a selected sample which only consisted of college students, by providing other sample from different background might produce different result.
- 2. There might be other variables that influence positive emotion, hedonic consumption and fashion-oriented impulse buying which were not included in this research.
- 3. Researcher did not limit which brand of fashion product that the sample usually buy on impulse.

5.3. SUGGESTIONS

For empirical study, researcher suggests the future study to examine the other variables that might affect positive emotion, hedonic consumption, and fashion-oriented impulse buying beside or in addition to fashion involvement. More varieties on population and sample might provide a better result or insight. Moreover, as this research was conducted in Indonesia, different location may also provide a different result. A Comparative study to further understand fashion-oriented impulse buying will also be a great additional insight for empirical studies.

For marketers, firstly, this research will contribute in giving the understanding about the decision making to create an environment in which the customers' will be triggered to have impulse buying, especially for customers that following the fashion trends. The marketers can start by creating the attributes that will affect consumers' sense of involvement and emotion, such as product innovation, product line that create a new trend, trend setter products, entertainment and information disclosure. Thus, the users will be more attracted to the company or brands. Secondly, it is important for marketers to consider the strong role of fashion involvement that is currently affecting consumers especially customers that follow the fashion trend.

REFERENCES

- Babin, B.J. and Babin, L. (2001). Seeking Something Different? A Model of Schema Typicality, Consumer Affect, Purchase Intentions and Perceived Shopping Value. *Journal of Business Research*. 54(2). 89-96.
- Bayley, G. and Nancarrow, C. (1998). Impulse Purchasing: A Qualitative Exploration of The Phenomenon. *Qualitative Market Research: An International Journal*. 1(2). 99-114.
- Beatty, S.E. and Ferrell, M.E. (1998). Impulse Buying: Modeling Its Precursors. *Journal of Retailing*. 74(2). 169-91.
- Bentler, P. M., and Bonett, D. G. (1980). Significance Tests and Goodness of Fit in The Analysis of Covariance Structures. *Psychological Bulletin*, 88(3), 588-606.
- Black, K. (2010) Business Statistics: Contemporary Decision Making 6th edition. USA: John Wiley & Sons
- Bloch, P., Ridgway, N. and Nelson, J. (1991). Leisure and The Shopping Mall. Advances in Consumer Research. 18(1). 445-52.
- Burroughs, J.E. (1996). Product Symbolism, Self-Meaning and Holistic Matching: The Role of Information Processing in Impulsive Buying. *Advances in Consumer Research*. 23. 463-9.
- Cha, J. (2001). *Planned and Unplanned Apparel Purchase Typology and Related Variables*. Unpublished Thesis, Seoul National University, Seoul.
- Chang, H. J., Eckman, M. and Yan, R. Y. (2011). Application of The Stimulus-Organism-Response Model to The Retail Environment: The Role of Hedonic Motivation in Impulse Buying Behavior. *The International Review of Retail, Distribution and Consumer Research*, 21(3), 233–249.
- Cobb, J.C. And Hoyer, W.D. (1986). Planned Versus Impulse Purchase Behavior. *Journal of Retailing*. 62(4). 384-409.
- Dawson, S., Bloch, P. H. and Ridgway, N. M. (1990). Shopping Motives, Emotional States, and Retail Outcomes. *Journal of Retailing; Greenwich*, 66(4), 408.

- Dittmar, H. (2005). Compulsive Buying a Growing Concern? An Examination of Gender, Age, and Endorsement of Materialistic Values as Predictors. *British Journal of Psychology*. 96 (4). 467-491.
- Dittmar, H. And Drury, J. (2000). Self-Image Is It The Bag? A Qualitative Comparison Between Ordinary and Excessive Consumers. *Journal of Economic Psychology*. 21(2). 109-42.
- Dittmar, H., Beattie, J. And Friese, S. (1996). Object, Decision and Considerations and self-Image in Men's and Women's Impulse Purchases. *International Journal of Psychonomics*. 93(1-3). 87-206.
- Dittmar, H., Beattie, J. And Friese, S. (1995). Gender Identity and Material Symbols: Objects and Decision Considerations in Impulse Purchases. *Journal of Economic Psychology*. 16(3). 491-511.
- Donovan, R.J. And Rossiter, J.R. (1982). Store Atmosphere: An Environmental Psychology Approach. *Journal of Retailing*. 58(1). 34-57.
- Fairhurst, A.E., Good, L.K. And Gentry, J.W. (1989). Fashion Involvement: An Instrument Validation Procedure. *Clothing and Textiles Research Journal*. 7(3). 10-14.
- Ferdinand, A. (2006). *Metode Penelitian Manajemen*. Semarang, Indonesia: Badan Penerbit Universitas Diponegoro.
- Ghozali, Imam, & Fuad. (2008). Structural Equation Modeling; Teori, Konsep Dan Aplikasi Dengan Program LISREL 8.80 (Edisi 2). Semarang: Badan Penerbit Universitas Diponegoro.
- Goldsmith, R.E. And Emmert, J. (1991). Measuring Product Category Involvement: A Multitrait-Multimethod Study. *Journal of Business Research*. 23(4). 363-71.
- Gültekin, B. and Özer, L. (2012). The Influence of Hedonic Motives and Browsing On Impulse Buying. *Journal of Economics and Behavioral Studies*, 4(3), 180-189.
- Han, Y.K., Morgan, G.A., Kotsiopulos, A. And Kang-Park, J. (1991). Impulse Buying Behaviour of Apparel Purchasers. *Clothing and Textiles Research Journal*. 9(3). 15-21.

- Haq, M. A., Khan, N. R. and Ghouri, A. M. (2014). Measuring The Mediating Impact of Hedonic Consumption On Fashion Involvement and Impulse Buying Behavior. *Indian Journal of Commerce & Management Studies*, 4 (3), 50-57.
- Haryono, S. & Wardoyo, P. (2012). *Structural Equation Modeling (SEM) Untuk Penelitian Manajemen Dengan AMOS 18.00.* Jakarta:PT Intermedia Personalia Utama.
- Hausmann, A. (2000). A Multi-Method Investigation of Consumer Motivations in Impulse Buying Behavior. *Journal of Consumer Marketing*. 17(15). 403-19.
- Herabadi, A. G., B. Verplanken, & A. V. Knippenberg, (2009). Consumption Experience On Impulse Buying in Indonesia: Emotional Arousal and Hedonistic Considerations. *Asian Journal of Social Psychology*. 12. 20 – 31.
- Hirschman, E.C. And Holbrook, M.B. (1982). The Experiential Aspects of Consumption: Consumer Fantasies, Feelings, And Fun. *Journal of Consumer Research*. 9(2). 132-40.
- Isen, A. (1984). The Influence of Positive Affect On Decision-Making and Cognitive Organization. *Advances in Consumer Research*. 11. 534-7.
- Jones, M.A., Reynolds, K.E., Weun, S. And Beatty, S.E. (2003). The-Product-Specific Nature of Impulse Buying Tendency. *Journal of Business Research*. 56(7). 505-11.
- Kapferer, J.N. And Laurent, G. (1985) Measuring Consumer Involvement Profile. *Journal of Marketing*. 22(1). 41-53.
- Kasanah, A. (2015). Penggunaan Metode Structural Equation Modeling Untuk Analisis Faktor Yang Mempengaruhi Kualitas Pelayanan Perpustakaan Dengan Program LISREL 8.80. Unpublished manuscript, Universitas Negeri Semarang, Fakultas Matematika dan Ilmu Pengetahuan Alam, Semarang.
- Kim, H. (2005). Consumer Profiles of Apparel Product Involvement and Values. *Journal of Fashion Marketing and Management*. 9(2). 207-20.
- Ko, S. (1993). *The Study of Impulse Buying of Clothing Products*. Unpublished Master's Thesis, Seoul National University, Seoul.
- Lury, C. (1996). *Consumer Culture*. New Brunswick, New Jersey: Rutgers University Press.

- Maizer (2016). *Market Trend Textile and Fashion Industry in Indonesia*. Retrieved from http://www.indotextiles.com/index.php?option=com_content&task=view&id=440 5&Itemid=1
- Martin, C. (1998). Relationship Marketing: A High-Involvement Product Attribute Approach. *Journal of Product & Brand Management*. 7(1). 6-26.
- Mattila, A.S. And Enz, C.A. (2002). The Role of Emotions in Service Encounters. *Journal of Service Research*. 4(4). 268-77.
- McDonald, R. P., & Marsh, H. W. (1990). Choosing a Multivariate Model: Non Centrality and Goodness of Fit. *Psychological Bulletin*, 107(2), 247-255.
- Nooreini, A., (2014). The Role of Fashion Orientated Involvement and Individual Mood On Impulse Buying in Tabriz. *Arabian Journal of Business and Management (OMAN Chapter)*, 3 (12).
- O'Cass, A. (2004). Fashion Clothing Consumption: Antecedents and Consequences of Fashion Clothing Involvement. *European Journal of Marketing*, 38(7), 869-82.
- O'Guinn, T.C. and Faber, R. J. (1989). Compulsive Buying: A Phenomenological Explanation. *Journal of Consumer Research*, 16(2), 147-57.
- Park, E. J., and Kim, E. Y. (2008). Effects of Consumer Tendencies and Positive Emotion On Impulse Buying Behavior for Apparel. *Journal of Korean Society of Clothing and Textiles*, 32 (6), 980 – 990.
- Park, E. J., Kim, E. Y. and Forney, J. C. (2006). A Structural Model of Fashion-Oriented Impulse Buying Behavior. *Journal of Fashion Marketing and Management*, 10(4), 433 – 446
- Pentecost, R. and Andrews, L. (2010). Fashion Retailing and The Bottom Line: The Effects of Generational Cohorts, Gender, Fashion Fanship, Attitudes and Impulse Buying on Fashion Expenditure. *Journal of Retailing and Consumer Services*, 17(1), 43-52.
- Piron, F. (1991). Defining Impulse Purchasing. *Advances in Consumer Research*, 18, 509-13.
- Populations and Sampling. [n.d.]umsl. Retrieved February 27th, 2018, from umsl.edu: http://www.umsl.edu/~lindquists/sample.html

- Rook, D.W. (1987). The Buying Impulse. *Journal of Consumer Research*, 14(2), 189-99.
- Rook, D.W. And Fisher, R.J. (1995). Normative Influence on Impulsive Buying Behavior. *Journal of Consumer Research*, 22, 305-13.
- Rook, D.W. And Gardner, M.P. (1993). In The Mood: Impulse Buying's Affective Antecedents. *Research in Consumer Behavior*, 6, 1-26.
- Schermelleh-Engel, K., Moosbrugger, H., & Müller, H. (2003). Evaluating The Fit of Structural Equation Models: Tests of Significance and Descriptive Goodness-Of-Fit Measures. *Methods of Psychological Research Online*, 8(2), 23-74.
- Schreiber, J., Nora, A., Stage, F., Barlow, E., & King, J. (2006). Reporting Structural Equation Modeling and Confirmatory Factor Analysis Results: A Review. *The Journal of Educational Research*, 99(6).
- Schor, J. (1998). The Overspent American: Upscaling, Downshifting and The New Customer. New York, NY:Basic Books.
- Sekaran, U. (2000). Research Method for Business: A Skill Build in Approach (3th Edition). New York: John Wiley & Sons, Inc.
- Seo, J., Hathcote, J.M. And Sweaney, A.L. (2001). Casualwear Shopping Behavior of College Men in Georgia, USA. *Journal of Fashion Marketing and Management*, 5(3), 208-22.
- Sherry, J. (1990). A Sociocultural Analysis of a Midwestern American Flea Market. *Journal of Consumer Research*, 17(1), 13-30.
- Solomon, M. R., Surprenant, C., Czepiel, J. A. and Gutman, E. G. (1985). A Role Theory Perspective on Dyadic Interactions: The Service Encounter. *Journal of Marketing*, 49(1), 99-111.
- Sugandi, E. (2017, January 20). Household Consumption Remains Key Engine Economic Growth Indonesia. Retrieved from <u>Https://Www.Indonesia-Investments.Com/News/Todays-Headlines/Household-Consumption-Remains-Key-Engine-Economic-Growth-Indonesia/Item7540?</u>
- Tifferet, S. and Herstein, R. (2012). Gender Differences in Brand Commitment, Impulse Buying, and Hedonic Consumption. *Journal of Product & Brand Management*, 21 (3), 176-182.

- Tirmizi, M. A., Rehman K. and Saif M. I. (2009). An Empirical Study of Consumer Impulse Buying Behavior in Local Market. *European Journal of Scientific Research*, 28(4), 552-532.
- Underhill, P. (1999). *Why We Buy, The Science of Shopping*. New York: Simon & Schuster Paperbacks.
- Watson, D. and Tellegen, A. (1985). Toward A Consensus Structure of Mood. *Psychological Bulletin*, 98(2), 219-35.
- Weinberg, P. And Gottwald, W. (1982). Impulsive Consumer Buying as a Result of Emotion. *Journal of Business Research*, 10(1), 43-57.
- Weun, S., Jones, M.A. And Beatty, S.E. (1997). The Development and Validation of The Impulse Buying Tendency Scale. *Psychological Reports*, 82, 123-33.
- Yoo, C., Park, J. And Macinnis, D.J. (1998). Effects of Store Characteristics and In-Store Emotional Experiences On Store Attitude. *Journal of Business Research*, 42(3), 253-63.
- Youn, S. And Faber, R.J. (2000). Impulse Buying: Its Relation to Personality Traits and Cues. Advances in Consumer Research, 27, 179-85.
- Yu, C. and Bastin, M. (2010). Hedonic shopping value and impulse buying behavior in transitional economies: A symbiosis in the Mainland China marketplace. *Journal of Brand Management*, 18(2), 105 – 114.

APPENDICES

APPENDIX A

QUESTIONNAIRE

Identitas Responden

Pertanyaan berikut berkenaan dengan jati diri Saudara. Jawablah pertanyaan tersebut denganmemberi tanda **silang** (**X**) pada nomer jawaban yang dianggap paling sesuai.

• Identitas / karakteristik responden :

Saya suka mengikuti perkembangan fashion/mode terkini

1	Ya	
2	Tidak	

Berapa jumlah produk fashion (baju, celana, jaket, sepatu, & aksesoris) yang anda beli di setiap tahun?

1	< 5 buah	
2	5 – 10 buah	
3	> 10 buah	

Apa jenis kelamin Saudara ?

1	Pria	
2	Wanita	

Berapakah usia Saudara pada ulang tahun terakhir ?

1	< 20 tahun	
2	20 - 22 tahun	
3	> 22 tahun	

Berapakah penghasilan/sangu perbulan saudara?

1	Dibawah Rp. 1,000,000	
2	Rp. 1,000,000 - Rp. 1,499,000	
3	Rp. 1,500,000 - Rp. 1,999,000	
4	Rp. 2,000,000 - Rp. 2,499,000	
5	Rp, 2,500,000 - Rp. 2,999,000	
6	Diatas Rp. 3,000,000	

Dimana tempat anda menempuh ilmu?

1	Universitas negeri	
2	Universitas swasta	

Apa prodi yang sedang anda tempuh?

1	Ilmu sosial	
2	Ilmu non-sosial	

Evaluasi Fashion Involvement

<u>Petunjuk</u>: Berilah penilaian Saudara berkenaan dengan ketertarikan saudara terhadap fashion dengan MENYILANG atau MELINGKARI angka yang sesuai:

1. = Sangat Tidak Setuju Setuju	(STS)	3. = Agak Tidak	Setuju	(ATS)	5.=
2. = Tidak Setuju (TS) Sekali	4. = <i>A</i>	agak Setuju	(AS)	6.= Set	tuju

		ı Sekali	Tidak				
Pengukuran Fashion Involvement		Setuju		Sangat Setuju			
	STS	TS	ATS	AS	S	SS	
1. Setidaknya saya memiliki lebih dari 1 jenis							
produk fashion yang paling baru di setiap	1	2	3	4	5	6	
tahunnya.							
2. Bagi saya berproduk fashion yang menarik	1	2	3	4	5	6	
merupakan hal yang penting.	1	2	5	+	5	0	
3. Saya lebih suka berbelanja produk fashion di							
toko khusus produk fashion atau butik dari	1	2	3	4	5	6	
pada berbelanja produk fashion di department	1	2	5	-	5	0	
stores (Ramayana, Matahari, Centro dsb.)							
4. Jika saya harus memilih, saya lebih memilih							
berproduk fashion berdasarkan fashion/mode	1	2	3	4	5	6	
daripada kenyamanan.							
5. Saya mengikuti perkembangan trend fashion	1	2	3	4	5	6	
terkini di setiap tahunnya.	1	Z	5	4	5	0	

Evaluasi Positive Emotion

<u>Petunjuk</u>: Berilah penilaian Saudara berkenaan dengan perasaan saudara ketika berbelanja produk fashion dengan MENYILANG atau MELINGKARI angka yang sesuai:

1. = Sangat Tidak S Setuju	Setuju	(STS)	3. = Agak Tid	lak Setuju	(ATS)	5.=
2. = Tidak Setuju Sekali	(TS)	4. = A	agak Setuju	(AS)	6.= Set	tuju

Pengukuran Positive Emotion		Sama Sekali Tidak Setuju			Sangat Setuju			
	STS	TS	ATS	AS	S	SS		
1. Saya merasa bahagia ketika berbelanja produk fashion	1	2	3	4	5	6		
2. Saya merasa puas setelah berbelanja produk fashion	1	2	3	4	5	6		
3. Saya merasa gembira ketika berbelanja produk fashion	1	2	3	4	5	6		
4.Saya merasa semangat ketika berbelanja produk fashion	1	2	3	4	5	6		
5. Berbelanja produk fashion meningkatkan penghargaan terhadap diri saya sendiri.	1	2	3	4	5	6		

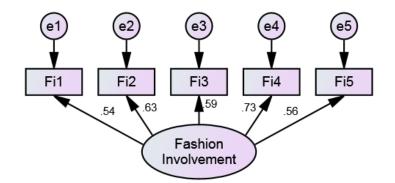
Evaluasi Hedonic Consumption Tendency

<u>Petunjuk</u>: Berilah penilaian Saudara berkenaan dengan kecendurungan saudara mendapatkan kepuasaan hedonism saat berbelanja produk fashion dengan MENYILANG atau MELINGKARI angka yang sesuai:

1. = Sangat Tidak Setuju(STS)3. = Agak Tidak Setuju(ATS)5.=Setuju2. = Tidak Setuju(TS)4. = Agak Setuju(AS)6.= SetujuSekali

Pengukuran Hedonic Consmption Tendency	Sama	a Sekali Setuju	Tidak	Sangat Setuj		ju
	STS	TS	ATS	AS	S	SS
 Saya berbelanja produk fashion karena saya penasaran dengan produk fashion yang dijual. 	1	2	3	4	5	6
2. Saya berbelanja produk fashion karena saya ingin mencoba produk fashion yang baru.	1	2	3	4	5	6
3. Saya berbelanja produk fashion karena saya ingin memiliki produk fashion yang berbeda.	1	2	3	4	5	6
4. Berbelanja produk fashion merupakan salah satu alternative mengisi waktu luang.	1	2	3	4	5	6
5. Bagi saya berbelanja produk fashion merupakan aktifitas yang menyenangkan.	1	2	3	4	5	6

Evaluasi Fashion-oriented Impulse Buying


<u>Petunjuk</u>: Berilah penilaian Saudara berkenaan dengan kecendurungan saudara membeli produk fashion secara impulsive/tanpa rencana dengan MENYILANG atau MELINGKARI angka yang sesuai:

1. = Sangat Tidak S Setuju	Setuju	(STS)	3. = Agak Tid	ak Setuju	(ATS)	5.=
2. = Tidak Setuju Sekali	(TS)	$4. = A_{1}$	gak Setuju	(AS)	6.= Set	tuju

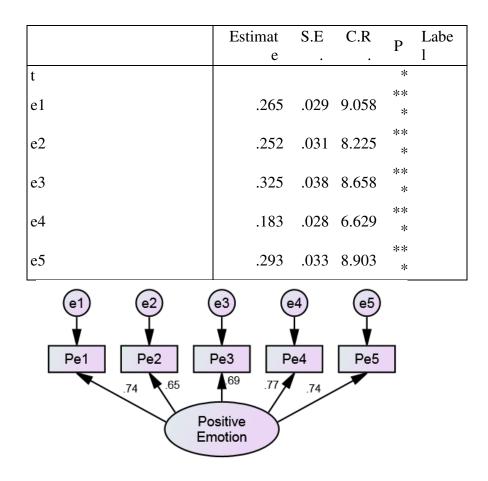
Pengukuran Fashion-oriented Impulse		Sama Sekali Tidak Setuju			Sangat Setuju			
Buying	STS	TS	ATS	AS	S	SS		
1. Jika saya melihat produk fashion dengan model baru, saya akan tertarik untuk membeli produk fashion tersebut.	1	2	3	4	5	6		
2. Saya membeli produk fashion untuk mencoba fitur terbaru (bahan, style, dsb.) dari produk fashion tersebut.	1	2	3	4	5	6		
3. Saya suka membeli produk fashion yang baru muncul di pasaran.	1	2	3	4	5	6		
4. Terkadang saya membeli produk fashion yang tidak saya rencanakan.	1	2	3	4	5	6		
5. Saya merasa senang ketika melihat model-model baru produk fashion yang saya temukan di pasaran.	1	2	3	4	5	6		

APPENDIX B

VALIDITY ANDRELIABILITY (AMOS)

Estimates (Group number 1 - Default model) Scalar Estimates (Group number 1 - Default model) Maximum Likelihood Estimates

Regression Weights: (Group number 1 - Default model)


	Estimate	S.E.	C.R.	Р	Label
Fi1 < Fashion_Involvement	1.000				
Fi2 < Fashion_Involvement	1.220	.199	6.146	***	
Fi3 < Fashion_Involvement	1.251	.211	5.931	***	
Fi4 < Fashion_Involvement	1.364	.209	6.514	***	
Fi5 < Fashion_Involvement	1.107	.192	5.767	***	

Standardized Regression Weights: (Group number 1 - Default model)

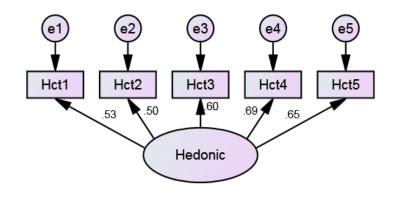
		Estimate
Fi1 <	Fashion_Involvement	.541
Fi2 <	Fashion_Involvement	.628
Fi3 <	Fashion_Involvement	.588
Fi4 <	Fashion_Involvement	.727
Fi5 <	Fashion_Involvement	.561

Variances: (Group number 1 - Default model)

	Estimat	S.E	C.R	р	Labe
	e	•	•	1	1
Fashion_Involvemen	.110	.029	3.755	**	

Estimates (Group number 1 - Default model) Scalar Estimates (Group number 1 - Default model) Maximum Likelihood Estimates Regression Weights: (Group number 1 - Default model)

					- /	
		Estimate	S.E.	C.R.	Р	Label
Pe1 <	Positive_Emotion	1.000				
Pe2 <	Positive_Emotion	.834	.094	8.870	***	
Pe3 <	Positive_Emotion	1.090	.117	9.329	***	
Pe4 <	Positive_Emotion	1.064	.103	10.320	***	
Pe5 <	Positive_Emotion	1.049	.105	9.949	***	


Standardized Regression Weights: (Group number 1 - Default model)

		Estimate
Pe1 <	Positive_Emotion	.741
Pe2 <	Positive_Emotion	.652
Pe3 <	Positive_Emotion	.686

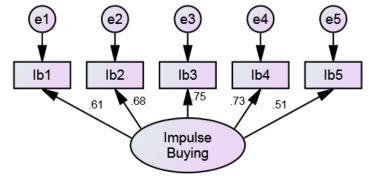
		Estimate
Pe4 <	Positive_Emotion	.767
Pe5 <	Positive_Emotion	.735

Variances: (Group number 1 - Default model)

	Estimat	S.E	C.R	Р	Labe
	e	•		•	1
Positive_Emotio n	.245	.041	5.942	** *	
e1	.201	.025	8.047	** *	
e2	.232	.026	9.021	** *	
e3	.327	.038	8.714	** *	
e4	.194	.025	7.625	** *	
e5	.230	.028	8.135	** *	

Estimates (Group number 1 - Default model) Scalar Estimates (Group number 1 - Default model) Maximum Likelihood Estimates Regression Weights: (Group number 1 - Default model)

		. (Or oup				
		Estimate	S.E.	C.R.	Р	Label
Hct1 <	Hedonic	1.000				
Hct2 <	Hedonic	1.072	.206	5.211	***	
Hct3 <	Hedonic	1.170	.202	5.781	***	
Hct4 <	Hedonic	1.382	.225	6.130	***	


		Estimate	S.E.	C.R.	Р	Label
Hct5 <	Hedonic	1.294	.216	5.995	***	

Standardized Regression Weights: (Group number 1 - Default model)

		Estimate
Hct1 <	Hedonic	.526
Hct2 <	Hedonic	.504
Hct3 <	Hedonic	.602
Hct4 <	Hedonic	.692
Hct5 <	Hedonic	.651

Variances: (Group number 1 - Default model)

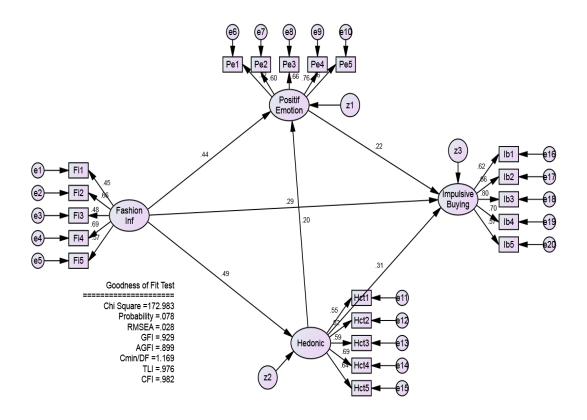
	Estimat	S.E	C.R	Р	Labe
	e			1	1
Hedoni c	.135	.037	3.588	** *	
e1	.353	.039	9.075	** *	
e2	.455	.049	9.231	** *	
e3	.324	.039	8.370	** *	
e4	.280	.040	7.059	** *	
e5	.307	.040	7.739	** *	

Estimates (Group number 1 - Default model) Scalar Estimates (Group number 1 - Default model) Maximum Likelihood Estimates

Regression Weights: (Group number 1 - Default model)

		Estimate	S.E.	C.R.	Р	Label
Ib1 <	Impulse_Buying	1.000				
Ib2 <	Impulse_Buying	1.180	.158	7.469	***	
Ib3 <	Impulse_Buying	1.332	.168	7.920	***	
Ib4 <	Impulse_Buying	1.210	.154	7.840	***	
Ib5 <	Impulse_Buying	.879	.144	6.086	***	

Standardized Regression Weights: (Group number 1 - Default model)


		Estimate
Ib1 <	Impulse_Buying	.608
Ib2 <	Impulse_Buying	.675
Ib3 <	Impulse_Buying	.749
Ib4 <	Impulse_Buying	.734
Ib5 <	Impulse_Buying	.510

Variances: (Group number 1 - Default model)

	Estimat	S.E	C.R	Р	Labe
	e		•	1	1
Impulse_Buyin g	.173	.039	4.480	** *	
e1	.294	.033	8.970	**	
e2	.287	.035	8.308	**	
e3	.240	.034	7.147	** *	
e4	.217	.029	7.436	**	
e5	.379	.040	9.578	**	

APPENDIX C

OUTPUT ANALYSIS OF FULL MODEL (AMOS)

Variable counts (Group number 1)

- Number of variables in your model: 47
- Number of observed variables: 20
- Number of unobserved variables: 27
- Number of exogenous variables: 24
- Number of endogenous variables: 23

Parameter Summary (Gi	roup number 1)
-----------------------	----------------

	Weights	Covariances	Variances	Means	Intercepts	Total
Fixed	27	0	0	0	0	27
Labeled	0	0	0	0	0	0
Unlabeled	22	16	24	0	0	62
Total	49	16	24	0	0	89

Assessment of normality (Group number 1)

Variable	min	max	skew	c.r.	kurtosis	c.r.
Ib5	3.000	6.000	264	-1.596	162	492
Ib4	3.000	6.000	354	-2.142	.228	.689
Ib3	3.000	6.000	327	-1.981	114	346
Ib2	3.000	6.000	333	-2.014	.012	.037
Ib1	3.000	6.000	124	754	145	439
Hct5	3.000	6.000	353	-2.135	.025	.077
Hct4	3.000	6.000	278	-1.686	089	269
Hct3	3.000	6.000	149	904	203	616
Hct2	3.000	6.000	.002	.012	515	-1.559
Hct1	3.000	6.000	371	-2.244	.181	.549
Pe5	3.000	6.000	211	-1.280	245	743
Pe4	3.000	6.000	385	-2.334	.276	.835
Pe3	3.000	6.000	287	-1.740	500	-1.515
Pe2	3.000	6.000	252	-1.526	.307	.929
Pe1	3.000	6.000	298	-1.803	.199	.603
Fi1	3.000	6.000	316	-1.911	.562	1.703
Fi2	3.000	6.000	153	928	036	110
Fi3	3.000	6.000	309	-1.874	.069	.208
Fi4	3.000	6.000	080	483	132	401
Fi5	3.000	6.000	028	168	243	736
Multivariate					83.450	20.862

Observation number	Mahalanobis d-squared	p1	p2
3	69.476	.000	.000
8	66.566	.000	.000
15	64.123	.000	.000
5	60.609	.000	.000
30	50.161	.000	.000
10	48.293	.000	.000

Observation number	Mahalanobis d-squared	p1	p2
9	46.277	.001	.000
18	45.575	.001	.000
7	42.071	.003	.000
220	41.144	.004	.000
6	40.779	.004	.000
210	40.278	.005	.000
17	38.327	.008	.000
147	36.585	.013	.000
127	36.404	.014	.000
32	35.390	.018	.000
63	35.228	.019	.000
56	34.604	.022	.000
186	32.612	.037	.001
20	32.473	.039	.000
131	31.778	.046	.001
164	31.247	.052	.003
47	31.079	.054	.002
59	30.761	.058	.003
184	30.680	.060	.002
114	30.467	.063	.001
163	30.280	.065	.001
50	30.208	.067	.001
55	29.790	.073	.002
105	29.790	.073	.001
13	29.094	.086	.004
53	28.889	.090	.005
130	28.274	.103	.018
26	28.254	.104	.012
193	28.053	.108	.013
40	27.835	.113	.016
68	27.828	.114	.010
192	27.816	.114	.006
42	27.777	.115	.004
117	27.668	.117	.003
92	27.592	.119	.003
96	27.425	.124	.003
219	27.355	.126	.002

Observation number	Mahalanobis d-squared	p1	p2
84	27.020	.135	.005
129	26.565	.148	.014
103	26.321	.155	.021
185	26.016	.165	.036
204	25.577	.180	.087
106	25.470	.184	.084
124	25.276	.191	.102
62	25.218	.193	.088
73	24.919	.205	.139
14	24.823	.208	.134
121	24.811	.209	.106
48	24.684	.214	.111
187	24.651	.215	.092
45	24.481	.222	.108
218	24.478	.222	.083
112	24.406	.225	.076
150	24.300	.230	.076
171	24.055	.240	.113
16	24.014	.242	.097
87	23.752	.253	.148
51	23.657	.258	.147
172	23.485	.266	.177
85	23.361	.271	.189
54	23.292	.275	.179
12	23.276	.275	.149
4	22.955	.291	.251
69	22.505	.314	.469
77	22.403	.319	.479
34	22.392	.320	.429
41	22.244	.327	.470
36	22.170	.331	.462
179	21.976	.342	.536
71	21.929	.344	.512
64	21.569	.364	.694
126	21.516	.367	.677
169	21.435	.372	.677
52	21.365	.376	.671

		1	2
Observation number	Mahalanobis d-squared	p1	p2
82	21.361	.376	.621
118	21.358	.376	.569
165	21.315	.379	.544
79	21.127	.390	.619
152	21.089	.392	.592
208	21.023	.396	.584
115	20.815	.408	.673
65	20.766	.411	.655
35	20.745	.412	.617
159	20.602	.421	.663
195	20.216	.445	.839
76	19.975	.459	.903
214	19.884	.465	.909
61	19.813	.470	.908
132	19.764	.473	.901
90	19.743	.474	.883
28	19.530	.488	.927
175	19.521	.488	.909
95	19.325	.501	.942
194	19.234	.507	.947

Models

Default model (Default model)

Notes for Model (Default model)

Computation of degrees of freedom (Default model)

Number of distinct sample moments: 210

Number of distinct parameters to be estimated: 62

Degrees of freedom (210 - 62): 148

Result (Default model)

Minimum was achieved

Chi-square = 172.983

Degrees of freedom = 148

Probability level = .078

Group number 1 (Group number 1 - Default model)

Estimates (Group number 1 - Default model)

Scalar Estimates (Group number 1 - Default model)

Maximum Likelihood Estimates

Regression Weights: (Group number 1 - Default model)

			Estimate	S.E.	C.R.	Р	Label
Hedonic	<	Fashion_Inf	.501	.126	3.978	***	
Positif_Emotion	<	Fashion_Inf	.570	.143	3.983	***	
Positif_Emotion	<	Hedonic	.256	.124	2.064	.039	
Impulsive_Buying	<	Hedonic	.343	.100	3.445	***	
Impulsive_Buying	<	Positif_Emotion	.197	.082	2.408	.016	
Impulsive_Buying	<	Fashion_Inf	.328	.116	2.828	.005	
Fi5	<	Fashion_Inf	1.000				
Fi4	<	Fashion_Inf	1.155	.183	6.323	***	
Fi3	<	Fashion_Inf	.921	.181	5.102	***	
Fi2	<	Fashion_Inf	1.147	.173	6.639	***	
Fi1	<	Fashion_Inf	.744	.148	5.039	***	
Pe1	<	Positif_Emotion	1.000				
Pe2	<	Positif_Emotion	.788	.087	9.043	***	
Pe3	<	Positif_Emotion	1.076	.120	8.988	***	
Pe4	<	Positif_Emotion	1.062	.104	10.175	***	
Pe5	<	Positif_Emotion	1.127	.110	10.213	***	
Hct1	<	Hedonic	1.000				
Hct2	<	Hedonic	1.062	.189	5.608	***	
Hct3	<	Hedonic	1.099	.181	6.081	***	
Hct4	<	Hedonic	1.333	.200	6.648	***	
Hct5	<	Hedonic	1.231	.192	6.426	***	
Ib1	<	Impulsive_Buying	1.000				
Ib2	<	Impulsive_Buying	1.119	.138	8.082	***	
Ib3	<	Impulsive_Buying	1.379	.154	8.953	***	
Ib4	<	Impulsive_Buying	1.122	.134	8.394	***	
Ib5	<	Impulsive_Buying	.970	.142	6.844	***	

Standar alzea Regres	51011 1	eights. (Or oup number	
			Estimate
Hedonic	<	Fashion_Inf	.487
Positif_Emotion	<	Fashion_Inf	.439
Positif_Emotion	<	Hedonic	.203
Impulsive_Buying	<	Hedonic	.307
Impulsive_Buying	<	Positif_Emotion	.222
Impulsive_Buying	<	Fashion_Inf	.285
Fi5	<	Fashion_Inf	.567
Fi4	<	Fashion_Inf	.689
Fi3	<	Fashion_Inf	.482
Fi2	<	Fashion_Inf	.659
Fi1	<	Fashion_Inf	.450
Pe1	<	Positif_Emotion	.722
Pe2	<	Positif_Emotion	.597
Pe3	<	Positif_Emotion	.664
Pe4	<	Positif_Emotion	.756
Pe5	<	Positif_Emotion	.763
Hct1	<	Hedonic	.545
Hct2	<	Hedonic	.518
Hct3	<	Hedonic	.588
Hct4	<	Hedonic	.695
Hct5	<	Hedonic	.642
Ib1	<	Impulsive_Buying	.619
Ib2	<	Impulsive_Buying	.658
Ib3	<	Impulsive_Buying	.798
Ib4	<	Impulsive_Buying	.700
Ib5	<	Impulsive_Buying	.573

Standardized Regression Weights: (Group number 1 - Default model)

Covariances: (Group number 1 - Default model)

			Estimate	S.E.	C.R.	Р	Label
e9	<>	e16	.093	.019	4.821	***	
e6	<>	e14	053	.020	-2.713	.007	
e4	<>	z2	058	.016	-3.539	***	
e2	<>	e1	.067	.023	2.869	.004	
e4	<>	e3	.080	.029	2.788	.005	
e18	<>	e20	075	.024	-3.137	.002	
e15	<>	e16	069	.022	-3.085	.002	

			Estimate	S.E.	C.R.	Р	Label
e11	<>	z3	.044	.018	2.478	.013	
e8	<>	e16	.076	.023	3.376	***	
e3	<>	e10	048	.021	-2.338	.019	
e8	<>	e20	.077	.027	2.877	.004	
e5	<>	e9	044	.018	-2.420	.016	
e10	<>	e13	.045	.021	2.119	.034	
e6	<>	e7	.046	.020	2.345	.019	
e9	<>	e11	040	.019	-2.088	.037	
e9	<>	e19	.034	.017	2.012	.044	

Correlations: (Group number 1 - Default model)

-		· · ·	
			Estimate
e9	<>	e16	.388
e6	<>	e14	220
e4	<>	z2	388
e2	<>	e1	.254
e4	<>	e3	.285
e18	<>	e20	285
e15	<>	e16	228
e11	<>	z3	.233
e8	<>	e16	.243
e3	<>	e10	170
e8	<>	e20	.223
e5	<>	e9	183
e10	<>	e13	.171
e6	<>	e7	.196
e9	<>	e11	156
e9	<>	e19	.155

Variances: (Group number 1 - Default model)

	Estimat e	S.E	C.R	Р	Labe 1
Fashion_In f	.137	.034	3.995	** *	
z2	.111	.031	3.632	** *	
z1	.157	.030	5.235	** *	

	Estimat e		C.R	Р	Labe 1
z3			4.617	**	-
e5	.289	.033	8.891	** *	
e4	.203	.031	6.488	** *	
e3	.384	.042	9.041	** *	
e2	.235	.030	7.706	** *	
e1	.299	.032	9.459	**	
e6	.212	.025	8.356	** *	
e7	.259	.028	9.292	**	
e8	.340	.038	8.975	**	
e9	.196	.025	7.894	**	
e10	.211	.027	7.884	** *	
e11	.344	.038	9.141	** *	
e12	.446	.048	9.354	** *	
e13	.333	.038	8.864	** *	
e14	.277	.037	7.547	**	
e15	.314	.038	8.299	**	
e16	.292	.031	9.432	** *	
e17	.297	.033	9.111	** *	
e18	.197	.030	6.599	**	

	Estimat e	S.E	C.R	Р	Labe 1
e19	.238	.027	8.712	** *	
e20	.349	.039	9.046	** *	

Matrices (Group number 1 - Default model)

	Fashion_Inf	Hedonic	Positif_Emotion	Impulsive_Buying
Hedonic	.501	.000	.000	.000
Positif_Emotion	.699	.256	.000	.000
Impulsive_Buying	.637	.393	.197	.000
Ib5	.618	.381	.191	.970
Ib4	.715	.441	.221	1.122
Ib3	.879	.543	.271	1.379
Ib2	.713	.440	.220	1.119
Ib1	.637	.393	.197	1.000
Hct5	.617	1.231	.000	.000
Hct4	.668	1.333	.000	.000
Hct3	.551	1.099	.000	.000
Hct2	.532	1.062	.000	.000
Hct1	.501	1.000	.000	.000
Pe5	.787	.289	1.127	.000
Pe4	.742	.272	1.062	.000
Pe3	.752	.276	1.076	.000
Pe2	.550	.202	.788	.000
Pe1	.699	.256	1.000	.000
Fi1	.744	.000	.000	.000
Fi2	1.147	.000	.000	.000
Fi3	.921	.000	.000	.000
Fi4	1.155	.000	.000	.000
Fi5	1.000	.000	.000	.000

Fashion_Inf	Hedonic	Positif_Emotion	Impulsive_Buying

	Fashion_Inf	Hedonic	Positif_Emotion	Impulsive_Buying
Hedonic	.487	.000	.000	.000
Positif_Emotion	.538	.203	.000	.000
Impulsive_Buying	.554	.352	.222	.000
Ib5	.318	.202	.127	.573
Ib4	.388	.246	.155	.700
Ib3	.442	.281	.177	.798
Ib2	.365	.232	.146	.658
Ib1	.343	.218	.137	.619
Hct5	.313	.642	.000	.000
Hct4	.339	.695	.000	.000
Hct3	.286	.588	.000	.000
Hct2	.253	.518	.000	.000
Hct1	.266	.545	.000	.000
Pe5	.411	.155	.763	.000
Pe4	.407	.154	.756	.000
Pe3	.357	.135	.664	.000
Pe2	.321	.121	.597	.000
Pe1	.389	.147	.722	.000
Fi1	.450	.000	.000	.000
Fi2	.659	.000	.000	.000
Fi3	.482	.000	.000	.000
Fi4	.689	.000	.000	.000
Fi5	.567	.000	.000	.000

Direct Effects (Group number 1 - Default model)

	Fashion_Inf	Hedonic	Positif_Emotion	Impulsive_Buying
Hedonic	.501	.000	.000	.000
Positif_Emotion	.570	.256	.000	.000
Impulsive_Buying	.328	.343	.197	.000
Ib5	.000	.000	.000	.970
Ib4	.000	.000	.000	1.122
Ib3	.000	.000	.000	1.379
Ib2	.000	.000	.000	1.119
Ib1	.000	.000	.000	1.000
Hct5	.000	1.231	.000	.000
Hct4	.000	1.333	.000	.000
Hct3	.000	1.099	.000	.000

	Fashion_Inf	Hedonic	Positif_Emotion	Impulsive_Buying
Hct2	.000	1.062	.000	.000
Hct1	.000	1.000	.000	.000
Pe5	.000	.000	1.127	.000
Pe4	.000	.000	1.062	.000
Pe3	.000	.000	1.076	.000
Pe2	.000	.000	.788	.000
Pe1	.000	.000	1.000	.000
Fi1	.744	.000	.000	.000
Fi2	1.147	.000	.000	.000
Fi3	.921	.000	.000	.000
Fi4	1.155	.000	.000	.000
Fi5	1.000	.000	.000	.000

	Fashion_Inf	Hedonic	Positif_Emotion	Impulsive_Buying
Hedonic	.487	.000	.000	.000
Positif_Emotion	.439	.203	.000	.000
Impulsive_Buying	.285	.307	.222	.000
Ib5	.000	.000	.000	.573
Ib4	.000	.000	.000	.700
Ib3	.000	.000	.000	.798
Ib2	.000	.000	.000	.658
Ib1	.000	.000	.000	.619
Hct5	.000	.642	.000	.000
Hct4	.000	.695	.000	.000
Hct3	.000	.588	.000	.000
Hct2	.000	.518	.000	.000
Hct1	.000	.545	.000	.000
Pe5	.000	.000	.763	.000
Pe4	.000	.000	.756	.000
Pe3	.000	.000	.664	.000
Pe2	.000	.000	.597	.000
Pe1	.000	.000	.722	.000
Fi1	.450	.000	.000	.000
Fi2	.659	.000	.000	.000
Fi3	.482	.000	.000	.000
Fi4	.689	.000	.000	.000

	Fashion_Inf	Hedonic	Positif_Emotion	Impulsive_Buying
Fi5	.567	.000	.000	.000

Indirect Effects (Group number 1 - Default model)							
	Fashion_Inf	Hedonic	Positif_Emotion	Impulsive_Buying			
Hedonic	.000	.000	.000	.000			
Positif_Emotion	.129	.000	.000	.000			
Impulsive_Buying	.309	.050	.000	.000			
Ib5	.618	.381	.191	.000			
Ib4	.715	.441	.221	.000			
Ib3	.879	.543	.271	.000			
Ib2	.713	.440	.220	.000			
Ib1	.637	.393	.197	.000			
Hct5	.617	.000	.000	.000			
Hct4	.668	.000	.000	.000			
Hct3	.551	.000	.000	.000			
Hct2	.532	.000	.000	.000			
Hct1	.501	.000	.000	.000			
Pe5	.787	.289	.000	.000			
Pe4	.742	.272	.000	.000			
Pe3	.752	.276	.000	.000			
Pe2	.550	.202	.000	.000			
Pe1	.699	.256	.000	.000			
Fi1	.000	.000	.000	.000			
Fi2	.000	.000	.000	.000			
Fi3	.000	.000	.000	.000			
Fi4	.000	.000	.000	.000			
Fi5	.000	.000	.000	.000			

at Effoata (C)14 4~I) **1**2 D 0 .

Standardized Indirect Effects (Group number 1 - Default model)

	<u>`</u>		/	
	Fashion_Inf	Hedonic	Positif_Emotion	Impulsive_Buying
Hedonic	.000	.000	.000	.000
Positif_Emotion	.099	.000	.000	.000
Impulsive_Buying	.269	.045	.000	.000
Ib5	.318	.202	.127	.000
Ib4	.388	.246	.155	.000
Ib3	.442	.281	.177	.000
Ib2	.365	.232	.146	.000

	Fashion_Inf	Hedonic	Positif_Emotion	Impulsive_Buying
Ib1	.343	.218	.137	.000
Hct5	.313	.000	.000	.000
Hct4	.339	.000	.000	.000
Hct3	.286	.000	.000	.000
Hct2	.253	.000	.000	.000
Hct1	.266	.000	.000	.000
Pe5	.411	.155	.000	.000
Pe4	.407	.154	.000	.000
Pe3	.357	.135	.000	.000
Pe2	.321	.121	.000	.000
Pe1	.389	.147	.000	.000
Fi1	.000	.000	.000	.000
Fi2	.000	.000	.000	.000
Fi3	.000	.000	.000	.000
Fi4	.000	.000	.000	.000
Fi5	.000	.000	.000	.000

Modification Indices (Group number 1 - Default model)

Model Fit Summary

CMIN

Model	NPAR	CMIN	DF	Р	CMIN/DF
Default model	62	172.983	148	.078	1.169
Saturated model	210	.000	0		
Independence model	20	1549.284	190	.000	8.154

RMR, GFI

Model	RMR	GFI	AGFI	PGFI
Default model	.025	.929	.899	.655
Saturated model	.000	1.000		
Independence model	.127	.413	.352	.374

Baseline Comparisons

Model	NFI Delta1	RFI rho1	IFI Delta2	TLI rho2	CFI
Default model	.888	.857	.982	.976	.982
Saturated model	1.000		1.000		1.000
Independence model	.000	.000	.000	.000	.000

Parsimony-Adjusted Measures

Model	PRATIO	PNFI	PCFI
Default model	.779	.692	.765
Saturated model	.000	.000	.000
Independence model	1.000	.000	.000

NCP

Model	NCP	LO 90	HI 90
Default model	24.983	.000	61.885
Saturated model	.000	.000	.000
Independence model	1359.284	1237.509	1488.497

FMIN

Model	FMIN	F0	LO 90	HI 90
Default model	.790	.114	.000	.283
Saturated model	.000	.000	.000	.000
Independence model	7.074	6.207	5.651	6.797

RMSEA

Model	RMSEA	LO 90	HI 90	PCLOSE
Default model	.028	.000	.044	.992
Independence model	.181	.172	.189	.000

AIC

Model	AIC	BCC	BIC	CAIC
Default model	296.983	310.134	507.388	569.388
Saturated model	420.000	464.545	1132.662	1342.662
Independence model	1589.284	1593.527	1657.157	1677.157

ECVI

Model	ECVI	LO 90	HI 90	MECVI
Default model	1.356	1.242	1.525	1.416
Saturated model	1.918	1.918	1.918	2.121
Independence model	7.257	6.701	7.847	7.276

HOELTER

Madal	HOELTER	HOELTER
Model	.05	.01
Default model	225	242
Independence model	32	34

Execution time summary

Minimization:	.016
Miscellaneous:	.608
Bootstrap:	.000
Total:	.624

APPENDIX D

DESCRIPTIVE ANALYSIS OUTPUT

Berapa jumlah pakaian (baju, celana, jaket, sepatu, & aksesoris) yang anda beli di setiap tahun?

		Frequency	Percent	Valid Percent	Cumulative Percent		
	< 5 buah	49	22.4	22.4	22.4		
	> 10 buah	101	46.1	46.1	68.5		
Valid	5 - 10 buah	69	31.5	31.5	100.0		
	Total	219	100.0	100.0			

Apa jenis kelamin Saudara ?

		Frequency	Percent	Valid Percent	Cumulative Percent
	Laki-laki	90	41.1	41.1	41.1
Valid	Perempuan	129	58.9	58.9	100.0
	Total	219	100.0	100.0	

Berapakah usia Saudara pada ulang tahun terakhir ?

		Frequency	Percent	Valid Percent	Cumulative Percent
	< 20 tahun	6	2.7	2.7	2.7
	> 22 tahun	91	41.6	41.6	44.3
Valid	20 - 22 tahun	122	55.7	55.7	100.0
	Total	219	100.0	100.0	

		Frequency	Percent	Valid Percent	Cumulative Percent
	< Rp.1,000,000	70	32.0	32.0	32.0
	> Rp. 3,000,000	60	27.4	27.4	59.4
	Rp. 1,000,000 - Rp. 1,499,999	21	9.6	9.6	68.9
Valid	Rp. 1,500,000 - Rp. 1,999,999	34	15.5	15.5	84.5
	Rp. 2,000,000 - Rp. 2,499,999	19	8.7	8.7	93.2
	Rp. 2,500,000 - Rp. 3,000,000	15	6.8	6.8	100.0
	Total	219	100.0	100.0	

Berapakah penghasilan/uang sangu per-bulan saudara?

Dimana tempat anda sedang/telah menempuh ilmu?

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Universitas Negeri	69	31.5	31.5	31.5
	Universitas Swasta	150	68.5	68.5	100.0
	Total	219	100.0	100.0	

Apa prodi yang sedang/telah anda tempuh?

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Ilmu non-sosial	133	60.7	60.7	60.7
	Ilmu sosial	86	39.3	39.3	100.0
	Total	219	100.0	100.0	