TUGAS AKHIR

EVALUASI SEISMIK STRUKTUR BANGUNAN BERTINGKAT DENGAN ANALISIS STATIK NONLINIER (PUSHOVER) MENGGUNAKAN PROGRAM ETABS (Studi Kasus : Gedung Multazam Asrama Haji, Kota Bandar Lampung, Provinsi Lampung)

SEISMIC EVALUATION OF MULTI STORY BUILDING WITH NONLINEAR STATIC ANALYSIS (PUSHOVER) USING ETABS PROGRAM (A Case Study of Hajj Dormitory Multazam Building, Bandar Lampung City, Lampung Province)

Diajukan Kepada Universitas Islam Indonesia Yogyakarta Untuk Memenuhi Persyaratan Memperoleh Derajat Sarjana Teknik Sipil

MAYGA BIMA SETYADI 17511181

PROGRAM STUDI TEKNIK SIPIL FAKULTAS TEKNIK SIPIL DAN PERENCANAAN UNIVERSITAS ISLAM INDONESIA 2023

TUGAS AKHIR

EVALUASI SEISMIK STRUKTUR BANGUNAN BERTINGKAT DENGAN ANALISIS STATIK NONLINIER (PUSHOVER) MENGGUNAKAN PROGRAM ETABS (Studi Kasus : Gedung Multazam Asrama Haji, Kota Bandar Lampung, Provinsi Lampung)

SEISMIC EVALUATION OF MULTI STORY BUILDING WITH NONLINEAR STATIC ANALYSIS (PUSHOVER) USING ETABS PROGRAM (A Case Study of Hajj Dormitory Multazam Building, Bandar Lampung City, Lampung Province)

PERNYATAAN BEBAS PLAGIASI

Saya menyatakan dengan sesungguhnya bahwa Laporan Tugas Akhir yang saya susun sebagai syarat untuk menyelesaikan program Sarjana di Program Studi Teknik Sipil, Fakultas Teknik Sipil dan Perencanaan, Universitas Islam Indonesia merupakan hasil karya saya sendiri. Adapun bagian-bagian tertentu dalam penulisan Laporan Tugas Akhir yang saya kutip dari hasil karya orang lain telah dituliskan sumbernya secara jelas sesuai dengan norma, kaidah, dan etika penulisan karya ilmiah. Apabila di kemudian hari ditemukan seluruh atau sebagian Laporan Tugas Akhir ini bukan karya saya atau adanya plagiasi dalam bagian-bagian tertentu, saya bersedia menerima sanksi, termasuk pencabutan gelar akademik yang saya sandang sesuai dengan perundang-undangan yang berlaku.

> Yogyakarta, 13 November 2023 Yang membuat pernyataan,

Mayga Bima Setyadi (17511181)

KATA PENGANTAR

Puji syukur penulis kehadirat Allah SWT yang telah memberikan kemudahan dan rahmat-Nya sehingga penulis dapat menyelesaikan tugas akhir yang bejudul" Evaluasi Seismik Struktur Bangunan Bertingkat dengan Analisis Statik Nonlinier (Pushover) Menggunakan Program ETABS (Studi Kasus : Gedung Multazam Asrama Haji, Kota Bandar Lampung, Provinsi Lampung)", sebagai salah satu syarat untuk menyelesaikan program Sarjana (S1) di Program Studi Teknik Sipil, Fakultas Teknik Sipil, Universitas Islam Indonesia, Yogyakarta.

Dalam penyusunan tugas akhir ini, dengan penuh rasa hormat, penulis mengucapkan terima kasih yang sebesar-besarnya atas semua dukungan, bimbingan, dan bantuan yang telah diberikan selama penyusunan tugas akhir kepada pihak-pihak sebagai berikut.

- Ibu Ir. Yunalia Muntafi, S.T., M.T., Ph.D., (Eng). IPM selaku dosen pembimbing tugas akhir yang telah membimbing, memberikan arahan, serta masukan kepada penulis sehingga tugas akhir ini dapat diselesaikan dengan baik.
- 2. Ayah dan Ibu yang selalu memberikan dukungan, serta mendoakan penulis sehingga dapat menempuh pendidikan hingga mencapai gelar S.T.
- 3. Seluruh keluarga besar yang telah memberikan doa dan semangat.
- 4. Seluruh Dosen di Program Studi Teknik Sipil, Fakultas Teknik Sipil dan Perencanaan, Universitas Islam Indonesia, Yogyakarta.
- 5. Seluruh teman-teman Teknik Sipil 2017 yang telah memberikan semangat dan dukungan kepada penulis.
- 6. Semua pihak yang tidak dapat disebutkan satu per satu yang telah memberikan doa dan semangat kepada penulis dalam menyelesaikan tugas akhir ini.

Dalam penyelesaian tugas akhir ini masih terdapat banyak kekurangan dan kesalahan, karena itu segala kritik dan saran yang membangun akan meneyempurnakan penulisan tugas akhir ini, yang dapat bermanfaat bagi penulis dan para pembaca.

> Yogyakarta, 13 November 2023 Penulis,

Mayga Bima Setyadi (17511181)

DAFTAR ISI

Halaman Judul	i
Halaman Pengesahan	ii
PERNYATAAN BEBAS PLAGIASI	iii
KATA PENGANTAR	iv
DAFTAR ISI	vi
DAFTAR TABEL	ix
DAFTAR GAMBAR	X
DAFTAR LAMPIRAN	xii
DAFTAR NOTASI DAN SINGKATAN	xiii
ABSTRAK	xvi
ABSTRACT	xvii
BAB I PENDAHULUAN	1
1.1 Latar Belakang	1
1.2 Rumusan Masalah	5
1.3 Tujuan Penelitian	5
1.4 Batasan Penelitian	6
1.5 Manfaat Penelitian	7
BAB II TINJAUAN PUSTAKA	8
2.1 Penelitian Terdahulu	8
2.2 Perbandingan Penelitian Sebelumnya Terkait Analisis Pushover	13
2.3 Keaslian Penelitian	22
BAB III LANDASAN TEORI	23
3.1 Analisis Struktur Bangunan	23
3.2 Pembebanan Struktur	24
3.3 Ketentuan Umum Perencanaan Struktur Bangunan Gedung Berd SNI-1726-2019	asarkan 27
3.4 Analisis Beban Gempa	45
3.5 Analisis Statik Non-Linear (Pushover Analysis)	45

3.5.1 Kurva Kapasitas	46
3.5.2 Titik kinerja (Performance Point)	49
3.6 Metode ATC-40	50
3.6.1 Batasan Deformasi (Drift) Metode ATC-40	51
3.6.2 Level Kinerja Struktur Metode ATC-40	52
3.7 Mekanisme Keruntuhan	55
3.7.1 Mekanisme Keruntuhan Berdasarkan ATC-40	55
3.7.2 Sendi Plastis (Hinge)	57
BAB IV METODOLOGI PENELITIAN	60
4.1 Objek Penelitian	60
4.2 Data Bangunan	61
4.3 Program Yang Digunakan	73
4.4 Tahapan Penelitian	73
BAB V ANALISIS DAN PEMBAHASAN	77
5.1 Pemodelan Struktur	77
5.1.1 Pemodelan Kolom	79
5.1.2 Pemodelan Balok dan Sloof	81
5.1.3 Pemodelan Pelat	84
5.2 Pembebanan Struktur	86
5.2.1 Beban Mati	86
5.2.2 Beban Mati Tambahan	86
5.2.3 Beban Hidup	87
5.2.4 Beban Gempa	88
5.3 Analisis Beban Gempa	95
5.3.1 Pendefinisian Mass Source	95
5.3.2 Penginputan Data Respon Spektrum Gempa	96
5.3.3 Pengecekan Nilai Gaya Geser Dasar	97
5.4 Analisis Pushover	98
5.4.1 Pendefinisian Load Case Pushover	98
5.4.2 Pendefinisian Sendi Plastis (Hinges)	107
5.4.3 Running Pushover Analysis	111
5.5 Hasil Analisis Pushover	112

5.5.1 Kurva Kapasitas	112
5.5.2 Performance Point Berdasarkan ATC-40	116
5.5.3 Tingkat Kinerja Struktur	118
5.5.4 Mekanisme Sendi Plastis	120
BAB VI KESIMPULAN DAN SARAN	128
6.1 Kesimpulan	128
6.2 Saran	129
DAFTAR PUSTAKA	131
LAMPIRAN	133

DAFTAR TABEL

Tabel 2. 1 Perbandingan Penelitian Sebelumnya Terkait Analisis Pushover	14
Tabel 3. 1 Berat Sendiri Bahan Bangunan	24
Tabel 3. 2 Berat Sendiri Komponen Gedung	25
Tabel 3. 3 Beban Hidup Pada Lantai Gedung	26
Tabel 3. 4 Kategori Risiko Bangunan Gedung Dan Nongedung Untuk Beban	
Gempa	28
Tabel 3. 5 Faktor Keutamaan Gempa	30
Tabel 3. 6 Klasifikasi Situs	30
Tabel 3. 7 Koefisien Situs Fa	33
Tabel 3. 8 Koefisien Situs Fv	34
Tabel 3. 9 Kategori Desain Seismik Berdasarkan Parameter Respons Percepat	an
Pada Periode Pendek	36
Tabel 3. 10 Kategori Desain Seismik Berdasarkan Parameter Respons Percepa	atan
Pada Periode 1 Detik	37
Tabel 3. 11 Definisi Syarat Kategori Desain Seismik	38
Tabel 3. 12 Faktor R, C _d , Dan Ω_0 Untuk Sistem Penahan Gaya Gempa	41
Tabel 3. 13 Koefisien Untuk Batas Atas Pada Periode Yang Dihitung	42
Tabel 3. 14 Nilai Parameter Periode Pendekatan Ct Dan X	43
Tabel 3. 15 Deformation Limits	51
Tabel 3. 16 Tingkat Kinerja Dan Kondisi Banguanan Pasca Terjadi Gempa	53
Tabel 4. 1 Dimensi dan Tipe Kolom	62
Tabel 4. 2 Dimensi dan Tipe Balok	63
Tabel 4. 3 Dimensi dan Tipe Sloof	70
Tabel 4. 4 Tebal dan Tipe Pelat	71
Tabel 4. 5 Hasil Pengujian SPT (Standard Penetration Test)	72
Tabel 5. 1 Perhingan Nilai Klasifikasi Situs	88
Tabel 5. 2 Nilai Klasifikasi Situs Hasil Pengujian SPT	89
Tabel 5. 3 Perhitungan Nilai Gaya Gempa Horizontal	94
Tabel 5. 4 Nilai Gaya Geser Dasar	97
Tabel 5. 5 Nilai Gaya Geser Dasar Setelah Dilakukan Faktor Skala	97
Tabel 5. 6 Kurva Kapasitas Arah X	115
Tabel 5. 7 Kurva Kapasitas Arah Y	115
Tabel 5. 8 Performance Point Berdasarkan ATC-40	118

DAFTAR GAMBAR

Gambar 1. 1 Sesar Aktif Utama Di Sumatra dan Catatan Kegempaan. Elips Wa	rna
Kuning Menunjukkan Segmen Sesar Yang Robek Ketika Gempa Besar	3
Gambar 1. 2 Sesar Dangkal Di Pulau Sumatera dan Sekitarnya	4
Gambar 3. 1 Peta Spektrum Respons Percepatan Periode 0,2 Detik (Ss)	32
Gambar 3. 2 Peta Spektrum Respons Percepatan Periode 1 Detik (S1)	33
Gambar 3. 3 Peta Koefisien Risiko Terpetakan, Periode Spektrum Respon 0,2	
Detik (CRS)	35
Gambar 3. 4 Peta Koefisien Risiko Terpetakan, Periode Spektrum Respon 1 De	tik
(CR1)	36
Gambar 3. 5 Peta Transisi Periode Panjang (TL)	39
Gambar 3. 6 Spektrum Respons Desain	40
Gambar 3. 7 Kurva Kapasitas	47
Gambar 3. 8 Modifikasi Kurva Kapasitas Menjadi Spektrum Kapasitas Dengan	
Format ADRS	48
Gambar 3. 9 Modifikasi Format Respon Percepatan Ke Format ADRS	49
Gambar 3. 10 Penentuan Performance Point	50
Gambar 3. 11 Ilustrasi Keruntuhan Gedung dan Level Kinerjanya	52
Gambar 3. 12 Mekanisme Keruntuhan Beam Sway Mechanism	56
Gambar 3. 13 Mekanisme Keruntuhan Column Sway Mechanism	56
Gambar 3. 14 Posisi Sumbu Lokal Balok Struktur	57
Gambar 3. 15 Posisi Sumbu Lokal Kolom Struktur	58
Gambar 3. 16 Peletakan Sendi Plastis (<i>Plastic Hinge</i>) Pada Balok dan Kolom	59
Gambar 4. 1 Denah Lantai 1 Bangunan Gedung Multazam	60
Gambar 4. 2 Denah Potongan Bangunan Gedung Multazam	61
Gambar 4. 3 Diagram Alir Tahapan Penelitian	75
Gambar 5. 1 Model 3D Gedung Asrama Haji Lampung	77
Gambar 5. 2 Tampak X-Y Gedung Asrama Haji Lampung	78
Gambar 5. 3 Tampak X-Z Gedung Asrama Haji Lampung	78
Gambar 5. 4 Tampak Y-Z Gedung Asrama Haji Lampung	79
Gambar 5. 5 Frame Property Shape Type	79
Gambar 5. 6 Frame Section Property Data	80
Gambar 5. 7 Frame Section Property Reinforcement Data	80
Gambar 5. 8 Frame Property Shape Type	81
Gambar 5. 9 Section Designer Section Property Data	82
Gambar 5. 10 Section Object Data – Rectangle	83
Gambar 5. 11 Edge Reinforcing	83
Gambar 5. 12 Section Object Data – LineBar	84

Gambar 5. 13 Slab Property Definotion Data	85
Gambar 5. 14 Quick Layer Definition Data	85
Gambar 5. 15 Grafik Respon Spektrum	92
Gambar 5. 16 Mass Source Data	96
Gambar 5. 17 Input Parameter Respon Spektrum	96
Gambar 5. 18 Load Case Data Gravity	99
Gambar 5. 19 Load Applications Gravity	99
Gambar 5. 20 Results Saved Gravity	100
Gambar 5. 21 Nonlinear Parameters Gravity	100
Gambar 5. 22 Load Case Data Pushover X	101
Gambar 5. 23 Load Application Pushover X	102
Gambar 5. 24 Result Saved Pushover X	103
Gambar 5. 25 Nonlinear Parameters Pushover X	103
Gambar 5. 26 Load Case Data Pushover Y	104
Gambar 5. 27 Load Application Pushover Y	105
Gambar 5. 28 Result Saved Pushover Y	106
Gambar 5. 29 Nonlinear Parameters Pushover Y	106
Gambar 5. 30 Select Frame Balok	107
Gambar 5. 31 Input Frame Hinge Balok	108
Gambar 5. 32 Setting Hinge Balok	109
Gambar 5. 33 Select Frame Kolom	109
Gambar 5. 34 Input Frame Hinge Kolom	110
Gambar 5. 35 Setting Hinge Kolom	111
Gambar 5. 36 Set Load Case to Run	111
Gambar 5. 37 Kurva Kapasitas Pushover Arah X	112
Gambar 5. 38 Kurva Kapasitas Pushover Arah Y	113
Gambar 5. 39 Perbandingan Kurva Kapasitas Arah X dan Arah Y	113
Gambar 5. 40 Sumbu Kuat dan Sumbu Lemah Struktur	114
Gambar 5. 41 Spektrum Kapasitas Arah X	117
Gambar 5. 42 Spektrum Kapasitas arah Y	117
Gambar 5. 43 Terjadinya Sendi Plastis Pertama Pada Step-29 Arah X	121
Gambar 5. 44 Detail Terjadinya Sendi Plastis Pertama Pada Step-29 Arah X	121
Gambar 5. 45 Terjadinya Sendi Plastis Pertama Pada Step- 38 Arah X Bagian	
Gedung	122
Gambar 5. 46 Detail Terjadinya Sendi Plastis Pertama Pada Step- 38 Arah X	
Bagian Gedung	122
Gambar 5. 47 Distribusi Sendi Plastis Pada Step ke- 244 Arah X	123
Gambar 5. 48 Detail Sendi Plastis Pada Portal Step ke- 244 Arah X	123
Gambar 5. 49 Terjadinya Sendi Plastis Pertama Pada Step- 30 Arah Y	124
Gambar 5. 50 Detail Terjadinya Sendi Plastis Pertama Pada Step- 30 Arah Y	125
Gambar 5. 51 Distribusi Sendi Plastis Pada Step ke- 212 Arah Y	126
Gambar 5. 52 Detail Sendi Plastis Pada Portal Step ke- 212 Arah Y	126
-	

DAFTAR LAMPIRAN

LAMPIRAN 1 Hasil Analisis Pushover Arah x dan y	133
LAMPIRAN 2 Hasil Pengujian SPT (Standard Penetration Test)	147
LAMPIRAN 3 Shop Drawing Gedung Multazam, Komplek Asrama Haji,	
Provinsi Lampung	152

DAFTAR NOTASI DAN SINGKATAN

α_1	=	Modal koefisien massa pada mode pertama			
Ω_0	=	Faktor kuat lebih sistem			
$\Delta_{ m roof}$	=	Roof displacement			
a	=	Koefisien modifikasi respons, R, untuk penggunaan pada			
		keseluruha standar. Nilai R mereduksi gaya ke level kekuatan			
		bukan pada level tegangan izin			
ATC-40	=	Applied Technology Council			
b	=	Jika nilai pada table faktor kuat lebih Ω_0 , lebih besar atau sama			
		dengan 2,5, Ω_0 maka diizinkan untuk direduksi setangah untuk			
		struktur dengan diafragma fleksibel			
B; M; K	=	Biasa; Menengah; Khusus			
c	=	Faktor pembesar simpangan lateral, C_d , untuk penggunaan			
		dalam0, 0, dan 0.			
Cd	=	Faktro pembesar defleksi			
Cs	=	Koefisien respons seismik			
Ct	=	Nilai paramenetr periode pendekat			
Си	=	Koefisien periode atas			
Cvx	=	Faktor distribusi vertikal			
d	=	TB = Tidak Dibatasi dan TI = Tidak Diizinkan			
DC	=	Damage Control			
Dt	=	Displacement target			
Fa	=	Faktor amplifikasi periode pendek			
Fv	=	Faktor amplifikasi periode 1 detik			
Fx	=	Gaya seismik lateral			
8	=	Percepatan grafitasi			
<i>hi</i> dan <i>hx</i>	=	Tinggi dari dasar sampai tingkat <i>i</i> atau <i>x</i>			

hn	=	Ketinggian struktur bangunan gedung dengan satuan meter				
		diatas dasar sampai tingkat tertinggi struktur				
Ie	=	Faktor keutamaan gempa				
ΙΟ	=	Immediate Occupancy				
k	=	Eksponen yang terkait dengan periode struktur				
LS	=	Life Safety				
Μ	=	Momen				
MCE	=	Maximum Considered Earthquake				
MCER	=	Maximum Considered Earthquake, Risk Targeted				
Р	=	Gaya aksial				
PF_1	=	Faktor partisipasi modal pada mode pertama				
R	=	Koefisien modifikasi respons				
S_1	=	Parameter gerak tanah periode 1 detik				
SA	=	Tanah batuan keras				
Sa	=	Spektrum percepatan				
SB	=	Tanah Batuan Keras				
SC	=	Tanak keras, sangat padat dan batuan lunak				
SD	=	Tanah sedang				
Sd	=	Spektrum perpindahan				
S_{D1}	=	Spektral desain untuk periode 1 detik				
S_{DS}	=	Spektral desain untuk periode pendek				
SDS	=	Sistem Dinding Struktur				
SDSK	=	Sistem Dinding Struktur Khusus				
SE	=	Tanah lunak				
SF	=	Tanah khusus, yang memebutuhkan investigasi geoteknik				
		spesifik dan analisis respons spesifik-situs				
S _{M1}	=	Parameter respons spekral MCE pada periode 1 detik				
S _{MS}	=	Parameter respons spekral MCE pada periode pendek				
SRPM	=	Sistem Rangka Pemikul Momen				

Ss	=	Perameter gerak tanah periode pendek
Т	=	Periode getar fundamental struktur
Та	=	Periode bangunan pendekatan
TL	=	Peta transisi periode panjang
V	=	Gaya geser dasar sesimik
Vt	=	Gaya geser dasar sesimik target
W	=	Berat sesimik efektif
wi dan	=	Bagian berat seismik efektif total struktur yang ditempatkan atau
wx		dikenakan pada tingkat <i>i</i> atau <i>x</i>

ABSTRAK

Indonesia terletak diantara empat lempeng tektonik besar dunia yaitu Lempeng Australia, Lempeng Eurasia, Lempeng India dan Lempeng Pasifik, menyebabkan banyak kawasan di Indonesia berpotensi terjadi gempa tektonik. Salah satunya adalah Provinsi Lampung yang dilalui oleh sesar atau patahan sumatera (*Great Sumatran Fault*) yang menyebabkan adanya potensi terjadi gempa tektonik, yang mana merupakan lokasi dari bangunan Gedung Multazam. Sehingga perlu dilakukan evaluasi kinerja struktur bangunan.

Maksud dari penelitian ini adalah untuk melakukan evaluasi bangunan Gedung Multazam yang ada di kawasan asrama haji Provinsi Lampung terhadap beban gempa. Metode analisis pada penelitian ini menggunakan analisis *pushover* dengan mengacu pada metode ATC-40 (*Applied Technology council*). Dari analisis yang telah dilakukan, didapatkan nilai *base shear* untuk kurva kapasitas arah x sebesar 20105,37 kN lebih besar dibandingkan dengan kurva kapasitas arah y sebesar 18823,68 kN. Hal ini menunjukkan bahwa untuk arah x merupakan sumbu kuat bangunan sedangkan arah y merupakan sumbu lemah bangunan. Berikutnya untuk tingkat kinerja struktur berdasarkan parameter maksimum total *drift* didapatkan nilai untuk arah x sebesar 0,005145 dan arah y sebesar 0,005550, dengan tingkat kinerja struktur masuk kedalam kategori *Immediate Occupancy* (IO). Selanjutnya berdasarkan parameter maksimum inelastik *drift* didapatkan nilai untuk arah x sebesar 0,005078 dan arah y sebesar 0,005483, dengan tingkat kinerja struktur masuk kedalam kategori *Damage Control* (DC). Kemudian untuk proses plastifikasi pada gedung yang ditinjau diawali dengan munculnya sendi plastis pada bagian balok kemudian pada bagian kolom dari gedung baik untuk arah x maupun arah y. Berdasarkan *code* ATC-40 hal ini sesuai dengan kriteria *beam sway mechanism*.

Kata Kunci: Gempa bumi, analisis pushover, titik kinerja, sendi plastis

ABSTRACT

Indonesia is located between four major tectonic plates of the world, namely the Australian Plate, Eurasian Plate, Indian Plate and Pacific Plate, causing many areas in Indonesia to have the potential for tectonic earthquakes. One of them is Lampung Province which is traversed by the Sumatran fault (Great Sumatran Fault) which causes the potential for tectonic earthquakes to occur, which is the location of the Multazam Building. So it is necessary to evaluate the performance of the building structure.

The purpose of this study is to evaluate the existing Multazam Building in the Hajj Dormitory area of Lampung Province against earthquake loads. The analysis method in this study uses pushover analysis with reference to the ATC-40 (Applied Technology council) method. From the analysis that has been done, the base shear value for the x-direction capacity curve of 20105.37 kN is greater than the y-direction capacity curve of 18823.68 kN. This shows that the x direction is the strong axis of the building while the y direction is the weak axis of the building. Next for the structural performance level based on the maximum total drift parameter, the value for the x direction is 0.005145 and the y direction is 0.005550, with the structural performance level in the Immediate Occupancy (IO) category. Furthermore, based on the maximum inelastic drift parameter, the value for the x direction is 0.005078 and the y direction is 0.005483, with the structural performance level in the Damage Control (DC) category. Then for the plasticization process in the building under review begins with the appearance of plastic joints in the beam section then in the column section of the building in both the x-direction and y-direction. Based on the ATC-40 code, this is in accordance with the beam sway mechanism criteria.

Keywords: Earthquakes, pushover analysis, performance points, plastic hinge, ETABS

BAB I PENDAHULUAN

1.1 Latar Belakang

Indonesia merupakan salah satu negara yang berada dalam kawasan *Ring of Fire* atau cincin api pasifik. Hal ini menyebabkan di Indonesia banyak terdapat gunung berapi aktif. Banyaknya gunung berapi aktif ini menyebabkan banyak kawasan di Indonesia rawan atau berpotensi terjadi gempa vulkanik, dikarenakan letak kawasan tersebut yang berada dekat dengan gunung berapi aktif. Selain itu letak geogafis Indonesia yang berada diantara empat lempeng tektonik besar dunia yaitu Lempeng Australia, Lempeng Eurasia, Lempeng India dan Lempeng Pasifik, menyebabkan banyak kawasan di Indonesia rawan atau berpotensi terjadi gempa tektonik, terutama pada kawasan yang berdekatan dengan area pertemuan lempeng.

Badan Meteorologi Klimatologi dan Geofisika (2017) dalam Syahira (2023) menjelaskan bahwa gempa bumi adalah peristiwa bergetarnya bumi akibat pelepasan energi dari dalam bumi secara tiba-tiba yang ditandai dengan patahnya lapisan batuan pada kerak bumi. Akumulasi energi penyebab terjadinya gempa bumi dihasilkan dari pergerakan lempeng-lempeng tektonik. Energi yang dihasilkan dipancarkan kesegala arah berupa gelombang gempa bumi sehingga efeknya dapat dirasakan sampai ke permukaan bumi. Getaran kerak bumi dapat terjadi akibat pergerakan lempeng bumi, akibat aktivitas gunung berapi dan akibat kelongsoran tanah. Dalam sejarahnya banyak gempa bumi besar yang pernah melanda Indonesia yang telah menimbulkan banyak kerugian harta benda hingga menelan korban jiwa cukup besar diantaranya adalah sebagai berikut:

- 1. Gempa Aceh 26 Desember 2004 dengan kekuatan 9 Skala Richter,
- 2. Gempa Nias 28 Maret 2005 dengan kekuatan 8,7 Skala Richter,
- 3. Gempa Yogyakarta 26 Mei 2006 dengan kekuatan 5,9 Skala Richter,
- 4. Gempa Pangandaran 17 Juli 2006 dengan kekuatan 7,7 Skala Richter,

- 5. Gempa Padang 30 September 2009 dengan kekuatan 7,6 Skala Richter,
- 6. Gempa mentawai 25 Oktober 2010 dengan kekuatan 7,7 Skala Richter,
- 7. Gempa Lombok 29 Juli 2018 dengan kekuatan 6,4 Skala Richter, dan
- 8. Gempa Palu 28 September 2018 dengan kekuatan 7,4 Skala Richter,

Sehubungan dengan adanya potensi kerusakan bangunan yang diakibatkan oleh getaran gempa, maka perlu adanya perencanaan serta evaluasi kekuatan struktur pada bangunan yang telah dibangun.

Nugraha (2021) menjelaskan bahwa pada saat ini telah terjadi peralihan metode atau teknik perencanaan bangunan yang tahan gempa dari metode sebelumnya berdasarkan kekuatan (*force based*) beralih menjadi berdasarkan kinerja (*performance based*). Perencanaan berbasis kinerja dianggap lebih baik karena sasaran kinerja bangunan terhadap gempa dinyatakan dengan jelas, sasaran kinerja ditentukan berdasarkan tingkat kinerja. Tingkat kinerja adalah batasan kerusakan yang ditentukan berdasarkan kerusakan fisik struktur dan elemen struktur, sehingga dengan adanya tingkat kinerja dapat digunakan untuk mengetahui keadaan dari struktur bangunan apabila dikenakan gaya gempa pada tingkatan atau level tertentu.

Pada penelitian ini dilakukan evaluasi kinerja struktur gedung terhadap beban gempa pada Gedung Multazam yang berada di kawasan asrama haji Provinsi Lampung. Lokasi bangunan berada di Provinsi Lampung, yang mana dilalui oleh sesar atau patahan sumatera (*Great Sumatran Fault*) yang menyebabkan adanya potensi terjadi gempa tektonik, sehingga evaluasi kinerja struktur bangunan sangat penting untuk dilakukan. Ilustrasi peta patahan sumatera yang melewati Provinsi Lampung disajikan pada Gambar 1.1 dan Gambar 1.2.

Gambar 1. 1 Sesar Aktif Utama Di Sumatra dan Catatan Kegempaan. Elips Warna Kuning Menunjukkan Segmen Sesar Yang Robek Ketika Gempa Besar

Sumber: Peta Sumber dan Bahaya Gempa Indonesia Tahun 2017 Gambar II-5

Gambar 1. 2 Sesar Dangkal Di Pulau Sumatera dan Sekitarnya

Sumber: Buku Peta Deagreasi Bahaya Gempa Indonesia Untuk Perencanaan dan Evaluasi Infrastuktur Tahan Gempa, 2022.

Evaluasi kinerja struktur ini dilakukan untuk mengetahui seberapa besar dampak gaya gempa pada level tertentu apabila dikenakan pada elemen struktur bangunan. Langkah ini dilakukan sebagai bentuk upaya penanggulangan dampak bencana gempa. Untuk mengetahui dampak gaya gempa tersebut, maka diperlukan gambaran kondisi riil dari perilaku struktur pada saat terkena gaya gempa yang bersifat inelastis. Dikarenakan perilaku struktur yang inelastis pada saat terkena gaya gempa, maka perlu menggunakan metode analisis non-linear. Pada penelitian ini digunakan metode analisis *pushover* yang termasuk dalam jenis analisis statik non-linear. Berikutnya hasil kondisi perilaku struktur dari analisis *pushover* digunakan untuk mendapatkan nilai tingkatan kinerja struktur. Tingkatan kinerja tersebut berfungsi untuk menggambarkan kondisi kerusakan fisik bangunan dan ancaman keselamatan yang dapat terjadi pada penghuni bangunan. Prosedur analisis *pushover* yang digunakan pada penelitian ini mengacu pada metode ATC-40 (*Applied Technology council*) untuk mengetahui bagaimana level kinerja struktur bangunan.

1.2 Rumusan Masalah

Adapun rumusan masalah yang digunakan dalam penelitian ini adalah sebagai berikut.

- 1. Bagaimana hasil kurva kapasitas dari analisis pushover?
- 2. Bagaimana tingkat kinerja struktur gedung setelah dianalisis menggunakan metode *pushover* menurut kriteria ATC-40?
- 3. Bagaimana mekanisme sendi plastis yang terjadi setelah dianalisis menggunakan metode *pushover* menurut kriteria ATC-40?

1.3 Tujuan Penelitian

Mengacu pada rumusan masalah di atas, tujuan dari penelitian adalah sebagai berikut.

 Mengetahui kurva kapasitas (hubungan antara *base shear* dengan *displacement*) untuk menggambarkan tahapan perilaku struktur saat dikenai gaya gempa pada tingkat atau level tertentu.

- 2. Menentukan kriteria kinerja seismik struktur bangunan bedasarkan nilai *performance point* menggunakan kriteria ATC-40.
- 3. Mengetahui skema kelelehan (distribusi sendi plastis) yang terjadi dari hasil perhitungan program ETABS.

1.4 Batasan Penelitian

Berikut ini adalah batasan-batasan penelitian yang digunakan pada penelitian ini.

- Bangunan yang dianalisis adalah Gedung Multazam Asrama Haji yang terletak di Provinsi Lampung dengan jumlah 5 lantai dan bangunan menggunakan struktur portal beton bertulang.
- 2. Komponen yang dievaluasi hanya komponen struktur, meliputi :
 - a. Struktur portal beton bertulang.
 - b. Pelat beton bertulang.
 - c. Atap dak beton.
- 3. Pembebanan gedung meliputi :
 - a. Beban mati (berupa berat sendiri struktur).
 - Beban hidup (berupa beban akibat fungsi sesuai dengan SNI 03-1727-1989
 Pedoman Perencanaan Pembebanan Untuk Rumah dan Gedung).
 - c. Beban lateral (berupa beban gempa sesuai dengan SNI 03-1726-2019 Tata Cara Perencanaan Ketahanan Gempa Untuk Gedung, tanpa memperhitungkan beban angin).
- 4. Kriteria kinerja struktur bangunan menggunakan ATC-40.
- 5. Perilaku struktur dianalisis menggunakan metode *pushover* dengan bantuan program ETABS.
- Jenis tanah ditentukan berdasarkan hasil pengujian SPT (*Standard Penetration Test*) pada lokasi gedung yang ditinjau.
- 7. Pemodelan tulangan balok dan kolom dilakukan berdasarkan data perencanaan *Shop Drawing*.

1.5 Manfaat Penelitian

Berikut ini adalah manfaat-manfaat yang dapat diambil dari penelitian ini.

- Bagi penulis, mengembangkan kemampuan menggunakan program ETABS untuk mendesain struktur bangunan khususnya dalam mendesain struktur beton portal 3D (tiga dimensi), kemudian menambah ilmu dan pemahaman pada bidang teknik sipil tentang metode analisis statik *pushover*.
- 2. Untuk pembaca, menambah wawasan dan ilmu mengenai metode analisis statik pushover guna melihat perilaku struktur bangunan pada saat terkena gempa, dan dapat digunakan sebagai bahan referensi apabila kedepannya ada penelitian mengenai metode analisis statik pushover dan tingkat kinerja seismic struktur bangunan.
- Untuk praktisi, hasil evaluasi ini diharapkan dapat digunakan sebagai bahan evaluasi dalam perencanaan, perbaikan, dan perkuatan agar struktur bangunan dapat bertahan pada saat terjadinya gempa.

BAB II TINJAUAN PUSTAKA

2.1 Penelitian Terdahulu

Berikut ini adalah beberapa penelitian sejenis mengenai evaluasi kinerja struktur bangunan dengan metode analisis *pushover*.

 Kajian Analisis Pushover Untuk Performance Based Design Pada Awana Condotel Yogyakarta.

Penelitian ini bersumber dari jurnal yang dilakukan oleh Dwi Kurniati (2018). Bangunan yang dianalisis pada penelitian tersebut adalah Gedung Awana Condotel Yogyakarta, yang mana merupakan bangunan struktur beton bertulang dengan tingkatan sebanyak sepuluh lantai. Metode evaluasi yang digunakan adalah analisis static nonlinear (*Pushover*).

Tujuan dari penelitian ini adalah untuk mengevaluasi kinerja tahanan gempa pada Gedung Awana Condotel Yogyakarta dari arak x maupun arah y dan mengetahui bagaimana pola keruntuhan yang terjadi.

- a. Hasil analisis dengan *software* SAP2000 v.14 untuk *push* x dengan gaya geser dasar sebesar 9948,877 kN diperoleh hasil kinerja struktur (*performance point*) dengan gaya geser 38025,437 kN, *displacement* (Dt) 0,061 m, redaman efektif (βeff) 5,5% dan waktu efektis (Teff) 0,439 detik. Hasil analisis untuk *push* y dengan geser dasar sebesar 9948,877 kN diperoleh hasil kinerja struktur (*performance point*) dengan gaya geser 24999,808 kN, *displacement* (Dt) 0,090 m, redaman efektif (βeff) 6,5% dan waktu efektis (Teff) 0,700 detik.
- b. Hasil perhitungan dengan bantuan software SAP2000 v.14 menunjukkan bahwa degung yang ditinjau termasuk dalam level kinerja Immediate Occupancy (IO), hal ini berarti bahwa apabila terjadi gempa, Gedung Awana Condotel Yogyakarta tidak mengalami kerusakan struktural dan non

struktural sehingga gedung ini tetap aman digunakan. Struktur gedung berperilaku non-linear saat terjadi gempa.

2. Damage and loss probability assessment of reinforced concrete building due to Yogyakarta earthquake scenario using pushover and HAZUS analysis (case study: student center building, faculty of social science, UNY)

Penelitian ini dilakukan oleh Yunalia Muntafi, Rohma Faraodi, dan Ali Asroni (2018) dimana analisis pushover dikombinasikan dengan HAZUS dalam melakukan asesmen probabilitas kerugian dan kerusakan bangunan. Bangunan yang dianalisis pada penelitian ini adalah bangunan beton bertulang 3 lantai dengan tinggi total 14,515m yang berfungsi sebagai pusat kegiatan mahasiswa yang berlokasi di Yogyakarta.

Metode analisis dilakukan menggunakan metode analisis statik *pushover*, dengan prosedur analisis mengacu pada pedoman ATC-40 dilanjutkan analisis HAZUS untuk mendapatkan nilai probabilitas kerugian dan kerusakan bangunan. Penelitian ini merupakan pengembangan dari penelitian Yunalia Muntafi (2012) yang juga menggunakan analisis pushover untuk evaluasi kinerja seismik gedung DPU wilayah kabupaten Wonogiri.

- a. Hasil nilai *base shear* dari pushover-x (325,030 ton) lebih besar dari pushover-y (205,204 ton), sebaliknya perpindahan yang diperoleh dari titik kinerja pushover-y sedikit lebih tinggi dari pushover-x.
- b. Berdasarkan perhitungan rasio simpangan, baik simpangan total maksimum maupun rasio simpangan inelastis maksimum menunjukkan bahwa tingkat kinerja struktur gedung adalah *Immediate Occupancy*, yang berarti hanya terjadi kerusakan struktur yang sangat terbatas, sehingga gedung aman dan dapat langsung digunakan.
- c. Kerentanan bangunan pada setiap tingkat kerusakan bangunan yang diperoleh akibat gempa bumi untuk tingkat kerusakan ringan, sedang, berat, dan rusak total adalah 22,59%, 21,60%, 3,71%, dan 0,23%. Hal ini berarti total kerentanan bangunan adalah 48,12% dan kemungkinan tidak terjadi kerusakan adalah 51,88%.

- d. Estimasi nilai kerugian ekonomi berdasarkan metode berdasarkan metode pendekatan FEMA-1999 diperoleh nilai sebesar diperoleh nilai sebesar 4.692. Hal ini berarti bahwa bangunan tersebut memiliki probabilitas kerugian ekonomi kerusakan kecil sebesar 4,692%. akibat skenario gempa Yogyakarta 2006.
- Evaluasi Kinerja Seismik Gedung APLC UGM Dengan Metode Analisis *Pushover* Sesuai Peraturan SNI-1726-2019

Penelitian ini bersumber dari tugas akhir yang dibuat oleh Haristio Nugraha (2021). Bangunan yang dianalisis pada penelitian ini adalah Gedung *Advanced Pharmaceutical Science Learning Center* (APSCL) UGM, gedung tersebut merupakan bangunan struktur beton bertulang dengan tingkatan sebanyak sembilan lantai. Pemodelan gedung dilakukan dengan bantuan *software* SAP 2000 V22 dalam bentuk 3D sesuai dengan *shop drawing*.

Tujuan dari penelitian ini adalah melakukan evaluasi kinerja struktur menggunakan metode analisis *pushover* dengan *capacity spectrum* menurut ATC-40 guna mengetahui kurva kapasitas, level kinerja bangunan dengan metode ATC-40, dan mengetahui skema sendi plastis yang terjadi pada bangunan.

- a. Berdasarkan dari kurva kapasitas didapatkan kurva kapasitas arah y memiliki bentuk yang lebih tegak dari kurva kapasitas arah x, hai ini menunjukkan bahwa arah y lebih kaku daripada arah x. Dengan nilai gaya lateral arah x sebesar 15085065,1 kN lebih besar dari arah y sebesar 12636028,7 kN, sedangkan untuk nilai *displacement* arah x sebesar 0,729019 m dan untuk arah y sebesar 0,457125 m.
- b. Nilai *performance point* yang didapat untuk arah x sebesar 328467,728 kN dan untuk arah y sebesar 328642,432 kN. Dari nilai *performance point* tersebut dihitung nilai *drift* menggunakan metode ATC-40 didapatkan tingkat kinerja struktur adalah *Immediate Occupancy* (IO).
- c. Adapun skema sendi plastis yang terjadi adalah terjadi merata diawali terjadi dari balok kemudian dilanjutkan terjadi pada kolom.

 Evaluasi Struktur Gedung Kampus II Universitas Muhammadiyah, Sumatera Barat dengan Analisis Statik Non-Linear Pushover

Penelitian ini bersumber dari tugas akhir yang dilakukan oleh Romi Sani Saputra, Redha Arima RM dan Masrilayanti (2023). Bangunan yang dianalisis pada penelitian ini adalah gedung kampus II Universitas Muhammadiyah Sumatera Barat, gedung tersebut merupakan bangunan struktur beton bertulang dengan tingkatan sebanyak empat lantai dan atap menggunakan pelat beton. Pemodelan gedung dilakukan dengan bantuan *software* ETABS V.16.2.1 dalam bentuk 3D sesuai dengan *shop drawing*.

Tujuan dari penelitian ini adalah melakukan evaluasi kinerja gedung kampus II Universitas Muhammadiyah Sumatera Barat dari pengaruh gaya gempa baik dari arah x maupun arah y, kemudian pola keruntuhan yang terjadi. Adapun hasil penelitian adalah sebagai berikut.

- a. Analisis dengan *software* ETABS V.16.2.1 diperoleh gaya geser maksimum yang dapat diterima struktur akibat Pushover Arah X sebesar 43561,8104 kN dengan perpindahan yang terjadi akibat gaya geser maksimum sebesar 317,32 mm atau 31,73 cm. Dan akibat adanya pushover arah Y maka gaya geser maksimum yang terjadi sebesar 39274,5448 kN dengan nilai perpindahan sebesar 289,851 mm atau 29,00 cm.
- b. *Performance Point* pada struktur akibat Push-X yang terjadi pada langkah kelima dan keenam menghasilkan gaya geser dasar sebesar 36296,398 kN, perpindahan (Dt) 230,790 mm, redaman efektif (β eff) 7,32% dan waktu efektif (T eff) 1,002 detik. Dan akibat adanya Push–Y yang terjadi pada langkah kedelapan dan kesembilan menghasilkan gaya geser dasar sebesar 35890,284 kN, perpindahan (Dt) 246,167 mm, redaman efektif (β eff) 7,15% dan waktu efektif (T eff) 0,987 detik.
- c. Dari hasil perhitungan dengan bantuan *software* ETABS V.16.2.1 menunjukkan bahwa bangunan ditinjau secara keseluruhan termasuk dalam tingkat kinerja berdasarkan ATC-40, FEMA 356 dan FEMA 440 yaitu Damage Control (DC), Artinya jika terjadi gempa maka gedung kampus II Universitas Muhammadiyah Sumatera Barat mengalami kerusakan ringan

baik struktur maupun nonstruktural, namun gedung ini masih aman digunakan dan masih dalam kondisi mudah diperbaiki.

 Evaluasi Kinerja Struktur Atas Pada Desain Gedung Perkantoran Menggunakan Analisis *Pushover* Berdasarkan ATC-40

Penelitian ini bersumber dari tugas akhir yang dilakukan oleh Maritza Syifa Syahira (2023). Bangunan yang dianalisis pada penelitian ini adalah gedung Perkantoran yang berada di Kota Padang dengan struktur gedung merupakan beton bertulang, jumlah lantai pada gedung sebanyak empat lantai dengan tinggi total gedung 17 meter. Pemodelan gedung dilakukan dengan bantuan *software* SAP2000 v22 dalam bentuk 3D sesuai dengan *Detail Engineering Design* (DED).

Tujuan dari penelitian ini adalah melakukan evaluasi kinerja Gedung Kantor yang berada di Kota Padang dari pengaruh beban gempa MCE_R (*Maximum Considered Earthquake, Risk Targeted*) dan beban gempa *DBE* (*Design Basis Earthquake*), kemudian pola keruntuhan yang terjadi akibat beban gempa MCE_R (*Maximum Considered Earthquake, Risk Targeted*) dan beban gempa *DBE* (*Design Basis Earthquake*).

- a. Nilai *performance point* yang diperoleh dari hasil analisis pushover dengan menggunakan beban gempa MCE_R (*Maximum Considered Earthquake, Risk Targeted*) pada arah x yaitu V = 20149,839 kN dan δ = 0,309 m. Kemudian untuk arah Y yaitu V = 26643,81 kN dan δ = 0,231 m.
- b. Nilai *performance point* yang diperoleh dari hasil analisis pushover dengan menggunakan beban gempa *DBE* (*Design Basis Earthquake*) pada arah x yaitu V = 16186,151 kN dan δ = 0,175 m. Kemudian untuk arah Y yaitu V = 20103,415 kN dan δ = 0,131 m.
- c. Tingkat kinerja struktur dari gedung perkantoran di Kota Padang pada level gempa MCE_R adalah *Damage Control* sedangkan tingkat kinerja struktur pada level gempa *DBE* adalah *Immediate Occupancy*.
- d. Awal mula terjadinya sendi plastis dengan menggunakan beban gempa MCE_R (Maximum Considered Earthquake, Risk Targeted) pada arah x dan

y ada pada step ke-2 yang ditandai dengan munculnya titik sendi plastis pada balok dan kolom berwarna ungu yang artinya berada pada level kinerja B. Sendi plastis berakhir untuk arah x pada step ke-5, dimana ada beberapa kolom ditandai dengan berwarna hijau yang berarti berada pada level kinerja *CP* (*Collapse Prevention*) yaitu terjadi kerusakan yang parah pada struktur sehingga kekuatan dan kekakuan berkurang banyak. Kemudian untuk arah y berakhir pada step ke-5, dimana ada beberapa kolom yang juga ditandai dengan titik berwarna hijau yang berarti berada pada level kinerja *CP* (*Collapse Prevention*) dan warna kuning yang berarti berada pada level kinerja C.

e. Awal mula terjadinya sendi plastis dengan menggunakan beban gempa *DBE* (*Design Basis Earthquake*) pada arah x dan y ada pada step ke-2 yang ditandai dengan munculnya titik sendi plastis pada balok dan kolom berwarna ungu yang artinya berada pada level kinerja B. Sendi plastis berakhir pada step ke-8 dimana telah muncul titik-titik sendi plastis berwarna biru tua yang berarti berada pada level kinerja *IO* (*Immediate Occupancy*). Kemudian untuk arah y berakhir pada step ke-6 dimana muncul titik-titik warna biru tua yang berarti berada pada level kinerja *IO* (*Immediate Occupancy*), warna hijau yang berarti berada pada level kinerja *CP* (*Collapse Prevention*), dan warna kuning yang berarti berada pada level kinerja C.

2.2 Perbandingan Penelitian Sebelumnya Terkait Analisis Pushover

Berikut ini adalah perbandingan penelitian-penelitian sebelumnya terkait *pushover* analisis dapat dilihat pada Tabel 2.1.

		Peneliti				
No.	Aspek	Dwi Kurniati (2018)	Yunalia Muntafi, Rohma Faraodi, dan Ali Asroni (2018)	Haristio Nugraha (2021)	Romi Sani Saputra, Redha Arima RM dan Masrilayanti (2023)	Mayga Bima Setyadi (2023)
1.	Judul	Kajian Analisis Pushover Untuk Performance Based Design Pada Awana Condotel Yogyakarta	Damage and loss probability assessment of reinforced concrete building due to Yogyakarta earthquake scenario using pushover and HAZUS analysis (case study: student center building, faculty of social science, UNY)	Evaluasi Kinerja Seismik Gedung APLC UGM Dengan Metode Analisis <i>Pushover</i> Sesuai Peraturan SNI- 1726-2019	Evaluasi Struktur Gedung Kampus II Universitas Muhammadiyah, Sumatera Barat dengan Analisis Statik Non- Linear Pushover	Evaluasi Kinerja Struktur Bangunan Bertingkat Terhadap Beban Gempa Dengan Analisis <i>Pushover</i> Menggunakan Program ETABS (Studi Kasus : Gedung Multazam Asrama Haji Provinsi Lampung)

				Peneliti		
No.	Aspek	Dwi Kurniati (2018)	Yunalia Muntafi, Rohma Faraodi, dan Ali Asroni (2018)	Haristio Nugraha (2021)	Romi Sani Saputra, Redha Arima RM dan Masrilayanti (2023)	Mayga Bima Setyadi (2023)
2.	Tujuan Penelitian	Mengevaluasi kinerja tahanan gempa pada Gedung Awana Condotel Yogyakarta dari arak x maupun arah y dan mengetahui bagaimana pola keruntuhan yang terjadi.	Menentukan tingkat kinerja bangunan seismik berdasarkan kriteria ATC-40, mengetahui matriks probabilitas kerusakan dengan metode HAZUS, dan menentukan nilai ekonomi kerugian kerusakan bangunan berdasarkan FEMA-1999.	Melakukan evaluasi kinerja struktur menggunakan metode analisis <i>pushover</i> dengan <i>capacity spectrum</i> menurut ATC-40 guna mengetahui kurva kapasitas, level kinerja bangunan dengan metode ATC-40, dan mengetahui skema sendi plastis yang terjadi pada bangunan.	Tujuan dari penelitian ini adalah melakukan evaluasi kinerja gedung kampus II Universitas Muhammadiyah Sumatera Barat dari pengaruh gaya gempa baik dari arah x maupun arah y, kemudian pola keruntuhan yang terjadi.	Melakukan evaluasi kinerja struktur menggunakan metode analisis <i>pushover</i> untuk mengetahui kurva kapasitas guna menggambarkan tahapan perilaku struktur saat dikenai gaya geser dasar pada tingkat atau level tertentu, menentukan kriteria kinerja seismik struktur bangunan dari nilai <i>performance point</i> menggunakan code ATC- 40, dan mengetahui skema kelelehan yang terjadi dari perhitungan program ETABS.

	Aspek	Peneliti				
No.		Dwi Kurniati (2018)	Yunalia Muntafi, Rohma Faraodi, dan Ali Asroni (2018)	Haristio Nugraha (2021)	Romi Sani Saputra, Redha Arima RM dan Masrilayanti (2023)	Mayga Bima Setyadi (2023)
3.	Bentuk dan Tingkat Bangunan Gedung	Gedung Awana Condotel Yogyakarta, yang mana merupakan bangunan struktur beton bertulang dengan tingkatan sebanyak sepuluh lantai.	Bangunan gedung beton bertulang 3 (tiga) lantai dengan tinggi total bangunan 14,515m yang berfungsi sebagai pusat kegiatan mahasiswa yang berlokasi di Yogyakarta.	GedungAdvancedPharmaceuticalScienceLearningCenter(APSCL)UGM, gedung tersebutmerupakanbangunanstrukturbetonbertulangdengantingkatansebanyaksembilan lantai.	Gedung Kampus II Universitas Muhammadiyah Sumatera Barat yang mana gedung tersebut merupakan bangunan struktur beton bertulang dengan tingkatan sebanyak empat lantai dan atap menggunakan pelat beton.	Gedung Multazam Asrama Haji Provinsi Lampung, gedung tersebut merupakan bangunan struktur beton bertulang dengan tingkatan sebanyak lima lantai.

			Peneliti			
No	Aspok	Dwi Kurnisti	Yunalia Muntafi, Rohma Faraodi, dan	Haristia Nugraha	Romi Sani Saputra, Podha Arima PM	Mayga Bima
110.	Азрек	DWI Kuilliau (2019)			dan Maarilamanti	Setvadi
		(2018)	(2019)	(2021)		(2023)
			(2018)		(2023)	(2023)
4.	Metode	Melakukan	Bangunan	Studi literature dan	Melakukan	Melakukan
	Penelitian	pengumpulan data	dimodelkan 3D	pengumpulan data	pemodelan Struktur	pemodelan
		banguan berupa	dengan software	bangunan,	gedung	bangunan sesuai
		gambar <i>Detail</i>	SAP2000, kemudian	melakukan	menggunakan	gambar Shop
		Engeneering Design	dilakukan analsisi	pemodelan	software ETABS	Drawing bangunan
		(DED), kemudian	pembebanan dan	bangunan dalam	V.16.2.1, Melakukan	menggunaka
		membuat pemodelan	analisis statik	bentuk 3D	perhitungan beban	program ETABS,
		struktur 3D dengan	nonlinier pushover,	menggunakan	struktur berupa	melakukan
		software SAP2000	dengan prosedur	software SAP2000	beban hidup dan	perhitungan
		v.14, berikutnya	analisis mengacu	V22, menghitung	beban mati, serta	pembebanan berupa
		membuat definisi	pada pedoman ATC-	pembebanan,	beban terhitung	beban mati beban
		material dan profil	40 untuk	melakukan analisi	lainnya, melakukan	hidup dan beban
		penampang, setelah	mendapatkan kurva	static <i>pushover</i>	analisis statik	terhitung lainnya,
		itu melakukan	kapasitas dan titik	dengan bantuan	<i>pushover</i> dengan	melakukan analisis
		running analysis	performa	software SAP2000	software ETABS	statik <i>pushover</i>
		modal, dilanjutkan	(performance point)	V22, membuat	V.16.2.1, membuat	dengan program
		melakukan input	hingga akhirnya	kesimpulan dari	kesimpulah dari hasil	ETABS, membuat
		grafik respon	diperoleh level			kesimpulan dari
		spektrum	kinerja			hasil analisis staktik

	berdasarkan peta	bangunannya.	hasil analisis yang	analisis statik	pushover yang telah
	gempa 2017,	Kemudian	telah dilakukan.	pushover.	dilakukan.
	kemudian membuat	dilanjutkan dengan			
	perameter untuk	melakukan analisis			
	analisis <i>pushover</i>	HAZUS untuk			
	(Gravity dan Push),	mendapatkan kurva			
	selanjutnya	kerentanan			
	melakukan running	bangunan, matriks			
	analysis, kemudian	probabilitas			
	melakukan	kerusakan pada tiap			
	perhitungan data	level kerusakan, serta			
	output analisis	nilai probabilitas			
	<i>pushover</i> , dan	kerugian akibat			
	dilanjutkan	gempa.			
	membuat				
	kesimpulan dan				
	saran.				
1		1	1		

		Peneliti			
No.	Aspek	Dwi Kurniati (2018)Yunalia Muntafi, Rohma Faraodi, dan Ali Asroni (2018)Haristio Nugraha (2021)	Romi Sani Saputra, Redha Arima RM dan Masrilayanti (2023)Mayga Bima Setyadi (2023)		
5.	Hasil Penelitian	a. Hasilanalisisa. Hasilnilaibasea. Berdasarkan daridengansoftwaresheardarikurvakapasitasSAP2000v.14pushover-xdidapatkan kurvauntukpushx $(325,030 \text{ ton})$ lebihkapasitas arah ydengangayabesardarigeserdasarpushover-yyang lebih tegaksebesar $(205,204 \text{ ton})$,sebaliknyagiperolehhasilperpindahanyangkinerjastrukturdiperoleh dari titik(performancekinerjapushover-ygayageserdari pushover-x.38025,437kN,b.b.Berdasarkanperhitungandisplacementperhitunganrasio(Dt)0,061m,simpangantotal(βeff)5,5% danmaksimumwaktuefektisrasiogipelitisimpangantotaltefktiscolorgayagayageserdisplacementsimpangantotaltotal(βeff)5,5% danmaksimummaksimummaksimummaksimumtotaltefktistotaltefktistotaltefktistotaltefktistotaltefktistotaltefktistotaltefktistotaltefktistotaltefktistotaltefktistotal <th>a.Analisisdengan softwareDiharapkan diperolehsoftwareETABSdiperolehyayageser maksimum gayakapasitas, nilaiyangdapatditerima ayangdapatditerima performancePushoverArahX point, kinerjasebesar43561,8104 kN dengansturkturdangperpindahan polapolayang terjadiakibat gesergedung yang ditinjau.sebesar317,32 mm atau adanya pushovergeser maksimum yang terjadi sebesarYmaka gaya gaya gesergeser makibat matau gedung yang terjadi sebesarYmaka gaya gaya gesergeser makibat matau gedung yang tinjau.</br></th>	a.Analisisdengan softwareDiharapkan diperolehsoftwareETABSdiperolehyayageser maksimum gayakapasitas, 		
detik.Has analisispushygeserdasa sebesar9948,877kldiperolehhas kinerjakinerjastruktu (performance point)gayagese 24999,80824999,808kN displacement (Dt)(Dt)0,090n redamanefekti (βeff)6,5%da waktuefekti (Teff)0,70 detik.b.Hasil perhitungan dengan bantua software SAP2000v.1 menunjukkan bahwadegun	 menunjukkan bahwa tingkat kinerja struktur gedung adalah <i>Immediate</i> Occupancy, yang berarti hanya terjadi kerusakan struktur yang sangat terbatas, sehingga gedung aman dan dapat langsung digunakan. c. Kerentanan bangunan pada setiap tingkat kerusakan bangunan yang diperoleh akibat gempa bumi untuk tingkat kerusakan ringan, sedang, berat, dan rusak total adalah 22,59%, 21,60%, 3,71%, dan 0,23%. 	sedangkan untuk nilai displacement arah x sebesar 0,729019 m dan untuk arah y sebesar 0,457125 m.289,851 mm atau 29,00 cm.b. Nilai performance point didapat arah x sebesar 328467,728 kN dan untuk arah y sebesar $328467,728$ kN Dari nilai performance point t tersebut dihitung nilai drift menggunakan mendganakan didapatkan tingkat289,851 mm atau 29,00 cm.b. Nilai performance point didapat didapatb. Performance point point 230,790 mm, redaman efektif (β eff) 7,32% dan waktu efektif (T eff bana akibat adanya Push-Y yang terjadi pada langkah kedelapan dan kesembilan menghasilkan geser dasar sebesar akibat adanya Push-Y yang terjadi pada langkah kedelapan dan kesembilan menghasilkan geser dasar sebesar didapatkan tingkat kineria			
--	---	--			
yang ditinja termasuk dalar	Hal ini berarti total kerentanan	struktur adalah eff) 0,987 detik.			

levelkinerjaImmediate2Occupancy (IO),halhalinibahwaapabilaterjadigempa,d.HGedungAwanaCondotelhYogyakartamtidakmengalamikerusakanmstrukturaldannonstrukturalsehinggagedungsehinggagedunginitetapamanmdigunakan.2Strukturgempa.gempa.Hamanmamanmsehinggagedung	bangunan adalah 48,12% dan kemungkinan tidak terjadi kerusakan adalah 51,88%. Estimasi nilai kerugian ekonomi berdasarkan metode berdasarkan metode pendekatan FEMA-1999 diperoleh nilai sebesar diperoleh nilai sebesar 4.692%. Hal ini berarti bahwa bangunan tersebut memiliki probabilitas kerugian ekonomi kerusakan kecil sebesar 4,692%. akibat skenario gempa Yogyakarta	c. Dari hasil perhitungan dengan bantuan software ETABS V.16.2.1 menunjukkan bahwa bangunan ditinjau secara keseluruhan termasuk dalam tingkat kinerja berdasarkan ATC-40, FEMA 356 dan FEMA 440 yaitu Damage Control (DC), Artinya jika terjadi gempa maka gedung kampus II Universitas Muhammadiyah Sumatera Barat mengalami kerusakan ringan baik struktur maupun nonstruktural, namun gedung ini masih aman digunakan dan masih dalam kondisi mudah diperbaiki.
--	--	---

2.3 Keaslian Penelitian

Penelitian menggunakan analisis statik nonlinier *pushover* dengan mengacu pada metode ATC-40 sudah cukup banyak digunakan pada beberapa penelitian sebelumnya, seperti yang telah dirangkum pada Tabel 2.1. Namun, penelitian terkait aplikasinya dalam melakukan asesmen pada Gedung Multazam Asrama Haji Provinsi Lampung, belum pernah dilakukan. Penelitian ini menggunakan acuan gambar *shop drawing* dari Gedung Multazam Asrama Haji Provinsi Lampung, sehingga penelitian ini merupakan karya yang asli dan bukan merupakan plagiasi.

BAB III LANDASAN TEORI

3.1 Analisis Struktur Bangunan

Nugraha (2021) menjelaskan bahwa pada saat ini terjadi peralihan perencanaan bangunan tahan gempa dari yang sebelumnya berdasarkan kekuatan (*force based*) menjadi berdasarkan kinerja (*performance based*). Perencanaan berbasis kinerja dianggap lebih baik dikarenakan sasaran kinerja bangunan terhadap gempa dinyatakan dengan jelas, sasaran kinerja ditentukan berdasarkan tingkat atau level kinerja. Pada analisis *performance based design*, level kinerja dari suatu bangunan dapat dinilai berdasarkan besar kekuatan gempa yang direncanakan, sehingga pemilik dari bangunan dapat memilih level kinerja dari bangunan, yang berdampak pada biaya pembangunan dan perbaikan.

Juwita (2009) menjelaskan bahwa *performance based design* merupakan suatu konsep dalam perencanaan dan analisis seismik struktur bangunan, dengan menetapkan berbagai tingkat kinerja struktur (*multiple performance objective levels*). Tingkat kinerja ini merupakan tingkat kinerja bangunan yang diharapkan terjadi ketika struktur dilanda gempa dengan tingkat intensitas tertentu. Tingkat kinerja (*performance*) ini merupakan suatu pilihan yang harus ditentukan oleh perencana struktur pada tahap awal, yang mana tingkat kinerja ini dapat dievaluasi dari beberapa kondisi batas. Kondisi batas ini bersifat fleksibel, karena merupakan kesepakatan dari pihak perencana struktur dengan pihak yang memiliki bangunan (*owner*).

Dalam *performance based design* terdapat elemen utama yang perlu diperhatikan yaitu *demand* dan *capacity*. *Demand* merupakan tuntutan atau kebutuhan yang harus dipenuhi oleh struktur, *Demand* dapat digambarkan sebagai beban gempa. Pada setiap elemen struktur besarnya nilai *demand* secara kuantitatif merupakan kombinasi pembebanan maksimum yang terjadi pada setiap elemen tersebut. Berikutnya *capacity* merupakan kapasitas atau kemampuan yang dimiliki oleh struktur. Salah satu analisis yang dapat menggambarkan kapasitas struktur secara keseluruhan adalah analisis *pushover*, dalam analisis *pushover* menghasilkan suatu titik *performance point* berupa titik perpotongan antara kurva *demand* dan kurva *capacity*. Selanjutnya nilai *performance point* tersebut dapat digunakan untuk menentukan level kinerja dari struktur bangunan menggunakan metode ATC-40.

3.2 Pembebanan Struktur

Pada penelitian ini ada 3 jenis beban yang akan dianalisis yaitu beban mati, beban hidup, dan beban gempa.

1. Beban mati

Beban mati merupakan berat dari seluruh bagian gedung yang bersifat tetap, termasuk segala unsur tambahan, mesin-mesin serta peralatan tetap yang merupakan bagian tak terpisahkan dari gedung tersebut. Berikut adalah beban mati yang digunakan pada penelitian ini dapat dilihat pada Tabel 3.1 dan Tabel 3.2.

No.	Bahan Bangunan	Beban	Satuan
1	Baja	7850	kg/m ³
2	Batu alam	2600	kg/m ³
3	Batu belah, batu bulat, batu gunug (berat tumpuk)	1500	kg/m ³
4	Batu karang (berat tumpuk)	700	kg/m ³
5	Batu pecah	1450	kg/m ³
6	Besi tuang	7250	kg/m ³
7	Beton $(^1)$	2200	kg/m ³
8	Beton bertulang (²)	2400	kg/m ³
9	Kayu (kelas 1) $(^3)$	1000	kg/m ³
10	Kerikil, koral (kering udara sampai lembab, tanpa	1650	ka/m^3
	diayak)		Kg/III
11	Pasangan batu belah, batu bulat, batu gunung	2200	kg/m ³
12	Pasangan batu cetak	2200	kg/m ³
13	Pasangan batu karang	1450	kg/m ³
14	Pasir (kering udara sampai lembab)	1600	kg/m ³
15	Pasir (jenuh air)	1800	kg/m ³

Tabel 3. 1 Berat Sendiri Bahan Bangunan

No.	Bahan Bangunan	Beban	Satuan
16	Pasir kerikil, koral (kering udara sampai lembab)	1850	kg/m ³
17	Tanah, lempung dan lanau (kering udara sampai lembab)	1700	kg/m ³
18	Tanah, lempung dan lanau (basah)	2000	kg/m ³
19	Timah hitam (timbel)	1140	Kg

Lanjutan Tabel 3.1 Berat Sendiri Bahan Bangunan

Sumber : SNI-1727-1989

Tabel 3. 2 Berat Sendiri Komponen Gedung

No.	Komponen Gedung	Beban	Satuan
1	Adukan, per cm tebal :		
	- Dari semen	21	kg/m ³
	- Dari kapur, semen merah atau tras	17	
2	Aspal, termasuk bahan-bahan mineral penambah, per cm tebal	14	kg/m ³
3	Dinding pasangan bata merah :		
	- Satu batu	450	kg/m ³
	- Setengah batu	250	U U
4	Dinding pasangan batako :		
	Berlubang :		
	- Tebal dinding 20 cm (HB 20)	200	2
	- Tebal dinding 10 cm (HB 10)	120	kg/m³
	Lanpa lubang : Tahal din dina 15 am	200	
	- Tebal dinding 15 cm Tabal dinding 10 am	300	
_		200	
5	Langit-langit dan dinding (termasuk rusuk - rusuknya,		
	tanpa penggantung langit-langit atau pengaku),		
	Company school (stornity, dan hahan lain asiania)	11	kg/m ³
	- Semen asbes (elemity dan banan fam sejenis), dengan tabal maksimum Amm	11	U
	- Kaca dengan tehal 3-4 mm	10	
6	Raca, dengan tebar 5-4 mm		
0	maksimum 5 m dan jarak s.k.s. minimum 0,80 m	40	kg/m ³
7	Penutup atap genting dengan reng dan usuk / kaso per m ² bidang atap	50	kg/m ³
8	Penutup atap sirap dengan reng dan usuk / kaso, per m ² bidang atap	40	kg/m ³

No.	Komponen Gedung		Satuan
9	Penutup atap seng gelombang (BWG 24) tanpa gording	10	kg/m ³
10	Penutup lantai dari ubin semen Portland, teraso dan beton, tanpa adukan, per cm tebal	21	kg/m ³
11	Semen asbes gelombang (tebal 5 mm)	11	kg/m ³

Lanjutan Dari Tabel 3.2 Berat Sendiri Komponen Gedung

2. Beban hidup

Beban hidup merupakan semua beban yang muncul atau terjadi akibat penghuni atau penggunan gedung di dalamnya termasuk beban – beban pada lantai yang berasal dari barang – barang yang berpindah sehingga dapat mengakibatkan perubahan beban pada lantai atau atap. Berikut adalah beban hidup yang digunakan pada penelitian ini dapat dilihat pada Tabel 3.3.

No.	Komponen Gedung	Beban	Satuan
1	Lantai dan tangga rumah tinggal, kecuali yang disebut dalam no 2	200	kg/m ³
2	Lantai tangga rumah tinggal sederhana dan gudang- gudang tidak penting yang bukan untuk toko, pabrik atau bengkel	125	kg/m ³
3	Lantai sekolah, ruang kuliah, kantor, toko, toserba, restoran, hotel, asrama, dan rumah sakit	250	kg/m ³
4	Lantai ruang olah raga	400	kg/m ³
5	Lantai dansa	500	kg/m ³
6	Lantai dan balkon dalam dari ruang-ruang untuk pertemuan yang lain dari yang disebut dalam no 1 s/d 5, seperti masjid, gereja, ruang pagelaran, ruang rapat, bioskop dan panggung penonton dengan tempat duduk tetap	400	kg/m ³
7	Panggung penonton dengan tempat duduk tidak tetap atau untuk penonton berdiri	500	kg/m ³
8	Tangga, bordes tangga dan gang dari yang disebut dalam no 3	300	kg/m ³
9	Tangga, bordes tangga dan gang dari yang disebut dalam no 4,5,6 dan 7	500	kg/m ³

Tabel 3. 3 Beban Hidup Pada Lantai Gedung

No.	Komponen Gedung	Beban	Satuan
10	Lantai ruang pelengkap dari yang disebut dalam no 3,4,5,6 dan 7	250	kg/m ³
11	Lantai untuk pabrik, bengkel, gudang, perpustakaan, ruang arsip, toko buku, toko besi, ruang alat - alat dan ruang mesin harus direncanakan terhadap beban hidup yang ditentukan tersendiri dengan minimum	400	kg/m ³
12	Lantai gedung parkir bertingkat : - Untuk lantai bawah - Untuk lantai tinggkat lainnya	400	kg/m ³
13	Balkon - balkon yang menjorok bebas keluar harus direncanakan terhadap beban hidup dari lantai yang berbatasan dengan minimum	300	kg/m

Lanjutan Dari Tabel 3.3 Beban Hidup Pada Lantai Gedung

Kemudian untuk beban hidup pada atap serta pada struktur tudung (canopy) yang dapat dicapai dan dibebani oleh orang, menggunakan beban minimum sebesar 100 kg/m² bidang datar.

3. Beban gempa

Beban gempa merupakan semua beban statik ekivalen yang bekerja pada gedung atau bagian gedung yang menirukan pengaruh dari gerakan tanah akibat gempa.

3.3 Ketentuan Umum Perencanaan Struktur Bangunan Gedung Berdasarkan SNI-1726-2019

Berikut ini merupakan ketentuan-ketentuan dalam perencanaan ketahanan gempa untuk struktur gedung berdasarkan SNI-1726-2019.

1. Menentukan kategori risiko bangunan gedung

Pada SNI-1726-1029, kategori risiko pada struktur bangunan dibedakan berdasarkan jenis pemanfaatan bangunan tersebut. Ada 4 kategori berdasarkan jenis pemanfaatan bangunan tersebut dan kaitannya dengan risiko yang ditimbulkan berdasarkan prioritasnya. Berikut adalah kategori risiko bangunan sesuai dengan pemanfaatannya yang dapat dilihat pada Tabel 3.4 berikut.

Tabel 3. 4 Kategori Risiko Bangunan Gedung dan Nongedung Untuk Beban Gempa

Jenis Pemanfaatan	Kategori Risiko
 Gedung dan nongedung yang memiliki risiko rendah terhadap jiwa manusia pada saat terjadi kegagalan, termasuk, tapi tidak dibatasi untuk, antara lain : Fasilitas pertanian, perkebunan, perternakan, dan perikanan Fasilitas sementara Gudang penyimpanan Pumah jaga dan struktur kecil lainnya 	Ι
 - Ruman Jaga dan struktur keen fannya Semua gedung dan struktur lain, kecuali yang termasuk dalam kategori risiko I, III, IV, termasuk, tapi tidak dibatasi untuk : Perumahan Rumah toko dan rumah kantor Pasar Gedung perkantoran Gedung apartemen/rumah susun Pusat perbelanjaan/mall Bangunan industri Fasilitas manufaktur Pabrik 	II
 Gedung dan nongedung yang memiliki risiko tinggi terhadap jiwa manusia pada saat terjadi kegagalan, termasuk, tapi tidak dibatasi untuk : Bioskop Gedung pertemuan Stadion Fasilitas kesehatan yang tidak memiliki unit bedah dan unit gawat darurat Fasilitas penitipan anak Penjara Bangunan untuk orang jompo Gedung dan nongedung, tidak termasuk kedalam kategori risiko IV, yang memiliki potensi untuk menyebabkan dampak ekonomi yang besar dan/atau gangguan massal terhadap kehidupan masyarakat sehari-hari bila terjadi kegagalan, termasuk, tapi tidak dibatasi untuk : Pusat pembangkit listrik biasa Fasilitas penanganan limbah Pusat telekomunikasi 	III

Lanjutan Tabel 3.4 Kategori Risiko Bangunan Gedung dan Nongedung Untuk Beban Gempa

Jenis Pemanfaatan	Kategori Risiko
Gedung dan nongedung yang tidak termasuk dalam kategori risiko IV, (termasuk, tetapi tidak dibatasi untuk fasilitas manufaktur, proses, penanganan, penyimpanan, penggunaan atau tempat pembuangan bahan bakar berbahaya, bahan kimia berbahaya, limbah berbahaya, atau bahan yang mudah meledak) yang mengandung bahan beracun atau peledak di mana jumlah kandungan bahannya melebihi nilai batas yang disyaratkan oleh instansi yang berwenang dan cukup menimbulkan bahaya bagi masyarakat jika terjadi kebocoran.	III
 Gedung dan nongedung yang dikategorikan sebagai fasilitas yang penting, termasuk, tetapi tidak dibatasi untuk: Bangunan-bangunan monumental Gedung sekolah dan fasilitas Pendidikan Rumah ibadah Rumah sakit dan fasilitas kesehatan lainnya yang memiliki fasilitas bedah dan unit gawat darurat Fasilitas pemadam kebakaran, ambulans, dan kantor polisi, serta garasi kendaraan darurat Tempat perlindungan terhadap gempa bumi, tsunami, angin badai, dan tempat perlindungan darurat lainnya Fasilitas kesiapan darurat, komunikasi, pusat operasi dan fasilitas lainnya untuk tanggap darurat Pusat pembangkit energi dan fasilitas publik lainnya yang dibutuhkan pada saat keadaan darurat Struktur tambahan (termasuk menara telekomunikasi, tangki penyimpanan bahan bakar, menara pendingin, struktur stasiun listrik, tangki air pemadam kebakaran atau struktur rumah atau struktur pendukung air atau material atau peralatan pemadam kebakaran) yang disyaratkan untuk beroperasi pada saat keadaan darurat Gedung dan nongedung yang dibutuhkan untuk mempertahankan fungsi struktur bangunan lain yang masuk ke dalam kategori risiko IV. 	IV

Sumber : SNI-1726-2019

2. Menentukan faktor keutamaan bangunan

Faktor keutamaan bangunan dipakai untuk memperbesar beban gempa rencana. Besar nilai faktor keutamaan gempa diambil berdasarkan kategori risiko bangunan. Berikut adalah nilai-nilai faktor keutamaan gempa dapat dilihat pada Tabel 3.5.

Kategori Risiko	Faktor Keutamaan Gempa, Ie
I atau II	1,0
III	1,25
IV	1,50

Tabel 3. 5 Faktor Keutamaan Gempa

3. Menentukan klasifikasi situs

Pada SNI-1726-2019 klasifikasi situs dibagi dalam enam jenis tanah. Klasifikasi situs ini digunakan untuk memberikan kriteria desain seismik berupa faktor-faktor amplifikasi pada bangunan. Dalam perumusan kriteria desain seismik pada suatu bangunan di permukaan tanah untuk suatu situs, maka situs tersebut perlu diklasifikasikan terlebih dahulu. Berikut adalah klasifikasi situs tanah dapat dilihat pada Table 3.6.

Kelas Situs	$\overline{\boldsymbol{v_s}}$ (m/s)	Natau N _{ch}	\overline{S}_u (kPa)
SA (Batuan Keras)	>1500	N/A	N/A
SB (Batuan)	750 sampai 1500	N/A	N/A
SC (Tanah Keras, Sangat Padat dan Batuan Lunak)	350 sampai 750	>50	≥100
SD (Tanah Sedang)	175 sampai 350	15 sampai 50	50 sampai 100

Tabel 3. 6 Klasifikasi Situs

Sumber : SNI-1726-2019

Kelas Situs	$\overline{\boldsymbol{v_s}}$ (m/s)	\overline{N} atau \overline{N}_{ch}	\overline{S}_u (kPa)		
SE (Tanah Lunak)	< 175	<15	< 50		
	 Atau setiap profil tanah yang mengandung lebih dari 3 m tanah dengan karateristik sebagai berikut : 1. Indeks plastisitas, <i>PI</i> > 20 , 2. Kadar air, w ≥ 40% , 3. Kuat geser niralir su < 25 kPa 				
SF (tanah khusus,yang Membutuhkan investigasi geoteknik spesifik dan analisis respons spesifik-situs yang mengikuti 0)	 Setiap profil lapisa atau lebih dari kara Rawan dan berp beban gempa se sangat sensitif, tau Lempung sanga (ketebalan <i>H</i> > 3 i Lempung berplasi 7,5 m dengan indu Lapisan lempung ketebalan <i>H</i> > 35 	n tanah yang met kteristik berikut : ootensi gagal ata perti mudah liku nah tersementasi l at organik da m) tisitas sangat tingg eks plasitisitas PI g lunak/setengah m dengan $\overline{su} > 50$	miliki salah satu u runtuh akibat uifaksi, lempung emah n/atau gambut gi (ketebalan $H >$ > 75) teguh dengan 0 kPa		

Lanjutan Dari Tabel 3.6 Klasifikasi Situs

Dimana nilai \overline{N} dan \overline{N}_{ch} ditentukan dengan perumusan berikut:

$$\overline{N} = \frac{\sum_{i=1}^{n} di}{\sum_{i=1}^{n} \frac{di}{N_{i}}}$$
(3.1)

$$\overline{N}_{ch} = \frac{\sum_{i=1}^{n} di}{\sum_{i=1}^{n} \frac{di}{N_i}}$$
(3.2)

Keterangan:

 \overline{N} = Tahanan standar rata-rata dalam lapisan 30 m paling atas

$$\overline{N}_{ch}$$
 = Tahanan penetrasi standar rata-rata tanah nonkohesif dalam lapisan 30 m paling atas

di = Tebal siatu lapisan tanah atau batuan di dalam lapisan 30 m paling atas

$$\overline{Ni}$$
 = Tahanan penetrasi standar sesuai SNI 4153:2008

Sumber : SNI-1726-2019

4. Penentuan nilai respon spektra

Dalam membuat desain sebuah bangunan gedung, diperlukan penentuan nilai respon spektra pada percepatan periode pendek yaitu 0,2 (Ss) dan nilai respon spektra pada percepatan 1 detik (S₁). Nilai tersebut dapat ditentukan berdasarkan peta SNI-1726-2019 sesuai dengan wilayah atau tempat bangunan didirikan. Berikut adalah peta spektum respon percepatan disajikan pada Gambar 3.1 dan Gambar 3.2.

Gambar 3. 1 Peta Spektrum Respons Percepatan Periode 0,2 Detik (Ss) Sumber : SNI-1726-2019

Gambar 3. 2 Peta Spektrum Respons Percepatan Periode 1 Detik (S₁) Sumber : SNI-1726-2019

Dalam menentukan parameter respons spektra percepatan gempa di permukaan tanah diperlukan faktor amplifikasi pada periode 0,2 detik (Fa) dan periode 1 detik (Fv) yang didapatkan dari hubungan percepatan gempa dengan kelas situs. Berikut adalah nilai-nilai kofisien situs Fa dan koefisien situs Fv yang dapat dilihat pada Tabel 3.7 dan Tabel 3.8.

Kelas	As as periode pendek, T = 0,2 detik, Ss						
Situs	$S_s \leq 0,25$	$S_{S} = 0,5$	$S_{S} = 0,75$	S _S = 1,0	$S_{S} = 1,25$	$S_S\!\geq\!0,\!5$	
SA	0,8	0,8	0,8	0,8	0,8	0,8	
SB	0,9	0,9	0,9	0,9	0,9	0,9	
SC	1,3	1,3	1,2	1,2	1,2	1,2	
SD	1,6	1,4	1,2	1,1	1,0	1,0	
SE	2,4	1,7	1,3	1,1	0,9	0,8	
SF	SS ^(a)						

Tabel 3. 7 Koefisien Situs Fa

Sumber : SNI-1726-2019

Catatan :

- Untuk nilai-nilai antara Ss dapat dilakukan interpolasi linier

Ss^(a) = Situs yang memerlukan investigasi geoteknik spesifik dan analisis respons situs-spesifik

Kelas	Parameter respons spektral percepatan gempa maksimum yang dipertimbangkan risiko-tertarget (MCE _R) terpetakan pada periode 1 detik S1							
Situs	S1 \leq 0,25 S1 = 0,5 S1 = 0,75 S1 = 1,0 S1 = 1,25 S1 \geq 0,5							
SA	0,8	0,8	0,8	0,8	0,8	0,8		
SB	0,8	0,8	0,8	0,8	0,8	0,8		
SC	1,5	1,5	1,5	1,5	1,5	1,4		
SD	2,4	2,2	2,0	1,9	1,8	1,7		
SE	4,2	3,3	2,8	2,4	2,2	2,0		
SF			SS	(a)				

Tabel 3. 8 Koefisien Situs Fv

Catatan :

- Untuk nilai-nilai antara S1 dapat dilakukan interpolasi linier
- Ss^(a) = situs yang memerlukan investigasi geoteknik spesifik dan analisis respons situs-spesifik

Untuk mengetahui parameter respons spektrum percepatan di permukaan tanah pada periode pendek (S_{MS}) dan parameter respons spektrum percepatan di permukaan tanah pada periode 1 detik (S_{M1}) dapat menggunakan Persamaan 3.3 dan Persamaan 3.4 berikut.

$$S_{MS} = Fa \cdot Ss \tag{3.3}$$

$$\mathbf{S}_{\mathrm{M1}} = \mathrm{Fv} \cdot \mathbf{S}_1 \tag{3.4}$$

Keterangan:

Fa = Faktor amplifikasi pada periode pendek, T = 0,2 detik

Fv = Faktor amplifikasi pada periode 1 detik

- Ss = Parameter respons spektral percepatan gempa maksimum yang dipertimbangkan risiko-tertarget (MCE_R) terpetakan pada periode pendek, T = 0,2 detik
- S₁ = Parameter respons spektral percepatan gempa maksimum yang dipertimbangkan risiko-tertarget (MCE_R) terpetakan pada periode 1 detik

Sumber : SNI-1726-2019

Berikutnya nilai S_{MS} dan S_{M1} digunakan untuk mendapatkan nilai spektral desain untuk periode pendek (S_{DS}) dan spektral desain untuk periode 1 detik (S_{D1}) dengan menggunakan Persamaan 3.5 dan Persamaaan 3.6 berikut.

$$S_{DS} = \frac{2}{3} S_{MS}$$
(3.5)

$$S_{D1} = \frac{2}{3} S_{M1}$$
 (3.6)

Keterangan:

SMS= Parameter respons spektral MCE para periode pendekSM1= Parameter respons spektral MCE para periode 1 detik

5. Koefisien risiko terpetakan (C_{RS} dan C_{R1})

Berdasarkan SNI 1726-2019 diatur mengenai koefisien risiko terpetakan, untuk masing-masing C_{RS} dan C_{R1} . C_{RS} adalah Koefisien risiko terpetakan untuk spektrum respon periode pendek. Kemudian C_{R1} adalah Koefisien risiko terpetakan untuk spektrum respon periode 1 detik. Nilai C_{RS} dan C_{R1} dapat dilihat pada Gambar 3.3 dan Gambar 3.4 berikut.

Gambar 3. 3 Peta Koefisien Risiko Terpetakan, Periode Spektrum Respon 0,2 Detik (C_{RS})

Sumber : SNI-1726-2019

Gambar 3. 4 Peta Koefisien Risiko Terpetakan, Periode Spektrum Respon 1 Detik (C_{R1})

6. Kategori desain seismik

Bedasarkan SNI-1726-2019 suaru struktur harus ditetapkan memiliki suatu kategori desain seismik (KDS) dengan mengikuti ketentuan sebagai berikut.

- a. Struktur dengan kategori risiko I, II, atau III yang memiliki nilai $S_1 \ge 0.75$ harus ditetapkan sebagai kategori desain seismik E.
- b. Struktur dengan kategori risiko IV yang memiliki nilai $S_1 \ge 0.75$ harus ditetapkan sebagai kategori desain seismik F.

Semua struktur lainnya harus ditetapkan kategori desain seismiknya berdasarkan kategori risikonya dan parameter respons spektral percepatan desainnya (S_{DS} dan S_{D1}) untuk ditentukan berdasarkan pada Tabel 3.9 dan Tabel 3.10 berikut.

Tabel 3. 9 Kategori Desain Seismik Berdasarkan Parameter ResponsPercepatan Pada Periode Pendek

Niloi C	Kategori Risiko			
Inital SDS	I atau II atau III	IV		
$S_{DS} < 0,167$	А	A		
$0,167 \le S_{DS} < 0,33$	В	C		
$0,33 \le S_{DS} < 0,50$	С	D		
$0,50 \leq S_{DS}$	D	D		

Sumber : SNI-1726-2019

Niloi S-	Kategori Risiko			
	I atau II atau III	IV		
$S_{D1} < 0,067$	А	А		
$0,067 \le S_{D1} < 0,133$	В	С		
$0,133 \le S_{D1} < 0,20$	С	D		
$0,20 \le S_{D1}$	D	D		

Tabel 3. 10 Kategori Desain Seismik Berdasarkan Parameter ResponsPercepatan Pada Periode 1 Detik

- 7. Definisi kategori desain seismik
 - a. Kategori desain seismik A dan B

Bangunan dengan kategori seismik A dan seismik B minimal didesain dengan peraturan desain Struktur Momen Pemikul Biasa (SMPMB) ataupun Sistem Dimding Struktur Biasa (SDSB).

b. Kategori desain seismik C

Bangunan dengan kategori desain seismik C minimal didesain dengan peraturan desain Struktur Momen Pemikul Momen Menengah (SRPMM) ataupun Sistem Dinding Biasa (SDSB).

c. Kategori desain seismik D

Bangunan dengan kategori desain seismik D minimal didesain dengan peraturan desain Struktur Momen Pemikul Momen Khusus (SMPMK) ataupun Sistem Dinding Struktur Khusus (SDSK).

d. Kategori desain sesimik E dan F

Bangunan dengan kategori desain sesimik E dan F harus didesain mengikuti peraturan yang diisyaratkan dikategori desain seismik D.

Berikut adalah pembagian kategori desain sesimik sesuai dengan tingkat risiko kegempaan dapat dilihat pada Tabel 3.11.

Tingkat Risiko Terhadap Gempa	Kategori Desain Seismik	Syarat Desain Minimial
Rendah	A dan B	SRPM B/M/K SDS B/K
Menengah	С	SRPM M/K SDS B/K
Tinggi	D, E, dan F	SRPMK SDSK

Tabel 3. 11 Definisi Syarat Kategori Desain Seismik

Keterangan:

SRPM	= Sistem Rangka Pemikul Momen
SDSK	= Sistem Dinding Struktur Khusus
SDS	= Sistem Dinding Struktur
B ; M ; K	= Biasa ; Menengah ; Khusus

8. Spektrum respon desain

Berdasarkan SNI-1726-2019 diatur apabila spektrum desain diperlukan oleh tata cara ini dan prosedur gerak tanah dari spesifik-situs tidak digunakan, maka kurva spektrum harus dikembangkan dengan mengacu pada Gambar 3.3 dan mengikuti ketentuan berikut.

a. Untuk periode yang lebih kecil dari T0, spektrum respons percepatan desain, Sa, harus diambil dari persamaan berikut.

$$S_a = S_{DS} \left(0.4 + 0.6 \frac{T}{T_0} \right)$$
(3.7)

- b. Untuk periode lebih besar dari atau sama dengan T₀ dan lebih kecil dari atau sama dengan T_s, spektrum respons percepatan desain, S_a, dama dengan S_{DS}.
- c. Untuk periode lebih besar dari T_s tetapi lebih kecil dari atau sama dengan T_L, respons spektral percepatan desain S_a, diambil berdasarkan persamaan berikut.

$$S_a = \frac{S_{D1}}{T}$$
(3.8)

 d. Untuk periode lebih besar dari T_L, respons spektral percepatan desain, S_a, diambil berdasarkan persaaam berikut.

e.
$$S_a = \frac{S_{D1T_L}}{T^2}$$
 (3.9)

Keterangan:

 S_{DS} = Parameter respons spektral percepatan desain pada periode pendek

- S_{D1} = Parameter respons spektral percepatan desain pada periode 1 detik
- T = Periode getar fundamental struktur

$$T_0 = 0.2 \frac{S_{D1}}{S_{DS}}$$
(3.10)

- $T_s = \frac{s_{D1}}{s_{DS}}$ (3.11)
- T_L = peta transisi periode panjang, nilai ditentukan beredasarkan peta transisi periode panjang T_L sebagai berikut.

Gambar 3. 5 Peta Transisi Periode Panjang (TL)

Sumber : SNI-1726-2019

9. Sistem dan parameter struktur

Berdasarkan SNI-1726-1019 pada sistem pemikul gaya seismik yang berbeda diizinkan untuk digunakan menahan gaya seismik di masing-masing arah kedua sumbu orthogonal struktur. Bila sistem yang berbeda digunakan, masing - masing nilai R, C_d, dan Ω_0 harus diterapka pada setiap sistem, termasuk batasan sistem struktur pada Tabel 3.12 berikut.

	Sistem Pemikul Gaya Seismik	Koefisien Modifikasi Respons, <i>R</i> ^a	Faktor Kuat Lebih Sistem $\Omega_0^{\rm b}$	FaktorPembesaranDefleksi, C_d^c	Batas dai St Kateg B	an Si n Bata trukti gori D C	stem asan ' ur, <i>h_n</i> Desain D	Strul Tingg (m) ^d Seist E	stur gi mik F
C.	Sistem rangka pemikul momen								
1.	Rangka beton bertulang pemikul momen khusus	8	3	5,5	TB	TB	TB	TB	TB
2.	Rangka beton bertulang pemikul momen menengah	5	3	4,5	TB	TB	TI	TI	TI
3.	Rangka beton bertulang pemikul momen biasa	3	3	2,5	TB	TI	TI	TI	TI

Tabel 3. 12 Faktor R, C_d , dan Ω_0 Untuk Sistem Penahan Gaya Gempa

Keterangan:

a

 Koefisien modifikasi respons, *R*, untuk penggunaan pada keseluruhan standar. Nilai *R* mereduksi gaya ke level kekuatan bukan pada level tegangan izin.

b

= Jika nilai pada table faktor kuat lebih Ω_0 , lebih besar atau sama dengan 2,5, Ω_0 maka diizinkan untuk direduksi setangah untuk

struktur dengan diafragma fleksibel.

= Faktor pembesar simpangan lateral, C_d , untuk penggunaan dalam 0, 0, dan 0.

10. Periode fundamental pendekatan

с

d

Nilai peride fundamental struktur (T) dapat diketahui melalui hasil analisis struktur yang ditinjau. Akan tetapi dalam SNI-1726-2019 diatur nilai periode fundamental yang digunakan sebagai perhitungan tidak boleh melebihi dari batas atas periode fundamental pendekatanyang didapatkan dari perkalian antara koefisien periode atas (C_u) dari Tabel 3.13 dengan periode pendekatan (T_a). sebagai alternative dalam melakukan analisis untuk menentukan periode fundamental struktur, T, diizinkan secara langsung menggunakan periode bangunan pendekatan, T_a. Periode pendekatan ditentukan dari persamaan 3.12 berikut.

$$T_a = C_t \cdot h_n^x \tag{3.12}$$

Keterangan:

 h_n merupakan ketinggian struktur bangunan gedung dengan satuan meter diatas dasar sampai tingkat tertinggi struktur, dan koefisien C_t dan x ditentukan dari Tabel 3.14.

Parameter Percepatan Respons Spektral Desain Pada 1 Detik, S _{DS}	Koefisien Cu
$\geq 0,4$	1,4
0,3	1,4
0,2	1,5
0,15	1,6
$\leq 0,1$	1,7

Tabel 3. 13 Koefisien Untuk Batas Atas Pada Periode Yang Dihitung

Sumber : SNI-1726-2019

Tipe Struktur	Ct	X
Sistem rangka pemikul momen		
dimana rangka memikul 100%		
gaya seismik yang disyaratkan dan		
tidak dilingkupi atau dihubungkan		
dengan komponen yang lebih kaku		
dan akan mencegah rangka dari		
defleksi jika dikenai gaya seismik:		
- Rangka baja pemikul	0,0772	0,8
momen		
- Rangka beton pemikul	0,0466	0,9
momen		
Rangka baja dengan bresing	0,0731	0,75
eksentris		
Rangka baja dengan bresing	0,0731	0,75
terkekang terhadap tekuk		
Semua sistem struktur lainnya	0,0488	0,75

Tabel 3. 14 Nilai Parameter Periode Pendekatan Ct dan x

11. Gaya geser dasar seismik

Dalam SNI-1726-2019 gaya geser dasar seismik, V, dalam arah yang ditetapkan harus ditentukan sesuai dengan Persamaan 3.13 berikut.

$$\mathbf{V} = \mathbf{C}_{\mathrm{s}} \mathbf{x} \mathbf{W} \tag{3.13}$$

Keterangan:

V = Gaya geser dasar seismik

 C_s = Koefisien respons seismik

W = Berat seismik efektif

Untuk nilai koefisien respons seismik (C_s) dapat ditentukan dengan Persamaan 3.14 dengan nilainya tidak perlu melebihi nilai yang dihasilkan oleh Persamaan 3.15 dan Persamaan 3.16 dan juga nilai koefisien respons seismik (C_s) tidak boleh kurang dari nilai yang dihasilkan oleh persamaaan 3.17. Sebagai tambahan, untuk struktur yang berlokasi di daerah dengan nilai S₁ sama dengan atau lebih besar dari 0,6g, maka C_s harus tidak kurang dari Persamaan 3.18.

$$Cs = \frac{S_{DS}}{\frac{R}{Ie}}$$
(3.14)

Untuk $T \leq T_L$

$$Cs = \frac{S_{D1}}{T(\frac{R}{Ie})}$$
(3.15)
Untuk T > Tr

Chuck
$$\Gamma > \Gamma_L$$

Cs $= \frac{S_{D1}T_L}{T^2(\frac{R}{Ie})}$ (3.16)

Cs tidak boleh kurang dari

$$Cs = 0.044S_{DS} x \text{ Ie} \ge 0.001 \tag{3.17}$$

$$Cs = \frac{0.5S_1}{\binom{R}{Ie}}$$
(3.18)

12. Distribusi vertikal gaya seismik

Pendistribusian gaya seismik lateral (F_x) pada setiap lantai dapat ditentukan dengan persamaan 3.19, dengan menggunakan koefisien faktor distribusi vertikal (C_{vx}) dengan persamaan 3.20 berikut.

$$Fx = Cvx x V$$
(3.19)

$$Cvx = \frac{w_x h_x^k}{\sum_{i=1}^{n} w_i h_i^k}$$
(3.20)

Keterangan:

 C_{vx} = Faktor distribusi vertikal

 w_i dan w_x = Bagian berat seismik efektif total struktur (W) yang ditempatkan atau dikenakan pada tingkat i atau x (m)

 $h_i dan h_x = Tinggi dari dasar sampai tingkat i atau x (m)$

- k = Eksponen yang terkait dengan periode struktur dengan nilai sebagai berikut:
 - Untuk struktut dengan T \leq 0,5 detik, k = 1
 - Untuk struktur dengan T \geq 2,5 detik, k = 2
 - Untuk struktur dengan 0.5 < T < 2.5 detik, k = 2 ditentukan dengan interpolasi linear antara 1 dan 2

3.4 Analisis Beban Gempa

Gaya geser dasar seismik ialah nilai total dari gaya lateral yang diakibatkan gempa yang diterima oleh bangunan. Pada penelitian ini gaya lateral akibat gempa dihitung dengan metode statik ekivalen untuk mendapatkan nilai gaya geser dasar statik dan metode respon spektrum untuk mendapatkan gaya geser dasar dinamik. Berdasarkan SNI 1726-2019 Pasal 7.9.1.4.1, ada ketentuan yang harus dipenuhi yaitu apabila nilai kombinasi respon untuk gaya geser dasar dinamik kurang dari 100% gaya geser dasar statik, maka gaya geser dasar dinamik perlu dikalikan dengan faktor skala (FS). Nilai faktor skala didapatkan dari persamaan berikut.

$$FS = \frac{V}{Vt}$$
(3.21)

Keterangan :

V = Gaya geser statik hasil dari perhitungan statik ekivalen

Vt = Gaya geser dinamik dari respon spektrum

3.5 Analisis Statik Non-Linear (Pushover Analysis)

Utomo (2012) dalam Nugraha (2021) menjelaskan bahwa analisis *pushover* merupakan suatu cara analisis statik non-linear, yang mana pengaruh gempa rencana terhadap struktur bangunan gedung dianggap sebagai beban-beban statik yang menangkap pada pusat massa masing-masing lantai, yang nilainya ditingkatkan secara berangsur-angsur sampai melampaui pembebanan, yang kemudian menyebabkan terjadinya pelelehan (sendi plastis) pertama di dalam struktur bangunan gedung, kemudian dengan peningkatan beban lebih lanjut mengalami perubahan bentuk pasca elastis yang besar sampai mencapai kondisi plastis.

Metode analisis ini dilakukan dengan cara memberikan suatu pola beban lateral statik pada struktur, yang kemudian secara bertahap beban tersebut ditingkatkan dengan faktor pengali sampai satu target perpindahan lateral dari suatu titik acuan tercapai. Dalam proses analisis *pushover*, struktur didorong sampai mengalami leleh di satu titik atau lebih lokasi pada struktur. Kemudian pada kurva kapasitas dari hasil analisis *pushover* akan memperlihatkan suatu kondisi linear sebelum mencapai kondisi leleh dan berikutnya berperilaku non-linear.

Dewobroto (2006) dalam Muntafi (2008) menjelaskan bahwa analisis *pushover* dapat digunakan sebagai alat bantu perencanaan bangunan tahan gempa, asalkan menyesuaikan dengan keterbatasan yang ada, yaitu:

- 1. Hasil analisis *pushover* masih berupa satuan pendekatan, dikarenakan bagaimanapun perilaku gempa yang sebenarnya adalah bersifat bolak-balik melalui suatu siklus tertentu, sedangkan sifat pembebanan pada analisis *pushover* adalah statik monotonik.
- 2. Pemilihan pola beban lateral yang digunakan dalam analisis adalah sangat penting.
- 3. Untuk membuat model analisis non-linear akan lebih rumit dibandingkan model analisis linear. Analisis non-linear harus memperhitungkan karakteristik inelastik beban deformasi dari elemen-elemen yang penting dan efek P- Δ .

3.5.1 Kurva Kapasitas

Dalam metode analisis statis *pushover* non-linear didapatkan hasil suatu bentuk kurva yang disebut kurva kapasitas. Nugraha (2021) menjelaskan bahwa kurva kapasitas menggambarkan kekuatan dari struktur yang besarnya sangat tergantung pada kemampuan deformasi dari masing-masing komponen struktur. Kemudian dalam kurva kapasitas memperlihatkan hubungan antara gaya geser dasar (*Base Shear*) dan simpangan atap (*Roof Displacement*). Ilustrasi kurva kapasitas disajikan pada Gambar 3.7.

Gambar 3.7 Kurva Kapasitas

Sumber : ATC-40 Volume I Figure 8-1 (1996)

1. Konversi kurva kapasitas dalam format *Acceleration-Displacement Response* Spectra (ADRS)

Untuk melakukan perubahan atau konversi kurva kapasitas ke dalam format *Acceleration-Displacement Response Spectra* (ADRS) digunakan suatu persamaan pengubah. Persamaan pengubah yang digunakan adalah sebagai berikut.

$$PF_{1} = \left[\frac{\sum_{i=1}^{N} (w_{i} \phi_{i1})/g}{\sum_{i=1}^{N} (w_{i} \phi_{i1}^{2})/g}\right]$$
(3.22)

$$\alpha = \frac{\left[\sum_{i=1}^{N} (w_i \phi_{i1})/g\right]^2}{\left[\sum_{i=1}^{N} (w_i /g)\right] \left[\sum_{i=1}^{N} (w_i \phi_{i1})^2/g\right]}$$
(3.23)

$$Sa = \frac{V/W}{\alpha_1} \tag{3.24}$$

$$Sd = \frac{\Delta_{roof}}{PF_1 \phi_{roof.1}} \tag{3.25}$$

Keterangan:

- PF_1 = faktor partisipasi modal pada mode pertama
- α_1 = modal koefisien massa pada mode pertama
- $w_i/g = massa pada tingkat ke-i$
- $Ø_{i1}$ = amplitude mode-1 pada tingkat ke-i
- V =gaya geser dasar

 $\Delta_{\text{roof}} = roof displacement$

Sa = Spectral acceleration

Sd = Spectral displacement

Pada proses merubah kurva kapasitas ke format *Acceleration-Displacement Response Spectra* (ADRS) perhitungan pertama yang dilakukan adalah mencari nilai factor partisipasi modal (PF₁) dan modal koefisien massa (α_1) menggunakan persamaan 3.21 dan 3.22, kemudian setiap poin pada kurva kapasitas, V, Δ_{roof} digunakan untuk dikonversikan ke poin *spectral acceleration* (Sa) dan *Spectral Displacement* (Sd) menggunakan persamaan 3.24 dan 3.25. Berikut adalah modifikasi kurva kapasitas menjadi kurva kapasitas spektrum dengan format ADRS, dapat dilihat pada Gambar 3.8.

a. Kurva Kapasitas (Format standar) b. Spektrum Kapasitas (format ADRS)

Gambar 3. 8 Modifikasi Kurva Kapasitas Menjadi Spektrum Kapasitas Dengan Format ADRS

Sumber : ATC-40 Volume I Figure 8-5 (1996)

2. Konvensi kurva respon spektrum (*demand spectrum*) ke format Acceleration-Displacement Response Spectra (ADRS)

Respon spektrum (*demand spectrum*) perlu dirubah ke format *Acceleration-Displacement Response Spectra* (ADRS) agar dapat dibandingkan dengan kurva kapasitas, sehingga diperlukan persamaan untuk melakukan perubahan. Berikut adalah persamaan pengubah yang digunakan.

$$Sd = \frac{T^2}{4\pi^2} Sa(g)$$
 (3.26)

Atau

$$T = 2\pi \sqrt{\frac{sd}{sa}} \tag{3.27}$$

Keterangan :

Sa = spektra percepatan (Spectral acceleration) (m)

Sd = spektra perpindahan (Spectral displacement) (g)

 $g = \text{percepatan gravitasi (9,81 m/s^2)}$

T = periode getar fundamental (dt)

Berikut adalah perubahan format dari respon spektrum ke format *Acceleration-Displacement Response Spectra* (ADRS), dapat dilihat pada Gambar 3.9.

a. *Response Spectrum* (Format standar) b. *Response Spectrum* (format ADRS)

Gambar 3. 9 Modifikasi Format Respon Percepatan Ke Format ADRS

Sumber : ATC-40 Volume I Figure 8-6 (1996)

3.5.2 Titik kinerja (*Performance Point*)

Performance point merupakan titik dimana kurva kapasitas (*capacity curve*) berpotongan dengan kurva respon spectrum (*demand spectrum*) (ATC-40, 1996). Afandi (2010) menjelaskan bahwa pada *performance point* dapat diperoleh informasi mengenai periode bangunan dan redaman efektif akibat perubahan kekakuan struktur setelah terjadi sendi plastis. Berdasarkan informasi tersebut respon-respon struktur lainnya seperti nilai simpangan tingkat dan posisi sendi plastis dapat diketahui. Berikut adalah ilustrasi *performance point* yang disajikan Gambar 3.10.

Spectral Displacement, inches

Gambar 3. 10 Penentuan Performance Point

Sumber : ATC-40 Volume I Figure 8-28 (1996)

Nugraha (2021) menjelaskan bahwa titik kinerja (*performance point*) adalah perpotongan antara *capacity spectrum* dan *demand spectrum*, dimana titik kinerja (*performance point*) merupakan representasi dari dua kondisi yaitu;

- 1. Karena terletak pada spektrum kapasitas, merupakan representasi kekuatan struktur pada suatu nilai perpindahan tertentu, dan
- 2. Karena terletak pada kurva *demand*, menunjukkan bahwa kekuatan struktur dapat memenuhi *demand* atau kebutuhan beban yang diberikan.

3.6 Metode ATC-40

Applied Technology Council (ATC-40) merupakan salah satu pedoman yang digunakan dalam menentukan level kinerja suatu bangunan pada saat terjadi gempa. Level kinerja tersebut dilihat berdasarkan kerusakan yang terjadi pada bangunan. Kerusakan-kerusakan yang terjadi dikelompokkan dalam batas-batas kondisi kerusakan yang diperbolehkan pada bangunan sesuai dengan level kinerja bangunan tersebut. Dalam ATC-40 diatur mengenai standar level kinerja dari struktur bangunan dan juga standar level kinerja dari non-struktur bangunan, gabungan dari level kinerja struktur dan non-struktur bangunan menggambarkan level dari kinerja bangunan secara keseluruhan terhadap gempa.

3.6.1 Batasan Deformasi (Drift) Metode ATC-40

Pada metode ATC-40 diatur mengenai batasan deformasi (*drift*), deformasi (*drift*) digunakan untuk melakukan pengecekan terhadap deformasi lateral pada saat *performance point*. Berikut deformasi limit pada berbagai tingkat kinerja berdasarkan ATC-40 (1996), dapat dilihat pada Tabel 3.15 berikut.

	Performance Level					
Interstory Drift Limit	Immediate Occupancy	Damage Control	Life Safety	Structural Stability		
Maximum	0,01	0,01 - 0,02	0,02	0,33 V ₁ /P ₁		
Total Drift						
Maximum	0,005	0,005 -	No Limit	No Limit		
Inelastic Drift		0,0015				

Tabel 3. 15 Deformation Limits

Sumber : Table 11-2 ATC-40 Volume I (1996)

Pada table 3.15, simpangan total maksimum (*maximum total drift*) merupakan simpangan antar tingkat (*interstory drift*) pada titik kinerjanya (*performance point displacement*) terhadap tinggi total bangunan. Kemudian simpangan inelastik maksimum (*maximum inelastic drift*) merupakan proporsi simpangan total diluar titik leleh efektif.

3.6.2 Level Kinerja Struktur Metode ATC-40

Pada metode ATC-40 (1996) terdapat beberapa level atau tingkatan kinerja struktur. Tingkatan kinerja tersebut menggambarkan kondisi batas-batas kerusakan yang diperbolehkan pada bangunan ketika terjadi gempa. Kondisi batas-batas yang dimaksud menggambarkan kerusakan fisik dari bangunan, ancaman keselamatan yang dapat terjadi pada penghuni bangunan, dan penanganan terhadap bangunan pada kondisi pasca terjadi gempa. Ilustrasi keruntuhan gedung dan level kinerja dapat dilihat pada Gambar 3.11.

Gambar 3. 11 Ilustrasi Keruntuhan Gedung dan Level Kinerjanya Sumber : ATC-40 Volume I (1996)

Pada ilustrasi Gambar 3.11, terlihat pada kurva kapasitas terdapat simbol bulatan (•) yang merupakan level kinerja struktur. Level kinerja struktur mewakili kejadian penting pada bangunan selama gempa berlangsung. Kejadian penting tersebut ialah pelelehan pertama pada salah satu elemen struktur dan kerusakan tertentu pada elemen struktur, contohnya adalah kegagalan geser pada kolom hingga keruntuhan total pada sistem.

Berikut adalah level atau tingkatan kinerja struktur bangunan tahan gempa menurut ATC-40, yang disajikan pada Tabel 3.16.

Building Performance Levels								
		Structure Performance Levels						
Nonstructural Performance Levels	SP-1 Immediate Occupancy	SP-2 Damage Control	SP-3 Life Safety	SP-4 Limited Safety (Range)	SP-5 Structural Stability	SP-6 Not Considered		
NP-A Operational	l-A Operational	2-A	NR	NR	NR	NR		
NP-B Immediate Occupancy	1-B Immediate Occupancy	2-B	3-B	NR	NR	NR		
NP-C Life Safety	1-C	2-C	3-C Life Safety	<i>4-C</i>	5-C	6-C		
NP-D Hazard Reduced	NR	2-D	3-D	4-D	5-D	6-D		
NP-E Not Considered	NR	NR	3-Е	<i>4-E</i>	5-E Structural Stability	Not Applicable		

Tabel 3. 16 Level Kinerja Struktur Berdasarkan ATC-40

Sumber : ATC-40 Volume I (1996)

Berikut adalah penjelasan lebih lanjut mengenai kinerja struktur menurut ATC-40, yang dapat dilihat pada Tabel 3.17.

Tingkat Kinerja	Kondisi Bangunan Pasca Gempa	Kategori Bangunan
SP-1	Bangunan aman ketika terjadi	Struktur bangunan yang
Immediate	gempa, risiko korban jiwa dan	mutlak difungsikan
Occupancy	kegagalan struktur tidak terlalu	sebagai fasilitas
(IO)	berarti, gedung tidak mengalami	penyelamat,
	kerusakan berarti dan dapat segera	penyimpanan barang
	difungsikan kembali	berbahaya atau struktur
		bangunan yang dapat
		mempengaruhi ekonomi
		nasional. Sebagai
		contoh: gudang bahan
		bakar atau bahan
		berbahaya, rumah sakit.

Tabel 3. 17 Tingkat Kinerja dan Kondisi Bangunan Pasca Terjadi Gempa

Lanjutan Tabel 3.17 Tingkat Kinerja dan Kondisi Bangunan Pasca Terjadi Gempa

Tingkat Kinerja	Kondisi Bangunan Pasca Gempa	Kategori Bangunan
SP-2 Damage	Transisi antara SP-1 dan SP-3.	Struktur untuk bangunan
Control (DC)	Bangunan masih mampu menahan	bersejarah, bangunan
	gempa yang terjadi, risiko korban	yang menjadi tempat
	jiwa manusia sangat rendah.	penyimpanan barang-
		barang berharga.
SP-3 Life	Bangunan mengalami kerusakan	Fasilitas-fasilitas umum,
Safety	tetapi tidak diperkenankan	gedung perkantoran,
	mengalami keruntuhan yang	perumahan dan lain
	menyebabkan korban jiwa (korban	sebagainya.
	jiwa sangat rendah). Setelah terjadi	
	gempa, maka bangunan dapat	
	difungsikan kembali setelah	
	dilakukan perbaikan komponen	
	yang mengalami kerusakan baik	
	struktural maupun non-struktural.	
SP-4 Limited	Transisi antara SP-3 dan SP-4.	-
Safety	Bukan merupakan tingkatan serta	
	tidak memperhitungkan aspek	
	ekonomis dalam melakukan	
	perbaikan pasca terjadi gempa.	

Lanjutan Tabel 3.17 Tingkat Kinerja dan Kondisi Bangunan Pasca Terjadi Gempa

Tingkat Kinerja	Kondisi Bangunan Pasca Gempa	Kategori Bangunan
SP-5 Strctural	Struktur mengalami kerusakan	-
Stability (SS)	pasca terjadi gempa hingga	
	diambang keruntuhan total maupun	
	parsial. Komponen struktur	
	penahan beban gravitasi masih	
	bekerja meskipun kestabilannya	
	sudah diambang keruntuhan.	
SP-6 Not	Bukan merupakan tingkatan	-
Considered	kinerja struktur tetapi hanya untuk	
	melakukan evaluasi seismik non-	
	struktural atau retrofit.	

Sumber : BAB 3.2 ATC-40 Volume I (1996)

3.7 Mekanisme Keruntuhan

3.7.1 Mekanisme Keruntuhan Berdasarkan ATC-40

Berdasarkan ATC-40 terdapat dua tipe mekanisme keruntuhan yang dapat terjadi pada analisis statik. Mekanisme tersebut adalah *beam sway mechanism* dan *column sway mechanism*, untuk lebih jelasnya dapat dilihat pada penjelasan berikut ini.

1. *Beam sway mechanism*, pada mekanisme ini pembentukan sendi plastis terjadi pada ujung-ujung elemen balok (Gambar 3.12).

Gambar 3. 12 Mekanisme Keruntuhan Beam Sway Mechanism

Sumber: ATC-40 Volume I Figure 9-4 (1996)

2. *Column sway mechanism*, pada mekanisme ini pembentukan sendi plastis terjadi pada ujung-ujung elemen kolom (Gambar 3.13).

Gambar 3. 13 Mekanisme Keruntuhan Column Sway Mechanism

Sumber: ATC-40 Volume I Figure 9-4 (1996)

Syahira (2023) Menjelaskan dalam perencanaannya, mekanisme keruntuhan yang diharapkan adalah *beam sway mechanism*. Hal ini dikarenakan beberapa alasan yaitu sebagai berikut:

1. Pada *beam sway mechanism*, jumlah sendi plastis terbentuk dalam banyak elemen sehingga energi yang dipancarkan semakin banyak pula,

- Pada *column sway mechanism*, sendi plastis hanya akan terbentuk pada ujungujung kolom pada lantai satu saja, sehingga pemancaran energi hanya terjadi pada sejumlah kecil elemen, dan
- Daktilitas kurvatur yang harus dipenuhi oleh balok pada umumnya jauh lebih mudah dipenuhi daripada kolom yang sering kali memiliki daktilitas yang terbatas akibat besarnya gaya aksial tekan yang bekerja.
- 3.7.2 Sendi Plastis (*Hinge*)

Marianda (2016) menjelaskan struktur gedung apabila menerima beban pada tingkatan tertentu akan terjadi sendi plastis (*hinge*) pada balok dan kolom, sendi plastis tersebut merupakan bentuk ketidakmampuan elemen struktur (balok dan kolom) menahan gaya dalam. Perencanaan suatu bangunan harus sesuai dengan konsep desain *strong column weak beam*, dimana kolom didesain lebih kuat daripada balok.apabila terjadi suatu keruntuhan struktur, maka yang akan runtuh lebih awal adalah balok bukan kolom, hal ini dilakukan untuk menghindari struktur bangunan yang langsung hancur secara keseluruhan.

Pada analisis *pushover* tipe sendi yang digunakan pada balok dimasukkan pada penampang daerah tumpuan balok, yang mana merupakan lokasi sendi diharapkan terjadi. Pada balok tipe sendi menggunakan sendi M3, yang berarti balok efektif menahan momen dalam arah sumbu kuat (sumbu lokal-3). Berikut adalah ilustrasi posisi sumbu lokal pada balok struktur dapat dilihat pada Gambar 3.14.

Gambar 3. 14 Posisi Sumbu Lokal Balok Struktur

Sumber : Dewobroto (2006)

Kemudian untuk kolom tipe sendi yang digunakan adalah tipe sendi P-M2-M3, yang berarti sendi plastis terjadi akibat interaksi gaya aksial (P) dan momen (M) pada sumbu lokal 2 dan 3. Dalam penelitian ini, kolom yang digunakan berbentuk persegi dengan tulangan kolom yang tersebar pada keempat sisisnya secara merata, sehingga setiap kolom bangunan ditinjau memiliki momen sumbu lokal 2 dan lokal 3 dengan besar kapasitas momen yang sama. Berikut adalah ilustrasi posisi sumbu lokal pada kolom struktur dapat dilihat pada Gambar 3.15.

Gambar 3. 15 Posisi Sumbu Lokal Kolom Struktur

Sumber : Dewobroto (2006)

Posisi peletakan sendi plastis pada balok terletak pada ujung-ujung tepi panjang bersih balok. Posisi 0 menyatakan posisi awal dari panjang bersih dari balok, kemudian posisi 1 menyatakan posisi akhir dari panjang bersih dari balok. Berikutnya pada kolom peletakan sendi plastis juga sama, yaitu pada ujung-ujung panjang bersih kolom. Posisi 0 menyatakan posisi awal dari panjang bersih kolom, kemudian pada posisi 1 menyatakan posisi akhir dari panjang bersih kolom. Posisi peletakan sendi plastis secara lebih detail disajikan pada Gambar 3.16.

Gambar 3. 16 Peletakan Sendi Plastis (Plastic Hinge) Pada Balok dan Kolom

BAB IV METODOLOGI PENELITIAN

4.1 Objek Penelitian

Pada penelitian ini objek yang dianalisis ialah Gedung Multazam yang berada dalam kawasan asrama Haji Provinsi Lampung. gedung tersebut memiliki tingkatan sebanyak 5 lantai dengan tinggi total bangunan yaitu 21,3 m. Denah gedung dan potongan gedung dapat dilihat pada Gambar 4.1 dan Gambar 4.2 berikut.

Sumber : Data Shop Drawing 2018

Gambar 4. 2 Denah Potongan Bangunan Gedung Multazam

Sumber : Data Shop Drawing 2018

4.2 Data Bangunan

Pada penelitian ini data yang digunakan adalah data *Shop Drawing* data tersebut didapat dari PT. Pandu Persada selaku konsultan perencana proyek. Data yang didapat dari *Shop Drawing* adalah sebagai berikut.

1. Mutu beton

a.	f'c	= 25 MPa
b.	Modulus Elastisitas (Ec)	$= 4700$, $\sqrt{f'c} = 23500$ MPa

- 2. Mutu baja tulangan
 - a. Untuk baja dengan diameter $\geq 10~{\rm mm}$ menggunakan baja dengan BJTD 40, dengan Fy = 400 N/mm²
 - b. Untuk baja dengan diameter = 12 mm menggunakan baja dengan BJTP 24, dengan Fy = 240 N/mm²

- 3. Dimensi elemen struktur
 - a. Kolom

Berikut ini adalah dimensi tiap tipe kolom dari bangunan gedung yang disajikan pada Tabel 4.1.

No.	Lantai	Tipe Kolom	Dimensi (mm)	Jumlah Tulangan	
1		K1	600 x 600	16 D25	
2		K2	600 x 600	16 D25	
3	Lanta: 1	K3	Bentuk L	8 D22	
4	Lantal I	K4	150 x 750	8 D19	
5		K5	150 x 750	8 D16	
6		K7	450 x 450	8 D19	
7		K1	600 x 600	16 D25	
8		K2	600 x 600	16 D25	
9	Lantai 2	K3	Bentuk L	8 D22	
10		K4	150 x 750	8 D19	
11		K5	150 x 750	8 D16	
12		K1	550 x 550	14 D25	
13		K2	550 x 550	14 D25	
14	Lantai 3	K3	Bentuk L	8 D22	
15		K4	150 x 750	8 D19	
16		K5	150 x 750	8 D16	
17		K1	550 x 550	14 D25	
18		K2	550 x 550	14 D25	
19	Lantai 4	K3	Bentuk L	8 D19	
20		K4	150 x 750	8 D16	
21		K5	150 x 750	8 D16	
22		K1	500 x 500	12 D22	
23	Lontoi 5	K2	500 x 500	12 D22	
24	Lantal J	K3	Bentuk L	8 D19	
25		K4	150 x 750	8 D16	
26		K1	500 x 500	12 D22	
27	Lontoi Aton	K3	Bentuk L	8 D19	
28	Lanital Atap	K4	150 x 750	8 D16	
29		K6	300 x 400	8 D16	

Tabel 4. 1 Dimensi dan Tipe Kolom

Sumber : Data Shop Drawing 2018

b. Balok

Berikut dimensi tiap balok sesuai tipe dapat dilihat pada Tabel 4.2.

	Lontoi	Tipe	Dimensi (mm)	Tum	ipuan	Lapangan	
No.	Lantai	Balok		Latak	Jumlah	Latak	Jumlah
				Tulangan	Tulangan	Tulangan	Tulangan
				Atas	7 D22	Atas	4 D22
1		B2-1	350 x 700	Tengah	4 D12	Tengah	4 D22
				Bawah	4 D22	Bawah	6 D22
				Atas	7 D22	Atas	4 D22
2		B2-2	350 x 550	Tengah	2 D12	Tengah	2 D22
				Bawah	4 D22	Bawah	4 D22
	Lantai 2	B2-3		Atas	5 D19	Atas	3 D19
3			250 x 550	Tengah	2 D10	Tengah	2 D10
				Bawah	3 D19	Bawah	5 D19
			250 x 400	Atas	5 D19	Atas	3 D19
4		B2-4		Tengah	2 D10	Tengah	2 D10
				Bawah	3 D19	Bawah	3 D19 + 2 D16
				Atas	6 D19	Atas	4 D19
5		B2-5	300 x 650	Tengah	2 D10	Tengah	2 D10
				Bawah	4 D19	Bawah	6 D19
				Atas	4 D22	Atas	4 D22
6		B2-6	250 x 450	Tengah	2 D22	Tengah	2 D22
				Bawah	3 D19	Bawah	3 D19
				Atas	5 D19	Atas	5 D19
7		B2-7	250 x 450	Tengah	2 D10	Tengah	2 D10
				Bawah	3 D19	Bawah	3 D19

Tabel 4. 2 Dimensi dan Tipe Balok

	T / •	Tipe	Dimensi (mm)	Tumpuan		Lapangan	
No.	Lantai	Balok		Latak	Jumlah	Latak	Jumlah
				Tulangan	Tulangan	Tulangan	Tulangan
				Atas	3 D16	Atas	2 D16
8		B2-8	200 x 400	Tengah	2 D10	Tengah	2 D10
				Bawah	2 D16	Bawah	3 D16
				Atas	4 D19	Atas	4 D19
9		B2-9	250 x 400	Tengah	2 D10	Tengah	2 D10
				Bawah	4 D19	Bawah	4 D19
			300 x 600	Atas	4 D19 + 2 D16	Atas	4 D19
10		B2-10		Tengah	2 D10	Tengah	2 D10
				Bawah	4 D19	Bawah	4 D19 + 2 D16
			1 250 x 450	Atas	6 D16	Atas	3 D16
11		B2-11		Tengah	2 D10	Tengah	2 D10
				Bawah	3 D16	Bawah	5 D16
				Atas	6 D22	Atas	6 D22
12		B2-12	250 x 450	Tengah	2 D12	Tengah	2 D12
				Bawah	3 D19	Bawah	3 D19
				Atas	3 D16	Atas	3 D16
13		B2-13	200 x 400	Tengah	2 D10	Tengah	2 D10
				Bawah	3 D16	Bawah	3 D16
	Lontoi			Atas	7 D22	Atas	4 D22
14	Lantai 3	B3-1	350 x 700	Tengah	4 D12	Tengah	4 D12
				Bawah	4 D22	Bawah	6 D22

Lanjutan Dari Tabel 4.2 Dimensi dan Tipe Balok

		Tipe	Dimensi	Tumpuan		Lapangan	
No.	Lantai	Balok	(mm)	Latak Tulangan	Jumlah Tulangan	Latak Tulangan	Jumlah Tulangan
				Atas	7 D22	Atas	4 D12
15		B3-2	350 x 550	Tengah	2 D12	Tengah	4 D12
				Bawah	4 D22	Bawah	4 D22
				Atas	5 D19	Atas	3 D19
16		B3-3	250 x 550	Tengah	2 D10	Tengah	2 D10
				Bawah	3 D19	Bawah	5 D19
				Atas	5 D19	Atas	3 D19
17		B3-4	250 x 400	Tengah	2 D10	Tengah	2 D10
				Bawah	3 D19	Bawah	3 D19 + 2 D16
			300 x 650	Atas	6 D19	Atas	4 D19
18		B3-5		Tengah	2 D10	Tengah	2 D10
				Bawah	4 D19	Bawah	6 D19
		B3-6	250 x 450	Atas	4 D22	Atas	4 D22
19				Tengah	2 D12	Tengah	2 D12
				Bawah	3 D19	Bawah	3 D19
				Atas	5 D19	Atas	5 D19
20		B3-7	250 x 450	Tengah	2 D12	Tengah	2 D12
				Bawah	3 D19	Bawah	3 D19
				Atas	3 D16	Atas	2 D16
21		B3-8	200 x 400	Tengah	2 D10	Tengah	2 D10
				Bawah	2 D16	Bawah	3 D16
22		B3-9	250 x 400	Atas	4 D19	Atas	4 D19
		В3-9	-9 250 x 400	Tengah	2 D10	Tengah	2 D10

Lanjutan Dari Tabel 4.2 Dimensi dan Tipe Balok

	.	Tipe	Dimensi	Tum	ipuan	Lapangan	
No.	Lantai	Balok	(mm)	Latak	Jumlah	Latak	Jumlah
				Tulangan	Tulangan	Tulangan	Tulangan
				Bawah	4 D19	Bawah	4 D19
				Atas	7 D22	Atas	4 D22
23		B4-1	350 x 700	Tengah	4 D12	Tengah	4 D12
				Bawah	4 D22	Bawah	6 D22
				Atas	7 D22	Atas	4 D12
24		B4-2	350 x 550	Tengah	2 D12	Tengah	4 D12
				Bawah	4 D22	Bawah	4 D22
				Atas	5 D19	Atas	3 D19
25	Lantai 4	B4-3	250 x 550	Tengah	2 D10	Tengah	2 D10
				Bawah	3 D19	Bawah	5 D19
				Atas	5 D19	Atas	3 D19
26		B4-4	250 x 400	Tengah	2 D10	Tengah	2 D10
				Bawah	3 D19	Bawah	3 D19 + 2 D16
				Atas	6 D19	Atas	4 D19
27		B4-5	300 x 650	Tengah	2 D10	Tengah	2 D10
				Bawah	4 D19	Bawah	6 D19
				Atas	4 D22	Atas	4 D22
28		B4-6	250 x 450	Tengah	2 D12	Tengah	2 D12
				Bawah	3 D19	Bawah	3 D19
				Atas	5 D19	Atas	5 D19
29		B4-7	250 x 450	Tengah	2 D12	Tengah	2 D12
				Bawah	3 D19	Bawah	3 D19

Lanjutan Dari Tabel 4.2 Dimensi dan Tipe Balok

	T ('	Tipe	Dimensi	Tum	ipuan	Lapangan	
No.	Lantai	Balok	(mm)	Latak Tulangan	Jumlah Tulangan	Latak Tulangan	Jumlah Tulangan
				Atas	3 D16	Atas	2 D16
30		B4-8	200 x 400	Tengah	2 D10	Tengah	2 D10
				Bawah	2 D16	Bawah	3 D16
				Atas	4 D19	Atas	4 D19
31		B4-9	250 x 400	Tengah	2 D10	Tengah	2 D10
				Bawah	4 D19	Bawah	4 D19
				Atas	7 D22	Atas	4 D22
32		B5-1	350 x 700	Tengah	4 D12	Tengah	4 D12
				Bawah	4 D22	Bawah	6 D22
	-	B5-2		Atas	7 D22	Atas	4 D12
33			350 x 550	Tengah	2 D12	Tengah	4 D12
				Bawah	4 D22	Bawah	4 D22
		B5-3	250 x 550	Atas	5 D19	Atas	3 D19
34				Tengah	2 D10	Tengah	2 D10
	Lantai 5			Bawah	3 D19	Bawah	5 D19
	5			Atas	5 D19	Atas	3 D19
35		B5-4	250 x 400	Tengah	2 D10	Tengah	2 D10
				Bawah	3 D19	Bawah	3 D19 + 2 D16
				Atas	6 D19	Atas	4 D19
36		B5-5	300 x 650	Tengah	2 D10	Tengah	2 D10
				Bawah	4 D19	Bawah	6 D19
37		B5-6	250 x 450	Atas	4 D22	Atas	4 D22
		БЭ-0	ВЭ-0 250 x 450	Tengah	2 D12	Tengah	2 D12

Lanjutan Dari Tabel 4.2 Dimensi dan Tipe Balok

		Tipe	Dimensi	Tumpuan		Lapangan	
No.	Lantai	Balok	(mm)	Latak Tulangan	Jumlah Tulangan	Latak Tulangan	Jumlah Tulangan
				Bawah	3 D19	Bawah	3 D19
				Atas	5 D19	Atas	5 D19
38		B5-7	250 x 450	Tengah	2 D12	Tengah	2 D12
				Bawah	3 D19	Bawah	3 D19
				Atas	3 D16	Atas	2 D16
39		B5-8	200 x 400	Tengah	2 D10	Tengah	2 D10
				Bawah	2 D16	Bawah	3 D16
		B5-9		Atas	4 D19	Atas	4 D19
40			250 x 400	Tengah	2 D10	Tengah	2 D10
				Bawah	4 D19	Bawah	4 D19
			350 x 700	Atas	6 D22	Atas	4 D22
41		B6-1		Tengah	4 D12	Tengah	4 D12
				Bawah	4 D22	Bawah	6 D22
		B6-2	350 x 550	Atas	6 D22	Atas	4 D22
42				Tengah	2 D12	Tengah	2 D12
	_			Bawah	4 D22	Bawah	4 D22
	Lantai Atap			Atas	5 D19	Atas	3 D19
43	1	B6-3	250 x 550	Tengah	2 D10	Tengah	2 D10
				Bawah	3 D19	Bawah	3 D19 + 2 D16
				Atas	5 D19	Atas	3 D19
44		B6-4	250 x 400	Tengah	2 D10	Tengah	2 D10
			230 A 400	Bawah	3 D19	Bawah	3 D19 + 2 D16

Lanjutan Dari Tabel 4.2 Dimensi dan Tipe Balok

		Tipe	Dimensi (mm)	Tumpuan		Lapangan	
No.	Lantai	Balok		Latak	Jumlah	Latak	Jumlah
				Tulangan	Tulangan	Tulangan	Tulangan
				Atas	4 D22 + 2 D19	Atas	4 D22
45		B6-5	300 x 650	Tengah	2 D10	Tengah	2 D10
				Bawah	4 D22	Bawah	4 D22 + 2 D19
				Atas	3 D22	Atas	3 D22
46		B6-6	250 x 450	Tengah	2 D12	Tengah	2 D12
				Bawah	3 D19	Bawah	3 D19
			250 x 400	Atas	4 D19	Atas	4 D19
47		B6-7		Tengah	2 D10	Tengah	2 D10
				Bawah	4 D19	Bawah	4 D19
				Atas	7 D22	Atas	4 D22
48		B6-8	350 x 700	Tengah	4 D12	Tengah	4 D12
				Bawah	4 D22	Bawah	7 D22
		B6-9	250 x 450	Atas	5 D19	Atas	5 D19
49				Tengah	2 D10	Tengah	2 D10
				Bawah	5 D19	Bawah	5 D19
				Atas	6 D19	Atas	4 D19
50		BDA- 1	300 x 650	Tengah	2 D10	Tengah	2 D10
	Atan			Bawah	4 D19	Bawah	6 D19
	' P	BDA-2		Atas	5 D16	Atas	3 D16
51			250 x 500	Tengah	2 D10	Tengah	2 D10
				Bawah	3 D16	Bawah	5 D16

Lanjutan Dari Tabel 4.2 Dimensi dan Tipe Balok

		Tipe	Dimensi	Tur	npuan	Lapangan	
No.	Lantai	Balok	(mm)	Latak Tulangan	Jumlah Tulangan	Latak Tulangan	Jumlah Tulangan
				Atas	3 D16	Atas	2 D16
52		вDА- 3	200 x 400	Tengah	2 D10	Tengah	2 D10
				Bawah	2 D16	Bawah	3 D16
			250 x 400	Atas	4 D16	Atas	4 D16
53		вDА- 4		Tengah	2 D10	Tengah	2 D10
				Bawah	4 D16	Bawah	4 D16
54		BDA- 5	250 x 500	Atas	3 D19 + 2 D16	Atas	3 D19 + 2 D16
				Tengah	2 D10	Tengah	2 D10
				Bawah	3 D16	Bawah	3 D16
55		BDA- 6	150 x 550	Atas	2 D16	Atas	2 D16
55				Tengah	4 D10	Tengah	4 D10
				Bawah	2 D16	Bawah	2 D16

Lanjutan Dari Tabel 4.2 Dimensi dan Tipe Balok

Sumber : Data Shop Drawing 2018

c. Sloof

Berikut dimensi tiap pelat sesuai tipe dapat dilihat pada Tabel 4.3.

Tabel 4. 3 Dimensi dan Tipe Sloof

No.	Lantai	Tipe Balok	Dimensi (mm)	Tum	Tumpuan		Lapangan	
				Latak Tulangan	Jumlah Tulangan	Latak Tulangan	Jumlah Tulangan	
	Lontoi			Atas	6 D22	Atas	6 D22	
1	1	SL-1	350 x 600	Tengah	2 D12	Tengah	2 D12	
				Bawah	6 D22	Bawah	6 D22	

No.	Lantai	Tipe Balok	Dimensi (mm)	Tum	Tumpuan		Lapangan	
				Latak Tulangan	Jumlah Tulangan	Latak Tulangan	Jumlah Tulangan	
	S	SL-2 300 x 500	Atas	4 D19	Atas	5 D22		
2			300 x 500	Tengah	2 D10	Tengah	2 D10	
				Bawah	4 D19	Bawah	5 D22	
				Atas	4 D16	Atas	4 D16	
3		SL-3	250 x 450	Tengah	2 D10	Tengah	2 D10	
				Bawah	4 D16	Bawah	4 D16	

Lanjutan Dari Tabel 4.3 Dimensi dan Tipe Sloof

Sumber : Data Shop Drawing 2018

d. Pelat

Berikut dimensi tiap pelat sesuai tipe dapat dilihat pada Tabel 4.4.

Tabel 4. 4 Tebal dan Tipe Pelat

No.	Lantai	Tipe pelat	Tebal (mm)
1	Lantai Q	Lantai A	120
2	Lantal 2	Lantai B	100
3	Lontoi 2	Lantai A	120
4	Lantal 5	Lantai B	100
5	Lantai A	Lantai A	120
6	Lantal 4	Lantai B	100
7	Lantai 5	Lantai A	120
8	Lantal J	Lantai B	100
9	Lantai Atan	Lantai A	120
10	Lantai Atap	Lantai B	100
11	Atap	Lantai B	100

Sumber : Data Shop Drawing 2018

4. Data penyelidikan tanah

Berikut ini adalah data hasil pengujian penetrasi standar SPT (*Standard Penetration Test*) dapat dilihat pada Tabel 4.5.

No. BH	Kedalaman	SPT
DII 1	(m)	
BH - I	0,00 - 4,50	23
	4,50 - 6,00	60
	6,00 - 7,00	60
	7,00 - 13,00	51
	13,00 - 16,00	60
	16,00 - 20,00	60
	22,00 - 25,00	60
	25,00 - 30,00	60
BH - 2	0,00 - 3,50	6
	3,50 - 5,00	17
	5,00 - 8,00	46
	8,00 - 9,50	56
	9,50 - 12,00	60
	12,00 - 30,00	60
BH-3	0,00 - 5,50	12
	5,50 - 10,00	60
	10,00 - 19,00	60
	19,00 - 26,00	60
	26,00 - 30,00	60
BH-4	0,00 - 1,00	10
	1,00 - 2,50	10
	2,50 - 4,50	60
	4,50 - 5,00	48

Tabel 4. 5 Hasil Pengujian SPT (Standard Penetration Test)

No. BH	Kedalaman (m)	SPT
	5,00 - 6,50	54
	6,50 - 12,00	60
	12,00 - 13,00	60
	13,00 - 30,00	60

Lanjutan Dari Tabel 4.5 Hasil Pengujian SPT (Standard Penetration Test)

Sumber : Laporan Faktual Penyelidikan Tanah Lapangan Perencanaan Pembangunan Asrama Haji Bandar Lampung

4.3 Program Yang Digunakan

Pada penelitian ini digunakan program untuk membantu dalam proses pelaksanaan penelitian dengan tujuan guna mempermudah menyelesaikan masalah. Berikut adalah program yang digunakan dalam penelitian ini.

- 1. ETABS, program ini akan digunakan sebagai alat pemodelan dari struktur bangunan dan digunakan dalam analisis dari struktur bangunan.
- 2. Microsoft Excel, program ini akan digunakan untuk menghitung dan menganalisis data hasil *output* yang didapat dari ETABS.
- 3. Autocad, program ini akan digunakan untuk membuka file dari *shop drawing* bangunan gedung.

4.4 Tahapan Penelitian

Tahapan pada penelitian yang akan dilakukan pada tugas akhir ini adalah sebagai berikut.

1. Studi literatur

Pada tahapan studi literatur dilakukan dengan mencari informasi dari berbagai sumber. Sumber yang diambil berasal dari jurnal, tugas akhir, dan buku-buku yang berkaitan dengan analisis statik non-linear *pushover* dan cara menentukan level kinerja struktur bangunan ketika gempa berdasarkan (*Applied Technology Council*) ATC-40 *Seismic Evaluation and retrofit of Concrete Buildings*.

2. Pengumpulan data

Pada pelaksanaan tugas akhir ini data yang dipergunakan berupa data *Shop Drawing* bangunan Gedung Multazam yang berada dalam kawasan asrama Haji Provinsi Lampung, data penyelidikan dari dari pengujian penetrasi standar SPT (*Standard Penetration Test*). Data-data tersebut akan digunakan pada saat pemodelan bangunan dalam bentuk 3D menggunakan program ETABS yang kemudian akan dilakukan analisis.

3. Pemodelan 3D

Tahap pemodelan bangunan secara 3D dibuat dengan menggunakan program ETABS. Bagian bangunan yang dimodelkan hanya pada struktur bangunan, yaitu bagian kolom, pelat dan balok. Sehingga pemodelan bangunan berupa portal *open frame*.

4. Perhitungan pembebanan

Perhitungan pembebanan yang bekerja pada struktur bangunan dilakukan dengan bantuan program Microsoft Excel, berikutnya masing-masing beban di input satu per satu ke dalam program ETABS. Beban-beban yang bekerja pada struktur berupa beban mati, beban hidup, dan beban gempa.

5. Analisis beban gempa

Analisis beban gempa dilakukan berdasarkan SNI 1726-2019 Pasal 7.9.1.4.1, apabila kombinasi respon untuk gaya geser dasar hasil analisis ragam (Vdinamik) kurang dari 100% dari gaya geser (Vstatik) yang dihitung melalui metode statik ekivalen, maka gaya tersebut perlu dikalikan dengan Vstatik/Vdinamik.

6. Pendefinisian sendi plastis (hinges) pada kolom dan balok

Setelah melakukan pemodelan dan penginputan beban pada program ETABS, berikutnya dilakukan pendefinisian sendi plastis (*hinges*) pada balok dan kolom. Peletakan sendi plastis (*hinges*) diletakkan pada ujung-ujung tepi panjang bersih baik pada balok maupun kolom.

7. Analisis statik *pushover*

Pada analisis statik *pushover* dilakukan dengan berpedoman pada (*Applied Technology Council*) ATC-40 *Seismic Evaluation and retrofit of Concrete Buildings*. Analisis statik *pushover* dilakukan dengan bantuan program ETABS. Hasil dari analisis statik *pushover* yaitu berupa nilai *drift, displacement,* dan kurva kapasitas. Kemudian nilai dari hasil analisis tersebut digunakan untuk menentukan *performance point* dan level kinerja dari bangunan.

8. Membuat kesimpulan

Pada tahan ini dibuat kesimpulan dari hasil analisis yang telah dilakukan.

Untuk lebih jelasnya mengenai tahapan penelitian di atas, dapat dilihat pada diagram alir pada Gambar 4.3 berikut.

Gambar 4. 3 Diagram Alir Tahapan Penelitian

Lanjutan Gambar 4.3 Diagram Alir Tahapan Penelitian

BAB V ANALISIS DAN PEMBAHASAN

5.1 Pemodelan Struktur

Pemodelan struktur dilakukan menggunakan program ETABS dengan menggambar semua elemen kolom, balok, *sloof*, dan pelat. Gambar pemodelan gedung dapat dilihat pada Gambar 5.1 - 5.4 berikut.

Gambar 5. 1 Model 3D Gedung Asrama Haji Lampung

Gambar 5. 2 Tampak X-Y Gedung Asrama Haji Lampung

Gambar 5. 3 Tampak X-Z Gedung Asrama Haji Lampung

Gambar 5. 4 Tampak Y-Z Gedung Asrama Haji Lampung

5.1.1 Pemodelan Kolom

Pemodelan elemen kolom dilakukan dengan *Rectangular Section*, dengan tahapan klik *Define – Section Properties – Frame Sections – Add New Property -* pada bagian *Section Shape* pilih *Concrete Rectangular – Rectangular Section*.

Frame Property Shape Type	>
Shape Type Section Shape C	oncrete Rectangular V
Frequently Used Shape Types	Steel
Special Section Designer Section Designer Section Designer	Steel Composite
ОК	Cancel

Gambar 5. 5 Frame Property Shape Type

Kemudian dilakukan pengisian data kolom (Gambar 5.6) dan menginput data tulangan kolom (Gambar 5.7) sesuai dengan data *shop drawing* gedung.

General Data		
Property Name	K1 LANTAI_1-2	
Material	Beton F'c 25 🗸	2 🔨
Notional Size Data	Modify/Show Notional Size	3
Display Color	Change	• č – •
Notes	Modify/Show Notes	• •
Shape		
Section Shape	Concrete Rectangular 🗸 🗸	
Section Property Source		
Source: User Defined	Pn	operty Modifiers
Section Dimensions		Modify/Show Modifiers
Denth	600 mm	Currently Default
ман	Re	einforcement
wiath	600 mm	Modify/Show Rebar
	Show Section Properties	OK

Gambar 5. 6 Frame Section Property Data

	Rebar Material						
P-M2-M3 Design (Column)	Longitudina	Bars	BJTD 40			~	
O M3 Design Only (Beam)	Confinemen	nt Bars (Ties) BJTD 40			×		
einforcement Configuration	ars	Check/	Desig	In			
Rectangular	angular 💿 Ties			Reinforcement to be Checked			
🔿 Circular		OF	Reinfo	rcement to be	Designed		
ongitudinal Bars							
Clear Cover for Confinement Bars					40	mm	
Number of Longitudinal Bars Along	3-dir Face				5		
Number of Longitudinal Bars Along 2	2-dir Face				5		
Longitudinal Bar Size and Area		25	~		491	mm²	
Corner Bar Size and Area		25	~		491	mm²	
onfinement Bars							
Confinement Bar Size and Area		14	\sim		154	mm²	
Longitudiant Constant of Conference	t Bars (Along 1-Axis)				100	mm	
Longitudinal Spacing of Continemen					3		
Number of Confinement Bars in 3-dir							

Gambar 5. 7 Frame Section Property Reinforcement Data

5.1.2 Pemodelan Balok dan *Sloof*

Pemodelan elemen balok dilakukan dengan Section Designer. Penggunaan Section Designer dilakukan karena terdapat tulangan rangkap pada balok yang perlu dimodelkan, agar pemodelan balok sesuai dengan data Shop Drawing. Adapun tahapan dari penggunaan Section Designer adalah dengan klik Define – Section Properties – Frame Section – Add New Property – pada bagian Section Shape pilih Concrete Rectangular – Section Designer.

Gambar 5. 8 Frame Property Shape Type

Kemudian dilakukan pengisian data elemen balok sesuai data *shop drawing* yang dapat dilihat pada Gambar 5.9 berikut.

General Data	
Property Name	B2-01
Base Material	Beton F'c 25 ~
Notional Size Data	Modify/Show Notional Size
Display Color	Change
Notes	Modify/Show Notes
)esign Type	
O No Check/Design	O General Steel Section
Oncrete Column	O Composite Column
Reinforcement to b Reinforcement to b	e Checked e Designed
	Section Designer
Section Properties	Property Modifiers

Gambar 5. 9 Section Designer Section Property Data

Setelah melakukan input data balok, klik *Section Designer* untuk memulai pemodelan. Berikutnya klik *Draw Concrete Shape – Draw Rectangle* untuk menggambar balok beton berbentuk kotak, kemudian input data ukuran balok, ukuran tulang pokok, dan ukuran tulangan sengkang (Gambar 5.10). Berikutnya atur jumlah tulangan, dan tebal selimut beton pada bagian tepi atas, bawah, kiri dan kanan balok sesuai dengan data *shop drawing* (Gambar 5.11).

~	Name		~
	Shape Name	Shape1	
	Shape Type	Rectangle	
\sim	General		
	Color	Silver	
	Material	Beton F'c 25	
\sim	Location		
	X Center (mm)	0	
	Y Center (mm)	0	
	Rotation (deg)	0	
\sim	Geometry		
	Height (mm)	700	
	Width (mm)	350	
\sim	Rebar		
	Reinforcing	Yes	
\sim	Rebar Data	13 bars	
	Material	BJTD 40	
	> Tie Bar	10	
	> Comer Bar 1	22	
	> Comer Bar 2	22	
	> Comer Bar 3	22	
	> Comer Bar 4	22	~
Sh Th	a pe Name e shape name.		

Gambar 5. 10 Section Object Data – Rectangle

~	Location	
	Clear Cover to Tie (mm)	40
¥	Rebar	
>	Bar Size	22
	Max Bar Spacing (mm)	57
	Number of Bars	3
	Actual Bar Spacing (mm)	57
×	Misc	
	BarLayoutType	NumberOfBars
Ba Th	ir Size e rebar size data.	

Gambar 5. 11 Edge Reinforcing

Dikarenakan terdapat tulangan rangkap pada tepi atas balok, sehingga perlu dimodelkan dengan tahapan klik *Draw Rebar Shape – Draw Line Rebar –* kemudian isi data ukuran, jumlah dan jarak antara tulangan sesuai data *shop drawing* yang dapat dilihat pada Gambar 5.12 berikut.

~	Name		
	Shape Type	LineBar	
~	General		
	Material	BJTD 40	~
~	Location		
	X1 (mm)	-114	
	Y1 (mm)	262	
	X2 (mm)	114	
	Y2 (mm)	262	
	X Center (mm)	0	
	Y Center (mm)	262	
	Rotation (deg)	0	
	Length (mm)	228	
\sim	Rebar		
>	Bar Size	22	
	Has End Bars	Yes	
	Max Bar Spacing (mm)	228	
	Number of Bars	2	
	Actual Bar Spacing (mm)	228	
\sim	Misc		
	BarLayoutType	BarSpacing	
M a Th	aterial e material property for the re	bar.	

Gambar 5. 12 Section Object Data – LineBar

Tahapan yang sama juga dilakukan dalam memodelkan elemen *sloof* dikarenakan terdapat tulangan rangkap pada *sloof*. Pemodelan elemen *sloof* dilakukan dengan dimensi, ukuran tulangan, dan ketentuan lainnya yang mengacu pada data *shop drawing*.

5.1.3 Pemodelan Pelat

Pemodelan eleman dilakukan dengan tahapan, klik *Define – Section Property – Slab Sections – Add New Property –* pada bagian *Modeling Type* pilih *Layered – Modify/Show Layered Slab Data – Parametric Quick Start.* E Slab Property Layer Definition Data - Plat_A

Layer Name	Distance	Thickness	Modeling Type	Number Integration Points	Material	Material Angle	Material Behavior	Material S11	Material S22	Material S12	Add
ConcS	0	120	Shell	2	Beton F'c 25	0	Directional	Linear	Linear	Linear	Add Copy
Pos3Bar1	30	0,5	Shell	1	BJTD 40	0	Directional	Linear	Inactive	Linear	Delete
Pos3Bar2	30	0,5	Shell	1	BJTD 40	90	Directional	Linear	Inactive	Linear	Delete
Neg3Bar1	-30	0,5	Shell	1	BJTD 40	0	Directional	Linear	Inactive	Linear	
Neg3Bar2	-30	0.5	Shell	1	BJTD 40	90	Directional	Linear	Inactive	Linear	
Number of Layer Total Section Th	s: 5 ickness: 120 mm		_	Cross		Transp	ayer arency		C	order Ascending b der Descending	by Distance by Distance
Sum of Cayer OV	enaps: 3,1 mm ween Layer: 0 mm				Min	Vertica Max	l Scale	(Quick Stat	Parametric Quic	k Start

Gambar 5. 13 Slab Property Definotion Data

Kemudian dilakukan pengisian data elemen pelat sesuai dengan data *shop drawing* yang dapat dilihat pada Gambar 5.14 berikut.

eneral Data				Section C	ur .			
Concrete Material	Beton	F'c 25	~	Positive	3-Axis Sid	e		
Rebar Material	BJTD 4	10	~					\wedge^3
Concrete Thickness		120	mm					
Number of Rebar Layers		2	\checkmark	-				
Plane Component Behavior		Out-of-Plane Compo	onent Behavior					
S11 Nonlinear		O Same as In-P	lane	Negative	e 3-Axis Si	de		0
S22 Nonlinear				Show	v 1-3 Section	on Cut		 Show 2-3 Section Cut
S12 Nonlinear		0		Local 1-2	Plane			
				_				Show Bars on Positive 3-Axis Face
bar Size, Spacing and Clear Cov	/er				_		+	Show Bars on Negative 3-Axis Face
Size and Spacing are	the Same for All	Rebar			_	<u>∧²</u>	+	
Bars	Bar Size	Spacing, mm	Clear Cover, mm					Reset to Defaults
Positive 3-Axis Bars - Dir. 1	10	150	30				₹1	
Positive 3-Axis Bars - Dir. 2	10	150	30					ОК
Negative 3-Axis Bars - Dir. 1	10	150	30		_		+	
	10	150	20					Cancel

Gambar 5. 14 Quick Layer Definition Data

 \times

5.2 Pembebanan Struktur

Pembebanan struktur meliputi perhitungan beban mati, beban mati tambahan, beban hidup, dan beban gempa berdasarkan SNI 1727-2019 dengan penjelasan sebagai berikut.

5.2.1 Beban Mati

Adapun beban yang diperhitungkan sebagai beban mati ialah meliputi beban elemen-elemen struktur yaitu kolom, balok, *sloof*, dan pelat. Beban elemen-elemen tersebut tidak dimasukkan karena telah dimodelkan menggunakan ETABS dan akan dihitung secara otomatis. Elemen lain yang perlu ditambahkan dalam pembebanan struktur adalah beban mati tambahan.

5.2.2 Beban Mati Tambahan

Adapun perhitungan beban mati tambahan yang akan ditambahkan dalam perhitungan pembebanan struktur adalah sebagai berikut.

1. Beban mati tambahan pada pelat lantai

Pasir	$= 17,658 \text{ kN/ m}^3 \text{ x } 0,03 \text{ m}$	$= 0,53 \text{ kN/m}^2$
Spesi (tebal 1 cm)	$= 21 \text{ kg/m}^2 \text{ x } (9,81/1000)$	$= 0,206 \text{ kN/m}^2$
Keramik	$= 17 \text{ kg/m}^2 \text{ x} (9,81/1000)$	$= 0,167 \text{ kN/m}^2$
Plafon asbes	$= 11 \text{ kg/m}^2 \text{ x } (9,81/1000)$	$= 0,108 \text{ kN/m}^2$
Penggantung plafon	$= 7 \text{ kg/m}^2 \text{ x } (9,81/1000)$	$= 0,069 \text{ kN/m}^2$
Mechanical electrical	$= 30 \text{ kg/m}^2 \text{ x} (9,81/1000)$	= 0,294 kN/m ² +
	Qd lantai	$= 1,373 \text{ kN/m}^2$

2. Beban mati tambahan pada pelat atap

Waterproofing	$= 18,639 \text{ kN/m}^3 \text{ x } 0,03 \text{ m}$	$= 0,559 \text{ kN/m}^2$
Plafon asbes	$= 11 \text{ kg/m}^2 \text{ x } (9,81/1000)$	$= 0,108 \text{ kN/m}^2$
Penggantung plafon	$= 7 \text{ kg/m}^2 \text{ x } (9,81/1000)$	$= 0,069 \text{ kN/m}^2$
Mechanical electrical	$= 30 \text{ kg/m}^2 \text{ x } (9,81/1000)$	= 0,294 kN/m ² +
	Qd atap	$= 0,981 \text{ kN/m}^2$

3. Beban pelat tangga

Tebal pelat	= 0,15 m	
Tinggi optrede tangga	= 0,15 m	
Lebar antrede tangga	= 0,3 m	
Sudut α	= Atan (0,15 m/0,3 m)	= 26,565°

Perhitungan tebal pelat tangga adalah sebagai berikut.

t	= tebal pelat	= 0,15 m	
t1	= 0,5 x tinggi opride x cos	= 0,5 x tinggi opride x $\cos \alpha$	
	= 0,5 x 0,15 m x cos (26,56	5°)= 0,067 m	
t2	= t + t1		
	= 0,15 m + 0,067 m	= 0,217 m	
t3	$=$ t2 / cos α		
	$= 0,217 \text{ m} / \cos(26,565^{\circ})$	= 0,243 m	

$$= 0,21 / m / \cos(20,565^{\circ}) = 0,24.$$

Didapatkan tebal pelat tangga sebesar 0,243 m.

Beban pelat tangga = tebal pelat tangga x berat volume beton = $0,243 \text{ m x } 24 \text{ kN/m}^3$ = $5,825 \text{ kN/m}^2$ 4. Beban bordes

Beban bordes = tebal pelat x berat volume beton = $0,15 \text{ m x } 24 \text{ kN/m}^3$ = $3,6 \text{ kN/m}^2$

5.2.3 Beban Hidup

Berdasarkan SNI 1727-1989 Pedoman Perencanaan Pembebanan Untuk Rumah dan Gedung nilai beban hidup pada bangunan ditentukan berdasarkan fungsi daripada bangunan tersebut. Pada penelitian ini fungsi bangunan digunakan sebagai asrama sehingga beban hidup yang digunakan adalah sebagai berikut.

1. Beban hidup pada pelat lantai

 $QL = 250 \text{ kg/m}^2 = 2,452 \text{ kN/m}^2$

2. Beban hidup pada pelat atap $QL = 100 \text{ kg/m}^2 = 0.981 \text{ kN/m}^2$

5.2.4 Beban Gempa

Lokasi bangunan berada di Kota Bandar Lampung, Provinsi Lampung. Bangunan merupakan gedung bertingkat dengan tingkat 5 lantai dan tinggi total bangunan 21,3 meter.

1. Klasifikasi situs

Klasifikasi situs ditentukan berdasarkan hasil pengujian penetrasi standar SPT (*Standard Penetration Test*), dengan perhitungan sebagai berikut.

Kode Letak	Letak Kedalaman	Kedalaman	SPT	Kedalaman/SPT
Pengujian	(m)	Tiap Lapisan		
		(m)		
BH-01	4,5	4,5	23	0,1957
	6	1,5	60	0,0250
	7	1	60	0,0167
	13	6	51	0,1176
	16	3	60	0,0500
	20	4	60	0,0667
-	22	2	60	0,0333
	25	3	60	0,0500
	30	5	60	0,0833

Tabel 5. 1 Perhingan Nilai Klasifikasi Situs

Dalam menentukan klasifikasi situs berdasarkan SNI 1729-2019 menggunakan rumus berikut.

$$\overline{N} = \frac{\sum_{i=1}^{n} di}{\sum_{i=1}^{n} \frac{di}{N_i}}$$

$$\overline{N} = \frac{30}{0,6383}$$

\overline{N} = 46,999

Sehingga didapatkan nilai klasifikasi situs pada tiap pengujian penetrasi standar SPT (*Standard Penetration Test*) sebagai berikut.

Kode Letak Pengujian	Nilai Klasifikasi Situs (\overline{N})
BH-01	46,9990
BH-02	27,1435
BH-03	34,6154
BH-04	42,0643

Tabel 5. 2 Nilai Klasifikasi Situs Hasil Pengujian SPT

Berdasarkan nilai klasifikasi situs yang didapat dari tiap pengujian pengujian penetrasi standar SPT (*Standard Penetration Test*), nilai klasifikasi situs masuk kedalam kategori tanah sedang (SD) dengan nilai klasifikasi situs (\overline{N})15 sampai dengan 50.

- 2. Parameter percepatan gempa
 - Menentukan kategori resiko dan faktor keutamaan (Ie)
 Berdasarkan pada SNI 1726-2019 sesuai dengan fungsi bangunan yaitu sebagai asrama, maka diperoleh kategori risiko II dengan faktor keutamaan gempa (Ie) sebesar 1,00.
 - b. Menentukan respon spektral percepatan (Ss dan S1)

Percepatan batuan dasar pada periode pendek (Ss) berdasarkan peta zonasi gempa dalam SNI 1726-2019 wilayah Kota Bandar Lampung memiliki nilai 0,8 - 0,9g, sehingga nilai Ss diambil 0,8g. Kemudian untuk nilai percepatan batuan dasar pada periode 1 detik (S1) wilayah Kota Bandar Lampung memiliki nilai 0,4 - 0,5g sehingga diambil nilai S1 sebesar 0,4g.

Menentukan koefisien situs (Fa dan Fv)
 Berdasarkan nilai spektral percepatan periode pendek (Ss) dan periode panjang (S1) dengan kategori tanah sedang (SD), kemudian dapat ditentukan nilai faktor amplikasi getaran terkait percepatan pada getaran

periode pendek (Fa) dan faktor amplifikasi terkait percepatan pada getaran periode 1 detik (Fv). Berdasarkan Tabel 6 dan Tabel 7 pada SNI 1726-2019 didapatkan nilai (Fa) sebesar 1,18 (hasil interpolasi) dan nilai (Fv) sebesar 1,9.

- d. Menentukan koefisien risiko terpetakan (C_{RS} dan C_{R1})
 Berdasarkan peta zonasi gempa dalam SNI 1726-2019 wilayah Bandar Lampung memiliki rentang nilai koefisien risiko terpetakan untuk spektrum respon periode pendek (C_{RS}) antara 1 1,05, sehingga diambil nilai C_{RS} sebesar 1. Kemudian untuk nilai koefisien risiko terpetakan untuk spektrum respon periode 1 detik (C_{R1}) wilayah Bandar Lampung memiliki rentang nilai C_{R1} antara 0,95 1, sehinggan diambil nilai C_{R1} sebesar 1.
- e. Menentukan parameter respon spektrum
 - Menentukan Maximum Considered Earthquake (MCE) Spectral Respons Acceleration pada periode pendek (S_{MS})

$$S_{MS}$$
 = Fa x Ss
= 1,18 x 0,8
= 0,944

 Menentukan Maximum Considered Earthquake (MCE) Spectral Respons Acceleration pada periode 1 detik (S_{M1})

$$S_{M1} = Fv \ge S1$$

= 1,9 \times 0,4
= 0,76

f. Menentukan sistem dan parameter struktur

Sesuai dengan kategori desain seismik termasuk dalam kategori D dan tergolong ke dalam tingkat risiko kegempaan tinggi, maka sesuai dengan SNI 1726-2019 pada Tabel 12, sistem struktur gedung menggunakan sistem rangka beton bertulang pemikul momen khusus, berikut adalah parameter strukturnya.

- 1) Koefisien modifikasi respon, R = 8
- 2) Faktor kuat lebih sistem, $\Omega_0 = 3$
- 3) Faktor pembesaran defleksi, $C_d = 5,5$

- 3. Parameter percepatan spektral desain (S_{DS} dan S_{D1})
 - a. Spektral desain untuk periode pendek (S_{DS})

 S_{DS} = 2/3 x S_{MS} = 2/3 x 0,944 = 0,629

b. Spektral desain untuk periode 1 detik (S_{D1})

 S_{D1} = 2/3 x S_{M1} = 2/3 x 0,76 = 0,507

4. Spektrum respon percepatan desain (Sa)

Berdasarkan parameter dari perhitungan di atas, grafik spektrum respon dapat dibuat dan disajikan pada Gambar 5.15 berikut.

- 5. Perhitungan periode pendekatan fundamental
 - a. Menentukan periode getar struktur (Ta)

Та

$$= C_t h_n^x$$

= 0,0466 x 21,3^{0,9}
= 0,7310 detik

Keterangan:

hn = Tinggi total bangunan dari dasar dampai atap (m)

- Ct = Koefisien didapat dari Tabel 18 SNI 1726-2019 dimana nilai Ct diambil 0,0466
- x = Didapat dari Tabel 18 SNI 1729-2019 diambil nilai 0,9
 dikarenakan tipe struktur menggunakan rangka beton
 pemikul momen
- b. Menentukan periode maksimum (Tmax)

Karena nilai $S_{D1} > 0,4$ maka digunakan Cu = 1,4 (diambil dari Tabel 17 SNI 1726-2019)

Tmax $= Cu \times Ta$

$$= 1,4 \ge 0,7310$$

= 1,0234 detik

- c. Nilai periode struktur hasil pemodelan (Tc)
 Nilai Tc merupakan nila yang diperoleh dari hasil analisis ETABS.
 Nilai Tc = 1,1269 detik
- d. Menentukan periode struktur pakai

Dari hasil perhitungan nilai periode (T) di atas, dapat ditentukan periode fundamental struktur yang digunakan sesuai dengan persyaratan berikut.

- 1) Jika Tc > Tmaks, maka digunakan T = Tmax
- 2) Jika Ta < Tc < Tmaks, maka digunakan T = Tc
- 3) Jika Tc < Ta, maka digunakan T = Ta

Dari hasil perhitungan di atas menunjukkan nilai Tc > Tmaks, sehingga nilai periode (T) yang digunakan adalah Tmaks = 1,0234 detik.

- 6. Perhitungan koefisien respon struktur (Cs)
 - a. Tingkat daktilitas struktur, R = 8
 - b. Faktor keutamaan struktur, Ie = 1,0 (fungsi bangunan sebagai asrama)
 - c. Nilai Cs

Cs hitung $= \frac{S_{DS}}{\frac{R}{l_{e}}}$ $= \frac{0,629}{\frac{8}{1}}$ = 0,0787Cs max $= \frac{S_{D1}}{T(\frac{R}{l_{e}})}$ $= \frac{0,507}{1,0234(\frac{8}{1})}$ = 0,0619Cs min $= 0,044S_{DS} \text{ x Ie} \ge 0,001$ $= 0,044 \text{ x } 0,629 \text{ x } 1 \ge 0,001$ = 0,0277

Dikaranakan nilai Cs _{hitung} > Cs _{max}, maka nilai Cs yang digunakan adalah Cs _{max} = 0,0619

7. Gaya geser dasar seismik

Gaya geser dasar seismik berdasarkan SNI 1726-2019 dapat ditentukan menggunakan persamaan berikut.

V =
$$C_s \times W$$

= 0,0619 x 28555,105 kN
= 1767,10 kN

Keterangan:

Cs = Koefisien respon spektrum

8. Distribusi beban gempa statik ekivalen

Gaya seismik lateral (Fx) yang terjadi pada setiap tingkat dapat ditentukan dengan persamaan berikut.

$$\begin{array}{ll} Fx & = Cvx \; x \; V \\ Cvx & = \frac{w_x h_x^k}{\sum_{i=1}^n w_i h_i^k} \end{array}$$

Nilai k untuk T = 1,0234 detik, dapat dicari menggunakan interpolasi sebagai berikut.

k
$$= \frac{(2-1) \times (1,00234-0,5)}{(2,5-0,5)+1}$$
$$= 1,2617$$

Untuk hasil distribusi gaya seismik lateral berdasarkan beban gempa SNI 1726-2019 pada setiap lantai dapat dilihat pada Tabel 5.3 berikut.

Lantai Cvx dan Fx dan Fy W x H^k **H**(m) Wi (kN) ke-i Cvy (**k**N) 21,3 1949,646 92467,29115 0,152 267,989 Atap 5 18,45 169127,7169 0,277 490,166 4274,566 4 14,8 4912,305 147169,7563 0,241 426,528 3 11,2 4962,154 104587,8429 0,172 303,117

 Tabel 5. 3 Perhitungan Nilai Gaya Gempa Horizontal

Lantai ke-i	H (m)	Wi (kN)	W x H ^k	Cvx dan Cvy	Fx dan Fy (kN)
2	7,6	5020,618	64876,91836	0,106	188,026
1	4	5477,434	31492,23385	0,052	91,271
0	0	1958,381	0	0	0
Tot	al	28555,102	595641,625	1,000	1767,10

Lanjutan Tabel 5.3 Perhitungan Nilai Gaya Gempa Horizontal

5.3 Analisis Beban Gempa

Sebelum melakukan tahapan analisis pushover yang perlu dilakukan terlebih dahulu adalah mengecek syarat beban gempa yang telah dianalisis sebelumnya. Berdasarkan SNI 1726-2019 Pasal 7.9.1.4.1, ada ketentuan yang harus dipenuhi yaitu apabila kombinasi respon untuk gaya geser dasar hasil analisis ragam (Vdinamik) kurang dari 100% dari gaya geser (Vstatik) yang dihitung melalui metode statik ekivalen, maka gaya tersebut perlu dikalikan dengan Vstatik/Vdinamik. Berikut tahapan analisis beban gempa yang dilakukan dengan bantuan program ETABS.

5.3.1 Pendefinisian Mass Source

Pendefinisian massa struktur perlu dilakukan dalam analisis dinamik respon spektrum, hal ini dikarenakan perlu didefinisikan dalam program ETABS darimana sumber massa yang akan digunakan dalam melakukan analisis. Apabila pendefinisian sumber massa tidak tepat maka gaya atau beban gempa yang dihasilkan akan terlalu besar atau terlalu kecil. Tahapan melakukan pendefinisian struktur dapat dilakukan dengan cara klik *Define – Mass Source – Add New Mass Source – checklist Specified Load Patterns –* pada kotak *Mass Multipliers For Patterns* input *Load Pattern Dead* (beban mati struktur) = 1, *Add Dead* (beban mati tambahan) = 1, dan *Live* (beban hidup) = 0,25. Untuk lebih jelasnya dapat dilihat pada Gambar 5.16 berikut.

		Mass Multipliers for Load Pa	tterns	
Mass Source Name Berat Bangunan		Load Pattern	Multiplier	_
0		Dead	~ 1	Add
ass source		Dead	1	
Element Self Mass		Live	0,25	Modity
Additional Mass				Delete
Specified Load Patterns				
Adjust Diaphragm Lateral Mass to Move Mass Centroid by:		Mass Options		
This Ratio of Diaphragm Width in X Direction		Include Lateral Mass		
This Ratio of Diaphragm Width in Y Direction		Include Vertical Mass		
	1	🗹 Lump Lateral Mass at	Story Levels	

Gambar 5. 16 Mass Source Data

5.3.2 Penginputan Data Respon Spektrum Gempa

Tahapan input data respon spektrum pada ETABS dapat dilakukan dengan cara klik *Define –Functions – Respons Spectrum –* pada kotak *Choose Function Type To Add* pilih ASCE7-16 – *Add New Function* – input data respon spektrum sesuai data yang telah dihitung. Untuk lebih jelas dapat dilihat pada Gambar 5.18 berikut.

Gambar 5. 17 Input Parameter Respon Spektrum

5.3.3 Pengecekan Nilai Gaya Geser Dasar

Berdasarkan SNI 1726-2019 Pasal 7.9.1.4.1, ada ketentuan yang harus dipenuhi yaitu apabila kombinasi respon untuk gaya geser dasar hasil analisis ragam (Vdinamik) kurang dari 100% dari gaya geser (Vstatik) yang dihitung melalui metode statik ekivalen, maka gaya tersebut perlu dikalikan dengan Vstatik/Vdinamik. Nilai gaya geser dasar dinamik dari hasil analisis ETABS dapat dilihat pada Tabel 5.4 berikut.

Tabel 5. 4 Nilai Gaya Geser Dasar

	Vstatik (kN)	Vdinamik (kN)	Kontrol
Arah X	1767,0973	1613,3989	Belum Memenuhi
Arah Y	1767,0973	1614,9148	Belum Memenuhi

Berdasarkan hasil analisis program ETABS didapatkan nilai gaya geser dasar dinamik kurang dari gaya geser dasar statik sehingga perlu dilakukan penskalaan gaya. Berikut adalah tahapan perhitungan faktor skala.

Faktor skala = 100% Vstatik/Vdinamik

= 1776,0973/1613,3989

= 1,095

Setelah dilakukan perhitungan faktor skala selanjutnya nilai tersebut di input pada program ETABS kemudian dilakukan analisis ulang untuk mendapatkan hasil gaya geser dasar Vdinamik baru, yang kemudian nilai Vdinamik baru tersebut dibandingkan dengan gaya geser dasar Vstatik. Untuk hasil analisis Vdinamik setelah dikali faktor skala dapat dilihat pada Tabel 5.5 berikut.

Tabel 5. 5 Nilai Gaya Geser Dasar Setelah Dilakukan Faktor Skala

	Vstatik (kN)	Vdinamik (kN)	Kontrol
Arah X	1767,0973	1767,0973	Memenuhi
Arah Y	1767,0973	1768,7610	Memenuhi

Berdasarkan tabel di atas, didapatkan nilai gaya geser untuk gaya Vdinamik lebih besar atau sama dengan Vstatik, sehingga telah memenuhi gaya geser dasar yang disyaratkan dari SNI 1726-2019.

5.4 Analisis Pushover

5.4.1 Pendefinisian Load Case Pushover

Load case pada analisis *pushover* dilakukan melalui dua tahapan. Tahapan pertama analisis struktur bangunan diberi beban struktur (beban mati dan beban mati tambahan) dan beban hidup, tetapi beban lateral belum dipertimbangkan. Tahapan kedua dilanjutkan dengan memberi pola beban lateral secara bertahap.

1. Pendefinisian beban gravitasi pushover (Gravity)

Pendefinisian beban gravitasi pada ETABS dilakukan melalui tahapan klik Define – Load Case – Add New Load Case. Berikutnya dilakukan pengisian data Load Case dan modifikasi nilai, untuk lebih jelasnya dapat dilihat pada tahapan berikut.

a.	Load case name	= Gravity
b.	load case type	= Static
c.	Analysis type	= Nonlinear
d.	Initial conditions	= Zero Initial Conditions – Start From Unstressed
		State
e.	Load applied	= - Load Pattern – Dead - 1
		- Load Pattern – Add Dead – 1
		- Load Pattern – Live – 0,25

Loud Case Marile		Gravity			Design
Load Case Type		Nonlinear	Static	~	Notes
Mass Source		Berat Ba	ngunan	~	
Analysis Model		Default			
tial Conditions					
Zero Initial Conditions	- Start from Unstressed	d State			
Continue from State a	t End of Nonlinear Cas	e (Loads at E	nd of Case Al	RE Included)	
Nonlinear Case					
		1			
ads Applied					
Load Type	Load	d Name		Scale Factor	U
Load Pattern	Dead		1		Add
Load Pattern	ADD_DEAD		1		Delete
Load Pattern	Live		0,25		
ner Parameters					
		Modal		~	
Modal Load Case	otion	None		~	
Modal Load Case Geometric Nonlinearity Op				Modify/Show	
Modal Load Case Geometric Nonlinearity Op Load Application	Full Load			Modify/Show	
Modal Load Case Geometric Nonlinearity Op Load Application Results Saved	Full Load Final State Only				
Modal Load Case Geometric Nonlinearity O; Load Application Results Saved Floor Cracking Analysis	Full Load Final State Only No Cracked Analysis	\$		Modify/Show	

Gambar 5. 18 Load Case Data Gravity

f. Load application

Berikutnya pada *Load Application* klik *Modify/Show* – pada *Load Application Control* pilih *Full Load* – pada *Monitored Displacement* isikan joint yang digunakan sebagai acuan analisis yaitu *Story* 6 pada *Joint* 2 – OK.

Load Application Co	ntrol					
Full Load						
 Displacement 	Control					
O Quasi-Static (run as time histo	ory)				
Control Displacemen	nt					
🔘 Use Conjugat	e Displacement					
Use Monitored	d Displacement					
Load to a Monitor	red Displacemen	it Magnitu	de of			
Maniferred Displaces	nant					
Monitored Displacen	nent		Stope			1
ODF/Joint	U1	~	Story6		~ 2	
Monitored Displacen ODF/Joint Generalized D	U1 Displacement	~	Story6		~ 2	-
Monitored Displacen DOF/Joint Generalized D Additional Controlled	U1 Displacement	~	Story6		~ 2	_
Monitored Displacen DOF/Joint Generalized D Additional Controlled	U1 Displacement	~	Story6		✓ 2 Modify/Show	
Monitored Displacen DOF/Joint Generalized D Additional Controlled	U1 Displacement	~	Story6		✓ 2 Modify/Show	
Monitored Displacen DOF/Joint Generalized D Additional Controlled Quasi-static Parame Time History Time	In Displacement	~	Story6		✓ 2 Modify/Show	
Monitored Displacen DOF/Joint Generalized I Additional Controlled Quasi-static Parame Time History Type Quadrat Time Star	Internet U1 Displacement I Displacements ters	~	Story6	linear Direct	V 2 Modify/Show	
Montored Displacen DoF/Joint Generalized I Additional Controlled Quasi-static Parame Time History Type Output Time Step	ent U1 Displacement I Displacements ters e Size	~	Story6	linear Direct	V 2 Modify/Show	sec
Montored Displacen	ent Usplacement I Displacements ters e Size al Damping	~	Story6	linear Direct	V 2 Modify/Show	sec 1/se

Gambar 5. 19 Load Applications Gravity

g. Results saved

Pada bagian Result Saved klik Modify/Show – pilih Final State Only pada Results Saved – OK.

Cours Saved	-	
Final State Only	○ M	ultiple States
For Each Stage		
Minimum Number of Save	d States	1
Maximum Number of Sav	ed States	1
Save positive Dis	placement In	crements Only

Gambar 5. 20 Results Saved Gravity

h. Nonlinear parameters

Pada bagian Nonlinear Parameters dapat diisi sesuai kebutuhan analisis, dengan cara klik Modify/Show.

	Solution Scheme	Iterative Event-to-Event
	Maximum Total Steps (Static Only)	200
	Maximum Null Steps (Static Only)	50
	Maximum Constant-Stiffness Iterations	10
	Maximum Newton-Raphson Iterations	40
	Iteration Convergence Tolerance (Relative)	0,0001
	Event Lumping Tolerance (Relative)	0.01
	Maximum Events per Step	24
So	lution Scheme	
Sc Th	lution Scheme e solution scheme.	

Gambar 5. 21 Nonlinear Parameters Gravity

2. Pendefinisian beban lateral *pushover* arah x dan y

Pendefinisian beban lateral *pushover* pada ETABS dilakukan dengan tahapan klik *Define – Load case – Add New Load Case*. Berikutnya dilakukan pengisian data *Load Case* dan modifikasi nilai pada *Pushover* X, untuk lebih jelasnya dapat dilihat pada tahapan berikut.

- a. Load case name = Pushover X
- b. *Load case type* = *Static*
- c. Analysis type = Nonlinear
- *d.* Initial conditions = Continue State at End of Nonlinear Case –

Gravity

e. Load applied

= Load Pattern – UX – (-1)

E Load Case Data

			Push_X			Design
oad Case Type			Nonlinear St	atic	~	Notes
Mass Source			Berat Bangu	unan	~	
Analysis Model			Default			
al Conditions						
Zero Initial Conditions	- Start from	m Unstressed Sta	ite			
Continue from State a	at End of N	Ionlinear Case (L	oads at End	of Case AR	E Included)	
Nonlinear Case			Gravity		~	
de Applied						
						6
Load Type		Load Na	me	:	Scale Factor	-
				-1		Add
neccicration	0	×		-1		Add
	U	*		-1		Add Delete
ACCOLUCION	0	*		-1		Add Delete
	0	~		-1		Add Delete
er Parametere		*		-1		Add Delete
er Parameters	0	×	Medal	-1		Add
er Parameters Modal Load Case		*	Modal	-1	~	Add
er Parameters Modal Load Case Geometric Nonlinearity Op	ption	*	Modal	-1		Add Delete
er Parameters Modal Load Case Geometric Nonlinearity Op Load Application	ption	ement Control	Modal None	-1	V Modify/Show	Add
er Parameters Modal Load Case Geometric Nonlinearity Op Load Application Results Saved	ption Displace Multiple	ement Control States	Modal None	-1	V Modfy/Show	Add
er Parameters Modal Load Case Geometric Nonlinearity O; Load Application Results Saved Floor Cracking Analysis	ption Displace Multiple No Crac	ement Control States cked Analysis	Modal None	-1	V Modify/Show Modify/Show	Add
er Parameters Modal Load Case Geometric Nonlinearity O; Load Application Results Saved Floor Cracking Analysis Nonlinear Parameters	ption Displac No Crace Default	ement Control States sked Analysis	Modal None	-1	V Modify/Show Modify/Show Modify/Show Modify/Show	Add

Gambar 5. 22 Load Case Data Pushover X

 \times

f. Load application

Berikutnya pada *Load Application* klik *Modify/Show* – pada *Load Application Control* pilih *Full Load* – pada *Control Displacement* pilih *Use Monitored Displacement* dengan *Monitored Displacement Magnitude* sebesar 2% dari tinggi bangunan yaitu 0,426 meter – kemudian pada *Monitored Displacement* isikan DOF pada U1 dan joint yang digunakan sebagai acuan analisis yaitu *Story 6* pada *Joint* 2 – OK.

oad Application Control			
O Full Load			
Displacement Control			
O Quasi-Static (run as	time history)		
Control Displacement			
🔘 Use Conjugate Displa	cement		
Use Monitored Displa	cement		
Load to a Monitored Disc	lacement Magnitude of	426	mm
Aonitored Displacement DOF/Joint U1 Generalized Displace	v Story6	√ 2]
Monitored Displacement DOF/Joint U1 Generalized Displace Additional Controlled Displa	v Story6	~ 2]
Aonitored Displacement DOF/Joint U1 Generalized Displace Additional Controlled Displa None	Story6 ment cements	V 2	
Aonitored Displacement DDF/Joint Generalized Displace Additional Controlled Displa None Duasi-static Parameters	v Story6	V 2	
Aonitored Displacement DoF/Joint Generalized Displace Additional Controlled Displa None Duasi-static Parameters Time History Type	v Story6 ment cements Nonlinear Di	V 2	
Aonitored Displacement DoF/Joint Generalized Displace Additional Controlled Displa None Duasi-static Parameters Time History Type Output Time Step Size	Story6 ment cements Nonlinear Di	V 2 Modify/Show rect Integration History	sec
Aonitored Displacement	Story6 ment cements Nonlinear Di	V 2 Modify/Show rect Integration History 1 0	sec

Gambar 5. 23 Load Application Pushover X

g. Results saved

Pada bagian Result Saved klik Modify/Show – pilih Multiple Stages pada Results Saved – isikan nilai Minimum Number of Saved Stages dan Maximum Number of Saved Stages sesuai dengan kebutuhan analisis.

lesults Saved for Nonlinear Static Case	
Results Saved	
○ Final State Only	tiple States
For Each Stage	
Minimum Number of Saved States	300
Maximum Number of Saved States	1000

Gambar 5. 24 Result Saved Pushover X

h. Nonlinear parameters

Pada bagian Nonlinear Parameters dapat diisi sesuai kebutuhan analisis, dengan cara klik Modify/Show.

~	Solution Control				
	Solution Scheme	Iterative Event-to-Event			
	Maximum Total Steps (Static Only)	200			
	Maximum Null Steps (Static Only)	50			
	Maximum Constant-Stiffness Iterations	10			
	Maximum Newton-Raphson Iterations	40			
	Iteration Convergence Tolerance (Relative)	0,0001			
	Event Lumping Tolerance (Relative)	0.01			
	Maximum Events per Step	24			
So	lution Scheme				

Gambar 5. 25 Nonlinear Parameters Pushover X

Selanjutnya untuk pengisian data *Load Case* dan modifikasi nilai *Pushover* Y dapat dilihat pada tahapan berikut.

- a. Load case name = Pushover Y
- b. *Load case type* = *Static*
- c. Analysis type = Nonlinear
- *d.* Initial conditions = Continue State at End of Nonlinear Case
 - Gravity
- e. Load applied
- = Load Pattern UY (-1)

Load Case Name			Push Y			D	esian
Load Case Type			Nonlinear Static V			~ N	otes
Mass Source			Berat Bangunan 🗸			~	
Analysis Model			Default				
nitial Conditions							
Zero Initial Conditions	- Start from Un	stressed St	ate				
Continue from State a	t End of Nonlin	ear Case (Loads at End	of Case	ARE Included)		
Nonlinear Case			Gravity			\sim	
anda Analiad							
oads Applied							
Load lype		Load Na	ame		Scale Factor	•	
Acceleration	LIV			-	Scale Factor		Add
Acceleration	UY			-1	Scale Factor		Add
Acceleration	UY			-1	Scale Factor		Add Delete
Acceleration	UY			-1			Add Delete
Acceleration	UY			-1			Add Delete
Acceleration ther Parameters	UY			-1			Add Delete
Acceleration ther Parameters Modal Load Case	UY		Modal	-1		~	Add Delete
Acceleration ther Parameters Modal Load Case Geometric Nonlinearity O	UY		Modal None	-1			Add Delete
Acceleration ther Parameters Modal Load Case Geometric Nonlinearity O Load Application	UY ption Displacemen	It Control	Modal None	-1	Modify/Sh	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Add Delete
Acceleration ther Parameters Modal Load Case Geometric Nonlinearity O Load Application Results Saved	UY ption Displacement Multiple State	it Control es	Modal None	-1	Modify/Sh Modify/Sh	~ ~ ~ 	Add Delete
Acceleration ther Parameters Modal Load Case Geometric Nonlinearity O Load Application Results Saved Floor Cracking Analysis	UY ption Displacemen Multiple State No Cracked	it Control es Analysis	Modal	-1	Modify/Sh Modify/Sh Modify/Sh	~ ~ ~ 	Add

Gambar 5. 26 Load Case Data Pushover Y

f. Load application

Berikutnya pada *Load Application* klik *Modify/Show* – pada *Load Application Control* pilih *Full Load* – pada *Control Displacement* pilih *Use Monitored Displacement* dengan *Monitored Displacement Magnitude* sebesar 2% dari tinggi bangunan yaitu 0,426 meter – kemudian pada *Monitored Displacement* isikan DOF pada U2 dan joint yang digunakan sebagai acuan analisis yaitu *Story* 6 pada *Joint* 2 – OK.

	trol				
Displacement	Control				
O Quasi-Static (I	un as time history)			
Control Displacement					
🔘 Use Conjugate	Displacement				
Use Monitored	Displacement				
Load to a Monitor	ed Displacement M	agnitude of		426	mm
Monitored Displacem	ent				
DOF/Joint	U2	✓ Story6		~ 2	7
Generalized D	isplacement				_
			1		
Additional Controlled	Displacements			_	
None				Modify/Show	
	ers				
Quasi-static Paramet			Nonlinear Dire	ect Integration History	
Quasi-static Paramet Time History Type				4	sec
Quasi-static Paramet Time History Type Output Time Step	Size			1	
Quasi-static Paramet Time History Type Output Time Step Mass Proportiona	Size Damping			0	1/sec
Quasi-static Paramel Time History Type Output Time Step Mass Proportiona Hilber-Hughes-Ta	Size Damping /lor Time Integratio	n Parameter, Alp	oha	0	1/sec

Gambar 5. 27 Load Application Pushover Y

g. Results saved

Pada bagian Result Saved klik Modify/Show – pilih Multiple Stages pada Results Saved – isikan nilai Minimum Number of Saved Stages dan Maximum Number of Saved Stages sesuai dengan kebutuhan analisis.

E Results Saved for Nonlinear Static Case	:
Results Saved	
O Final State Only Multiple States	
For Each Stage	
Minimum Number of Saved States 300	
Maximum Number of Saved States 1000	
Save positive Displacement Increments Only	
OK Cancel	

Gambar 5. 28 Result Saved Pushover Y

h. Nonlinear parameters

Pada bagian Nonlinear Parameters dapat diisi sesuai kebutuhan analisis, dengan cara klik Modify/Show.

*	Solution Control	
	Solution Scheme	Iterative Event-to-Event
	Maximum Total Steps (Static Only)	200
	Maximum Null Steps (Static Only)	50
	Maximum Constant-Stiffness Iterations	10
	Maximum Newton-Raphson Iterations	40
	Iteration Convergence Tolerance (Relative)	0.0001
	Event Lumping Tolerance (Relative)	0.01
	Maximum Events per Step	24
So	lution Scheme	
So	Iution Scheme 5 solution scheme.	

Gambar 5. 29 Nonlinear Parameters Pushover Y

- 5.4.2 Pendefinisian Sendi Plastis (Hinges)
- 1. Pendefinisian sendi plastis pada balok

Berikut adalah tahapan dalam melakukan pendefinisian sendi plastis pada ETABS.

a. Pilih balok yang akan diberi sendi plastik (*Hinge*) dengan tahapan klik
 Select – Properties – Frame Section – pilih balok yang telah dimodelkan –
 Select.

Select by Frame Property	
Filter	Clear Filter
Frame Properties	
B2-01 B2-02 B2-03 B2-04 B2-05 B2-06 B2-07 B2-08 B2-09 B2-10 B2-11 B2-12 B2-13 B3_5-01 B3_5-02 B3_5-05 B3_5-06 B3_5-07 B3_5-09 B3	
BD-01	¥
Select Deselect	Close

Gambar 5. 30 Select Frame Balok

 b. Berikutnya klik Assign – Frame – Hinge – pada bagian Location Type pilih relative to Clear Length – isikan Relative distance, untuk lebih jelas dapat dilihat pada Gambar 5.31 berikut.

Hinge Prope	ertv	Location Type	Relative Distance	e Distance from End	
ninge rrept		Looddon type		m	
Auto	~ R	elative to clear length	~ 1		٨dd
Auto M3	R	elative to clear length	0		Add
Auto M3	R	elative to clear length	1		Modify
					Delete
ito Hinge Assignment	Data				
ype: From Tables In A	ASCE 41-17				
IOF: M3	ICTELE DEATHS - FI	exure) item i			
		Modify/Show Auto	Hinne Assignment Data		
		mouny/Show Auto	minge Assignment Data		

Gambar 5. 31 Input Frame Hinge Balok

Penginputan sendi plastis pada *Relative Distance* 0 dan 1 dengan *Type Location* menggunakan *relative to Clear Length* menunjukkan bahwa sendi plastis pada balok diletakkan di ujung tepi bersih balok.

c. Berikutnya pada kolom *Auto Hinge* pilih *From Table In* ASCE 41-17 - pada kolom *Select a Hinge* pilih *Table* 10-7 (*Concrete Beams - Flexure*) *item I* – pada kolom *Degree of Freedom* pilih M3 – klik *Case/combo* pada *V Value From* pilih beban struktur (*Load Combinations* beban mati dan beban mati tambahan), untuk lebih jelasnya dapat dilihat pada Gambar 5.32 berikut.

Auto minge Assignment but	Ε	Auto	Hinge	Assign	ment	Data
---------------------------	---	------	-------	--------	------	------

From Tables In ASCE 41-17	×
Select a Hinge Table	
Table 10-7 (Concrete Beams - Flexure) Item i	~
Degree of Freedom	V Value From
○ M2	Case/Combo Beban Struktur v
● M3	O User Value V2
Transverse Reinforcing	Reinforcing Ratio (p - p') / pbalanced
Transverse Reinforcing is Conforming	From Current Design User Value (for positive bending)
Deformation Controlled Hinge Load Carrying Capacity	
Drops Load After Point E	
O Is Extrapolated After Point E	

Gambar 5. 32 Setting Hinge Balok

2. Pendefinisian sendi plastis pada kolom

Berikut adalah tahapan dalam melakukan pendefinisian sendi plastis pada ETABS.

a. Pilih kolom yang akan diberi sendi plastik (*Hinge*) dengan tahapan klik
 Select – Properties – Frame Section – pilih kolom yang telah dimodelkan –
 Select.

		Clear Filter
Frame Properties		
BD-08 BD-09 BDA-01 BDA-02 BDA-03 BDA-04 BDA-05 BDA-06 K1 LANTAL_1-2		
K1 LANTAI_3-4 K1 LANTAI_5-AT K2 LANTAI_1-2 K2 LANTAI_3-4 K2 LANTAI_5 K4 LANTAI_1-3 K4 LANTAI_4-AT	AP	
K5 LANTAI_1-4 K6 K7 None SL-01 SL-02		

Gambar 5. 33 Select Frame Kolom

×

 b. Berikutnya klik Assign – Frame – Hinge – pada bagian Location Type pilih relative to Clear Length – isikan Relative distance, untuk lebih jelas dapat dilihat pada Gambar 5.34 berikut.

Hinge Prop	perty	Location Type	Relative Distance	Distance from End	
				m	
Auto	✓ Relation	ative to clear length	 ✓ 1 		٨dd
Auto M3	Rela	ative to clear length	0		Add
Auto M3	Rel	ative to clear length	1		Modify
					mouny
					Delete
uto Hinge Assignmen	t Data				
ype: From Tables In	ASCE 41-17				
	oncrete Beams - Fle	kure) Item i			
Table: Table 10-7 (Co					
able: Table 10-7 (Co)OF: M3					
able: Table 10-7 (Co)OF: M3		Modify/Show Auto I	Hinne Assignment Data		
Table: Table 10-7 (Co DOF: M3		Modify/Show Auto H	Hinge Assignment Data		

Gambar 5. 34 Input Frame Hinge Kolom

Penginputan sendi plastis pada *Relative Distance* 0 dan 1 dengan *Type Location* menggunakan *relative to Clear Length* menunjukkan bahwa sendi plastis pada balok diletakkan di ujung tepi bersih kolom.

c. Berikutnya pada kolom Auto Hinge pilih From Table In ASCE 41-17 - pada kolom Select a Hinge pilih Table 10-8 and 10-9 (Concrete Columns) – pada kolom Degree of Freedom pilih P-M2-M3 – klik Case/combo pada V Value From untuk Grafity dan Gravity + Lateral pilih beban struktur (Load Combinations beban mati dan beban mati tambahan), untuk lebih jelasnya dapat dilihat pada Gambar 5.35 berikut.

E Auto Hinge Assignment Data

From Tables In ASCE 41-17		~	
Select a Hinge Table			
Table 10-8 and 10-9 (Concrete Columns)		~	
Degree of Freedom	P Values From		
O M2 O P-M2 O Parametric P-M2-M3	Case/Combo	O User Value	
○ M3 ○ P-M3	Gravity	Beban Struktur 🗸 🗸	
○ M2-M3	Gravity + Lateral	Beban Struktur 🗸 🗸	
Concrete Column Behavior	Shear Demand at Flexura	al Yielding / Shear Capacity (VyE / Vcol0E)	
Not Controlled by Inadequate Development or Splicing	Program Calculated User-specified Shear Demand, VyE		
Controlled by Inadequate Development or Splicing			
	V2	V3	
Chara Bainfaraina Bain an An ((hur tar)	O User-specified Ra	tin VvF / VcnI0F	
Shear Reinforcing Ratio p = AV7 (ow * s)			
From Current Design User Value	V2	V3	
Deformation Controlled Hinge Load Carrying Capacity	Shear Reinforcement Sp	acing Ratio (s/d)	
Drops Load After Point E	From Current Design		
O Is Extrapolated After Point E	O User Value	-	

Gambar 5. 35 Setting Hinge Kolom

5.4.3 Running Pushover Analysis

Setelah menginput data *Load Pattern, Load Case Pushover,* serta melakukan input sendi plastis (*Hinge*) pada model struktur. Tahapan berikutnya adalah *Running Pushover Analysis* dengan tahapan klik *Analyze – Set Load Case to Run –* pilih *Action Run* pada *Case* dengan *Type Case Nonlinear Static – Run Now –* OK.

					Click to:			
Case	Туре	Status		^	Run/Do Not Run Case			
Sy L	inear Static	Not Run	Do not Run		Delete Results for Case			
Rx Resp	onse Spectrum	Not Run	Do not Run					
Ry Resp	onse Spectrum	Not Run	Do not Run		Run/Do Not Run All			
Gravity No	nlinear Static	Not Run	Run					
Push_X No	nlinear Static	Not Run	Run		Delete All Results			
Push_Y No	nlinear Static	Not Run	Run					
				~	Show Load Case Tree			
alysis Monitor Options	Show	Messages after	r Run					
) Always Show	0 0	Only if Errors						
Never Show	I	f Errors or Warni	ngs					
) Show After seconds	04	lways		Run Now				
aphragm Centers of Rigidity	Autor	natic Tabular Out	put After Analys	is is Complete				
Louis and Discharge Contains of Distance			1					

Gambar 5. 36 Set Load Case to Run

 \times

5.5 Hasil Analisis Pushover

Setelah dilakukan *running* analisis *pushover* akan didapatkan hasil *output* berupa kurva kapasitas, *performance point*, dan hasil skema sendi plastis yang terjadi pada model bangunan. Nilai yang didapat pada *performance point* akan digunakan untuk mengetahui kinerja struktur berdasarkan ATC-40.

5.5.1 Kurva Kapasitas

Dalam kurva kapasitas menunjukkan hubungan antara gaya geser dasar (*base force*) dengan perpindahan lateral (*displacement*) yang terjadi pada semua lantai. Untuk menampilkan kurva kapasitas pada program ETABS dapat dilakukan dengan tahapan klik *Display – Static Pushover Curve*, kemudian kurva kapasitas akan muncul otomatis. Berikut bentuk kurva kapasitas pada *pushover* arah x dan arah y untuk beban gempa desain pada pemodelan ini dapat dilihat pada Gambar 5.37 dan Gambar 5.38.

Gambar 5. 37 Kurva Kapasitas Pushover Arah X

Gambar 5. 38 Kurva Kapasitas Pushover Arah Y

Gambar 5. 39 Perbandingan Kurva Kapasitas Pushover Arah X dan Arah Y

Dari Gambar 5.39 dapat dilihat bahwa kurva kapasitas arah x memiliki nilai *base shear* lebih besar dibandingkan dengan kurva kapasitas arah y, dengan nilai *base shear* maksimum untuk arah x sebesar 20105,37 kN pada *step* ke- 243 dan untuk arah y sebesar 18823,68 kN pada *Step* ke- 211. Hal ini menunjukkan bahwa untuk arah x merupakan sumbu kuat bangunan dan arah y merupakan sumbu lemah bangunan, dikarenakan pada arah x memiliki jumlah kolom dan balok yang lebih banyak daripada arah y. Hasil ini sesuai dengan penelitian Kurniati (2018), Muntafi, dkk (2018), Nugraha (2021) dan Saputra, dkk (2023), yaitu untuk kurva kapasitas dengan nilai *base shear* lebih besar berada pada sumbu kuat bangunan. Arah sumbu kuat dan sumbu lemah pada struktur gedung dapat dilihat pada Gambar 5.40 berikut.

Gambar 5. 40 Sumbu Kuat dan Sumbu Lemah Struktur

Pada kurva kapasitas adapun *output* lain berupa tabel *output* kurva kapasitas. Dalam tabel *output* kurva kapasitas dapat terlihat *step* awal terjadinya sendi plastis pada banguan, untuk lebih jelasnya dapat dilihat pada Tabel 5.6 dan Tabel 5.7 berikut.

Step	Displace- ment (m)	Base Shear (kN)	A-B	B-C	C-D	D-E	>E	A-IO	IO- LS	LS- CP	>CP	Total
1	0,00142	211,3884	784	0	0	0	0	784	0	0	0	784
2	0,00284	422,7768	784	0	0	0	0	784	0	0	0	784
3	0,00426	634,1652	784	0	0	0	0	784	0	0	0	784
4	0,00568	845,5536	784	0	0	0	0	784	0	0	0	784
5	0,0071	1056,942	784	0	0	0	0	784	0	0	0	784
\downarrow												
27	0,03834	5707,4865	784	0	0	0	0	784	0	0	0	784
28	0,03976	5918,8749	784	0	0	0	0	784	0	0	0	784
29	0,041036	6108,7591	783	1	0	0	0	784	0	0	0	784
30	0,042456	6319,2115	783	1	0	0	0	784	0	0	0	784
31	0,044514	6622,9298	781	3	0	0	0	784	0	0	0	784
\downarrow												
242	0,351725	20105,35	507	274	1	2	0	635	137	10	2	784
243	0,351726	20105,37	507	274	1	2	0	635	137	10	2	784
244	0,351359	20033,09	507	274	1	2	0	635	137	10	2	784

Tabel 5. 6 Kurva Kapasitas Arah X

Tabel 5. 7 Kurva Kapasitas Arah Y

	Displace-	Base										
Step	ment	Force	A-B	B-C	C-D	D-E	>E	A-IO	IO-LS	LS-CP	>CP	Total
	(m)	(k N)										
1	0,00142	208,2129	784	0	0	0	0	784	0	0	0	784
2	0,00284	416,4258	784	0	0	0	0	784	0	0	0	784
3	0,00426	624,6386	784	0	0	0	0	784	0	0	0	784
4	0,00568	832,8515	784	0	0	0	0	784	0	0	0	784
5	0,0071	1041,064	784	0	0	0	0	784	0	0	0	784
\downarrow												
28	0,03976	5829,9592	784	0	0	0	0	784	0	0	0	784
29	0,04118	6038,1719	784	0	0	0	0	784	0	0	0	784
30	0,042054	6166,253	782	2	0	0	0	784	0	0	0	784
31	0,044647	6541,9482	780	4	0	0	0	784	0	0	0	784
32	0,046067	6747,1122	780	4	0	0	0	784	0	0	0	784
\downarrow												
210	0,311291	18792,07	526	258	0	0	0	661	98	2	23	784
211	0,312711	18823,68	526	257	1	0	0	660	97	4	23	784

Step	Displace- ment	Base Force	A-B	B-C	C-D	D-E	>E	A-IO	IO-LS	LS-CP	>CP	Total
	(III)	(KIN)										
212	0,310185	18495,10	526	257	0	1	0	656	96	5	27	784

Lanjutan Dari Tabel 5.7 Kurva Kapasitas Arah Y

Dari tabel di atas dapat dilihat bahwa *step* awal sendi plastis untuk arah x terjadi pada langkah 29, hal ini terlihat dari perubahan nilai yang menurun dari langkah 28 ke langkah 29, yaitu dari 784 menjadi 782. Untuk arah y terjadi pada langkah 30, hal ini terlihat dari perubahan nilai yang menurun dari langkah 29 = 784 menjadi langkah 30 = 782.

5.5.2 *Performance Point* Berdasarkan ATC-40

Dalam menentukan *performance point* digunakan kurva kapasitas yang dihasilkan dari analisis *pushover*, yang mana untuk menentukan *performance point* kurva kapasitas dikonversi dengan bantuan program ETABS menjadi bentuk spektrum kapasitas dengan format ADRS (*Acceleration Displacement Respon spectrum*) yaitu hubungan antara *Sa* (*Specral Acceleration*) dan *Sd* (*Specral Displacement*). Berikut adalah spektrum kapasitas arah x (Gambar 5.41) dan arah y (Gambar 5.42).

Gambar 5. 42 Spektrum Kapasitas arah Y

Performance point pada Gambar 5.41 dan Gambar 5.42 di atas menunjukkan besarnya kapasitas struktur dalam memenuhi *demand* dari beban gempa rencana sesuai dengan SNI 1726-2019. Berikut adalah nilai-nilai hasil evaluasi pada saat *performance point* tercapai dapat dilihat pada Tabel 5.8.

Arah Beban	Base	Performance Point									
	Shear (kN)	Vt (kN)	Dt (m)	Sa	Sd	$T_{e\!f\!f}$	$eta_{e\!f\!f}$				
Arah X	1767,10	12496,2	0,10959	0,4189	0,08773	0,919	0,0692				
Arah Y	1767,10	12798,2	0,11821	0,4167	0,08876	0,947	0,0848				

Tabel 5. 8 Performance Point Berdasarkan ATC-40

Dari Tabel 5.8 di atas dapat dilihat besarnya gaya geser dasar (*base shear*) untuk arah x Vt = 12496,2 kN > Vx = 1767,10 kN dan arah y Vt = 12498,2 kN > Vy= 1767,10 kN. Maka berdasarkan metode spektrum kapasitas (ATC-40, 1996) perilaku struktur pada arah x dan y pada gempa rencana telah mengalami kondisi in-elastis yang terjadi akibat pelelehan pada sendi-sendi plastisnya. Berikutnya untuk target *displacement* (*Dt*) hasil analisis *pushover* untuk arah x sebesar 0,10959 meter dan untuk arah y sebesar 0,11821 meter, nilai target *displacement* baik untuk arah x maupun y masih dibawah nilai batasan maksimum *displacement* sebesar 0,02 x tinggi bangunan = 0,02 x 21,3 meter = 0,426 meter, sehingga telah memenuhi syarat.

5.5.3 Tingkat Kinerja Struktur

Tingkat kinerja struktur pada bangunan dapat ditentukan berdasarkan batasan rasio *drift* atap yang dievaluasi pada *performance point*, dengan parameter yang digunakan adalah maksimum total *drift* dan maksimum inelasik *drift*. Berikut adalah perhitungan nilai-nilai parameter untuk mendapatkan tingkat kinerja struktur.

- 1. *Pushover* arah x
 - a. Maksimum total drift $=\frac{Dt}{H}$

$$= \frac{0,10959}{21,3}$$

= 0,005145
b. Maksimum inelastik *drift* = $\frac{(Dt-DI)}{H}$
= $\frac{(0,10959-0,00142)}{21,3}$
= 0,005078

Untuk nilai parameter maksimum total *drift* hasil dari perhitungan *pushover* arah x sebesar 0,005145 < 0,01, berdasarkan ATC-40 Tabel 11-2 masuk kedalam kategori *Immediate Occupancy* (IO). *Immediate occupancy* artinya bangunan aman ketika terjadi gempa, risiko korban jiwa dan kegagalan struktur tidak terlalu berarti, dan gedung tidak mengalami kerusakan berarti dan dapat segera difungsikan kembali. Kemudian untuk nilai parameter maksimum inelastik *drift* hasil perhitungan *pushover* arah x sebesar 0,005078 > 0,005, nilai tersebut berdasakan ATC-40 Tabel 11-2 masuk ke dalam kategori *Damage Control* (DC). *Damage Control* artinya bangunan masih mampu menahan gempa yang terjadi, dan risiko korban jiwa sangat rendah.

2. *Pushover* arah y

a. Maksimum total drift

$$= \frac{Dt}{H}$$

$$= \frac{0,11821}{21,3}$$

$$= 0,005550$$
b. Maksimum inelastik drift

$$= \frac{(Dt-D1)}{H}$$

$$= \frac{(0,11821-0,00142)}{21,3}$$

$$= 0,005483$$

Untuk nilai parameter maksimum total *drift* hasil dari perhitungan *pushover* arah y sebesar 0,005550 < 0,01, berdasarkan ATC-40 Tabel 11-2 masuk kedalam kategori *Immediate Occupancy* (IO). *Immediate occupancy* artinya bangunan aman ketika terjadi gempa, risiko korban jiwa dan kegagalan struktur tidak terlalu berarti, dan gedung tidak mengalami kerusakan berarti dan dapat segera difungsikan

kembali. Kemudian untuk nilai parameter maksimum inelastik *drift* hasil perhitungan *pushover* arah y sebesar 0,005483 > 0,005, nilai tersebut berdasakan ATC-40 Tabel 11-2 masuk ke dalam kategori *Damage Control* (DC). *Damage Control* artinya bangunan masih mampu menahan gempa yang terjadi, dan risiko korban jiwa sangat rendah.

5.5.4 Mekanisme Sendi Plastis

Setelah dilakukan analisis *pushover*, maka akan terlihat proses terjadinya sendi plastis pada struktur, sendi plastis pada struktur terjadi karena momen yang ditahan oleh elemen struktur lebih besar dari momen kapasitas elemen struktur. Berikut adalah penjelasan mengenai mekanisme sendi plastis yang terjadi pada arah x dan arah y.

1. Mekanisme sendi plastis arah x

Sendi plastis untuk arah x dengan beban gempa rencana terjadi pada balok dan kolom pada *step* ke- 29, yang mana ditandai dengan muncul titik-titik sendi plastis berwarna hijau yang berarti pada level kinerja B. level kinerja B artinya sendi plastis mulai terjadi. Berikut adalah gambar terjadinya sendi plastis pada *step*- 25, dapat dilihat pada Gambar 5.43 dan Gambar 5.44.

Gambar 5. 43 Terjadinya Sendi Plastis Pertama Pada Step-29 Arah X

Gambar 5. 44 Detail Terjadinya Sendi Plastis Pertama Pada Step-29 Arah X

Dari Gambar 5.43 dan Gambar 5.44 terlihat bahwa sendi plastis pada arah x diawali pada *step* ke- 29, yang terjadi pada balok dan kolom bagian teras bangunan gedung, sedangkan untuk bagian bangunan gedung belum terjadi sendi plastis. Kemudian untuk bangunan gedung sendi plastis terjadi pada *step* ke- 38, yang terjadi pada balok. Berikut adalah gambar terjadinya sendi plastis pada bangunan gedung, dapat dilihat pada Gambar 5.45 dan Gambar 5.46.

Gambar 5. 45 Terjadinya Sendi Plastis Pertama Pada *Step-* 38 Arah X Bagian Gedung

Gambar 5. 46 Detail Terjadinya Sendi Plastis Pertama Pada *Step-* 38 Arah X Bagian Gedung

Mekanisme sendi plastis pada arah x berakhir pada *step* ke- 244, yang mana terlihat sendi plastis sudah terjadi hampir di seluruh bangunan. Kemudian terjadi sendi plastis pada kolom yang sudah masuk kedalam fase *collapse Prevention. Collapse Prevention* artinya terjadi kerusakan parah pada elemen struktur sehingga kekuatan dan kekakuan berkurang. Untuk lebih jelasnya dapat dilihat pada Gambar 5.47 dan Gambar 5.48 berikut.

Gambar 5. 47 Distribusi Sendi Plastis Pada Step ke- 244 Arah X

Gambar 5. 48 Detail Sendi Plastis Pada Portal Step ke- 244 Arah X

Dari mekanisme sendi plastis arah x yang terjadi untuk bagian gedung sudah sesuai dengan prinsip *strong column weak beam*, yang mana terjadi pelelehan sendi plastis diawali dari balok pada *step* ke- 38 dan berakhir pada *step* ke- 244 dengan terjadinya kerusakan pada kolom. Kerusakan kolom tersebut ditandai dengan sendi plastis pada kolom yang telah masuk ke fase *collapse prevention*. Akan tetapi pada bagian teras gedung untuk pelelehan sendi plastis diawali dari sendi plastis pada kolom yaitu pada *step* ke- 29, sehingga tidak sesuai dengan prinsip *strong column weak beam*, hal ini perlu diparhatikan karena ada potensi terjadinya keruntuhan kolom sebelum runtuhnya balok. Untuk itu perlu adanya perkuatan pada kolom di bagian teras gedung.

2. Mekanisme sendi plastis arah y

Sendi plastis untuk arah y dengan beban gempa rencana terjadi pada balok pada *step* ke- 30 dimana ditandai dengan muncul titik-titik sendi plastis berwarna hijau yang berarti pada level kinerja B. Level kinerja B artinya sendi plastis mulai terjadi. Berikut adalah gambar terjadinya sendi plastis pada bangunan gedung, dapat dilihat pada Gambar 5.49 dan Gambar 5.50 Berikut.

Gambar 5. 49 Terjadinya Sendi Plastis Pertama Pada Step- 30 Arah Y

Gambar 5. 50 Detail Terjadinya Sendi Plastis Pertama Pada Step- 30 Arah Y

Mekanisme sendi plastis pada arah y berakhir pada *step* ke- 212, yang mana sendi plastis sudah terjadi hampir di seluruh bangunan. Kemudian terjadi sendi plastis kolom yang sudah masuk kedalam fase *collapse prevention*. *Collapse Prevention* artinya terjadi kerusakan parah pada elemen struktur sehingga kekuatan dan kekakuan berkurang. Untuk lebih jelasnya dapat dilihat pada Gambar 5.51 dan Gambar 5.52 berikut.

Gambar 5. 51 Distribusi Sendi Plastis Pada Step ke- 212 Arah Y

ents (Push_Y) Step 212/212 [mm]

Gambar 5. 52 Detail Sendi Plastis Pada Portal Step ke- 212 Arah Y

Dari mekanisme sendi plastis arah y yang terjadi untuk bagian gedung dan teras gedung sudah sesuai dengan prinsip *strong column weak beam*, yang mana terjadi pelelehan sendi plastis diawali dari balok pada *step* ke- 30 dan berakhir pada *step* ke- 212 dengan terjadinya kerusakan pada kolom. Kerusakan kolom tersebut ditandai dengan sendi plastis pada kolom yang telah masuk ke fase *collapse prevention*.
BAB VI KESIMPULAN DAN SARAN

6.1 Kesimpulan

Dari analisis yang telah dilakukan terhadap kinerja Gedung Multazam Asrama Haji Provinsi Lampung, maka dapat disimpulkan sebagai berikut.

- Berdasarkan kurva kapasitas hasil dari analisis *pushover*, didapatkan nilai *base shear* untuk kurva kapasitas arah x lebih besar dibandingkan dengan kurva kapasitas arah y. Dengan nilai *base shear* maksimum untuk arah x sebesar 20105,37 kN pada *step* ke- 243 dan untuk arah y sebesar 18823,68 kN pada *Step* ke- 211. Hasil ini menunjukkan bahwa untuk arah x merupakan sumbu kuat bangunan sedangkan arah y merupakan sumbu lemah bangunan, hal tersebut dikarenakan pada sumbu kuat bangunan memiliki jumlah kolom dan balok yang lebih banyak.
- 2. Tingkat kinerja struktur diukur berdasarkan perhitungan parameter maksimum total *drift* dan paremeter maksimum inelakstik *drift*. Berdasarkan perhitungan parameter maksimum total *drift* didapatkan nilai untuk arah x sebesar 0,005145 dan arah y sebesar 0,005550, kedua nilai tersebut kurang dari 0,01 sehingga tingkat kinerja struktur masuk kedalam kategori *Immediate Occupancy* (IO). *Immediate occupancy* artinya bangunan aman ketika terjadi gempa, risiko korban jiwa dan kegagalan struktur tidak terlalu berarti, dan gedung tidak mengalami kerusakan berarti dan dapat segera difungsikan kembali. Kemudian berdasarkan perhitungan parameter maksimum inelastik *drift* didapatkan nilai untuk arah x sebesar 0,005078 dan arah y sebesar 0,005483, kedua nilai tersebut lebih dari 0,005 dan kurang dari 0,015 sehingga tingkat kinerja struktur masuk kedalam kategori *Damage Control* (DC). *Damage Control* artinya bangunan masih mampu menahan gempa yang terjadi, dan risiko korban jiwa sangat

rendah. Berdasarkan ATC-40 mengenai tingkat kinerja dan kondisi bangunan pasca terjadi gempa, level kinerja untuk bangunan yang difungsikan sebagai tempat tinggal adalah *Life Safety* dimana banguanan mengalami kerusakan tetapi tidak diperkenankan mengalami keruntuhan yang dapat menyebabakan korban jiwa. Kemudian dari hasil perhitungan analisis untuk level kinerja bangunan berdasarkan parameter maksimum total *drift* adalah *Immediate Occupancy* dan berdasarkan parameter maksimum inelastik *drift* adalah *Damage Control* dimana level kinerja *Immediate Occupancy* dan *Damage Control* dimana level kinerja yang lebih baik daripada level kinerja *Life Safety* dalam menahan gaya gempa, sehingga dapat dikatakan banguanan Gedung Multazam memiliki tingkat kinerja yang baik dan aman dalam menahan gaya gempa.

3. Proses plastifikasi pada gedung yang ditinjau diawali dengan munculnya sendi plastis pada bagian balok kemudian pada bagian kolom dari gedung baik untuk arah x maupun arah y. Berdasarkan *code* ATC-40 hasil ini sesuai dengan kriteria *beam sway mechanism*. Kemudian hasil ini juga telah sesuai dengan prinsip *strong column weak beam* (SCWB) dimana terjadi pelelehan sendi plastis diawali dari balok pada *step* ke- 38 dan berakhir pada *step* ke- 244 dengan terjadinya kerusakan pada kolom, kerusakan pada kolom tersebut ditandai dengan sendi plastis pada kolom lantai 1 yang telah masuk ke fase *collapse prevention*. *Collapse prevention* artinya terjadi kerusakan pada elemen struktur sehingga kekuatan dan kekakuan berkurang.

6.2 Saran

Adapun saran untuk mengembangkan penelitian ini lebih lanjut mengenai analisis *pushover* yang mana merupakan salah satu cara mengevaluasi kinerja struktur bangunan, maka ada beberapa saran sebagai berikut.

 Penggunan metode lain seperti metode FEMA 356 dan FEMA 440 dapat dilakukan untuk penelitian kedepannya sebagai pembanding hasil analisis dari metode ATC-40.

- 2. Metode analisis dinamik riwayat waktu (*Time History*) dapat dilakukan pada penelitian kedepannya sebagai pembanding hasil analisis metode statik non-linear *pushover*.
- 3. Penggunaan komputer dalam *running* analisis disarankan menggunakan komputer dengan spesifikasi tinggi agar mempercepat proses *running* analisis dan mengurangi kemungkinan terjadi kegagalan dalam proses *running* analisis.

DAFTAR PUSTAKA

- Afandi, N. R. (2010). Evaluasi kinerja Seismik Struktur Beton Dengan Analisis Pushover Menggunakan Program SAP 2000. Tugas Akhir. Surakarta: Jurusan Teknik Sipil, Fakultas Teknik, Universitas Sebelas Maret.
- ATC-40. (1996). Seismic Evaluation and Retrofit of Concrete Buildings, Volume I. California: Seismic Safety Commission of California.
- ATC-40. (1996). Seismic Evaluation and Retrofit of Concrete Buildings, Volume II. California: Seismic Safety Commission of California.
- SNI 1726-2019. (2019). Tata Cara Perencanaan Ketahanan Gempa Untuk Struktur Bangunan Gedung dan Non Gedung. Jakarta: Badan Standarisasi Nasional.
- SNI 1727-1989. (1989). Pedoman Perencanaan Pembebanan Untuk Rumah dan Gedung, SNI 1727-1989. Jakarta: Badan Standarisasi Nasional.
- Juwita, P. (2009). Evaluasi Kinerja Inelastik Struktur Rangka Beton Bertulang Terhadap Gempa Dua Arah. Sumatera Utara: Bidang Studi Struktur, Departemen Teknik Sipil, Fakultas Teknik, Universitas Sumatera Utara.
- Kementrian Pekerjaan Umum dan Perumahan Rakyat. (2017). *Peta Sumber dan Bahaya Gempa Indonesia Tahun 2017*. Bandung: Kementrian Pekerjaan Umum dan Perumahan Rakyat.
- Kementrian Pekerjaan Umum dan Perumahan Rakyat. (2022). Peta Deagregasi Bahaya gempa Indonesia Untuk Perencanaan dan Evaluasi Infrastruktur Tahan Gempa. Jakarta: Kementrian Pekerjaan Umum dan Perumahan Rakyat.
- Kurniati, D. (2018). Kajian Analisis Pushover Untuk Performance Based Design Pada Awana Condotel Yogyakarta. Jurnal Rekayasa Sipil. Vol.6 No.1:85-93. Yogyakarta.
- Marianda, D. (2016). Evaluasi Kinerja Struktur Gedung "Asrama Mahasiswi UGM" Yogyakarta Menggunakan Analisa Pushover Sesuai Pedoman ATC-40. Yogyakarta: Program Studi Teknik Sipil, Fakultas Teknik Sipil, Universitas Islam Indonesia.
- Muntafi, Y. (2008). Evaluasi Kinerja Seismik Gedung Simetri Empat Lantai dengan Analisis Statik Nonlinier (Pushover). Tugas Akhir. Surakarta: Jurusan Teknik Sipil, Fakultas Teknik, Universitas Sebelas Maret.

- Muntafi, Y. (2012). Simposium Nasional RAPI XI FT UMS 2012. Evaluasi Kinerja Bangunan Gedung DPU Wilayah Kabupaten Wonogiri Dengan Analisis Pushover, pp. 68-75.
- Muntafi, Y. (2018). Damage and loss probability assessment of reinforced concrete building due to Yogyakarta earthquake scenario using pushover and hazus analysis (case study: student center building, faculty of social science, UNY). Prosiding International Conference on Disaster Management (ICDM). Padang, Indonesia. MATEC Web of Conferences 229, pp. 1-9.
- Nugraha, H. (2021). Evaluasi Kinerja Seismik Gedung APSLC UGM Dengan Metode Analisis Pushover Sesuai Peraturan SNI 1726-2019. Yogyakarta: Program Studi Teknik Sipil, Fakultas Teknik Sipil dan Perencanaan, Universitas Islam Indonesia.
- PT. Pandu Persada. (2018). Laporan Faktual Penyelidikan Tanah Lapangan Perencanaan Pembangunan Asrama Hasi Bandar Lampung.
- PT. Pandu Persada (2018). Perencanaan Revitalisasi Pengembangan Asrama Haji Provinsi Lampung Untuk Pembangunan Gedung Multazam dan Fasilitas Pendukung.
- Saputra, R. S., RM, R. A., dan Masrilayanti. (2023). Evaluasi Struktur Kampus II Universitas Muhammadiyah, Sumatera Barat Dengan Analisis Statik Non-Linear Pushover. Jurnal Darma Agung. Vol.31 No.4:528-540. Sumatera Barat.
- Syahira, M. S. (2023). Evaluasi Kinerja Struktur Atas Pada Desain Gedung Perkantoran Menggunakan Analisis Pushover Berdasarkan ATC-40. Yogyakarta: Program Studi Teknik Sipil, Fakultas Teknik Sipil dan Perencanaan, Universitas Islam Indonesia.

LAMPIRAN 1

Tabel Hasil Analisis Pushover Pada Arah X dan Arah Y

Step	Monitored Displacement (m)	Base Force (kN)	A-B	B-C	C-D	D-E
0	0	0	784	0	0	0
1	0,00142	211,3884	784	0	0	0
2	0,00284	422,7768	784	0	0	0
3	0,00426	634,1652	784	0	0	0
4	0,00568	845,5536	784	0	0	0
5	0,0071	1056,942	784	0	0	0
6	0,00852	1268,3304	784	0	0	0
7	0,00994	1479,7188	784	0	0	0
8	0,01136	1691,1071	784	0	0	0
9	0,01278	1902,4955	784	0	0	0
10	0,0142	2113,8839	784	0	0	0
11	0,01562	2325,2723	784	0	0	0
12	0,01704	2536,6607	784	0	0	0
13	0,01846	2748,0491	784	0	0	0
14	0,01988	2959,4375	784	0	0	0
15	0,0213	3170,8259	784	0	0	0
16	0,02272	3382,2143	784	0	0	0
17	0,02414	3593,6027	784	0	0	0
18	0,02556	3804,991	784	0	0	0
19	0,02698	4016,3794	784	0	0	0
20	0,0284	4227,7678	784	0	0	0
21	0,02982	4439,1562	784	0	0	0
22	0,03124	4650,5446	784	0	0	0
23	0,03266	4861,933	784	0	0	0
24	0,03408	5073,3214	784	0	0	0
25	0,0355	5284,7098	784	0	0	0
26	0,03692	5496,0981	784	0	0	0
27	0,03834	5707,4865	784	0	0	0
28	0,03976	5918,8749	784	0	0	0
29	0,041036	6108,7591	783	1	0	0
30	0,042456	6319,2115	783	1	0	0
31	0,044514	6622,9298	781	3	0	0
32	0,045934	6831,9777	781	3	0	0
33	0,047354	7041,0255	781	3	0	0
34	0,048774	7250,0734	781	3	0	0
35	0,050194	7459,1212	781	3	0	0
36	0,051614	7668,0893	781	3	0	0

Tabel Hasil Analisis Pushover Arah X

Step	Monitored Displacement	Base Force	A-B	B-C	C-D	D-E
	(m)	(kN)				
37	0,053034	7877,0575	781	3	0	0
38	0,055206	8195,9378	780	4	0	0
39	0,056626	8404,0953	778	6	0	0
40	0,058208	8632,2564	776	8	0	0
41	0,059628	8835,7728	776	8	0	0
42	0,061048	9039,2891	775	9	0	0
43	0,062848	9293,0747	771	13	0	0
44	0,065335	9636,4625	763	21	0	0
45	0,067139	9877,7216	753	31	0	0
46	0,068836	10085,4503	733	51	0	0
47	0,070509	10257,4356	721	63	0	0
48	0,072425	10420,3872	708	76	0	0
49	0,074743	10585,4347	698	86	0	0
50	0,077036	10735,953	690	94	0	0
51	0,079749	10904,6851	684	100	0	0
52	0,081169	10986,7418	681	103	0	0
53	0,083715	11135,6987	674	110	0	0
54	0,085135	11210,9392	673	111	0	0
55	0,086555	11290,7888	672	112	0	0
56	0,087975	11369,0538	671	113	0	0
57	0,089395	11441,8226	671	113	0	0
58	0,090815	11522,2682	671	113	0	0
59	0,092235	11599,6739	671	113	0	0
60	0,093655	11674,8553	670	114	0	0
61	0,095075	11749,3626	670	114	0	0
62	0,096495	11827,1476	669	115	0	0
63	0,097915	11897,9994	669	115	0	0
64	0,099335	11974,8643	669	115	0	0
65	0,100755	12050,424	669	115	0	0
66	0,102175	12119,3193	667	117	0	0
67	0,103595	12195,14	667	117	0	0
68	0,105015	12267,5773	666	118	0	0
69	0,106435	12337,6858	666	118	0	0
70	0,107855	12409,8805	666	118	0	0
71	0,109275	12480,1626	665	119	0	0
72	0,110695	12552,3739	665	119	0	0
73	0,112115	12623,2659	665	119	0	0
74	0,113535	12693,3496	665	119	0	0

Lanjutan Dari Tabel Hasil Analisis Pushover Arah X

Step	Monitored Displacement	Base Force	A-B	B-C	C-D	D-E
_	(m)	(kN)				
75	0,114955	12764,5039	665	119	0	0
76	0,116375	12835,0047	664	120	0	0
77	0,117795	12904,5932	663	121	0	0
78	0,119215	12975,706	662	122	0	0
79	0,120635	13045,5147	661	123	0	0
80	0,122055	13117,062	661	123	0	0
81	0,123475	13186,2608	661	123	0	0
82	0,124895	13256,0934	661	123	0	0
83	0,126315	13326,6931	661	123	0	0
84	0,127735	13397,0924	661	123	0	0
85	0,129155	13466,1935	658	126	0	0
86	0,130575	13536,5654	655	129	0	0
87	0,131995	13605,6989	652	132	0	0
88	0,133415	13674,5246	649	135	0	0
89	0,134835	13742,048	646	138	0	0
90	0,136255	13810,2894	645	139	0	0
91	0,137675	13877,8379	643	141	0	0
92	0,139095	13945,2011	641	143	0	0
93	0,140515	14012,3883	640	144	0	0
94	0,141935	14079,1209	638	146	0	0
95	0,143355	14145,7946	637	147	0	0
96	0,144775	14212,2907	632	152	0	0
97	0,146195	14277,0771	631	153	0	0
98	0,147615	14341,9678	629	155	0	0
99	0,149035	14405,8167	629	155	0	0
100	0,150455	14469,8649	629	155	0	0
101	0,151875	14534,5824	628	156	0	0
102	0,153295	14598,9609	628	156	0	0
103	0,154715	14664,142	627	157	0	0
104	0,156135	14728,0754	627	157	0	0
105	0,157555	14792,5488	627	157	0	0
106	0,158975	14856,0156	627	157	0	0
107	0,160395	14919,9985	627	157	0	0
108	0,161815	14984,2361	627	157	0	0
109	0,163235	15049,0665	627	157	0	0
110	0,164655	15113,3367	627	157	0	0
111	0,166075	15177,5717	627	157	0	0
112	0,167495	15241,7168	627	157	0	0

Lanjutan Dari Tabel Hasil Analisis Pushover Arah X

Step	Monitored Displacement	Base Force	A-B	B-C	C-D	D-E
	(m)	(kN)				
113	0,168915	15305,2557	627	157	0	0
114	0,170335	15369,755	627	157	0	0
115	0,171755	15433,3584	627	157	0	0
116	0,173175	15497,7859	626	158	0	0
117	0,174595	15562,5501	626	158	0	0
118	0,176015	15626,262	624	160	0	0
119	0,177435	15690,6027	624	160	0	0
120	0,178855	15753,9912	623	161	0	0
121	0,180275	15818,0875	622	162	0	0
122	0,181695	15880,879	620	164	0	0
123	0,183115	15943,1266	619	165	0	0
124	0,184535	16005,2628	618	166	0	0
125	0,185955	16066,4831	613	171	0	0
126	0,187375	16126,188	609	175	0	0
127	0,188795	16186,5498	608	176	0	0
128	0,190215	16244,0436	602	182	0	0
129	0,191635	16300,6633	598	186	0	0
130	0,193055	16356,2915	594	190	0	0
131	0,194475	16409,2228	589	195	0	0
132	0,195895	16462,2429	579	205	0	0
133	0,197315	16512,8887	576	208	0	0
134	0,198735	16560,4433	573	211	0	0
135	0,200155	16608,8235	568	216	0	0
136	0,201575	16655,5872	567	217	0	0
137	0,202995	16699,3861	566	218	0	0
138	0,204415	16744,2158	565	219	0	0
139	0,205835	16787,8614	565	219	0	0
140	0,207255	16830,5313	565	219	0	0
141	0,208675	16874,174	565	219	0	0
142	0,210095	16916,9346	564	220	0	0
143	0,211515	16960,8594	564	220	0	0
144	0,212935	17003,4093	564	220	0	0
145	0,214355	17045,5994	564	220	0	0
146	0,215775	17088,8371	564	220	0	0
147	0,217195	17130,1167	564	220	0	0
148	0,218615	17172,9305	564	220	0	0
149	0,220035	17214,3347	564	220	0	0
150	0,221455	17257,2526	563	221	0	0

Lanjutan Dari Tabel Hasil Analisis Pushover Arah X

Step	Monitored Displacement	Base Force	A-B	B-C	C-D	D-E
	(m)	(kN)				
151	0,222875	17299,0363	563	221	0	0
152	0,224295	17340,6798	562	222	0	0
153	0,225715	17382,5661	561	223	0	0
154	0,227135	17422,4453	557	227	0	0
155	0,228555	17463,3168	555	229	0	0
156	0,229975	17503,4671	555	229	0	0
157	0,231395	17542,3137	555	229	0	0
158	0,232815	17581,9301	555	229	0	0
159	0,234235	17622,0446	555	229	0	0
160	0,235655	17661,04	555	229	0	0
161	0,237075	17700,164	555	229	0	0
162	0,238495	17739,9092	554	230	0	0
163	0,239915	17778,0767	553	231	0	0
164	0,241335	17817,5049	550	234	0	0
165	0,242755	17855,9949	549	235	0	0
166	0,244175	17891,7604	547	237	0	0
167	0,245595	17929,7643	547	237	0	0
168	0,247015	17967,3773	544	240	0	0
169	0,248435	18002,885	544	240	0	0
170	0,249855	18040,1775	543	241	0	0
171	0,251275	18077,0997	541	243	0	0
172	0,252695	18112,2755	540	244	0	0
173	0,254115	18147,7085	540	244	0	0
174	0,255535	18182,3161	539	245	0	0
175	0,256955	18217,8662	539	245	0	0
176	0,258375	18253,2719	539	245	0	0
177	0,259795	18288,5694	538	246	0	0
178	0,261215	18321,806	537	247	0	0
179	0,262635	18356,3776	535	249	0	0
180	0,264055	18390,0542	534	250	0	0
181	0,265475	18423,8152	534	250	0	0
182	0,266895	18457,4524	533	251	0	0
183	0,268315	18489,4864	533	251	0	0
184	0,269735	18523,9725	533	251	0	0
185	0,271155	18558,6045	533	251	0	0
186	0,272575	18591,2493	533	251	0	0
187	0,273995	18624,1241	533	251	0	0
188	0,275415	18657,2488	532	252	0	0

Lanjutan Dari Tabel Hasil Analisis Pushover Arah X

Step	Monitored Displacement	Base Force	A-B	B-C	C-D	D-E
	(m)	(kN)				
189	0,276835	18690,9917	532	252	0	0
190	0,278255	18723,8692	532	252	0	0
191	0,279675	18755,9503	532	252	0	0
192	0,281095	18789,0954	531	253	0	0
193	0,282515	18822,1575	530	254	0	0
194	0,283935	18854,7029	527	257	0	0
195	0,285355	18886,1536	526	258	0	0
196	0,286775	18917,7863	526	258	0	0
197	0,288195	18950,0129	526	258	0	0
198	0,289615	18981,9567	525	258	1	0
199	0,289619	18786,4875	524	259	0	1
200	0,292148	18877,8711	524	259	0	1
201	0,293568	18922,6532	524	259	0	1
202	0,294988	18961,9679	524	259	0	1
203	0,296408	19000,7178	524	259	0	1
204	0,297828	19037,6546	524	259	0	1
205	0,299248	19074,6118	523	260	0	1
206	0,300668	19109,4122	523	259	1	1
207	0,300672	18860,7083	522	260	0	2
208	0,302092	18925,2953	522	260	0	2
209	0,303512	18981,6727	522	260	0	2
210	0,304932	19030,6199	522	260	0	2
211	0,307705	19109,7447	522	260	0	2
212	0,309125	19145,4984	522	260	0	2
213	0,310545	19181,0459	522	260	0	2
214	0,311965	19216,3376	522	260	0	2
215	0,313385	19251,4792	522	260	0	2
216	0,314805	19286,2311	522	260	0	2
217	0,316225	19320,9996	522	260	0	2
218	0,317645	19355,9415	521	261	0	2
219	0,319065	19390,7848	521	261	0	2
220	0,320485	19424,9421	521	261	0	2
221	0,321905	19457,3775	520	262	0	2
222	0,323325	19490,4311	518	264	0	2
223	0,324745	19522,5316	518	264	0	2
224	0,326165	19554,308	517	265	0	2
225	0,327585	19587,0917	517	265	0	2
226	0,329005	19618,8063	517	265	0	2

Lanjutan Dari Tabel Hasil Analisis Pushover Arah X

Step	Monitored Displacement	Base Force	A-B	B-C	C-D	D-E
	(m)	(kN)				
227	0,330425	19649,5172	516	266	0	2
228	0,331845	19680,91	516	266	0	2
229	0,333265	19712,7586	516	266	0	2
230	0,334685	19743,6638	516	266	0	2
231	0,336105	19775,0494	516	266	0	2
232	0,337525	19804,9985	516	266	0	2
233	0,338945	19836,042	516	266	0	2
234	0,340365	19866,8069	515	267	0	2
235	0,341785	19896,5894	514	268	0	2
236	0,343205	19925,3406	513	269	0	2
237	0,344625	19955,7274	513	269	0	2
238	0,346045	19986,2695	513	269	0	2
239	0,347465	20016,1715	511	271	0	2
240	0,348885	20045,1426	509	273	0	2
241	0,350305	20075,213	507	275	0	2
242	0,351725	20105,35	507	274	1	2
243	0,351726	20105,37	507	274	1	2
244	0,351359	20033,0945	507	274	1	2

Lanjutan Dari Tabel Hasil Analisis Pushover Arah X

Step	Monitored Displacement (m)	Base Force (kN)	A-B	B-C	C-D	D-E
0	0	0	784	0	0	0
1	0,00142	208,2129	784	0	0	0
2	0,00284	416,4258	784	0	0	0
3	0,00426	624,6386	784	0	0	0
4	0,00568	832,8515	784	0	0	0
5	0,0071	1041,0644	784	0	0	0
6	0,00852	1249,2772	784	0	0	0
7	0,00994	1457,4901	784	0	0	0
8	0,01136	1665,7029	784	0	0	0
9	0,01278	1873,9158	784	0	0	0
10	0,0142	2082,1286	784	0	0	0
11	0,01562	2290,3415	784	0	0	0
12	0,01704	2498,5543	784	0	0	0
13	0,01846	2706,7672	784	0	0	0
14	0,01988	2914,98	784	0	0	0
15	0,0213	3123,1928	784	0	0	0
16	0,02272	3331,4056	784	0	0	0
17	0,02414	3539,6185	784	0	0	0
18	0,02556	3747,8313	784	0	0	0
19	0,02698	3956,0441	784	0	0	0
20	0,0284	4164,2569	784	0	0	0
21	0,02982	4372,4697	784	0	0	0
22	0,03124	4580,6825	784	0	0	0
23	0,03266	4788,8953	784	0	0	0
24	0,03408	4997,1081	784	0	0	0
25	0,0355	5205,3208	784	0	0	0
26	0,03692	5413,5336	784	0	0	0
27	0,03834	5621,7464	784	0	0	0
28	0,03976	5829,9592	784	0	0	0
29	0,04118	6038,1719	784	0	0	0
30	0,042054	6166,253	782	2	0	0
31	0,044647	6541,9482	780	4	0	0
32	0,046067	6747,1122	780	4	0	0
33	0,047487	6952,4548	778	6	0	0
34	0,049732	7271,3255	774	10	0	0
35	0,051152	7471,7283	774	10	0	0
36	0,052572	7672,2748	772	12	0	0

Tabel Hasil Analisis Pushover Arah Y

Step	Monitored Displacement	Base Force	A-B	B-C	C-D	D-E
	(m)	(k N)				
37	0,054485	7936,0251	764	20	0	0
38	0,055905	8127,1434	764	20	0	0
39	0,057325	8317,7234	764	20	0	0
40	0,060001	8673,1674	761	23	0	0
41	0,061719	8897,1197	752	32	0	0
42	0,063796	9151,2104	748	36	0	0
43	0,065216	9319,3407	747	37	0	0
44	0,066636	9486,6662	744	40	0	0
45	0,068133	9659,387	733	51	0	0
46	0,070247	9882,5298	725	59	0	0
47	0,072279	10085,357	716	68	0	0
48	0,074111	10252,856	704	80	0	0
49	0,075573	10363,609	701	83	0	0
50	0,077974	10523,621	692	92	0	0
51	0,079394	10609,039	689	95	0	0
52	0,080814	10692,349	682	102	0	0
53	0,082234	10771,408	680	104	0	0
54	0,083654	10850,109	678	106	0	0
55	0,085074	10927,558	678	106	0	0
56	0,086494	11004,816	678	106	0	0
57	0,087914	11082,046	678	106	0	0
58	0,089334	11159,506	678	106	0	0
59	0,090754	11236,327	675	109	0	0
60	0,092174	11313,207	672	112	0	0
61	0,093594	11389,235	672	112	0	0
62	0,095014	11465,758	672	112	0	0
63	0,096434	11541,648	671	113	0	0
64	0,097854	11617,848	671	113	0	0
65	0,099274	11692,949	669	115	0	0
66	0,100694	11769,541	668	116	0	0
67	0,103497	11917,357	665	119	0	0
68	0,104917	11991,214	662	122	0	0
69	0,106337	12064,063	662	122	0	0
70	0,107757	12133,786	659	125	0	0
71	0,109177	12205,028	656	128	0	0
72	0,110597	12272,985	656	128	0	0
73	0,112017	12343,506	656	128	0	0
74	0,113437	12411,299	654	130	0	0

Lanjutan Dari Tabel Hasil Analisis Pushover Arah Y

Step	Monitored Displacement	Base Force	A-B	B-C	C-D	D-E
	(m)	(kN)				
75	0,114857	12481,411	654	130	0	0
76	0,116277	12550,138	654	130	0	0
77	0,117697	12619,283	653	131	0	0
78	0,119117	12688,299	652	132	0	0
79	0,120537	12756,152	651	133	0	0
80	0,121957	12823,805	650	134	0	0
81	0,123377	12891,823	648	136	0	0
82	0,124797	12958,895	648	136	0	0
83	0,126217	13026,066	648	136	0	0
84	0,127637	13093,161	648	136	0	0
85	0,129057	13160,246	648	136	0	0
86	0,130477	13227,283	648	136	0	0
87	0,131897	13294,266	647	137	0	0
88	0,133317	13361,066	644	140	0	0
89	0,134737	13427,195	641	143	0	0
90	0,136157	13493,105	636	148	0	0
91	0,137577	13557,882	633	151	0	0
92	0,138997	13619,441	631	153	0	0
93	0,140417	13679,405	630	154	0	0
94	0,141837	13737,203	630	154	0	0
95	0,143257	13796,193	627	157	0	0
96	0,144677	13853,957	622	162	0	0
97	0,146097	13911,48	621	163	0	0
98	0,147517	13966,464	618	166	0	0
99	0,148937	14022,026	618	166	0	0
100	0,150357	14076,464	618	166	0	0
101	0,151777	14132,004	617	167	0	0
102	0,153197	14185,382	616	168	0	0
103	0,154617	14239,73	614	170	0	0
104	0,156037	14293,835	612	172	0	0
105	0,157457	14346,778	612	172	0	0
106	0,158877	14399,48	612	172	0	0
107	0,160297	14452,305	612	172	0	0
108	0,161717	14505,331	612	172	0	0
109	0,163137	14558,181	612	172	0	0
110	0,164557	14610,477	612	172	0	0
111	0,165977	14663,67	612	172	0	0
112	0,167397	14716,149	612	172	0	0

Lanjutan Dari Tabel Hasil Analisis Pushover Arah Y

Step	Monitored Displacement	Base Force	A-B	B-C	C-D	D-E
	(m)	(kN)				
113	0,168817	14768,853	612	172	0	0
114	0,170237	14820,964	612	172	0	0
115	0,171657	14875,885	612	172	0	0
116	0,173077	14928,347	611	173	0	0
117	0,174497	14981,57	611	173	0	0
118	0,175917	15033,451	610	174	0	0
119	0,177337	15086,063	610	174	0	0
120	0,178757	15138,39	607	177	0	0
121	0,180177	15188,927	605	179	0	0
122	0,181597	15238,682	604	180	0	0
123	0,183017	15289,704	603	181	0	0
124	0,184437	15338,862	603	181	0	0
125	0,185857	15389,611	602	182	0	0
126	0,187277	15439,167	602	182	0	0
127	0,188697	15488,95	602	182	0	0
128	0,190117	15538,478	601	183	0	0
129	0,191537	15588,272	598	186	0	0
130	0,192957	15637,294	598	186	0	0
131	0,194377	15685,886	598	186	0	0
132	0,195797	15734,225	598	186	0	0
133	0,197217	15783,322	598	186	0	0
134	0,198637	15831,351	598	186	0	0
135	0,200057	15880,276	593	191	0	0
136	0,201477	15926,214	589	195	0	0
137	0,202897	15970,548	585	199	0	0
138	0,204317	16012,743	584	200	0	0
139	0,205737	16055,648	584	200	0	0
140	0,207157	16097,885	584	200	0	0
141	0,208577	16137,927	584	200	0	0
142	0,210471	16193,525	584	200	0	0
143	0,211891	16234,564	584	200	0	0
144	0,213311	16275,19	584	200	0	0
145	0,214731	16317,25	584	200	0	0
146	0,216151	16358,445	584	200	0	0
147	0,217571	16399,633	584	200	0	0
148	0,219701	16459,408	584	200	0	0
149	0,221121	16502,345	584	200	0	0
150	0,222541	16542,256	584	200	0	0

Lanjutan Dari Tabel Hasil Analisis Pushover Arah Y

Step	Monitored Displacement	Base Force	A-B	B-C	C-D	D-E
	(m)	(kN)				
151	0,225026	16614,676	584	200	0	0
152	0,226446	16656,399	582	202	0	0
153	0,227866	16695,659	580	204	0	0
154	0,230351	16766,574	577	207	0	0
155	0,231771	16806,645	576	208	0	0
156	0,233191	16846,29	576	208	0	0
157	0,234611	16886,732	574	210	0	0
158	0,237096	16954,646	573	211	0	0
159	0,238516	16992,521	573	211	0	0
160	0,239936	17031,656	570	214	0	0
161	0,241711	17078,193	569	215	0	0
162	0,243131	17117,967	569	215	0	0
163	0,244551	17154,911	568	216	0	0
164	0,245971	17194,615	566	218	0	0
165	0,247391	17231,738	565	219	0	0
166	0,248811	17270,938	564	220	0	0
167	0,250231	17308,204	564	220	0	0
168	0,251651	17346,068	563	221	0	0
169	0,253071	17384,04	563	221	0	0
170	0,254491	17422,285	562	222	0	0
171	0,255911	17459,71	562	222	0	0
172	0,257331	17497,816	562	222	0	0
173	0,258751	17536,045	560	224	0	0
174	0,260171	17573,375	556	228	0	0
175	0,261591	17610,99	550	234	0	0
176	0,263011	17646,6	547	237	0	0
177	0,264431	17682,61	546	238	0	0
178	0,265851	17717,657	545	239	0	0
179	0,267271	17752,666	544	240	0	0
180	0,268691	17787,502	544	240	0	0
181	0,270111	17822,226	543	241	0	0
182	0,271531	17857,131	543	241	0	0
183	0,272951	17891,968	542	242	0	0
184	0,274371	17925,691	542	242	0	0
185	0,275791	17960,595	541	243	0	0
186	0,277211	17994,654	541	243	0	0
187	0,278631	18030,078	541	243	0	0
188	0,280051	18063,963	540	244	0	0

Lanjutan Dari Tabel Hasil Analisis Pushover Arah Y

Step	Monitored Displacement	Base Force	A-B	B-C	C-D	D-E
	(m)	(kN)				
189	0,281471	18098,913	540	244	0	0
190	0,282891	18132,595	540	244	0	0
191	0,284311	18166,865	540	244	0	0
192	0,285731	18201,006	540	244	0	0
193	0,287151	18235,168	537	247	0	0
194	0,288571	18268,029	535	249	0	0
195	0,289991	18302,249	535	249	0	0
196	0,291411	18335,403	534	250	0	0
197	0,292831	18369,351	533	251	0	0
198	0,294251	18402,107	530	254	0	0
199	0,295671	18435,142	529	255	0	0
200	0,297091	18467,447	529	255	0	0
201	0,298511	18500,007	529	255	0	0
202	0,299931	18532,415	529	255	0	0
203	0,301351	18564,696	529	255	0	0
204	0,302771	18596,686	529	255	0	0
205	0,304191	18629,177	529	255	0	0
206	0,305611	18661,354	529	255	0	0
207	0,307031	18694,649	529	255	0	0
208	0,308451	18726,432	528	256	0	0
209	0,309871	18759,598	528	256	0	0
210	0,311291	18792,071	526	258	0	0
211	0,312711	18823,676	526	257	1	0
212	0,310185	18495,098	526	257	0	1

Lanjutan Dari Tabel Hasil Analisis Pushover Arah Y

LAMPIRAN 2

Hasil Pengujian SPT (Standard Penetration Test)

Ke	Keterangan :										Proyek			Rencana Pembangunan Gedung Asrama Haji					
											No.	titik	B	3Η.	1	Tipe Mesin		Kano	
											Loka	isi	A	١sr	ama Haji	Tipe Pengint	i	Single	
											Kota	a/Kab	В	Ban	dar Lampung	Dia. Pengint	Dia. Penginti 73 mm		
											Prov	insi	L	LAMPUNG		Jml Kedalaman 30 m		30 m	
											Dia.0	asing	8	89 mm		MAT (m) 4		4	
											Koor	dinat	S	5 =	5 21 32.1	Juru Bor	١v	van	
	_	_	_	_				_					LE	=	105 14 21.2	Pen. Jawab	R	oni Purawinata	
Tanggal	Kedalaman (m)	Cara Pemboran	Kedalaman Casing	Core Recovery (%)	N1 N2 I	N-SPT Grafik SPT				contoh Tanah	Contoh Tanah 1AT			Deksripsi Tanah/ Batuan					
	1-2-3-6-30-36-12										SPT-1		$\langle \rangle \rangle \rangle$	$\langle \rangle$	Lempung warna	coklat kemerahan	kon	sistensi keras	
	3- 4-				.4 11	13.	23	17	╢		SPT-2 DS-1		¥///						
	5-				18 21	32.	60	45	╢		SPT-3			//	Lempung warna keras	coklaf keabu-abua	n k	onsistensi sangat	
	° - 7 - 8 - 9 -									Ш			C,		Batu pasir warn	a coklat bintik put	ih s	sangat padat	
					<u>10 21</u>	9 <u>31</u> 4 <u>30</u>	54	48 .51			SPT-4				Pasir warna abu	abu sangat padat			
	10- 11- 12-				.11_2	2 33.	.55	<u>.55</u>			SPT-6	2							
ari 201	13- 14-	g		_	20 2	6 34	60	60	╢	$\left \right \right $	SPT-7				Lemound pasiran	i warna coklat abu	-ab	u konsistensi	
Janua	15- 16-	r kerir	-18m		18 2	5 34	60	60	╢		SPT-8			4	sangat keras				
10-13	17-	Boi			<u>16 2</u>	5 35	60	60	\parallel		SPT-9	2			Pasir halus warr	na abu abu putih s	ang	jat padat	
	19- 20-				.11_2	6 33	59	60	\parallel		SPT-10	2	の語り	1222					
	21-				13 2	4 36	60	60	\parallel		SPT-11			No.	Pasir kasar war	na abu abu putih :	ang	gat padat	
	23- 24-				. 16. 2	8. 32	60	60	╢		SPT-12	2			Batu pasir warn	a abu abu putih sa	anga	at padat	
	25- 26-				20 2	9 31	60	60	╢	$\left \right \right $	SPT-13								
	27- 28-				<u>19 2</u>	8 32	60	60	╢		SPT-14	T-14⊠ 2020			Pasir halus warna coklat kehitaman sangat padat				
	29- 30-				25 3	0 30	60	60			SPT-15								
No	Note : Sample Spiral Cutting SPT																		

 Tabel Hasil Pengujian SPT (Standard Penetration Test) Titik BH.1

Ke	Keterangan :											L	Proyek			Rencana Pembangunan Gedung Asrama Haji									
													L	No. t	itik		BH	.2	Tipe Mesin		Kano				
													Γ	Loka	si		Asr	ama Haji	Tipe Pengint	ti	Single				
													E	Kota	/Kab		Ban	idar Lampung	Dia. Pengint	i	73 mm				
														Prov	insi		LAI	1PUNG	Jml Kedalaman 30 m						
													L	Dia.Casing			89	mm	MAT (m) 4						
													L	Koordinat		S :	= 5 21 30.4	Juru Bor	١v	van					
	_	_		_	_	_				_	_		Ŧ	Kooruman		_	Ε :	E = 105 14 22.1 Pen. Jawab Roni Pur							
Tanggal	Kedalaman (m)	Cara Pemboran	Kedalaman Casing	Core Recovery (%)	N1	N2 N	-51	PT EN+2N	N'	(5ra SP ⊗-⊗	fik 'T ७क	2	Contoh Tanah	MAT		Profil Bor	De	ksripsi Tanal	h/	Batuan				
	1-				2	2	<u>4</u>	6	5				US	JOS-1 \$PT-1⊠		V		Lempung warna	coklat kemerahan	kon	sistensi teguh				
	3-									N			U	JDS-2		V									
	4 5 6 7 8 9 10 11				.4.	2.	10.	17	13.	₽	╢	╢	s	PT-2	Ŧ	1		Lempung warna coklat merahan kekuningan konsistensi sangat keras							
					.10	17.	29.	46	39.			ł	s	PT-3⊠		AND A CONTRACT		Pasir kasar war	na coklat abu abu padat						
					. 10	.21.	33	54	46.	╟	Ħ	Ħ	l si	РТ-4 🛛		R	Ż	Batu warna abu	abu kecoklatan Sa	ang	at padat				
			-18m		. 19.	20	36.	56.	53.		Η	╢	s	DS-1		NAMANA		Pasir coklat kea	abuan sangat pada	,					
018	12-				· 12.	- 44.	20.		<u>.</u>	Ħ	Ħ	Ħ	- `	1-0 6		ALC: NO.				_					
uari 2	14-	ing			. 11	24	36	60	60.	╟	H	╢	s	PT-7 🛛		STREET.									
Jan	15 - 16-	r ker			. <u> </u>	. <u>-</u> .		<u>≻60</u>	ω.	Щ	μ	Щ	s	PT-8 🛛		101202									
14-1	17- 18-	Bo		-	-	1		1	101-	13	23	. 32	55	60.			\parallel	s	PT-9🗙						
	19- 20-													8	26	. 34	60	60.	\parallel	$\left \right $	\parallel	s	PT-10		2012/01/02/02
	22				<u>16</u>	25	35	60	60.	╟	H	╢	s	PT-11 🛛											
	23- 24-				. 18.	.22	33	55	60.	╟	\parallel	\parallel	s	PT-12		2432202									
	25 26 27				. 20	30	30	60	60	╟	$\ $	+	s	PT-13 🛛		SATANCES.									
	28- 28- 29-				. <u>2</u> 1	29	31	60	60		$\left \right $	+	s	PT-14		X1668933	Contraction of the second								
	30 21 30 30 60 60 SPT-19																								
	re :	\backslash	Sa	mp	le] s	pir	al](ut	tting	Ø	SF	РΤ								

 Tabel Hasil Pengujian SPT (Standard Penetration Test) Titik BH.2

Ke	Keterangan :											Proyek			Rencana Pembangunan Gedung Asrama Haji																
												No. t	itik		BH.	.3	Tipe Mesin		Kano												
												Loka	si		Asr	ama Haji	Tipe Pengint	i.	Single												
												Kota	/Kab		Ban	dar Lampung	Dia. Penginti	i	73 mm												
												Prov	insi		LAN	1PUNG	Jml Kedalaman 3		30 m												
												Dia.C	asing		89	mm	MAT (m)		4.50												
												Koor	Koordinat			= 5 21 32.8	Juru Bor	lw D	/an												
															E =	= 105 14 22.0 Pen. Jawab Roni Purawinata															
Tanggal	Kedalaman (m)	Cara Pemboran	Kedalaman Casing	Core Recovery (%)	N1 N2	N-SPT Graf SPT			rafi SPT ∽⊗©	ik -	Contoh Tanah	MAT	0	Profil Bor	Deksripsi Tanah/ Batuan																
	1-				4 6		10	60	\setminus			UDS-1		$\langle\!\rangle$		Lengung warna	coklat kemerahan i	kon:	sistensi sangat												
	2- 3-											UDS-2		$\langle\!\rangle$		teguh															
	4— 5—				.2 9	1	T ^w	60	1	7	t	5P1-2		$\langle \rangle$																	
	6				8 2	13	2 53.	60	Ħ	Ħ	Ì	SPT-3																			
					10_2	3 35	58	60	+			SPT-4 🛛		156/22		Pasir halus warr	na abu abu kecokla	atan	sangat padat												
					.13 .2	26 34	60	ø			+	DS-1 SPT-5		1000				_													
	11- 12-				15 2	5 3	60	60		_		SPT-6 🛛																			
ari 201	13- 14-	þ			20 2	28 3	z <u>60</u>	60	\parallel		_	SPT-7				Pasir halus cokl	at keabuan sangat	pa	dat												
Janu	15- 16-	r kerir	-18m		<u>18</u> 2	9 31	60	ω				SPT-8		100 M																	
17-19	17- 18-	B			20 3	38 2	z <u>60</u>	60				SPT-9🛛		MARKA																	
	19- 20-															20 2	29 3	60	60				SPT-10								
	21- 22-								>60	60				SPT-11		222	EN EN	Pasir halus war	na abu abu hitam s	ang	gat padat										
	23- 24-						-60	60				SPT-12		1000 C																	
	25- 26-						>60	60				SPT-13																			
	27- 28- 20-						<u>≻60</u>	60				SPT-14	1920000			Pasir kasar war	na abu abu hitam s	sanç	gat padat												
	3060 60 SPT-15																														
Not	Note : Sample Spiral Cutting SPT																														

Tabel Hasil Pengujian SPT (Standard Penetration Test) Titik BH.3

Ke	Keterangan :												Proyek			Rencana Pembangunan Gedung Asrama Haji										
													No. 1	itik		BH	.4	Tipe Mesin		Kano						
													Loka	si		Ası	'ama Haji	Tipe Pengin	ti	Single						
													Kota	/Kab		Bar	idar Lampung	Dia. Penginti 7		73 mm						
													Ргоу	insi		LAI	1PUNG	Jml Kedalaman 30 m								
													Dia.C	asing		89 mm		MAT (m)	MAT (m)							
													Kaaa	Koordinat		S :	= 5 21 31.5	Juru Bor	lv	wan						
													Koordinar		Ε :	= 105 14 22.8 Pen. Jawab Roni Puraw										
Tanggal	Kedalaman (m)	Cara Pemboran	Kedalaman Casing	Core Recovery (%)	N1	N-SPT Grafik SPT					Contoh Tanah	Contoh Tanah MAT			De	Deksripsi Tanah/ Batuan										
	1_									N.	Ш				Щ	Щ	Lempung warna c	oklat kemerahan k	onsi	istensi sangat teguh						
	2				4	6	<u>4</u> .	10	8	II.	Щ	Щ	SPT-1		V	////	Lempung sisipan sangat teguh	i tufa warna cokla	t ke	emerahan konsistensi						
	3-				.=.		<u>.</u>	<u>≻60</u>	45.			ļ	DS-1 SPT-2		$\langle \rangle$		Lempung warna keras	coklat kemerahan	kon	sistensi sangat						
	5-											W					Batuan andesit	warna abu abu sa ikil warna abu abu	ngat Lko	t padat						
	6				12	19.	29.	48	41	╟	╢	H	SPT-3				Pasir Kasar Ker padat	ikit warna abu abu	Kec	coktaran sangar						
					. 14.	.21. .23	<u>33</u> . 37.	<u>54</u>	46. 57.				DS-1 DS-1 SPT-5		AND SPACE STORES		Pasir warna abu	u abu kecoklatan s	ang	at padat						
_	12-				. <u> </u>	-	ļ	> <u>60</u>	60	μ	Ц	Щ	SPT-6		100											
ari 2018	13- 14-	6			. 17	25	35	60	60		\parallel	Щ	SPT-7		ENGINE		Batu pasir warr	a abu abu sanga	r pa	dat						
Janua	15- 16-	r kerin			20	27.	33.	60	60.		\parallel	Щ	SPT-8													
19-2	17- 18-	Bo			18	26	34	60	60.		\parallel	\parallel	SPT-9													
	19- 20-					21	28	. 32	60	60		\parallel	\parallel	SPT-10		ALC: NOT										
	21-				20	27	33	60	60		╢	╢	5PT-11		Souther Street S		Pasir warna abu	ı abu kehitaman sı	anga	it padat						
	23-				. 24	.29	31	60.	60		╢	╢	SPT-12		NAMES N											
	26-				. 22	30	30	60	60		╢	╢	SPT-13		San San											
	28-				. 24	31	29	60	60			\parallel	SPT-14		ALC: NO CONTRACTOR											
	30				-	-	-	>60	60		Ш		SPT-15		Ŕ	243										
No	te :		Sa	mp	le] s	pir	al] C	utting	\boxtimes	Note : Sample Spiral Cutting SPT											

Tabel Hasil Pengujian SPT (Standard Penetration Test) Titik BH.4

LAMPIRAN 3

Shop Drawing Gedung Multazam, Komplek Asrama Haji Lampung, Provinsi Lampung

2					EFDN K 200 019:10 019:10 019:10 019:10 019:10 019:10 012:10 0:	KENENTERIAN AGAMA KANAN KANANAN POERAAN PERENCANAAN REVITALISASI DAN PENGEMBANGAN ASRAMA HAJI POVINSI LAMPUNG UNTUK PEMBANGUNAN GEDUNG MULTAZAM DAN
8	00.40 00000000					FASILITAS PENDUKUNG
ž			150 150 150 150 150 150 150 150		10, 70, 10, 10, 10, 10, 10, 10, 10, 10, 10, 1	
3	150 150 150 10.40 00.40	100 100 100 100 100 100 100 100 100 100	1400 0000000000000000000000000000000000		161/29 16.20 17.20 00:-00 00:-00	
\$	10000000000000000000000000000000000000					
M K2					001.00 19.03 19.03 09.100 09.100	
ENULANGAN KOLO					000 00100 00100 00100 00100 00100	
TABEL PE	EUV-21300 EUV-21300 FROMPAGI FROMPAGI EUV-14400 EUV-14400 EUV-14400 EUV-14400 EUV-14400 EUV-14400 EUV-14400 EUV-14400 EUV-14	Provervoor Provervoor <u>Indenscronen</u> <u>Indenscronen</u> <u>Indenscronen</u> <u>Indenscronen</u> <u>Indenscronen</u> <u>Indenscronen</u> <u>Indenscronen</u> <u>Indenscronen</u> <u>Indenscronen</u> <u>Indenscronen</u> <u>Indenscronen</u> <u>Indenscronen</u> <u>Indenscronen</u>	Interfacional In	1	AMM 1 AMM 2	XBR. Goldent TABEL PENULANGAN KOLOM INALA HOUSE Scient 1:25 STR-006

											* 🕲	EMENTERIAN AGAMA KANTOR WILAYAI PROVINSI LAMPING JA CH Mink ANT PROVINSI LAMPING JA CH Mink ANT PROVINSI AND AND Diges 2720 (2017) Jacob (2017) (2017) Midde: Learning Regime, p. 81
TABEL PENU	JLANGAN BALOK	(LANTAI - 2 (ELV	. + 3.950)		g						<u> </u>	PEKERJAAN
NAMA BALOK	В	2-1	B2	-2	B	2-3	В	2-4	B	2-5	R	EVITALISASI DAN
PELETAKAN	TUMPUAN	LAPANGAN	TUMPUAN	LAPNAGN	TUMPUAN	LAPANGAN	TUMPUAN	LAPANGAN	TUMPUAN	LAPANGAN	PENGEN	IBANGAN ASRAMA HAJI OVINSI LAMPUNG
POTONGAN		00 350	99 99 350		99	99 250	007 250	00 250			PEMI FAS	UNTUK 3ANGUNAN GEDUNG MULTAZAM DAN ILITAS PENDUKUNG
DIMENSI BALOK	350 / 700	350 / 700	350 / 550	350 / 550	250 / 550	250 / 550	250 / 400	250 / 400	300 / 650	300 / 650	1	
TULANGAN ATAS	7 D 22	4 D 22	7 D 22	4 D 22	5 D 19	3 D 19	5 D 19	3 D 19	6 D 19	4 D 19	1	
TULANGAN TENGAH	4 Ø 12	4 Ø 12	2 Ø 12	2 Ø 12	2 D 10	2 D 10	2 D 10	2 D 10	2 D 10	2 D 10	1	
TULANGAN BAWAH	4 D 22	6 D 22	4 D 22	4 D 22	3 D 19	5 D 19	3 D 19	3 D 19 + 2 D 16	4 D 19	6 D 19	1	
TULANGAN SENGRANG	1 0 10-100	D10-150	1 D 10 - 100	D 10 - 150	D10 - 100	D10 - 150	D10 - 100	D10 - 150	1 010 - 100	D10 - 150		
NAMA BALOK	B	2-6	B	2-7	B	2-8	В	2-9	B	2-10		
-	TINOTAL				THEFT	14000000	Tappin	1404404	THEFT		1	
PELETAKAN	TOMPONN	UJUNG	TOMPOAN	usong	TOMPOAN	LAPANGAN	TUMPUAN	LAPANGAN	TUMPUAN	LAPARGAN		
POTONGAN												
DIMENSI BALOK	250 / 450	250/400	250 / 450	250 / 400	200/400	200/400	250 / 400	250 / 400	300 / 600	300 / 600	I .	
TULANGAN ATAS	4 D 22	4 D 22	5 D 19	5 D 19	3 D 16	2 D 16	4 D 19	4 D 19	4 D 19 + 2 D 16	4 D 19	I .	
TULANGAN TENGAH	2 D 12	2 D 12	2 D 10	2 D 10	2 D 10	2 D 10	2 D 10	2 D 10	2 D 10	2 D 10	I	
TULANGAN BAWAH	3 D 19	3 D 19	3 D 19	3 D 19	2 D 16	3 D 16	4 D 19	4 D 19	4 D 19	4 D 19 + 2 D 16	I	
TULANGAN SENGKANG	D 10 - 100	D 10 - 150	D 10 - 100	D 10 - 150	D 10 - 150	D 10 - 200	D 10 - 100	D 10 - 150	1 D10 - 100	D10 - 150	I .	
							WIR	E MESH M-8	FLOOR DE	CK		
NAMA BALOK	B2	2-11	B2	-12	B2	2-13			HA.	120		
PELETAKAN	TUMPUAN	LAPANGAN	TUMPUAN	UJUNG	TUMPUAN	LAPANGAN		П.П			I	
POTONGAN							700		BALOK 350/700			
DIMENSI BALOK	250/450	250 / 450	250 / 450	250 / 400	200 / 400	200 / 400		350			<u> </u>	JODAL CAMPAR
TULANGAN ATAS	6 D 16	3 D 16	6 D 22	6 D 22	3 D 16	3 D 16			MUTUR	3ETON : K-300	1990 ANTI (2000) ANTI	
TULANGAN TENGAH	2 D 10	2 D 10	2 D 12	2 D 12	2 D 10	2 D 10				fc' 25 Mpa	TABEL PE	NULANGAN BALOK LANTAI 2
TULANGAN BAWAH	3 D 16	5 D 16	3 D 19	3 D 19	3 D 16	3 D 16		LIAIL FLUC	MUTUE	BAJA TULANGAN : D10 ≥ BJTD 40		
TULANGAN SENGKANG	D10 - 100	D10 - 150	D 10 - 100	D 10 - 150	D10 - 150	D10 - 200		SKA	ALA 1 : 50 MUTU E	BAJA WIRE MESH: BJTD 50	SKALA	NOWOR CAMBAR JUMLAH GAMBA
								STRUM RUM	UKURA	N DALAM SATUAN MILIMETER (mm)	1 : 20	STR-008

				201								^۲	EMENTERIAN AG KANTOR WILAYAH PROVENSI LA Ja Ca Mada Nati Art Takibarag Bada Takya (TU BIM) basag Bada Bidar Lawagingan gali	GAMA
TABEL PEN	PENULANGAN BALUK LANTAI DAK BETUN (ELV. + 18.400)											PERENCANAAN		
NAMA BALCK	BD-1		BD-2		BD-3		BD-4		BD-5			PENGEM	EVITALISASI DAN BANGAN ASRAMA	A HAJI
PELETAKAN	TUMPUAN	LAPANGAN	TUMPUAN	LAPNAGN	TUMPUAN	LAPANGAN	TUMPUAN	LAPANGAN	TUMPUAN	LAPANGAN		PR	OVINSI LAMPUNG	<u></u>
POTONGAN												PEME FAS	UNTUK BANGUNAN GEDUI MULTAZAM DAN LITAS PENDUKUN	4G G
DIMENSI BALOK	350 / 700	350 / 700	350 / 550	350 / 550	250 / 550	250 / 550	250/400	250 / 400	300 / 650	300 / 650				
TULANGAN ATAS	6 D 22	4 D 22	6 D 22	4 D 22	5 D 19	3 D 19	5 D 19	3 D 19	4 D 22 + 2 D 19	4 D 22				
TULANGAN TENGAH	4 Ø 12	4 Ø 12	2 Ø 12	2 Ø 12	2 D 10	2 D 10	2 D 10	2 D 10	2 D 10	2 D 10				
TULANGAN BAWAH	4 D 22	6 D 22	4 D 22	4 D 22	3 D 19	3 D 19 + 2 D 16	3 D 19	3 D 19 + 2 D 16	4 D 22	4 D 22 + 2 D 19				
TULANGAN SENGKAN	NG 1 D 10 - 100	D10 - 150	1 D 10 - 100	D 10 - 150	D10 - 100	D10 - 150	D10 - 100	D10 - 150	1 D10 - 100	D10 - 150				
									1					
NAMA BALOK	BL	BD-6		J-7	В	D-8	В	D-9	1					
PELETAKAN	TUMPUAN	UJUNG	TUMPUAN	LAPANGAN	TUMPUAN	LAPANGAN	TUMPUAN	LAPANGAN						
POTONGAN														
DIMENSI BALOK	250 / 450	250/400	250 / 400	250 / 400	350 / 700	350 / 700	250 / 450	250/450	1					
TULANGAN ATAS	3 D 22	3 D 22	4 D 19	4 D 19	7 D 22	4 D 22	5 D 19	5 D 19]					
TULANGAN TENGAH	2 D 12	2 D 12	2 D 10	2 D 10	4 Ø 12	4 Ø 12	2 D 10	2 D 10	-					
TULANGAN BAWAH	3 D 19	3 D 19	4 D 19	4 D 19	4 D 22	7 D 22	5 D 19	5 D 19	-					
TODANGAN SENGRA	NG D10-100	D 10 - 150	D-10-100	D 10 - 150	1 D 10 - 100	D10-150	1010-100	D 10-100						
									NUTU	BETON : K-300 16/25 MB R 14 TULI ANDAN - DO S-R	8	TABEL P	ANNY, GAMMAN ENVLANGAN BALOK LA DAK BETON	ANTAI
									MOTO	Ø 12 - B.	TP 24	SKALA	NOMOR CAMBAR JUN	LAH GAMBAS
								SEDULM RELAKS	UKURA	NN DALAM SATUAN MILIMET	ER (MM) STRATUR, HDP, SDRA HERST ALAO (2004)	1 : 20	STR-016	

NUMBER BDA1 BDA2 BDA3 BDA4 BDA5 NUMBER NUMER NUMER NUMER NUMER NUMER NUMER NUMER NUMER		JEAN UAN UALVI		AP (ELV. + 21.20)	())									PEKERJAAN	
	NAMA BALOK	BDA-1		BDA-2		BDA-3		BDA-4		BDA-5			P RE	ERENCANAAN	
	PELETAKAN	TUMPUAN LAPANGAN		TUMPUAN LAPNAGN		TUMPUAN LAPANGAN		TUMPUAN LAPANGAN		TUMPUAN LAPANGAN			PENGEM	SANGAN ASRAMA DVINSI LAMPUNG	HAJI
Seeten Levi 1979 1970 1970 1970 1970 1970 1970 1970	POTONGAN												PEMB N FASII	UNTUK ANGUNAN GEDUJ IULTAZAM DAN ITAS PENDUKUN	NG IG
	DIMENSI BALOK	300/650	300 / 650	250 / 500	250 / 500	200 / 400	200/400	250/400	250/400	250 / 500	250 / 400				
	TULANGAN ATAS	6 D 19	4 D 19	5 D 16	3 D 16	3 D 16	2 D 16	4 D 16	4 D 16	3 D 19 + 2 D 16	3 D 19 + 2 D 16		I		
	TULANGAN TENGAH	2 D 10	2 D 10	2 D 10	2 D 10	2 D 10	2 D 10	2 D 10	2 D 10	2 D 10	2 D 10		1		
NAME NAME <th< td=""><td>TULANGAN BAWAH</td><td>4 D 19</td><td>6 D 19</td><td>3 D 16</td><td>5 D 16</td><td>2 D 16</td><td>3 D 16</td><td>4 D 16</td><td>4 D 16</td><td>3 D 16</td><td>3 D 16</td><td></td><td>I</td><td></td><td></td></th<>	TULANGAN BAWAH	4 D 19	6 D 19	3 D 16	5 D 16	2 D 16	3 D 16	4 D 16	4 D 16	3 D 16	3 D 16		I		
	TULANGAN SENGKAN	u 10.10-100	U10 - 150	D10 - 100	LI10 - 150	D 10 - 150	U 10 - 200	U 10 - 100	D 10 - 150	D 10 - 100	10 - 150		I		
PERSINA TAMPIN ULAG POTINGA \$	NAMA BALOK	B	DA-6]											
Image: Second	PELETAKAN	TUMPUAN	UJUNG	1											
DMR19 ALCY 100 / 50 100 / 50 LANGAN ATSA 20 / 6 20 / 6 TUANGAN ATSA 40 / 9 40 / 9 10 / 100 100 / 100 TUANGAN ATSA 20 / 100 TUANGAN ATSA 100 / 100 TUANGAN ATANA	POTONGAN														
Тикиван каза 2016 2016 Тикиван каза 2016 4010 Тикиван каза 2016 2016	DIMENSI BALOK	150/550	150 / 550												
TULNOW 190/11 4010 4010 4010 TULNOW 190/11 201/11 201/11 201/11 TULNOW 101/11 201/11 201/11 201/11 201/11 TULNOW 101/11 201/11 201/11 201/11 201/11 201/11 TULNOW 101/11 201/11 201/11 201/11 201/11 201/11 201/11 TULNOW 101/11 201/11	TULANGAN ATAS	2 D 16	2 D 16	1									I		
TULINIGAN BARKY 2 0 16 2 0	TULANGAN TENGAH	4 D 10	4 D 10										I		
IUUMINAN SENGANA UID-200 MUTU BETON K-300 r.0.2 Mpa MUTU BETON K-300 r.0.2 Mpa MUTU BETON MUTU BETON K-300 r.0.2 Mpa MUTU BEJAT ULANGAN BAJOK LANTA DAK ATAI 0 12 - BJTD 24 UKURAN DALAM STUAN INUMERENT TABEL PENULANGAN BAJOK LANTA DAK ATAI 0 12 - BJTD 24 UKURAN DALAM STUAN INUMERENT	TULANGAN BAWAH	2 D 16	2 D 16										I		
MUTU BETON : K-300 MUTU BETON : K-300 MUTU BAJ, TULANGAN BALOK LANTA DAK ATA MUTU BAJ, TULANGAN SALOK LANTA DAK ATA MUTU B	TUDANGAN SENGRAN	G D10-150	010-200]											
MUTU BETON K.300 tr 25 Mpa MUTU BAJA TULANGAN I: D10 2 BJTD 40 0 212 BJTP 24 UKURAN DALAM SATUAN MILLINETER (mm) o etra.ng															
MUTU BETON I: K-300 (+ 25 Mpa) MUTU BAJA TULANGAN I: D10 2: BJTD 40 0 12 - BJTP 24 UKURAN DALAM SATUAN MILLINET BALAN I AMAL														JUDUL CAMBAR	
MUTU BAJA TULANGAN: UTU 2 KUTU										MUTUR	CTON . K 200		TABEL PENUL	ANCOMED ALCOVERAUTAL D	AK ATAP
UKURAN DALAM SATUAN MILIMETER (mm.)										MOTO C	fc' 25 Mp	a		ANGAN DALOK DANTALD	
										MUTU E	fc' 25 Mp AJA TULANGAN : D10 ≥ B Ø 12 - B.	a JTD 40 ITP 24	SKALA	NOWOR CAMBUR JUN	LAH GAMBA

