TUGAS AKHIR

IDENTIFIKASI KEBERADAAN MIKROPLASTIK PADA TANAH TPA PIYUNGAN BANTUL

"Diajukan Kepada Universitas Islam Indonesia Yogyakarta Untuk Memenuhi Persyaratan Memperoleh Derajat Sarjana (S1) Teknik Lingkungan"

MEITRI WIDYA PANGESTIKA 20513077

PROGRAM STUDI TEKNIK LINGKUNGAN FAKULTAS TEKNIK SIPIL DAN PERENCANAAN UNIVERSITAS ISLAM INDONESIA 2024

TUGAS AKHIR

IDENTIFIKASI KEBERADAAN MIKROPLASTIK PADA TANAH TPA PIYUNGAN BANTUL

Diajukan Kepada Universitas Islam Indonesia Yogyakarta Untuk Memenuhi Persyaratan Memperoleh Derajat Sarjana (S1) Teknik Lingkungan

MEITRI WIDYA PANGESTIKA

20513077

Disetujui,

Dosen Pembimbing:

Fajri Mulya Iresha, S.T., M.T., Ph.D.

NIK. 155130507

Tanggal: 4-06-2024

Puji Lestari, S.Si., M.Sc., Ph.D.

NIK. 155130112

Tanggal: 19-06-2024

Mengetahui,*

Ketua Prodi Teknik Lingkungan FTSP UII

FAKULTAS TEKNIK SIP

Any Juliani, S.T., M.Sc. (Res. Eng)., Ph.D.

NIK. 045130401

Tanggal: 19/6/2024

HALAMAN PENGESAHAN

IDENTIFIKASI KEBERADAAN MIKROPLASTIK PADA TANAH TPA PIYUNGAN BANTUL

Telah diterima dan disahkan oleh Tim Penguji

Hari: Jumat

Tanggal: 14 Juni 2024

Disusun Oleh:

MEITRI WIDYA PANGESTIKA 20513077

Tim Penguji:

Fajri Mulya Iresha, S.T., M.T., Ph.D.

Puji Lestari, S.Si., M.Sc., Ph.D.

Dr. Suphia Rahmawati, S.T., M.T.

14/24 M 14/24 19/24

PERNYATAAN

Dengan ini saya menyatakan bahwa:

- Karya tulis ini adalah asli dan belum pernah diajukan untuk mendapatkan gelar akademik apapun, baik di Universitas Islam Indonesia maupun di perguruan tinggi lainnya.
- Karya tulis ini adalah merupakan gagasan, rumusan dan penelitian saya sendiri, tanpa bantuan pihak lain kecuali arahan Dosen Pembimbing.
- Dalam karya tulis ini tidak terdapat karya atau pendapat orang lain, kecuali secara tertulis dengan jelas dicantumkan sebagai acuan dalam naskah dengan disebutkan nama penulis dan dicantumkan dalam daftar pustaka.
- 4. Pernyataan ini saya buat dengan sesungguhnya dan apabila di kemudian hari terdapat penyimpangan dan ketidakbenaran dalam pernyataan ini, maka saya bersedia menerima sangsi akademik dengan pencabutan gelar yang sudah diperoleh, serta sanksi lainnya sesuai dengan norma yang berlaku di perguruan tinggi.

Yogyakarta, Februari 2024

Yang membuat pernyataan,

Meitri Widya Pangestika

2 21AALX157746448

20513077

PRAKATA

Assalamu'alaikum Warahmatullahi Wabarakatuh

Alhamdulillahi rabbil'alamin segala puji bagi Allah SWT atas berkat dan karunia-Nya sehingga penulis dapat menyelesaikan penulisan Tugas Akhir yang berjudul IDENTIFIKASI KEBERADAAN MIKROPLASTIK PADA TANAH TPA PIYUNGAN BANTUL. Penyusunan laporan tugas akhir ini merupakan persyaratan untuk menyelesaikan program Pendidikan Strata Satu (S1) Program Studi Teknik Lingkungan Fakultas Teknik Sipil dan Perencanaan Universitas Islam Indonesia.

Dalam proses penyusunan laporan tugas akhir ini banyak hambatan dan rintangan yang penulis hadapi, namun dengan adanya bimbingan dan bantuan dari berbagai pihak, baik secara moral maupun spiritual. Untuk itu, pada kesempatan ini penulis menyampaikan ucapan terima kasih kepada:

- 1. Allah SWT atas segala nikmat dan rahmat serta karunia pertolongan-Nya selama penulis menyusun skripsi.
- 2. Kepada orang tua saya Bapak Sukamta dan Ibu Sri Jumaerah Hartati, sebagai tanda bakti yang telah memberikan cinta dan kasih sayangnya sehingga penulis dapat menyelesaikan pendidikan pada tahap ini.
- Saudara kandung saya Rakyan Ramadhandy, yang selalu memberikan dorongan dan motivasi hingga bisa ke tahap saat ini. Semoga selalu diberkahi dan diberikan kesehatan.
- 4. Pembimbing Tugas Akhir, Bapak Fajri Mulya Iresha, S.T., M.T., Ph.D dan Ibu Puji Lestari, S.Si., M.Sc. yang telah banyak meluangkan waktunya untuk membantu dan membimbing sehingga Tugas Akhir dapat terselesaikan.
- 5. Ketua Program Studi Teknik Lingkungan Universitas Islam Indonesia, Ibu Any Juliani, S.T., M.Sc. (Res. Eng)., Ph.D.
- 6. Seluruh dosen staf dan Keluarga Besar Program Studi Teknik Lingkugan, Fakultas Teknik Sipil dan Perencanaan, UII. Terimakasih telah memberikan pengajaran dan pengalaman selama kuliah.

7. Seluruh staff Laboratorium Program Studi Teknik Lingkungan.

8. Koordinator Tugas Akhir, Bapak Adam Rus Nugroho, S.T., M.T., Ph.D.

9. Rekan seperjuangan Tim Mikroplastik dalam proses pengerjaan tugas akhir

yang saling membantu menyelesaikan penelitian ini dari awal hingga akhir.

10. Teman – teman Angkatan 2020 Program Studi Teknik Lingkungan.

11. Semua pihak yang telah membantu penulis dalam menyelesaikan tugas

akhir.

Penulis menyadari bahwa laporan tugas akhir ini tidak terlepas dari

kesalahan dan kekurangan karena keterbatasan pengetahuan dan pengalaman

penulis. Oleh karena itu, penulis memerlukan adanya kritik dan saran yang

membangun untuk kemajuan penulis dan kelengkapan laporan ini. Semoga laporan

tugas akhir ini memberikan manfaat bagi penulis dan pacara pembaca.

Billahi Taufiq wal hidayah,

Wassalamu'alaikum Warahmatullahi Wabarakatuh.

Yogyakarta, Februari 2024

Penulis,

Meitri Widya Pangestika

vii

ABSTRAK

MEITRI WIDYA PANGESTIKA. Identifikasi Keberdan Mikroplastik pada Tanah

TPA Piyungan Bantul. Dibimbing oleh Fajri Mulya Iresha, S.T., M.T., Ph.D dan

Puji Lestari, S.Si., M.Sc.

Mikroplastik merupakan partikel kecil dengan ukuran kurang dari 5 mm

yang berasal dari degradasi sampah plastik di lingkungan. Sampah plastik dan

mikroplastik telah menjadi perhatian global dalam beberapa decade terakhir. Plastik

merupakan bahan yang sangat umum digunakan dalam setiap aspek kehidupan

sehari-hari, mulai dari kemasan produk makanan hingga peralatan rumah tangga.

Penelitian ini bertujuan untuk menganalisis jumlah, jenis, warna, serta kelimpahan

mikroiplastik pada tanah TPA Piyungan dan menganalisis kandungan polimer yang

terkandung dalam mikroplastik pada tanah TPA Piyungan. Penelitian ini mengacu

pada Metode National Ocean and Atmospheric Administration (NOAA) dengan

beberapa modifikasi. Pada analisis sampel, pengamatan dilakukan menggunakan

mikroskop untuk menghitung jumlah dan mengkasifikasikan jenis mikroplastik

yang ditemukan, yaitu Fragment, Fiber, Film, Foam, Pellet. Selain itu, instrumen

ini juga digunakan untuk menagamati warna mikroplastik, yaitu hitam, biru, hijau,

kuning, transparan, merah, dan ungu. Dalam menganalisis polimer pada

mikroplastik menggunakan Spektrofotometri FT-IR ditemukan 26 polimer yng

terbaca pada sampel, kemudian dipilih 5 polimer yang paling mendekati, yaitu

Tencel, Cellopha, Ramie, Cotton dan Polyacetlene yang berasal dari mikroplastik

jenis Fragment, Fiber, serta Film. Berdasarkan hasil penelitian didapatkan

presentase kelimpahan rata-rata partikel paling banyak terdapat pada Zona 3

sebesar 15,92 partikel/gr.

Kata Kunci: Mikroplastik, Mikroskop, Spektrofotometri FT-IR, Tanah, TPA.

viii

ABSTRACT

MEITRI WIDYA PANGESTIKA. Identification of Microplastic Presence in the Soil

of Piyungan Waste Disposal Site, Bantul. Supervised by Fajri Mulya Iresha, S.T.,

M.T., Ph.D., and Puji Lestari, S.Si., M.Sc.

Microplastics are small particles, less than 5 mm in size, that result from the

degradation of plastic waste in the environment. Plastic waste and microplastics

have become a global concern in recent decades. Plastic is a material widely used

in all aspects of daily life, from food packaging to household appliances. This

research aims to analyze the amount, types, colors, and abundance of microplastics

in Piyungan landfill soil and to analyze the polymer content contained in

microplastics in Piyungan landfill soil. This research refers to the National Ocean

and Atmospheric Administration (NOAA) method with some modifications. In the

sample analysis, observations were made using a microscope to count and classify

the types of microplastics found, namely Fragment, Fiber, Film, Foam, Pellet. In

addition, this instrument was also used to observe the colors of microplastics,

namely black, blue, green, yellow, transparent, red, and purple. In analyzing the

polymer in microplastics using FT-IR spectrophotometry, 26 polymers were

detected in the samples, then 5 polymers were selected that were closest, namely

Tencel, Cellophane, Ramie, Cotton and Polyacetlene, which were derived from

microplastic types Fragment, Fiber, and Film. Based on the research results, the

average abundance percentage of particles was found to be highest in zone 3 at

15.92 particles/gr.

Keywords: Microplastics, Microscope, FT-IR Spectrophotometry, Soil, TPA.

ix

DAFTAR ISI

HALA	MAN PENGESAHAN	iv
PERN	YATAAN	v
PRAK	ATA	vi
ABST	RAK	viii
ABSTR	<i>PACT</i>	ix
DAFT	AR ISI	x
DAFT	AR TABEL	xii
DAFT	AR GAMBAR	xiii
DAFT	AR LAMPIRAN	xiv
BAB 1		1
PEND.	AHULUAN	1
1.1	Latar Belakang	1
1.2	Rumusan Masalah	2
1.3	Tujuan Penelitian	3
1.4	Manfaat Penelitian	3
1.5	Ruang Lingkup Penelitian	3
BAB I	I	5
TINJA	UAN PUSTAKA	5
2.1 N	Mikroplastik	5
2.2 N	Mikroplastik Pada Tanah dan Dampaknya	6
2.3 7	ГРА Piyungan Bantul DIY	7
2.4 I	Penelitian Terdahulu	8
BAB I	П	11
METO	DE PENELITIAN	11
3.1 7	Tahapan Penelitian	11
3.2 V	Waktu dan Lokasi	12
3.3 A	Alat dan Bahan	14
3.4 I	Pengambilan dan Penyimpanan Sampel	15
	Persiapan Sampel Tanah	
3.:	5.1 Pengukuran Ph Tanah	16

3.5.2 Pengukuran Suhu Tanah	17
3.5.3 Pengukuran Kadar Air Tanah	18
3.6 Preparasi Sampel	19
3.7 Analisis Sampel	21
3.8 Analisis Data	22
BAB IV	24
HASIL DAN PEMBAHASAN	24
4.1 Parameter Fisik-Kimia Tanah	24
4.1.1 pH	25
4.1.2 Suhu	26
4.1.3 Kadar Air	26
4.2 Mikroplastik Berdasarkan Jumlah, Jenis, dan Warna	27
4.2.1 Mikroplastik Berdasarkan Jumlah	27
4.2.2 Mikroplastik Berdasarkan Jenis	32
4.2.3 Mikroplastik Berdasarkan Warna	38
4.3 Mikroplastik Berdasarkan Gugus Fungsi	46
BAB V	51
KESIMPULAN DAN SARAN	51
5.1 Kesimpulan	51
5.2 Saran	51
DAFTAR PUSTAKA	52
I AMPIRAN	57

DAFTAR TABEL

Tabel 2. 1 Penelitian Terdahulu	8
Tabel 3. 1 Koordinat Pengambilan Sampel	13
Tabel 3. 2 Alat dan Bahan Pengujian Parameter Fisika	14
Tabel 3. 3 Alat dan Bahan Pengujian Mikroplastik	15
Tabel 4. 1 Data Parameter Fisik-Kimia	24
Tabel 4. 2 Hasil Pengamatan Mikroplastik Berdasarkan Jumlah	28
Tabel 4. 3 Perhitungan Kelimpahan Mikroplastik	29
Tabel 4. 4 Hasil Pengamatan Mikroplastik Berdasarkan Jenis	36
Tabel 4. 5 Perbedaan Warna pada Mikroplastik	38
Tabel 4. 6 Hasil Pengamatan Mikroplastik Berdasarkan Warna	42
Tabel 4. 7 Mikroplastik Berdasarkan Jenis dan Warna	46
Tabel 4. 8 Hasil Analisis Spektrofotometri FT-IR	47

DAFTAR GAMBAR

Gambar 3. 1 Diagram Alir Penelitian	11
Gambar 3. 2 Titik Pengambilan Sampel	13
Gambar 3. 3 Pengukuran pH Tanah	17
Gambar 3. 4 Pengukuran Suhu Tanah	17
Gambar 3. 5 Pendinginan pada Desikator	19
Gambar 3. 6 Proses Pemisahan Densitas	20
Gambar 3. 7 Proses WPO Sampel Mikroplastik	20
Gambar 3. 8 Proses Penyaringan Sampel	21
Gambar 3. 9 Pengamatan Sampel Menggunakan Mikroskop	22
Gambar 4. 1 Grafik Partikel Mikroplastik Berdasarkan Jumlah	28
Gambar 4. 2 Grafik Kelimpahan Mikroplastik	30
Gambar 4. 3 Mikroplastik Jenis Fragment	32
Gambar 4. 4 Mikroplastik Jenis Fiber	33
Gambar 4. 5 Mikroplastik Jenis Film	34
Gambar 4. 6 Mikroplastik Jenis Foam	34
Gambar 4. 7 Mikroplastik Jenis Pellet	35
Gambar 4. 8 Grafik Presentase Mikroplastik Berdasarkan Jenis	37
Gambar 4. 9 Grafik Presentase Mikroplastik Berdasarkan Warna	43
Gambar 4. 10 Mikroplastik Berdasarkan Jenis dan Warna	45

DAFTAR LAMPIRAN

Lampiran 6.	1 Hasil Grafik Polimer yang Terbaca pada Z1S1	57
Lampiran 6.	2 Hasil Grafik Polimer dengan Skor Tertinggi pada Z1S1	58
Lampiran 6.	3 Hasil Polimer yang Terbaca pada Z1S1	59
Lampiran 6.	4 Hasil Peak Table dari Polimer yang Terbaca pada Z1S1	59
Lampiran 6.	5 Hasil Grafik Polimer yang Terbaca pada Z1S2	60
Lampiran 6.	6 Hasil Grafik Polimer dengan Skor Tertinggi pada Z1S2	61
Lampiran 6.	7 Hasil Polimer yang Terbaca pada Z1S2	62
Lampiran 6.	8 Hasil Peak Table dari Polimer yang Terbaca pada Z1S2	62
Lampiran 6.	9 Hasil Grafik Polimer yang Terbaca pada Z2S1	63
Lampiran 6.	10 Hasil Grafik Polimer dengan Skor Tertinggi pada Z2S1	64
Lampiran 6.	11 Hasil Polimer yang Terbaca pada Z2S1	65
Lampiran 6.	12 Hasil Peak Table dari Polimer yang Terbaca pada Z2S1	65
Lampiran 6.	13 Hasil Grafik Polimer yang Terbaca pada Z2S2	66
Lampiran 6.	14 Hasil Grafik Polimer dengan Skor Tertinggi pada Z2S2	67
Lampiran 6.	15 Hasil Polimer yang Terbaca pada Z2S2	68
Lampiran 6.	16 Hasil Peak Table dari Polimer yang Terbaca pada Z2S2	68
Lampiran 6.	17 Hasil Grafik Polimer yang Terbaca pada Z2S3	69
Lampiran 6.	18 Hasil Grafik Polimer dengan Skor Tertinggi pada Z2S3	70
Lampiran 6.	19 Hasil Polimer yang Terbaca pada Z2S3	71
Lampiran 6.	20 Hasil Peak Table dari Polimer yang Terbaca pada Z2S3	71
Lampiran 6.	21 Hasil Grafik Polimer yang Terbaca pada Z3S1	72
Lampiran 6.	22 Hasil Grafik Polimer dengan Skor Tertinggi pada Z3S1	73
Lampiran 6.	23 Hasil Polimer yang Terbaca pada Z3S1	74
Lampiran 6.	24 Hasil Peak Table dari Polimer yang Terbaca pada Z3S1	74
Lampiran 6.	25 Hasil Grafik Polimer yang Terbaca pada Z3S2	75
Lamniran 6	26 Hasil Grafik Polimer dengan Skor Tertinggi pada Z3S2	76

Lampiran 6.	27 Hasil Polimer yang Terbaca pada Z3S2	77
Lampiran 6.	28 Hasil Peak Table dari Polimer yang Terbaca pada Z3S2	77
Lampiran 6.	29 Hasil Grafik Polimer yang Terbaca pada Z3S3	78
Lampiran 6.	30 Hasil Grafik Polimer dengan Skor Tertinggi pada Z3S3	79
Lampiran 6.	31 Hasil Polimer yang Terbaca pada Z3S3	30
Lampiran 6.	32 Hasil Peak Table dari Polimer yang Terbaca pada Z3S3	30
Lampiran 6.	33 Hasil Grafik Polimer yang Terbaca pada Tanah Control	31
Lampiran 6.	34 Hasil Grafik Polimer dengan Skor Tertinggi pada Tanah Contro	ol
		32
Lampiran 6.	35 Hasil Polimer yang Terbaca pada Tanah Control	33
Lampiran 6.	36 Hasil Peak Table dari Polimer yang Terbaca pada Tanah Contro	o 1
		33
Lampiran 6.	37 Daftar Hadir Audience Seminar Hasil	34
Lampiran 6.	38 Lembar Pengesahan Seminar Hasil	35

BAB 1

PENDAHULUAN

1.1 Latar Belakang

Saat ini, meluasnya penggunaan plastik telah menjadi masalah di seluruh dunia karena meningkatnya jumlah sampah plastik yang dihasilkan. Tingginya konsumsi plastik oleh masyarakat disebabkan kepraktisan dan ketersediaannya dengan harga yang ekonomis. Seiring dengan meningkatnya jumlah penduduk di dunia yang menggunakan plastik untuk kebutuhan sehari-hari, maka jumlah sampah plastik yang dihasilkan juga meningkat dengan produksi diprediksi akan meningkat empat kali lipat pada tahun 2050 (Suaria et al., 2016). Namun, limbah plastik kini diakui sebagai masalah polusi lingkungan global karena sulit terusai di alam (Amaral-Zettler et al., 2015).

Sampah plastik dan mikroplastik telah menjadi perhatian global dalam beberapa decade terakhir. Plastik merupakan bahan yang sangat umum digunakan dalam setiap aspek kehidupan sehari-hari, mulai dari kemasan produk makanan hingga peralatan rumah tangga. Namun, penggunaan plastik yang berlebihan dan kurangnya pengelolaan sampah yang efektif telah menyebabkan penumpukan sampah plastik di seluruh dunia.

Plastik tersebar luas di lingkungan darat akibat kegiatan sehari-hari manusia. Di tanah permukaan sepanjang jalan di zona industry (Fuller dan Gautam, 2016), terdeteksi 0,03% - 6,7% plastik. Plastik dapat terpecah menjadi mikroplastik (MP) oleh radiasi UV dan suhu tinggi di tanah permukaan, kemudian berpindah ke tanah yang lebih dalam melalui pergerakan organisme tanah serta aktivitas manusia (Horton et al., 2017). Penemuan mikroplastik pertama kali dicatat pada tahun 1970-an di Amerika Utara, tepatnya di Pantai New England. Mikroplastik adalah plastik yang terurai menjadi bagian-bagian kecil berukuran 0,3-5 mm (Dehaut et al, 2016). Sumber mikroplastik berasal dari sampah plastik domestik, industri, perdagangan, dan tempat pemrosesan akhir (TPA) yang terdegradasi di alam.

Proses masuknya mikroplastik ke dalam tanah TPA dapat melibatkan sejumlah jalur. Pertama-tama, limbah dari sektor domestik dan industri yang mengandung bahan plastik dapat memberikan kontribusi terhadap penumpukan mikroplastik di dalam TPA. Ketika limbah plastik tersebut mengalami dekomposisi, melalui proses alami maupun proses penguraian limbah, mikroplastik dapat terlepas dan meresap ke dalam lapisan tanah TPA. Selain itu, faktor-faktor lingkungan di sekitar TPA, seperti tingkat curah hujan dan aktivitas tanah, juga memiliki potensi untuk mempengaruhi pergerakan mikroplastik masuk ke dalam tanah. Proses degradasi plastik menjadi mikroplastik di tempat pemrosesan akhir (TPA) memakan waktu sekitar 20 tahun, disebabkan oleh suhu tinggi, radiasi sinar UV, dan oksigen di landfill TPA (Kliponen, 2016).

Tempat Pengelolaan Sampah Terpadu (TPST) Piyungan, yang berperan sebagai Tempat Pemrosesan Akhir (TPA) di Kecamatan Piyungan, Kabupaten Bantul, merupakan salah satu fasilitas penampungan sampah terbesar di Daerah Istimewa Yogyakarta. Fasilitas ini melayani wilayah Kabupaten Sleman, Kabupaten Bantul, dan Kota Madya (Utami dan Agustina, 2022), namun belum pernah dilakukan pencatatan atau analisis mengenai keberadaan mikroplastik di sekitar area TPST Piyungan (Utami dan Liani, 2021).

Penelitian sebelumnya telah dilakukan untuk mengidentifikasi keberadaan mikroplastik dalam air sumur gali di sekitar area Tempat Pemrosesan Akhir (TPA) Piyungan. Meskipun begitu, belum ada studi yang secara spesifik mengidentifikasi keberadaan mikroplastik di dalam tanah yang melingkupi TPA Piyungan. Oleh sebab itu, penelitian ini menjadi sangat penting untuk dilakukan guna memahami sejauh mana tingkat kontaminasi mikroplastik dalam tanah TPA Piyungan serta dampak potensialnya terhadap lingkungan dan kesehatan manusia (Utami dan Liani, 2021).

1.2 Rumusan Masalah

Berdasarkan uraian latar belakang di atas, maka dapat dirumuskan masalah sebagai berikut :

- Bagaimana jumlah, jenis, warna, serta kelimpahan mikroplastik pada tanah TPA Piyungan?
- 2) Apa saja kandungan polimer yang terkandung dalam mikroplastik pada tanah TPA Piyungan ?

1.3 Tujuan Penelitian

Adapun tujuan dari penelitian ini adalah:

- Menganalisis jumlah, jenis, warna, serta kelimpahan mikroiplastik pada tanah TPA Piyungan.
- 2) Menganalisis kandungan polimer yang terkandung dalam mikroplastik pada tanah TPA Piyungan.

1.4 Manfaat Penelitian

Adapun manfaat dari penelitian ini adalah:

- 1) Hasil penelitian dapat menjadi sumber pembelajaran terkait uji mikroplastik pada sampel tanah.
- Memberikan informasi tentang sejauh mana kelimpahan mikroplastik di TPA Piyungan Bantul.
- Dapat memberikan pengetahuan dan informasi kepada masyarakat mengenai mikroplastik.
- 4) Hasil penelitian dapat dijadikan referensi untuk pembelajaran dan riset lanjutan di masa mendatang.

1.5 Ruang Lingkup Penelitian

Adapun ruang lingkup dari penelitian ini adalah:

1) Ruang Lingkup Metode

Penelitian ini membahas tentang mikroplastik yang meliputi dari jenis, jumlah, warna, serta kelimpahan mikroplastik. Pengujian sampel dilakukan dengan menggunakan mikroskop dan FTIR (Fourier Transform Infrared Spectroscopy) sesuai dengan panduan yang diberikan National Ocanic and Atmospheric Administration (NOAA).

 Ruang Lingkup Tempat dan Waktu Penelitian
 Penelitian ini dilakukan di TPA Piyungan Bantul. Penelitian dilakukan selama 4 bulan terhitung dari bulan November 2023 – Februari 2024. 3) Ruang Lingkup Pengambilan Sampel Pengambilan sampel tanah dilakukan menggunakan alat grab sampler atau sekop pada permukaan tanah TPA Piyungan dengan kedalaman $10-15~\rm cm$

BAB II

TINJAUAN PUSTAKA

2.1 Mikroplastik

Mikroplastik merupakan plastik dengan ukuran kecil, kurang dari 5 mm, dan merupakan limbah yang memilki potensi sifat beracun serta membahayakan lingkungan (Layn et al., 2020). Dalam pembentukannya, mikroplastik dapat dibagi menjadi dua jenis, yaitu mikroplastik primer dan sekunder. Mikroplastik primer sebagaian besar dibentuk dan diproduksi oleh industri untuk digunakan dalam produk kosmetik dan kain sintetis. Sementara itu, mikroplastik sekunder terbentuk melalui proses alami, termasuk proses biologi, fisika, dan kimia, yang mengakibatkan perubahan bentuk plastik berukuran besar menjadi plastik berukuran kecil, yaitu kurang dari 5 mm (Ekosafitri et al., 2015).

Mikroplastik digolongkan menjadi 3 kategori berdasarkan ciri morfologi yaitu ukuran, warna dan jenis. Mikroplastik memiliki ukuran yang bervariasi. Ukuran mikroplastik juga dapat menunjukkan kemungkinan besar mikroplastik tertelan oleh organisme. Warna dari mikroplastik sangat beragam, namun yang paling umum ditemukan adalah bening, biru, hitam, kuning, hijau, putih, dan multiwarna. Beragamnya sampah plastik membuat mikroplastik memiliki berbagai bentuk seperti microbeads, fragmen, fiber, film, filamen dan foam (Virsek et al., 2016).

Fragmen merupakan salah satu jenis mikroplastik yang terbentuk dari objek yang lebih besar, berwarna lebih pekat serta tekstur yang berserat atau tipis (Fiore et al., 2022). Mikroplastik fragmen merupakan partikel mikroplastik yang terbentuk dari pecahan-pecahan tali, botol minuman plastik, puingan kaca, galon, mika, pipa paralon yang pecah, serta limbah serpihan lainnya (Zhang et al., 2020). Fiber merupakan serat plastik yang memanjang dan terbentuk dari pemecahan monofilamen serpihan perahu dan tali tambang (Zhang et al, 2020). Mikroplastik jenis fiber memiliki ciri utama yaitu berbentuk mirip dengan serabut atau jaring nelayan dan akan mengeluarkan cahaya biru terang apabila terkena ahaya ultraviolet. Foam merupakan jenis mikroplastik yang terbentuk dari bahan seperti

styrofoam, dengan tekstur yang lembut (Fiore et al., 2022). Mikroplastik tipe foam umumnya terbuat dari polimer polistirena (Tsering et al., 2022). Jenis mikroplastik ini memiliki ciri khas warna putih dan tekstur yang elastis (Ambarsari dan Anggiani, 2022).

Mikroplastik Film merupakan hasil degradasi dari bahan plastik yang berbentuk lembaran tipis (Flore et al., 2022). Film merupakan polimer plastik sekunder, terbentuk dari plastik yang memiliki dimensi tipis, densitas rendah, dan memiliki tekstur lembut, seperti plastik pembungkus atau jenis lainnya (Fiore et al., 2022).

Pellet merupakan jenis mikroplastik primer yang berasal dari tahap produksi bahan dasar produk plastik (Ahechti et al., 2020). Pellet memiliki bentuk silinder dan ukuran yang lebih besar dari 2 mm, dengan warna yang cenderung didominasi oleh putih (Ambarsari dan Anggiani, 2022). Pellet umumnya berbentuk bulat dan memiliki tekstur yang keras (Fiore et al., 2022).

2.2 Mikroplastik Pada Tanah dan Dampaknya

Tanah merupakan lapisan permukaan bumi yang mampu mendukung pertumbuhan tanaman. Fungsinya sangat penting dalam menjaga kestabilan lingkungan dan pasokan energi serta dalam melindungi keragaman hayati. Namun, tanah juga berperan sebagai tempat penyimpanan utama mikroplastik di lingkungan darat (Yang et al., 2021). Diketahui bahwa hampir 90% dari limbah plastik di daratan akhirnya masuk ke lingkungan tanah, baik secara langsung maupun tidak langsung (Plastics Europe, E. 2019). Berbagai penelitian sebelumnya telah menunjukkan bahwa terdapat sejumlah besar serat mikroplastik atau pecahan dalam lumpur limbah dan kompos (Zhang, L et al., 2020). Karena lumpur limbah digunakan dalam kegiatan pertanian, sejumlah besar mikroplastik juga turut memasuki lingkungan tanah (Nizzetto, L et al., 2016).Di samping itu, proses pelapukan dan dekomposisi film mulsa di lahan pertanian, penghancuran sampah plastik di tempat pembuangan sampah, serta pengendapan di atmosfer merupakan cara yang penting bagi mikroplastik untuk dapat memasuki lingkungan tanah (Rochman, C.M. 2018).

Keberadaan mikroplastik dapat memberikan dampak yang signifikan terhadap ekosistem tanah dan tanaman. Mikroplastik mampu memengaruhi pertumbuhan tanaman dengan mengganggu ketersediaan nutrient dan struktur tanah. (Zhang et al., 2018). Selain itu, mikroplastik memiliki dampak negatif karena mengandung senyawa yang berpotensi karsinogenik, yang bisa mengakibatkan gangguan pada sistem kelenjar endokrin pada manusia. Mikroplastik juga dapat menyebabkan kerusakan fisik maupun perubahan kimia dalam organ internal, serta memengaruhi sistem pencernaan (Azizah et al., 2020).

2.3 TPA Piyungan Bantul DIY

Tempat Pembuangan Akhir (TPA) merupakan tahap akhir dari proses pengelolaan sampah. Sampah yang dikelola tersebut merupakan hasil dari pengumpulan atau pengangkutan maupun hasil dari proses daur ulang sampah pada suatu kota atau daerah yang ditampung untuk dilakukan pengelolaan (Pattiasina *et al.*, 2018). TPA Piyungan terletak di Dusun Ngablak, Desa Sitimulyo, Kabupaten Bantul, Provinsi DIY.

Luas area yang dimiliki TPA Piyungan sebesar 12,5 Ha dengan kapasitas tampungan 2,7 juta m3 sampah. Komposisi sampah plastik TPA Piyungan sebesar 11,19 % dari total seluruh jenis sampah yang masuk. TPA Piyungan hampir habis masa pakainya, hal ini disebabkan jumlah timbulan sampah yang terus meningkat seiring dengan pertambahan penduduk dan aktivitasnya (Putra *et al.*, 2019).

Profil TPA Piyungan mencerminkan bahwa lokasi ini telah lama berfungsi sebagai tempat penanganan berbagai jenis limbah dari berbagai sumber. Sistem manajemen limbah di TPA Piyungan melibatkan tahap pengumpulan, pemilahan, dan pengolahan akhir limbah. Oleh karena itu, pemahaman yang mendalam tentang TPA Piyungan menjadi sangat penting untuk dapat mengenali serta memahami potensi limbah plastik yang dapat menghasilkan mikroplastik.

Pembuangan limbah plastik di TPA Piyungan juga membuka peluang timbulnya dampak mikroplastik pada tanah di sekitarnya. Proses penguraian limbah plastik di dalam TPA dapat menghasilkan partikel mikroplastik yang melalui berbagai mekanisme yaitu, terbawa oleh air hujan atau tersebar ke dalam tanah.

2.4 Penelitian Terdahulu

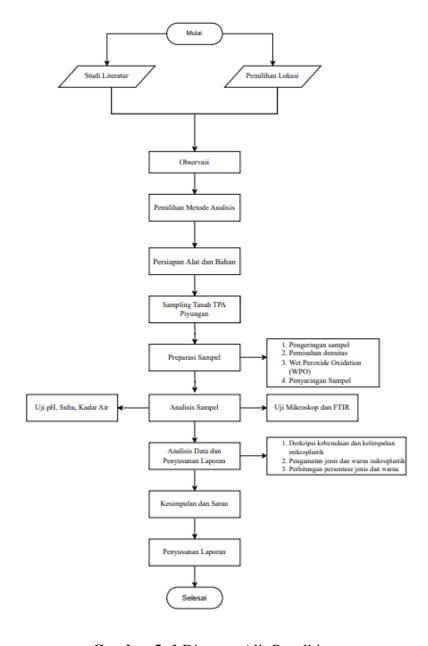
Berikut isi dalam **Tabel 2.1** mencakup penelitian sebelumnya mengenai mikroplastik yang ditemukan dalam tanah.

Tabel 2. 1 Penelitian Terdahulu

No	Nama Peneliti, Tahun	Hasil Penelitian
1	Chen, Y et al., 2020	Pencemaran mikroplastik di area pertanian
		sayuran di pinggiran Wuhan, Cina Tengah.
		Penelitian dilakukan dengan pengambilan
		sampel, pengolahan sampel, dan identifikasi
		sampel menggunakan stereoscopic
		microscope. Hasil penelitian menunjukkan
		tingkat konsentrasi mikroplastik berkisar
		antara 320 hingga 12.560 item per kilogram
		berat kering. Terdapat pencemaran
		mikroplastik yang lebih parah di sekitar
		jalan-jalan pinggiran kota, dengan tingkat
		sekitar 1,8 kali lipat lebih tinggi daripada
		yang terjadi di wilayah pemukiman.
		Mikroplastik dengan ukuran kurang dari 0,2
		mm mendominasi komposisi secara
		keseluruhan, mencapai 70%. Jenis
		mikroplastik utama terdiri dari serat dan
		butiran mikro.
2	Piehl, S et al., 2018	Penelitian dilakukan dengan survei
		lapangan, pengambilan sampel, pengolahan
		sampel, dan identifikasi sampel
		menggunakan mikroskop stereo. Selain itu,
		sampel juga dianalisis menggunakan FTIR.
		Hasil pengukuran tingkat kontaminasi
		makroplastik dan mikroplastik pada lahan

		pertanian di Tenggara Jerman menunjukkan adanya 206 potongan makroplastik per hektar dan 0,34 sampai 0,36 partikel mikroplastik per kilogram berat kering tanah. Jenis polimer yang paling umum adalah polietilena, diikuti oleh polistirena dan polipropilena. Kategori yang paling mendominasi mikroplastik adalah film dan
		fragmen, sedangkan pada makroplastik, yang mendominasi adalah film.
3	Sahaurar Mat al 2019	
3	Scheurer, M et al., 2018	Penelitian dilakukan dengan pengumpulan sampel, pengolahan sampel, dan identifikasi sampel menggunakan FT-IR <i>microcope</i> .
		Hasil penelitian 29 dataran banjir di taman
		alam Swiss menemukan bukti bahwa 90%
		tanah dataran banjir di Swiss mengandung
		mikroplastik. Konsentrasi mikroplastik yang
		paling tinggi terkait dengan konsentrasi
		mesoplastik (diameter 5 mm – 2,5 cm) yang
		mengidentifikasi bahwa sampah plastik
		menjadi sumbernya.
4	Ding, L et al., 2020	Penelitian dilakukan dengan pengambilan
		sampel, pengolahan sampel, dan identifikasi
		sampel menggunakan mikroskop. Hasil
		penelitian mikroplastik di tanah pertanian di
		Provinsi Shaanxi, Tiongkok menemukan
		bukti bahwa seluruh tanah pertanian
		mengandung mikroplastik. Konsentrasi
		mikroplastik di dalam tanah berkisar anatara
		1430 hingga 3410 item per kilogram. Jenis

dan ukuran yang paling mendominasi adalah
serat dan partikel kecil $(0 - 0.49 \text{ mm})$.


Dari beberapa penelitian terdahulu pada Tabel 2.1, terdapat beberapa metode yang digunakan untuk mengidentifikasi mikroplastik pada sampel. Metode yang digunakan yaitu FT-IR, Mikrokop, dan stereoscopic microscope. Hal ini dapat menjadi pertimbangan dalam pemilihan metode. Pada penelitian yang menggunakan metode FT-IR hasil dari pengujian didapatkan berupa jenis mikroplastik, ukuran mikroplastik, jumlah mikroplastik, jenis polimer pada mikroplastik, serta kelimpahan mikroplastik pada sampel. Pada penelitian yang menggunakan metode mikroskop, hasilnya mencakup jenis dan jumlah mikroplastik. Sementara pada penelitian yang menggunakan stereoscopic microscope didapatkan hasil jenis mikroplastik dan jumlah. Dari tiga metode tersebut, untuk mendukung penelitian ini digunakan gabungan metode yaitu FT-IR dan mikroskop. Pemilihan ini didasarkan pada efisiensi dan keterjangkauan metode FT-IR, serta proses preparasi sampel yang relatif tidak rumit. Selain itu, jika melihat dari rumusan masalah yang disusun oleh peneliti, penggunaan metode mikroskop dan FT-IR diharapkan dapat mencapai tujuan penelitian ini. Hasil dari pengamatan mikroplastik, seperti warna, jenis, dan bentuk, akan disatukan dengan hasil pembacaan FT-IR yang melibatkan senyawa kimia hasil kalibrasi.

BAB III

METODE PENELITIAN

3.1 Tahapan Penelitian

Secara umum alur tahapan dalam penelitian ini akan diilustrasikan dalam diagram alir yang disajikan seperti **Gambar 3.1** dibawah ini :

Gambar 3. 1 Diagram Alir Penelitian

3.2 Waktu dan Lokasi

Penelitian dengan Topik "Identifikasi Kandungan Mikroplastik pada Tanah TPA Piyungan Bantul" dilakukan dalam rentang waktu 4 bulan, terhitung dari bulan November 2023 hingga Februari 2024. Pengambilan sampel telah dilakukan pada bulan Juni 2023. Lokasi penelitian dilakukan di tanah TPA Piyungan Bantul. Sampel uji yang diambil yaitu sampel tanah. Kemudian sampel tersebut dilakukan kegiatan uji laboratorium di Fakultas Teknik Sipil dan Perencanaan UII.

Penentuan titik lokasi pengambilan sampel menggunakan metode *cluster sampling*. Pemilihan lokasi pengambilan sampel terdiri dari 8 titik. Pengambilan pada 8 titik untuk mewakili adanya sebaran mikroplastik di tanah TPA Piyungan Bantul. Pemilihan titik didasarkan pada penggunaan lahan untuk pengumpulan dan pengelolaan limbah di TPA Piyungan. Pada Zona 1 digunakan untuk zona pembuangan yaitu limbah yang telah mengalami proses pematangan. Pada Zona 2 digunakan untuk zona penerimaan yaitu pembuangan dan penimbunan limbah baru yang diangkut ke TPA. Pada Zona 3 berfungsi sebagai zona transisi yang digunakan untuk penampungan sampah akibat penuhnya zona 1 dan zona 2. Aksesbilitas lokasi juga diperhatikan agar memudahkan dalam pengambilan sampel. Selain itu diambil 1 titik pada tanah yang tidak terkontaminasi dengan sampah (tanah control). Dari semua lokasi di TPA Piyungan dibuat klasifikasi menjadi beberapa bagian zona yaitu 1, 2, dan 3. Adapun lokasi pengambilan sampel dapat dilihat pada Gambar 3.2 berikut:

Gambar 3. 2 Titik Pengambilan Sampel

Koordinat lokasi titik pengambilan sampel dapat dilihat pada **Tabel 3.1** Penamaan titik pengambilan sampel dilakukan dengan memberikan label Z1S1 dan Z1S2 untuk mewakili bagian dari Zona 1. Selanjutnya, titik pengambilan sampel pada bagian Zona 2 dinamai Z2S1, Z2S2, dan Z2S3. Bagian dari Zona 3 direperesentasikan oleh titik pengambilan sampel dengan label Z3S1, Z3S2, dan Z3S3

Tabel 3. 1 Koordinat Pengambilan Sampel

Sampel	Nomer	Koordinat
Zona 1 Sampel 1 (Z1S1)	1	7°52'13"S 110°25'52"E
Zona 1 Sampel 2 (Z1S2)	2	7°52'13"S 110°25'50"E
Zona 2 Sampel 1 (Z2S1)	3	7°52'9"S 110°25'45"E
Zona 2 Sampel 2 (Z2S2)	4	7°52'9"S 110°25'45"E
Zona 2 Sampel 3 (Z2S3)	5	7°52'9"S 110°25'45"E

Zona 3 Sampel 1 (Z3S1)	6	7°52'3"S 110°25'50.88"E
Zona 3 Sampel 2 (Z3S2)	7	7°52'3"S 110°25'50.88"E
Zona 3 Sampel 3 (Z3S3)	8	7°52'3"S 110°25'50.88"E
Tanah Control (TC)	9	7.6780 °S 110.3725 °E

3.3 Alat dan Bahan

Pengujian parameter fisika pada tanah TPA Piyungan dilakukan sebelum melakukan pengujian kandungan mikroplastik pada sampel. Berikut merupakan peralatan yang diperlukan selama pengujian parameter fisika dapat dilihat pada **Tabel 3.2**:

Tabel 3. 2 Alat dan Bahan Pengujian Parameter Fisika

No.	Nama Alat & Bahan	Penggunaan
1	pH Meter	
2	Oven	
3	Thermometer	
4	Timbangan Analitik	
5	Pengaduk Kaca	
6	Sendok Sungu	
7	Krustang	
8	Desikator	Pengujian parameter fisika sampel
9	Cawan Porselen	tanah di TPA Piyungan Bantul
10	Gelas Beaker	
11	Gelas Ukur 100 mL	
12	Sampel Tanah	

Setelah menguji parameter fisika pada sampel, langkah selanjutnya adalah mempersiapkan sampel untuk pengujian kandungan mikroplastik. Berikut

merupakan alat dan bahan yang diperlukan selama proses persiapan sampel dan pengujian mikroplastik dapat dilihat pada **Tabel 3.3**:

Tabel 3. 3 Alat dan Bahan Pengujian Mikroplastik

Keterangan	Alat	Bahan
Pengambilan sampel di lapangan	Plastik ZiplockSkopSpidol	200 INC
Proses analisis di laboratorium	 FTIR (Fourier Transform Infrared) Mikroskop Gelas beaker 500 mL Erlenmeyer 250 mL Gelas ukur 100 mL Vacuum pumps Ayakan Timbangan analitik Pipet volume Magnetic Stirrer Kaca preparat Batang pengaduk 	 200 mL NaCl 12 mL H2O2 30% Aquades Kertas saring whatman CAT No. 1821-047 Alumunium foil

3.4 Pengambilan dan Penyimpanan Sampel

Sampel tanah yang diambil berada di TPA Piyungan Bantul dimulai dari zona 1 hingga ke zona 3. Selain itu diambil juga sampel tanah yang tidak terkontaminasi dengan sampah plastik (tanah control). Sampel diambil pada permukaan tanah dengan kedalaman 10 hingga 15 cm menggunakan grab sampler atau sekop. Sampel yang diperoleh kemudian ditempatkan dalam wadah berbahan alumunium atau non plastik. Pengawetan sampel tidak diperlukan karena sifat mikroplastik cenderung mengalami degradasi yang lambat.

3.5 Persiapan Sampel Tanah

Sebelum melakukan pengujian mikroplastik pada sampel tanah, dilakukan langkah awal untuk mengidentifikasi karakteristik fisik dan kimia dari setiap sampel. Pada proses ini mencakup pengukuran beberapa parameter utama, yaitu pH tanah, suhu, dan kadar air. Tahap ini penting guna memahami lingkungan tanah secara menyeluruh sebelum mendeteksi adanya mikroplastik pada tanah.

3.5.1 Pengukuran Ph Tanah

Pengukuran tingkat keasaman tanah (pH) dapat dilakukan menggunakan pH meter atau pH probe. Tujuan dari pengukuran pH yaitu mengetahui ketersediaan nutrisi dan kondisi kimia yang dapat mempengaruhi degradasi mikroplastik. Prosedur analisis pH mengikuti Petunjuk Teknis Analisis Kimia Tanah, Tanaman, Air, dan Pupuk.

Langkah awal yang diperlukan untuk mengukur pH pada tanah adalah dengan menimbang sebanyak 1 gram sampel tanah ke dalam gelas beaker 100 ml. Setelah itu, ditambahkan Aquades sebanyak 50 ml ke dalam gelas beakaer tersebut. Sampel diaduk secara merata untuk mencapai kehomogean. Pengukuran pH dilakukan dengan menggunakan pH meter pada sampel yang sudah homogen. Hasil pengukuran tersebut kemudian dicatat.


Selain itu dilakukan pengukuran pH dengan menggunakan larutan KCl yaitu dengan menimbang 1 gram sampel tanah ke dalam gelas beaker 100 ml. Setelah itu, ditambahkan 50 ml KCl 1 m ke dalam gelas beaker tersebut. Sampel diaduk secara merata untuk mencapai kehomogean, kemudian dilakukan pengukuran pH. Pengukuran pH menggunakan larutan aquades dan KCl berfungsi untuk mencapai tingkat akurasi yang lebih tinggi dalam pengukuran pH.

Gambar 3. 3 Pengukuran pH Tanah

3.5.2 Pengukuran Suhu Tanah

Pengukuran suhu dilakukan untuk mendapatkan informasi tambahan mengenai potensial perubahan fisik dan kimia yang dapat mempengaruhi distribusi mikroplastik dalam tanah. Cara kerja pengujian suhu pada sampel tanah yaitu dengan cara meletakan thermometer pada sampel yang telah disiapkan, kemudian dicatat perubahan suhu yang terjadi.

Gambar 3. 4 Pengukuran Suhu Tanah

3.5.3 Pengukuran Kadar Air Tanah

Pengukuran kadar air dilakukan untuk dapat mengetahui keterlibatan air dalam proses perpindahan dan penyebaran mikroplastik di dalam tanah. Pengukuran kadar air mengacu pada Petunjuk Teknis Analisis Kimia Tanah, Tanaman, Air, dan Pupuk. Langkah awal dalam mengukur kadar air pada sampel tanah yaitu dengan mengeringkan cawan posrselen menggunakan oven pada suhu 100-105°C selama satu jam. Setelah itu, cawan yang telah dikeringkan didinginkan pada desikator hingga mencapai suhu ruang. Selanjutnya, berat cawan diukur dengan menggunakan timbangan analitik dan hsilnya dicatat. Proses selanjutnya dilakukan penimbangan sampel tanah seberat 1 gram dan ditempatkan pada cawan porselen yang sudah dikeringkan tadi. Kemudian, cawan porselen yang berisi tanah tersebut dimasukan ke dalam oven pada suhu 105°C selama 3 jam. Angkat cawan porselen dengan penjepit ditempatkan kembali dalam desikator untuk proses pendinginan hingga mencapai suhu ruang. Setelah sampel tanah sesuai dengan suhu ruang, beratnya diukur kembali untuk mengtetahui perubahan berat dari sampel tersebut. Selanjutnya, dapat dilakukan perhitungan kadar air pada sampel menggunakan rumus berikut:

$$W = \frac{W2-W3}{W3-W1} \times 100\%$$

dengan:

W = kadar air yang dinyatakan dalam persen

W1 = berat cawan

W2 = berat cawan + berat tanah basah

W3 = berat cawan + berat tanah kering

Gambar 3. 5 Pendinginan pada Desikator

3.6 Preparasi Sampel

Pada analisis sampel, sampel tanah diuji menggunakan metode modifikasi dari NOAA (*National Oceanic Atmosphere Administration*). Berikut adalah poinpoin penting dalam metode analisis:

1. Pengeringan Sampel

Proses ini dimulai dengan menimbang 20 gram tanah yang telah diayak melalui ayakan berukuran 3.35 mm (0.132 inchi). Sampel tanah dikeringkan dalam oven pada suhu 70°C selama 24 jam. Pada tahap ini bertujuan untuk menghilangkan kadar air pada sampel tanah dan memudahkan pengayakan sampel tanah agar tidak menggumpal pada mesin pengayak.

2. Pemisahan Densitas

Pada tahap ini untuk memisahkan mikroplastik pada tanah dengan memanfaatkan perbedaan densitas atau berat jenis. Sampel tanah yang telah dikeringkan, selanjutnya dilakukan penambahan 200 ml NaCl jenuh ke dalam gelas beaker berukuran 500 ml. Sampel yang telah ditambahkan NaCl jenuh diaduk menggunakan alat *magnetic stirrer* selama 1 jam. Setelah itu, sampel dibiarkan mengendap selama 24 jam.

Gambar 3. 6 Proses Pemisahan Densitas

3. Wet Peroxide Oxidation (WPO)

Tujuan dari WPO adalah untuk menghilangkan kandungan organik dalam sampel. Penghancuran bahan organik dilakukan untuk mempermudah analisis sampel. Pada tahap ini, dilakukan penambahan 40 ml larutan *Hidrogen peroxida* (H₂O₂₎ dengan konsentrasi 30% ke dalam sampel yang telah disiapkan dalam erlenmeyer. Setelah itu, sampel diaduk menggunakan *magnetic stirrer* pada suhu 65 °C selama 24 jam.

Gambar 3. 7 Proses WPO Sampel Mikroplastik

4. Penyaringan Sampel

Penyaringan sampel bertujuan untuk memisahkan mikroplastik yang terdapat dalam sampel uji. Proses penyaringan menggunakan kertas saring glass micro fiber (GF/B) Whatman CAT No. 1821-047. Penyaringan dilakukan menggunakan alat vaccum dengan cara kertas saring diletakkan di atas vacum. Sampel kemudian dituangkan pada vacumm lalu corong penutup diletakkan di atas kertas saring agar larutan tidak tumpah. Tombol dihidupkan untuk memulai proses penyaringan sampel. Kertas saring yang telah melalui proses penyaringan dikeringkan dengan dibiarkan di cawan petri hingga kering.

Gambar 3. 8 Proses Penyaringan Sampel

3.7 Analisis Sampel

1) Pengujian Sampel Menggunakan Mikroskop

Mikroplastik memiliki dimensi yang sangat kecil sehingga tidak dapat terlihat secara langsung oleh mata manusia, sehingga perlu dilakukan observasi dengan menggunakan mikroskop. Proses penggunaan mikroskop dimulai dengan menghidupkan alat dan menyesuaikan pencahayaan sesuai kebutuhan. Selanjutnya, sampel ditempatkan di meja pengamatan menggunakan preparat, dan pada mikroskop dilakukan penyesuaian perbesaran hingga mencapai 10 kali lipat. Fokus mikroskop dapat diatur hingga lensa dapat memperlihatkan sampel dengan jelas. Tujuan dari

penggunaan mikroskop adalah untuk melihat kelimpahan mikroplastik dalam sampel berdasarkan jumlah, bentuk, dan warna.

Gambar 3. 9 Pengamatan Sampel Menggunakan Mikroskop

2) Pengujian Sampel dengan FTIR

Penggunaan FTIR dalam pengamatan bertujuan untuk mengidentifikasi unsur kimia yang terdapat dalam mikroplastik. Proses pembacaan sampel dilakukan dnegan meletakkan sampel di tengah alas besi. Pada FTIR terdapat kristal kecil (TR diamond) yang digunakan untuk menganalisis sampel. Hasil analisis ini direkam dan disimpan dalam perangkat lunak komputer dalam bentuk grafik serta unsur kimia yang teridentifikasi.

3.8 Analisis Data

1. Mikroskop

Pada analisis data, data hasil pengamatan dengan mikroskop perbesaran 10 kali dianalisis secara deskirptif. Analisis deskriptif dalam penelitian ini melibatkan :

a. Deskripsi Keberadaan dan Kelimpahan Mikroplastik

Keberadaan dan kelimpahan mikroplastik dihitung per 20 gram tanah kering dengan rumus berikut :

$$\text{Kelimpahan Mikroplastik}(\frac{\text{Partikel}}{\text{Berat Tanah Kering}}) = \frac{\text{Jumlah Mikroplastik Pada Tanah (Partikel)}}{\text{Berat Tanah Kering (Gram)}}$$

b. Perhitungan Persentase Jenis dan Warna

Persentase jenis dan warna mikroplastik dihitung dengan rumus berikut :

$$Presentase (\%) = \frac{Jumlah \ Partikel \ Jenis \ atau \ Warna \ (Partikel)}{Jumlah \ Keseluruhan \ Partikel \ Jenis \ atau \ Warna \ (Partikel)} x 100\%$$

Prosedur analisis tersebut dapat membantu dalam memahami keberadaan dan jenis mikroplastik, kelimpahan, serta karakteristik warna pada setiap zona di TPA Piyungan Bantul. Analisis data jenis dan warna mikroplastik dilakukan dengan menghitung jumlah dan persentase masingmasing jenis dan warna untuk memberikan gambaran lebih rinci tentang kontaminasi mikroplastik di tempat tersebut.

2. FTIR

Analisis data menggunakan perangkat FTIR melibatkan proses pengukuran intensitas inframerah pada sampel yang sebelumnya diamati pada kertas saring. Alat FTIR melakukan pengukuran inframerah pada panjang gelombang yang terbaca pada perangkat tersebut. Hasil yang dapat diperoleh dari pembacaan gelombang oleh alat FTIR mencakup struktur molekul, presentase kemiripan sampel dengan gugus fungsi kimia. Setelah selesai proses analisis menggunakan FTIR, langkah berikutnya adalah pengolahan data. Data yang diolah kemudian disajikan dalam bentuk grafik dan tabel berdasarkan kode sampel yang telah diuji. Pengolahan data ini mencakup informasi dari analisis mikroskop, seperti warna, jenis, dan bentuk mikroplastik pada tanah TPA Piyungan, yang digabungkan dengan data hasil pembacaan alat FTIR berupa senyawa kimia.

BAB IV HASIL DAN PEMBAHASAN

Parameter fisik-kimia dalam penelitian ini berfungsi sebagai data pendukung, melibatkan pH, suhu, dan kadar air pada tanah. Informasi ilmiah tentang kondisi lingkungan TPA Piyungan diperoleh dari data yang diukur dari parameter-parameter tersebut.

4.1 Parameter Fisik-Kimia Tanah

Pengukuran parameter fisik-kimia pada tanah dilakukan terlebih dahulu sebelum pengujian mikroplastik. Adapun hasil pengukuran parameter fisik-kimia di seluruh titik sampel, disajikan pada **Tabel 4.1.**

Tabel 4. 1 Data Parameter Fisik-Kimia

		Parameter Fisik Kimia									
Titik Sampel	pH (In Situ)	pH (Aquades)	pH (KCl) 1 M	Suhu	Kadar Air	Jumlah Partikel Mikroplastik					
Z1S1	6	9,05	7,80	27°C	21,70%	158					
Z1S2	6	9,38	7,96	26,4°C	35,87%	184					
Z2S1	7	8,81	7,42	27°C	20,98%	236					
Z2S2	6	8,06	7,75	27°C	31,15%	278					
Z2S3	6	8,76	7,71	27°C	11,30%	256					
Z3S1	-	8,13	6,42	27°C	17,50%	548					
Z3S2	-	8,32	6,53	27°C	16,56%	290					
Z3S3	-	8,40	6,48	27°C	8,87%	117					
Tanah Control (TC)	-	7,50	6,52	27°C	11,88%	71					

4.1.1 pH

Derajat keasaman atau pH difungsikan sebagai alat ukur untuk menilai Tingkat keasaman dan kebasaan tanah. pH juga memengaruhi proses degradasi mikroplastik, sehingga pengukuran pH sangat penting dalam mempengaruhi aktivitas bakteri yang berperan dalam proses pendegradasian (Susana, 2009). Hasil pengukuran pH di TPA Piyungan Bantul, sebagaimana tercatat dalam **Tabel 4.1**, menunjukkan tingkat pH yang berbeda antara penggunaan aquades dan KCL. Pada penggunaan aquades berada dalam kisaran 7,50-9,38, sedangkan penggunaan KCL berada dalam kisaran 6,42-7,96. Pengukuran pH menggunakan aquades angka tertinggi pada titik sampel Z1S2 sebesar 9,38 dan angka terendah pada titik sampel Tanah Control sebsar 7,50. Sedangkan penggunaan KCL angka tertinggi pada titik sampel Z1S2 sebesar 7,96 dan angka terendap pada titik sampel Z3S1.

Berdasarkan **Tabel 4.1** dapat dilihat bahwa hubungan pH terhadap jumlah partikel mikroplastik menunjukkan jumlah yang tidak stabil dan cenderung naikturun. Sehingga dapat ditarik kesimpulan bahwa pH tidak memiliki korelasi terhadap jumlah partikel mikroplastik. Terdapat faktor yang mungkin dapat menyebabkan tidak adanya korelasi antara pH dengan jumlah partikel mikroplastik yaitu penyimpanan sampel tanah yang dapat mengubah kondisi kimia dan fisik tanah.

Berdasarkan **Tabel 4.1** diperoleh pH aquades yang dihasilkan lebih tinggi dibandingkan pH KCl. Hal ini dikarenakan kemasaman yang di ukur dengan aquades adalah kemasaman aktif, sedangkan pH KCl mengukur kemasaman aktif dan potensial. KCl dapat mengukur aktivitas H⁺ yang berada di luar larutan tanah disebabkan karena ion K⁺ yang berada pada KCl dapat di tukar dengan ion H⁺ sedangkan hal tersebut tidak berlaku pada aquades (Handayani & Karnilawati, 2018).

Perubahan pH tanah antara pH in situ dan pH yang didapatkan pada sampel tanah yang telah disimpan dapat disebabkan oleh beberapa faktor. Selama proses penyimpanan, kondisi kimia dan fisik tanah dapat mengalami perubahan, yang pada akhirnya dapat mempengaruhi pH. Beberapa faktor yang berkontribusi pada

perubahan pH antara in situ dan setelah penyimpanan melibatkan oksidasi bahan organic, reaksi mineral, kehilangan karbon dioksida, perubahan keseimbangan air, dan kontaminasi. Oksidasi bahan organic selama penyimpanan dapat mempengaruhi keseimbangan ion hidrogen dalam tanah, sementara reaksi mineral dan kehilangan karbon dioksida juga dapat berdampak pada pH. Selain itu, perubahan keseimbangan air dan kontaminasi oleh bahan-bahan lain selama penyimpanan juga dapat mempengaruhi pH tanah secara keseluruhan.

4.1.2 Suhu

Perubahan suhu memiliki dampak pada proses fragmentasi. Kenaikan suhu dapat mempercepat transformasi plastik menjadi partikel kecil. Hal ini sesuai dengan Valadezgonzalez et al., dalam Bangun (2017), yang menyatakan bahwa plastik mengalami fragmentasi karena fotooksidasi oleh cahaya ultraviolet (uv) dan dipercepat oleh suhu tinggi.

Hasil pengukuran suhu tanah rata-rata di seluruh titik sampel pada **Tabel 4.1** memperlihatkan kisaran suhu antara 26,4 - 27°C pada Zona 1, 27°C pada Zona 2, 27°C pada Zona 3, dan pada Tanah Control dengan suhu sebesar 27°C. Berdasarkan **Tabel 4.1** dapat disimpulkan bahwa suhu tidak berkorelasi terhadap jumlah partikel mikroplastik. Hal ini disebabkan oleh rata-rata nilai suhu yang diukur pada masing-masing sampel memiliki nilai yang sama. faktor yang mungkin dapat menyebabkan tidak adanya korelasi antara suhu dengan jumlah partikel mikroplastik yaitu penyimpanan sampel tanah yang dapat mengubah kondisi kimia dan fisik tanah.

4.1.3 Kadar Air

Mengoven tanah untuk menghilangkan kadar air diperlukan waktu selama 3 jam karena proses pengeringan tanah memerlukan suhu yang cukup tinggi untuk menguapkam air secara efektif yaitu pada kisaran 105°C – 110°C. Penggunaan suhu oven pada suhu tersebut mengakibatkan tanah menjadi lebih stabil untuk menghitung kadar air mutlak.

Hasil pengukuran kadar air tanah rata-rata di seluruh titik sampel pada **Tabel 4.1** memperlihatkan kisaran kadar air Zona 1 antara 21,70 – 35,87%, dengan kadar air paling tinggi yaitu pada titik Z1S2 sebesar 35,87% dan paling rendah titik

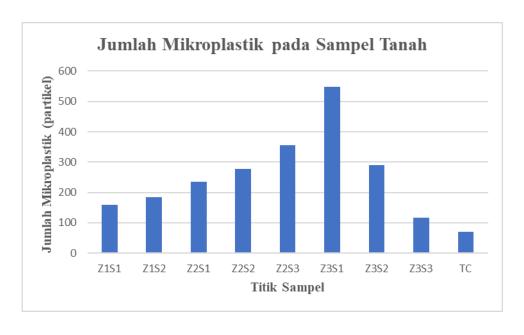
Z1S1 sebesar 21,70%. Pada Zona 2 antara 11,30 - 31,15%, dengan kadar air paling tinggi yaitu titik Z2S2 sebesar 31,15% dan paling rendah titik Z2S3 sebesar 11,30%, Pada Zona 3 kisaran 8,87 - 17,50%, dengan kadar air paling tinggi yaitu titik Z3S1 sebesar 17,50% dan paling rendah titik Z3S3 sebesar 8,87%, yang terakhir kadar air tanah pada Tanah Control sebesar 11,88%.

Berdasarkan **Tabel 4.1** dapat dilihat bahwa hubungan kadar air terhadap jumlah partikel mikroplastik menunjukkan jumlah yang tidak stabil dan cenderung naik-turun. Sehingga dapat ditarik kesimpulan bahwa kadar air tidak memiliki korelasi terhadap jumlah partikel mikroplastik. Terdapat faktor yang mungkin dapat menyebabkan tidak adanya korelasi antara kadar air dengan jumlah partikel mikroplastik yaitu penyimpanan sampel tanah yang dapat mengubah kondisi kimia dan fisik tanah.

4.2 Mikroplastik Berdasarkan Jumlah, Jenis, dan Warna

Dalam penelitian mengenai kandungan mikroplastik di tanah TPA Piyungan, analisis dapat dilakukan dengan mengamati jumlah, jenis, dan warna dari setiap sampel mikroplastik yang telah melalui tahap preparasi sampel. Hasil analisis ini, akan disajikan secara ringkas menggunakan grafik dan tabrl pengamatan untuk memudahkan proses analisis data.

4.2.1 Mikroplastik Berdasarkan Jumlah


Pengamatan jumlah mikroplastik disetiap titik sampel menggunakan mikroskop. Dalam penelitian ini, Mikrokop Binoculer XSZ-107BN digunakan untuk menghitung jumlah mikroplastik pada masing-masing sampel yang telah disaring menggunakan kertas saring Glass Micro Fiber (GF/B) Whatman CAT No. 1821-047. Sebelum pengamatan, kertas saring dibagi menjadi 4 kuadran untuk mempermudah observasi di setiap area. Observasi dilakukan pada perbesaran 10x.

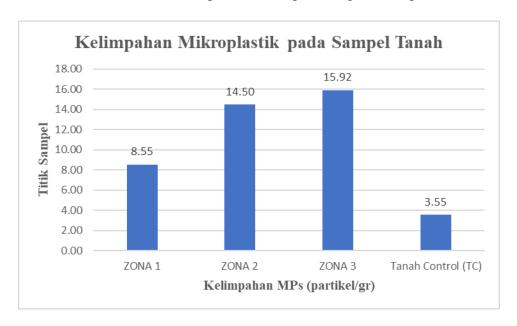
Setelah itu, jumlah sampel yang terlihat pada mikroskop dihitung dan didata pada tabel pengamatan mencakup lokasi pengambilan sampel dan jumlah partikel mikroplastik. Hasil pengamatan mikroplastik berdasarkan jumlah dapat dilihat pada **Tabel 4.2.**

Tabel 4. 2 Hasil Pengamatan Mikroplastik Berdasarkan Jumlah

No.	Titik Sampel	Jumlah Mikroplastik (partikel)				
1	Z1S1	158				
2	Z1S2	184				
3	Z2S1	236 278				
4	Z2S2					
5	Z2S3	356				
6	Z3S1	548				
7	Z3S2	290				
8	Z3S3	117				
9	Tanah Control (TC)	71				

Berdasarkan data pengamatan jumlah mikroplastik sesuai dengan lokasi pengambilan sampel yang telah melalui proses perhitungan partikel mikroplastik, hasil perhitungan akan disajikan dalam bentuk grafik. Grafik hasil observasi dikategorikan berdasarkan lokasi pengambilan sampel dan jumlah partikel mikroplastik. Hasil pengamatan mikroplastik berdasarkan jumlah dapat dilihat pada **Gambar 4.1.**

Gambar 4. 1 Grafik Partikel Mikroplastik Berdasarkan Jumlah


Grafik hasil pengamatan di atas menunjukkan adanya fluktuasi jumlah mikroplastik pada setiap titik pengambilan sampel. Hal ini disebabkan oleh perbedaan pola tata guna lahan pada tanah TPA Piyungan. Pada titik sampel Z1S1 hingga Z1S2 digunakan untuk zona pembuangan yaitu limbah yang telah mengalami proses pematangan. Pada titik sampel Z2S1 hingga Z2S3 digunakan untuk zona penerimaan yaitu pembuangan dan penimbunan limbah baru yang diangkut ke TPA. Pada titik sampel Z3S1 hingga Z3S3 berfungsi sebagai zona transisi yang digunakan untuk penampungan sampah akibat penuhnya zona 1 dan zona 2. Sedangkan pada titik sampel tanah control tidak diakses masyarakat untuk pembuangan maupun pengelolaan sampah.

Selain jumlah, dilakukan perhitungan kelimpahan mikroplastik pada setiap titik sampel. Dalam perhitungan kelimpahan mikroplastik ini, jumlah mikroplastik yang telah dihitung sebelumnya akan dibandingkan dengan berat sampel tanah. Berat tanah yang digunakan dalam perhitungan ini adalah sebanyak 20 gram. Berat sampel tanah yang digunakan untuk perhitungan ini merupakan hasil dari sampel yang telah melalui tahap preparasi sebelumnya. Hasil perhitungan kelimpahan mikroplastik pada tanah dapat dilihat pada **Tabel 4.3**.

Tabel 4. 3 Perhitungan Kelimpahan Mikroplastik

No.	Titik Sampel	Jumlah	Berat Sampel (gr)	Kelimpahan MPs (partikel/gr)
1	Z1S1	158		7,9
2	Z1S2	184		9,2
3	Z2S1	236		11,8
4	Z2S2	278		13,9
5	Z2S3	356	20	17,8
6	Z3S1	548	20	27,4
7	Z3S2	290		14,5
8	Z3S3	117		5,85
9	Tanah Control (TC)	71		3,55

Berdasarkan data perhitungan kelimpahan mikroplastik pada setiap lokasi penelitian, dilakukan pengumpulan data yang direpresentasikan dalam bentuk grafik. Grafik pada **Gambar 4.2** akan mengklasifikasikan data pengamatan berdasarkan zona lokasi titik sampel dan hasil perhitungan kelimpahan.

Gambar 4. 2 Grafik Kelimpahan Mikroplastik

Pada **Gambar 4.2** diatas, terlihat bahwa kelimpahan mikroplastik pada tanah memiliki hasil yang berbeda. Perbedaan ini disebabkan oleh variasi dalam perhitungan jumlah partikel mikroplastik pada setiap sampel. Dari hasil perhitungan kelimpahan mikroplastik pada seluruh titik sampel, dapat disimpulkan bahwa kelimpahan mikroplastik tertinggi adalah sampel Zona 3 sebesar 15,92 partikel/gr. Sedangkan kelimpahan mikroplastik yang paling rendah adalah sampel tanah control (TC) sebesar 3,55 partikel/gr.

Berdasarkan **Gambar 4.2**, menunjukkan rasio kelimpahan mikroplastik dalam pembagian 3 zona titik sampel, kelimpahan mikroplastik dari Zona 1 hingga Zona 3 dipastikan 8,55 – 15,92% (Rata-rata 13,0%). Pada Zona 1 dan Zona 2 memiliki kelimpahan mikroplastik yang lebih sedikit dibandingkan dengan Zona 3, hal tersebut dapat disebabkan karena tidak adanya aktivitas pembuangan sampah pada Zona 1 dan Zona 2, kemudian dengan tidak adanya aktivitas pembuangan sampah maka tidak ada truck pengangkut sampah yang melewati zona tersebut, sehingga mikroplastik tidak terdistribusi atau berpindah melalui udara.

Jumlah mikroplastik yang lebih tinggi pada Zona 3 dapat disebabkan oleh beberapa faktor seperti sampah yang berada di Zona 3 merupakan jenis sampah yang lebih cenderung menghasilkan mikroplastik, yaitu plastik yang mudah terdegradasi dan juga pada Zona 3 merupakan zona yang memiliki tumpukan sampah paling banyak dikarenakan zona tersebut merupakan zona yang masih aktif untuk pembuangan sampah. Selain itu aktivitas truck pengangkut sampah yang dapat mendistribusikan mikroplastik melalui udara. Pada saat pengambilan sampel, tanah dalam keadaan basah, sehingga air lindi dari sampah terserap ditanah sampel dan mempengaruhi kuantitas mikroplastik. Menurut penelitian yang dilakukan oleh Xu et al. (2016) air lindi Tempat Pembuangan Akhir (TPA) berfungsi sebagai sumber mikroplastik. Estimasi menunjukkan bahwa antara 0,2 hingga 1,0 m³ air lindi dihasilkan per ton sampah yang dibuang setiap tahun di Eropa. Pada tahun 2018, sekitar 52 juta ton sampah perkotaan dibuang di UE, yang setara dengan 10,4 juta m³ air lindi. Dengan perkiraan 291 partikel mikroplastik per liter per tahun, ini mengindikasikan bahwa sekitar 3,03 miliar partiel mikroplastik dilepaskan pada tahun tersebut.

Selain itu proses degradasi plastik yang lebih lanjut di zona tersebut, karena paparan yang lebih lama terhadap kondisi lingkungan, juga dapat menyebabkan pelepasan lebih banyak mikroplstik. Plastik yang telah mengalami degradasi fisik atau kimia dapat lebih mudah menjadi fragmen kecil, sehingga meningkatkan jumlah mikroplastik yang dihasilkan.

Data penelitian mengungkapkan jumlah mikroplastik di tanah TPA kota Depok mencapai 60.111,67 partikel/kg, dengan fragmen menjadi jenis yang paling dominan, mencapai 63% (Pratiwi et al., 2024). Sedangkan hasil penelitian mikroplastik pada tempat pembuangan sampah di Tiongkok Selatan menunjukkan bahwa mikroplastik dalam tumpukan sampah dan tanah di bawahnya bervariasi dari 590 hingga 103.080 item/kg dan dari 570 hingga 14.200 item/kg, secara berturutturut (Wan et al., 2021). Rendahnya kelimpahan mikroplastik pada tanah TPA Piyungan dibandingkan tanah TPA Depok dan Tiongkok diperkirakan karena tanah yang diamati merupakan campuran dari tanah urug.

4.2.2 Mikroplastik Berdasarkan Jenis

Berdasarkan jenisnya, partikel mikroplastik yang diamati menggunakan mikroskop dengan perbesaran 10x. Mikroplastik yang telah dihitung jumlah partikelnya akan dikelompokkan berdasarkan jenisnya, yakni Fragment, Fiber, Film, Foam, dan Pellet. Jenis mikroplastik yang terbentuk akan berbeda sesuai dengan lokasi pengambilan sampel. Perbedaan ini disebabkan oleh variasi tata guna lahan di lokasi pengambilan sampel, yang sesaui dengan kondisi lingkungan setempat. Jenis-jenis mikroplastik yang teramati dalam pengamatan ini meliputi :

1. Fragment

Fragmen merupakan salah satu jenis mikroplastik yang terbentuk dari objek yang lebih besar, berwarna lebih pekat serta tekstur yang berserat atau tipis (Fiore et al., 2022). Mikroplastik fragmen merupakan partikel mikroplastik yang terbentuk dari pecahan-pecahan tali, botol minuman plastik, puingan kaca, galon, mika, pipa paralon yang pecah, serta limbah serpihan lainnya (Zhang et al., 2020).

Gambar 4. 3 Mikroplastik Jenis Fragment

Berdasarkan **Gambar 4.3** di atas, terlihat mikroplastik dengan jenis *Fragment* berwarna hitam dan memiliki bentuk yang tidak beraturan, serta memiliki warna yang sangat pekat. Pengamatan jenis *Fragment* ini menggunakan mikroskop dengan perbesaran 10x, sehingga bentuknya terlihat jelas dan memiliki ukuran area sebesar 28,61 µm². Di TPA Piyungan, kemungkinan besar terdapat mikroplastik jenis fragmen yang berasal dari limbah plastik domestik maupun industri yang masuk ke dalam

area pemrosesan akhir. Fragment berasal dari limbah padat seperti tenda dan bendera (Changbo et al., 2019). Sumber fragment juga dapat berasal dari dekomposisi sampah plastik, peralatan pertanian, kemasan plastik, anyaman plastik, dan kantong plastik (Antunes et al., 2013).

2. Fiber

Selain Fragment, jenis mikroplastik lainnya yang ditemukan adalah jenis *Fiber*. Warna *Fiber* bervariasi tergantung pada sumbernya. *Fiber* memiliki bentuk yang menyerupai tali atau serabut, dan panjangnya dapat beragam (Ambarsari & Anggiani, 2022).

Gambar 4. 4 Mikroplastik Jenis Fiber

Berdasarkan **Gambar 4.4** di atas, terlihat mikroplastik dengan jenis *Fiber* berwarna biru. Pengamatan jenis *Fiber* ini menggunakan mikroskop dengan perbesaran 10x diketahui panjangnya yaitu 20,69 µm. Pada penelitian ini, *Fiber* yang ditemukan berasal dari limbah tekstil, seperti pakaian sintetis yang terbuat dari bahan seperti *polyester* atau nilon. Mikroplastik jenis fiber memiliki permukaan yang kasar dan retak dikarenakan proses oksidasi jangka panjang yang terjadi di lingkungan (Ding et al., 2019). Hal ini dapat terjadi ketika produk plastik, terutama tekstil sintetis, mengalami degradasi fisik atau kimia seiring waktu,

3. Film

Mikroplastik *Film* merupakan hasil degradasi dari bahan plastik yang berbentuk lembaran tipis (Flore et al., 2022). Film ini sering kali terbentuk dari plastik yang memiliki dimensi tipis, densitas rendah, dan

memiliki tekstur lembut, seperti plastik pembungkus atau jenis lainnya (Fiore et al., 2022).

Gambar 4. 5 Mikroplastik Jenis Film

Berdasarkan **Gambar 4.5** di atas, terlihat mikroplastik dengan jenis *Film* berwarna hijau dengan luas area sebesar 81,24 µm. Pengamatan jenis *Film* ini menggunakan mikroskop dengan perbesaran 10x. Pada penelitian ini, *Film* yang ditemukan berasal dari berbagai produk konsumen, kemasan plastik, dan barang sehari-hari yang mengandung material *film* plastik.

4. Foam

Foam merupakan jenis mikroplastik sekunder yang terbentuk dari bahan seperti styrofoam, dengan tekstur yang lembut (Fiore et al., 2022). Jenis mikroplastik Foam ini memiliki bentuk yang menyerupai lingkaran.

Gambar 4. 6 Mikroplastik Jenis Foam

Berdasarkan **Gambar 4.6** di atas, terlihat bahwa mikroplastik jenis *Foam* menunjukkan karakteristik yang telah diuraikan sebelumnya. Melalui observasi menggunakan mikroplastik dengan perbesaran 10x, terlihat

bahwa mikroplastik jenis *Foam* yang ditemukan berwarna merah dengan luas area sebesar 1,62 µm². Perubahan warna ini dapat terjadi karena paparan sinar ultraviolet (UV), di mana sinar UV merusak ikatan kimia dalam polimer plastik, mengakibatkan perubahan warna yang disebut dengan proses fotodegradasi. Jenis mikroplastik ini berasal dari limbah rumah tangga dan kemasan barang.

5. Pellet

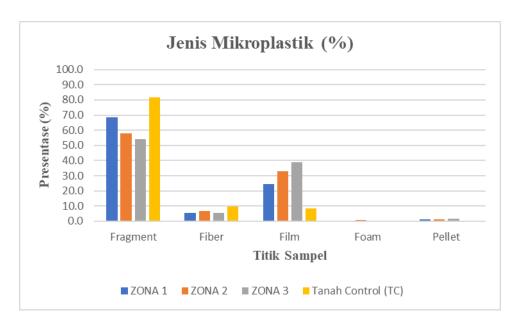
Pellet merupakan jenis mikroplastik primer yang berasal dari tahap produksi bahan dasar produk plastik (Ahechti et al., 2020). Pellet memiliki bentuk silinder dan berukuran sangat kecil (Ambarsari dan Anggiani, 2022). Pellet umumnya memiliki tekstur yang keras (Fiore et al., 2022).

Gambar 4. 7 Mikroplastik Jenis Pellet

Berdasarkan **Gambar 4.7** di atas, terlihat mikroplastik dengan jenis Pellet berwarna merah dengan luasan sebesar 1,08 µm². Pengamatan jenis *Pellet* ini menggunakan mikroskop dengan perbesaran 10x. Sumber utama mikroplastik jenis *Pellet* dapat berasal dari limbah sektor industry plastik, pembuatan produk plastik, atau barang-barang konuumen yang menggunakan bahan dasar plastik berbentuk *Pellet*.

Keberadaan jenis mikroplastik di lingkungan dapat berasal dari proses degradasi mikroplastik. Daya tahan plastik dapat diperkirakan mencapai ratusan bahkan ribuan tahun tergantung pada sifat plastik dan kondisi lingkungannya. Meskipun penguraian plastik memerlukan waktu yang cukup lama, pelapukan yang

terjdi di lingkungan dapat menyebabkan kerusakan pada plastik, mengakibatkan perubahan sifat polimer baik secara biologis maupun abiotik (Zhang et al., 2021).


Degradasi mikroplastik dikelompokkan menjadi empat jenis utama. Pertama, fotodegradasi, yang umumnya melibatkan penggunaan sinar UV (Arpia et al., 2021). Radiasi dari sinar uv dapat mempengaruhi berbagai sifat mikroplastik, termasuk warna, elastisitas, kekuatan dan sifat lainnya (Cong et al., 2022). Selanjutnya, degradasi fisik melibatkan proses seperti pemanasan/pendinginan, pembekuan/pencairan, dan basah/pengeringan (Wagner & Lambert, 2018). Kondisi ini merujuk pada kerusakan plastik yang diakibatkan oleh energi yang berasal dari suhu tinggi (Zhang et al., 2021). Ketiga, degradasi kimia, yang mencakup oksidasi atau hidrolisis. Fotodegradasi dan hidrolisis dapat memulai proses degradasi di air, yang kemudian mengakibatkan oksidasi (Cole et al., 2011). Terakhir, biodegradasi oleh organisme, seperti jamur, bakteri, dan ganggang (Wagner & Lambert, 2018). Organisme memiliki kemampuan untuk mendegradasi mikroplastik secara fisik melalui pengunyahan, menggigit, atau dengan cara fragmentasi (Zhang et al., 2021).

Pengamatan partikel mikroplastik dilakukan melalui perhitungan jumlah setiap jenis mikroplastik yang terlihat dalam mikroskop. Proses pengamatan ini dikelompokkan berdasarkan jenis mikroplastik dan lokasi pengambilan sampel, yang nantinya akan dicatat dalam tabel kelimpahan mikroplastik. Kemudian, akan dibedakan sesuai dengan jenisnya yang dapat dilihat pada **Tabel 4.4**.

Tabel 4. 4 Hasil Pengamatan Mikroplastik Berdasarkan Jenis

No.	Titik Samnal		Jumlah				
INO.	Titik Sampel	Fragment	Fiber	Film	Foam	Pellet	Juilliali
1	Z1S1	123	12	23	0	0	158
2	Z1S2	109	6	64	0	5	184
3	Z2S1	178	22	32	0	4	236
4	Z2S2	124	14	130	6	4	278
5	Z2S3	193	21	139	0	3	356
6	Z3S1	250	17	267	0	14	548
7	Z3S2	174	8	101	0	7	290
8	Z3S3	67	12	38	0	0	117
9	TC	58	7	6	0	0	71

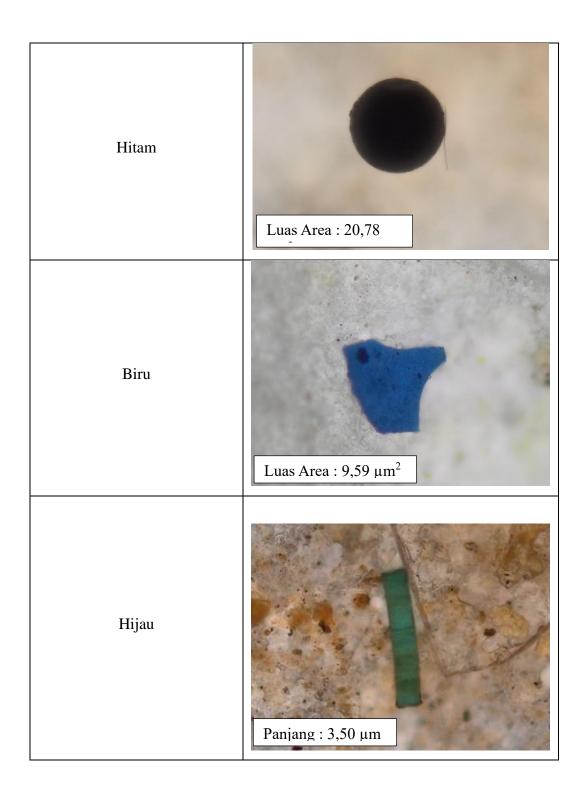
Berdasarkan data yang tertera dalam tabel di atas, dapat dilakukan perhitungan presentase untuk setiap jenis mikroplastik yang telah diidentifikasi dalam pengamatan sebelumnya. Presentase dari masing-masing jenis mikroplastik tersebut akan direpresentasikan dalam bentuk grafik. Hasil pengamatan berdasarkan jenis mikroplastik masing-masing zona dapat dilihat pada **Gambar 4.8**.

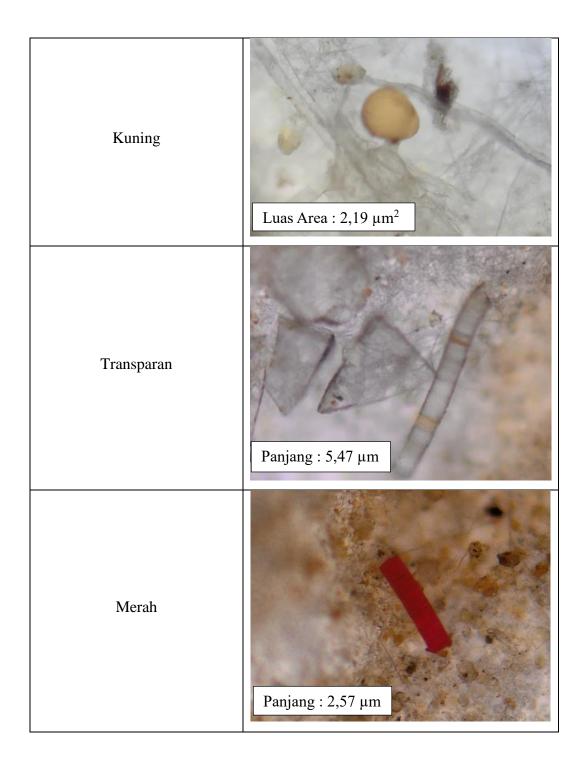
Gambar 4. 8 Grafik Presentase Mikroplastik Berdasarkan Jenis

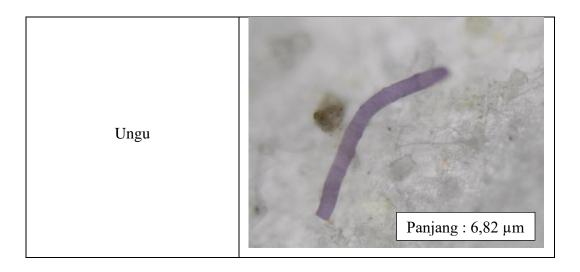
Pada **Gambar 4.8**, jenis mikroplastik pada tanah TPA Piyungan memiliki presentase yang beragam. Jenis mikroplastik fragment, fiber, film, foam, dan pellet berturut-turut pada masing-masing titik sampel dapat disimpulkan bahwa Zona 1 memiliki presentase jenis mikroplastik sebesar 68,5%; 5,4%; 24,7%; 0,0%; 1,4%. Zona 2 memiliki presentase jenis mikroplastik sebesar 58,1%; 6,8%; 33,1%; 0,7%; 1,3%. Kemudian Zona 3, yaitu 54,3%; 5,4%; 38,7%; 0,0%; 1,7%. dan terakhir yaitu Titik Tanah Control (TC) dengan presentase sebesar 81,7%; 9,9%; 8,5%; 0,0%; 0,0%.

Berdasarkan **Gambar 4.8**, menunjukkan rasio jenis mikroplastik dalam pembagian 3 zona titik sampel, jenis mikroplastik dari Zona 1 hingga Zona 3 dipastikan Fragment sebesar 54,3-68,5% (Rata-rata 60,3%), Fiber sebesar 5,4-6,8%

(Rata-rata 5,86%), Film sebesar 24,7-38,7% (Rata-rata 32,16%), Foam 0,0-0,7% (Rata-rata 0,23%), Pellet sebesar 1,3-1,7% (Rata-rata 1,46%).

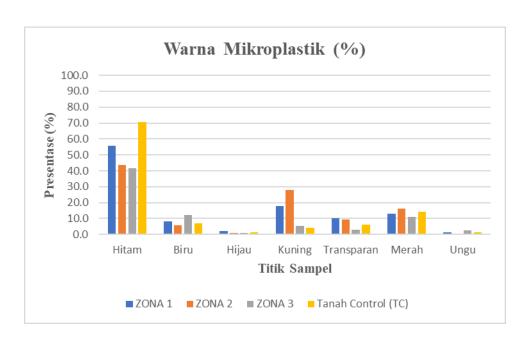

Pada Gambar 4.8, menunjukkan mikroplastik jenis fragment memiliki jumlah paling banyak dari seluruh titik sampel yang ada. Hal ini dapat disebabkan banyaknya sampah kemasan plastik yang pecah menjadi fragmen kecil, botol, kemasan makanan serta minuman, dan fragmen pipa yang dibuang ke Tempat Pembuangan Akhir (TPA). Selain itu mikroplastik jenis film juga banyak ditemukan pada TPA. Hal ini juga dapat disebabkan oleh banyaknya kantong plastik serta kantong kemasan makanan yang terdegradasi seiring waktu. Sumber mikroplastik jenis fiber juga ditemukan pada pengamatan sampel, yang berasal dari kain sintetis dan tekstil. Mikroplastik berbentuk pellet berasal dari pabrik yang menggunakan plastik dalam produk kecantikan serta pembersih. Dominasi jenis mikroplastik di TPA dapat disebabkan oleh variasi komposisi limbah plastic dan proses dekomposisi yang terjadi di TPA. Hal ini sejalan dengan penelitian sebelumnya di TPA Kota Depok, ditemukan bahwa jenis mikroplastik yang paling dominan adalah fragment (Pratiwi et al., 2024).


4.2.3 Mikroplastik Berdasarkan Warna


Melalui penggunaan mikroskop, dilakukan identifikasi mikroplastik berdasarkan warna. Dalam penelitian ini, warna mikroplastik yang terdeteksi pada sampel tanah meliputi hitam, merah, biru, hijau, kuning, transparan, dan ungu. Warna yang terdapat pada mikroplastik merupakan warna yang berasal dari produk plastik, paparan radiasi UV, kontaminasi lingkungan, dan proses degradasi (Sarkar et al., 2020). Perbedaan warna mikroplastik dapat dilihat pada **Tabel 4.5.**

Tabel 4. 5 Perbedaan Warna pada Mikroplastik

Warna	Gambar	



Identifikasi warna mikroplastik pada tanah dilakukan melalui proses perhitungan menggunakan mikroskop. Data hasil perhitungan kemudian dicatat ke dalam tabel hasil pengamatan dan dihitung presentase pada masing-masing warna. Tabel ini diklasifikasikan berdasarkan lokasi pengambilan sampel dan warna. Hasil identifikasi mikroplastik berdasarkan warna dapat dilihat pada **Tabel 4.6.**

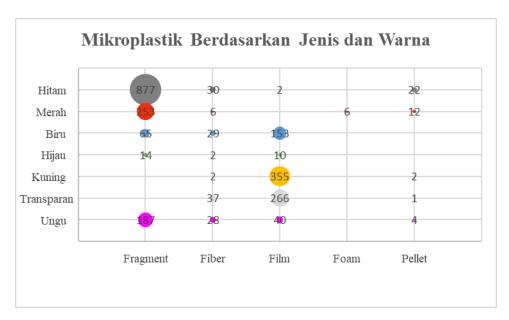
Tabel 4. 6 Hasil Pengamatan Mikroplastik Berdasarkan Warna

		Warna Mikroplastik														
No	Titik Sampel	Sampel Hitam		Biru		Hijau	Hijau Ku		ning Tran		Transparan		ah	Ungu		Total
		Jumlah	%	Jumlah	%	Jumlah	%	Jumlah	%	Jumlah	%	Jumlah	%	Jumlah	%	
1	Z1S1	116	73,4	6	3,8	5	3,2	19	12,0	4	7,6	5	3,2	3	1,9	158
2	Z1S2	70	38,0	23	12,5	2	1,1	44	23,9	1	13,0	42	22,8	2	1,1	184
3	Z2S1	129	54,7	23	9,7	1	0,4	20	8,5	7	3,6	56	23,7	0	0,0	236
4	Z2S2	104	37,4	6	2,2	5	1,8	106	38,1	28	13,7	27	9,7	2	0,7	278
5	Z2S3	137	38,5	18	5,1	3	0,8	134	37,6	9	10,6	54	15,2	1	0,3	356
6	Z3S1	210	38,3	153	27,9	8	1,5	0	0,0	153	0,0	20	3,6	4	0,7	548
7	Z3S2	106	36,6	14	4,8	1	0,3	28	9,7	71	3,3	65	22,4	5	1,7	290
8	Z3S3	59	50,4	4	3,4	1	0,9	8	6,8	31	5,8	8	6,8	6	5,1	117
9	TC	50	70,4	5	7,0	1	1,4	3	4,2	1	6,0	10	14,1	1	1,4	71

Berdasarkan tabel perhitungan presentase warna mikroplastik pada masing-masing lokasi pengambilan sampel, dapat disusun data tersebut dalam bentuk grafik. Pada grafik ini akan dikelompokkan data pengamatan berdasarkan zona lokasi titik sampel dan warna pada setiap mikroplastik. Hasil pengamatan mikroplastik berdasarkan warnanya dapat dilihat pada **Gambar 4.9**.

Gambar 4. 9 Grafik Presentase Mikroplastik Berdasarkan Warna

Pada **Gambar 4.9**, terlihat grafik presentase warna mikroplastik pada sampel tanah sesuai dengan lokasi penelitian. Dalam grafik ini, terdapat beragam warna mikroplastik teramati pada sampel tanah, yaitu hitam, biru, hijau, kuning, transparan, merah, dan ungu. Rasio warna mikroplastik dalam pembagian 3 zona titik sampel, yaitu Zona 1 hingga Zona 3 dipastikan hitam sebesar 41,8-55,7% (Rata-rata 47%), biru sebesar 5,7-12,1% (Rata-rata 8,63%), hijau sebesar 0,9-2,1% (Rata-rata 1,3%), kuning sebesar 5,5-28,1% (Rata-rata 17,2%), transparan sebesar 3,1-10,3% (Rata-rata 7,56%), merah sebesar 11,0-16,2% (Rata-rata 13,4%), ungu sebesar 0,3-2,5% (Rata-rata 1,43%).


Warna dari mikroplastik bergantung pada warna plastik asal dan masa pakainya. Sebagai contoh, serat transparan mungkin berasal dari pecahan tali pancing atau jaring, sementara partikel berwarna kemungkinan berasal dari pecahan plastik yang umum digunakan, seperti tekstil dan produk pengepakan (Wang, Z et al., 2020). Meskipun demikian, perubahan dapat terjadi karena pengaruh pelapukan. Warna mikroplastik dapat memberikan informasi berharga tentang komposisi limbah padat dan durasi proses fragmentasi. Kelimpahan warna transparan dan kekuningan yang tinggi menunjukkan bahwa sebagian besar partikel telah berumur dan berada di sistem TPA untuk waktu yang lama (Sun, J et al., 2021).

Warna kekuningan juga dapat mengindikasikan adanya jumlah bahan organic yang lebih tinggi dalam sampel (Kilponen, J., 2016).

Mikroplastik berwarna hitam diperoleh dari proses fragmentasi cat dan sampah plastik kresek yang digunakan sebagai pembungkus makanan. Ketika plastik-plastik ini mengalami degradasi akibat paparan sinar matahari, panas, dan mekanisme lainnya, mereka dapat pecah dan akhirnya membentuk mikroplastik. Mikroplastik berwarna hitam memiliki kapasitas yang baik dalam menyerap ion logam, bahan organic, dan polutan lainnya. Warna pada mikroplastik dapat disebabkan oleh penumpukan logam berat (Hiwari et al., 2019). Logam berat dalam plastik dapat mempengaruhi warna mikroplastik saat mengalami degradasi (Massos & Turner., 2017)

4.3 Mikroplastik Berdasarkan Penggabungan Jenis dan Warna

Pengamatan mikroplastik juga dilakukan dengan mempertimbangkan variasi jenis dan warnanya. Teknik ini melibatkan penggunaan mikroskop untuk mengklasifikasikan mikroplastik berdasarkan jenis yang ditandai dengan warna spesifik. Dalam pengamatan antara jumlah, jenis, dan warna mikroplastik dapat dihubungkan karena jika tanah semakin tercemar, maka jumlah dan jenis mikroplastik semakin banyak. Selain itu, variasi warna pada mikroplastik juga dipengaruhi oleh beragamnya sumber pencemar. Tujuan dari pengamatan jenis dan warna mikroplastik ini adalah untuk mendapatkan data yang lebih rinci mengenai berbagai jenis mikroplastik yang terdapat dalam warna-warna tertentu, sehingga mempermudah proses pendataan melalui grafik. Hasil pengamatan ini dapat dilihat dalam Gambar 4.1, yang menampilkan data mikroplastik berdasarkan jenis dan warna pada tanah.

Gambar 4. 10 Mikroplastik Berdasarkan Jenis dan Warna

Berdasarkan **Gambar 4.10** diatas, dapat dilihat bahwa mikroplastik jenis *fragment* berwarna hitam lebih banyak dibandingkan dengan jenis dan warna mikroplastik lain. Jumlah mikroplastik jenis fragment berwarna hitam sebanyak 877 partikel. Sedangkan jumlah partikel mikroplastik yang paling sedikit berdasarkan jenis dan warna adalah hijau. Banyaknya mikroplastik berwarna hitam dapat diperoleh dari proses fragmentasi cat dan sampah plastik kresek yang digunakan sebagai pembungkus makanan. Ketika plastik-plastik ini mengalami degradasi akibat paparan sinar matahari, panas, dan mekanisme lainnya, mereka dapat pecah dan akhirnya membentuk mikroplastik. Mikroplastik berwarna hitam memiliki kapasitas yang baik dalam menyerap ion logam, bahan organic, dan polutan lainnya (Hiwari et al., 2019). Keberadaan mikroplastik jenis fragment ini diperkirakan berasal dari potongan plastik sampah rumah tangga, seperti botol minuman, kemasan makanan, pipa paralon, dan potongan lainnya dari sampah plastik.

Data pengamatan mikroplastik yang paling dominan berdasarkan jenis dan warna dari setiap pembagian zona TPA Piyungan juga disajikan dalam bentuk tabel yang dapat dilihat pada **Tabel 4.7**. Dipilih 3 jenis dan warna yang paling dominan pada setiap zona TPA Piyungan. Sehingga, jenis dan warna yang teramati dapat

diurutkan berdasarkan jenis dan warna dengan jumlah terbesar hingga yang terkecil.

Tabel 4. 7 Mikroplastik Berdasarkan Jenis dan Warna

No.	Titik Sampel	Jenis dan Warna Dominan	Jumlah Partikel
		Fragment hitam	181
1	ZONA 1	Film kuning	63
		Fragment merah	43
		Fragment hitam	346
2	ZONA 2	Film kuning	256
		Fragment merah	120
		Fragment hitam	350
3	ZONA 3	Film biru	233
		Film transparan	130

4.4 Mikroplastik Berdasarkan Gugus Fungsi

Analisis karakteristik kimiawi pada mikroplastik dilakukan melalui instrument Spektrofotometri Fourier-Transform Infared Spectroscopy (Spektrofotometri FT-IR). Alat ini berperan dalam mengidentifikasi gugus fungsi yang terdapat pada setiap sampel uji, untuk pemetaan jenis gugus fungsi mikroplastik. Sampel yang telah diamati melalui mikrokop akan dinetralkan dengan menggunakan aquades, kemudian dianalisis menggunakan Spektrofotometri FT-IR. Proses Analisis Sampel ini memperhatikan kuadran yang telah ditentukan pada kertas saring saat pengamatan mikroskop.

Hasil analisis dengan Spektrofotometri FT-IR berupa grafik dan tabel rekapitulasi skor kemiripan senyawa kimia yang dibaca dengan menggunakan library score yang dimiliki oleh alat ini. Analisis sampel dilakukan dengan menggunakan kertas saring Glass Micro Fiber (GF/B) Whatman CAT No. 1821-047. Hasil analisis senyawa kimia menggunakan Spektrofotometri FT-IR pada masing-masing sampel dapat dilihat pada **Tabel 4.7**.

Tabel 4. 8 Hasil Analisis Spektrofotometri FT-IR

Delimen	Skor Kemiripan (%)											
Polimer	Z1S1	Z1S2	Z2S1	Z2S2	Z2S3	Z3S1	Z3S2	Z3S3	TC			
Tencel	711	670	708	769	586	762	736	758	780			
Cellopha	670	618	663	714	659	721	690	724	736			
Ramie	662	679	670	665	614	719	687	712	734			
Cotton	636	612	630	698	614	681	658	676	718			
Polyacetlene	634	0	657	738	623	721	674	726	746			
Cellulose	713	712	717	762	716	755	729	754	774			
Bemberg	636	0	622	695	593	692	665	694	695			
Rayon	634	0	616	694	0	689	660	691	694			
Polyarcylamide	618	619	624	675	620	653	643	659	673			
Polybutadiene	611	588	587	0	595	672	646	0	0			
Polyamide	588	597	593	0	594	0	598	0	0			
Polyvinyls Pyrolidone	583	593	583	0	613	0	0	0	0			
Nylon	582	587	586	0	591	0	0	0	0			
Wool	580	0	0	0	0	0	0	0	0			
POM	578	0	0	0	0	0	0	0	0			
Methyl Celluloce	0	0	0	707	0	671	0	683	729			
Ethyl cellulose	0	590	0	0	588	0	0	0	0			
PVFM	0	0	0	0	0	0	0	0	663			
Hydroxybutyl Methyl cellulose	0	0	0	680	0	0	0	645	708			
EVOH	0	581	0	0	0	0	0	0	0			
Vinyl Alcohol Vinyl Butyral	0	0	0	647	0	0	0	643	0			

Cupra	0	0	0	0	0	683	602	0	0
HDPE	0	0	0	0	0	651	0	0	0
PE	0	0	0	0	0	650	0	0	0
PBT	0	0	0	0	0	0	598	0	0
PVB	0	0	0	0	0	0	0	0	636

Berdasarkan hasil analisis senyawa kimia menggunakan Spektrofotometri FT-IR Tabel diatas, terlihat bahwa skor kemiripan polimer berbeda-beda untuk setiap sampel. Perbedaan ini disebabkan oleh keberadaan polimer yang beragam pada masing-masing sampel, bergantung pada jenis mikroplastik yang terdapat dalam kertas saring. Nilai skor kemiripan maksimum yang dapat terbaca di FTIR sebesar 999. Apabila senyawa yang terbaca mendapatkan nilai mendekati 999 artinya senyawa tersebut memiliki nilai kemiripan yang akurat. Dari data yang tercantum dalam Tabel, teridentifikasi 26 polimer. Berdasarkan polimer ini dapat dipilih polimer yang memiliki skor kemiripan paling mendekati atau skor tertinggi. Pemilihan polimer tersebut juga mempertimbangkan polimer yang paling sering terdeteksi dalam analisis Spektrofotometri FT-IR. Sehingga, dipilih 5 polimer yang paling mendekati, yaitu Tencel, Cellopha, Ramie, Cotton dan Polyacetlene. Beberapa senyawa dengan skor kemiripan tertinggi adalah:

1. Tencel

Tencel digunakan sebagai bahan dasar pembuatan benang dan barang rumah tangga seperti handuk, pakaian dalam, tirai dan produk lainya. Analisis kandungan kimia menggunakan Spektrofotometri FT-IR mengidentifikasi keberadaan serat atau fiber Tencel.

Keberadaan Tencel pada TPA dapat berasal dari dua sumber utama. Pertama, Tencel dapat masuk ke TPA dar limbah barang konsumen atau tekstil yang tidak terpakai. Sumber kedua dari limbah industry atau produksi yang berbasis Tencel seperti sisa-sisa produksi, limbah tekstil, atau produk yang tidak memenuhi standar produksi.

2. Cellopha

Cellophane merupakan bahan lembaran fleksibel dan tipis yang berisfat semi-sintetis. Cellophane digunakan sebagai pengemasan produk, seperti sayuran, gula, serta daging (Soebijarso & Djumarman, 2011). Tidak hanya sebagai kemasan, cellophane juga digunakan untuk kertas pelapis dalam kemasan obat-obatan, baterai, pakaian, produk kosmetik, peralatan pancing, dan sebagainya. Lembaran kertas tipis cellophane memiliki potensi untuk berkontribusi pada keberadaan mikroplastik, terutama dalam bentuk

film, ketika mencapai Tempat Pemrosesan Akhir (TPA) sebagai akibat dari pembuangan limbah.

3. Ramie

Ramie merupakan serat alami yang berasal dari tanaman ramie (*Boehmeria Nivea S. Gaud*). Serat ramie termasuk dalam kategori polimer alami dan menyerupai kapas. Selain itu ramie, memiliki kemampuan serap air yang lebih tinggi, mencapai 12%. Daya tahan serat ramie terhadap pertumbuhan jamur, bakteri, dan ketahanannya terhadap perubahan warna akibat sinar matahari menjadikannya sebagai alternatif dalam pemanfaatan serat selulosa. Penggunaan ramie sebagai bahan baku dalam pembuatan komposit dna tekstil, termasuk dalam pembuatan pakaian musim panas (Novani & Sukardan, 2015). Ramie yang berbentuk serat memiliki potensi untuk menghasillkan mikroplastik dalam bentuk fiber.

4. Cotton

Cotton atau katun merupakan serat yang berasal dari kapas (Gossypium spp.) Serat katun memiliki karakteristik tekstur yang tipis dan ringan. Kemampuan katun menyerap air dan ketahanannya terhadap panas setrika menjadikannya pilihan yang umum digunakan, meskipun bahan ini cenderung mudah kusut dan memiliki Tingkat susut yang cepat (Suardiningsih, 2013). Katun dimanfaatkan dalam kehidupan sehari-hari sebagai bahan baku untuk pakaian, yang pada akhirnya dapat menghasilkan mikroplastik dalam bentuk fiber.

5. Polyacetlene

Polyacetlene merupakan suatu jenis polimer sintetis yang memiliki sifat termoplastik yang berwarna putih atau transparan (Rahmawati, 2015). Polyacetlene dimanfaatkan sebagai bahan dasar unutk pembuatan produk rumah tangga, termasuk kantong plastic, tempat sampah, dan botol. Selain itu juga digunakan sebagai pengemas buah-buahan, sayuran segar dan roti. Polyacetlene dikategorikan sebagai salah satu jenis polimer yang berkontribusi terhadap pembentukan mikroplastik jenis film.

BAB V

KESIMPULAN DAN SARAN

5.1 Kesimpulan

Berdasarkan hasil penelitian dan analisis data yang telah dilakukan, dapat disimpulkan oleh penulis bahwa :

- 1. Hasil identifikasi kelimpahan mikroplastik mmenunjukkan bahwa kelimpahan mikroplastik pada sampel tanah yang paling tinggi adalah sampel Zona 3 sebesar 15,92 partikel/gr. Dalam analisis karakteristik fisik, terdapat variasi bentuk mikroplastik yang mecakup 5 jenis, yakni Fragment, Fiber, Film, Foam, dan Pellet, dengan 7 variasi warna, yakni hitam, biru, hijau, kuning, transparan, merah, dan ungu.
- 2. Pada analisis jenis polimer mikroplastik menggunakan Spektrofotometri FT-IR, teridentifikasi 26 polimer pada sampel. Selanjutnya dipilih polimer yang paling mendekati, yakni Tencel, Cellopha, Ramie, Cotton dan Polyacetlene, yang berasal dari mikroplastik jenis *Fragment*, *Fiber*, dan *Film*.

5.2 Saran

Hasil pengerjaan penelitian yang telah didapatkan, maka terdapat beberapa saran yaitu :

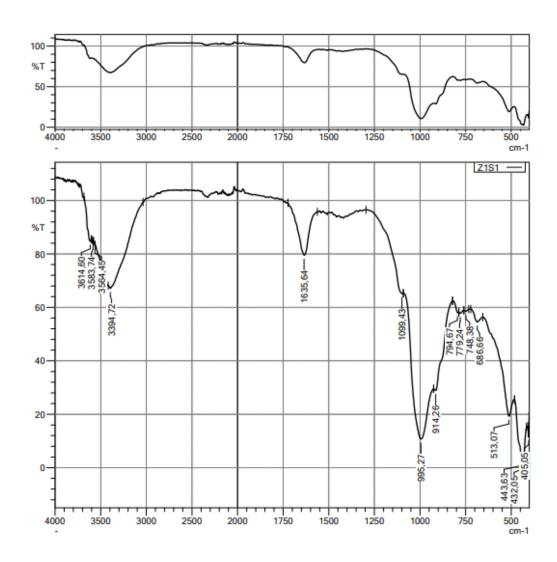
- Diperlukan pemahaman dan ketelitian yang tinggi dalam mengenali berbagai jenis mikroplastik agar saat melakukan pengamatan pada mikroskop tidak terjadi kesalahan dalam proses identifikasi,
- 2. Perlu dilakukan pengkajian lebih lanjut mengenai preparasi sampel tanah agar tidak merusak sampel.
- 3. Melakukan penelitian lebih lanjut terkait risiko mikroplastik terhadap kesehatan manusia.

DAFTAR PUSTAKA

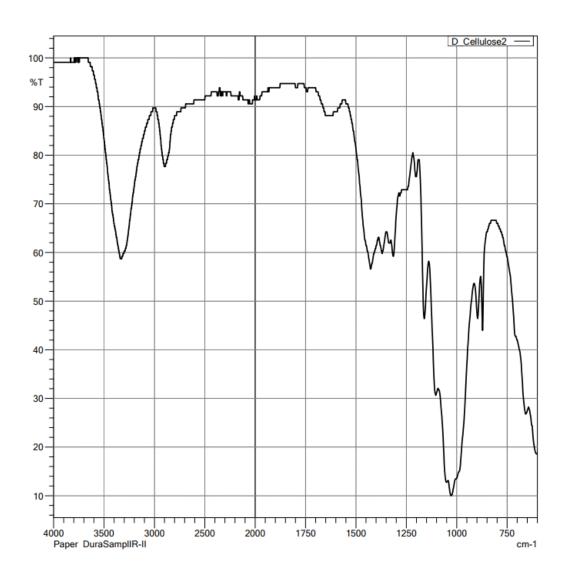
- Ahechti M., Benomar, M., Alami, M.E., dan Mendiguchia, C. 2020. Metal adsorption by microplastics in aquatic environments under controlled conditions: exposure time, pH and salinity. *Environmental Analytical Chemistry*, 1029-0397.
- Amaral-Zettler, L. A., et al., 2015. The biogeography of the plastisphere: implications for policy. Front Ecol Environ. 13(10): 541-546.
- Ambarsari, D.A. dan Anggiani, M. 2022. Kajian kelimpahan mikroplastik pada sedimen di Perairan Laut Indonesia. *Jurnal Oseana*, 47(1): 20-28.
- Arpia, A. A., Chen, W. H., Ubando, A. T., Naqvi, S. R., & Culaba, A. B. (2021). Microplastic degradation as a sustainable concurrent approach for producing biofuel and obliterating hazardous environmental effects: A state-of-the-art review. Journal of Hazardous Materials, 418(June).
- Azizah, P., Ridlo, A., Suryono, C. A., Kelautan, D. I., Perikanan, F., & Diponegoro, U. (2020). Mikroplastik pada Sedimen di Pantai Kartini Kabupaten Jepara, Jawa Tengah. *Journal of Marine* Research, 9(3), 326–332.
- Bangun, A. P. 2017. Jenis dan Kepadatan Sampah Laut (Makro dan Mikro Plastik)
 Serta Dampaknya Terhadap Kepadatan Makrozoobenthos di Pesisir Desa
 Jaring Halus Kabupaten Langkat Sumatera Utara. Skripsi. Program Studi
 Manajemen Sumberdaya Perairan. Fakultas Pertanian. Universitas
 Sumatera Utara. Medan.
- Chen, Y.; Leng, Y.; Liu, X.; Wang, J. Microplastic pollution in vegetable farmlands of suburb Wuhan, central China. *Environ. Pollut.* 2020, 257, 113449.
- Cong Li, Bo Jiang, Jiaqi Guo, Chunmeng Sun, Changjie Shi, Saikai Huang, Wang Liu, C. W. and Y. Z. *. (2022). Aging Process of Microplastics in the Aquatic Environments: Water, 14(3515), 1–29.
- Ekosafitri, K.H., Rustiadi, E. & Yulianda, F. 2015. Pengembangan Wilayah Pesisir Pantai Utara Jawa Tengah Berdasarkan Infrastruktur Daerah. *Jurnal Perencanaan dan Pembangunan Wilayah Perdesaan*, 1(2):145-157.

- Fiore, L., Serranti, S., Mazziotti, C., Riccardi, E., Benzi, M., dan Bonifazi, G. 2022. Classification and distribution of freshwater microplastics Along The Italian Po River by hyperspectral imaging. *Environ. Science and Pollution Research*, 29: 48588–48606
- Fuller, S., Gautam, A., 2016. A procedure for measuring microplastics using pressurized fluid 312 extraction. Environ. Sci. Technol. 50, 5774-5780.
- Dehaut, A., Cassone, AL, Frère, L., Hermabessiere, L., Himber, L., & Suss, T. (2016). Microplastic in the ocean: A review of the sources, fate, and effects. Marine Pollution Bulletin, 102(1), 1-14.
- Handayani, S., & Karnilawati, K., 2018, Karakterisasi Dan Klasifikasi Tanah Ultisol Di Kecamatan Indrajaya Kabupaten Pidie, Jurnal Ilmiah Pertanian, 14, 52–59.
- Horton, A. A., et al., 2017. Microplastics in freshwater and terrestrial environments: Evaluating the 305 current understanding to identify the knowledge gaps and future research priorities. Sci Total 306 Environ. 586, 127-141.
- Kilponen, J. 2016. Microplastics and Harmful Substances in Urban Runoffs and Landfill Leachates: Possible Emission Sources to Marine Environment.
- Layn, A.A., Emiyarti, & Ira. 2020. Distribusi Mikroplastik Pada Sedimen Di Perairan Teluk Kendari. *Sapa Laut* 5 (2): 115 122.
- Ling, D., Mao. R. Fan., Guo, X., Yang, X., Zhang, Q., Yang, C. 2019. Microplastics In Surface Waters And Sediments Of The Wei River, In The Northwest Of China. *Science of the Total Environment* 667: 427 434
- Massos, A., Turner, A., 2017. Cadmium, Lead And Bromine In Beached Microplastics. Environ. Pollut. 227, 139–145.
- M. Cole, P. Lindeque, C. Halsband, and T. S. Galloway. (2011). "Microplastics as contaminants in the marine environment," Mar. Pollut. Bull., vol. 62, no. 12, pp. 2588–2597.
- Nizzetto, L.; Futter, M.; Langaas, S. 2016. Are Agricultural Soils Dumps for Microplastics of Urban Origin? *ACS Publications: New York, NY, USA*.

- Novarini, E., & Sukardan, M. D. (2015). Potensi Serat Rami (Boehmeria Nivea S. Gaud) Sebagai Bahan Baku Industri Tekstil Dan Produk Tekstil Dan Tekstil Teknik. Arena Tekstil, 30(2), 113–122.
- Piehl, S.; Leibner, A.; Löder, M.G.; Dris, R.; Bogner, C.; Laforsch, C. 2018. Identification and quantification of macro-and microplas-tics on an agricultural farmland. *Sci. Rep.*, 8, 17950.
- PlasticsEurope, E. Plastics—The Facts 2019. An Analysis of European Plastics Production, Demand and Waste Data.
- Pratiwi, O. A., Achmadi, U. F., & Kurniawan, R. (2024). Microplastic pollution in landfill soil: Emerging threats to environmental and public health. Environ Anal Health Toxicol, 39, e2024009.
- Putra, H. P., Damanhuri, E., & Sembiring, E. (2019). Sektor Baru Pengelolaan Sampah Di Indonesia. *Jurnal Sains Dan Teknologi Lingkungan*, 11(1), 11–24
- Rahmawati, A. (2015). Pengaruh Penggunaan Plastik Polyethylene (Pe) Dan High Density Polyethylene (Hdpe) Pada Campuran Lataston-Wc Terhadap Karakteristik Marshall. Jurnal Ilmiah Semesta Teknika, 18(2), 147–159.
- Rochman, C.M. 2018. Microplastics research—from sink to source. *Science*, 360, 28–29.
- Scheurer, M.; Bigalke, M. 2018. Microplastics in Swiss floodplain soils. *Environ. Sci. Technol.*, 52, 3591–3598.
- Soebijarso, K., & Djumarman, djumarman. (2011). Plastik Sebagai Bahan Kemasan Makanan. Jurnal Kimia Dan Kemasan, 0(0), 1–14. http://ejournal.kemenperin.go.id/jkk/article/view/4914
- Suardiningsih, D. (2013). Perbedaan Kain Katun Dengan Poliester Pada Busana Kuliah Ditinjau Dari Aspek Kenyamanan. Teknologi Jasa Dan Produksi, 1–71.
- Suaria, G., et al., 2016. The mediterranean plastic soup: synthetic polymers in mediterranean surface waters. Sci Rep. 6, 37551.


- Sun, J., Zhu, Z., Li, W., Yan, X., Wang, L., Zhang, L., Jin, J., Dai, X., Ni, B. (2021). Revisiting microplastics in landfill leachate: unnoticed tiny microplastics and their fate in treatment works, Water Res. 190, 116784.
- Tsering, T., Sillanpää, M, Viitala, M., dan Reinikainen, S.-P. 2022. Variation of mic-roplastics in the shore sediment of high-altitude lakes of the Indian Himalaya using different pretreatment methods. *Sci. Total Environ.*, 849: 157870.
- Utami, 1., & Agustina. (Mei 2022). Deteksi Pencemaran Mikroplastik pada Air Lindi di TPA Piyungan Yogyakarta, Indonesia. Florea: *Jurnal Biologi dan Pembelajarannya*, *9*(1).
- Utami, I., & Liani, M. (2021). Identifikasi Mikroplastik pada Air Sumur Gali di sekitar TPA Piyungan Yogyakarta. *Jurnal Riset Daerah*, *XXl*(3).
- Virsek, M. K., Palatinus, A., Koren, S., Peterlin, M., Horvat, P., & Krzan, A. (2016). Protocol for microplastics sampling pn the sea surface and sample analysis. *JoVE (Jurnal of Visualized Experiments)*, (118), e55161.
- Wagner, M., & Lambert, S. (2018). Freshwater Microplastics The Handbook of Environmental Chemistry 58. 302.
- Wan, Y., Chen, X., Liu, Q., Hu, H., Wu, C., & Xue, Q. (2021). Informal landfill contributes to the pollution of microplastics in the surrounding environment. Environmental Pollution, 118586.
- Wang, Z., Lin, T., & Chen, W. (2020). Occurrence and removal of microplastics in an advanced drinking water treatment plant (ADWTP), Sci. Total Environ. 700, 134520.
- Xu, Z.; Sui, Q.; Li, A.; Sun, M.; Zhang, L.; Lyu, S.; Zhao, W. How to detect small microplastics (20–100 μm) in freshwater, municipal wastewaters and landfill leachates? A trial from sampling to identification. Sci. Total Environ. 2020, 733, 139218.
- Yang, L., Zhang, Y., Kang, S., Wang, Z., & Wu, C. 2021. Microplastics in soil: A review on methods, occurrence, sources, and potential risk. Sci. Total Environ., 780, 146546.

- Zhang, K., Hamidian, A. H., Tubić, A., Zhang, Y., Fang, J. K. H., Wu, C., & Lam,
 P. K. S. (2021). Understanding plastic degradation and microplastic formation in the environment: A review. Environmental Pollution, 274.
- Zhang, L., Xie, Y., Liu, J., Zhong, S., Qian, Y., & Gao, P. 2020. An overlooked entry pathway of microplastics into agricultural soils from application of sludge-based fertilizers. *Environ. Sci. Technol.*, 54, 4248–4255.
- Zhang, Y., Liang, J., Zeng, G., Tang, W., Lu, Y., Luo, Y., Xing, W., Tang, N., Ye, S., Li, X., dan Huang, W. 2020. How climate change and uutrophication interact with microplastic pollution and sediment resuspension in shallow lakes: a review. *Sci. Total Environ.*, 705: 135979.

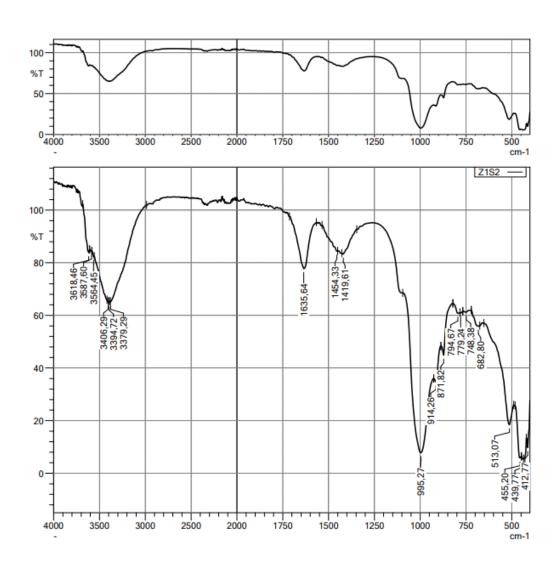

LAMPIRAN

1. Hasil Pengamatan Menggunakan Spektrofotometri FT-IR

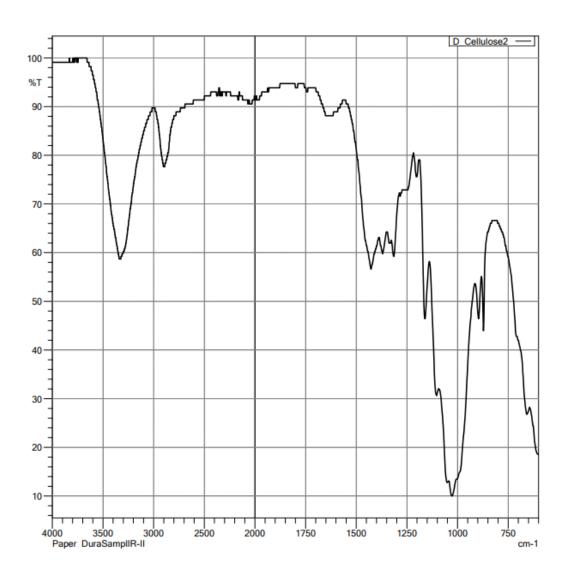
a. Titik Z1S1

Lampiran 6. 1 Hasil Grafik Polimer yang Terbaca pada Z1S1

Lampiran 6. 2 Hasil Grafik Polimer dengan Skor Tertinggi pada Z1S1


	Score	Library	Name	Comment
1	713	8 - ATR-Polymer2	D Cellulose2	Paper DuraSamplIR-II
2	711	174 - ATR-Polymer2	D_Tencel	Tencel(LENZING Coorporation) DuraSamplIR-II
3	707	11 - ATR-Polymer2	D Cellulose4	Bemberg(Cupra) DuraSamplIR-II
4	698	10 - ATR-Polymer2	D Cellulose3	Cotton DuraSampliR-II
5	696	12 - ATR-Polymer2	D Cellulose5	Ramie DuraSamplIR-II
6	672	22 - ATR-Polymer2	D Protein2	Protein(Soy Bean Powder)
				DuraSamplIR-II
7	670	8 - IRs Polymer2	CELLOPHA	Cellulose ATR/diamond ATRcorrected
8	664	22 - T-Polymer2	Soy Bean Powder	Protein(Soy Bean Powder) Transmission(Microscope)
9	662	12 - T-Polymer2	Ramie	Ramie Transmission(Microscope)
10	657	8 - T-Polymer2	Paper	Paper Transmission(Microscope)
11	636	9 - IRs Polymer2	COTTON	Cotton Fiber ATR/diamond ATRcorrected
12	636	5 - IRs Polymer2	BEMBERG	Bemberg(Cupra) Fiber ATR/diamond ATRcorrected
13	634	63 - IRs Polymer2	RAYON	Rayon Fiber ATR/diamond ATRcorrected
14	634	27 - T-Polymer2	Polyacetylene	Polyacetylene Transmission(Microscope)
15	627	62 - IRs Polymer2	RAMIE	Ramie Fiber ATR/diamond ATRcorrected
16	626	183 - ATR-Polymer2	D Zein	Zein, Purified DuraSamplIR-II
17	625	21 - T-Polymer2	Human Hair	Protein(Human Hair) Transmission(Microscope)
18	618	131 - T-Polymer2	T_Polyacrylamide-1	Polyacrylamide(non-ionic) Transmission(Microscope)
19	611	91 - ATR-Polymer2	D_1_2_Polybutadiene	1,2-Polybutadiene DuraSampllR-II
20	608	21 - ATR-Polymer2	D_Protein1	Protein(Human Hair) DuraSamplIR-
21	591	69 - IRs Polymer2	SKIN	Human skin ATR/Diamond ATRcorrected
22	588	13 - ATR-Polymer2	D Polyamide1	Polyamide(Nylon6) DuraSamplIR-II
23	588	20 - ATR-Polymer2	D Polyamide8	Polyamide(Nylon 66) DuraSamplIR-
24	587	132 - T-Polymer2	T_Polyacrylamide-2	Polyacrylamide(Carboxyl modified)(Low carboxyl content) Transmission(Microscope)
25	583	151 - ATR-Polymer2	D_Polyvinyl_Pyrrolidone	Poly(Vinyl Pyrrolidone) DuraSamplIR-II
26	582	116 - ATR-Polymer2	D_Nylon6_6	Nylon 6/6(Polyhexamethylene adipamide) DuraSamplIR-II
27	581	27 - IRs Polymer2	NYLON6	Nylon 6 ATR/diamond ATRcorrected
28	580	72 - IRs Polymer2	WOOL	Wool Fiber ATR/diamond ATRcorrected
29	578	72 - T-Polymer2	РОМ	Polyacetal(Electronic Parts-2) Transmission(Microscope)

Lampiran 6. 3 Hasil Polimer yang Terbaca pada Z1S1

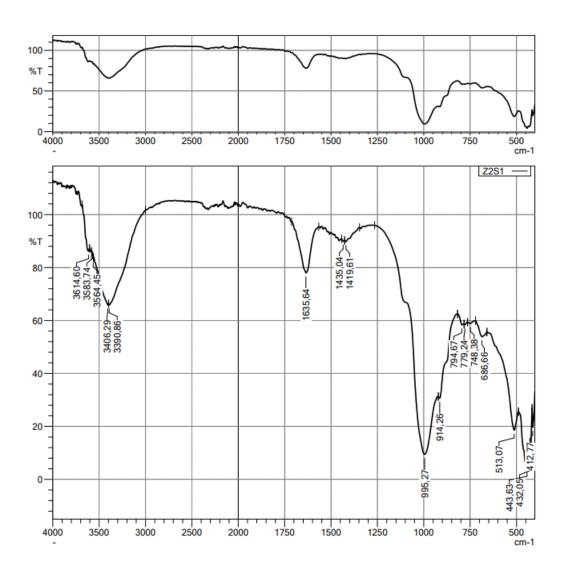

	Peak	Intensity	Corr. Intensity	Base (H)	Base (L)	Area	Corr. Area	Comment
1	405,05	11,49	6,79	408,91	401,19	656,644	26,208	
2	432,05	2,52	5,11	439,77	416,62	2140,481	46,755	
3	443,63	3,61	2,19	482,20	439,77	3702,979	83,132	
4	513,07	19,22	11,83	655,80	482,20	10523,061	276,251	
5	686,66	54,51	3,27	721,38	655,80	2860,946	98,228	
6	748,38	58,54	0,55	759,95	732,95	1111,953	8,063	
7	779,24	57,72	0,64	786,96	759,95	1127,222	7,227	
8	794,67	58,01	1,10	821,68	786,96	1381,649	3,455	
9	914,26	28,87	4,34	925,83	821,68	5710,515	86,796	
10	995,27	10,70	33,82	1091,71	925,83	11609,604	2889,752	
11	1099,43	65,18	1,31	1296,16	1091,71	2988,686	-909,901	
12	1635,64	79,50	17,82	1724,36	1562,34	1611,331	1203,816	
13	3394,72	67,09	2,94	3417,86	3035,96	6859,618	659,086	
14	3564,45	83,16	0,43	3579,88	3560,59	306,984	-0,912	
15	3583,74	84,61	0,28	3591,46	3579,88	175,811	1,487	
16	3614,60	84,71	3,07	3684,04	3603,03	707,220	177,338	

Lampiran 6. 4 Hasil Peak Table dari Polimer yang Terbaca pada Z1S1b. Titik Z1S2

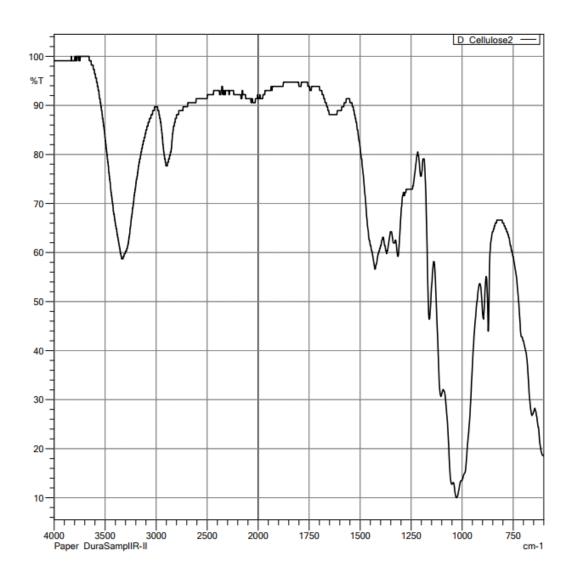
59

Lampiran 6. 5 Hasil Grafik Polimer yang Terbaca pada Z1S2

Lampiran 6. 6 Hasil Grafik Polimer dengan Skor Tertinggi pada Z1S2


	Score	Library	Name	Comment
1	712	8 - ATR-Polymer2	D Cellulose2	Paper DuraSamplIR-II
2	705	8 - T-Polymer2	Paper	Paper Transmission(Microscope)
3	679	12 - T-Polymer2	Ramie	Ramie Transmission(Microscope)
4	674	11 - ATR-Polymer2	D Cellulose4	Bemberg(Cupra) DuraSamplIR-II
5	670	174 - ATR-Polymer2	D_Tencel	Tencel(LENZING Coorporation) DuraSamplIR-II
6	665	22 - ATR-Polymer2	D_Protein2	Protein(Soy Bean Powder) DuraSamplIR-II
7	658	22 - T-Polymer2	Soy Bean Powder	Protein(Soy Bean Powder) Transmission(Microscope)
8	651	10 - ATR-Polymer2	D Cellulose3	Cotton DuraSamplIR-II
9	650	12 - ATR-Polymer2	D_Cellulose5	Ramie DuraSamplIR-II
10	637	3 - IRs Polymer2	ARABIC	Arabic gum Film
11	628	183 - ATR-Polymer2	D Zein	Zein, Purified DuraSamplIR-II
12	625	62 - IRs Polymer2	RAMIE	Ramie Fiber ATR/diamond ATRcorrected
13	619	131 - T-Polymer2	T_Polyacrylamide-1	Polyacrylamide(non-ionic) Transmission(Microscope)
14	618	8 - IRs Polymer2	CELLOPHA	Cellulose ATR/diamond ATRcorrected
15	613	21 - T-Polymer2	Human Hair	Protein(Human Hair) Transmission(Microscope)
16	612	9 - IRs Polymer2	COTTON	Cotton Fiber ATR/diamond ATRcorrected
17	608	21 - ATR-Polymer2	D Protein1	Protein(Human Hair) DuraSamplIR-
18	599	143 - T-Polymer2	T_Tencel	Tencel(LENZING Coorporation) Transmission(Microscope)
19	597	20 - ATR-Polymer2	D Polyamide8	Polyamide(Nylon 66) DuraSamplIR-
20	595	13 - ATR-Polymer2	D Polyamide1	Polyamide(Nylon6) DuraSamplIR-II
21	593	151 - ATR-Polymer2	D_Polyvinyl_Pyrrolidone	Poly(Vinyl Pyrrolidone) DuraSamplIR-II
22	590	98 - ATR-Polymer2	D_Ethyl_Cellulose	EthylCellulose(Ethoxyl content 50%) DuraSamplIR-II
23	588	91 - ATR-Polymer2	D_1_2_Polybutadiene	1,2-Polybutadiene DuraSamplIR-II
24	587	132 - T-Polymer2	T_Polyacrylamide-2	Polyacrylamide(Carboxyl modified)(Low carboxyl content) Transmission(Microscope)
25	587	116 - ATR-Polymer2	D_Nylon6_6	Nylon 6/6(Polyhexamethylene adipamide) DuraSamplIR-II
26	586	69 - IRs Polymer2	SKIN	Human skin ATR/Diamond ATRcorrected
27	583	114 - T-Polymer2	T_Nylon6_6	Nylon 6/6(Polyhexamethylene adipamide) Transmission(Microscope)
28	583	115 - ATR-Polymer2	D_Nylon6	Nylon 6(Polycaprolactam) DuraSamplIR-II
29	582	119 - ATR-Polymer2	D_Nylon6_12	Nylon 6/12(Polyhexamethylene dodecanediamide) DuraSamplIR-II
30	581	36 - T-Polymer2	EVOH	Ethylenevinylalcohol(EVOH) Transmission(Microscope)

Lampiran 6. 7 Hasil Polimer yang Terbaca pada Z1S2

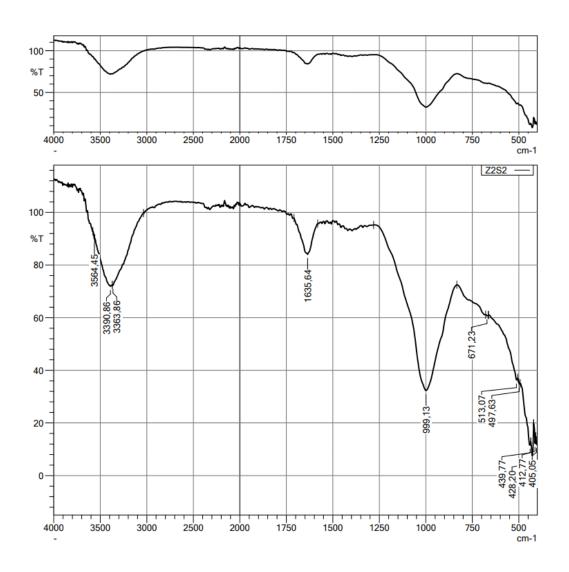

	Peak	Intensity	Corr. Intensity	Base (H)	Base (L)	Area	Corr. Area	Comment
1	412,77	9,78	9,39	420,48	401,19	1640,202	108,749	
2	439,77	5,31	0,53	447,49	435,91	1091,188	3,234	
3	455,20	5,77	4,96	482,20	447,49	3002,131	89,649	
4	513,07	18,40	12,04	651,94	489,92	9644,928	175,418	
5	682,80	55,87	1,26	721,38	675,09	1948,438	54,692	
6	748,38	61,16	0,64	767,67	721,38	1776,963	9,912	
7	779,24	60,94	0,29	783,10	767,67	599,794	3,518	
8	794,67	60,77	1,38	821,68	783,10	1451,193	17,893	
9	871,82	44,86	7,29	887,26	821,68	2838,205	-17,355	
10	914,26	34,70	5,02	925,83	887,26	2303,444	72,822	
11	995,27	7,82	41,52	1095,57	925,83	11665,262	3567,487	
12	1419,61	83,26	1,29	1427,32	1346,31	996,547	42,016	
13	1454,33	84,36	0,60	1535,34	1450,47	947,203	49,941	
14	1635,64	77,77	18,66	1712,79	1566,20	1710,960	1196,539	
15	3379,29	65,17	0,55	3383,14	2985,81	5967,197	-516,996	
16	3394,72	64,77	0,56	3402,43	3383,14	673,008	4,451	
17	3406,29	65,21	0,26	3417,86	3402,43	532,258	1,948	
18	3564,45	82,24	0,80	3583,74	3556,74	449,840	3,458	
19	3587,60	84,31	0,26	3606,89	3583,74	356,992	4,490	
20	3618,46	83,79	3,85	3684,04	3606,89	685,392	197,417	

Lampiran 6. 8 Hasil Peak Table dari Polimer yang Terbaca pada Z1S2

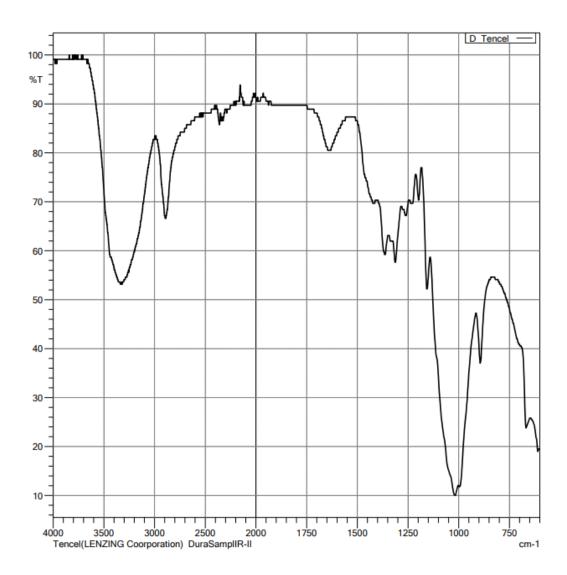
c. Titik Z2S1

Lampiran 6. 9 Hasil Grafik Polimer yang Terbaca pada Z2S1

Lampiran 6. 10 Hasil Grafik Polimer dengan Skor Tertinggi pada Z2S1


	Score	Library	Name	Comment
1	717	8 - ATR-Polymer2	D_Cellulose2	Paper DuraSamplIR-II
2	708	174 - ATR-Polymer2	D_Tencel	Tencel(LENZING Coorporation) DuraSamplIR-II
3	704	11 - ATR-Polymer2	D Cellulose4	Bemberg(Cupra) DuraSamplIR-II
4	687	10 - ATR-Polymer2	D Cellulose3	Cotton DuraSamplIR-II
5	682	12 - ATR-Polymer2	D Cellulose5	Ramie DuraSamplIR-II
6	675	8 - T-Polymer2	Paper	Paper Transmission(Microscope)
7	672	22 - ATR-Polymer2	D_Protein2	Protein(Soy Bean Powder) DuraSamplIR-II
8	670	12 - T-Polymer2	Ramie	Ramie Transmission(Microscope)
9	666	22 - T-Polymer2	Soy Bean Powder	Protein(Soy Bean Powder) Transmission(Microscope)
10	663	8 - IRs Polymer2	CELLOPHA	Cellulose ATR/diamond ATRcorrected
11	657	27 - T-Polymer2	Polyacetylene	Polyacetylene Transmission(Microscope)
12	639	3 - IRs Polymer2	ARABIC	Arabic gum Film
13	630	9 - IRs Polymer2	COTTON	Cotton Fiber ATR/diamond ATRcorrected
14	629	183 - ATR-Polymer2	D Zein	Zein, Purified DuraSamplIR-II
15	628	62 - IRs Polymer2	RAMIE	Ramie Fiber ATR/diamond ATRcorrected
16	624	131 - T-Polymer2	T Polyacrylamide-1	Polyacrylamide(non-ionic)
	623		- , ,	Transmission(Microscope)
17		21 - T-Polymer2	Human Hair	Protein(Human Hair) Transmission(Microscope)
18	622	5 - IRs Polymer2	BEMBERG	Bemberg(Cupra) Fiber ATR/diamond ATRcorrected
19	616	63 - IRs Polymer2	RAYON	Rayon Fiber ATR/diamond ATRcorrected
20		21 - ATR-Polymer2	D Protein1	Protein(Human Hair) DuraSamplIR-I
21	595	132 - T-Polymer2	T_Polyacrylamide-2	Polyacrylamide(Carboxyl modified)(Low carboxyl content) Transmission(Microscope)
22	593	20 - ATR-Polymer2	D Polyamide8	Polyamide(Nylon 66) DuraSamplIR-
23	592	13 - ATR-Polymer2	D Polyamide1	Polyamide(Nylon6) DuraSamplIR-II
24	587	91 - ATR-Polymer2	D 1 2 Polybutadiene	1,2-Polybutadiene DuraSamplIR-II
25	586	116 - ATR-Polymer2	D_Nylon6_6	Nylon 6/6(Polyhexamethylene adipamide) DuraSamplIR-II
26	585	115 - ATR-Polymer2	D_Nylon6	Nylon 6(Polycaprolactam) DuraSampliR-II
27	583	151 - ATR-Polymer2	D_Polyvinyl_Pyrrolidone	Poly(Vinyl Pyrrolidone) DuraSamplIR-II
28	583	25 - ATR-Polymer2	D PS	Polystyrene(PS) DuraSamplIR-II
29	583	158 - ATR-Polymer2	D PS2	Polystyrene DuraSamplIR-II
30	582	169 - ATR-Polymer2	D_Styrene_AllylAlcohol	Styrene/Allyl Alcohol Copolymer(Hydroxyl content 5.4-6.0%) DuraSamplIR-II

Lampiran 6. 11 Hasil Polimer yang Terbaca pada Z2S1

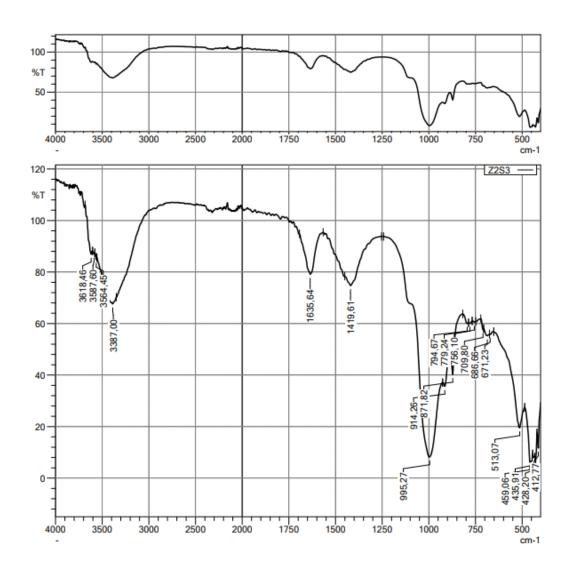

	Peak	Intensity	Corr. Intensity	Base (H)	Base (L)	Area	Corr. Area	Comment
1	412,77	19,72	8,67	416,62	401,19	1165,783	84,970	
2	432,05	6,09	4,83	435,91	416,62	1710,957	107,894	
3	443,63	4,09	5,52	489,92	435,91	4663,997	141,261	
4	513,07	18,56	11,10	659,66	489,92	10120,905	38,753	
5	686,66	53,86	3,67	721,38	659,66	2720,933	115,963	
6	748,38	58,82	0,74	763,81	721,38	1724,954	12,542	
7	779,24	58,46	0,35	783,10	763,81	794,344	3,680	
8	794,67	58,32	1,62	817,82	783,10	1388,249	19,715	
9	914,26	30,66	2,95	921,97	817,82	5366,440	-164,774	
10	995,27	9,46	35,63	1265,30	921,97	14461,790	1971,061	
11	1419,61	89,77	0,91	1427,32	1346,31	623,884	29,652	
12	1435,04	89,93	0,56	1442,75	1427,32	151,006	4,357	
13	1635,64	77,96	18,36	1712,79	1566,20	1715,935	1183,029	
14	3390,86	65,86	1,16	3398,57	3001,24	6362,325	8,917	
15	3406,29	65,89	1,27	3560,59	3398,57	4232,642	189,059	
16	3564,45	83,29	0,93	3579,88	3560,59	293,204	2,182	
17	3583,74	85,92	0,33	3603,03	3579,88	315,308	5,474	
18	3614,60	86,16	3,37	3684,04	3603,03	569,648	203,662	

Lampiran 6. 12 Hasil Peak Table dari Polimer yang Terbaca pada Z2S1

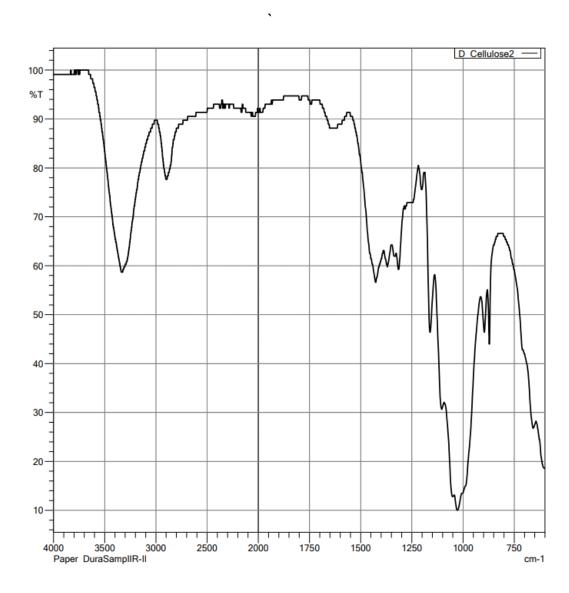
d. Titik Z2S2

Lampiran 6. 13 Hasil Grafik Polimer yang Terbaca pada Z2S2

Lampiran 6. 14 Hasil Grafik Polimer dengan Skor Tertinggi pada Z2S2


	Score	Library	Name	Comment
1	769	174 - ATR-Polymer2	D_Tencel	Tencel(LENZING Coorporation) DuraSampliR-II
2	762	11 - ATR-Polymer2	D_Cellulose4	Bemberg(Cupra) DuraSamplIR-II
3	753	8 - ATR-Polymer2	D_Cellulose2	Paper DuraSamplIR-II
4	738	27 - ATR-Polymer2	D Polyacetylene	Polyacetylene DuraSamplIR-II
5	732	10 - ATR-Polymer2	D_Cellulose3	Cotton DuraSamplIR-II
6	728	12 - T-Polymer2	Ramie	Ramie Transmission(Microscope)
7	726	27 - T-Polymer2	Polyacetylene	Polyacetylene Transmission(Microscope)
8	726	12 - ATR-Polymer2	D_Cellulose5	Ramie DuraSamplIR-II
9	724	143 - T-Polymer2	T_Tencel	Tencel(LENZING Coorporation) Transmission(Microscope)
10	723	8 - T-Polymer2	Paper	Paper Transmission(Microscope)
11	714	8 - IRs Polymer2	CELLOPHA	Cellulose ATR/diamond ATRcorrected
12	712	22 - ATR-Polymer2	D_Protein2	Protein(Soy Bean Powder) DuraSamplIR-II
13	707	111 - ATR-Polymer2	D_Methyl_Cellulose	Methyl Cellulose(Methoxyl content 30%) DuraSamplIR-II
14	705	184 - ATR-Polymer2	D Methylcellulose	Methylcellulose DuraSamplIR
15	700	3 - IRs Polymer2	ARABIC	Arabic gum Film
16	698	10 - T-Polymer2	Cotton	Cotton Transmission(Microscope)
17	698	22 - T-Polymer2	Soy Bean Powder	Protein(Soy Bean Powder) Transmission(Microscope)
18	697	11 - T-Polymer2	Cupra	Bemberg(Cupra) Transmission(Microscope)
19	695	5 - IRs Polymer2	BEMBERG	Bemberg(Cupra) Fiber ATR/diamond ATRcorrected
20	694	63 - IRs Polymer2	RAYON	Rayon Fiber ATR/diamond ATRcorrected
21	680	108 - ATR-Polymer2	D_Hydroxybutyl_Methyl_Cellulose	Hydroxybutyl Methyl Cellulose(8% Hydroxybutyl, 20%Methoxyl) DuraSampliR-II
22	676	9 - IRs Polymer2	COTTON	Cotton Fiber ATR/diamond ATRcorrected
23	675	131 - T-Polymer2	T_Polyacrylamide-1	Polyacrylamide(non-ionic) Transmission(Microscope)
24	671	110 - ATR-Polymer2	D_Hydroxypropyl_Methyl_Cellulose	Hydroxypropyl Methyl Cellulose(10% Hydroxypropyl, 30% Methoxyl) DuraSamplIR-II
25	667	21 - ATR-Polymer2	D Protein1	Protein(Human Hair) DuraSamplIR-I
26	665	62 - IRs Polymer2	RAMIE	Ramie Fiber ATR/diamond ATRcorrected
27	658	183 - ATR-Polymer2	D Zein	Zein, Purified DuraSamplIR-II
28	656	21 - T-Polymer2	Human Hair	Protein(Human Hair) Transmission(Microscope)
29	648	137 - ATR-Polymer2	D Polyacrylamide-1	Polyacrylamide(non-ionic)
29	010	197 - ATR-Polymorz	D_1 diyadiyiailiide-1	DuraSamplIR-II

Lampiran 6. 15 Hasil Polimer yang Terbaca pada Z2S2

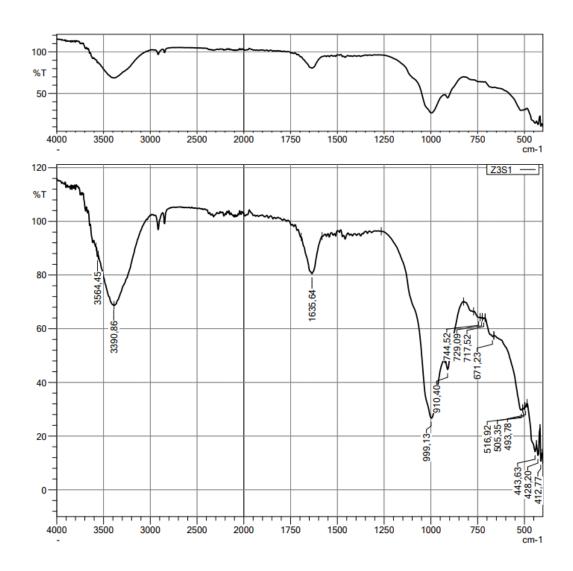

	Peak	Intensity	Corr. Intensity	Base (H)	Base (L)	Area	Corr. Area	Comment
1	405,05	11,80	1,63	408,91	401,19	674,166	6,293	
2	412,77	12,22	4,32	420,48	408,91	974,029	17,701	
3	428,20	7,66	8,72	435,91	420,48	1373,719	83,382	
4	439,77	11,57	2,83	493,78	435,91	4423,817	25,081	
5	497,63	34,79	0,92	505,35	493,78	745,917	5,866	
6	513,07	36,36	1,88	663,51	505,35	7618,448	-441,240	
7	671,23	60,70	0,39	678,94	663,51	603,366	2,995	
8	999,13	32,30	48,65	1280,73	833,25	16001,866	8793,901	
9	1635,64	84,06	12,60	1708,93	1581,63	1221,352	816,756	
10	3363,86	72,28	0,82	3371,57	3035,96	4729,958	69,747	
11	3390,86	71,88	2,40	3560,59	3371,57	3996,944	463,210	
12	3564,45	89,90	0,77	3579,88	3560,59	166,420	1,888	

Lampiran 6. 16 Hasil Peak Table dari Polimer yang Terbaca pada Z2S2

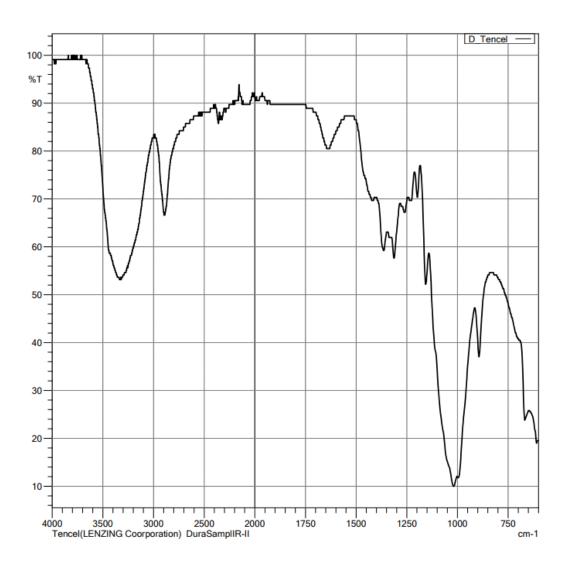
e. Titik Z2S3

Lampiran 6. 17 Hasil Grafik Polimer yang Terbaca pada Z2S3

Lampiran 6. 18 Hasil Grafik Polimer dengan Skor Tertinggi pada Z2S3


	Score	Library	Name	Comment
1	716	8 - ATR-Polymer2	D_Cellulose2	Paper DuraSamplIR-II
2	716	8 - T-Polymer2	Paper	Paper Transmission(Microscope)
3	690	174 - ATR-Polymer2	D_Tencel	Tencel(LENZING Coorporation) DuraSamplIR-II
4	687	11 - ATR-Polymer2	D Cellulose4	Bemberg(Cupra) DuraSamplIR-II
5	677	12 - T-Polymer2	Ramie	Ramie Transmission(Microscope)
6	667	22 - ATR-Polymer2	D_Protein2	Protein(Soy Bean Powder) DuraSampIIR-II
7	659	8 - IRs Polymer2	CELLOPHA	Cellulose ATR/diamond ATRcorrected
8	659	10 - ATR-Polymer2	D_Cellulose3	Cotton DuraSamplIR-II
9	656	12 - ATR-Polymer2	D_Cellulose5	Ramie DuraSamplIR-II
10	655	22 - T-Polymer2	Soy Bean Powder	Protein(Soy Bean Powder) Transmission(Microscope)
11	623	27 - T-Polymer2	Polyacetylene	Polyacetylene Transmission(Microscope)
12	623	183 - ATR-Polymer2	D_Zein	Zein, Purified DuraSamplIR-II
13	620	131 - T-Polymer2	T_Polyacrylamide-1	Polyacrylamide(non-ionic) Transmission(Microscope)
14	614	62 - IRs Polymer2	RAMIE	Ramie Fiber ATR/diamond ATRcorrected
15	614	9 - IRs Polymer2	COTTON	Cotton Fiber ATR/diamond ATRcorrected
16	613	151 - ATR-Polymer2	D_Polyvinyl_Pyrrolidone	Poly(Vinyl Pyrrolidone) DuraSamplIR-II
17	606	21 - T-Polymer2	Human Hair	Protein(Human Hair) Transmission(Microscope)
18	601	21 - ATR-Polymer2	D_Protein1	Protein(Human Hair) DuraSamplIR-I
19	595	91 - ATR-Polymer2	D 1 2 Polybutadiene	1,2-Polybutadiene DuraSamplIR-II
20	594	132 - T-Polymer2	T_Polyacrylamide-2	Polyacrylamide(Carboxyl modified)(Low carboxyl content) Transmission(Microscope)
21	594	20 - ATR-Polymer2	D_Polyamide8	Polyamide(Nylon 66) DuraSamplIR-
22	593	5 - IRs Polymer2	BEMBERG	Bemberg(Cupra) Fiber ATR/diamond ATRcorrected
23	592	13 - ATR-Polymer2	D Polyamide1	Polyamide(Nylon6) DuraSamplIR-II
24	591	115 - ATR-Polymer2	D_Nylon6	Nylon 6(Polycaprolactam) DuraSamplIR-II
25	589	16 - ATR-Polymer2	D_Polyamide4	Polyamide(Nylon6/12) DuraSamplIR
26	588	98 - ATR-Polymer2	D_Ethyl_Cellulose	EthylCellulose(Ethoxyl content 50%) DuraSampIIR-II
27	586	143 - T-Polymer2	T_Tencel	Tencel(LENZING Coorporation) Transmission(Microscope)
28	586	116 - ATR-Polymer2	D_Nylon6_6	Nylon 6/6(Polyhexamethylene adipamide) DuraSamplIR-II
29	585	119 - ATR-Polymer2	D_Nylon6_12	Nylon 6/12(Polyhexamethylene dodecanediamide) DuraSamplIR-II
30	583	69 - IRs Polymer2	SKIN	Human skin ATR/Diamond ATRcorrected

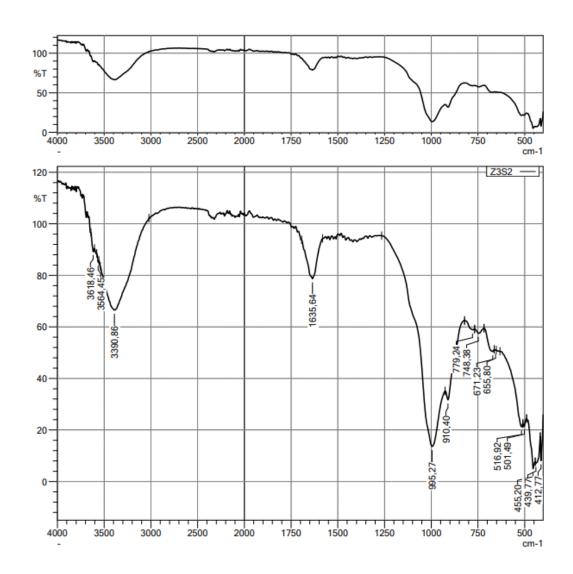
Lampiran 6. 19 Hasil Polimer yang Terbaca pada Z2S3


	Peak	Intensity	Corr. Intensity	Base (H)	Base (L)	Area	Corr. Area	Comment
1	412,77	11,67	10,58	420,48	401,19	1550,425	73,393	
2	428,20	6,39	4,95	432,05	420,48	1045,367	37,306	
3	435,91	8,10	0,53	443,63	432,05	1059,453	4,374	
4	459,06	6,20	9,81	486,06	443,63	3602,287	142,730	
5	513,07	19,51	12,77	651,94	486,06	9856,058	265,537	
6	671,23	55,80	0,32	675,09	651,94	1009,813	0,996	
7	686,66	55,23	1,53	705,95	675,09	1356,931	30,249	
8	709,80	57,59	1,43	721,38	705,95	626,827	9,512	
9	756,10	60,49	0,38	767,67	748,38	756,933	2,547	
10	779,24	60,10	0,47	786,96	767,67	764,020	4,871	
11	794,67	60,09	1,05	817,82	786,96	1185,727	12,834	
12	871,82	40,20	12,39	887,26	817,82	3086,547	70,246	
13	914,26	35,62	5,17	925,83	887,26	2268,805	79,971	
14	995,27	8,17	41,38	1242,16	925,83	13845,362	2916,118	
15	1419,61	74,71	6,11	1450,47	1253,73	2829,386	97,392	
16	1635,64	79,10	16,03	1693,50	1566,20	1530,187	913,681	
17	3387,00	67,63	5,47	3556,74	3348,42	5428,312	834,172	
18	3564,45	84,93	1,33	3579,88	3556,74	318,959	8,143	
19	3587,60	86,98	0,76	3603,03	3579,88	289,899	8,728	
20	3618,46	86,89	4,71	3684,04	3603,03	472,957	240,825	

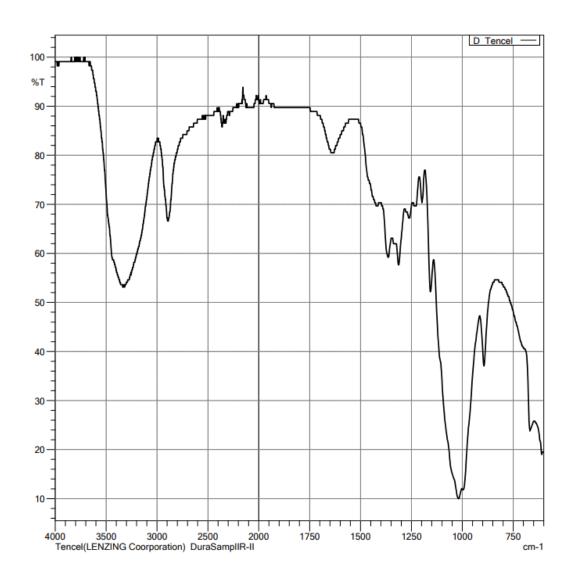
Lampiran 6. 20 Hasil Peak Table dari Polimer yang Terbaca pada Z2S3

f. Titik Z3S1

Lampiran 6. 21 Hasil Grafik Polimer yang Terbaca pada Z3S1


Lampiran 6. 22 Hasil Grafik Polimer dengan Skor Tertinggi pada Z3S1

	Score	Library	Name	Comment
1	762	174 - ATR-Polymer2	D_Tencel	Tencel(LENZING Coorporation) DuraSamplIR-II
2	755	11 - ATR-Polymer2	D_Cellulose4	Bemberg(Cupra) DuraSamplIR-II
3	730	8 - ATR-Polymer2	D_Cellulose2	Paper DuraSamplIR-II
4	721	8 - IRs Polymer2	CELLOPHA	Cellulose ATR/diamond ATRcorrected
5	721	27 - ATR-Polymer2	D Polyacetylene	Polyacetylene DuraSamplIR-II
6	719	12 - T-Polymer2	Ramie	Ramie Transmission(Microscope)
7	705	10 - ATR-Polymer2	D_Cellulose3	Cotton DuraSamplIR-II
8	704	143 - T-Polymer2	T_Tencel	Tencel(LENZING Coorporation) Transmission(Microscope)
9	703	27 - T-Polymer2	Polyacetylene	Polyacetylene Transmission(Microscope)
10	703	8 - T-Polymer2	Paper	Paper Transmission(Microscope)
11	697	22 - ATR-Polymer2	D_Protein2	Protein(Soy Bean Powder) DuraSamplIR-II
12	696	12 - ATR-Polymer2	D_Cellulose5	Ramie DuraSamplIR-II
13	692	5 - IRs Polymer2	BEMBERG	Bemberg(Cupra) Fiber ATR/diamond ATRcorrected
14	689	63 - IRs Polymer2	RAYON	Rayon Fiber ATR/diamond ATRcorrected
15	685	22 - T-Polymer2	Soy Bean Powder	Protein(Soy Bean Powder) Transmission(Microscope)
16	683	11 - T-Polymer2	Cupra	Bemberg(Cupra) Transmission(Microscope)
17	681	10 - T-Polymer2	Cotton	Cotton Transmission(Microscope)
18	676	9 - IRs Polymer2	COTTON	Cotton Fiber ATR/diamond ATRcorrected
19	672	91 - ATR-Polymer2	D 1 2 Polybutadiene	1,2-Polybutadiene DuraSamplIR-II
20	671	111 - ATR-Polymer2	D_Methyl_Cellulose	Methyl Cellulose(Methoxyl content 30%) DuraSamplIR-II
21	668	184 - ATR-Polymer2	D_Methylcellulose	Methylcellulose DuraSamplIR
22	663	90 - T-Polymer2	T_1_2_Polybutadiene	1,2-Polybutadiene Transmission(Microscope)
23	662	3 - IRs Polymer2	ARABIC	Arabic gum Film
24	660	21 - ATR-Polymer2	D Protein1	Protein(Human Hair) DuraSamplIR-
25	659	62 - IRs Polymer2	RAMIE	Ramie Fiber ATR/diamond ATRcorrected
26	653	131 - T-Polymer2	T_Polyacrylamide-1	Polyacrylamide(non-ionic) Transmission(Microscope)
27	652	183 - ATR-Polymer2	D_Zein	Zein, Purified DuraSamplIR-II
28	651	107 - ATR-Polymer2	D_HDPE	High Density Polyethylene(HDPE) DuraSamplIR-II
29	650	23 - ATR-Polymer2	D_PE	Polyethylene(PE) DuraSamplIR-II
30	650	121 - T-Polymer2	T_PE_Chlorinated-1	Polyethylene, Chlorinated(Chlorine content 25%) with TALC Transmission(Microscope)

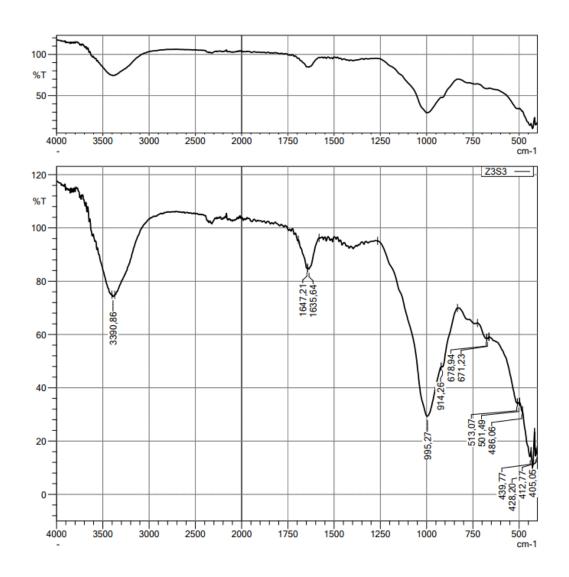

Lampiran 6. 23 Hasil Polimer yang Terbaca pada Z3S1

	Peak	Intensity	Corr. Intensity	Base (H)	Base (L)	Area	Corr. Area	Comment
1	412,77	10,68	9,18	416,62	405,05	994,971	49,758	
2	428,20	12,83	6,48	435,91	416,62	1610,600	65,771	
3	443,63	14,21	5,06	486,06	435,91	3950,514	168,357	
4	493,78	30,77	0,77	497,63	486,06	793,583	3,322	
5	505,35	30,09	0,48	509,21	497,63	805,390	3,632	
6	516,92	29,71	1,92	663,51	509,21	8105,179	-555,457	
7	671,23	57,09	1,50	709,80	663,51	1884,354	69,981	
8	717,52	63,67	0,53	725,23	709,80	555,999	3,581	
9	729,09	63,95	0,32	736,81	725,23	415,526	2,032	
10	744,52	64,16	0,59	771,53	736,81	1213,188	10,519	
11	910,40	44,79	7,17	925,83	825,53	4195,525	123,191	
12	999,13	26,67	32,28	1265,30	925,83	11685,710	2347,817	
13	1635,64	80,45	13,93	1693,50	1581,63	1436,062	806,959	
14	3390,86	68,64	0,62	3556,74	3387,00	4022,958	313,021	
15	3564,45	86,91	1,56	3579,88	3556,74	268,185	13,217	

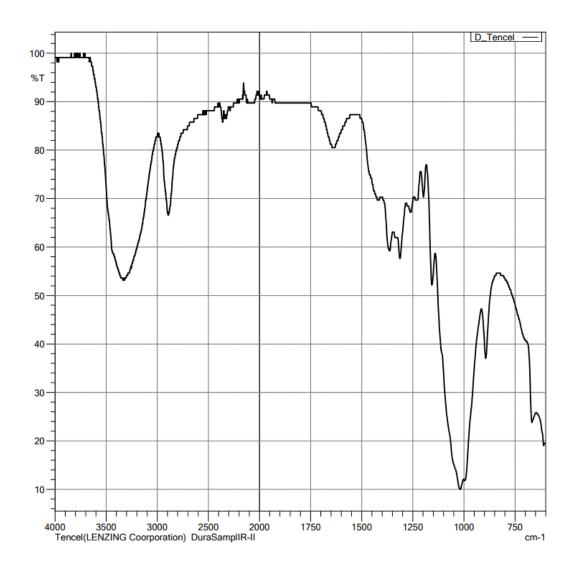
Lampiran 6. 24 Hasil Peak Table dari Polimer yang Terbaca pada Z3S1g. Titik Z3S2

Lampiran 6. 25 Hasil Grafik Polimer yang Terbaca pada Z3S2

Lampiran 6. 26 Hasil Grafik Polimer dengan Skor Tertinggi pada Z3S2


	Score	Library	Name	Comment
1	736	174 - ATR-Polymer2	D_Tencel	Tencel(LENZING Coorporation) DuraSamplIR-II
2	729	11 - ATR-Polymer2	D_Cellulose4	Bemberg(Cupra) DuraSamplIR-II
3	711	8 - ATR-Polymer2	D_Cellulose2	Paper DuraSamplIR-II
4	690	8 - IRs Polymer2	CELLOPHA	Cellulose ATR/diamond ATRcorrected
5	687	12 - T-Polymer2	Ramie	Ramie Transmission(Microscope)
6	682	22 - ATR-Polymer2	D_Protein2	Protein(Soy Bean Powder) DuraSampIIR-II
7	679	10 - ATR-Polymer2	D Cellulose3	Cotton DuraSamplIR-II
8	677	22 - T-Polymer2	Soy Bean Powder	Protein(Soy Bean Powder) Transmission(Microscope)
9	674	27 - ATR-Polymer2	D_Polyacetylene	Polyacetylene DuraSamplIR-II
10	673	12 - ATR-Polymer2	D_Cellulose5	Ramie DuraSamplIR-II
11	673	27 - T-Polymer2	Polyacetylene	Polyacetylene Transmission(Microscope)
12	671	8 - T-Polymer2	Paper	Paper Transmission(Microscope)
13	667	3 - IRs Polymer2	ARABIC	Arabic gum Film
14	665	5 - IRs Polymer2	BEMBERG	Bemberg(Cupra) Fiber ATR/diamond ATRcorrected
15	660	63 - IRs Polymer2	RAYON	Rayon Fiber ATR/diamond ATRcorrected
16	658	9 - IRs Polymer2	COTTON	Cotton Fiber ATR/diamond ATRcorrected
17	652	143 - T-Polymer2	T_Tencel	Tencel(LENZING Coorporation) Transmission(Microscope)
18	649	62 - IRs Polymer2	RAMIE	Ramie Fiber ATR/diamond ATRcorrected
19	646	91 - ATR-Polymer2	D 1 2 Polybutadiene	1,2-Polybutadiene DuraSamplIR-II
20	644	183 - ATR-Polymer2	D Zein	Zein, Purified DuraSamplIR-II
21	643	131 - T-Polymer2	T_Polyacrylamide-1	Polyacrylamide(non-ionic) Transmission(Microscope)
22	638	21 - T-Polymer2	Human Hair	Protein(Human Hair) Transmission(Microscope)
23	631	21 - ATR-Polymer2	D_Protein1	Protein(Human Hair) DuraSamplIR-
24	616	132 - T-Polymer2	T_Polyacrylamide-2	Polyacrylamide(Carboxyl modified)(Low carboxyl content) Transmission(Microscope)
25	613	10 - T-Polymer2	Cotton	Cotton Transmission(Microscope)
26	602	11 - T-Polymer2	Cupra	Bemberg(Cupra) Transmission(Microscope)
27	598	69 - IRs Polymer2	SKIN	Human skin ATR/Diamond ATRcorrected
28	598	86 - ATR-Polymer2	D_PBT	Polybutylene Terephthalate(PBT) DuraSamplIR-II
29	598	20 - ATR-Polymer2	D_Polyamide8	Polyamide(Nylon 66) DuraSamplIR-
30	597	13 - ATR-Polymer2	D Polyamide1	Polyamide(Nylon6) DuraSamplIR-II

Lampiran 6. 27 Hasil Polimer yang Terbaca pada Z3S2

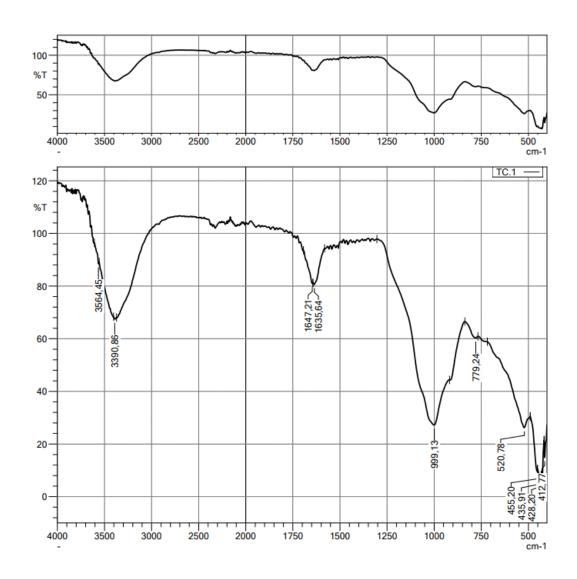

	Peak	Intensity	Corr. Intensity	Base (H)	Base (L)	Area	Corr. Area	Comment
1	412,77	8,11	11,45	416,62	401,19	1312,574	103,463	
2	439,77	7,03	2,05	443,63	416,62	2444,606	83,981	
3	455,20	4,95	6,92	489,92	443,63	3955,365	69,968	
4	501,49	21,39	1,88	509,21	489,92	1490,219	14,071	
5	516,92	21,20	3,03	632,65	509,21	7537,698	-296,910	
6	655,80	50,87	0,26	663,51	651,94	566,844	1,561	
7	671,23	50,38	2,05	717,52	663,51	2495,990	85,426	
8	748,38	57,51	1,77	767,67	717,52	2085,105	44,923	
9	779,24	58,83	1,04	821,68	767,67	2141,089	24,791	
10	910,40	31,69	7,53	925,83	821,68	5423,860	93,443	
11	995,27	13,57	33,92	1265,30	925,83	13999,500	2214,856	
12	1635,64	78,66	15,41	1693,50	1581,63	1554,184	890,286	
13	3390,86	66,48	22,45	3541,31	3020,53	9889,708	6174,758	
14	3564,45	85,17	1,54	3579,88	3556,74	308,664	11,483	
15	3618,46	89,23	3,71	3641,60	3603,03	324,790	76,227	

Lampiran 6. 28 Hasil Peak Table dari Polimer yang Terbaca pada Z3S2

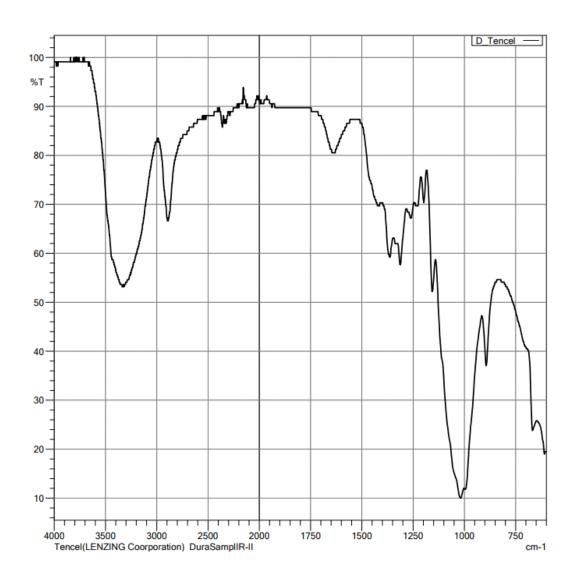
h. Titik Z3S3

Lampiran 6. 29 Hasil Grafik Polimer yang Terbaca pada Z3S3

Lampiran 6. 30 Hasil Grafik Polimer dengan Skor Tertinggi pada Z3S3


	Score	Library	Name	Comment
1	758	174 - ATR-Polymer2	D_Tencel	Tencel(LENZING Coorporation) DuraSamplIR-II
2	754	11 - ATR-Polymer2	D Cellulose4	Bemberg(Cupra) DuraSampliR-II
3	740	8 - ATR-Polymer2	D Cellulose2	Paper DuraSamplIR-II
-	726	27 - ATR-Polymer2	D Polyacetylene	Polyacetylene DuraSampliR-II
5	724	8 - IRs Polymer2	CELLÓPHA	Cellulose ATR/diamond ATRcorrected
3	715	10 - ATR-Polymer2	D_Cellulose3	Cotton DuraSamplIR-II
7	713	27 - T-Polymer2	Polyacetylene	Polyacetylene Transmission(Microscope)
3	712	12 - ATR-Polymer2	D Cellulose5	Ramie DuraSamplIR-II
•	712	12 - T-Polymer2	Ramie	Ramie Transmission(Microscope)
10	708	8 - T-Polymer2	Paper	Paper Transmission(Microscope)
11	704	143 - T-Polymer2	T Tencel	Tencel(LENZING Coorporation)
_		,	_	Transmission(Microscope)
12	697	22 - ATR-Polymer2	D_Protein2	Protein(Soy Bean Powder) DuraSamplIR-II
13	694	5 - IRs Polymer2	BEMBERG	Bemberg(Cupra) Fiber ATR/diamond ATRcorrected
14	691	63 - IRs Polymer2	RAYON	Rayon Fiber ATR/diamond ATRcorrected
15	689	3 - IRs Polymer2	ARABIC	Arabic gum Film
16	689	22 - T-Polymer2	Soy Bean Powder	Protein(Soy Bean Powder) Transmission(Microscope)
17	683	111 - ATR-Polymer2	D_Methyl_Cellulose	Methyl Cellulose(Methoxyl content 30%) DuraSampliR-II
18	682	184 - ATR-Polymer2	D Methylcellulose	Methylcellulose DuraSampliR
19	676	10 - T-Polymer2	Cotton	Cotton Transmission(Microscope)
20	676	11 - T-Polymer2	Cupra	Bemberg(Cupra) Transmission(Microscope)
21	675	9 - IRs Polymer2	COTTON	Cotton Fiber ATR/diamond ATRcorrected
22	665	62 - IRs Polymer2	RAMIE	Ramie Fiber ATR/diamond ATRcorrected
23	659	131 - T-Polymer2	T_Polyacrylamide-1	Polyacrylamide(non-ionic) Transmission(Microscope)
24	655	183 - ATR-Polymer2	D Zein	Zein, Purified DuraSamplIR-II
25	652	21 - ATR-Polymer2	D Protein1	Protein(Human Hair) DuraSamplif
26	647	21 - T-Polymer2	Human Hair	Protein(Human Hair) Transmission(Microscope)
27	645	108 - ATR-Polymer2	D_Hydroxybutyl_Methyl_Cellulose	Hydroxybutyl Methyl Cellulose(8% Hydroxybutyl, 20%Methoxyl) DuraSampliR-II
28	643	175 - ATR-Polymer2	D_Vinyl_Alcohol_Vinyl_Butyral	Vinyl Alcohol/Vinyl Butyral Copolymer(Vinyl Butyral Content 80%) DuraSamplIR-II
29	636	163 - ATR-Polymer2	D_PVB	Poly(Vinyl Butyral)(PVB)(11% Hydroxyl, 1% Acetate, 88% Butyra DuraSamplIR-II

Lampiran 6. 31 Hasil Polimer yang Terbaca pada Z3S3

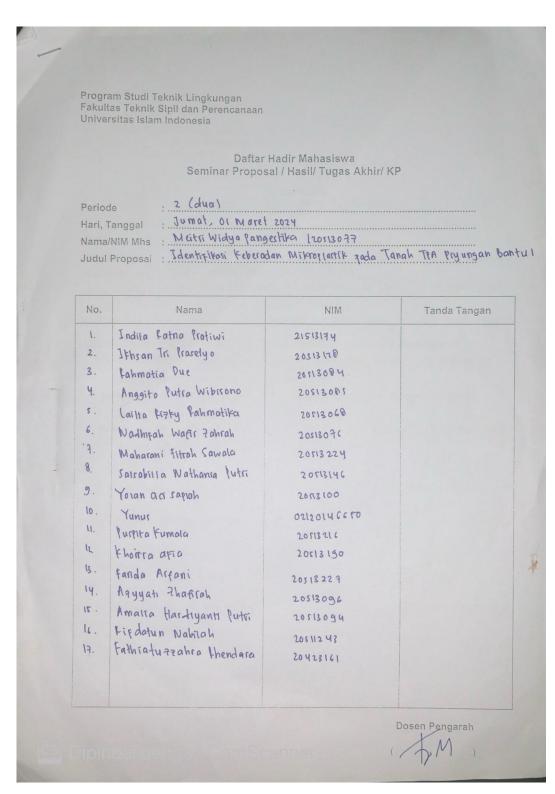

	Peak	Intensity	Corr. Intensity	Base (H)	Base (L)	Area	Corr. Area	Comment
1	405,05	15,25	1,66	408,91	401,19	647,480	6,409	
2	412,77	14,49	5,10	416,62	408,91	640,016	19,679	
3	428,20	10,09	8,96	435,91	416,62	1646,287	98,804	
4	439,77	14,18	3,25	482,20	435,91	3658,624	132,170	
5	486,06	31,35	0,94	497,63	482,20	1036,140	3,629	
6	501,49	33,99	0,62	509,21	497,63	760,231	3,084	
7	513,07	34,27	0,81	663,51	509,21	7621,665	-587,435	
8	671,23	58,45	0,40	675,09	663,51	478,641	3,271	
9	678,94	58,55	0,60	725,23	675,09	1936,670	6,951	
10	914,26	47,83	2,02	921,97	833,25	3616,140	-25,496	
11	995,27	29,30	28,72	1265,30	921,97	12973,132	3209,624	
12	1635,64	84,57	1,86	1643,35	1581,63	624,238	47,512	
13	1647,21	84,79	1,04	1693,50	1643,35	503,637	16,926	
14	3390,86	74,25	0,71	3402,43	3371,57	785,142	12,394	

Lampiran 6. 32 Hasil Peak Table dari Polimer yang Terbaca pada Z3S3

i. Titik TC

Lampiran 6. 33 Hasil Grafik Polimer yang Terbaca pada Tanah Control

Lampiran 6. 34 Hasil Grafik Polimer dengan Skor Tertinggi pada Tanah Control


	Score	Library	Name	Comment
1	780	174 - ATR-Polymer2	D_Tencel	Tencel(LENZING Coorporation) DuraSamplIR-II
2	774	11 - ATR-Polymer2	D Cellulose4	Bemberg(Cupra) DuraSampliR-II
3	753	143 - T-Polymer2	T_Tencel	Tencel(LENZING Coorporation) Transmission(Microscope)
4	746	27 - ATR-Polymer2	D Polyacetylene	Polyacetylene DuraSamplIR-II
5	744	8 - ATR-Polymer2	D Cellulose2	Paper DuraSamplIR-II
6	736	8 - IRs Polymer2	CELLOPHA	Cellulose ATR/diamond ATRcorrected
7	734	11 - T-Polymer2	Cupra	Bemberg(Cupra) Transmission(Microscope)
8	734	12 - T-Polymer2	Ramie	Ramie Transmission(Microscope)
9	729	111 - ATR-Polymer2	D_Methyl_Cellulose	Methyl Cellulose(Methoxyl content 30%) DuraSamplIR-II
10	726	8 - T-Polymer2	Paper	Paper Transmission(Microscope)
11	725	184 - ATR-Polymer2	D_Methylcellulose	Methylcellulose DuraSamplIR
12	725	27 - T-Polymer2	Polyacetylene	Polyacetylene Transmission(Microscope)
13	720	10 - ATR-Polymer2	D_Cellulose3	Cotton DuraSamplIR-II
14	718	10 - T-Polymer2	Cotton	Cotton Transmission(Microscope)
15	714	12 - ATR-Polymer2	D_Cellulose5	Ramie DuraSamplIR-II
16	709	22 - ATR-Polymer2	D_Protein2	Protein(Soy Bean Powder) DuraSamplIR-II
17	708	108 - ATR-Polymer2	D_Hydroxybutyl_Methyl_Cellulose	Hydroxybutyl Methyl Cellulose(8% Hydroxybutyl, 20%Methoxyl) DuraSampliR-II
18	702	22 - T-Polymer2	Soy Bean Powder	Protein(Soy Bean Powder) Transmission(Microscope)
19	699	110 - ATR-Polymer2	D_Hydroxypropyl_Methyl_Cellulose	Hydroxypropyl Methyl Cellulose(10% Hydroxypropyl, 30% Methoxyl) DuraSampliR-II
20	695	5 - IRs Polymer2	BEMBERG	Bemberg(Cupra) Fiber ATR/diamond ATRcorrected
21	695	3 - IRs Polymer2	ARABIC	Arabic gum Film
22	694	63 - IRs Polymer2	RAYON	Rayon Fiber ATR/diamond ATRcorrected
23	683	21 - ATR-Polymer2	D Protein1	Protein(Human Hair) DuraSamplIR-
24	673	131 - T-Polymer2	T_Polyacrylamide-1	Polyacrylamide(non-ionic) Transmission(Microscope)
25	670	9 - IRs Polymer2	COTTON	Cotton Fiber ATR/diamond ATRcorrected
26	668	183 - ATR-Polymer2	D Zein	Zein, Purified DuraSamplIR-II
27	663	21 - T-Polymer2	Human Hair	Protein(Human Hair) Transmission(Microscope)
28	663	166 - ATR-Polymer2	D_PVFM	Poly(Vinyl Formal)(PVFM)(82% Formal, 12% Acetate, 6% Hydroxyl) DuraSampliR-II
29	663	138 - ATR-Polymer2	D_Polyacrylamide-2	Polyacrylamide(Carboxyl modified)(Low carboxyl content) DuraSamplIR-II

Lampiran 6. 35 Hasil Polimer yang Terbaca pada Tanah Control

	Peak	Intensity	Corr. Intensity	Base (H)	Base (L)	Area	Corr. Area	Comment
1	412,77	14,87	8,05	416,62	401,19	1230,895	63,459	
2	428,20	7,01	4,53	432,05	416,62	1357,082	43,309	
3	435,91	7,81	0,86	451,34	432,05	1763,585	14,821	
4	455,20	9,68	2,78	489,92	451,34	3067,762	-0,285	
5	520,78	26,20	8,13	717,52	489,92	12988,478	397,913	
6	779,24	60,28	1,57	837,11	767,67	2576,606	56,477	
7	999,13	27,24	28,34	1303,88	918,12	15460,712	4312,156	
8	1635,64	80,59	2,25	1643,35	1581,63	820,676	65,592	
9	1647,21	80,98	1,17	1693,50	1643,35	654,374	22,559	
10	3390,86	67,43	0,78	3402,43	3371,57	994,999	12,804	
11	3564,45	88,52	1,80	3606,89	3556,74	372,268	12,818	

Lampiran 6. 36 Hasil Peak Table dari Polimer yang Terbaca pada Tanah Control

83

Lampiran 6. 37 Daftar Hadir Audience Seminar Hasil

Program Studi Teknik Lingkungan Fakultas Teknik Sipil dan Perencanaan Universitas Jalam India
Universitas Islam Indonesia
Berita Acara
Seminar Proposal / Hasil Tugas Akhir
Periode : 2 (dua)
Hari, Tanggal : Jumot, 01 Moret 2024 Nama/NIM Mhs : Matri widya Rangestika (20513077
Nama/NIM Mins: Meitri widyo Rangestika (20013077 Judul Proposal: Identifikari Keberadaan Mikropiartik Rada Tanah TPA liyungan bantur
addul Proposal : 1901 (1901) Santul
Berdasarkan penilain Dosen Pembimbing dan Pengarah, maka Proposal/ Hasil Tugas
Akhir Mahasiswa tersebut diatas: ditolak/diterima/diterima* dengan syarat dan revisi:
1. Penuliran abitiak, menombah keterangan tataguna lahan pada maring -
marina Anno mana hal Tanzo nala las-
2. Menguhah Satuan pada grafik Kerimpahan hubungan parameter Frsik-
fimio dengan degradari mikroplartik
3 Menambahkan lembahasan (analitis, rasso lebih dalam menambahkan
sumber poluton mikroplantik / Pencemar lain
4
Dosen Pengarah dan Pembimbing:
Dosen I.
Dosen II
tu tu
(Fojri Mulya Iresha, ST., M.T., Ph.D) (Buji lestari, s.ri., M.So), PL.D.
(w) (estation, 1865e), 1 4. v.
Dosen III.
The state of the s
(Pr. sup tra Kohmawati, S.T., M.T.)
*Coret yang tidak perlu
mindal dengan CamScanner

Lampiran 6. 38 Lembar Pengesahan Seminar Hasil

RIWAYAT HIDUP

Penulis merupakan anak ke dua dari dua bersaudara yang lahir pada tanggal 13 Mei 2002 dan merupakan anak dari Bapak Sukamta dan Ibu Sri Jumaerah Hartati. Penulis menyelesaikan Pendidikan di SD N Nglempong pada tahun 2014. Kemudian melanjutkan Pendidikan di SMP N 4 Ngaglik tamat pada tahun 2017. Dilanjutkan Pendidikan di MAN 4 Sleman dan slesai pada tahun 2020. Kemudian peneliti melanjutkan Pendidikan perguruan tinggi di Program Studi Teknik Lingkungan Fakultas Teknik Sipil dan Perencanaan Universitas Islam Indonesia pada tahun 2020.