TUGAS AKHIR

ANALISIS INTENSITAS PENCAHAYAAN DI TEMPAT KERJA STASIUN KERETA API TUGU DAERAH ISTIMEWA YOGYAKARTA

Diajukan Kepada Universitas Islam Indonesia untuk Memenuhi Persyaratan Memperoleh Derajat Sarjana (S1) Teknik Lingkungan

MUHAMMAD FACHRUL RIZAL 19513071

PROGRAM STUDI TEKNIK LINGKUNGAN

FAKULTAS TEKNIK SIPIL DAN PERENCANAAN

UNIVERSITAS ISLAM INDONESIA

YOGYAKARTA

2024

TUGAS AKHIR

ANALISIS INTENSITAS PENCAHAYAAN DI TEMPAT KERJA STASIUN KERETA API TUGU DAERAH ISTIMEWA YOGYAKARTA

Diajukan Kepada Univeritas Islam Indonesia untuk Memenuhi Persyaratan Memperoleh Derajat Sarjana (S1) Teknik Lingkungan

Disusun Oleh:

Muhammad Fachrul Rizal

19513071

Disetujui,

Dosen Pembimbing

Samuel

Noviani Ima Wantoputri, S.T., M.T.

NIK. 195130102

Tanggal:

Mengetahui,

Ketua Prodi Teknik Lingkungan FTSP UII

AKULTAS TEKNIK DAN PERENCANA

Any Juliani, S.T., M.T., (Res. Eng)., Ph.D.

NIK. 045130401

Tanggal:

HALAMAN PENGESAHAN ANALISIS INTENSITAS PENCAHAYAAN DI TEMPAT KERJA STASIUN KERETA API TUGU DAERAH ISTIMEWA YOGYAKARTA

Telah diterima dan disahkan oleh Tim Penguji Tanggal : 25 April 2024

Disusun Oleh :

Muhammad Fachrul Rizal 19513071

Tim Penguji:

Noviani Ima Wantoputri, S.T., M.T.

Fina Binazir Maziya, S.T., M.T.

Adam Rus Nugroho, S.T., M.T., Ph.D.

PERNYATAAN

Dengan ini saya menyatakan bahwa:

- Karya tulis ini asli dan belum pernah diajukan ke Universitas Islam Indonesia atau perguruan tinggi lain untuk mendapatkan gelar akademik apapun.
- Karya tulis ini merupakan gagasan, ungkapan dan penelitian saya sendiri, tanpa bantuan orang lain kecuali atas petunjuk dari Dosen Pembimbing.
- Karya atau pandangan orang lain tidak dicantumkan dalam karya tulis ini, kecuali nama penulis disebutkan secara jelas dalam tulisan di naskah dan dicantumkan sebagai acuan dalam daftar pustaka.
- Program perangkat lunak komputer yang digunakan dalam penelitian ini sepenuhnya menjadi tanggung jawab saya dan tidak ada hubungannya dengan Universitas Islam Indonesia.
- 5. Pernyataan ini saya buat dengan sebenar-benarnya, dan apabila di kemudian hari terdapat pelanggaran dan ketidakbenaran dalam pernyataan ini, maka saya bersedia menerima segala sanksi akademik, pencabutan gelar yang diperoleh, sebagai sanksi lainnya sesuai dengan norma yang berlaku di perguruan tinggi.

Yogyakarta, 23 April 2024

Muhammad Fachrul Rizal

19513071

PRAKATA

Assalamu'alaikum Warahmatullahi Wabarakatuh,

Segala puji dan syukur kehadirat Allah SWT yang telah melimpahkan rahmat dan hidayah-Nya sehingga penulis dapat menyelesaikan Tugas Akhir dengan Judul "Analisis Intensitas Pencahayaan di tempat kerja Stasiun Kereta Api Tugu Daerah Istimewa Yogyakarta". Penyusunan laporan tugas akhir ini dilakukan sebagai salah satu syarat untuk menyelesaikan program pendidikan Strata Satu (S1) pada Program Pendidikan Studi Teknik Lingkungan Universitas Islam Indonesia.

Dalam penyusunan laporan tugas akhir ini banyak sekali hambatan dan rintangan yang saya hadapi namun pada akhirnya dapat melaluinya berkat adanya bimbingan, bantuan, serta dukungan dari banyak pihak baik secara moral maupun spiritual. Untuk itu pada kesempatan ini penulis menyampaikan ucapkan terimakasih kepada :

- 1. Allah SWT yang telah memberikan ilmu pengetahuan, kesehatan, kelancaran, dan rahmat-Nya sehingga penulis dapat menyelesaikan laporan tugas akhir ini.
- 2. Ibu Elita Nurfitriyani Sulistyo, S.T., M.Sc. dan Ibu Noviani Ima Wantoputri, S.T., M.T., selaku Dosen Pembimbing Tugas Akhir yang juga turut memberikan bimbingan, bantuan materil serta masukan metode kerja dalam proses pembuatan dan perhitungan sampel.
- 3. Kedua orang tua penulis, Abah Amir Hamsyah, ibunda hj.musfira, Kakak penulis Mifwan syakur, dan keluarga penulis yang memberikan do'a, kasih sayang, dan kepercayaan kepada saya selama penyusunan laporan ini.
- 4. Revina Muthia selaku kekasih saya yang terus memberikan support dan dukungan dengan tulus yang selama ini menemani saya dalam mengerjakan tugas akhir saya sampai selesai.
- 5. *Partner* Penelitian Tugas Akhir penulis Farhan nuha afif, yang banyak membantu saya dalam penyelesaian penilitian ini.
- 6. Teman-teman Kontrakan Farhan, Fikri, Ikhwan yang turut memberikan dukungan dan dorongan untuk segera menyelesaikan laporan tugas akhir ini.
- 7. Seluruh dosen, staff, dan keluarga besar Program Studi Teknik Lingkungan Fakultas Teknik Sipil dan Perencanaan Universitas Islam Indonesia karena

- telah memberikan pengajaran dan pengalaman selama kuliah sehingga ilmu yang telah penulis peroleh dapat bermanfaat untuk penyusunan laporan ini.
- 8. Pihak-pihak lainnya yang tidak disebut satu per satu yang telah membantu penulis menyelesaikan laporan tugas akhir ini, serta
- 9. Penulis berterimakasih kepada diri sendiri, yang sudah mau dan mampu melawan rasa malas, mengurangi waktu main, mengurangi waktu tidur, menjaga perasaan, menjaga fokusnya, dan selalu siap untuk berdiri di atas kaki sendiri.

Penulis menyadari kekurangan yang terdapat di dalam laporan tugas akhir ini serta tidak luput dari kesalahan dan keterbatasan ilmu pengetahuan dari penulis. Sesungguhnya kesempurnaan hanya milik Allah SWT. Oleh karena itu, penulis mengaharapkan kritik dan saran yang bersifat membangun untuk kemajuan penulis dan kelengkapan laporan ini. Semoga laporan tugas akhir ini dapat memberikan manfaat bagi penulis dan pembaca.

Billahi taufiq wal hidayah,

Wassalamu'alaikum Warahmatullahi Wabarakat

ABSTRAK

MUHAMMAD FACHRUL RIZAL

ANALISIS INTENSITAS PENCAHAYAAN DI TEMPAT KERJA STASIUN KERETA API TUGU DAERAH ISTIMEWA YOGYAKARTA

DIBIMBING OLEH Noviani Ima Wantoputri, S.T., M.T..

Pencahayaan adalah jumlah penyinaran pada suatu bidang kerja yang diperlukan untuk melaksanakan kegiatan secara efektif. Kurangnya nilai pencahayaan ruangan di tempat kerja stasiun tugu yogyakarta ini dikhawatirkan akan berdampak pada kelancaran aktifitas transportasi kereta api dan juga berdampak langsung terhadap kesehatan karyawan stasiun yang bekerja. Pencahayaan yang tidak mencukupi suatu ruangan berdampak terhadap lelahnya syaraf penglihatan, sehingga dapat menurunkan kualitas pekerja. Pencahayaan yang baik dapat menunjang efektifitas dari para pekerja. Sebaliknya pencahayaan yang tidak baik, akan membahayakan kesehatan para pekerja. Tujuan dari penelitian ini ialah untuk mengetahui nilai intensitas pencahayaan di ruangan kerja Stasiun Tugu Yogyakarta. Metode yang digunakan pada penelitian kali ini yaitu metode penelitian kuantitatif yang hasil pengukurannya didapat dari hasil pencahayaan di tiap ruangan yang pengukurannya menggunakan alat lux meter, acuan pengukuran titik sampling menggunakan SNI 7062:2019 tentang Pengukuran intensitas pencahayaan di tempat kerja. yang dimana didapatkan nilai ambang batas pencahayaan (NAB) dititik ruangan kerja yang sudah ditentukan. Hasil Penelitian didapatkan dari lima ruangan kerja yang telah dilakukan pengukuraan pencahayaan, hanya ada dua ruangan yang memenuhi nilai ambang batas (NAB) yang telah ditentukan yaitu ruangan tunggu penumpang dengan nilai rerata pencahayaanya 264 Lux dan sudah memenuhi nilai NAB nya yaitu >150 Lux serta juga ruangan loket dengan nilai rerata pencahayaan 305 Lux dan sudah memenuhi nilai NAB nya yaitu >300 Lux. Dan ada tiga ruangan yang tidak memenuhi standar NAB yang sudah ditentukan yaitu ruangan fasilitas kantor 240 Lux yang tidak memenuhi NAB yang sudah ditentukan untuk ruangan kantor yaitu 350 Lux, ruangan kepala stasiun 174 Lux yang tidak memenuhi NAB yang sudah ditentukan untuk ruangan kantor yaitu 350 Lux dan ruangan pengawas peron 94 Lux yang tidak memenuhi NAB yang sudah ditentukan untuk ruangan kantor yaitu 350 Lux. Acuan yang digunakan untuk mendapatkan nilai NAB pencahayaan di ruangan Stasiun Tugu Yogyakarta yaitu SNI 6197:2020 tentang konservasi energi pada sistem pencahayaan. dari pengukuran pencahayaan di Stasiun Tugu Yogyakarta, pengadaan pencahayaan di tiap ruangan kerja karyawan belum optimal.

Kata kunci: Kuantitatif, Nilai Ambang Batas, Pencahayaan, Stasiun Tugu Yogyakarta

ABSTRACT

MUHAMMAD FACHRUL RIZAL

ANALYSIS OF LIGHTING INTENSITY IN THE WORKPLACE OF TUGU REGIONAL SPECIAL YOGYAKARTA TRAIN STATION

GUIDED BY Noviani Ima Wantoputri, S.T., M.T.

Lighting is the amount of light in a work area that is needed to carry out activities effectively. It is feared that there is a lack of indoor lighting in the Yogyakarta Tugu Station workplace which will have an impact on the smooth running of train transportation activities and also have a direct impact on the health of working station employees. Insufficient lighting in a room results in tiredness of the visual nerves, which can reduce the quality of workers. Good lighting can support the effectiveness of workers. On the other hand, poor lighting will endanger the health of workers. The aim of this research is to determine the value of lighting intensity in the work space at Tugu Yogyakarta Station. The method used in this research is a quantitative research method where the measurement results are obtained from the lighting results in each room which are measured using a lux meter, the sampling point measurement reference uses SNI 7062:2019 concerning Measurement of lighting intensity in the workplace. which is where the lighting threshold value (NAB) is obtained at a predetermined work space point. The research results were obtained from five work rooms where lighting measurements had been carried out, there were only two rooms that met the predetermined threshold value (NAB), namely the passenger waiting room with an average lighting value of 264 Lux and had met the NAB value, namely > 150 Lux and also counter room with an average lighting value of 305 Lux and has met the NAB value of >300 Lux. And there are three rooms that do not meet the NAB standards that have been determined, namely the office facility room of 240 Lux which does not meet the NAB that has been determined for office space, namely 350 Lux, the station head room of 174 Lux which does not meet the NAB that has been determined for office space, namely 350 Lux. and the platform control room is 94 Lux which does not meet the NAB determined for office space, namely 350 Lux. The reference used to obtain the NAB value for lighting in the Yogyakarta Tugu Station room is SNI 6197:2020 concerning energy conservation in lighting systems. From lighting measurements at Tugu Yogyakarta Station, the provision of lighting in each employee's work space is not optimal.

Keywords: Lighting, Threshold Value, *Quantitative, Tugu Yogyakarta Station*

DAFTAR ISI

HALAMAN PENGESAHAN	i
PERNYATAAN Error! Bookmark n	ot defined.
PRAKATA	iv
ABSTRAK	vi
ABSTRACT	vii
DAFTAR ISI	viii
DAFTAR TABEL	x
DAFTAR GAMBAR	xi
DAFTAR LAMPIRAN	xii
BAB I PENDAHULUAN	1
1.1 Latar Belakang	1
1.2 Rumusan Masalah	3
1.3 Tujuan Penelitian	3
1.4 Manfaat Penelitian	3
1.5 Ruang Lingkup	3
BAB II TINJAUAN PUSTAKA	5
2.1 Pencahayaan	5
2.2 Sistem pencahayaan	7
2.3 Standar Pencahayaan	8
2.4 Lux Meter	9
2.5 Penentuan Titik Pengukuran pencahayaan	10
2.6 Penelitian Terdahulu	12
BAB III METODE PENELITIAN	13
3.1 Waktu dan Lokasi	14
3.2 Alat dan Bahan	20
3.3 Prosedur Analisis Data	21
3.4 Metode Pengambilan Data	21
3.5 Analisis data	23
BAB IV HASIL DAN PEMBAHASAN	24
4.1 Gambaran Umum Lokasi Sampling	24
4.2 Pencahayaan Analisa	25
4.3 Data Penelitian	27
4.4 Pembahasan.	34

BAB V KESIMPULAN DAN SARAN	40
5.1 Kesimpulan	40
5.2 Saran	
DAFTAR PUSTAKA	
LAMPIRAN	44

DAFTAR TABEL

Tabel 2. 1 Tingkat pencahayaan minimum di ruangan kantor	8
Tabel 2. 2 Tingkat pencahayaan minimum di Bandara	9
Tabel 2. 3 Penelitian Terdahulu	. 12
Tabel 4. 1 Kondisi eksisting ruangan	. 25
Tabel 4. 2 Hasil Pengukuran	
Tabel 4. 4 Permenaker untuk menentukan NAB	. 33
Tabel 4. 5 Data ruangan dan rerata pencahayaan ruang kerja Stasiun Tugu Yogyakarta	. 34

DAFTAR GAMBAR

Gambar 2. 1 Lux Meter (Alat Pengukur Pencahayaan)	10
Gambar 2. 2 Penentuan titik pengukuran pencahayaan umum dengan luas 25	$5 \text{ m}^2 11$
Gambar 3. 1 Diagram alir penelitian	13
Gambar 3. 2 Layout titik sampling stasiun tugu	14
Gambar 3. 3 Sketsa titik ruang tunggu penumpang	15
Gambar 3. 4 Sketsa titik ruang loket	16
Gambar 3. 5 Sketsa titik ruang fasilitas kantor	17
Gambar 3. 6 Sketsa titik ruang kepala stasiun	
Gambar 3. 7 Sketsa titik ruang pengawas peron	
Gambar 3. 8 Lux Meter (Alat Pengukur Pencahayaan)	
Gambar 3. 9 Letak luxmeter sejajar dengan permukaan objek	20
Gambar 4. 1 Analisa kondisi eksisting ruangan	
Gambar 4. 2 Hasil pengukuran	26
Gambar 4. 3 Pencahayaan di ruang tunggu	27
Gambar 4. 4 Pencahayaan di ruang loket	
Gambar 4. 5 Pencahayaan di ruang fasilitas kantor dan penumpang	29
Gambar 4. 6 Pencahayaan di ruang kepala stasiun	
Gambar 4. 7 Pencahayaan di ruang pengawas peron	31
Gambar 4. 8 Pengukuran di ruang tunggu penumpang	35
Gambar 4. 9 Pengukuran di ruang loket	35
Gambar 4. 10 Pengukuran di ruangan fasilitas kantor	36
Gambar 4. 11 Pengukuran diruang kepala stasiun	37
Gambar 4. 12 Pengukuran di ruang pengawas peron	
Gambar 4. 13 Rerata Pencahayaan Setempat di Ruang Kerja Stasiun Tugu	

DAFTAR LAMPIRAN

Lampiran 1 Data pencahayaan di ruang tunggu penumpang	44
Lampiran 2 Data pencahayaan diruang loket	49
Lampiran 3 Data pencahayaan di ruang fasilitas kantor	50
Lampiran 4 Data pencahayaan di ruang kepala stasiun	53
Lampiran 5 Data pencahayaan keseluruhan di ruangan pengawas peron	56

BABI

PENDAHULUAN

1.1 Latar Belakang

Kota Yogyakarta merupakan kota yang menjadi tarikan aktivitas masyarakat dalam berwisata, tidak hanya pada skala lokal, namun juga skala internasional. Kota Yogyakarta memiliki luas wilayah yaitu 32,5 Km² yang berarti 1,025% dari luas wilayah Provinsi DIY. Keberadaan Stasiun Tugu sebagai stasiun terbesar di Provinsi DIY dengan lokasinya yang tepat di tengah kota, turut mendukung kemudahan akses masyarakat dari luar kota yang bertujuan untuk beraktivitas di kota Yogyakarta, terutama pada titik tarikan kawasan di sekitar stasiun. Jumlah penumpang stasiun Tugu Yogyakarta pada tahun 2023 terus meningkat setiap bulannya, jumlah penumpang tertinggi yaitu pada bulan April 2023 sebesar 183,51 ribu orang (BPS Yogyakarta,2023). Banyaknya wisatawan yang berkunjung ke kota Yogyakarta dan ingin menikmati tempat wisata di Yogyakarta dengan menggunakan berbagai macam transportasi. Salah satu transportasi publik yang paling diminati masyarakat adalah kereta api.

Hal ini dikarenakan kereta mempunyai banyak kemudahan dan keuntungan bila dibandingkan dengan transportasi lainnya, seperti jalur tanpa hambatan dan waktu Keberangkatan yang relatif lebih cepat. Tingginya minat masyarakat kepada angkutan publik ini sebaiknya dibarengi dengan peningkatan sarana dan prasarana stasiun kereta itu sendiri. Sarana prasarana stasiun kereta api mencakup banyak hal, seperti fasilitas-fasilitas standar Pelayanan seperti sarana informasi, loket penjualan tiket, toilet, ruang ibadah, dan fasilitas yang tidak kalah penting yaitu ruang tunggu penumpang kereta. Aktivitas yang dilakukan didalam ruangan seperti pelayanan sarana informasi dan penjualan tiket juga perlu didukung dengan pencahayaan yang baik.

Pencahayaan yang baik dapat mendukung kegiatan dan aktivitas terkait dengan transportasi kereta api. Secara umum pencahayaan terbagi menjadi 2 (dua) macam yaitu pencahayaan alami dan pencahayaan buatan. Pencahayaan alami berasal dari sinar matahari dan pencahayaan buatan dapat berupa segala macam bentuk cahaya yang telah dibentuk dan dibuat oleh manusia seperti

Lampu dan lain-lain (Juningtyastuti,2012). Permasalahan yang sering terjadi yaitu rendahnya nilai intensitas pencahayaan di ruang tunggu penumpang dan juga di ruang pelayanan informasi.

Pencahayaan yang baik dapat menunjang efektifitas dari pekerja. Sebaliknya dengan pencahayaan yang tidak baik, akan membahayakan kesehatan pekerja. Dalam penelitian (Santoso & Widajati, 2008). Pencahayaan yang tidak mencukupi suatu ruangan lelahnya syaraf penglihatan, sehingga dapat menurunkan kualitas pekerja (Yusuf, 2015).

Menurut nilai standar pencahayaan ruang kerja yang telahditetapkan pada SNI 6197:2020 tentang konservasi energi pada sistem pencahayaan, Nilai ambang batas (NAB) untuk ruangan loket (tiket counter) minimal 300 Lux, untuk ruang tunggu penumpang (*Gate Areas*) minimal 150 Lux dan untuk ruangan kantor seperti ruang fasilitas kantor,ruang kepala stasiun dan ruang pengawas peron minimal 350 Lux.

Berdasarkan latar belakang tersebut penulis memandang penting dilakukannya penelitian terhadap pencahayaan ruangan kerja di Stasiun Tugu Yogyakarta yang terdapat di Jalan sisi sebelah barat jalan poros Keraton-Tugu Pal Putih atau berada di sebelah barat Stasiun Lempuyangan., penulis memilih lokasi tersebut dikarenakan pada lokasi tersebut merupakan pusat transportasi yang ramai oleh wisatawan.

1.2 Rumusan Masalah

Berdasarkan uraian tersebut, maka dapat dibentuk rumusan masalah sebagai berikut ini:

- 1. Bagaimanakah megindentifikasi pencahayaan di dalam ruangan kerja stasiun tugu yogyakarta
- 2. Bagaimana hasil evaluasi pencahayaan di dalam ruangan kerja stasiun tugu yogyakarta

1.3 Tujuan Penelitian

Tujuan pada penelitian ini, yaitu:

- 1. Mengidentifikasi intesitas pencahayaan di dalam ruangan kerja stasiun tugu yogyakarta
- 2. Mengevaluasi hasil pengukuran intensitas pencahayaan di dalam ruangan kerja stasiun tugu yogyakarta

1.4 Manfaat Penelitian

Berikut merupakan manfaat penelitian ini:

- Menjadi pertimbangan pemerintah dan perusahan Kereta Api Indonesia (KAI) setempat dalam mengambil kebijakan tentang topik dari penelitian ini
- 2. Menjadi bahan evaluasi untuk penelitian berikutnya.

1.5 Ruang Lingkup

- Penelitian ini dilaksanakan di Stasiun Tugu Lokasi Jalan Margo Utomo 1 (pintu timur) Jalan Pasar Kembang (pintu selatan) Sosromenduran, Gedongtengen, Yogyakarta.
- 2. Penelitian mengukur pencahayaan di 5 titik ruangan Stasiun Tugu Yogyakarta meliputi ruang loket berada di posisi pintu masuk selatan, ruang tunggu penumpang yang berada di area pintu masuk selatan, ruang fasilitas kantor yang berada di bagian pintu masuk timur, ruang kepala stasiun yang berada di bagian utara dan ruang pengawas peron persis di samping ruang kepala stasiun di bagian utara.
- 3. Pengukuran pencahayaan dilaksanakan 5 hari berturut-turut dari tanggal 18 hingga tanggal 22 September 2023. Dengan waktu pagi, siang dan malam. Pengukuran pencahayaan dimulai dari jam 07.00 WIB hingga jam 22.00 WIB (interval waktu per 15 detik titik pengukuran)
- 4. Metode yang digunakan sebagai acuan penelitian yaitu berdasarkan SNI 7062:2019 tentang pengukuran intensitas pencahayaan di tempat kerja

- (untuk menentukan titik sampling) dan SNI 6197:2020 tentang konservasi energi pada sistem pencahayaan (acuan nilai ambang batas yang ditentukan).
- 5. Berdasarkan SNI 7062:2019 tentang pengukuran intensitas pencahayaan di tempat kerja, Pengukuran titik sampling dilakukan dengan mecari luas ruangan tersebut kemudian ditentukan jarak pengukuran titik sampling berdasarkan peraturan titik sampling di SNI, kemudian dilakukan pengukuran dengan meletekan alat lux meter dengan ketinggian 0,8 meter diatas lantai.
- 6. Alat yang digunakan untuk pengukuran pencahayaan yaitu Lux meter tipe Lutron LM-8000 4 in 1.

BAB II

TINJAUAN PUSTAKA

2.1 Pencahayaan

Keadaan lingkungan tempat kerja yang gelap dapat disebabkan oleh kurangnya penerangan (pencahayaan) yang dapat mengakibatkan penglihatan terhadap pekerjaan menjadi rumit dan suka terlihat dengan jelas khususnya pada lokasi stasiun yang ramai dikunjungi oleh penumpang. Penerangan dalam ini merupakan faktor lingkungan kerja yang termasuk dalam kelompok faktor resiko, yang dapat menyebabkan produktivitas pekerja menurun atau menjadi rendah apabila intenstas penerangan tidak memadai (Ginanjar, 2012). Pencahayaan sangat penting di stasiun kereta api dikarenakan dapat menciptakan lingkungan yang aman dan nyaman bagi penumpang serta para pekerja. Pencahayaan yang kurang tidak hanya mempengaruhi produktivitas pekerja tetapi juga memengaruhi kenyamanan dan kepercayaan penumpang transportasi kereta api. Cahaya merupakan energi yang berbentuk gelombang elektromagnetik yang kasat mata dengan panjang gelombang sekitar 380-750 nm. Cahaya juga dapat didefinisikan sebagai bagian dari spektrum elektromagnetik yang bersifat sensitif bagi penglihatan mata. Cahaya memiliki sifat-sifat seperti merambat lurus, dapat dipantulkan, dapat dibiaskan, dapat menembus benda bening dan dapat diuraikan. Sifat dari cahaya juga dapat ditentukan dari kuantitas dan kualitas cahaya. Kuantitas cahaya dapat dipengaruhi oleh jumlah cahaya yang jatuh pada suatu permukaan dan menerangi permukaan tersebut (Thareq, 2022).

Pencahayaan terbagi menjadi dua yaitu: pencahayaan alami yang merupakan pencahayaan dari alam dan pencahayaan buatan yang berasal dari sumber cahaya buatan manusia (Ginanjar,2012). Dalam konteks lingkungan kerja atau ruang, pencahayaan adalah aspek penting dalam menciptakan kondisi yang aman, nyaman, dan produktif bagi para pekerja. Pencahayaan yang baik dapat mempengaruhi kesehatan dan kesejahteraan pekerja, serta memainkan peran penting dalam kualitas visual, penglihatan, dan kinerja tugas. Pencahayaan dapat berasal dari sumber cahaya alami, seperti sinar

matahari, atau sumber cahaya buatan, seperti lampu. Pencahayaan alami sering di Anggap sebagai bentuk pencahayaan yang ideal, karena memiliki spektrum cahaya yang lebih luas dan dapat mempengaruhi ritme sirkadian manusia. Namun, dalam beberapa situasi, pencahayaan buatan juga digunakan untuk memberikan pencahayaan yang memadai (Kuswana, 2014).

Dampak dari kurangnya pencahayaan di dalam ruangan kerja yaitu lelahnya syaraf penglihatan, sehingga dapat menurunkan kualitas pekerja (Yusuf, 2015). Pencahayaan yang baik dapat menunjang efektifitas dari pekerja. Sebaliknya dengan pencahayaan yang tidak baik, akan membahayakan kesehatan pekerja. Dalam penelitian (Santoso & Widajati, 2008).

2.2 Sistem pencahayaan

Berdasarkan SNI 03 – 6575 – 2001 tentang Tata Cara Perancangan Sistem Pencahayaan Buatan, sistem pencahayaan dikelompokkan menjadi 3 (tiga) bagian utama yaitu:

a. Sistem Pencahayaan Merata

Sistem pencahayaan ini memberikan tingkat pencahayaan yang merata di seluruhruangan, sistem dapat digunakan jika tugas visual yang dilakukan di seluruh tempat dalam ruangan memerlukan tingkat pencahayaan yang merata atau sama.

b. Sistem Pencahayaan Setempat

Sistem pencahayaan ini memberikan tingkat pencahayaan pada suatu bidang kerja yang tidak merata, karena disesuaikan pada saat melalukan pekerjaan visual. Sistem ini diperlukan pada tempat yang memerlukan tugas visual yang tinggi di suatu ruang/tempattertentu sehingga diberikan cahaya yang lebih banyak dibandingkan dengan sekitarnya.

c. Sistem Pencahayaan Gabungan

Sistem ini merupakan gabungan dari sistem pencahayaan merata dan sistem pencahayaan setempat, yang mana sumber cahaya diposisikan dekat dengan pekerjaan visual. Sistem pencahayaan gabungan ini dapat digunakan apabila: pekerjaan visual membutuhkan pencahayaan yang tinggi terhalangnya pencahayaan merata sehingga cahaya tidak sampai pada objek kerja memperlihatkan bentuk dan tekstur yang memerlukan cahaya datang dari arah tertentu

2.3 Standar Pencahayaan

Menurut *Illuminating Engineering Society (IES)* Intensitas pencahayaan dikatakatan baik apabila memilki iluminasi sebesar 300 lux yang merata pada area kerja, karena jika iluminasinya kurang atau lebih dari nilai tersebut maka akan menyebabkan ketidaknyamanan dalam bekerja dan mempengaruhi produktivitas kerja. Salah satu standar di Indonesia yang menetapkan standar intensitas pencahayaan lingkungan kantor diatur oleh SNI 6197:2020 tentang konservasi energi pada sistem pencahayaan.

Berdasarkan SNI 6197:2020 tentang konservasi energi pada sistem pencahayaan menyebutkan bahwa tingkat pencahayaan minimum yang direkomendasikan untuk sebuah ruangan administrasi atau ruangan kantor yaitu 350 Lux, untuk ruangan loket yaitu 300 Lux dan ruangan tunggu penumpang yaitu 150 Lux, untuk tabel pencahayaan diruang kantor bisa dilihat pada Tabel 2.1 berikut.

Tabel 2.1 Tingkat pencahayaan minimum di ruangan kantor

No	Fungsi Ruangan	Tingkat Pencahayaan Minimal (Lux)	Renderasi Warna Minimum
1	Ruang resepsionis	300	80
2	Ruang direktur	350	80
3	Ruang kerja	350	80
4	Ruang komputer	150	80
5	Ruang rapat	300	80
6	Ruang gambar	750	90
7	Ruang gudang arsip	150	80
8	Ruang arsip aktif	350	80
9	Ruang tangga darurat	100	80
10	Ruang parkir	100	80

Sumber: SNI 6197:2020 tentang konservasi energi pada sistem pencahayaan

Untuk tingkat pencahayaan dibandara bisa dilihat pada Tabel 2.2 berikut.

Tabel 2.2 Tingkat pencahayaan minimum di Bandara

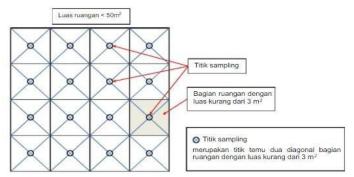
No	Fungsi Kegiatan	Tingkat	Renderasi
		Pencahayaan	Warna
		Minimal (Lux)	Minimum
1	ATM	200	80
2	Conveyer bagasi	200	80
3	Ruang pemeriksaan	300	80
	imigrasi		
4	Tangga berjalan	50	80
	(eskalator)		
5	Ruang tunggu	150	80
	(gate area)		
6	Loket (tiket counter)	300	80
7	Toilet	200	80

Sumber: SNI 6197:2020 tentang konservasi energi pada sistem pencahayaan

2.4 Lux Meter

Lux meter digital adalah sebuah alat yang digunakan untuk mengukur intensitas cahaya dengan prinsip kerja mengubah intensitas cahaya yang datang menjadi arus listrik. Photodiode yang digunakan akan menangkap setiap sinyal cahaya yang di terimanya. Selanjutnya detektor cahaya tersebut akan menghasilkan keluaran berupa arus yang besarnya sesuai dengan intensitas cahaya yang diukur. Arus tersebut diubah ketegangan dan diperkuat oleh sebuah penguat awal, kemudian di umpankan pada mikrokontroler untuk dicacah dan hasilnya ditampilkan pada layar LCD. Untuk alat tersebut bisa dilihat pada Gambar 2.3 berikut.

Gambar 2.3 Lux Meter (Alat Pengukur Pencahayaan)


• Langkah-langkah penggunaan lux meter:

Dinyalakan alat dengan menekan tombol power. Kemudian dipilih range pengukuran sesuai dengan kebutuhan. Range pengukuran biasanya terdiri dari A, B, dan C. Range A memiliki jumlah lux hingga 2000, range B memiliki jumlah lux hingga 20.000, dan range C memiliki jumlah lux hingga 100.000. Selanjutnya diletakkan sensor pada sumber cahaya atau permukaan yang akan diukur intensitasnya. Di baca hasil pengukuran pada layar panel LCD dan dimatikan alat dengan menekan tombol power.

2.5 Penentuan Titik Pengukuran pencahayaan

Menurut SNI 7062:2019, dalam penentuan titik pengukuran pencahayaan dapat dibedakan sebagai berikut:

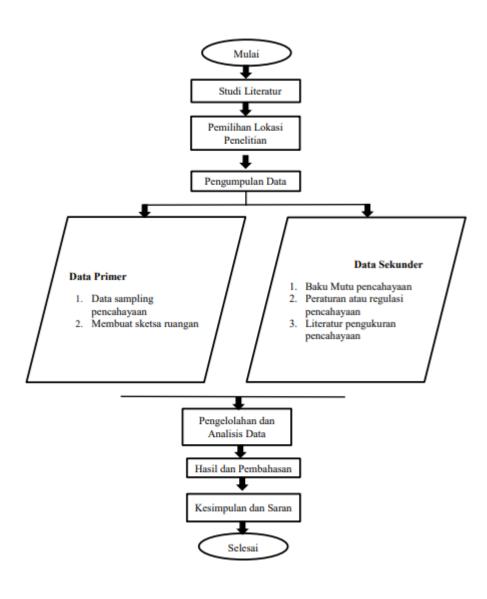
- a. Pengukuran Pencahayaan Umum
- 1). Luas ruangan kurang dari 50 m²: Jumlah titik dihitung dengan mempertimbangkan dimana setiap satu titik pengukuran harus mewakili maksimal 3 m², Titik pengukuran yaitu titik temu dari dua garis diagonal Panjang dan lebar ruangan tersebut seperti bisa dilihat pada Gambar 2.4 berikut.

Gambar 2.4 Penentuan titik pengukuran pencahayaan umum dengan luas 25 m²

- 2). Luas ruangan antara $50 \text{ m}^2 100 \text{ m}^2$: Jumlah titik pengukuran minimal 25 titik, dimana titik pengukuran yaitu titik temu dari dua garis diagonal Panjang dan lebar ruangan.
- 3). Luas ruangan lebih dari 100 m²: Jumlah titik pengukuran minimal 36 titik, dimana titik pengukuran yaitu titik temu dari dua garis diagonal Panjang dan lebar ruangan.
- b. Pengukuran Pencahayaan Setempat
- 1) Sensor diletakkan sejajar dengan permukaan objek
- 2) Pengukuran pada bidang vertikal dengan alat dilekakkan secara vertikal juga
- 3) Pengukuran dimeja kerja dengan alat diletakkan diatas meja
- 4) Pengukuran pada komputer dengan jarak antara layar dan alat sejauh 10 cm

2.6 Penelitian Terdahulu

Berikut adalah tabel penelitian terdahulu bisa dilihat pada Tabel 2.5 berikut.


Tabel 2.5 Penelitian Terdahulu

Nama Peneliti	Judul Penelitian	Hasil Penelitian
Thareq Muhammad Diva, (2022)	Analisa Pengukuran Kebisingan, Pencahayaan, CO2, Dan CO Pada Bengkel Motor Non Resmi "Sabel Motor"	Berdasarkan hasil pengukuran yang telah didapatkan dan bandingkan dengan Keputusan Menteri Kesehatan RI No 1405/MENKES/SK/XI/2002 minimal 500 lux, sedangkan untuk hasil pengukuran pencahayaan setempat jika dibandingkan dengan SNI 03-6575-2001 yang menyebutkan bahwa pencahayaan untuk ruang komputer dan ruang kerja adalah sebesar 350 lux.
Jordy Ariesandy,dkk (2020)	"Usulan Perbaikan Sistem Kerja dengan Micromotion Study dan Analisis Pengaruh Pencahayaan Terhadap Kecepatan Kerja PT.Dwi Putra Perkasa Malang	Setelah melakukan eksperimen pengaruh pencahayaan terhadap kinerja operator, didapat bahwa kinerja di stasiun satu tidak terpengaruh oleh intensitas cahaya sedangkan stasiun dua, tiga dan empat terpengaruh. Selain itu dapat disimpulkan juga bahwa sebaiknya lampu yang digunakan adalah lampu dengan intensitas cahaya sebesar 140 Lux.
Safi Nur Indahsari,dkk (2016)	"Analisis Ergonomi Lingkungan Ruang Tunggu Selatan Stasiun Bandung Berdasarkan Standar Kenyamanan Pengguna"	Dari penelitian kali ini perlu dilakukan intervensi interior untuk mengatasi persoalan pencahayaan ini dengan cara mengatur plafond dan penambahan jumlah lampu dengan intensitas yang lebih tinggi. Bentuk ruangan dengan plafond tinggi dan bentukan serta luas bukaan mempengaruhi faktor pencahayaan dalam ruang. Pada ruang tunggu pencahayaan agak redup Karena penataan lampu yang tidak merata. Selain itu, tinggi plafond mengakibatkan sebaran cahaya ke area bawah banyak berkurang, sehingga intensitas cahaya di area aktivitas rendah.

BAB III

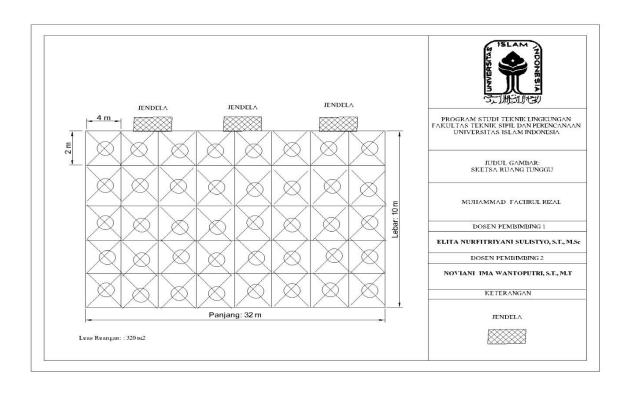
METODE PENELITIAN

Diagram alir penelitian ini berfungsi untuk mendapatkan gambaran awal mengenai penelitian serta untuk mempermudah pengerjaan dan penyusunan laporan. Diagram alir penilitian ini dimulai dengan ide penelitian, dilanjutkan studi literatur, persiapan penelitian, pengumpulan data primer, pengolahan dan analisis data, pembahasan dan kesimpulan serta saran. Diagaram penelitian ini dapat di lihat pada Gambar 3.1 berikut.

Gambar 3.1 Diagram alir penelitian

3.1 Waktu dan Lokasi

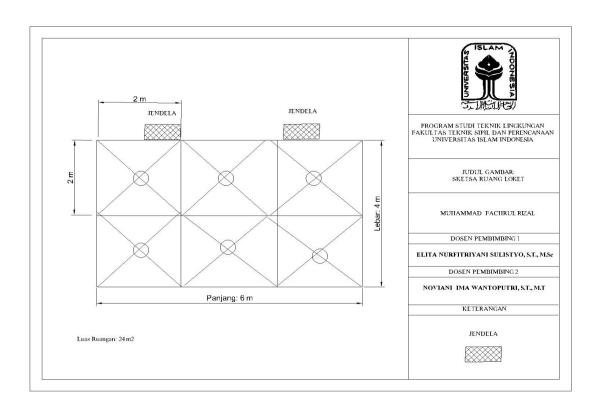
Lokasi penelitian ini berada di dalam area tempat kerja di stasiun Tugu Yogyakarta. Sebelum menentukan titik sampling pada rauang kerja stasiun tugu, di dalam area stasiun tersebut memiliki ruangan sebanyak 18 ruangan. dan yang menjadi tempat penelitian sampling kali ini berjumlah 5 titik, titik sampling yang pertama berlokasi di ruangan loket, titik sampling yang kedua berlokasi di area ruang tunggu Penumpang, titik sampling ke tiga ruang kepala stasiun kereta api, titik sampling ke empat diruangan fasilitas kantor, titik sampling ke lima diruangan pengawas peron. Peletakkan alat sampling pada lokasi dilakukan berdasarkan pedoman Prinsip pengukuran Lux meter ini yaitu dengan melakukan pengukuran pada daerah yang akan diukur dengan kekuatan cahaya secara tepat pada titik yang ditentukan berdasarkan SNI 7062:2019. Pengukuran dilakukan melalui 2 jenis kegiatan yaitu pada pengukuran umum dan pengukuran setempat. Penelitian kali ini dilakukan selama 1 (satu) minggu kerja dengan masing - masing harinya memiliki 3 (tiga) sesi pengukuran, yaitu pagi, siang, dan malam. Untuk lokasi sampling pada stasiun dapat dilihat pada Gambar 3.2 berikut


Gambar 3.2 Layout titik sampling stasiun tugu

3.1.1 Titik pengukuran pencahayaan

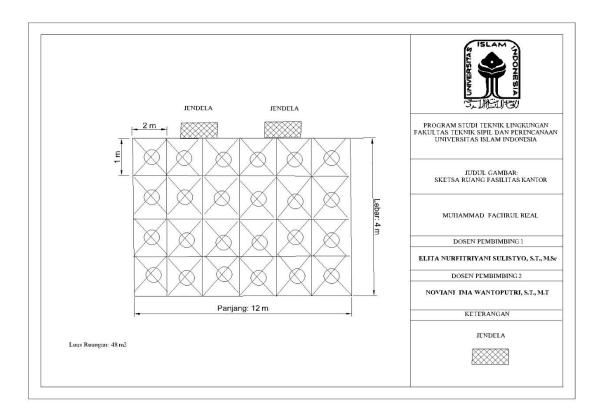
Acuan yang digunakan dalam penentuan titik pengukuran yaitu berdasarkan SNI 7062:2019 tentang Pengukuran intensitas pencahayaan di tempat kerja Stasiun Tugu Yogyakarta.

1. Ruang tunggu penumpang


Berikut adalah gambaran sketsa ruang tunggu penumpang. Panjang ruangan 32 m², lebar ruangan 10 m² dan luas ruangan keseluruhan yaitu 320 m². Dari hasil perhitungan luas ruangan di dapat total titik sampling di ruang tunggu penumpang adalah 40 titik dan jarak tiap titik 4 m². Berdasarkan sketsa ruangan tunggu penumpang pencahayaan diruangan tersebut termasuk pencahayaan alami dikarenakan pencahayaan tersebut ada cahaya matahari yang masuk kedalam ke ruangan tersebut, bisa dilihat Pada ilihat pada Gambar 3.3 berikut.

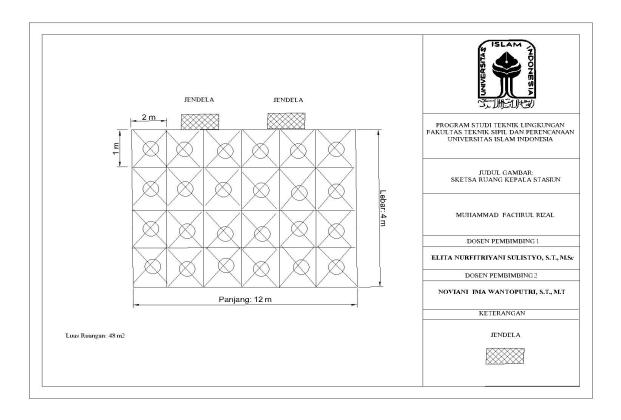
Gambar 3.3 Sketsa titik ruang tunggu penumpang

2. Ruang Loket


Berikut adalah gambaran sketsa Panjang ruangan 6 m², lebar ruangan 4 m² dan luas ruangan keseluruhan yaitu 24 m². Dari hasil perhitungan luas ruangan di dapat total titik sampling di ruang loket adalah 6 titik dan jarak tiap titik 2 m²·. ruangan loket pencahayaan diruangan tersebut termasuk pencahayaan alami dikarenakan pencahayaan tersebut ada cahaya matahari yang masuk kedalam ke ruangan tersebut, bisa dilihat Pada Gambar 3.4 berikut

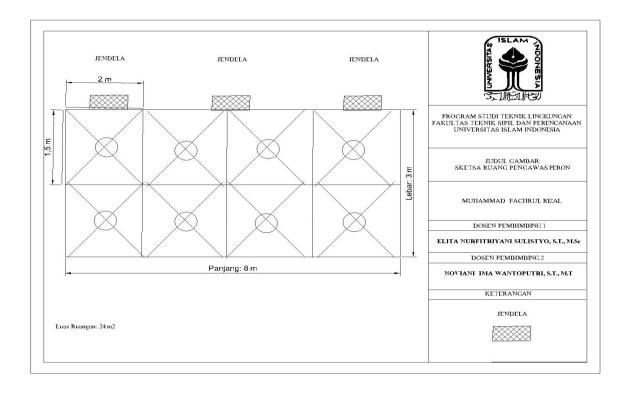
Gambar 3.4 Sketsa titik ruang loket

3. Ruang fasilitas kantor


Berikut adalah gambaran sketsa ruang fasilitas kantor. Panjang ruangan 12 m², lebar ruangan 4 m² dan luas ruangan keseluruhan yaitu 48 m². Dari hasil perhitungan luas ruangan di dapat total titik sampling di ruang fasilitas kantor adalah 24 titik dan jarak tiap titik 2 m², sketsa ruangan fasilitas kantor diruangan tersebut termasuk pencahayaan alami dikarenakan pencahayaan tersebut ada cahaya matahari yang masuk kedalam ke ruangan tersebut Bisa dilihat pada Gambar 3.5 berikut.

Gambar 3.5 Sketsa titik ruang fasilitas kantor

4. Ruangan kepala stasiun


Berikut adalah gambaran sketsa ruang Kepala Stasiun. Panjang ruangan 12 m², lebar ruangan 4 m² dan luas ruangan keseluruhan yaitu 48 m². Dari hasil perhitungan luas ruangan di dapat total titik sampling di ruang Kepala Stasiun adalah 24 titik dan jarak tiap titik 2 m², Berdasarkan sketsa ruangan kepala stasiun diruangan tersebut termasuk pencahayaan buatan dikarenakan pencahayaan tersebut tidak ada cahaya alamii yang masuk kedalam ke ruangan tersebut, Bisa dilihat pada Gambar 3.5 berikut.

Gambar 3.5 Sketsa titik ruang kepala stasiun

5. Ruangan pengawas peron

Berikut adalah gambaran sketsa ruang Pengawas Peron. Panjang ruangan 8 m², lebar ruangan 3 m² dan luas ruangan keseluruhan yaitu 24 m². Dari hasil perhitungan luas ruangan di dapat total titik sampling di ruang Pengawas Peron adalah 8 titik dan jarak tiap titik 2 m², Berdasarkan sketsa ruangan pengawas peron diruangan tersebut termasuk pencahayaan buatan dikarenakan pencahayaan tersebut tidak ada cahaya alamii yang masuk kedalam ke ruangan tersebut, Bisa dilihat pada Gambar 3.6 berikut.

Gambar 3.6 Sketsa titik ruang pengawas peron

3.2 Alat dan Bahan

Dalam melakukan persiapan pengukuran pastikan berfungsi dengan baik, baterai pada luxmeter memiliki daya tahan yang cukup dan telah terkalibrasi oleh laboratorium Pengukuran yang digunakan pada pengukuran parameter cahaya adalah dengan menggunakan Lux meter yang merupakan alat untuk mengetahui tingkat intensitas cahaya pada suatu lokasi tertentu, alat tersebut bisa dilihat pada Gambar 3.7 berikut.

Gambar 3.7 Lux Meter (Alat Pengukur Pencahayaan)

Prinsip pengukuran Lux meter ini yaitu dengan melakukan pengukuran pada daerah yang akan diukur dengan kekuatan cahaya secara tepat pada titik yang ditentukan berdasarakan SNI 16-7062-2019 Tentang Pengukuran Intensitas Pencahayaan di Tempat Kerja. Pengukuran dilakukan melalui dengan pengukuran setempat.

A. Pengukuran Pencahayaan setempat

Titik pengukuran ditentukan pada benda/objek kerja/peralatan/mesin pada area kerja tertentu. Posisi peletakan luxmeter dalam mengukur intensitas cahaya dapat disesuaikan dengan gambar, bisa dilihat pada Gambar 3.8 berikut

Gambar 3.8 Letak luxmeter sejajar dengan permukaan objek

(Sumber: SNI 7062: 2019)

3.3 Prosedur Analisis Data

Prosedur analisis data penelitian ini berfungsi untuk mendapatkan gambaran awal mengenai peosedur atau langkah-langkah dalam melakukan penelitian serta untuk mempermudah pengerjaan dan penyusunan laporan. Prosedur penilitian ini dimulai dengan menyusun konsep terlebih dahulu dengan acuan observasi (pengamatan) dan studi literatur jurnal, kemudian dilakukan identifikasi masalah, persiapan penelitian, melakukan laibrasi lux meter terlebih dahulu, dan melalukan pengujian pencahayaan di Stasiun Tugu DIY menggunakan lux meter, Selanjutnya didapatkan nilai ambang batas pencahayaan di ruangan kerja yang dijadikan tempat observasi, lalu dilakukan analisa data serta membuat kesimpulan dan saran.

3.4 Metode Pengambilan Data

Metode pengambilan data mengacu pada SNI 7062:2019 tentang pengukuran intensitas pencahayaan di tempat kerja, dimana tahap awal pengambilan data yaitu di lakukan persiapan alat pencahayaan lux meter yang sudah terkalibrasi oleh laboratorium kalibrasi yang terakreditasi kemudian di tentukan titik pengukuran pencahayaan setempat dan di lakukan pengukuran di setiap titik ruangan yang di tentukan dan rata-rata pencahayaan yang sudah didapatkan dibandingkan dengan NAB yang sudah ditentukan.

- 1. Ruang Tunggu Penumpang
- Tanggal sampling: 18 September 2023
- Waktu sampling dan rerata pencahayaanya:
 - Sesi pagi: Jam 07.00 08.00 WIB (Interval waktu 15 detik)
 - Sesi siang: Jam 13.00 14.00 WIB (Interval waktu 15 detik)
 - Sesi malam: Jam 20.00 21.00 WIB (Interval waktu 15 detik)
- Nilai rerata pencahayaan ruang tunggu penumpang: 264 Lux
- 2. Ruang Loket
- Tanggal sampling: 19 September 2023
- Waktu sampling dan rerata pencahayaanya:
 - Sesi pagi: Jam 07.00 08.00 WIB (Interval waktu 15 detik)
 - Sesi siang: Jam 13.00 14.00 WIB (Interval waktu 15 detik)

- Sesi malam: Jam 20.00 21.00 WIB (Interval waktu 15 detik)
- Nilai rerata pencahayaan ruang tunggu penumpang: 305 Lux
- 3. Ruang Fasilitas Kantor
- Tanggal sampling: 20 September 2023
- Waktu sampling dan rerata pencahayaanya:
 - Sesi pagi: Jam 07.00 08.00 WIB (Interval waktu 15 detik)
 - Sesi siang: Jam 13.00 14.00 WIB (Interval waktu 15 detik)
 - Sesi malam: Tidak ada pengukuran karena jam operasional kantor sampai sore
- Nilai rerata pencahayaan ruang tunggu penumpang: 240 Lux
- 4. Ruang Kepala Stasiun
- Tanggal sampling: 21 September 2023
- Waktu sampling dan rerata pencahayaanya:
 - Sesi pagi: Jam 07.00 08.00 WIB (Interval waktu 15 detik)
 - Sesi siang: Jam 13.00 14.00 WIB (Interval waktu 15 detik)
 - Sesi malam: Jam 20.00 21.00 WIB (Interval waktu 15 detik)
- Nilai rerata pencahayaan ruang tunggu penumpang: 174 Lux
- 5. Ruang Pengawas Peron
- Tanggal sampling: 22 September 2023
- Waktu sampling dan rerata pencahayaanya:
 - Sesi pagi: Jam 07.00 08.00 WIB (Interval waktu 15 detik)
 - Sesi siang: Jam 13.00 14.00 WIB (Interval waktu 15 detik)
 - Sesi malam: Jam 20.00 21.00 WIB (Interval waktu 15 detik)
- Nilai rerata pencahayaan ruang tunggu penumpang: 94 Lux

3.5 Analisis data

Dalam melakukan pengukuran intensitas pencahayaan dilakukan selama jam aktif operasional stasiun yaitu pada waktu pagi, siang dan malam. Untuk ruangan fasilitas kantor hanya sampai dengan waktu siang menuju sore di karenakan ruang tersebut di beroperasi sampai malam. Sampling dilakukan dengan menentukan jumlah titik area dihitung dengan mempertimbangkan bahwa satu titik pengukuran mewakili area maksimal 3 m² sesuai dengan SNI 7062:2019 tentang Pengukuran intensitas pencahayaan di tempat kerja Stasiun Tugu Yogyakarta.

Setelah dilakukan pengukuran, maka dilakukan perhitungan rata-rata pencahayaan di lokasi tersebut dengan menggunakan rumus sebagai berikut:

$$LUX = \frac{X1 + X2 + X3}{n}$$

Keterangan:

• Lux = Intensitas Pencahayaan

• X = Jumlah data

• n = Banyak pengukuran

BAB IV

HASIL DAN PEMBAHASAN

4.1 Gambaran Umum Lokasi Sampling

Penelitian Pengukuran pencahayaan ini berada di dalam area tempat kerja di stasiun Tugu Yogyakarta. Sebelum menentukan titik sampling pada rauang kerja stasiun tugu, di dalam area stasiun tersebut memiliki ruangan sebanyak 18 ruangan. dan yang menjadi tempat penelitian sampling kali ini berjumlah 5 titik, titik sampling yang pertama berlokasi di ruangan loket yang memiliki 6 titik, titik sampling yang kedua berlokasi di area ruang tunggu Penumpang yang memiliki 40 titik, titik sampling ke tiga ruang kepala stasiun kereta api yang memiliki 24 titik, titik sampling ke empat diruangan fasilitas kantor yang memiliki 24 titik, titik sampling ke lima diruangan pengawas peron yang memiliki 8 titik. Peletakkan alat sampling pada lokasi dilakukan berdasarkan pedoman Prinsip pengukuran Lux meter ini yaitu dengan melakukan pengukuran pada daerah yang akan diukur dengan kekuatan cahaya secara tepat pada titik yang ditentukan berdasarkan SNI 7062:2019. Pengukuran dilakukan melalui 2 jenis kegiatan yaitu pada pengukuran umum dan pengukuran setempat. Penelitian kali ini dilakukan selama 5 hari (lima) minggu kerja dengan masing - masing harinya memiliki 3 (tiga) sesi pengukuran, yaitu pagi, siang, dan malam.

4.2 Pencahayaan Analisa

4.2.1 Analisa Kondisi Eksisting

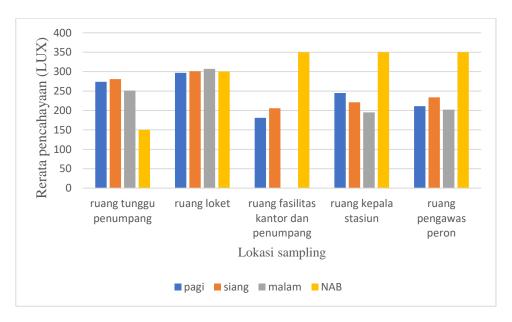
Berikut tabel kondisi eksisting ruangan pada stasiun tugu Yogyakarta, hasil tersebut bisa dilihat pada Tabel 4.1 berikut.

Tabel 4.1 Kondisi eksisting ruangan

No	ruangan	luas ruangan	jumlah titik
1	ruang tunggu penumpang	320 m²	40
2	ruang loket	24 m²	6
3	ruang fasilitas kantor dan penumpang	40 m²	24
4	ruang kepala stasiun	48 m²	24
5	ruang pengawas peron	24 m²	8

Berikut adalah hasil data grafik analisis kondisi eksisting ruagan kerja di stasiun tugu Yogyakarta, bisa dilihat pada Gambar 4.1 berikut.

Gambar 4.1 Analisa kondisi eksisting ruangan

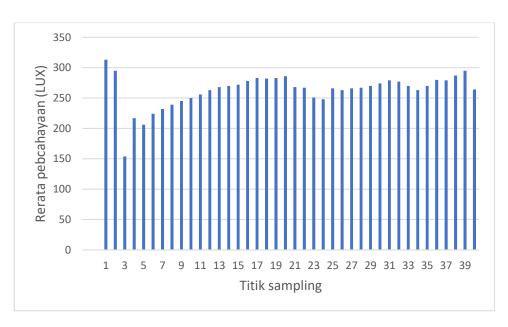

4.2.2 Hasil Pengukuran

Berikut adalah tabel hasil pengukuran total keseluruhan dari pagi, siang dan malam serta Nilai ambang batas (NAB), Hasil pengukuran tersebut bisa dilihat pada Tabel 4.2 berikut.

Tabel 4.2 Hasil Pengukuran

No	Ruangan	pagi	siang	malam	NAB
1	ruang tunggu penumpang	274	281	251	150
2	ruang loket	297	301	307	300
				Tidak	
3	ruang fasilitas kantor dan penumpang	181	206	beroprasi	350
4	ruang kepala stasiun	245	221	195	350
5	ruang pengawas peron	211	234	202	350

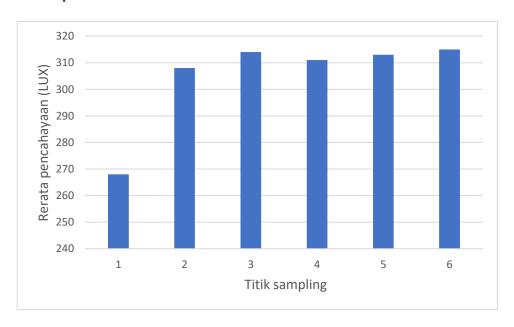
Berikut adalah grafik perhitungan hasil pengukuran dari 5 ruangan kerja yang ada di stasiun tugu Yogyakarta pada waktu pagi, siang dan malam, bisa dilihat pada Gambar 4.2 berikut.


Gambar 4.2 Hasil pengukuran

4.3 Data Penelitian

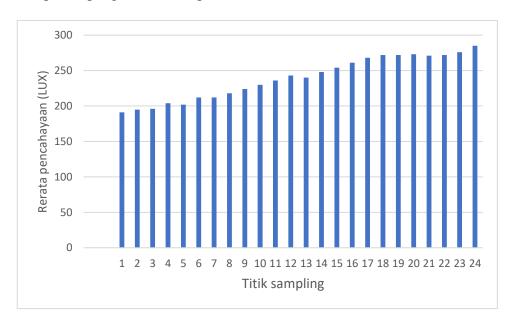
Berikut hasil pengukuran Pencahayaan menggunakan Lux meter di Stasiun Tugu Yogyakarta.

4.3.1 Pencahayaan di ruangan tunggu penumpang


Berdasarkan hasil pengukuran pencahayaan di ruang tunggu penumpang didapatkan hasil dengan rata-rata tiap titik (40 titik) dengan total luas ruangan sebesar 32 x 10 meter dengan rata-rata keseluruhannya yaitu 264 lux. Terjadi penurunan rata-rata pencahayaan pada titik ke tiga (3) yang disebabkan oleh pencahayaan lampu yang kurang maksimal (redup) dan juga titik tersebut tertutup dengan bangunan lain sehingga cahaya matahari yang masuk berkurang. Berdasarkan SNI 6197:2020 Nilai ambang batas (NAB) untuk ruang tunggu (*Gate area*) sebesar 150 NAB. Dalam hal ini ruang tunggu penumpang memenuhi nilai ambang batas yang sudah ditentukan, berikut gambar grafik bisa dilihat pada Gambar 4.3 berikut.

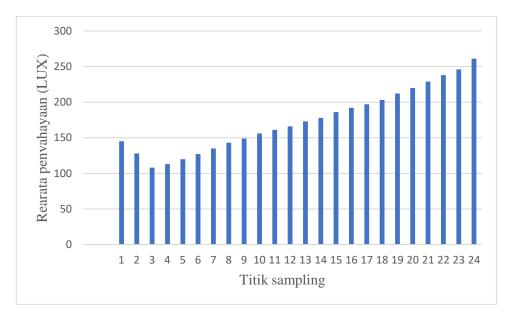
Gambar 4.3 Pencahayaan di ruang tunggu

4.3.2 Pencahayaan di ruangan loket


Berdasarkan hasil pengukuran pencahayaan di ruang loket didapatkan hasil dengan rata-rata tiap titik (6 titik) dengan total rata-rata keseluruhannya yaitu 305 lux. Terjadi kenaikan drastis rata-rata pencahayaan dari titik satu (1) ke titik (2) yaitu dikarenakan luas ruangan tersebut kecil yaitu 6 x 4 meter, selain itu pencahaayan tersebut juga minim dikarenakan ruangan tersebut hanya menggunakan lampu sebagai penerangan. Cahaya matahari tidak masuk kedalam loket dikarenakan tidak jendela yang keluar ruangan. Sehingga cahaya matahari tidak masuk kedalam ruangan loket. Berdasarkan SNI 6197:2020 Nilai ambang batas (NAB) untuk ruangan loket sebesar 300 NAB. Dalam hal ini ruang loket memenuhi nilai ambang batas yang sudah ditentukan. Berikut grafik hasil pengukuran di ruang loket bisa dilihat pada Gambar 4.4 berikut.

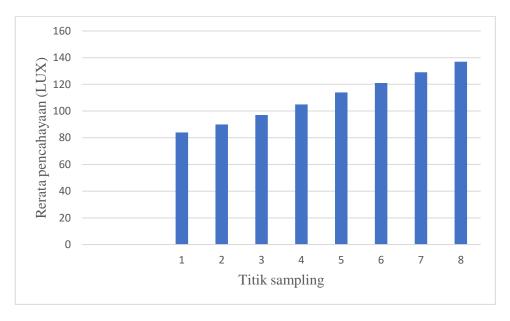
Gambar 4.4 Pencahayaan di ruang loket

4.3.3 Pencahayaan di ruangan fasilitas kantor dan penumpang


Berdasarkan hasil pengukuran pencahayaan di ruang fasilitas kantor didapatkan hasil dengan rata-rata tiap titik (24 titik) dengan total luas ruangan 12 x 4 meter dengan rata-rata keseluruhannya yaitu 240 lux. Berdasarkan Grafik pencahayaan tiap titk stabil namun pengukuran tidak lakukan dimalam hari dikarenakan jam beroperasi tersebut sampai sore. Dan juga pada ruangan fasilitas kantor juga hasil rata-rata tidak memenuhi nilai ambang batas (NAB). Berdasarkan SNI 6197:2020 Nilai ambang batas (NAB) untuk ruangan fasilitas kantor sebesar 350 NAB. Dalam hal ini ruang fasilitas kantor tidak memenuhi nilai ambang batas yang sudah ditentukan. Dikarenakan penerangan lampu yang kurang memadai dan juga luas ruangan tersebut kecil. Berikut grafik hasil pengukuran pada ruang fasilitas kantor dan penumpang bisa dilihat pada Gambar 4.5 berikut.

Gambar 4.5 Pencahayaan di ruang fasilitas kantor dan penumpang

4.3.4 Pencahayaan di ruangan kepala stasiun

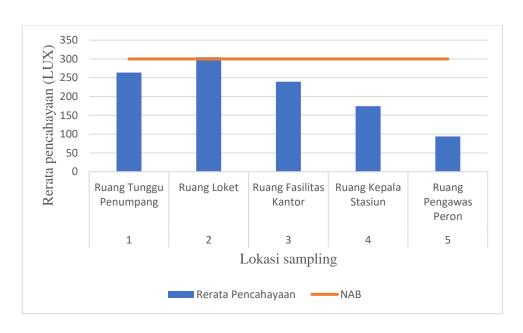

Berdasarkan hasil pengukuran pencahayaan di ruang kepala stasiun didapatkan hasil dengan rata-rata tiap titik (24 titik) dengan total luas ruangan 12 x 4 meter dengan rata-rata keseluruhannya yaitu 174 lux. Berdasarkan SNI 6197:2020 Nilai ambang batas (NAB) untuk ruangan kepala stasiun sebesar 350 NAB. Dalam hal ini ruang kepala stasiun tidak memenuhi nilai ambang batas yang sudah ditentukan. Dikarenakan penerangan lampu yang kurang memadai dan juga cahaya matahari tidak masuk dikarenakan ruangan tersebut diapit oleh bangunan lain yang ada di dalam stasiun. Berikut grafik hasil pengukuran pencahayaan di ruang kepala stasiun bisa dilihat pada Gambar 4.6 berikut.

Gambar 4.6 Pencahayaan di ruang kepala stasiun

4.3.5 Pencahayaan di ruangan pengawas peron

Berdasarkan hasil pengukuran pencahayaan di ruangan pengawas peron didapatkan hasil dengan rata-rata tiap titik (8 titik) dengan total luas ruangan 8 x 3 meter dengan rata-rata keseluruhannya yaitu 94 lux. Berdasarkan SNI 6197:2020 Nilai ambang batas (NAB) untuk ruangan pengawas peron sebesar 350 NAB. Dalam hal ini ruang pengawas peron tidak memenuhi nilai ambang batas yang sudah ditentukan. Dikarenakan penerangan lampu yang sangat tidak memadai dan juga cahaya matahari tidak masuk dikarenakan ruangan tersebut diapit oleh bangunan lain yang ada di dalam stasiun. Berikut grafik pencahayaan di ruangan pengawas peron bisa dilihat pada Gambar 4.7 berikut.

Gambar 4.7 Pencahayaan di ruang pengawas peron


4.3.6 Permenaker No 5 tahun 2018

Berikut adalah tabel ruangan untuk menentukan standar pencahayaan dengan menggunakan permenaker No 5 tahun 2018, bisa dilihat pada Tabel 4.3 sebagai berikut.

Tabel 4.3 Nilai standar pencahayaan

No	Nama Ruangan	Rerata Pencahayaan	NAB
1	Ruang Tunggu Penumpang	264	300
2	Ruang Loket	305	300
3	Ruang Fasilitas Kantor	240	300
4	Ruang Kepala Stasiun	174	300
5	Ruang Pengawas Peron	94	300

Berikut adalah hasil dari grafik standar pencahayaan dengan menggunakan permenaker no 5 tahun 2018, bisa dilihat pada Gambar 4.8 sebagai berikut.

Gambar 4.8 Grafik standar pencahayaan

Standar pencahayaan yang mengacu pada permenaker No 5 tahun 2018, Standar pencahayaan ini dirancang untuk memastikan bahwa ruang tersebut memiliki tingkat pencahayaan yang memadai untuk tujuan tertentu, seperti keamanan, kenyamanan, atau kinerja visual.

4.4 Pembahasan

4.4.1 Mengidentifikasi pencahayaan di dalam ruangan lingkungan kerja Stasiun Tugu Yogyakarta

Penelitian kali ini mengukur rerata pencahayaan setempat di 5 titik lokasi ruang kerja Stasiun Tugu Yogyakarta, yaitu: ruangan loket, ruangan pengawas peron, ruangan fasilitas, ruangan kepala stasiun dan ruang tunggu penumpang. Acuan dalam pengukuran rerata pencahayaan setempat yaitu menggunakan SNI 7062:2019. Dan didapatkan hasil pengukuran rerata pencahayaan setempat di 5 titik ruang kerja Stasiun Tugu Yogyakarta sebagai berikut, untuk data ruanagan tersebut bisa dilihat pada Tabel 4.4 berikut.

Tabel 4.4 Data ruangan dan rerata pencahayaan ruang kerja Stasiun Tugu Yogyakarta

No	Nama Ruangan	Rerata Pencahayaan	NAB
1	Ruang Tunggu Penumpang	264	150
2	Ruang Loket	305	300
3	Ruang Fasilitas Kantor	240	350
4	Ruang Kepala Stasiun	174	350
5	Ruang Pengawas Peron	94	350

4.4.2 Ruang tunggu penumpang

Hasil pengukuran pencahayaan di ruang tunggu penumpang didapatkan hasil dengan rata-rata tiap titik (40 titik) dengan total luas ruangan sebesar 32 x 10 m² dengan rata-rata keseluruhannya yaitu 264 Lux. Sampling dilakukan dengan pagi, siang dan malam, untuk pengukurannya bisa dilihat pada Gambar 4.9 berikut.

Gambar 4.9 Pengukuran di ruang tunggu penumpang

4.4.3 Ruang Loket

Hasil pengukuran pencahayaan di ruang loket didapatkan hasil dengan ratarata tiap titik (6 titik) dengan total rata-rata keseluruhannya yaitu 305 Lux. Dengan total luas ruangan 6 x 4 m², dan dilakukan pengukuran sampling dengan waktu pagi, siang dan malam, untuk pengukurannya bisa dilihat pada Gambar 4.10 berikut

Gambar 4.10 Pengukuran di ruang loket

4.4.4Ruang Fasilitas Kantor

Hasil pengukuran pencahayaan di ruang fasilitas kantor didapatkan hasil dengan rata-rata tiap titik (24 titik) dengan total luas ruangan 12 x 4 m² dengan rata-rata keseluruhannya yaitu 240 Lux. Kali ini ruang fasilitas kantor waktu pengambilan dengan pagi dan siang,di karenakan hanya beroperasi ruangan tersebut hanya sampai sore, untuk pengukurannya bisa dilihat pada Gambar 4.11 berikut.

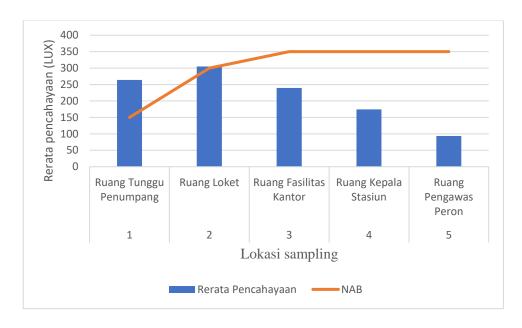
Gambar 4.11 Pengukuran di ruangan fasilitas kantor

4.4.5 Ruang Kepala Stasiun

Berdasarkan hasil pengukuran pencahayaan di ruang kepala stasiun didapatkan hasil dengan rata-rata tiap titik (24 titik) dengan total luas ruangan 12 x 4 m² dengan rata-rata keseluruhannya yaitu 174 Lux. Sampling tersebut dilakukan pengambilan dengan waktu pagi, siang dan malam, untuk pengukurannya bisa dilihat pada Gambar 4.12 berikut.

Gambar 4.12 Pengukuran diruang kepala stasiun

4.4.6 Ruang Pengawas Peron


hasil pengukuran pencahayaan di ruangan pengawas peron didapatkan hasil dengan rata-rata tiap titik (8 titik) dengan total luas ruangan 8 x 3 m² dengan rata-rata keseluruhannya yaitu 94 Lux. Dengan waktu pengambilan sampel pagi, siang dan malam, untuk pengukurannya bisa dilihat pada Gambar 4.13 berikut.

Gambar 4.13 Pengukuran di ruang pengawas peron

4.4.7 Hasil Evaluasi Pencahayaan di dalam Ruangan Kerja Stasiun Tugu Yogyakarta

Berdasarkan pengukuran rerata pencahayaan yang dilakukan di 5 ruangan Stasiun Tugu Yogyakarta, didapatkan 2 ruangan yang memenuhi nilai ambang batas (NAB) yang telah ditetapkan yaitu ruang tunggu penumpang 264 Lux dengan nilai 150 NAB dan ruang loket 305 Lux dengan nilai 300 NAB. Terdapat 3 ruangan lagi yang tidak memenuhi nilai ambang batas (NAB) yaitu ruangan pengawas peron 94 Lux, ruang kepala stasiun 174 Lux dan ruangan fasilitas kantor 240 Lux dengan nilai 350 NAB, untuk grafik rerata pencahayaan bisa dilihat pada Gambar 4.14 berikut.

Gambar 4.14 Rerata Pencahayaan Setempat di Ruang Kerja Stasiun Tugu Yogyakarta

Dari Grafik diatas diketahui dua ruangan yang memenuhi Nilai Ambang Batas (NAB) rerata pencahayaan yaitu di ruangan loket yang disebabkan oleh cahaya matahari yang masuk ke dalam ruangan dikarenakan ruangan loket berada di sisi depan stasiun. Selain itu ruang tunggu penumpang juga memenuhi NAB dikarenakan cahaya matahari juga masuk ke ruangan tersebut, karena ruang tunggu penumpang berada di depan ruang loket. Selanjutnya, ada tiga ruangan yang tidak memenuhi NAB, yang paling rendah ada di ruangan pengawas peron dikarenakan

ruangan tersebut tidak tidak ada cahaya matahari yang masuk dikarenakan tertutup okeh bangunan lain disekitar stasiun serta ruangan tersebut penerangan berupa lampu sangat minim. Kurangnya nilai penerangan pada suatu ruangan dapat berdampak terhadap kesehatan pekerja di lingkungan Stasiun Tugu salah satunya kelelahan pada mata.

Sedangkan kelelahan mata terjadi oleh ketegangan yang intensif pada sebuah fungsi dari mata. Ketegangan yang terus menerus pada otot siliar terjadi pada waktu menginspeksi benda kecil yang berkepanjangan, sedangkan ketegangan pada retina dapat timbul oleh kontras cerah yang terus menerus menimpa secara lokal (Sastrowardoyo, 1985). Kelelahan visual ditandai dengan: gangguan berair dan memerah pada konjunktiva mata, pandangan dobel/rangkap, sakit kepala, menurunnya kekuatan akomodasi, menurunnya ketajaman visual, kepekaan terhadap kontras dan kecepatan persepsi (Suma'mur, 1995).

Berdasarkan pengamatan yang sudah dilakukan dan juga dari grafik yang sudah dibuat terdapat beberapa titik ruangan yang rerata pencahayaannya cukup kecil serta niali ambang batas dari tiga (3) ruangan yang tidak memenuhi NAB yang sudah ditentukan. Adanya distribusi cahaya yang kurang merata menyebabkan mata dipaksakan untuk menyesuaikan bermacam-macam kontras

kilau, sehingga kelelahan mata akan lebih cepat terjadi (Setyaningsih, 2003). Dari banyaknya kondisi lampu diruangan yang kurang memadai dapat mengurangi pencahayaan intensitas pencahayaan (Setyaningsih, 2003).

BAB V

KESIMPULAN DAN SARAN

5.1 Kesimpulan

- 1) Hasil analisis rerata pencahayaan setempat di Stasiun Tugu Yogyakarta menunjukkan bahwa ada 2 titik ruangan di Stasiun Tugu yang memenuhi nilai ambang batas (NAB) pencahayaan yaitu ruangan tunggu penumpang dengan rerata pencahayaan setempat 263 Lux sedangkan untuk nilai ambang batas (NAB) nya yaitu 150 dan ruang loket dengan rerata pencahayaan setempat 305 Lux sedangkan nilai ambang batas (NAB) nya yaitu 300. Dan ada 3 titik ruangan yang tidak memenuhi nilai ambang batas (NAB) yang ditetapkan yaitu ruangan pengawas peron dengan rerata pencahayaan 93 Lux, ruang kepala stasiun 174 Lux dan ruang fasilitas kantor 240 Lux sedangkan nilai ambang batas yang telah ditetapkan yaitu 300. Nilai ambang batas pencahayaan mengacu pada SNI 6197:2020 tentang Konservasi Energi pada System Pencahayaan.
- 2) Evaluasi yang dapat dilakukan untuk ruangan pencahayaan di Stasiun Tugu Yogyakarta yaitu dengan meninjau kembali peletakan furniture atau objek yang berada di sekitar ruangan agar memungkinkan cahaya matahari dapat masuk ke dalam ruangan. Selain itu dapat dilakukan penambahan lampu dengan watt yang sedikit lebih terang, mengganti lampu yang sudah tua dan membuat desain di dalam ruangan menjadi lebih rendah.

5.2 Saran

Berdasarkan penelitian yang berjudul Analisis Intensitas Pencahayaan di Tempat Kerja Stasiun Tugu Daerah Istimewa Yogyakarta maka penulis memberikan saran untuk perbaikan penelitian ini adalah:

- 1. Melakukan penelitian lebih lanjut penelitian lebih lanjut terkait Kesehatan para pekerja yaitu tentang resiko bahaya kurangnya intensitas pencahayaan yang dialami para pekerja di Stasiun Tugu Yogyakarta.
- Melakukan penelitian pengukuran tingkat pencahayaan, dan tidak hanya satu hari tetapi dengan melakukan pengukuran selama beberapa hari guna untuk membandingkan antara intensitas pencahayaan dalam beberapa hari dengan satu hari agar didapatkan data yang lebih akurat.
- 3. Bagi peneliti selanjutnya yang akan melakukan penelitian dengan menggunakan kuesioner, peneliti menyarankan untuk melakukan uji validitas dan uji relibialitas yang digunakan untuk memastikan bahwa kuesioner yang akan digunakan nantinya akan memperoleh data yang valid.

DAFTAR PUSTAKA

- Diva, T. M. (2022). "Analisa Pengukuran Kebisingan, Pencahayaan, CO2 dan CO pada Bengkel Motor Non-Resmi "Sabel Motor". Fakultas Teknik Sipil dan Perencanaan Univesitas Islam Indonesia.
- Ginanjar, G. (2012). Pengujian Intensitas Pencahayaan di Gedung Perpustakaan Universitas Siliwangi dengan Simulasi Menggunakan Software Dialux V.4.10. Fakultas Teknik Elektro Universitas Siliwangi Tasikmalaya.
- Jordy Ariesandy, d. (2020). "Usulan Perbaikan Sistem Kerja dengan Micromotion Studi dan Analisis Pengaruh Pencahayaan Terhadap Kecepatan Kerja PT.Dwi Putra Perkasa Malang".
- Juningtyastuti. (2012). "Optimasi Kinerja Pencahayaan Buatan untuk Efisiensi Pemakaian Energi Listrik pada Ruangan dengan Metode Algoritma Genetika". *Momentum*, 41-49.
- Kuswana, W. (2014). "Ergonomi dan K3 Kesehatan Keselamatan Kerja, PT. Remaja Rosdakarya Offset.
- Safi Nur Indahsari, d. (2016). "Analisis Ergonomi Lingkungan Ruang Tunggu Selatan Stasiun Bandung Berdasarkan Standar Kenyamanan Pengguna".
- Santoso, W. (2011). "Hubungan pencahayaan dan karakteristik kerja dengan kelelahan subyektif kelelahan mata pada operator komputer teleaccount management.
- Sastrowardoyo, S. (1985). "Meningkatkan Produktivitas dengan Ergonomi". *PT. Pustaka Binaman Pressindo*.
- Setyaningsih, Y. (2003). "Panduan Praktikum Laboratorium Kesehatan Kerja". Fakultas Kesehatan Masyarakat Universitas Diponegoro.
- Suma'mur, P. (1995). "Higiene Perusahaan dan Kesehatan Kerja". Gunung Agung.

Yusuf, M. (2015). "Efek pencahayaan terhadap prestasi dan kelelahan kerja operator". *ISSN 2337-4349*.

Lampiran 1 Data pencahayaan di ruang tunggu penumpang

LAMPIRAN

Hasil Pengukuran **NAB Minimum** Titik Rerata (Lux) Malam Pagi Siang 297.3333 311.3333 332.6667 Rerata 313.7778 288.3333 297.6667 298.6667 294.8889 Rerata 154.3333 154.4444 Rerata 214.6667 216.8889 Rerata 203.6667 204.3333 205.6667 204.5556 Rerata 225.3333 Rerata 224.1111 228.6667 234.3333 Rerata 231.6667

Rerata

238.3333 241.6667

238.6667

9	271	332	127	243.3333
	273	333	129	245
	275	335	131	247
	Rerata			245.1111
10	277	336	133	248.6667
	279	337	135	250.3333
	280	339	137	252
	F	Rerata		250.3333
11	281	342	139	254
	283	344	141	256
	285	345	142	257.3333
	F	Rerata		255.7778
12	287	348	145	260
	289	352	147	262.6667
	290	357	149	265.3333
	F	Rerata		262.6667
13	292	362	150	268
	287	364	151	267.3333
	284	369	153	268.6667
	F	Rerata		268
14	278	371	155	268
	276	374	157	269
	282	376	158	272
	F	Rerata		269.6667
15	274	379	159	270.6667
	273	381	160	271.3333
	278	384	162	274.6667
	F	Rerata		272.2222
16	275	387	164	275.3333
	281	391	165	279
	283	393	167	281
	F	Rerata		278.4444
17	284	395	169	282.6667
	285	398	170	284.3333
	287	391	172	283.3333
	F	Rerata		283.4444
18	289	387	173	283
	291	380	175	282
	292	378	177	282.3333
	F	Rerata		282.4444
19	294	372	180	282

i	295	368	184	282.3333
	298	365	187	283.3333
	F	Rerata		282.5556
20	301	362	189	284
	305	361	192	286
	307	358	195	286.6667
	285.5556			
21	278	351	170	266.3333
	281	354	171	268.6667
	280	356	174	270
	F	Rerata		268.3333
22	260	359	180	266.3333
	262	360	176	266
	261	362	173	265.3333
	F	Rerata		265.8889
23	249	342	162	251
	246	345	164	251.6667
	242	346	163	250.3333
	F	Rerata		251
24	232	359	152	247.6667
	235	357	151	247.6667
	238	356	153	249
	F	Rerata		248.1111
25	243	345	180	256
	246	347	183	258.6667
	247	346	184	259
	F	Rerata		257.8889
26	250	378	164	264
	252	376	163	263.6667
	254	373	161	262.6667
	F	Rerata		263.4444
27	256	375	163	264.6667
	257	371	164	264
	268	374	162	268
	F	Rerata		265.5556
28	271	370	164	268.3333
	273	369	165	269
	275	364	168	269
		Rerata		268.7778
29	278	367	171	272
	279	358	169	268.6667

	281	361	170	270.6667
	R	erata		270.3333
30	284	362	174	273.3333
	283	365	176	274.6667
	282	357	179	272.6667
	R	erata		273.5556
31	291	362	180	277.6667
	290	365	182	279
	293	369	183	281.6667
	R	erata		279.4444
32	280	371	179	276.6667
	281	374	177	277.3333
	284	376	175	278.3333
	R	erata		277.4444
33	279	367	165	270.3333
	278	368	167	271
	277	364	168	269.6667
	R	erata		270.3333
34	295	349	151	265
	293	347	149	263
	292	345	148	261.6667
	R	erata		263.2222
35	289	354	160	267.6667
	290	358	161	269.6667
	294	360	163	272.3333
	R	erata		269.8889
36	301	366	170	279
	299	369	172	280
	300	368	174	280.6667
	R	erata		279.5
37	284	370	180	278
	285	373	181	279.6667
	287	369	183	279.6667
	R	erata		279.1111
38	291	375	191	285.6667
	293	374	192	286.3333
	294	376	194	288
	R	erata		286.6667
39	298	380	197	291.6667
	301	384	201	295.3333
	305	387	205	299

	295.3333			
40	310	388	210	302.6667
	315	391	213	306.3333
	317	395	215	309
	Rerata			
Rerata Pencahayaan Setempat				263.8764

Lampiran 2 Data pencahayaan diruang loket

	H	lasil Pengu	ıkuran		
Titik	Pagi	Siang	Malam	Rerata	NAB Minimum (Lux)
1	238	247	319	268	
	236	238	320	264.6667	
	247	242	321	270	
	F	Rerata		267.5556	
2	293	297	327	305.6667	
	294	320	320	311.3333	
	291	312	319	307.3333	
	F	Rerata		308.1111	
3	287	334	320	313.6667	
	289	336	319	314.6667	
	288	339	318	315	
	F	Rerata		314.4444	
4	281	340	314	311.6667	300
	280	342	309	310.3333	
	279	343	307	309.6667	
	F	Rerata		310.5556	
5	289	352	298	313	
	292	351	297	313.3333	
	294	354	294	314	
	F	Rerata		313.4444	
6	293	361	288	314	
	295	362	287	314.6667	
	297	363	285	315	
	F	Rerata	314.5556		
Rera	ta Penca	hayaan Se	tempat	304.7778	

Lampiran 3 Data pencahayaan di ruang fasilitas kantor

	ŀ	Hasil Pengu	ıkuran		
Titik	Pagi	Siang	Malam	Rerata	NAB Minimum (Lux)
1	188	200		194	
	174	205		189.5	
	171	208		189.5	
	F	Rerata		191	
2	175	212		193.5	
	175	214		194.5	
	174	217		195.5	
	F	Rerata		194.5	
3	168	219		193.5	
	168	223		195.5	
	170	225		197.5	
	F	Rerata		195.5	
4	178	228		203	
	174	231		202.5	
	177	235		206	
	F	Rerata		203.8333	
5	162	237		199.5	
	164	239		201.5	350
	166	244		205	
	F	Rerata		202	
6	172	246		209	
	176	248		212	
	178	252		215	
	F	Rerata		212	
7	168	253		210.5	
	170	255		212.5	
	171	256		213.5	
	F	Rerata		212.1667	
8	173	258		215.5	
	175	260		217.5	
	178	261		219.5	
	F	Rerata		217.5	
9	181	265		223	
	183	264		223.5	
	185	267		226	

	R	Rerata	224.1667
10	184	272	228
	187	274	230.5
	188	276	232
	F	Rerata	230.1667
11	189	280	234.5
	191	281	236
	192	284	238
	F	Rerata	236.1667
12	194	287	240.5
	195	290	242.5
	196	293	244.5
	F	Rerata	242.5
13	180	294	237
	183	296	239.5
	185	299	242
	F	Rerata	239.5
14	189	304	246.5
	190	307	248.5
	191	309	250
	R	erata	248.3333
15	192	311	251.5
	194	314	254
	195	317	256
	R	lerata	253.8333
16	197	320	258.5
	198	324	261
	200	325	262.5
	R	erata	260.6667
17	203	329	266
	205	330	267.5
	206	332	269
	R	Rerata	267.5
18	208	336	272
	205	338	271.5
	203	340	271.5
	R	Rerata	271.6667
19	200	342	271
	203	345	274
	204	339	271.5
	R	lerata	272.1667

20	208	337		272.5
	210	335		272.5
	212	333		272.5
	F	Rerata		272.5
21	213	329		271
	215	327		271
	216	324		270
	F	Rerata		270.6667
22	217	322		269.5
	219	325		272
	220	326		273
	F	Rerata		271.5
23	224	324		274
	226	326		276
	227	327		277
	F	Rerata		275.6667
24	231	331		281
	235	336		285.5
	237	338		287.5
Rerata			284.6667	
Rera	ta Penca	ihayaan Se	tempat	239.5903

Lampiran 4 Data pencahayaan di ruang kepala stasiun

	Hasil Pengukuran				
Titik	Pagi	Siang	Malam	Rerata	NAB Minimum (Lux)
1	110	171	160	147	
	105	170	163	146	
	98	169	160	142.3333	
	Rerata			145.1111	
2	97	170	115	127.3333	
	95	172	116	127.6667	
	93	174	117	128	
	F	Rerata		127.6667	
3	91	176	51	106	
	92	178	53	107.6667	
	95	182	55	110.6667	
	F	Rerata		108.1111	
4	97	185	51	111	
	98	187	52	112.3333	
	100	189	54	114.3333	
Rerata				112.5556	
5	102	192	55	116.3333	
	104	196	57	119	350
	108	198	60	122	
	Rerata			119.1111	
6	113	200	62	125	
	117	202	64	127.6667	
	120	204	65	129.6667	
	Rerata		127.4444		
7	121	208	67	132	
	125	210	69	134.6667	
	128	214	71	137.6667	
Rerata			134.7778		
8	134	215	72	140.3333	
	136	218	75	143	
	138	220	77	145	
Rerata				142.7778	
9	140	223	79	147.3333	
	142	225	81	149.3333	
	143	228	82	151	

	F	Rerata		149.2222
10	146	231	84	153.6667
	147	235	87	156.3333
	148	236	89	157.6667
	Rerata			155.8889
11	151	238	91	160
	153	239	92	161.3333
	154	241	94	163
	F	Rerata		161.4444
12	159	245	92	165.3333
	161	246	91	166
	163	248	93	168
	F	Rerata		166.4444
13	169	250	94	171
	171	251	96	172.6667
	173	254	97	174.6667
	F	Rerata		172.7778
14	176	257	100	177.6667
	178	258	104	180
	180	260	105	181.6667
	F	Rerata		179.7778
15	182	264	106	184
	184	265	108	185.6667
	186	267	110	187.6667
	F	Rerata		185.7778
16	189	270	112	190.3333
	191	272	114	192.3333
	193	274	115	194
	F	Rerata		192.2222
17	194	275	117	195.3333
	196	278	119	197.6667
	198	279	121	199.3333
	F	Rerata		197.4444
18	196	281	125	200.6667
	198	284	128	203.3333
	200	287	130	205.6667
	F	Rerata		203.2222
19	204	289	135	209.3333
	208	291	138	212.3333
	210	293	142	215
	F	Rerata		212.2222

20	242	205	4.42	1 246 6667
20	212	295	143	216.6667
	215	297	146	219.3333
	219	303	148	223.3333
Rerata			219.7778	
21	223	305	151	226.3333
	225	308	155	229.3333
	229	311	158	232.6667
	F	Rerata		229.4444
22	231	312	161	234.6667
	234	316	164	238
·	237	319	165	240.3333
	F	Rerata		237.6667
23	238	321	168	242.3333
	241	325	171	245.6667
	243	328	175	248.6667
	F	Rerata		245.5556
24	246	329	178	251
	248	342	181	257
	251	348	185	261.3333
Rerata				256.4444
Rerata Pencahayaan Setempat			174.287	

Lampiran 5 data pencahayaan keseluruhan di ruangan pengawas peron

	Hasil Pengukuran					
Titik	Pagi	Siang	Malam	Rerata	NAB Minimum (Lux)	
1	80	100	64	81.33333		
	84	102	65	83.66667		
	87	104	67	86		
Rerata				83.66667		
2	88	108	70	88.66667		
	90	109	71	90		
	91	112	74	92.33333		
	R	Rerata		90.33333		
3	94	114	76	94.66667		
	98	116	79	97.66667		
	99	120	81	100		
	R	Rerata		97.44444		
4	105	124	82	103.6667		
	110	125	85	106.6667		
	115	127	87	109.6667		
	Rerata					
5	117	129	90	112	350	
	119	131	92	114		
	121	135	94	116.6667		
	R	Rerata		114.2222		
6	124	138	96	119.3333		
	126	140	97	121		
	128	141	100	123		
	Rerata					
7	132	145	102	126.3333		
	135	147	105	129		
	137	148	107	130.6667		
Rerata				128.6667		
8	139	150	110	133		
	141	154	112	135.6667		
	146	165	114	141.6667		
Rerata				136.7778		
Rerata Pencahayaan Setempat				93.77778		