PRA-RANCANGAN PABRIK ASAM SULFAMAT DARI UREA KAPASITAS 10.000 TON/TAHUN

Diajukan sebagai Salah Satu Syarat Untuk Memperoleh Gelar Sarjana Teknik Kimia

Disusun Oleh:

Nama: Misbahul Anam Nama: Syafira Dwi Rahmadiva

NIM : 19521124 NIM : 19521189

PROGRAM STUDI TEKNIK KIMIA FAKULTAS TEKNOLOGI INDUSTRI UNIVERSITAS ISLAM INDONESIA YOGYAKARTA

2023

LEMBAR PERNYATAAN KEASLIAN HASIL

PRA-RANCANGAN PABRIK ASAM SULFAMAT DARI UREA KAPASITAS 10.000 TON/TAHUN

Kami yang bertanda tangan dibawah ini:

Nama: Syafira Dwi Rahmadiva Nama: Misbahul Anam

NIM : 19521189 NIM : 19521124

Yogyakarta, 6 Oktober 2023

Menyatakan bahwa seluruh hasil prancangan pabrik ini adalah hasil karya sendiri. Apabila di kemudian hari ditemukan pelanggaran, maka kami bersedia mempertanggungjawabkan sesuai peraturan yang berlaku. Demikian surat pernyataan ini kami buat, semoga dapat dipergunakan sebagaimana mestinya.

Penyusun II,

06AKX548818461 Misbahul Anam

19521189

F02B1AKX6792859

Syafira Dwi Kahmadiva

19521124

LEMBAR PENGESAHAN PEMBIMBING

PRA-RANCANGAN PABRIK ASAM SULFAMAT DARI UREA KAPASITAS 10.000 TON/TAHUN

PRA-RANCANGAN PABRIK

Dr. Dyah Retno Sawitri, S.T., M.Eng.

LEMBAR PENGESAHAN PENGUJI

PRA-RANCANGAN PABRIK ASAM SULFAMAT DARI UREA KAPASITAS 10.000 TON/TAHUN

Oleh:

Nama: Misbahul Anam

Nama: Syafira Dwi Rahmadiya

NIM : 19521124

NIM : 19521189

Telah Dipertahankan di Depan Sidang Penguji sebagai Salah Satu Syarat Untuk Memperoleh Gelar Sarjana Teknik Kimia Program Studi Teknik Kimia Fakultas Teknologi Industri Universitas Islam Indonesia

Tim Penguji,

Dr. Dyah Retno Sawitri, S.T., M.Eng

Ketua

Dr. Khamdan Cahyari, S.T., M.Sc

Anggota I

Dr. Ariany Zulkania, S.T., M.Eng

Anggota II

Mengetahui,

Ketua Program Studi Teknik Kimia

Fakultas Teknologi Industri

Universitas Islam Indonesia

Sheleh Ma'mun, S.T., M.T., Ph.D.

NIP. 995200445

KATA PENGANTAR

Bismillahirrahmanirrahim

Assalamu'alaikum Wr. Wb.

Puji Syukur atas kehadirat Allah SWT yang telah melimpahkan rahmat dan karunia-Nya sehingga tugas akhir ini dapat terselesaikan dengan baik. Shalawat dan salam tidak lupa pula dipanjatkan atas junjungan kita yakni Nabi Muhammad SAW, ahabat serta pengikutnya.

Tugas Akhir Pra-Rancangan Pabrik yang berjudul "Prarancangan Pabrik Asam Sulfamat dari Urea Kapasitas 10.000 Ton/Tahun" ini disusun sebagai penerapan dari ilmu teknik kimia yang telah diperoleh selama menempuh pendidikan di bangku perkuliahan, dan merupakan salah satu syarat untuk memperoleh gelar Sarjana Teknik Kimia dari Program Studi Teknik Kimia Fakultas Teknologi Industri Universitas Islam Indonesia.

Penyusunan Tugas Akhir ini dapat terselesaikan tidak lepas dari bimbingan dan bantuan dari bebagai pihak. Oleh karena itu dalam kesempatan kali ini penulis menyampaikan ucapan terimakasih kepada:

- 1. Allah SWT. Atas segala rahmat dan karunia-Nya
- Orang tua dan keluarga yang selalu memberikan motivasi dan dukungan baik moril maupun materil selama menempuh Pendidikan di Program Studi Teknik Kimia Fakultas Teknologi Industri Universitas Islam Indonesia.
- 3. Bapak Sholeh Ma'mun, S.T., M.Eng selaku Ketua Program Studi Teknik Kimia Fakultas Teknologi Industri Universitas Islam Indonesia
- 4. Ibu Dr. Dyah Retno Sawitri, S.T., M.Eng selaku Dosen Pembimbing Tugas Akhir yang telah memberikan arahan, bimbingan, serta dukungan dalam penyusunan Tugas Akhir ini.
- 5. Seluruh civitas akademika di lingkungan Teknik Kimia Fakultas Teknologi Industri Universitas Islam Indonesia.

6. Partner Tugas Akhir yang sudah meluangkan waktu dan kerja sama dalam penyusunan Tugas Akhir ini.

7. Teman-teman Teknik Kimia 2019 yang selalu memberikan dukungan, semangat, dan doa.

8. Semua pihak yang tidak dapat kami sebutkan satu per satu yang telah membantu penyusunan Tugas Akhir ini.

Dalam Tugas Akhir ini masih terdapat banyak kekurangan baik isi maupun susunannya. Untuk itu, kritik dan saran akan sangat membantu demi sempurnanya tugas akhir ini. Semoga tugas akhir ini dapat bermanfaat bagi semua pihak.

Wassalamualaikum Wr. Wb.

Yogyakarta, 6 Oktober 2023

Penulis

DAFTAR ISI

LEMD	AD DEDNIKATA ANI IZE ACI TANI ITACII	•
	AR PERNYATAAN KEASLIAN HASIL	
	AR PENGESAHAN PEMBIMBING	
KATA	PENGANTAR	iv
	AR ISI	
DAFTA	AR TABEL	viii
DAFTA	AR GAMBAR	xi
ABSTF	RAK	xii
ABSTF	RAK	xiii
BAB I		1
PENDA	AHULUAN	1
1.1	Latar Belakang	1
1.2	Penentuan Kapasitas Pabrik	2
1.3	Tinjauan Pustaka	7
1.4	Tinjauan Termodinamika dan Kinetika	12
BAB II		16
PERAN	NCANGAN PRODUK	16
2.1	Spesifikasi Produk	16
2.2	Spesifikasi Bahan Baku dan Bahan Pendukung	17
2.3	Pengendalian Kualitas	19
BAB II	I	22
PERAN	NCANGAN PROSES	22
3.1	Diagram Alir Proses dan Material	22
3.2	Uraian Proses	24
3.3	Spesifikasi Alat	27
3.4	Neraca Massa	46
3.5	Neraca Panas	52
BAB IV	V	56
	NCANGAN PABRIK	
4.1	Lokasi Pabrik	
	Tata Letak Pabrik (Plant Lavout)	

3.	Tata Letak Mesin/Alat Proses (Machines Layout)	65
4.	Organisasi Perusahaan	67
BAB	V	86
UTIL	ITAS	86
5.1	Unit Penyediaan dan Pengolahan Air	86
5.2	Unit Pembangkit Steam	96
5.3	Unit Pembangkit Listrik	96
5.4	Unit Penyedia Udara Tekan	97
5.5	Unit Penyedia Bahan Bakar	98
5.6	Spesifikasi Alat Utilitas	98
BAB	VI	112
EVAI	LUASI EKONOMI	112
6.1	Evaluasi Ekonomi	112
6.2	Penaksiran Harga Alat	113
6.3	Dasar Perhitungan	119
6.4	Perhitungan Biaya	120
6.5	Analisa Kelayakan	121
6.6	Hasil Perhitungan	124
5.7	Hasil Analisa Kelayakan	128
5.8	Analisa Resiko Pabrik	131
5.9	Analisa Kelayakan	132
BAB	VII	135
KESI	MPULAN DAN SARAN	135
7.1	Kesimpulan	135
7.2	Saran	136
LAM	PIRAN A	141
LAM	PIRAN B	148
T A N /	DID AN C	140

DAFTAR TABEL

Tabel 1.1 Data Impor Asam Sulfamat Di Indonesia	. 3
Tabel 1.2 Data Ekspor Asam Sulfamat Di Indonesia	. 4
Tabel 1.3 Data perusahaan berbahan dasar asam sulfamate	. 5
Tabel 1.4 Perbandingan Proses dari Asam Sulfamat	. 11
Tabel 1.5 Harga ΔHf ° masing-masing komponen	. 12
Tabel 1.6 Harga ΔGf ° masing-masing komponen	. 12
Tabel 3.1 Spesifikasi Reaktor	. 26
Tabel 3.2 Spesifikasi Mixer	. 27
Tabel 3.3 Spesifikasi Crystallizer 1	. 28
Tabel 3.4 Spesifikasi Centrifuge 1	. 29
Tabel 3.5 Spesifikasi Dissolving Tank	. 30
Tabel 3.6 Spesifikasi Crystallizer 2	.31
Tabel 3.7 Spesifikasi Centrifuge 2	. 32
Tabel 3.8 Spesifikasi Rotary Dryer	. 33
Tabel 3.9 Spesifikasi Silo	. 34
Tabel 3.10 Spesifikasi Tangki	. 35
Tabel 3.11 Spesifikasi Pompa	. 36
Tabel 3.12 Spesifikasi Pompa	. 37
Tabel 3.13 Spesifikasi Pompa	. 38
Tabel 3.14 Spesifikasi Belt Conveyor	. 38
Tabel 3.15 Spesifikasi Belt Conveyor	. 39
Tabel 3.16 Spesifikasi Belt Elevator	.41
Tabel 3.17 Spesifikasi Blower	. 42
Tabel 3.18 Spesifikasi Heater 1	. 42
Tabel 3.19 Spesifikasi Heater 2	. 43
Tabel 3.20 Spesifikasi Heater 3	. 44
Tabel 3.21 Neraca Massa Total	. 45
Tabel 3.22 Neraca Massa Reaktor	. 46
Tabel 3.23 Neraca Massa Mixer	. 46
Tabel 3.24 Neraca Massa Crystallizer 1	. 47
Tabel 3.25 Neraca Massa Centrifuge 1	. 48
Tabel 3.26 Neraca Massa Dissolving Tank	. 48
Tabel 3.27 Neraca Massa Crystallizer 2	. 49
Tabel 3.28 Neraca Massa Centrifuge 2	. 49
Tabel 3.29 Neraca Massa Rotary Dryer	. 50
Tabel 3.30 Neraca Panas Reaktor	. 50
Tabel 3.31 Neraca Panas Crystallizer 1	.51
Tabel 3.32 Neraca Panas Dissolving Tank	.51

Tabel 3.33 Neraca Panas Crystallizer 2	.51
Tabel 3.34 Neraca Panas Rotary Dryer	. 52
Tabel 3.35 Neraca Panas Heater 1	. 52
Tabel 3.36 Neraca Panas Heater 2	. 52
Tabel 3.37 Neraca Panas Heater 3	. 53
Tabel 4.1 Luas Bangunan dan Tanah	
Tabel 4.2 Tugas Direktur Utama	. 68
Tabel 4.3 Tugas Kepala Bagian	.70
Tabel 4.4 Jadwal Kerja Karyawan Shift	. 75
Tabel 4.5 Jumlah Karyawan	.76
Tabel 4.6 Penggolongan Jabatan	.77
Tabel 4.7 Rincian Gaji	. 78
Tabel 5.1 Air sebagai media pendingin	. 92
Tabel 5.2 Media Steam	
Tabel 5.3 Total Kebutuhan Air Unit Utilitas	. 94
Tabel 5.4 Spesifikasi Bak Pengendapan Awal	.96
Tabel 5.5 Spesifikasi Bak Pencampuran Cepat	. 97
Tabel 5.6 Spesifikasi Klarifier	. 97
Tabel 5.7 Spesifikasi Saringan Pasir	. 98
Tabel 5.8 Spesifikasi Bak Air Bersih	. 98
Tabel 5.9 Spesifikasi Bak Air Minum	. 99
Tabel 5.10 Spesifikasi Menara Pendingin	. 100
Tabel 5.11 Spesifikasi Tangki Penukar Kation	. 100
Tabel 5.12 Spesifikasi Tangki Penukar Anion	. 101
Tabel 5.13 Spesifikasi Tangki NaCl	. 102
Tabel 5.14 Spesifikasi Tangki NaOH	. 102
Tabel 5.15 Spesifikasi Tangki Umpan Boiler	
Tabel 5.16 Spesifikasi Tangki Kondensat	
Tabel 5.17 Spesifikasi Kompresor Udara	
Tabel 5.18 Spesifikasi Tangki Silika	
Tabel 5.19 Spesifikasi Tangki Udara Tekan	. 106
Tabel 5.20 Spesifikasi Boiler	. 106
Tabel 5.21 Spesifikasi Pompa	
Tabel 5.22 Spesifikasi Pompa	. 108
Tabel 6.1 Chemical Engineering Plant Cost Index	. 111
Tabel 6.2 Harga Alat Proses pada Tahun Evaluasi	. 114
Tabel 6.3 Harga Alat Utilitas Pada Tahun Evaluasi	
Tabel 6.4 Physical Plant Cost (PPC)	. 122
Tabel 6.5 Direct Plant Cost (DPC)	. 123
Tabel 6.6 Fixed Capital Investment (FCI)	123

Tabel 6.7 Working Capital InvestmentI (WCI)	123
Tabel 6.8 Direct Manufacturing Cost (DMC)	124
Tabel 6.9 Indirect Manufacturing Cost (IMC)	124
Tabel 6.10 Fixed Manufacturing Cost (FMC)	125
Tabel 6.11 Manufacturing Cost	125
Tabel 6.12 General Expense (GE)	125
Tabel 6.13 Analisa Keuntungan	126
Tabel 6.14 Annual Fixed Cost (Fa)	127
Tabel 6.15 Annual Regulated Cost (Ra)	127
Tabel 6.16 Annual Variabel Cost (Va)	127
Tabel 6.17 Analisa Kelayakan	131

DAFTAR GAMBAR

Gambar 1.1 Grafik Impor Asam Sulfamat di Indonesia	3
Gambar 1.2 Grafik Ekspor Asam Sulfamat di Indonesia	5
Gambar 3.1 Diagram Alir Kualitatif	21
Gambar 3.2 Diagram Alir Kuantitatif	22
Gambar 4.1 Lokasi Pabrik	55
Gambar 4.2 Tata Letak Pabrik	60
Gambar 4.3 Tata Letak Alat Proses	64
Gambar 4.4 Struktur Organisasi	66
Gambar 5.1 Diagram Alir Proses Pengolahan Air	91
Gambar 6.1 Grafik Regresi Linear Index	113
Gambar 6.2 Analisa Kelavakan	132

ABSTRAK

Salah satu upaya dalam meningkatkan perekonomian Indonesia yakni dengan pendirian pabrik kimia. Salah satunya pabrik asam sulfamat. Asam sulfamat (NH₃SO₃) merupakan salah satu jenis asam kuat berbentuk padatan kristal berwarna putih. Asam sulfamat terbentuk dari urea dan fuming asam sulfat. Asam sulfamat akan meleleh pada suhu 305°C dan stabil hingga suhu 260°C. Asam sulfamat dapat digunakan untuk pembersihan kerak. Pendirian pabrik asam sulfamat dari urea rencananya akan didirikan di Gresik, Jawa Timur dengan luas tanah \pm 15.000 m2. Pabrik ini berdiri dengan mempertimbangkan ketersediaan bahan baku, sarana transportasi yang memadai, tenaga kerja, perizinan, dan kondisi sosial masyarakat. Pabrik ini direncanakan dapat memproduksi asam sulfamat sebanyak 10.000 Ton/Tahun dengan waktu operasi 300 hari/tahun selama 24 jam/hari. Banyaknya bahan baku yang digunakan yakni urea sebesar 858,31 kg/jam dan oleum sebesar 2.546,32 kg/jam. Proses pembuatan asam sulfamate terdiri dari 3 tahap yakni sulfonasi, kristalisasi, dan re-kristalisasi. Bentuk perusahaan adalah Perseroan Terbatas (PT) dengan jumlah karyawan sebesar 114 orang. Hasil analisis ekonomi diperoleh ROI sebelum dan sesudah pajak sebesar 23,06% dan 17,99%, POT sebelum dan sesudah pajak selama 3,22 tahun dan 3,85 tahun, BEP 45,13% dan SDP 21,33%. Dari parameter kelayakan diatas dapat disimpulkan bahwa pabrik asam sulfamat dari urea dengan kapasitas 10.000 ton/tahun layak untuk didirikan.

Kata kunci: Asam Sulfamat, Kristalisasi, Reaktor Alir Tangki Berpengaduk.

ABSTRAK

One of the efforts to improve the Indonesian economy is the establishment of a chemical factory. One of them is the Sulfamic Acid factory. Sulfamic acid (NH₃SO₃) is a type of strong acid in the form of a white crystalline solid. Sulfamic acid is formed from urea and fuming sulfuric acid. Sulfamic acid will melt at 305°C and is stable up to 260°C. Sulfamic Acid can be used for descaling. The plan to establish a Sulfamic Acid from Urea factory will be in Gresik, East Java with a land area of \pm 15,000 m2. This factory was established by considering the availability of raw materials, adequate transportation facilities, workforce, permits and social conditions of the community. This factory is planned to be able to produce 10,000 tons of sulfuric acid/year with an operating time of 300 days/year for 24 hours/day. The amount of raw materials used was 858.31 kg/hour of urea and 2,546.32 kg/hour of oleum. The process of making sulfamic acid consists of 3 stages, namely sulfonation, crystallization and re-crystallization. The form of the company is a Limited Liability Company (PT) with a total of 114 employees. The results of the economic analysis show that ROI before and after tax is 23.06% and 17.99%, POT before and after tax is 3.22 years and 3.85 years, BEP is 45.13% and SDP is 21.33%. From the feasibility parameters above, it can be concluded that a sulfamic acid plant from urea with a capacity of 10,000 tons/year is feasible to be established.

Keywords: Crystallization, Stirred Tank Flow Reactor, Sulfamic Acid.

BAB I

PENDAHULUAN

1.1 Latar Belakang

Pergerakan ekonomi nasional dan peningkatan devisa suatu negara dapat diperoleh dengan meningkatkan manufaktur industri salah satunya adalah industri kimia. Industri kimia telah memberikan kontribusi besar dalam perkembangan ekonomi di Indonesia saat ini. Terbukti dengan meningkatnya penggunaan produk-produk industri kimia. Industri kimia merupakan indutri dengan penggunaan teknologi dan modal yang besar dan sangat berpengaruh pada daya saing. Untuk itu, perlu dilakukan tindakan untuk meningkatkan kualitas industri kimia agar dapat menghasilkan produk yang berkualitas dan dapat bersaing dengan perusahaan internasional. Salah satu upaya dalam meningkatkan kualitas industri kimia yakni dengan meningkatkan kapasitas produksinya.

Produk kimia dasar memiliki peranan yang sangat penting dalam memenuhi kebutuhan bahan baku pada berbagai industri manufaktur seperti industri makanan dan minuman, farmasi, otomatif, dan elektronik (Kemenperin RI, 2018). Salah satu upaya dalam meningkatkan kapasitas produksi adalah dengan mendirikan Pabrik Asam Sulfamat. Asam Sulfamat merupakan salah satu jenis asam kuat berbentuk padatan kristal berwarna putih. Asam Sulfamat terbentuk dari urea dan *fuming* asam sulfat. Asam Sulfamat akan meleleh pada suhu 305°C dan stabil hingga suhu 260°C. Penggunaan asam sulfamat sering ditemui pada industri petrokimia, industri

elektrokimia, industri serat dan kertas, serta industri yang mengunakan proses sulfonasi.

Berdasarkan data yang diperoleh dari Badan Pusat Statistika, Indonesia lebih banyak mengekspor asam sulfamat dibandingkan mengimpor. Hal ini dapat disimpulkan bahwa target pasar asam sulfamat adalah pasar luar negeri.

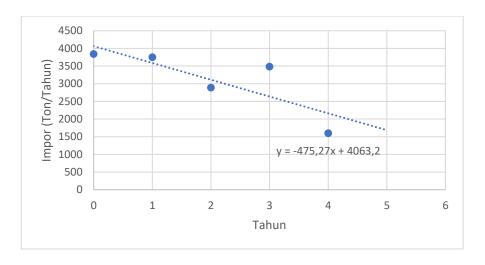
Pendirian pabrik asam sulfamat di Indonesia diharapkan dapat memberikan kontribusi yang besar dalam meningkatkan perekonomian di Indonesia. Dan juga diharapkan dapat meningkatkan pertumbuhan berbagai sektor manufaktur lain yang menggunakan asam sulfamat sebagai bahan baku.

1.2 Penentuan Kapasitas Pabrik

Pabrik Asam Sulfamat dibangun dengan memperhatikan beberapa faktor yang perlu dipertimbangkan, antara lain *Supply* dan *Demand. Supply* meliputi data impor dan data produksi. Sedangkan *demand* meliputi data ekspor dan konsumsi. Data yang digunakan merupakan data 5 tahun kebelakang (2017 hingga 2021) yang diperoleh dari website resmi Badan Pusat Statistika (BPS). Kapasitas pabrik yang ditentukan akan mempengaruhi nilai ekonomi dan teknis dalam perancangan pabrik.

1.2.1 **Supply**

1.2.1.1 Impor


Bedasarkan data yang diperoleh pada Badan Pusat Statistika (BPS), diperoleh jumlah impor asam sulfamate di Indonesia dapat dilihat pada Tabel 1.1.

Tabel 1.1 Data Impor Asam Sulfamat Di Indonesia

Tahun	Impor (Ton/Tahun)	
2017	3842,539	
2018	3749,021	
2019	2890,118	
2020	3481,802	
2021	1599,792	

(Sumber: Badan Pusat Statistika, 2022)

Berdasarkan data impor asam sulfamate yang terdapat pada Tabel
1.1 kemudian diproyeksikan kedalam sebuah grafik regresi linier
seperti pada Gambar 1.1

Gambar 1.1 Grafik Impor Asam Sulfamat di Indonesia

Dari data pada Gambar 1.1, dapat diperkirakan kebutuhan impor asam sulfamate pada tahun 2027, sehingga didapat persamaan y = ax + b. Berdasarkan grafik tersebut diperoleh persamaan :

$$y = -475,27x + 4063,2\tag{1}$$

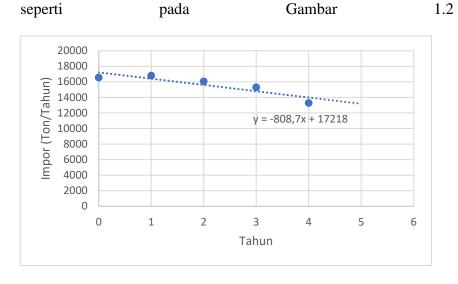
Berdasarkan persamaan tersebut diperkirakan pada tahun 2027 tidak ada impor asam sulfamate atau nilai impor sama dengan nol.

1.2.1.2 Produksi

Di Indonesia Pabrik Asam Sulfamat yang telah berdiri yakni PT. Timuraya Tunggal dengan kapasitas 75.000 Ton/Tahun.

1.2.2 Demand

1.2.2.1 Ekspor


Bedasarkan data yang diperoleh pada Badan Pusat Statistika (BPS), diperoleh jumlah ekspor asam sulfamat di Indonesia dapat dilihat pada Tabel 1.2.

Tabel 1.2 Data Ekspor Asam Sulfamat Di Indonesia

Tahun	Tahun Ke	Ekspor (Ton/Tahun)
2017	0	16564,136
2018	1	16808,857
2019	2	16057,159
2020	3	15294.596
2021	4	13277,781

(Sumber: Badan Pusat Statistika, 2022)

Berdasarkan data ekspor asam sulfamate yang terdapat pada Tabel
1.1 kemudian diproyeksikan kedalam sebuah grafik regresi linier

Gambar 1.2 Grafik Ekspor Asam Sulfamat di Indonesia

Dari data pada Gambar 1.2, dapat diperkirakan kebutuhan ekspor asam sulfamat pada tahun 2027, sehingga didapat persamaan y = ax + b. Berdasarkan grafik tersebut diperoleh persamaan :

$$y = -808,7x + 17218 \tag{2}$$

Berdasarkan persamaan tersebut diperoleh bahwa pada tahun 2027 diperkirakan kebutuhan ekspor asam sulfamat di Indonesia sebesar 9131 ton/tahun.

1.2.2.2 Konsumsi

Untuk data konsumsi asam sulfamat tidak ditemukan pada Badan Pusat Statistika (BPS)

Tabel 1.3 Data perusahaan berbahan dasar asam sulfamat

Perusahaan	Konsumsi (Ton/Tahun)
Univar Solution USA Inc.	19.572
Univar USA Inc.	16.800

Samirian Chemicals Inc.	40.920
Swat International Inc.	23.118
Total	100.410

1.2.3 Ketersediaan Bahan Baku

Untuk menjamin kontinuits produksi pabrik, bahan baku harus mendapatkan perhatian yang serius secara periodic dalam jumlah yang cukup. Bahan baku yang digunakan dalam proses pembuatan pabrik asam sulfamay adalah urea dan oleum. Bahan baku urea dapat diperoleh dari PT. Petrokimia Gresik dan oleum dapat diperoleh dari PT. Indonesian Acid Industry.

1.2.4 Peluang Kapasitas

Berdasarkan data impor dan ekspor, dapat ditentukan besarnya peluang produksi dengan persamaan sebagai berikut :

Peluang Kapasitas = Demand - Supply

Peluang Kapasitas = (Ekspor + Konsumsi) - (Impor + Produksi)

Peluang Kapasitas = (9.131 + 100.410) - (-689,5 + 75.000)

Peluang Kapasitas = 35.230,5 Ton/Tahun

Kapasitas produksi yang diambil yaitu 30% dari peluang yang telah ada. Besarnya kapasitas pabrik yang akan didirikan dapat dipertimbangkan dari nilai demand dan supply. Selain itu penentuan kapasitas pabrik juga dapat dilihat dari industry yang sudah berdiri baik di Indonesia maupun dunia serta industry yang membutuhkan asam

sulfamate. Berdasarkan data-data yang telah dipaparkan maka ditentukanlah kapasitas pabrik asam sulfamate yang akan didirikan pada tahun 2027 sebesar 10.000 Ton/Tahun dengan berbagai pertimbangan sebagai berikut :

- 1. Mampu menutupi kebutuhan asam sulfamate di Indonesia
- 2. Mampu meningkatkan nilai ekspor di Indonesia
- Memenuhi permintaan pasar dalam negeri dan pasar luar negeri yang semakin meningkat
- 4. Mampu memberikan peluang bagi pelaku industry untuk mendirikan pabrik asam sulfamate di Indonesia.

1.3 Tinjauan Pustaka

Asam sulfamat atau adalah asam anorganik kuat yang berbentuk kristal. Asam sulfamat teridentifikasi 60 tahun yang lalu oleh Berglund. Berglund memperoleh asam sulfamat melalui hidrolisis garam iminodisulfonat dengan asam encer. Baru-baru ini sebuah proses baru dikembangkan secara independen baik di negara ini maupun di Jerman dimana asam sulfamat dapat diproduksi dalam skala komersial. Proses baru ini didasarkan pada reaksi urea dengan *fuming sulphuric acid* atau yang lebih lebih dikenal dengan Oleum.

Asam sulfamat merupakan asam anorganik kuat yang tersedia dalam bentuk padatan kristal putih yang tidak berbau, tidak mudah menguap, tidak higroskopis, tidak korosif, dan berbiaya rendah, dan merupakan katalis hijau yang sangat efisien dalam sintesis organik. Lebih khusus lagi, asam

sulfamat adalah asam amino yang mengandung belerang dengan keasaman ringan.

Asam sulfamat digunakan dalam pembersihan kimia, reaksi sulfonasi, penghilangan nitrit, sebagai kendaraan klorin, dan untuk berbagai aplikasi lainnya. Asam sulfamat juga digunakan sebagai bahan baku natrium sikloheksilsulfamat, yang merupakan pemanis sintetis. Beberapa sulfamat juga tersedia secara komersial.

Untuk menghasilkan produk berupa Asam Sulfamat memiliki beberapa proses, antara lain sebagai berikut :

1.3.1 Proses Reaksi Urea dan Oleum

Proses ini menggunakan bahan baku berupa Urea dengan Asam Sulfat dan Sulfur Trioksida. Berdasarkan pada US Patent No. 2191754 dijelaskan bahwa reaksi urea dengan oleum dapat dilakukan pada suhu 40-50 °C dengan konsentrsi oleum berkisar pada 20-28% dan rasio mol sulfur trioksida terhadap urea berkisar 1,25:1 sampai 1,8:1 dengan waktu sekitar 10 Jam. Reaksi pada proses ini merupakan reaksi eksotermis, perbandingan sulfur trioksida dengan urea dan konsentrasi oleum yang tepat dapat menguntungkan pada produk akhir. Pengadukan dalam reaksi perlu dilakukan dengan tidak terlalu cepat untuk menghindari terjadinya kemampuan penyaringan produk yang menurun. Konsentrasi oleum 28% telah mencapai maksimum untuk hasil terbaik pada batas waktu dan suhu tertentu, karena konsentrasi yang lebih besar dapat menyebabkan reaksi sangat eksotermis dan

berlangsung terlalu cepat serta pembentukan produk samping yang berlebih. Reaksi yang terjadi pada proses ini sebagai berikut :

$$CO(NH_2)_{2(s)} + H_2SO_4.SO_{3(l)} \rightarrow 2NH_3SO_{3(aq)} + CO_{2(g)} \qquad (3)$$

Berdasarkan pada AU Patent No. 2018102002A4 merupakan pengembangan terbaru dari reaksi antara urea dan oleum. Tahapan proses yang terjadi adalah mereaksikan urea dengan oleum didalam reaktor berpengaduk pada suhu 60-65°C. Reaksi berlangsung homogen dimana reaksi akan berhenti ketika karbon dioksida tidak dihasilkan kembali. Proses kristalisasi terjadi didalam *crystallizer* dengan menggunakan natrium sulfat sebagai pelarut dan *brine ice* sebagai pendingin. Setelah bahan mengkristal kemudian dipisahkan menggunakan *centrifuge* menghasilkan *crude sulfamic acid*.

Proses permunian dilakukan kembali menggunakan teknik rekristalisasi dengan tahap awal melarutkan *crude sulfamic acid* di dalam air pada suhu 80°C. setelah semua Kristal larut kemudian larutan dipindahkan ke *crystallizer* dengan etanol sebagai pelarut. Produk dari *recrystallizer* dilakukan pemisahan kembali menggunakan *centrifuge* yang kemudian akan dikeringkan. Produk yang telah dikeringkan akan menghasilkan asam sulfamat dengan kemurnian lebih tinggi.

1.3.2 Proses Reaksi Sulfur Trioksida dan Ammonia

Proses ini menggunakan bahan baku berupa Sulfur Trioksida dan Amonia. Berdasarkan US Patent No. 4107279A menjelaskan proses pembentukan asam sulfamat dari sulfur trioksida dan amonia. Produk

dari hasil reaksi akan berbentuk lelehan dan ditambahkan asam mineral seperti asam nitrat sebagai proses purifikasi. Proses yang terjadi adalah amonolisis yaitu sulfur trioksida bereaksi dengan amonia pada suhu sekitar 200-220°C dan pada tekanan 6-10 atm akan menghasilkan produk asam sulfamat. Reaksi yang terjadi antara sulfur trioksida dan amonia pada proses ini dapat dilihat sebagai berikut

$$SO_{3(g)} + 3NH_{3(g)} \rightarrow 2NH_3SO_{3(s)}$$
 (4)

Produk hasil reaksi didinginkan sampai suhu 150°C lalu ditambahkan larutan asam nitrat 60% dengan suhu 60°C yang sambil dilakukan pengadukan. Larutan suspensi kemudian dilakukan pendinginan hingga suhu -10°C sampai terjadi pengendapan asam sulfamat yang telah berbentuk kristal. Produk yang telah terbentuk kristal dilakukan pencucian dengan larutan asam nitrat 60% dengan suhu -10°C. Tahapan terakhir dari proses ini adalah pengeringan untuk memisahkan produk asam sulfamat padat dengan larutan asam nitrat. Kemurnian asam sulfamat yang dihasilkan pada paten ini adalah 99,80%.

1.3.3 Produk Reaksi Asam Klorosulfonat dan Amonia

Proses ini menggunakan bahan baku berupa asam klorosulfonat dan amonia. Berdasarkan US Patent No. 4490345 menjelaskan proses pembentukan asam sulfamat dari asam klorosulfonat dan amonia. Tahapan dari proses yang terjadi adalah pelarutan asam klorosulfonat dalam pelarut organik dan proses amonolisis yaitu memberikan gas

amonia terhadap larutan. Sistem reaksi yang digunakan adalah circulation loop. Proses pelarutan asam klorosulfonat menggunakan senyawa piridin sebagai pelarut organik, asam klorosulfonat memiliki warna hitam dan piridin tidak berwarna, ketika telah larut dengan sempurna akan menghasikan warna kuning. Hasil dari proses pelarutan dialirkan menuju reaktor selanjutnya akan diinjeksikan gas amonia untuk proses amonolisis, ketika telah terjadi reaksi secara sempurna akan menghasilkan partikel bubuk berwarna putih yang tersuspensi didalam larutan. Reaksi yang terjadi pada proses ini sebagai berikut:

$$ClSO_3H_{(l)} + 3NH_{3(g)} \xrightarrow{C_5H_5N_{(l)}} 2NH_3SO_{3(s)} + NH_4Cl_{(s)}$$
 (5)

Hasil reaksi menunjukkan bahwa akan terjadi pembentukan produk utama asam sulfamat dan produk samping yaitu amonium klorida. Setelah proses amonolisis dilakukan tahap pemisahan menggunakan dryer untuk memisahkan produk padatan dan residu pelarut yang dapat digunakan kembali. Pemisahan antara asam sulfamat dan amonium klorida dilakukan setelah pengeringan dengan melakukan teknik pemisahan rekristalisasi.

Tabel 1.4 Perbandingan Proses dari Asam Sulfamat

	Proses		
Parameter	Reaksi Urea dan Oleum	Reaksi Sulfur Trioksida dan Amonia	Reaksi Asam Klorosulfonat dan Amonia

Bahan Baku	Urea dan Oleum	Sulfur Trioksida dan Amonia	Asam Klorosulfonat dan Amonia
Suhu (°C)	40-65°C	200-220°C	25°C
Tekanan (atm)	1 atm	6-10 atm	1 atm
Waktu Reaksi	10 Jam	5 Jam	4 Jam
Konversi (%)	90%	78%	80%

Berdasarkan Tabel 1.3 diatas dapat diketahui bahwa proses yang tepat untuk digunakan sebagai referensi pendirian pabrik adalah Proses Reaksi Urea dan Oleum dari AU Patent No. 2018102002A4.

1.4 Tinjauan Termodinamika dan Kinetika

1.4.1 Tinjauan Termodinamika

Tujuan tinjauan termodinamika agar dapat menentuka reaksi berlangsung *reversible* atau *irreversible* dan sifat reaksinya eksotermis atau endotermis. Penentuan sifat reaksi dapat dilakukan dengan menghitung panas pembentukan standar pada tekanan 1 atm (Yaws, 1999).

Reaksi:

$$CO(NH_2)_{2(s)} + H_2SO_4.SO_{3(l)} \rightarrow 2NH_3SO_{3(aq)} + CO_{2(g)} \eqno(6)$$

Tabel 1.5 Harga ΔHf^{o} masing-masing komponen

Komponen	$\Delta H_f(kJ/mol)$
CO(NH ₂) ₂	-333,1

$H_2S_2O_7$	-75,6467
NH ₃ SO ₃	-1418
CO ₂	-393,51

 ΔH° reaksi 298K = ΔH° produk - ΔH° reaktan

$$\Delta H^{\circ}$$
 reaksi 298K = [(2 x ΔH° f NH_3SO_3) + (ΔH° f CO_2)] – [(ΔH° f $CO(NH_2)_2$) + (ΔH° f $H_2S_2O_7$)]

$$\Delta H^{\circ}$$
 reaksi 298K = [(2 x -1418) + (-393,51)] - [(-333,1) + (-75,6467)]

 ΔH° reaksi 298K = -2820,76 kJ/mol

Dari perhitungan entalpi panas, diperoleh nilai negatif. Hal ini menunjukkan bahwa reaksi berjalan eksotermis.

Tabel 1.6 Harga ΔGf $^{\rm o}$ masing-masing komponen

Komponen	$\Delta G_f(kJ/mol)$
CO(NH ₂) ₂	0
H ₂ S ₂ O ₇	-52,632
NH3SO3	-42,566
CO ₂	-394,4

 ΔG° reaksi 298K = ΔG° produk - ΔG° reaktan

$$\Delta G^{\circ} \text{ reaksi } 298 \text{K} = [(\ 2 \ \text{x} \ \Delta G^{\circ} \text{f} \ NH_{3}SO_{3}\) + (\ \Delta G^{\circ} \text{f} \ CO_{2}\)] - [\ (\ \Delta G^{\circ} \text{f} \ CO_{2}\)] - [\ (\ \Delta G^{\circ} \text{f} \ H_{2}S_{2}O_{7}\)]$$

$$\Delta G^{\circ}$$
 reaksi 298K = $[(2 \times -42,566) + (-394,4)] - [(0) + (-52,632)]$

 ΔG reaksi 298K = -426,9 kJ/mol

Reaksi searah (*irreversible*) atau reaksi bolak-balik (*reversible*) dapat ditentukan dengan menghitung nilai konstanta kesetimbangan (K). Nilai

konstanta kesetimbangan reaksi diperoleh dengan nilai ΔG berdasarkan persamaan Van't Hoff sebagai berikut :

$$\Delta G^{o} = -RT \ln K$$

$$\ln K_{0} = -\frac{\Delta G^{o}}{RT}$$

$$\ln K_{0} = -\frac{-426.9 \text{ kJ/mol}}{8,314 \times 10^{-3} \text{ kJ/mol.} K \times 298,15 \text{ K}}$$

$$\ln K_{0} = 172,219$$

$$K_{0} = 6,21 \times 10^{74}$$

K pada suhu 80°C = 353,15 K

$$\ln \frac{K_1}{K_0} = -\frac{\Delta H}{R} \left[\frac{1}{T_1} - \frac{1}{T_2} \right]$$

$$\ln \frac{K_1}{K_0} = -\frac{-2820,76}{8,314 \times 10^{-3}} \left[\frac{1}{353,15} - \frac{1}{298,15} \right]$$

$$\ln \frac{K_1}{K_0} = 177,225$$

$$\ln K_1 = 177,225 + \ln K_0$$

$$\ln K_1 = 177,225 + 172,219$$

$$\ln K_1 = 349,44$$

$$K_1 = 5,77 \times 10^{151}$$

Nilai konstanta kesetimbangan besar sehingga reaksi pembentukan asam sulfamate merupakan reaksi searah (*irreversible*).

1.4.2 Tinjauan Kinetika

Kinetika reaksi adalah ilmu kimia yang terkait laju reaksi dan faktorfaktor yang mempengaruhi laju reaksi. Laju reaksi dapat dikatakan sebagai berubahan konsentrasi pereaksi atau hasil reaksi terhadap waktu (Coulson, 1983).

Berdasarkan jurnal yang berjudul "Reaction Crystallization Of Sulfamic Acid From Urea and Fuming Sulfuric Acid" oleh Ken Toyokura, Kenji Tawa and Junji Ueno, Department of Applied Chemistry, Waseda Univerity. Diperoleh nilai $r_A=0.096\ C_A$

BAB II

PERANCANGAN PRODUK

2.1 Spesifikasi Produk

2.1.1 Asam Sulfamat

Wujud : Kristal

Warna : Putih

Bau : Tidak berbau

pH : 1,18

Rumus Molekul : NH_3SO_3

Berat Molekul : 97,09 g/mol

Titik Leleh : 205°C

Tekanan Uap : 0,0078 kPa

Kelarutan : 213 g/L pada suhu 20°C

Ukuran Produk : 0,841 mm

Kemurnian : 99%

Impurities : Urea 0,017%

Oleum 0,05%

 $NH_3SO_{3(aq)} 0,004\%$

Natrium Sulfat 0,02%

Air 0,9%

(Sumber: MSDS Sulfamic Acid PT. Timuraya Tunggal)

2.1.2 Karbon Dioksida

Wujud : Gas

Warna : Tidak Berwarna

Bau : Tidak Berbau

Rumus Molekul : CO₂

Berat Molekul : 44,01 g/mol

Titik Didih : -56,6 °C

Tekanan Uap : 5722,65 kPa

(Sumber: MSDS Karbon Dioksida PT. Molindo Inti Gas)

2.2 Spesifikasi Bahan Baku dan Bahan Pendukung

2.2.1 Urea

Wujud : Padatan

Warna : Putih

Bau : seperti-amonia

Rumus Molekul : $CO(NH_2)_2$

Berat Molekul : 60,06 g/mol

Titik Leleh : 133 °C

Tekanan Uap : < 0,01 kPa pada 20°C

Densitas : 1,34 g/cm3 pada 20°C

pH : 9 pada 100 g/l 20°C

Kelarutan : Larut dalam air, dan etanol (545 g/l pada 25°C)

Kemurnian : 98,5%

Impurities : Biuret 1,5%

(Sumber: MSDS Urea PT. Smart-Lab)

2.2.2 Oleum

Wujud : Cairan Kental

Bau : Berbau Tajam

Rumus Molekul : $H_2SO_4.SO_3$

Berat Molekul : 178,15

Titik Leleh : 35 °C

Titik Didih : 140 °C

Tekanan Uap : 20 kPa pada 40

Viskositas : 38 mPa.s

Kemurnian : 20%

(Sumber: MSDS Oleum Nuova Solmine S.p.A)

2.2.3 Natrium Sulfat

Wujud : Padat

Bau : Tidak Berbau

Rumus Molekul : Na₂SO₄

Berat Molekul : 142,04 g/mol

Titik Leleh : 888°C

Densitas : 2,70 g/cm3

pH : 5,2-8,0

Kelarutan : 28,1 g/100 g air pada 25°C

Kemurnian : 99,8%

Impurities : MgSO₄ 0,2%

(Sumber: MSDS Natrium Sulfat PT. Smart-Lab)

2.2.4 Etanol

Wujud : Cair

Bau : Seperti Alkohol

pH : 7

Rumus Molekul : C₂H₅OH

Berat Molekul : 46,07 g/mol

Titik Didih : 78,3°C

Tekanan Uap : 0,790-0,793 g/cm3

Densitas : 59 hPa (20°C)

Viskositas : 1,2 mPa.s

Kemurnian : 95%

Impurities : Air 5%

(Sumber: MSDS Etanol PT. Smart-Lab)

2.3 Pengendalian Kualitas

2.3.1 Pengendalian Kualitas Bahan Baku

Sebelum proses produksi mulai dilakukan, perlu adanya pengujian terhadap kualitas bahan baku. Pengendalian bahan baku bertujuan untuk mengetahui kualitas bahan baku yang digunakan. Maka dari itu, pengujian bahan baku ini sangatlah penting agar bahan yang digunakan dapat diproses dalam pabrik dan menghasilkan kualitas produk yang baik.

2.3.2 Pengendalian Kualitas Proses

Pengendalian Proses Produksi juga tidak kalah penting. Hal ini dilakukan agar kualitas Asam Sulfamat yang akan dihasilkan tetap terjaga dengan baik. Pengendalian produksi dilaksanakan untuk menjaga kualitas dari produk yang harus dilakukan sejak dari bahan baku hingga produk jadi.

Pengendalian juga pengawasan proses dilaksanakan menggunakan data pengendalian yang berpusat di *control room* dan dilakukan dengan otomatis memakai beberapa indikator. Bila ada penyimpangan pada indikator dari yang telah ditetapkan, baik itu *flow rate* bahan baku atau produk, *level control*, maupun suhu operasi, bisa diketahui dari isyarat yang diberi, misalnya nyala lampu dan bunyi alarm. Beberapa alat kontrol yang dipakai antara lain:

A. Flow Control

Flow Control merupakan alat yang bertugas untuk mengontrol aliran bahan baku, aliran masuk, dan aliran keluar proses.

B. Temperature Control

Temperature Control merupakan alat yang berguna untuk mengontrol suhu pada setiap alat proses. Jika ada penyimpangan pada set suhu yang diinginkan, akan timbul isyarat berupa suara dan nyala lampu.

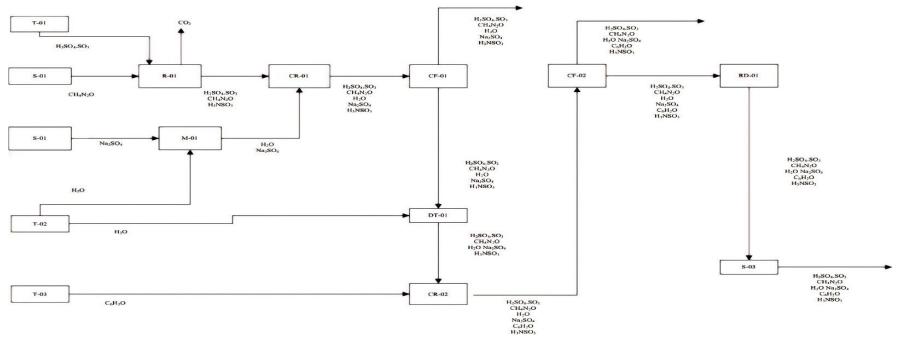
C. Level Indicator

Level Indicator merupakan alat yang memiliki peran mengontrol ketinggian dari larutan pada tangki alat proses.

D. Pressure Control

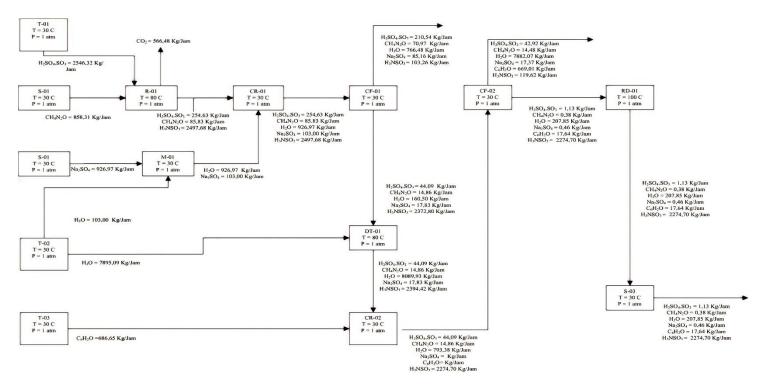
Pressure Control merupakan kontroler yang dipasang pada alat yang memerlukan tekanan diatas tekanan atmosfer. Alat ini juga menjaga agar tekanan tidak melebihi batas tekanan suatu alat yang diatur. Biasanya ini dipakai pada alat dengan fase gas.

2.3.3 Pengendalian Kualitas Produk


Agar mendapatkan produk dengan mutu standar, maka perlu adanya bahan yang berkualitas, pengawasan dan pengendalian terhadap proses dengan cara *system control* hingga mendapatkan produk dengan kualitas bagus. Produk yang akan lolos uji yaitu produk yang sesuai dengan standar yang telah diterapkan agar produk tersebut bisa dipasarkan.

BAB III

PERANCANGAN PROSES


3.1 Diagram Alir Proses dan Material

3.1.1 Diagram Kualitatif

Gambar 3.1 Diagram Alir Kualitatif

3.1.2 Diagram Kuantitatif

Gambar 3.2 Diagram Alir Kuantitatif

3.2 Uraian Proses

Pembuatan Asam Sulfamat menggunakan bahan baku urea dan oleum serta bahan pendukung berupa natrium sulfat, dan etanol. Pembuatan asam sulfamat terdiri dari 3 proses, yakni sulfonasi, kristalisasi, dan rekristalisasi. Proses sulfonasi berfungsi untuk menghasilkan asam sulfamat berbentuk slurry yang dilanjutkan dengan proses kristalisasi dan rekristalisasi untuk menghasilkan asam sulfamat berbentuk padatan dengan kemurnian yang tinggi.

3.2.1 Proses Sulfonasi

Urea berbentuk padatan dimasukkan kedalam reactor dengan menggunakan *conveyor*. Secara perlahan menambahkan oleum kedalam reaktor menggunakan *centrifugal pump*. Reaktor yang digunakan adalah reaktor tipe CSTR yang dilengkapi dengan jaket pendingin. Fungsi jaket pendingin yaitu untuk mendinginkan panas reaksi karena reaksi berjalan secara eksotermis. Reaksi dilakukan pada tekanan 1 atm hingga mencapai suhu 80°C. Reaksi didalam reactor terjadi dalam dua tahap berdasarkan pada senyawa oleum dengan reaksi sebagai berikut :

$$OC(NH_2)_{2(s)} + SO_{3(aq)} \rightarrow OC(NH_2)(NHSO_3H)_{(aq)}$$
 (7)

$$OC(NH_2)(NHSO_3H)_{(aq)} + H_2SO_{4(aq)} \rightarrow 2NH_3SO_{3(aq)} + CO_{2(g)}\left(8\right)$$

Reaksi pertama yaitu reaksi antara urea dengan sulfur trioksida menghasilkan senyawa *carbamido monosulphonic acid* kemudian dillanjutkan reaksi dengan asam sulfat untuk membentuk *crude* asam sulfamat dan karbon dioksida. Hasil keluaran reactor berupa asam sulfamat yang berbentuk *slurry* didalam larutan oleum kemudian dialirkan menuju kristalizer untuk melakukan proses kristalisasi. Hasil atas reaktor berupa karbon dioksida.

3.2.2 Proses Kristalisasi

Crude asam sulfamat yang keluar dari reaktor dengan suhu 80°C dialirkan menuju kristalizer menggunakan pompa. Proses kristalisai berlangsung pada tekanan 1 atm dan suhu 30°C. Pada proses kristalisasi menggunakan pelarut berupa natrium sulfat. Sebelum memasuki kristalizer, padatan natrium sulfat dilarutkan terlebih dahulu mengunakan air yang dilakukan pada *mixer*. Proses pelarutan dilakukan pada suhu 30°C dan tekanan 1 atm.

Natrium sulfat dari *mixer* kemudian dialirkan menuju kristalizer menggunakan pompa. Pada kristalizer ditambahkan air pendingin untuk menghasilkan produk yang terkristalisasi secara sempurna untuk menjaga suhu reaksi agar tetap rendah. Reaksi yang terjadi pada kristalizer adalah sebagai berikut :

$$NH_3SO_{3(aq)} \rightarrow NH_3SO_{3(s)} \tag{9}$$

Produk keluaran kristalizer kemudian dialirkan menuju *centrifuge* yang berfungsi untuk memisahkan *crude* asam sulfamat dari sisa larutan seperti urea, oleum, dan natrium sulfat. Proses pemisahan berlangsung pada suhu 30°C dan tekanan 1 atm. *Crude* asam sulfamate selanjutnya

masuk kedalam *dissolving tank*. Pada dissolving tank, crude asam sulfamate dilarutkan menggunakan air. Air dipanaskan terlebih dahulu menggunakan *heater* dengan suhu 80°C untuk menyesuaikan kondisi operasi pada *dissolving tank*. Tujuan proses ini adalah sebagai tahap awal untuk proses rekristalisasi.

3.2.3 Proses Rekristalisasi

Produk keluaran *dissolving tank* berupa cairan yang kemudian dialirkan menuju kristalizer 2. Pada proses rekristalisasi menggunakan pelarut berupa etanol. Pada kristalizer 2 ditambahkan air pendingin untuk menjaga kondisi operasi dan untuk menghasilkan produk yang terkristalisais dengan sempurna. Proses rekristalisai berlangsung pada suhu 30°C dengan tekanan 1 atm. Reaksi yang terjadi adalah sebagai berikut:

$$NH_3SO_{3(aq)} \to NH_3SO_{3(s)}$$
 (10)

Keluaran kristalizer 2 kemudian dialirkan menuju *centrifuge* untuk memisahkan asam sulfamat dari sisa larutan pada proses rekristalisasi yakni etanol dan air. Proses pemisahan berlangsung pada suhu 30°C dan tekanan 1 atm. Produk keluaran *centrifuge* selanjutnya dilakukan pengeringan menggunakan *dryer* untuk menguapkan sisa etanol dan air sehingga menghasilkan asam sulfamat dengan kemurnian yang lebih tinggi.

Proses pengeringan dilakukan pada suhu 100°C dan tekanan 1 atm. Setelah proses pengeringan , produk asam sulfamat kemudian dialirkan menuju Silo menggunakan *Belt Conveyor* dan *Belt Elevator*. Ketika asam sulfamate dialirkan menuju silo, suhu asam sulfamate akan berkurang dengan sendirinya.

3.3 Spesifikasi Alat

3.3.1 Spesifikasi Alat Utama

1. Reaktor (R-01)

Tabel 3.1 Spesifikasi Reaktor

Reaktor (R-01)		
Kode	R-01	
Fungsi	Mereaksikan Urea d	lengan Oleum untuk
	menghasilkan asam s	ulfamat
Jenis	Reactor Alir Tangki I	Berpengaduk (RATB)
Bahan Konstruksi	Stainless Steel 304	
	Kondisi Operasi	
Tekanan	1	atm
Suhu	80	°C
Konversi	90%	
Dimensi Alat		
Diameter Shell	1,677	m
Tinggi Shell	1,676	m
Volume Shell	3,69	m ³
Volume Head	0,214	m ³

Volume Reaktor	4,12	m^3
Tinggi Reaktor	2,35	m
Tinggi Head (OA)	0,337	m
Tebal Shell	0,002	m
Tebal Head	0,004	m
	Pengaduk	
Jenis Impeller	Flat-blade Turbin	
Diameter Pengaduk	0,555	m
Lebar Baffle	0,139	m
Kecepatan	121,92	m/menit
Pengadukan		
Power Pengadukan	1	HP
Jaket Pendingin	10,962	m^2
Harga	Rp 2.505.044.829	

3.3.2 Spesifikasi Alat Pemisah dan Unit Operasi Pendukung

1. Mixer (M-01)

Tabel 3.2 Spesifikasi Mixer

Mixer (M-01)		
Kode	M-01	
Fungsi	Mencampurkan padatan natrium sulfat dengan air	

Bahan Konstruksi	Stainless Steel 304			
	Kondisi Operasi			
Tekanan	1	atm		
Suhu	30	°C		
	Dimensi Alat			
Panjang	1,550	m		
Lebar	0,812	m		
Tinggi	1,015	m		
Power	4	kW		
Kecepatan Putar	66	rpm		
Pengaduk				
Harga	Rp 6.253.079.940	1		

2. Crystallizer 1 (CR-01)

Tabel 3.3 Spesifikasi Crystallizer 1

Crystallizer 1 (CR-01)		
Kode	CR-01	
Fungsi	Mengkristalkan Asam Sulfamat	
Tipe	Swenson Walker Crystallizer	
Bahan Konstruksi	Stainless Steel 304	
Kondisi Operasi		
Tekanan	1	atm

Suhu	30	°C
	Dimensi Alat	L
Diameter	1	m
Panjang	1,897	m
Volume	1,49	m ³
Tebal Jaket	0,055	m
Kecepatan Putar	5	rpm
Pengaduk		
Power	0,08	HP
Harga	Rp 1.692.907.008	1

3. Centrifuge 1 (CF-01)

Tabel 3.4 Spesifikasi Centifuge 1

Centrifuge 1 (CF-01)			
Kode	CF-01		
Fungsi	Memisahkan larutar	n dan padatan Asam	
	Sulfamat		
Tipe	Helical Conveyor Centrifuge		
Bahan Konstruksi	Stainless Steel 304		
Kondisi Operasi			
Tekanan	1	atm	
Suhu	30	°C	

Dimensi Alat		
Diameter Bowl	0,457	m
Panjang Bowl	1,372	m
Kecepatan Putar	3.500	rpm
Bowl		
Power Motor	50	НР
Penggerak Bowl		
Putaran Scroll	44	rpm
Conveyor		
Power Scroll	5	НР
Conveyor		
Diameter Kritis	297	mikron
Partikel Terpisah		
Harga	Rp 3.818.572.902	

4. Dissolving Tank (DT-01)

Tabel 3.5 Spesifikasi Dissolving Tank

Dissolving Tank (DT-01)		
Kode	DT-01	
Fungsi	Melarutkan Asam Sulfamat dalam Air	
Bahan Konstruksi	Stainless Steel 304	
Kondisi Operasi		
Tekanan	1	atm

Suhu	80	°C
	Dimensi Ala	t
Panjang	5,363	m
Lebar	2,45	m
Tinggi	3,07	m
Power	75	kW
Rotating Speed	17	rpm
Harga	Rp 602.430.87	72

5. Crystallizer 2 (CR-02)

Tabel 3.6 Spesifikasi Crystallizer 2

Crystallizer 2 (CR-02)			
Kode	CR-02		
Fungsi	Mengkristalk	kan Asam Sulfamat	
Tipe	Swenson Wa	lker Crystallizer	
Bahan Konstruksi	Stainless Steel 304		
Kondisi Operasi			
Tekanan	1	atm	
Suhu	30	°C	
Dimensi Alat			
Diameter	1	m	
Panjang	2,961	m	

Volume	2,324	m^3
Tebal Jaket	0,035	m
Kecepatan Putar	5	rpm
Pengaduk		
Power	0,25	HP
Harga	Rp 2.057.034.529	

6. Centrifuge 2 (CF-02)

Tabel 3.7 Spesifikasi Centrifuge 2

CF-02 Memisahkan kristal a	asam sulfamate			
	asam sulfamate			
Helical Conveyor Ce	entrifuge			
Stainless Steel 304				
Kondisi Operasi				
1 atm				
30	°C			
Dimensi Alat				
0,61	m			
1,83	m			
3.000 rpm				
Bowl				
	Stainless Steel 304 Kondisi Operasi 1 30 Dimensi Alat 0,61 1,83			

Power	Motor	125	HP
Penggerak Bo	wl		
Putaran	Scroll	38	rpm
Conveyor			
Power	Scroll	15	HP
Conveyor			
Diameter	Kritis	297	mikron
Partikel Terpi	sah		
Harga		Rp 4.874.733.355	'

7. Rotary Dryer (RD-01)

Tabel 3.8 Spesifikasi Rotary Dryer

Rotary Dryer (RD-01)				
Kode	RD-01			
Fungsi	Mengeringkan	padatan deng	an	
	menggunakan uda	ra panas		
Tipe	Radial Flight	Radial Flight		
Bahan Konstruksi	Stainless Steel 304			
	Kondisi Operasi			
Tekanan	1	atm		
Suhu	100 °C			
Dimensi Alat				
Diameter	3,690	m		

Panjang	35,414	m
Kemiringan	4	cm/m
Kecepatan Putar	1,3	rpm
Waktu Tinggal	31	menit
Daya Motor	5	HP
Harga	Rp 1.650.965.618	

3.3.3 Spesifikasi Alat Penyimpanan Bahan

1. Silo

Tabel 3.9 Spesifikasi Silo

Kode	S-01	S-02	S-03
	Menyimpan	Menyimpan	Menyimpan
	Bahan Baku	Bahan Baku	Produk
	Urea pada suhu	Natrium	berupa Asam
Fungsi	30 °C dan	Sulfat pada	Sulfamat pada
	tekanan 1 atm.	suhu 30 °C	suhu 30 °C
		dan tekanan 1	dan tekanan 1
		atm.	atm.
	Silinder tegak	Silinder tegak	Silinder tegak
	dengan tutup	dengan tutup	dengan tutup
Jenis Tangki	datar dan alas	datar dan alas	datar dan alas
	berbentuk	berbentuk	berbentuk
	kerucut	kerucut	kerucut
Ionia Dahan	Stainless Steel	Stainless Steel	Stainless Steel
Jenis Bahan	304	304	304
Kondisi			
Tekanan	1 atm	1 atm	1 atm

Temperatur	30 °C	30 °C	30 °C
	Dimensi (Operasi	
Diameter	3,88 m	1,68 m	5,09 m
Tinggi	9,70 m	4,22 m	17,74 m
Tebal	0,01 m	0,01 m	0,01 m
Volume	94,04 m ³	$7,7479 \text{ m}^3$	213,29 m ³
Tangki			
Waktu	7 Hari	7 Hari	7 Hari
Penyimpan			
Kapasitas	144.196 Kg	17.304 Kg	382.149 Kg
Jumlah	1 Unit	1 Unit	1 Unit
Harga	Rp	Rp	Rp
	2.827.230.960	436.571.739	436.571.739

2. Tangki

Tabel 3.10 Spesifikasi Tangki Penyimpanan

Kode	T-01	T-03	T-02
Fungsi	Menyimpan	Menyimpan	Menyimpan
	Bahan Baku	Bahan Baku	bahan baku
	Oleum pada	Air pada suhu	berupa Etanol
	suhu 30°C	30 °C dan	pada suhu 30
	dan tekanan 1	tekanan 1 atm	°C dan tekanan
	atm selama 7	selama 7 hari	1 atm selama 7
	hari.		hari
Jenis	Tangki	Tangki	Tangki
	Silinder tegak	Silinder tegak	Silinder tegak
	dengan flat	dengan flat	dengan flat
	bottomed dan	bottomed dan	bottomed dan
	torispherical	torispherical	torispherical

Bahan	Stainless	Stainless Steel	Stainless Steel
Konstruksi	Steel 304	304	304
Kapasitas	427.781 Kg	148.210 Kg	115.356 Kg
Jumlah	1	1	1
Diameter	48,77 m	3,048 m	42,672 m
Tinggi	18,28 m	3,66 m	18,288 m
Harga	Rp	Rp	Rp
	3.115.101.40	303.121.862	2.773.851.010
	9		

3.3.4 Spesifikasi Alat Transportasi Bahan

1. Pompa

Tabel 3.11 Spesifikasi Pompa

Parameter	P-01	P-02	P-03
Fungsi	Memompa	Memompa	Memompa
	Oleum dari	produk	Natrium sulfat
	Tangki-01	keluaran R-	dari M-01
	menuju	01	menuju R-01
	Reaktor-01		
Jenis	Centrifugal	Centrifugal	Centrifugal
	Pump	Pump	Pump
Bahan	Stainless Steel	Stainless	Stainless Steel
Konstruksi	304	Steel 304	304
Viskositas	3,065	0,899	0,712
(cP)			
Kapasitas	1,311	0,939	0,010
(m ³ /Jam)			

Total Head	0,8845	0,8083	1,4910
(m)			
Daya Motor	0,5	0,5	0,5
(HP)			
Harga	Rp 89.602.060	Rp	Rp 89.602.060
(Rupiah)		108.666.328	

2. Pompa

Tabel 3.12 Spesifikasi Pompa

Parameter	P-04	P-05	P-06
Fungsi	Memompa	Memompa	Memompa
	slurry dari CR-	produk	Slurry dari
	01 menuju CF-	keluaran atas	DT-01 ke CR-
	01	CF-01	02
		menuju UPL	
Jenis	Centrifugal	Centrifugal	Centrifugal
	Pump	Pump	Pump
Bahan	Stainless Steel	Stainless	Stainless Steel
Konstruksi	304	Steel 304	304
Viskositas	0,406	1,052	0,619
(cP)			
Kapasitas	0,141	0,017	2,555
(m ³ /Jam)			
Total Head	1,5137	1,4913	2,211
(m)			
Daya Motor	0,5	0,5	0,5
(HP)			
Harga	Rp 61.005.657	Rp	Rp 89.602.060
(Rupiah)		61.005.657	

3. Pompa

Tabel 3.13 Spesifikasi Pompa

Parameter	P-07	P-08	P-09
Fungsi	Memompa etanol dari Tangki menuju CR-02	Memompa Slurry dari CR-02 Menuju CF- 02	Memompa keluaran CF- 02 menuju UPL
Jenis	Centrifugal Pump	Centrifugal Pump	Centrifugal Pump
Bahan	Stainless Steel	Stainless	Stainless Steel
Konstruksi	304	Steel 304	304
Viskositas (cP)	0,437	0,608	0,762
Kapasitas (m³/Jam)	0,003	0,547	0,339
Total Head (m)	0,695	1,525	1,5041
Daya Motor (HP)	0,5	1	1
Harga (Rupiah)	Rp 61.005.657	Rp 89.602.060	Rp 89.602.060

4. Belt Conveyor

Tabel 3.14 Spesifikasi Belt Conveyor

Parameter	BC-01	BC-02	BC-03	

Fungsi	Mengangkut padatan urea dari S-01 menuju R-01	Mengangkut padatan Natrium Sulfat dari S-02 menuju M-01	Mengangkut padatan asam sulfamate dari CF-02 menuju RD-01
Jenis	Belt Conveyor	Belt Conveyor	Belt Conveyor
Bahan Konstruksi	Carbon Steel	Carbon Steel	Carbon Steel
Kapasitas (Ton/Jam)	32	32	32
Panjang (m)	3,05	3,05	3,05
Lebar (m)	0,35	0,35	0,35
Kecepatan (m/min)	30,5	30,5	30,5
Daya (HP)	0,34	0,34	0,34
Jumlah Bucket	1	1	1
Harga (Rupiah)	Rp 102.947.047	Rp 102.947.047	Rp 102.947.047

5. Belt Conveyor

Tabel 3.15 Spesifikasi Belt Conveyor

Paramete r	BC-04	BC-05	BC-06	BC-07
Fungsi	Mengangk ut padatan	Mengangk ut padatan	Mengangk ut padatan	Mengangk ut padatan

	asam	produk	urea dari	Natrium
	sulfamate	dari CF-01	S-01	Sulfat dari
	dari RD-01	menuju	menuju R-	S-02
	menuju S-	DT-01	01	menuju M-
	03			01
.	Belt	Belt	Belt	Belt
Jenis	Conveyor	Conveyor	Conveyor	Conveyor
Bahan	Carbon	Carbon	Carbon	Carbon
Konstruks i	Steel	Steel	Steel	Steel
Kapasitas				
(Ton/Jam	32	32	32	32
)				
Lebar (m)	0,35	0,35	0,35	0,35
Kecepata	30,5	30,5	30,5	30,5
n (m/min)				
Daya	0,34	0,34	0,34	0,34
(HP)	0,51	0,51	0,51	0,51
Jumlah	1	1	1	1
Bucket	1	1	1	1
Harga	Rp	Rp	Rp	Rp
	102.947.04	102.947.04	102.947.04	102.947.04
(Rupiah)	7	7	7	7

6. Belt Elevator

Tabel 3.16 Spesifikasi Belt Elevator

Parameter	BE-01	BE-02	BE-03
Fungsi	Mengangkut urea menuju S- 01	Mengangkut natrium sulfat menuju S-02	Mengangkut produk asam sulfamate menuju S-03
Jenis	Centrifugal Discharge Bucket	Centrifugal Discharge Bucket	Centrifugal Discharge Bucket
Bahan Konstruksi	Carbon Steel	Carbon Steel	Carbon Steel
Kapasitas (Ton/Jam)	14	14	14
Panjang Elevator (m)	0,1524	0,1524	0,1524
Lebar Elevator (m)	0,1016	0,1016	0,1016
Tinggi Elevator (m)	0,108	0,108	0,108
Bucket Spacing (m)	12	12	12
Kecepatan (ft/menit)	225	225	225
Power Motorr (HP)	1	1	1
Harga (Rupiah)	Rp 104.853.474	Rp 104.853.474	Rp 104.853.474

7. Blower

Tabel 3.17 Spesifikasi Blower

Kode	BL-01	BL-02
Fungsi	Menghisap udara untuk diumpankan ke dalam rotary dryer	Mengeluarkan udara dari rotary dryer
Jenis	Centrifugal blower	Centrifugal blower
Jumlah	1	1
Laju Udara (ft³/min)	2.403,21	2.403,21
Tekanan (Psia)	3,5	3,5
Power	1	1
Harga (Rupiah)	Rp 125.824.169	Rp 125.824.169

3.3.5 Spesifikasi Alat Penukar Panas

1. Heater 1 (HE-01)

Tabel 3.18 Spesifikasi *Heater* 1

	Heater 1 (HE-01)	
Kode	HE-01	
Fungsi	Memanaskan Oleum sebelum masuk	
	kedalam R-01	
Jenis	Shell and Tube	
Bahan Konstruksi	Stainless Steel 304	
Luas Transfer Panas	140,86 ft ²	
	Shell Side	

ID	13,25	in
Jarak Baffle	13,22	in
Passes	1	
	Tube Side	
Nt	127	
L	6	ft
OD	0,75	in
BWG	14	
Passes	1	
Rd terhitung	2,23	
Harga	Rp 240.209.778	

2. Heater 2 (HE-02)

Tabel 3.19 Spesifikasi *Heater* 2

Heater 2 (HE-02)			
Kode	HE-02		
Fungsi	Memanaskan air	sebelum masuk	
	kedalam DT-01		
Jenis	Shell and Tube		
Bahan Konstruksi	Stainless Steel 304		
Luas Transfer Panas	263,033	ft ²	
Shell Side			

ID	17,25	in
Jarak Baffle	17,25	in
Passes	1	
	Tube Side	
Nt	224	
L	8	ft
OD	0,75	in
BWG	14	
Passes	2	
Rd terhitung	0,3834	
Harga	Rp 602.430.872	

3. Heater 3 (HE-03)

Tabel 3.20 Spesifikasi *Heater* 3

Heater 3 (HE-03)		
Kode	HE-03	
Fungsi	Memanaskan udara	sebelum masuk
	kedalam RD-01	
Jenis	Double Pipe	
Bahan Konstruksi	Stainless Steel 304	
Luas Transfer Panas	11,146	ft ²
Jumlah Hairpin	2	

Panjang Pipa	12	ft	
	Annulus	-	
IPS	2	in	
SN	40		
OD	2,38	in	
ID	2,067	in	
	Inner Pipe		
IPS	1,25		
SN	40	ft	
OD	1,66	in	
ID	1,38	1	
Rd terhitung	1,45		
Harga	Rp 28.596.402		

3.4 Neraca Massa

3.4.1 Neraca Massa Total

Tabel 3.21 Neraca Massa Total

Komponen	Masuk (Kg/Jam)	Keluar (Kg/Jam)
$CO(NH_2)_2$	845,43	72,95
C2H5N3O2	12,88	12,88
$H_2S_2O_7$	2.546,32	254,63
$2NH_3SO_{3(aq)}$		222,55
$2NH_3SO_{3(s)}$		2.275,13

CO_2		566,48
Na_2SO_4	101,25	101,25
$MgSO_4$	0,20	0,20
H ₂ O	8.860,20	8.860,20
C_2H_5OH	676,34	676,34
Udara	208,16	208,16
Total	13.250,79	13.250,79

3.4.2 Neraca Massa Per Alat

1. Reaktor

Tabel 3.22 Neraca Massa Reaktor (R-01)

Komponen	Masuk (Kg/Jam)		Keluar (Kg/Jam)	
Komponen	Arus 1	Arus 2	Arus 3	Arus 4
$CO(NH_2)_2$	845,43			72,95
$C_2H_5N_3O_2$	12,88			12,88
$H_2S_2O_7$		2.546,32		254,63
$2NH_3SO_{3(aq)}$				2.497,68
$2NH_3SO_{3(s)}$				
CO_2			566,48	
Na_2SO_4				
$MgSO_4$				
H_2O				
C_2H_5OH				
Udara				
Total	3.40	4,63	3.40	4,63

2. Mixer

Tabel 3.23 Neraca Massa Mixer (M-01)

Komponen	Masuk (l	Keluar (Kg/Jam)	
	Arus 8	Arus 9	Arus 5
$CO(NH_2)_2$			
$C_2H_5N_3O_2$			
$H_2S_2O_7$			
$2NH_3SO_{3(aq)}$			
$2NH_3SO_{3(s)}$			
CO ₂			
Na_2SO_4		101,25	101,25
$MgSO_4$			0,20
H ₂ O	913,27		913,27
C_2H_5OH			
Udara			
Total	1.01	4,72	1.014,72

3. Crystallizer 1

Tabel 3.24 Neraca Massa Crystallizer (CR-01)

Komponen	Masuk (Kg/Jam)		Keluar (Kg/Jam)
	Arus 4	Arus 5	Arus 6
$CO(NH_2)_2$	72,95		72,95
$C_2H_5N_3O_2$	12,88		12,88
$H_2S_2O_7$	254,63		254,63
$2NH_3SO_{3(aq)}$	2.497,68		124,88
$2NH_3SO_{3(s)}$			2.372,80
CO_2			

Na_2SO_4		101,25	101,25
$MgSO_4$		0,20	0,20
H ₂ O		913,27	913,27
C_2H_5OH			
Udara			
Total	3.852,86		3.852,86

4. Centrifuge 1

Tabel 3.25 Neraca Massa Centrifuge 1 (CF-01)

Komponen	Masuk (Kg/Jam)	Keluar (Kg/Jam)		
	Arus 6	Arus 10	Arus 11	
$CO(NH_2)_2$	72,95	60,05	12,90	
$C_2H_5N_3O_2$	12,88	12,88		
$H_2S_2O_7$	254,63	209,61	45,02	
$2NH_3SO_{3(aq)}$	124,88	102,80	22,08	
$2NH_3SO_{3(s)}$	2.372,80		2.372,80	
CO_2				
Na_2SO_4	101,25	83,35	17,90	
$MgSO_4$	0,20	0,20		
H ₂ O	913,27	751,81	161,46	
C_2H_5OH				
Udara				
Total	3.852,86	3.85	3,86	

5. Dissolving Tank

Tabel 3.26 Neraca Massa Dissolving Tank (DT-01)

Komponen	Masuk (Keluar (Kg/Jam)	
	Arus 11	Arus 12	Arus 13
$CO(NH_2)_2$	12,90		12,90
$H_2S_2O_7$	45,02		44,02
$2NH_3SO_{3(aq)}$	22,08		2.394,88
$2NH_3SO_{3(s)}$	2.372,80		
CO_2			
Na_2SO_4	17,90		17,90
H_2O	161,46	7.896,46	8.057,93
C_2H_5OH			
Udara			
Total	10.52	28,62	10.528,62

6. Crystallizer 2

Tabel 3.27 Neraca Massa Crystallizer 2 (CR-02)

Komponen	Masuk (Kg/Jam)		Keluar (Kg/Jam)
	Arus 13	Arus 14	Arus 15
$CO(NH_2)_2$	12,90		12,90
$H_2S_2O_7$	45,02		45,02
$2NH_3SO_{3(aq)}$	2.394,88		119,74
$2NH_3SO_{3(s)}$			2.275,13
CO_2			
Na_2SO_4	17,90		17,90
H_2O	8.057,93	33,82	8.091,74
C_2H_5OH		676,34	676,34
Udara			

Total	11.238,78	11.238,78

7. Centrifuge 2

Tabel 3.28 Neraca Massa Centrifuge 2 (CF-02)

Komponen	Masuk (Kg/Jam)	Keluar (Kg/Jam)
	Arus 15	Arus 16	Arus 17
$CO(NH_2)_2$	12,90	12,57	0,33
$H_2S_2O_7$	45,02	43,86	1,16
$2NH_3SO_{3(aq)}$	119,74	119,64	0,10
$2NH_3SO_{3(s)}$	2.275,13		2.275,13
CO_2			
Na_2SO_4	17,90	17,44	0,46
H ₂ O	8.091,74	7.883,58	208,16
C_2H_5OH	676,34	658,95	17,40
Udara			
Total	11.238,78	11.23	38,78

8. Rotary Dryer

Tabel 3.29 Neraca Massa Rotary Dryer (RD-01)

Komponen	Masuk (Kg/Jam)		Keluar (Kg/Jam)	
Komponen	Arus 17	Arus 18	Arus 19	Arus 20
$CO(NH_2)_2$	0,33			0,33
$H_2S_2O_7$	1,16			1,16
$2NH_3SO_{3(aq)}$	0,10			0,10
$2NH_3SO_{3(s)}$	2.275,13			2.275,13
<i>CO</i> ₂				

Na_2SO_4	0,46			0,46
H_2O	208,16	16,65	203,89	20,92
C_2H_5OH	17,40		17,40	
Udara		208,16	208,16	
Total	2.72	7,56	2.72	7,56

3.5 Neraca Panas

3.5.1 Reaktor

Tabel 3.30 Neraca Panas Reaktor (R-01)

Komponen	Input (kJ/Jam)	Output (kJ/Jam)
Q Komponen	13.883,728	144.599,587
ΔH_R	858	-
Total	14.741,792	14.741,792

3.5.2 Crystallizer 1

Tabel 3.31 Neraca Panas Crystallizer 1 (CR-01)

Komponen	Input (kJ/Jam)	Output (kJ/Jam)
Q Komponen	209.275,27	238.116,95
ΔH_R	29.957,02	1.015,34
Total	239.132,29	239.132,29

3.5.3 Dissolving Tank

Tabel 3.32 Neraca Panas Dissolving Tank (DT-01)

Komponen	Input (kJ/Jam)	Output (kJ/Jam)

Q Komponen	501.446,3315	68.618,1783
ΔH_R	-	432.828,1531
Total	501.446,3315	501.446,3315

3.5.4 Crystallizer 2

Tabel 3.33 Neraca Panas Crystallizer 2 (CR-02)

Komponen	Input (kJ/Jam)	Output (kJ/Jam)
Q Komponen	816.338,85	919.453,61
Q Air	147.306,80	44.192,04
Total	963.645,65	963.645,65

3.5.5 Rotary Dryer

Tabel 3.34 Neraca Panas Rotary Dryer (RD-01)

Komponen	Input (kJ/Jam)	Output (kJ/Jam)
Q In	4,043E-01	-
Q Out	-	2,83E+10
Q Pemanas	5,05E+06	2,49E+06
Panas Hilang	-	2,83E+10
Total	5,05E+06	5,05E+06

3.5.6 Heater 1

Tabel 3.35 Neraca Panas *Heater* 1 (HE-01)

Komponen	Input (kJ/Jam)	Output (kJ/Jam)
Q In	1.967.446,2888	-
Q Out	-	23.549.606,9266
Q Pemanas	21.582.160,6378	-
Total	23.549.606,9266	23.549.606,9266

3.5.7 Heater 2

Tabel 3.36 Neraca Panas *Heater* 2 (HE-02)

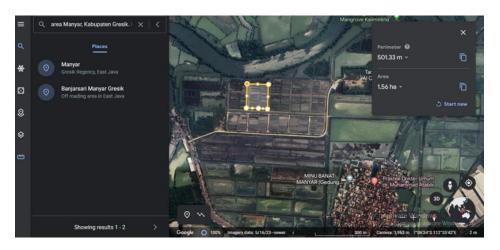
Komponen	Input (kJ/Jam)	Output (kJ/Jam)
Q In	10.476.104,3481	-
Q Out	-	20.688.089,4355
Q Pemanas	10.211.985,0874	-
Total	20.688.089,4355	20.688.089,4355

3.5.8 Heater 3

Tabel 3.37 Neraca Panas *Heater* 3 (HE-03)

Komponen	Input (kJ/Jam)	Output (kJ/Jam)
Q In	2,01E+03	-
Q Out	-	1,49E+04
Q Pemanas	1,29E+04	-
Total	1,49E+04	1,49E+04

BAB IV


PERANCANGAN PABRIK

4.1 Lokasi Pabrik

Lokasi pabrik merupakan faktor yang sangat penting dalam merencanakan suatu pabrik. Lokasi pabrik yang tepat dan strategis dapat menjadi faktor keberhasilan produksi dari suatu pabrik untuk masa yang akan dating. Menentukan lokasi pabrik memerlukan beberapa faktor yang menjadi bahan pertimbangan. Faktor proses produksi, pemasaran, perjalanan bahan baku dan keamanan dalam proses merupakan faktor-faktor yang mempengaruhi dalam penentuan lokasi suatu pabrik. Pemilihan tempat pabrik berdiri dapat dibagi menjadi berdasarkan alasan utama pemilihan yaitu pasar, sumber bahan, pengadaan, transportasi, ketersediaan tenaga kerja, iklim dan kebijakan dari pemerintah daerah, kedekatan dengan pelanggan, ketersediaan infrastruktur, ketersediaan tenaga kerja dan sistem pengupahan, serta air yang akan digunakan dan limbah indsutri (Maulana, 2018).

Pabrik asam sulfamat direncanakan akan berdiri di area Manyar, Kabupaten Gresik. Provinsi Jawa Timur yang didasarkan pada beberapa faktor yang telah disebutkan sebelumnya. Faktor umum yang dijadikan dasar dalam menentukan lokasi pabrik di Kabupaten Gresik dikarenakan terdapat wilayah industri yang berkenaan langsung dengan *Java Integrated Industrial Part Estate* (UPE) Selain itu, keberadaan pabrik penyuplai bahan baku pabrik asam sulfamat yang akan didirikan seperti urea dan etanol

terletak di Provinsi Jawa Timur sehingga dekat dengan pabrik. Lokasi pendirian pabrik asam salfamat ini ditentukan berdasarkan pada Peta Rencana Tata Ruang Wilayah (RTRW) Kabupaten Gresik Tahun 2010-2030 yang secara faktual dapat dilihat pada Gambar 4.1 berikut.

Gambar 4.1 Lokasi Pabrik

Berdasarkan Gambar di atas, terdapat tata ruang untuk wilayah industri (ditandai dengan warna kuning) dan disediakan oleh Pemerintah Daerah Kabupaten Gresik sebagai daerah strategis pengembangan industri. Daerah tersebut terletak di Kecamatan Manyar, Kabupaten Gresik, Jawa Timur.

Pada Peta dapat dilihat bahwa terdapat aliran sungai di dekat lokasi pabrik sehingga dapat dimanfaatkan sebagai penyedia utilitas, Kecamatan Manyar sangat dekat dengan aliran sungai Bengawan Solo yang dapat digunakan sebagai penyedia utilitas pabrik serta dekat dengan Pelabuhan Internasional JIIPE yang merupakan Pelabuhan Internasional di Gresik.

Adanya Pelabuhan Internasional dapat memudahkan aktivitas impor bahan baku dan ekspor produk melalui transportasi laut. Sehingga, Kabupaten Gresik dipilih sebagai lokasi pabrik asam sulfamat yang akan didirikan. Berikut beberapa factor penentuan lokasi pabrik :

4.1.1 Ketersediaan Bahan Baku

- Lokasi pabrik dipilih berdasarkan pertimbangan kedekatan dengan lokasi beberapa bahan baku yang digunakan. Hal ini bertujuan untuk mengurangi resiko kerusakan pada bahan baku, mengurangi adanya penyusutan berat dan volume bahan baku akibat menempuh jarak yang cukup jauh dari lokasi pabrik, mencegah penurunan kualitas dan kuantitas bahan baku, serta mengurangi biaya transportasi bahan kebutuhan.
- 2. Bahan kebutuhan pembuatan asam sulfamat beberapa dapat didapatkan di Indonesia seperti bahan urea didapatkan dari PT Petrokimia Gresik yang berlokasi di Jawa Timur. Oleum diperoleh dari PT Indonesian Acids Industry Ltd. Etanol diperoleh dan PT Energi Agro Nusantara yang berlokasi di Mojokerto, serta untuk senyawa Natrium Sulfat dengan kemurnian 99.9% diperoleh dengan sistem impor dari Zheng Zhou Clean Chemical Co. Ltd menuju Pelabuhan Internasional JIIPE.

4.1.2 Transportasi dan Pemasaran

 Lokasi pabrik sebaiknya dekat dengan penyedia bahan baku dan juga memungkinkan adanya pemasaran produk sehingga dapat memperkecil biaya transportasi. Pabrik juga sebaiknya dekat dengan Pelabuhan internasional untuk memudahkan pengiriman bahan dari dan ke luar negeri. Lokasi pabrik dipilih di daerah Kabupaten Gresik karena mempunyai sarana transportasi darat yang memadai yaitu jalan utama Surabaya-Tanjung Perak yang menghubungkan Tanjung Perak sebagai gerbang penghubung Pulau Jawa dengan pula lainnya. Sehingga, mempermudah transportasi bahan baku menuju pabrik dan distribusi produk ke pasaran.

- Adanya Pelabuhan Intermasional JIIPE yang dekat dengan lokasi pabrik juga memudahkan aktivitas transportasi laut nasional dan internasional.
- 3. Sebagian besar industri di Indonesia terletak di Indonesia bagian barat dan Pulau Jawa. Kabupaten Gresik merupakan daerah yang padat dengan industri kimia lain baik menengah maupun besar yang merupakan daerah pasar bagi asam sulfamat. Pabrik asam sulfamat yang akan dibangun merupakan pabrik yang ditujukan untuk memenuhi kebutuhan dalam negeri. Sehingga potensi pemasaran di daerah Gresik sudah sangat baik.

4.1.3 Utilitas

- Ketersediaan utilitas untuk kebutuhan pabrik asam sulfamat dipenuhi dengan adanya sumber air yang berasal dari sungai Bengawan Solo dan terdapat sejumlah waduk di daerah Kabupaten Gresik.
- Daerah Gresik merupakan kawasan industri yang terdapat sumber penyedia sumber bahan bakar seperti Diesel yang berasal dari PT.

Pertamina di Kabupaten Gresik. Sedangkan tenaga listrik diperoleh dari Generator yang menghasilkan listrik menggunakan steam.

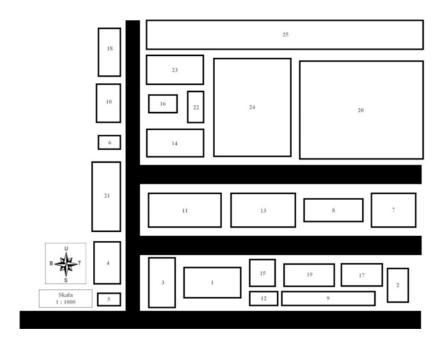
4.1.4 Tenaga Kerja

- 1. Ketersediaan tenaga kerja di sekitar pabrik cukup baik karena lokasi pabrik yang terletak tidak jauh dari pemukiman penduduk.
- 2. Kabupaten Gresik merupakan daerah dengan penyediaan tenaga kerja produktif dan terdidik yang besar. Hal ini dibuktikan dengan catatan kependudukan oleh Badan Pusat Statistika (BPS) dimana jumlah penduduk dengan usia produktif di Kabupaten Gresik Tahun 2020 sebesar 932.673 jiwa dan penduduk pencari kerja sebesar 36.390 jiwa.
- 3. Tenaga Pekerja yang dipilih untuk bekerja di pabrik Asam Sulfamat adalah tenaga yang terampil dan buruh di lapangan. Pekerja terampil dan terdidik direkrut melalui jalur kerjasama sesama industri. Selain itu juga dilakukan rekrut terhadap tenaga terdidik dan terampil dari perguruan tinggi dengan jurusan yang sesuai dengan bidangnya masing-masing. Tenaga kerja lapangan dipilih dari pembukaan lowongan bagi penduduk usia produktif yang bersedia ditempatkan pada bidang yang dibutuhkan.

4.1.5 Geografis dan Iklim

Kabupaten Gresik merupakan pusat kawasan industri dan sekaligus sebagai pusat kegiatan perdagangan hasil industri di Jawa Timur. Terletak di sebelah Barat Laut Surabaya dengan Panjang pantai 140 km². Luas wilayah Kabupaten Gresik adalah sebesar 1.191,25 km² atau 119,12 Ha. Secara Geografis, kabupaten gresik merupakan dataran rendah dengan ketinggian 2-12 meter di atas permukaan air laut dari permukaan laut. Kabupaten Gresik mempunyai daerah pesisir pantai hampir sepertiga dari wilayahnya yang berpotensi untuk kegiatan kepelabuhanan. Keberadaan pelabuhan mendukung akses penyediaan bahan baku dan pemasaran produk industri di Kabupaten Gresik (BAPPEDA Jatim, 2021).

 Iklim Kabupaten Gresik termasuk tropis dengan temperatur rata-rata 28,50°C dan kelembaban udara rata-rata 75%. Curah hujan relatif rendah. yaitu rata-rata 2.24 mm per tahun sehingga hal ini dapat mempengaruhi keberhasilan proses dan kualitas hasil operasi (BAPPEDA Jatim. 2021).


4.1.6 Pembuangan Limbah

Limbah yang dihasilkan oleh pabrik asam sulfamate berupa limbah gas CO: yang berasal dari proses sintesa pada reaktor yang digunakan. Pembuangan limbah pabrik asam sulfamat terlebih dahulu diolah pada unit pengolahan limbah (UPL) sehingga dapat memenuhi standar AMDAL. Pembuangan limbah tersebut direncanakan berada di daerah yang jauh dari pemukiman penduduk dan lahan produktif.

2. Tata Letak Pabrik (Plant Layout)

Perancangan tata letak pabrik asam sulfamat yang akan didirikan disusun dengan mempertimbangkan beberapa hal sebagai berikut:

- Perancangan tata letak pabrik terhadap bangunan dan jalan di sekitarnya perlu diberikan jarak secara leluasa sehingga mengurangi dampak buruk apabila terjadi kecelakaan dalam proses kerja dan tentunya mengurangi resiko kecelakaan itu sendiri.
- 2. Tata letak dibuat seefisien mungkin dan memberikan area perluasan untuk perkembangan pabrik di masa yang akan datang.
- 3. Fasilitas penunjang diempatkan sesuai kebutuhan dan estetika.
- 4. Fasilitas umum menyesuaikan dengan kebutuhan dari pabrik yang berproses serta memperhatikan keamanan dan kenyamanan karyawan.

Gambar 4.2 Tata Letak Pabrik

Keterangan

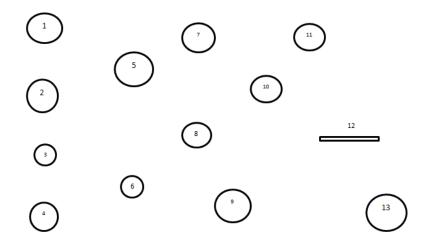
1. Kantor Utama	14. Poliklinik
2. Kantor Keamanan	15. Masjid
3. Tempat Parkir	16. Bengkel
4. Laboratorium	17. Kantor Teknisi
5. Pos Keamanan 1	18. Gedung Peralatan
6. Pos Keamanan 2	19. Kantor K3
7. Gedung Serbaguna	20. Utilitas
8. Taman 1	21. Pemadam Kebakaran
9. Taman 2	22. Ruang Kontrol
10. Quality Control	23. Penyimpanan Produk
11. Tempat Parkir 2 (Karyawan)	24. Area Proses
12. Perpustakaan	25. Daerah Perluasan
13. Kantin dan Koperasi	

Sedangkan luas tanah area pabrik yang akan didirikan membutuhkan sejumlah area tanah sebesar 1,5 Ha dimana rincian luas area sebagai berikut:

Tabel 4.1 Luas Bangunan dan Tanah

No.	Lokasi	Panjang (m)	Lebar (m)	Luas (m ²)
	Kantor			
1		20	25	500
	Utama			
	Kantor			
2		15	20	300
	Keamanan			

3	Tempat	12	20	240	
	Parkir 1				
4	Laboratorium	16	9	144	
5	Pos	5	5	25	
	Keamanan 1 Pos				
6		5	5	25	
	Keamanan 2				
7	Gedung	30	20	600	
	Serbaguna				
8	Taman 1	40	8	320	
9	Taman 2	60	2	120	
10	Quality	15	10	150	
	Control				
11	Tempat	30	10	300	
	Parkir 2				
12	Perpustakaan	15	12	180	
13	Kantin dan	30	15	450	
	Koperasi				
14	Poliklinik	15	9	135	
15	Masjid	20	20	400	
16	Bengkel	9	10	90	
17	Kantor	15	8	120	
	Teknisi				


18	Gudang Peralatan	15	5	75
19	Kantor K3	18	8	144
20	Utilitas	64	64	4096
21	Pemadam Kebakaran	23	9	207
22	Ruang Kontrol	11	8	88
23	Penyimpanan Produk	15	18	270
24	Area Proses	47	59	2773
25	Area Perluasan	200	10	2000
Luas Bangunan		754	381	13744
Luas Tanah		132	115	15188

3. Tata Letak Mesin/Alat Proses (Machines Layout)

Tata letak alat proses atau *machines layout* merupakan pengaturan yang optimum terhadap alat-alat proses pabrik. Perancangan tata letak alat proses yang optimum dapat menguntungkan secara ekonomi karena dapat meminimalisir biaya konstruksi dan kegiatan operasional produksi dapat berjalan secara efisien. Selain itu, hal ini menjadi penting karena berkaitan

dengan keamanan, keselamatan dan kenyamanan karyawan selama bekerja.

Beberapa hal yang menjadi pertimbangan dalam mengatur tata letak alat proses sebagai berikut:

Gambar 4.3 Tata Letak Alat Proses

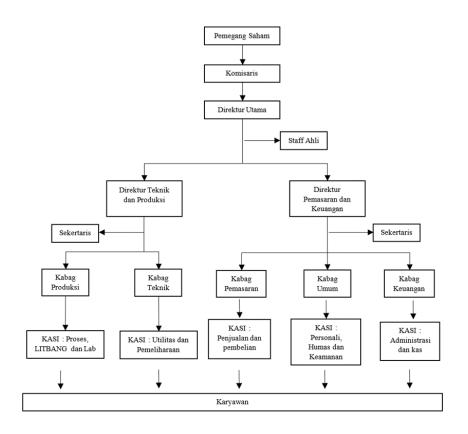
Keterangan:

- 1. T-01 = Tangki
- 2. S-01 = Silo
- 3. S-02 = Silo
- 4. T-02 = Tangki
- 5. R-01 = Reaktor
- 6. M-01 = Mixer
- 7. CR-01 = Cristallizer
- 8. DT-01 = Dissolvingtank
- 9. CR-02 = Cristallizer
- 10. CF-01 = Centrifuge
- 11. CF-02 = Centrifuge

12. RD-01 = Rotary Dryer

13. S-03 = Silo

4. Organisasi Perusahaan


4.4.1 Struktur Organisasi

Untuk menjalankan aktivitas di perusahaan yang efektif dan efisien, diperlukan struktur organisasi. Struktur organisasi yang jelas dan sistematis sangat diperlukan di perusahaan agar karyawan dapat memahami posisi masing-masing. Setiap perusahaan bisa saja memiliki struktur organisasi yang berbeda, tergantung pada kebutuhan masing-masing.

Pada pabrik asam sulfamat ini mempunyai struktur organisasi yang dapat dipilih adalah sistem line dan staff. Kelebihan dalam sistem ini adalah garis tujuh puluh delapan kekuasaan lebih sederhana dan praktis. Dan dalam pembagian tugas, seperti mendapat sistem organisasi fungsional, dimana seorang karyawan bertanggung jawab di atasan saja. Dan dalam menjalankan organisasi, ada dua kelompok yang mempengaruhi sistem, yakni:

- Sebagai garis adalah orang yang melakukan tugas pokok organisasi untuk mencapai tujuan.
- Sebagai staf adalah orang yang melakukan tugas sesuai dengan keahlian di bidangnya dan mempunyai peran untuk memberikan saran kepada unit operasional.

Untuk menjalankan tugas dan wewenangnya, para pemegang saham yang memiliki perusahaan diwakilkan oleh Dewan Komisaris, sedangkan tugas menjalankan perusahaan dilakukan oleh Direktur Utama yang dibantu oleh beberapa Direktur dibawahnya. Dewan komisaris ataupun Direktur Utama dipilih oleh para pemegang saham dalam Rapat Umum Pemegang Saham (RUPS) yang mempunyai kekuasaan tertinggi didalam perusahaan. Berikut gambar yang menunjukkan struktur organisasi perusahaan:

Gambar 4.4 Struktur Organisasi

4.4.2 Tugas dan Wewenang

1. Pemegang Saham

Pemegang saham adalah orang mengumpulkan modal untuk perusahaan dan menjalankan operasi perusahaan tersebut. Kekuasaan tertinggi di perusahaan berbentuk Perseroan Terbatas adalah Rapat Umum Pemegang Saham (RUPS). Tugas dan wewenang RUPS adalah sebagai berikut:

- A. Mengangkat dan memberhentikan Dewan Komisaris.
- B. Mengangkat dan memberhentikan Direktur.
- C. Mengesahkan hasil usaha serta neraca perhitungan untung rugi tahunan dari perusahaan.

2. Dewan Komisaris

Dewan komisaris adalah pelaksana tugas sehari-hari dari pemegang saham dan mempunyai tanggung jawab terhadap pemilik saham. Tugas dan wewenang Dewan Komisaris:

- A. Menilai dan menyetujui rencana direksi tentang kebijakan umum, target perusahaan, alokasi sumber dana dan pengarahan pemasaran.
- B. Mengawasi tugas direktur.
- C. Membantu direktur dalam tugas yang penting.

3. Direktur Utama

Direksi Utama adalah pimpinan tertinggi di dalam suatu perusahaan dan mempunyai tanggung jawab terhadap proses perusahaan. Direktur Utama bertanggung jawab kepada Dewan Komisaris atas segala kebijakan dan tindakan yang telah diambil

sebagai pimpinan perusahaan. Tugas Direktur Utama sebagai berikut:

- A. Melaksanakan kebijakan perusahaan dan bertanggung jawab pekerjaan secara berkala atau di masa akhir pekerjaan pada pemegang saham.
- B. Menjaga kestabilan organisasi perusahaan dan membuat kelangsungan hubungan yang baik antara pemilik saham, pimpinan, karyawan, dan konsumen.
- C. Mengangkat dan memberhentikan Kepala Bagian dengan hasil persetujuan rapat pemegang saham.
- D. Mengkoordinir kerja sama antara bagian produksi (Direktur Produksi) dan bagian keuangan dan umum (Direktur Keuangan dan Umum).

Table 4.2 Tugas Direktur Utama

Posisi	Tugas
Direktur Teknik dan Produksi	Bertanggungjawab kepada
	Direktur Utama dalam bidang
	produksi, teknik, dan rekayasa
	produksi.
	Mengkoordinir, mengatur, dan
	mengawasi pelaksanaan

			pekerjaan kepala bagian yang menjadi bawahannya.
Direktur	Pemasaran	dan	Bertanggung jawab kepada
Keuangan			Direktur Utama dalam bidang
			pemasaran, keuangan, dan
			pelayanan umum.
			Mengkoordinir, mengatur, dan
			mengawasi pelaksanaan
			pekerjaan kepala bagian yang
			menjadi bawahannya.

4. Staff Ahli

Staf ahli terdiri dari tenaga ahli yang memiliki tugas untuk membantu Dewan Direksi dalam menjalankan tugasnya baik yang berhubungan dengan teknik maupun administrasi. Staf ahli mempunyai tanggung jawab terhadap Direktur Utama sesuai dengan bidang masing-masing. Tugas dan wewenang Staf Ahli sebagai berikut:

- A. Memberikan nasihat dan saran dalam merencanakan pengembangan perusahaan.
- B. Mengadakan evaluasi teknik dan ekonomi perusahaan.
- C. Memberikan saran dalam bidang hukum.

- D. Memperbaiki proses dari pabrik atau perencanaan alat dan pengembangan produksi.
- E. Mempertinggi efisiensi kerja.

5. Kepala Bagian

Kepala bagian mempunyai tugas sebagai mengkoordinir, mengatur, dan mengawasi pelaksanaan pekerjaan dalam lingkungan bagiannya sesuai dengan garis wewenang yang diberikan oleh pimpinan perusahaan. Kepala bagian dapat bertindak sebagai Staf Direktur. Kepala bagian mempunyai tanggung jawab kepada Direktur Utama. Kepala Bagian ada beberapa bagian sebagai berikut:

Tabel 4.3 Tugas Kepala Bagian

Posisi	Tugas
Kepala Bagian Produksi	Mengkoordinir, mengatur, dan
	mengawasi pelaksanaan
	pekerjaan dalam lingkungan
	bagiannya sesuai dengan garis
	wewenang yang diberikan oleh
	pimpinan perusahaan.
Kepala Bagian Teknik	Bertanggung jawab kepada
	Direktur Produksi dalam bidang
	peralatan dan utilitas,
	pemeliharaan, dan k3 serta

	mengkoordinir kepala- kepala
	seksi yang menjadi
	bawahannya.
Kepala Bagian Keuangan	Bertanggung jawab terhadap
	Direktur Keuangan dan Umum
	dalam pengelolaan keuangan,
	anggaran, administrasi
	perusahaan, dan pengeluaran
	sesuai dengan anggaran
	perusahaan.
Kepala Bagian Umum	Bertanggung jawab kepada
	direktur keuangan dan umum
	dalam mengatur hubungan
	antara perusahaan dengan
	karyawan maupun konsumen,
	serta menjaga keamanan baik
	internal dan eksternal yang
	berkaitan dengan perusahaan.

6. Kepala Seksi

Kepala Seksi adalah pekerjaan di dalam lingkungannya sesuai dengan bidang yang diatur oleh kepala bagian masing-masing agar dihasilkan hasil yang maksimal dan efektif selama berlangsungnya masa produksi. Setiap kepala seksi mempunyai tanggung jawab kepada bagian masing-masing sesuai dengan seksinya. Berdasarkan bidangnya, kepala seksi terdiri sebagai berikut:

- A. Kepala Seksi Proses
- B. Kepala Seksi Pengendalian
- C. Kepala Seksi Laboratorium
- D. Kepala Seksi Penelitian dan Pengembangan
- E. Kepala Seksi Utilitas
- F. Kepala Seksi Pemeliharaan
- G. Kepala Seksi Keselamatan, dan Kesehatan Kerja
- H. Kepala Seksi Administrasi
- I. Kepala Seksi Keuangan atau Anggaran
- J. Kepala Seksi Pembelian
- K. Kepala Seksi Hubungan Masyarakat
- L. Kepala Seksi Keamanan
- M. Kepala Seksi Personalia
- N. Kepala Seksi Pemasaran

4.4.3 Status Kerja Karyawan

Status kerja karyawan dibuat berbeda-beda tergantung pada status karyawan, kedudukan, tanggung jawab dan keahlian. Berikut golongan status kerja karyawan sebagai berikut :

- Karyawan Tetap : adalah yang diangkat dan diberhentikan dengan Surat Keputusan (SK) Direksi dan mendapatkan gaji bulanan sesuai dengan kedudukan, keahlian, dan masa kerja.
- Karyawan Harian : adalah yang diangkat dan diberhentikan tanpa
 Surat Keputusan (SK) Direksi dan mendapat upah harian yang dibayar tiap akhir pekan.
- 3. Karyawan Borongan : adalah yang digunakan oleh pabrik atau perusahaan bila diperlukan saja. Karyawan ini menerima sistem upah borongan untuk semua pekerjaan.

4.4.4 Pembagian Jam Kerja Karyawan

Pabrik Asam Sulfamat yang akan beroperasi 300 hari selama satu tahun dalam 24 jam per hari. Sisa hari tidak termasuk hari libur dipergunakan untuk perawatan atau shut down. Sedangkan hari sabtu, minggu, dan hari besar libur. Oleh karena itu, untuk menjaga kelancaran proses produksi dan kegiatan administrasi dan pemasaran adanya pembagian jam kerja yang diatur secara efektif dan efisien. Berdasarkan jam kerja karyawan di perusahaan ini dibedakan menjadi dua golongan yaitu:

1. Karyawan Non-Shift

Karyawan non-shift adalah karyawan yang tidak memiliki tanggung jawab secara proses produksi. Karyawan non-shift meliputi jajaran direksi, kepala bagian, kepala seksi, serta jabatan yang dibawahnya yang bekerja di kantor. Karyawan non- shift

bekerja selama 5 hari sama dengan ketentuan jam sebagai berikut :

Jam kerja : Senin-Jumat pukul 08.00 - 16.00

Jam istirahat : Senin-Kamis pukul 12.00 - 13.00

Jumat pukul 11.00 - 13.00

Sabtu dan Minggu: Libur termasuk hari besar.

2. Karyawan Shift

Karyawan shift adalah karyawan yang bertanggung jawab

secara langsung dalam memproduksi atau mengatur bagian tertentu

dari pabrik yang memiliki hubungan dengan keamanan dan kegiatan

produksi. Sebagian dari bagian teknik, bagian gudang, dan beberapa

bagian lain harus siaga demi keselamatan dan keamanan pabrik.

Karyawan shift bekerja sama dengan ketentuan jam sebagai berikut:

Shift 1:08.00 - 16.00

Shift 2:16.00 - 23.00

Shift 3: 23.00 - 08.00

Jam kerja shift berlangsung selama 8 jam sehari dan

mendapat pergantian shift setiap hari kerja sekali. Karyawan shift

bekerja dengan sistem 3 hari kerja dan 1 hari libur. Hari Minggu dan

libur hari besar semua karyawan shift tidak libur. Tetapi, karyawan

memiliki hak jatah cuti selama 12 hari setiap tahunnya. Pembagian

shift dilakukan dalam 4 regu, dimana 3 regu mendapat giliran shift

sedangkan 1 regu libur.

76

Jadwal kerja dibagi menjadi empat minggu dan empat kelompok.
Setiap kelompok kerja mendapatkan libur satu kali dari tiga kali shift. Setiap hari ada tiga kelompok kerja, dan satu kelompok libur.
Berikut adalah jadwal kerja karyawan shift:

Tabel 4.4 Jadwal Kerja Karyawan Shift

Regu	Hari									
Regu	1	2	3	4	5	6	7	8	9	10
A	I	I	I	-	III	III	III	-	II	II
В	II	II	-	I	I	I	-	III	III	III
С	III	-	II	II	II	-	I	I	I	-
D	-	III	III	III	-	II	II	II	-	I
Regu					На	nri	•			
Regu	1	2	3	4	5	6	7	8	9	10
A	II	-	I	I	I	-	III	III	III	-
В	-	II	II	II	-	I	I	I	-	III
С	III	III	III	-	II	II	II	-	I	I
D	I	I	-	III	III	III	I	II	II	II
Regu					На	nri				
Rogu	1	2	3	4	5	6	7	8	9	10
A	II	II	II	-	I	I	I	-	III	III
В	III	III	-	II	II	II	-	I	I	I
С	Ι	-	III	III	III	-	II	II	II	-
D	Ī	I	I	I	-	III	III	III	-	II

4.4.5 Jumlah Karyawam, Golongan Karyawan, dan Sistem Gaji

1. Jumlah Karyawan

Berikut adalah jumlah karyawan yang ada di dalam perusahaan :

Tabel 4.5 Jumlah Karyawan

No.	Jabatan	Jumlah
1.	Direktur Utama	1
2.	Direktur Teknik dan Produksi	1
3.	Direktur Keuangan dan Umum	1
4.	Ka. Bag. Produksi	1
5.	Ka. Bag. Teknik	1
6.	Ka. Bag. K3	1
7.	Ka. Bag. Penelitian dan Pengembangan	1
8.	Ka. Bag. Pemasaran	1
9.	Ka. Bag. Administrasi dan Keuangan	1
10.	Ka. Bag. Personalia dan Umum	1
11.	Ka. Seksi Produksi	1
12.	Ka. Seksi Utilitas	1
13.	Ka. Seksi Listrik dan Instrumentasi	1
14.	Ka. Seksi Penelitian	1
15.	Ka. Seksi Laboratorium	1
16.	Ka. Seksi Keuangan	1
17.	Ka. Seksi Pemasaran	1
18.	Ka. Seksi Humas	1
19.	Ka. Seksi Administrsi	1
20.	Ka. Seksi Pengembangan SDM	1
21.	Ka. Seksi Tata Usaha	1
22.	Ka. Seksi Personalia	1
23.	Ka. Seksi K3	1
24.	Ka. Seksi UPL	1
25.	Karyawan Maintenance	6
26.	Karyawan Produksi	8
27.	Karyawan Utilitas	6
28.	Karyawan Listrik dan Instrumentasi	7

29.	Karyawan Litbang	6
30.	Karyawan Pengolahan Limbah	6
31.	Karyawan Kas/Anggaran	5
32.	Karyawan Pemasaran/Penjualan	5
33.	Karyawan SDM	5
34.	Karyawan Administrasi	5
35.	Operator Produksi	24
36.	Operator Utilitas	11
37.	Sekretaris	5
38.	Dokter	2
39.	Perawat	4
40.	Supir	5
41.	Cleaning services	10
42.	Security	9
	Total	114

2. Golongan Pekerja

Dalam pabrik yang telah berdiri harus ada aturan penggolongan jabatan, karena ini memiliki keterkaitan dengan kelangsungan pabrik untuk bersaing di era pasar. Berikut rincian dalam penggolongan jabatan sebagai berikut :

Tabel 4.6 Penggolongan Jabatan

No.	Kepala Seksi	Pendidikan
1.	Direktur Utama	S-2
2.	Direktur	S-2
3.	Kepala Bagian	S-1
4.	Kepala Seksi	S-1
5.	Staff Ahli	S-1

6.	Sekretaris	S-1
7.	Dokter	S-1
8.	Perawat	D-3/D-4/S-1
9.	Karyawan	D-3/D-4/S-1
10.	Supir	SLTA
11.	Cleaning Service	SLTA
12.	Satpam	SLTA

3. System Gaji

Sistem pembagian gaji dalam perusahaan terbagi menjadi tiga jenis yaitu sebagai berikut:

a. Gaji Bulanan

Gaji yang diberikan kepada pegawai tetap dengan jumlah sesuai peraturan perusahaan.

b. Gaji Harian

Gaji yang diberikan kepada karyawan yang tidak tetap atau buruh harian.

c. Gaji Lembur

Gaji yang diberikan kepada karyawan yang bekerja melebihi jam kerja pokok.

Berikut adalah rincian gaji sesuai dengan jabatan:

Tabel 4.7 Rincian Gaji

No	Jabatan	Jumla	Gaji	Total Gaji
		h	Perbulan	Perbulan

1.	Direktur Utama	1	Rp	Rp
			100.000.00	100.000.000
			0	
2.	Direktur Teknik	1	Rp	Rp
	dan Produksi		80.000.000	80.000.000
3.	Direktur Keuangan	1	Rp	Rp
	dan Umum		80.000.000	80.000.000
4.	Ka. Bag. Produksi	1	Rp	Rp
			15.000.000	15.000.000
5.	Ka. Bag. Teknik	1	Rp	Rp
			15.000.000	15.000.000
6.	Ka. Bag. K3	1	Rp	Rp
			40.000.000	40.000.000
7.	Ka. Bag. Penelitian	1	Rp	Rp
	dan Pengembangan		15.000.000	15.000.000
8.	Ka. Bag.	1	Rp	Rp
	Pemasaran		40.000.000	40.000.000
9.	Ka. Bag.	1	Rp	Rp
	Administrasi dan		15.000.000	15.000.000
	Keuangan			
10.	Ka. Bag. Personalia	1	Rp	Rp
	dan Umum		20.000.000	20.000.000
11.	Ka. Seksi Produksi	1	Rp	Rp
			13.000.000	13.000.000
12.	Ka. Seksi Utilitas	1	Rp	Rp
			13.000.000	13.000.000
13.	Ka. Seksi Listrik	1	Rp	Rp
	dan Instrumentasi		13.000.000	13.000.000
14.	Ka. Seksi	1	Rp	Rp
	Penelitian		13.000.000	13.000.000

15.	Ka. Seksi	1	Rp	Rp
	Laboratorium		13.000.000	13.000.000
16.	Ka. Seksi	1	Rp	Rp
	Keuangan		13.000.000	13.000.000
17.	Ka. Seksi	1	Rp	Rp
	Pemasaran		13.000.000	13.000.000
18.	Ka. Seksi Humas	1	Rp	Rp
			13.000.000	13.000.000
19.	Ka. Seksi	1	Rp	Rp
	Administrsi		13.000.000	13.000.000
20.	Ka. Seksi	1	Rp	Rp
	Pengembangan		13.000.000	13.000.000
	SDM			
21.	Ka. Seksi Tata	1	Rp	Rp
	Usaha		13.000.000	13.000.000
22.	Ka. Seksi	1	Rp	Rp
	Personalia		13.000.000	13.000.000
23.	Ka. Seksi K3	1	Rp	Rp
			13.000.000	13.000.000
24.	Ka. Seksi UPL	1	Rp	Rp
			13.000.000	13.000.000
25.	Karyawan	6	Rp	Rp
	Maintenance		6.500.000	39.000.000
26.	Karyawan	8	Rp	Rp
	Produksi		6.500.000	52.000.000
27.	Karyawan Utilitas	6	Rp	Rp
			6.500.000	39.000.000
28.	Karyawan Listrik	7	Rp	Rp
	dan Instrumentasi		6.500.000	45.500.000

29.	Karyawan Litbang	6	Rp	Rp
			6.500.000	39.000.000
30.	Karyawan	6	Rp	Rp
	Pengolahan		6.500.000	39.000.000
	Limbah			
31.	Karyawan	5	Rp	Rp
	Kas/Anggaran		6.500.000	32.500.000
32.	Karyawan	5	Rp	Rp
	Pemasaran/Penjuala		6.500.000	32.500.000
	n			
33.	Karyawan SDM	5	Rp	Rp
			6.500.000	32.500.000
34.	Karyawan	5	Rp	Rp
	Administrasi		6.500.000	32.500.000
35.	Operator Produksi	24	Rp	Rp
			5.000.000	120.000.000
36.	Operator Utilitas	11	Rp	Rp
			5.000.000	55.000.000
37.	Sekretaris	5	Rp	Rp
			6.000.000	30.000.000
38.	Dokter	2	Rp	Rp
			9.000.000	18.000.000
39.	Perawat	4	Rp	Rp
			4.000.000	16.000.000
40.	Supir	5	Rp	Rp
			3.500.000	17.500.000
41.	Cleaning services	10	Rp	Rp
			3.000.000	30.000.000
42.	Security	9	Rp	Rp
			3.000.000	27.000.000

Total	114	Rp	Rp
		650.500.00	1.244.000.00
		0	0

4.4.6 Kesejahteraan Sosial Karyawan

1. Tunjangan

Tunjangan yang diberikan kepada karyawan adalah sebagai berikut:

- a. Tunjangan yang berupa gaji pokok yang diberikan berdasarkan golongan karyawan yang bersangkutan.
- Tunjangan jabatan yang diberikan berdasarkan jabatan yang dipegang oleh karyawan.
- c. Tunjangan lembur yang diberikan kepada karyawan yang bekerja di luar jam kerja berdasarkan jumlah jam kerja.

2. Cuti

Hak cuti yang diberikan kepada karyawan adalah sebagai berikut:

- a. Cuti tahunan diberikan kepada setiap karyawan selama 12 hari kerja dalam satu tahun.
- b. Cuti sakit diberikan kepada setiap karyawan yang menderita sakit berdasarkan keterangan dokter.

3. Pakaian Kerja

Pakaian kerja yang diberikan kepada karyawan sebanyak 3 pasang untuk setiap tahunnya untuk menghindari kesenjangan antar karyawan. Selain itu, perusahaan juga menyediakan masker dan alat pelindung diri (APD) sebagai alat pengaman kerja.

4. BPJS Kesehatan

Berdasarkan UU No. 40 Tahun 2004 tentang Sistem Jaminan Sosial Nasional dan UU No. 24 Tahun 2011 BPJS Kesehatan Pasal 5 Ayat 2 Huruf A menyelenggarakan program jaminan kesehatan. Jaminan kesehatan yang diberikan oleh perusahaan adalah sebagai berikut:

- a. Biaya pengobatan bagi karyawan yang menderita sakit yang diakibatkan oleh kecelakaan kerja ditanggung oleh perusahaan sesuai dengan undang-undang yang berlaku.
- b. Biaya pengobatan bagi karyawan yang menderita sakit yang tidak diakibatkan oleh kecelakaan kerja yang diatur berdasarkan kebijaksanaan perusahaan.

5. BPJS Ketenagakerjaan

Berdasarkan UU No. 40 Tahun 2004 tentang Sistem Jaminan Sosial Nasional dan UU No. 24 Tahun 2011 tentang Badan Penyelenggara Jaminan Sosial, BPJS Ketenagakerjaan menyelenggarakan 4 program yaitu Program Jaminan Kecelakaan Kerja (JKK), Jaminan Hari Tua (JHT), Jaminan Pensiun (JP), dan Jaminan Kematian (JK). Sementara program jaminan kesehatan diselenggarakan oleh BPJS Kesehatan. Berdasarkan UU, pemberi kerja (perusahaan) wajib mendaftarkan seluruh pekerja menjadi peserta BPJS Ketenagakerjaan secara bertahap menurut ketentuan perundang-undangan.

BAB V

UTILITAS

5.1 Unit Penyediaan dan Pengolahan Air

Unit pendukung proses atau sering disebut unit utilitas merupakan bagian penting yang menunjang berlangsungnya suatu proses dalam suatu pabrik. Dalam perancangan pabrik Sulfamic Acid unit pendukung proses yang dibutuhkan antara lain:

- Unit Penyediaan dan Pengolahan Air (Water Treatment System)
 Unit ini berfungsi sebagai penyedia air proses, air pendingin, air umpan dan air sanitasi untuk air perkantoran dan lingkungan. Proses pendinginan digunakan pada cooler.
- Unit Penyediaan Air Pemanas (*Steam System*)
 Unit ini berfungsi sebagai penyedia steam pada *heater*.
- 3. Unit Pembangkit Listrik (*Power plant System*)
 Unit ini berfungsi sebagai penyedia tenaga penggerak peralatan proses,
 penerangan, bahkan lingkungan pabrik. Listrik diperoleh dari PLN dan
 generator sebagai cadangan apabila PLN mengalami gangguan.
- 4. Unit Penyediaan Udara Instrumen (Instrument Air System)
 Unit ini berfungsi sebagai penyedia udara tekan untuk menjalankan sistem instrumentasi. Udara tekan diperlukan untuk alat kontrol pneumatik. Alat penyediaan udara tekan berupa kompresor dan tangki udara.
- 5. Unit Penyedia Bahan Bakar

Unit ini berfungsi untuk menyediakan bahan bakar penggerak generator

5.1.1 Unit Penyediaan Air

Unit penyediaan air merupakan salah satu unit utilitas yang bertugas untuk menyediakan air kebutuhan industri maupun rumah tangga. Untuk memenuhi kebutuhan air suatu industri, pada umumnya menggunakan air sumur, air sungai, air danau maupun air laut. Dalam perancangan pabrik *Sulfamic Acid* ini, sumber air yang digunakan berasal dari aliran sungai Bengawan Solo yaitu dengan beberapa pertimbangan:

- a. Air sungai merupakan sumber air yang kontinuitasnya relatif tinggi jika dibandingkan dengan air sumur, sehingga kendala kekurangan air dapat dihindari.
- b. Pengolahan air sungai relatif lebih mudah, sederhana dan biaya pengolahan relatif murah dibandingkan dengan proses pengolahan air laut yang lebih rumit dan biaya pengolahan pada umumnya lebih besar karena dalam air laut tersebut memiliki lebih banyak kandungan garam dan mineral yang perlu dipisahkan.
- c. Jumlah air sungai lebih banyak dibandingkan dengan air sumur.
- d. Letak sungai berada tidak jauh (bersampingan) dari lokasi pabrik.

Dalam kebutuhannya, air sungai yang digunakan untuk keperluan pabrik antara lain sebagai air proses, air domestik, dan air umpan boiler. Air proses berfungsi untuk mensuplai kebutuhan air selama alat proses berjalan, sehingga tidak akan terjadi pemberhentian selama

berlangsungnya proses. Air domestik berfungsi untuk memenuhi keperluan atau kebutuhan domestik yang bertujuan untuk keperluan perkantoran dan lingkungan pabrik.

5.1.2 Unit Pengolahan Air

Dalam perancangan pabrik ini, kebutuhan air diambil dari air sungai yang jarak atau lokasinya berdekatan dengan pabrik. Air sungai yang digunakan pada lingkungan pabrik perlu dilakukan proses pengolahan terlebih dahulu untuk mendapatkan spesifikasi air yang diinginkan. Tahap proses pengolahan air yang dilakukan antara lain:

a. Penyaringan Awal

Sebelum mengalami proses pengolahan, air dari sungai harus dilakukan penyaringan terlebih dahulu agar pada proses selanjutnya dapat berlangsung dengan lancar. Penyaringan awal terhadap air sungai dilakukan agar kandungan padatan seperti sampah, plastik, daun, dan lain sebagainya yang terbawa oleh air dapat terpisah. Setelah dilakukan proses penyaringan awal kemudian air dialirkan menuju bak pengendap.

b. Bak Pengendap

Bak pengendap bertujuan untuk mengendapkan lumpur dan kotoran air laut yang tidak lolos dari penyaring awal.

c. Bak Pencampur Cepat

Air sungai yang telah melalui bak pengendap awal, kemudian dialirkan menuju bak pencampur cepat yang bertujuan

untuk menggumpalkan koloid tersuspensi dalam cairan (larutan) yang tidak mengendap di bak pengendap dengan cara menambahkan senyawa kimia. Umumnya flokulan yang biasa digunakan adalah tawas $(Al_2(SO_4)_3)$ dan Na_2CO_3 .

Adapun reaksi yang terjadi pada bak pencampur cepat adalah:

$$Al_2(SO_4)_3 + 3Ca(HCO_3)_2 \rightarrow 2Al(OH)_3 + 3CaSO_4 + 6CO_2$$
 (11)
 $CaSO_4 + Na_2CO_3 \rightarrow Na_2SO_4 + CaCO_3$ (12)

d. Clarifier

Air hasil proses dari bak pencampur cepat kemudian dialirkan menuju clarifier untuk memisahkan gumpalan dari bak pencampur cepat dengan cara mengendapkan. Air baku yang telah dialirkan ke dalam clarifier yang alirannya telah diatur ini akan diaduk dengan pengaduk. Air yang keluar dari clarifier melalui bagian pinggir secara *overflow* sedangkan *sludge* yang terbentuk akan mengendap secara gravitasi untuk dilanjutkan dengan proses *blowdown* secara berkala dalam waktu yang telah ditentukan.

e. Bak Penyaring (sand filter)

Setelah melakukan proses *clarifier*, selanjutnya air yang diperoleh dialirkan menuju bak penyaring dengan tujuan untuk menyaring partikel halus yang masih terdapat dalam air dan belum terendapkan. Proses penyaringan dilakukan dengan menggunakan *sand filter* yang terdiri dari antrasit, pasir dan kerikil sebagai media penyaring.

f. Bak Air Bersih

Air yang keluar dari bak penyaring kemudian dialirkan menuju bak air bersih. Di dalam bak air bersih dilakukan penginjeksian dengan klorin (Cl₂) yang berperan sebagai oksidator dan disinfektan. Sebagai oksidator, klorin digunakan untuk menghilangkan bau dan rasa pada pengolahan air bersih. Sedangkan klorin sebagai desinfektan bertujuan untuk membunuh kuman dan mikroorganisme seperti amuba, ganggang dan lain sebagainya yang terkandung di dalam air sehingga aman untuk dikonsumsi. Dalam reaksinya, klorin di dalam air akan membentuk asam hipoklorit dengan reaksi sebagai berikut:

$$Cl_2 + H_2O \to H^+ + Cl^- + HOCl$$
 (13)

Selanjutnya, asam hipoklorit pecah sesuai dengan reaksi berikut:

$$HOCl + H_2O \rightarrow OCl^- + H^+ \tag{14}$$

g. Tangki Deklorinasi

Tangki deklorinasi bertujuan untuk menghilangkan klorin (Cl₂). Karena penambahan klorin dalam bentuk gas akan menyebabkan turunnya pH air dan terjadi pembentukan asam kuat. Klorin juga memiliki sifat yang sangat beracun yang dapat merusak kesehatan. Setelah klorin hilang, air dapat didistribusikan sebagai air pabrik dan lingkungannya.

h. Demineralisasi

Demineralisasi merupakan salah satu teknologi proses pengolahan air untuk menghilangkan mineral dari air. Demineralisasi biasanya digunakan secara khusus untuk proses pertukaran ion dan penghilangan total kontaminan mineral ion sampai mendekati angka nol. Demineralisasi dilakukan dengan menggunakan resin penukar kation (*cation exchanger*) dan penukar anion (*anion exchanger*).

i. Tangki Penukar Kation

Air dari bak air bersih berfungsi sebagai *make up* boiler yang selanjutnya air dialirkan menuju ke tangki penukar kation. Air yang dilewatkan pada *cation exchanger* berisi resin positif sehingga ion positif tertukar dengan resin positif.

Adapun reaksi yang terjadi adalah sebagai berikut.

$$R - H^+ + CaCO_3 \rightarrow R - Ca^{++} + H_2CO_3$$
 (15)

Dalam jangka waktu tertentu, kation resin ini akan jenuh sehingga perlu dilakukan regenerasi. Regenerasi dilakukan dengan Dowex, karena resin dowex dapat menghasilkan peningkatan efisiensi regenerasi dan meningkatkan kapasitas yang lebih tinggi serta mengurangi penggunaan regenerant. Proses regenerasi dowex menggunakan HCl 33% dengan reaksi yang terjadi adalah sebagai berikut.

$$R - H + MX \to R - M + HX \tag{16}$$

Dengan:

R : Resin Dowex

R – H : Resin dowex mengikuti kation

MX : Mineral yang terkandung dalam air

R – M: Resin dalam kondisi mengikat kation

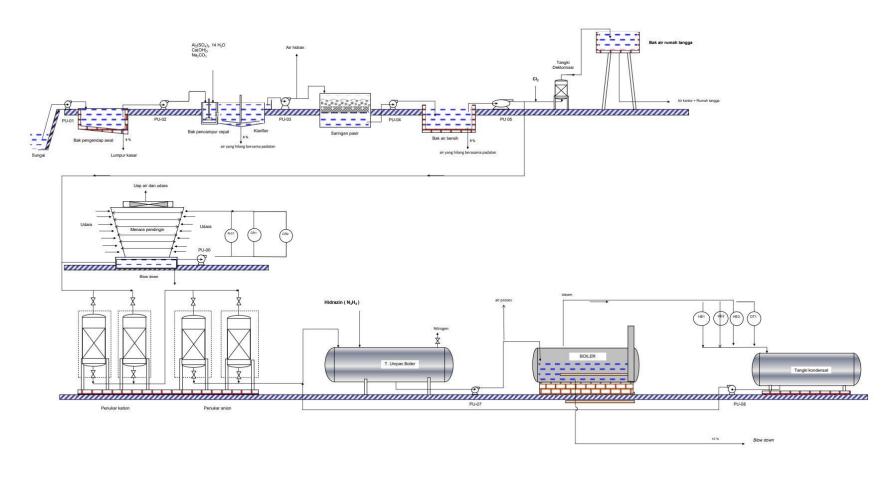
HX : Asam Mineral yang terbentuk setelah melewati resin kation

j. Tangki Penukar Anion

Air yang keluar dari tangki kation kemudian diumpankan menuju tangki *anion exchanger*. Tangki ini berfungsi untuk mengikat ion negatif (*anion*) yang terlarut dalam air dengan resin yang bersifat basa. Adapun reaksi yang terjadi adalah sebagai berikut.

$$R - OH + H_2CO_3 \rightarrow R - CO_3^{2-} + H_2O$$
 (17)

Dalam jangka waktu tertentu, kation resin ini akan jenuh sehingga perlu dilakukan regenerasi. Regenerasi dilakukan dengan Dowex, karena resin dowex dapat menghasilkan peningkatan efisiensi regenerasi dan meningkatkan kapasitas yang lebih tinggi serta mengurangi penggunaan regenerant. Proses regenerasi dowex menggunakan NaOH 40% dengan reaksi yang terjadi adalah sebagai berikut.


$$R - OH + HX \rightarrow R - X - H_2O \tag{18}$$

Dengan

R : Resin dowex

R – OH : Resin dowex mengikat anion

R - X: Resin dalam kondisi mengikat anion

Gambar 5.1 Diagram Alir Proses Pengolahan Air

5.1.3 Kebutuhan Air

Dalam perancangan pabrik, kebutuhan air terbagi menjadi beberapa media. Antara lain air sebagai media pendingin, air sebagai media steam, air untuk kantor, dan air untuk lingkungan.

Tabel 5.1 Air sebagai media pendingin

	Kode	Keterangan	Jumlah
Nama Alat			(kg/jam)
Reaktor	R-01	Jaket Pendingin	129.858
Crystallizer 1	CR-01	-	28.942
Crystallizer 2	CR-01	-	103.115
	Total		261.941,442

Table 5.2 Media Steam

Nama Alat	Kode	Keterangan	Jumlah (kg/jam)
Heat Exchanger 1	HE-01	-	21.582.160,638
Heat Exchanger 2	HE-02	-	2.381.502
Heat Exchanger 3	HE-03	-	1.071,035

Dissolving Tank	DT-01	-	2.113,67
Total		23.964.734,699	

Selain sebagai media pendingin dan pemanas, kebutuhan air juga diperlukan untuk keperluan domestik (perkantoran) dan lingkungannya. Kebutuhan air domestik terdiri dari kebutuhan air untuk perkantoran dan kebutuhan air karyawan.

a. Kebutuhan Air Karyawan

Menurut standar WHO, kebutuhan air untuk 1 orang berkisar 100 s/d 200 liter/hari.

Kebutuhan per orang sebanyak = 150 liter/hari

Jumlah karyawan = 114 orang

Maka, kebutuhan air sebanyak = Jumlah karyawan x

Kebutuhan per orang

Kebutuhan air = 114 orang x (150 liter/hari)

= 17.100 liter/hari

= 17.100 kg/hari

= 410.400 kg/jam

b. Kebutuhan Air Untuk Lingkungan

Air untuk lingkungan berkisar antara 50 liter/hari s/d 150 liter/hari.

Asumsi kebutuhan air untuk lingkungan meliputi:

1. Dipilih kebutuhan air untuk lingkungan sebanyak 150 liter/hari.

2. Air untuk lingkungan meliputi kebutuhan hidran, kebutuhan taman dan kebutuhan lain-lain.

Tabel 5.3 Total kebutuhan air unit utilitas

Kebutuhan	Jumlah (kg/jam)
Air sebagai media pendingin	261.941,442
Media pemanas (steam)	23.964.734,699
Air untuk kantor	410.400
Air untuk lingkungan	410.775
Total	25.049.964,141

5.2 Unit Pembangkit Steam

Air dari tangki umpan boiler diumpankan menuju boiler untuk membangkitkan steam. Unit ini bertujuan untuk mencukupi kebutuhan steam pada proses produksi yaitu dengan menyediakan boiler dengan kebutuhan steam sebanyak 23.964.734,699 kg/jam. Steam yang berasal dari boiler digunakan sebagai media pemanas yang hasilnya berupa uap dan dimasukkan ke alat *heat exchanger* dan *dissolving tank* untuk memanaskan, kemudian hasilnya yang berupa embunan dimasukkan ke dalam tangki kondensat dan diumpankan kembali ke tangki umpan boiler.

5.3 Unit Pembangkit Listrik

Kebutuhan listrik pada pabrik Asam Sulfamat ini diperoleh dari dua sumber, antara lain Perusahaan Listrik Negara (PLN) dan generator. Generator berfungsi sebagai tenaga atau sumber cadangan apabila PLN mengalami gangguan. Selain sebagai tenaga cadangan, generator juga dimanfaatkan untuk menggerakkan power yang dinilai penting seperti boiler dan pompa. Hal ini bertujuan agar pasokan tenaga listrik dapat berlangsung kontinyu meskipun PLN mengalami kendala atau gangguan. Keuntungan tenaga listrik dari PLN yaitu biayanya relatif murah. Sedangkan untuk kerugiannya yaitu kesinambungan penyediaan listrik kurang terjamin dan tenaganya tidak terlalu tetap.

Unit ini bertugas untuk menyediakan kebutuhan listrik yang meliputi:

a. Kebutuhan plant (alat proses dan utilitas) = 2156,972 kW

b. Keperluan lain yang bersangkutan = 30 kW

Maka total kebutuhan listrik sebesar 2186,972 kW.

Selain itu juga, jika PLN mengalami kendala, maka dapat menggunakan generator dengan cadangan daya nya sebesar 2.200 kW. Prinsip kerja dari diesel ini adalah solar dan udara yang dibakar secara kompresi sehingga menghasilkan panas. Panas yang dihasilkan dikonversi menjadi daya untuk memutar poros engkol dan dihubungkan dengan generator sehingga dapat menghidupkan generator yang mampu menghasilkan tenaga listrik.

5.4 Unit Penyedia Udara Tekan

Udara tekan diperlukan untuk pemakaian alat pneumatic control. Total kebutuhan udara tekan diperkirakan 32 m³/jam.

5.5 Unit Penyedia Bahan Bakar

Bahan bakar digunakan untuk keperluan pembakaran pada boiler, diesel untuk generator pembangkit listrik dan sebagainya. Bahan bakar menggunakan solar untuk industri dengan kebutuhan sebanyak 787352,879 liter/jam.

5.6 Spesifikasi Alat Utilitas

1. Bak Pengendapan Awal

Tabel 5.4 Sepsifikasi Bak Pengendapan Awal

Spesifikasi Umum	
Nama Alat	Bak Pengendap Awal
Kode	BP
Eungei	Mengendapkan kotoran yang
Fungsi	terbawa dari air sungai
Bentuk	Persegi Panjang
Bahan	Beton Bertulang
Volume	109.010,51 m ³
Waktu Tinggal	24 jam
Over Design	20%

2. Bak Pencampuran Cepat

Tabel 5.5 Spesifikasi Bak Pencampuran Cepat

Spesifikasi Umum		
Nama Alat	Bak Pencampuran Cepat	
	Mencampur bahan kimia	
Fungsi	penggumpal dan pengurang	
	kesadahan	
Bentuk	Silinder Tegak	
Bahan	Baja Karbon	
Volume	72.097 m ³	
Waktu Tinggal	1 menit	
Over Design	20%	

3. Klarifier

Tabel 5.6 Spesifikasi Klarifier

Spesifikasi Umum	
Nama Alat	Klarifier
	Menggumpalkan dan
Fungsi	mengendapkan kotoran koloid
	yang terbawa oleh air
Bentuk	Bak
Bahan	Beton bertulang
Volume air	18.024,225 m ³
Volume Klarifier	21.629,07 m ³

Diameter	47,4883 m ³
Waktu Tinggal	5 jam
Over Design	20%

4. Saringan Pasir

Tabel 5.7 Spesifikasi Saringan Pasir

Spesifikasi Umum		
Nama Alat	Saringan Pasir	
Fungsi	Menyaring partikel – partikel	
	halus yang ada didalam sungai	
Bentuk	Bak	
Bahan	Beton bertulang	
Kecepatan Penyaringan	6553 m ³ / jam	
Laju aliran	561,7 m ²	
Panjang	23,7 m	
Lebar	23,7 m	

5. Bak Air Bersih

Tabel 5.8 Spesifikasi Bak Air Bersih

Spesifikasi Umum		
Nama Alat	Bak Air Bersih	

Fungsi	Menampung air bersih hasil penyaringan
Bentuk	Bak
Bahan	Beton bertulang
Volume Bak	32.953,76 m ³
Panjang	157,21 m
Lebar	52,4 m
Waktu Tinggal	8 jam
Over Design	20%

6. Bak Air Minum

Tabel 5.9 Spesifikasi Bak Air Minum

Spesifikasi Umum		
Nama Alat	Bak Air Minum	
Fungsi	Menampung air untuk kantor pelayanan dan perumahan	
Bentuk	Persegi Panjang	
Bahan	Beton bertulang	
Volume Air	82.384,4 m ³	
Volume Bak	98.861,28 m ³	
Panjang	272,3 m	
Lebar	90,7 m	

Waktu Tinggal	24 Jam
Over Design	20%

7. Menara Pendingin

Tabel 5.10 Spesifikasi Menara Pendingin

Spesifikasi Umum		
Nama Alat	Menara Pendingin	
Fungei	Mendinginkan suhu air dari	
Fungsi	50°C sampai 30°C	
Jenis	Menara Pendingin Jujut Tarik	
Bahan	Beton bertulang	
Flux Volume	4,28 m ³ /m ² jam	
Luas Penampang	6,15 m ²	
Panjang	2,48 m	
Lebar	2,48 m	
Daya Penggerak	90 HP	

8. Tangki Penukar Kation

Tabel 5.11 Spesifikasi Tangki Penukar Kation

Spesifikasi Umum	
Nama Alat	Tangki Penukar Kation

Fungsi	Menghilangkan mineral yang masih terkandung dalam air
Jenis	Tangki silinder tegak
Bahan	Baja karbon
Volume Ressin	38,16 m ³
Diameter	3,64 m
Tinggi Resin	3,65 m
Tinggi Tangki	4,38 m
Over Design	20%

9. Tangki Penukar Anion

Tabel 5.12 Spesifikasi Tangki Penukar Anion

Spesifikasi Umum	
Nama Alat	Tangki Penukar Anion
Fungsi	Menghilangkan mineral yang masih terkandung dalam air
Jenis	Tangki silinder tegak
Bahan	Baja karbon
Volume Ressin	12,21 m ³
Diameter	2,5 m
Tinggi Resin	2,5 m
Tinggi Tangki	3 m

Over Design	20%

10. Tangki NaCl

Tabel 5.13 Spesifikasi Tangki NaCl

Spesifikasi Umum		
Nama Alat	Tangki NaCl	
Fungsi	Melarutkan NaCl untuk	
	regenerasi penukar kation	
Jenis	Tangki silinder tegak	
Bahan	Baja karbon	
Volume Ressin	38,16 m ³	
Volume Tangki	29,5 m ³	
Volume Larutan	24,57 m ³	
Massa Air	23.229,8 kg	
NaCl digunakan	1.222,62 kg	
Diameter	3,15 m	
Tinggi Tangki	3,15 m	
Over Design	20%	

11. Tangki NaOH

Tabel 5.14 Spesifikasi Tangki NaOH

Spesifikasi Umum

Nama Alat	Tangki NaOH
Fungsi	Melarutkan NaOH untuk
	regenerasi penukar kation
Jenis	Tangki silinder tegak
Bahan	Baja karbon
Volume Resin	12,21 m ³
Volume Tangki	9,44 m ³
Volume Larutan	7,86 m ³
Massa Air	7.433,55 kg
NaOH digunakan	391,24 kg
Diameter	2,15 m
Tinggi Tangki	2,15 m
Over Design	20%

12. Tangki Umpan Boiler

Tabel 5.15 Spesifikasi Tangki Umpan Boiler

Spesifikasi Umum		
Nama Alat	Tangki Umpan Boiler	
Fungsi	Menyimpan air umpan boiler	
Jenis	Tangki silinder tegak	
Bahan	Baja karbon	
Volume Resin	212.039 m ³	

Volume Tangki	254.447 m ³
Waktu Tinggal	8 jam
Diameter	47,6 m
Panjang Tangki	143 m
Over Design	20%

13. Tangki Kondensat

Tabel 5.16 Spesifikasi Tangki Kondensat

Spesifikasi Umum		
Nama Alat	Tangki Kondensat	
Fungsi	Menyimpan air kondensat	
Jenis	Tangki silinder tegak	
Bahan	Baja karbon	
Volume Air	24.087,3 m ³	
Volume Tangki	28.904,7 m ³	
Waktu Tinggal	1 jam	
Diameter	23,06 m	
Panjang Tangki	69,2 m	
Over Design	20%	

14. Kompresor Udara

Tabel 5.17 Spesifikasi Kompresor Udara

Spesifikasi Umum	
Nama Alat	Kompressor Udara
Fungsi	Menekan udara
Jenis	Kompressor sentrifugal
P1	1 atm
P2	4 atm
Jumlah Stage	1
Daya Motor	0,5 HP
Suhu	30°C

15. Tangki Silika

Tabel 5.18 Spesifikasi Tangki Silika

Spesifikasi Umum	
Nama Alat	Tangki Silika
Fungsi	Menghilangkan uap air yang
	masih terkandung dalam udara
Jenis	Tangki silinder tegak
Bahan	Baja karbon
Massa Air Diserap	7,77 kg
Massa Silika Gel	388,57 kg
Volume Silika	0.32 m^3
Volume Tangki	0.38 m^3

Diameter	0,79 m
Over Design	20%

16. Tangki Udara Tekan

Tabel 5.19 Spesifikasi Tangki Udara Tekan

Spesifikasi Umum		
Nama Alat	Tangki Udara Tekan	
Fungsi	Menampung udara tekan selama	
Tungsi	120 menit	
Jenis	Tangki silinder tegak	
Tekanan	4 atm	
Volume Tangki	1,12 m ³	
Diameter	1 m	
Panjang	3 m	

17. Boiler

Tabel 5.20 Spesifikasi Boiler

Spesifikasi Umum			
Nama Alat	Boiler		
Fungsi	Menguapkan air menjadi steam		
Jenis	Boiler Lorong api		
BBM diperlukan	337.952,07 liter/jam		

Beban Panas Total	14,57 kJ/jam
ID	0,06 m
OD	0,07 m
Panjang Pipa	0,30 m

18. Pompa

Tabel 5.21 Spesifikasi Pompa

Spesifikasi Umum					
Kode	PU-01	PU-03			
Fungsi	Memompa air sungai ke bak pengendap awal	Memompa air dari bak ke bak klarifier pengendap awal	Memompa air dari klarifier ke saringan pasir		
Jenis	Pompa sentrifugal	Pompa sentrifugal	Pompa sentrifugal		
Massa Air (kg/jam)	7188768,27	6846445,97	6520424,73		
Kecepatan Volume Fluida (m³/s)	1,00	0,95	0,90		
Kecepatan Aliran (kg/jam)	3594384	3423222,98	3260212,36		

Diameter dalam Pipa (m)	0,89	0,84	0,84
Diameter Luar Pipa (m)	0,91	0,86	0,86
Luas aliran (m ²)	0,62	0,56	0,56
Efesiensi Motor (%)	81	82	80
Power Pompa (HP)	171,18	169,12	92,71
Power Motor Standart (HP)	200	200	100

19. Pompa

Tabel 5.22 Spesifikasi Pompa

Spesifikasi Umum				
Kode	PU-04	PU-05	PU-06	
Fungsi	Memompa air Memompa air		Memompa air	
	dari bak air	dari menara		
	bersih ke tendon air cooling tower		pendinginboiler	
			ke anion kation	
Jenis	Pompa Pompa		Pompa	
	sentrifugal	sentrifugal	sentrifugal	

Massa Air (kg/jam)	6519924,73	6209452,13	832977,29	
Kecepatan Volume Fluida (m³/s)	0,90	0,86	0,11	
Kecepatan Aliran (kg/jam)	3259962,36	3104726,06	416489	
Diameter dalam Pipa (m)	0,84	0,79	0,33	
Diameter Luar Pipa (m)	0,86	0,81	0,35	
Luas aliran (m ²)	0,56	0,49	0,08	
Efesiensi Motor (%)	80	80	87	
Power Pompa (HP)	92,70	89,85	37,85	
Power Motor Standart (HP)	100	100	40	

BAB VI

EVALUASI EKONOMI

6.1 Evaluasi Ekonomi

Untuk mengetahui apakah pabrik yang didirikan dapat menguntungkan dan layak atau tidak di dirikan dari segi ekonomi, maka perlu evaluasi ekonominya. Evaluasi ekonomi dapat meninjau kebutuhan modal investasi, besar keuntungan yang diperoleh, lama modal investasi dapat dikembalikan, dan titik terjadinya impas yaitu total biaya produksi sama dengan keuntungan yang diperoleh. Sehingga dapat menjadi suatu dasar kelayakan untuk mendirikan suatu pabrik. Dalam evaluasi ekonomi terdapat beberapa factor yang ditinjau, antara lain:

- A. Return Of Investment (ROI)
- B. Pay Out Time (POT)
- C. Discount Cash Flow Rate (DCFR)
- D. Break Even Point (BEP)
- E. Shut Down Point (SDP)

Sebelum dilakukan Analisa terhadap kelima factor tersebut, maka perlu dilakukan perkiraan terhadap beberapa hal sebagai berikut :

1. Penentuan Modal Industri

Penentuan modal industry meliputi modal tetap (fixed capital investment) dan modal kerja (working capital investment)

2. Penentuan Biaya Produksi Total

Dalam penentuan biaya produksi total meliputi biaya pembuatan (manufacturing cost) dan biaya pengeluaran umum (general expense).

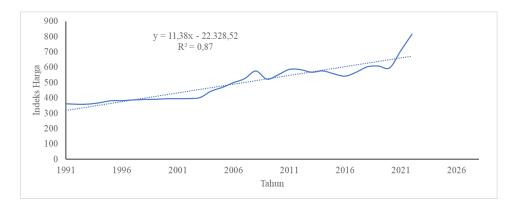
3. Pendapatan Modal

Dalam pendapatan modal, untuk mengetahui titik impas diperlukan perkiraan terhadap biaya tetap (fixed cost), biaya variable (variable cost) dan biaya mengambang (regulated cost)

6.2 Penaksiran Harga Alat

Harga Peralatan akan berubah setiap saat tergantung pada kondisi ekonomi yang mempengaruhinya. Untuk mengetahui harga peralatan diperlukan suatu suatu metode atau cara untuk memperkirakan harga alat pada tahun tertentu dan perlu diketahui terlebih dahulu harga indeks peralatan operasi pada tahun tersebut.

Pabrik Asam Sulfamat beroperasi selama satu tahun produksi yaitu 300 hari dan tahun evaluasi pada tahun 2027. Di dalam Analisa ekonomi, harga alat maupun harga lain diperhitungkan pada tahun Analisa. Untuk mencari harga pada tahun Analisa maka dilakukan pencarian indeks pada tahun Analisa. Harga indeks dapat ditentukan dengan persamaan regresi linear. Berikut adalah indeks harga yang ada dalam teknik kimia.


Tabel 6.1 Chemical Engineering Plant Cost Index

Tahun	Indeks
1991	361,3
1992	358,2

1993	359,2
1994	368,1
1995	381,1
1996	381,7
1997	386,5
1998	389,5
1999	390,6
2000	394,1
2001	394,4
2002	395,6
2003	402
2004	444,2
2005	468,2
2006	499,6
2007	525,4
2008	575,4
2009	521,9
2010	550,8
2011	585,7
2012	584,6
2013	567,3
2014	576,1

2015	556,8
2016	541,7
2017	567,5
2018	603,1
2019	607,5
2020	596,2
2021	708,8
2022	816

Sumber: www.chemengonline.com

Gambar 6.1 grafik Regresi Linear Index

Berdasarkan data indeks,diperoleh persamaan regresi linear yaitu. Dengan menggunakan persamaan tersebut dapat dicari harga indeks pada tahun perancangan, sehingga indeks pada tahun 2027 sebesar. Harga alat lainnya dapat diperhitungkan pada tahun evaluasi. Selain itu, harga alat dan lainnya ditentukan dengan referensi (Klaus D. Timmerhaus & Max S. Peters, 1991). Maka harga alat pada tahun evaluasi dapat dicari dengan persamaan berikut:

$$E_x = E_y \frac{N_x}{N_y}$$

Dimana:

E_x : Harga tahun pembelian

 E_y : Harga tahun referensi

 N_x : Indeks harga pada tahun pembelian

 N_y : Indeks harga pada tahun referensi

Dari analisis perhitungan untuk megetahui indeks pada tahun perencanaan pendirian pabrik, maka untuk harga alat pada tahun tersebut dapat dilihat pada Tabel

Tabel 6.2 Harga Alat Proses pada Tahun Evaluasi

Kode Alat	Jumlah	NY	NX	EY	EX
Proses	Juillian	2014	2027	2014	2027
S-01	1	590,8	727,36	\$ 148.300	\$ 182.578
S-02	1	590,8	727,36	\$ 22.900	\$ 28.193
S-03	1	590,8	727,36	\$ 157.400	\$ 193.782
T-01	1	590,8	727,36	\$ 163.400	\$ 201.168
T-02	1	590,8	727,36	\$ 15.900	\$ 19,575
T-03	1	590,8	727,36	\$ 145.500	\$ 179.131
R-01	1	590,8	727,36	\$ 131.400	\$ 161.772
CR-01	1	590,8	727,36	\$ 88.800	\$ 109.325
CR-02	1	590,8	727,36	\$ 107.900	\$ 132.840
CF-01	1	590,8	727,36	\$ 200.300	\$ 246.598

CF-02	1	590,8	727,36	\$ 255.700	\$ 314.803
M-01	1	590,8	727,36	\$ 328.000	\$ 403.815
DT-01	1	590,8	727,36	\$ 31.600	\$ 38.904
RD-01	1	590,8	727,36	\$ 86.600	\$ 106.617
BC-01	1	590,8	727,36	\$ 5.400	\$ 6.648
BC-02	1	590,8	727,36	\$ 5.400	\$ 6.648
BC-03	1	590,8	727,36	\$ 5.400	\$ 6.648
BC-04	1	590,8	727,36	\$ 5.400	\$ 6.648
BC-05	1	590,8	727,36	\$ 5.400	\$ 6.648
BC-06	1	590,8	727,36	\$ 5.400	\$ 6.648
BC-07	1	590,8	727,36	\$ 5.400	\$ 6.648
BE-01	1	590,8	727,36	\$ 5.500	\$ 6.771
BE-02	1	590,8	727,36	\$ 5.500	\$ 6.771
BE-03	1	590,8	727,36	\$ 5.500	\$ 6.771
P-01	1	590,8	727,36	\$ 4.700	\$ 5.786
P-02	1	590,8	727,36	\$ 5.700	\$ 7.017
P-03	1	590,8	727,36	\$ 4.700	\$ 5.786
P-04	1	590,8	727,36	\$ 3.200	\$ 3.939
P-05	1	590,8	727,36	\$ 3.200	\$ 3.939
P-07	1	590,8	727,36	\$ 4.700	\$ 5.786
P-08	1	590,8	727,36	\$ 3.200	\$ 3.939
P-09	1	590,8	727,36	\$ 4.700	\$ 5.786

P-10	1	590,8	727,36	\$ 4.700	\$ 5.786
HE-01	1	590,8	727,36	\$ 12.600	\$ 15.512
HE-02	1	590,8	727,36	\$ 31.600	\$ 38.904
HE-03	1	590,8	727,36	\$ 1.500	\$ 1.846
BL-01	1	590,8	727,36	\$ 6.600	\$ 8.125
BL-02	1	590,8	727,36	\$ 6.600	\$ 8.125
		\$	\$		
Total			2.035.700	2.506.240	

Tabel 6.3 Harga Alat Utilitas Pada Tahun Evaluasi

Kode					
Alat	Jumlah	NY	NX	EY	EX
Utilitas					
		2014	2027	2014	2027
B-01	1	590,8	727,36	\$ 198.700	\$ 244.628
B-02	1	590,8	727,36	\$ 35.700	\$ 43.951
B-03	1	590,8	727,36	\$ 198.700	\$ 244.628
B-04	1	590,8	727,36	\$ 198.700	\$ 244.628
B-05	1	590,8	727,36	\$ 10.000	\$ 12.311
C-01	1	590,8	727,36	\$ 10.000	\$ 12.311
CT-01	1	590,8	727,36	\$ 957.500	\$
					1.178.820

T-01	1	590,8	727,36	\$ 143.400	\$ 176.546
T-02	1	590,8	727,36	\$ 96.200	\$ 118.436
T-03	1	590,8	727,36	\$ 198.700	\$ 244.628
T-04	1	590,8	727,36	\$ 2.019.600	\$ 2.486.418
T-05	1	590,8	727,36	\$ 198.700	\$ 244.628
T-06	1	590,8	727,36	\$ 28.700	\$ 35.333
Boiler-01	1	590,8	727,36	\$ 28.100	\$ 34.595
PU-01	1	590,8	727,36	\$ 27.500	\$ 33.856
PU-02	1	590,8	727,36	\$ 27.500	\$ 33.856
PU-03	1	590,8	727,36	\$ 27.500	\$ 33.856
PU-04	1	590,8	727,36	\$ 14.300	\$ 17.605
PU-05	1	590,8	727,36	\$ 34.700	\$ 42.720
PU-06	1	590,8	727,36	\$ 131.000	\$ 161.279
PU-07	1	590,8	727,36	\$ 88.000	\$ 108.340
Total			\$	\$	
10111			4.673.200	5.753.383	

6.3 Dasar Perhitungan

Kapasitas pabrik : 10.000 Ton/Tahun

Satu tahun operasi : 300 Hari

Umur Pabrik : 10 Tahun

Tahun pabrik didirikan : 2027

Kurs Rupiah tahun 2023 : 1US\$ = Rp15.485

6.4 Perhitungan Biaya

Untuk memperhitungkan biaya yang diperlukan dalam mendirikan suatu pabrik, diperlukan beberapa tahapan perhitungan agar pabrik tersebut dapat dikatakan layak secara ekonomis. Beberapa tahapannya antara lain:

6.4.1 Capital Investment

Capital Investment merupakan banyaknya pengeluaran yang diperlukan untuk mendirikan fasilitas pabrik dan untuk pengoperasiannya. Capital Investment terdiri dari beberapa biaya, antara lain:

- a. *Fixed Capital Investment*, merupakan biaya yang diperlukan untuk mendirikan fasilitas yang ada dalam pabrik.
- b. Working Capital Investment, merupakan biaya yang diperlukan untuk menjalankan usaha atau operasi dari suatu pabrik selama waktu tertentu.

6.4.2 Manufacturing Cost

Manufacturing Cost merupakan jumlah yang bersangkutan dalam pembuatan produk. Menurut Aries dan Newton, Manufactoring Cost meliputi:

a. *Direct Cost*, merupakan pengeluaran-pengeluaran yang berkaitan langsung dengan pembuatan produk.

- b. *Indirect Cost*, merupakan pengeluaran-pengeluaran sebagai akibat tidak langsung karena operasi pabrik.
- c. Fixed Cost, merupakan biaya-biaya tertentu yang selalu dikeluarkan baik pada saat pabrik beroperasi maupun tidak atau pengeluaran yang bersifat tetap tidak bergantung pada waktu dan tingkat produksi.

6.4.3 General Expense

General Expense atau pengeluaran umum meliputi beberapa pengeluaran yang berkaitan dengan fungsi perusahaan yang tidak termasuk manufacturing cost.

6.5 Analisa Kelayakan

6.5.1 Percent Return On Investment (ROI)

Return On Investment atau biasa disingkat dengan ROI merupakan tingkat keuntungan yang dapat dihasilkan dari tingkat investasi yang dikeluarkan.

$$ROI = \frac{keuntungan}{Fixed\ Capital} \times 100\%$$

Keuntungan dihitung berdasarkan penjualan tahunan atau annual sales (Sa) dan total *manufacturing cost*. Keuntungan akan dihitung sebagai komponen yang berisi pengembalian hutang selama pembangunan pabrik. Keuntungan akan berkontribusi terhadap cash flow dari pabrik. Pabrik dengan resiko yang cenderung rendah memiliki minimum ROI

sebelum pajak sebesar 11%, sedangkan pabrik dengan resiko tinggi memiliki minimum ROI sebelum pajak sebesar 44%.

6.5.2 Pay Out Time (POT)

Pay Out Time atau bisa disingkat dengan POT merupakan perkiraan jumlah tahun yang diperlukan untuk mengembalikan Fixed Capital Investment (FCI) berdasarkan keuntungan yang diperoleh (Aries, Newton. 1954). Pabrik dengan resiko rendah memiliki nilai POT maksimal 5 tahun, sedangkan pabrik dengan resiko tinggi memiliki nilai POT maksimal 2 tahun. Untuk menghitung POT dapat menggunakan persamaan sebagai berikut.

$$POT = \frac{Fixed\ Capital\ Investmen\ (FCI)}{(Profit + Depresiasi)}$$

6.5.3 Break Even Point (BEP)

Break Even Point merupakan titik impas, dengan besarnya kapasitas produksi dapat menutupi biaya keseluruhan dimana pabrik tidak mendapatkan keuntungan namun tidak menderita kerugian (Peters & Timmerhaus. 2003). Nilai BEP pada umumnya memiliki nilai berkisar 40% hingga 60%. Untuk menghitung nilai BEP, dapat menggunakan persamaan berikut:

$$BEP = \frac{Fa + 0.3 Ra}{Sa - Va - 0.7 Ra} \times 100\%$$

Dimana:

Fa: Annual Fixed Manufacturing Cost pada produksi maksimum

Ra: Annual Regulated Expenses pada produksi maksimum

Va : Annual Variable Value pada produksi minimum

Sa: Annual Sales Value pada produksi minimum

6.5.4 Shut Down Point (SDP)

Shut Down Point (SDP) merupakan suatu titik dimana pabrik mengalami kerugian sebesar Fixed Cost yang menyebabkan pabrik harus tutup (Peters & Timmerhau, 2003). Nilai SDP menjadi suatu titik atau saat penentuan aktivitas produksi pada suatu pabrik. Penyebabnya antara lain Variable Cost yang terlalu tinggi atau bisa juga karena keputusan manajemen akibat tidak ekonomisnya suatu aktivitas produksi (tidak menghasilkan keuntungan). Nilai SDP pada umumnya berkisar antara 20% hingga 30%. Untuk menghitung SDP dapat menggunakan persamaan berikut:

$$SDP = \frac{0.3 \ Ra}{Sa - Va - 0.7 \ Ra} \times 100\%$$

6.5.5 Discounted Cash Flow Rate of Return (DCFR)

Discounted Cash Flow Rate of Return (DCFR) adalah interest rate yang diperoleh saat seluruh modal yang ada digunakan semuanya untuk proses produksi. DCF dari suatu pabrik dinilai menguntungkan jika melebihi satu setengah kali bunga pinjaman bank. DCF (i) dapat dihitung dengan metode Present Value Analysis dan Future Value Analysis (Peter & Timmerhaus. 2003).

Present Value Analysis:

$$(FC + WC) = \frac{C}{(1+i)} + \frac{C}{(1+i)^2} + \dots + \frac{C}{(1+i)^n} + \frac{WC}{(1+i)^n} + \frac{SV}{(1+i)^n}$$

Future Value Analysis:

$$(FC + WC)(1+i)^n = (WC + SV) + [(1+i)^{n-1} + \dots + 1) \times C]$$

Dengan trial solution, diperoleh nilai i = %.

6.6 Hasil Perhitungan

Pendirian pabrik Asam Sulfamat ini memerlukan perencanaan keuangan dan analisis yang baik untuk meninjau apakah layak atau tidaknya pabrik ini didirikan. Hasil perhitungan ditunjukkan pada Tabel 6.4 hingga Tabel 6.13.

Tabel 6.4 *Physical Plant Cost* (PPC)

Jenis	Biaya (\$)	Biaya (Rp)
Purchased Equipment Cost	\$ 8.504.251	Rp 131.688.338.403
Delivered Equipment Cost	\$ 2.126.062	Rp 32.922.084.600
Installation Cost	\$ 1.346.657	Rp 20.852.987.520
Piping Cost	\$ 1.978.637	Rp 30.639.209.016
Instrumentation Cost	\$ 2.118.118	Rp 32.799.064.397
Insulation Cost	\$ 319.375	Rp 4.945.536.135
Electrical Cost	\$ 914.673	Rp 14.163.719.824
Building Cost	\$ 3.401.700	Rp 52.675.335.361
Land and Yard Improvement	\$ 2.057.163	Rp 31.855.182.481

Total	\$ 22.766.642	Rp 352.541.457.742
-------	---------------	--------------------

Tabel 6.5 Direct Plant Cost (DPC)

Jenis	Biaya (\$)	Biaya (Rp)
Engineering and Construction	\$ 4.553.328	Rp 70.508.291.548
Physical Plant Cost (PPC)	\$ 22.766.642	Rp 352.541.457.742
Total	\$ 27.319.970	Rp 423.049.749.290

Tabel 6.6 Fixed Capital Investment (FCI)

Jenis	Biaya (\$)	Biaya (Rp)
Direct Plant Cost (DPC)	\$ 27.319.970	Rp 423.049.749.290
Contractor's Fee	\$ 1.639.198	Rp 25.382.984.957
Contingency	\$ 2.731.997	Rp 42.304.974.929
Total	\$ 31.691.166	Rp 490.737.709.177

Tabel 6.7 Working Capital Investment (WCI)

Jenis	Biaya (\$)	Biaya (Rp)
Raw Material Inventory	\$ 1.934.184	Rp 29.950.841.259
In Process Inventory	\$ 3.272	Rp 50.668.429

Product Inventory	\$ 4.711.820	Rp 72.962.538.412
Extended Credit	\$ 6.155.721	Rp 95.321.340.555
Available Cash	\$ 4.711.820	Rp 72.962.538.412
Total	\$ 17.516.818	Rp 271.247.927.069

Tabel 6.8 Direct Manufacturing Cost (DMC)

Jenis	Biaya (\$)	Biaya (Rp)
Raw Material	\$ 19.341.841	Rp 299.508.412.593
Labor Cost	\$ 871.036	Rp 13.488.000.000
Supervisiomn Cost	\$ 87.103	Rp 1.348.800.000
Maintenance Cost	\$ 633.823	Rp 9.814.754.183
Plant Supplies Cost	\$ 95.073	Rp 1.472.213.127
Royalty and Patent Cost	\$ 615.572	Rp 9.532.134.055
Utilities	\$ 13.648.921	Rp 211.353.556.526
Total	\$ 35.293.372	Rp 546.517.870.486

Tabel 6.9 Indirect Manufacturing Cost (IMC)

Jenis	Biaya (\$)	Biaya (Rp)
Payroll Overhead	\$ 130.655	Rp 2.023.200.000
Laboratory Cost	\$ 87.103	Rp 1.348.800.000
Plant Overhead Cost	\$ 435.518	Rp 6.744.000.000

Shipping and Packaging	\$ 8.002.437	Rp 123.917.742.721
Total	\$ 8.655.714	Rp 134.033.742.721

Tabel 6.10 Fixed Manufacturing Cost (FMC)

Jenis	Biaya (\$)	Biaya (Rp)
Depreciation	\$ 2.535.293	Rp 39.259.016.734
Property Taxes	\$ 316.911	Rp 4.907.377.091
Insurance Cost	\$ 316.911	Rp 4.907.377.091
Total	\$ 3.169.116	Rp 49.073.770.917

Tabel 6.11 Manufacturing Cost

Jenis	Biaya (\$)	Biaya (Rp)
Direct Manufacturing Cost	\$ 35.293.372	Rp 546.517.870.486
Indirect Manufacturing Cost	\$ 8.655.714	Rp 134.033.742.721
Fixed Manufacturing Cost	\$ 3.169.116	Rp 49.073.770.917
Total	\$ 47.118.203	Rp 729.625.384.126

Tabel 6.12 General Expense (GE)

Jenis	Biaya (\$)	Biaya (Rp)

Administration	\$ 1.413.546	Rp 21.888.761.523
Sales Expense	\$ 2.355.910	Rp 36.481.269.206
Research	\$ 1.884.728	Rp 29.185.015.365
Finance	\$ 1.476.239	Rp 22.859.569.087
Total	\$ 7.130.423	Rp 110.414.615.182

Tabel 6.13 Analisa Keuntungan

Jenis	Biaya (\$)	Biaya (Rp)
Total Penjualan	\$ 61.557.210	Rp 953.213.405.551
Total Produksi	\$ 54.248.627	Rp 840.039.999.309
Total Keuntungan	\$ 7.308.582	Rp 113.173.406.242
sebelum pajak		
Keuntungan setelah	\$ 5.700.694	Rp 88.275.256.869
pajak		

5.7 Hasil Analisa Kelayakan

6.7.1 Return On Investment (ROI)

Dari hasil Analisa, diperoleh nilai ROI antara lain sebagai berikut :

ROI sebelum pajak : 23,06%

ROI setelah pajak : 17,99%

6.7.2 Pay Out Time (POT)

Dari hasil Analisa, diperoleh nilai POT antara lain sebagai berikut :

POT sebelum pajak : 3,22 Tahun

POT setelah pajak : 3,85 Tahun

6.7.3 Break Even Point (BEP)

Tabel 6.14 Annual Fixed Cost (Fa)

Jenis	Biaya (\$)	Biaya (Rp)
Depreciation	\$ 2.535.293	Rp 39.259.016.734
Property Taxes	\$ 316.911	Rp 4.907.377.091
Insurance	\$ 316.911	Rp 4.907.377.091
Total	\$ 3.169.116	Rp 49.073.770.917

Tabel 6.15 Annual Regulated Cost (Ra)

Jenis	Biaya (\$)	Biaya (Rp)
Labor Cost	\$ 871.036	Rp 13.488.000.000
Supervision	\$ 87.103	Rp 1.348.800.000
Payroll Overhead	\$ 130.655	Rp 2.023.200.000
Plant Overhead	\$ 435.518	Rp 6.744.000.000
Laboratorium	\$ 87.103	Rp 1.348.800.000
General Expense	\$ 7.130.423	Rp 110.414.615.182
Maintenance	\$ 633.823	Rp 9.814.754.183
Plant Supplies	\$ 95.073	Rp 1.472.213.127
Total	\$ 9.470.738	Rp 146.654.382.493

Tabel 6.16 Annual Variabel Cost (Va)

Jenis	Biaya (\$)	Biaya (Rp)
Raw Material	\$ 19.341.841	Rp 299.508.412.593
Packaging and Shipping	\$ 8.002.437	Rp 123.917.742.721
Utilities	\$ 13.648.921	Rp 211.353.556.526
Royalty and Patent	\$ 615.572	Rp 9.532.134.055
Total	\$ 41.608.772	Rp 644.311.845.897

Total penjualan diperoleh sebesar

= \$ 61.557.210

= Rp 953.213.405.551

Maka diperoleh nilai BEP sebesar :

BEP
$$= \frac{Fa + 0.3Ra}{Sa - Va - 0.7Ra} \times 100\%$$
$$= 45,13\%$$

6.7.4 Shut Down Point (SDP)

Dari hasil Analisa, diperoleh nilai SDP sebesar :

SDP
$$= \frac{0.3Ra}{Sa - Va - 0.7Ra} \times 100\%$$
$$= 21,33\%$$

6.7.5 Discounted Cash Flow Rate (DCFR)

Umur Pabrik = 10 Tahun

= Rp 490.737.709.177

= Rp 271.247.927.069

 $Salvage\ Value = $5.494.703$

= \$ 9.775.990

= Rp 150.393.842.690

Maka, untuk memperoleh nilai DCFR dapat menggunakan persamaan berikut :

$$(FC + WC)(1 + i)^n = (WC + SV) + [(1 + i)^{n-1} + \dots + 1) \times C]$$

Dengan R = S, maka hasil dari trial dan error diperoleh nilai i = 17,403%

5.8 Analisa Resiko Pabrik

Untuk mendirikan suatu pabrik, resiko pabrik perlu diperhatikan apakah pabrik tersebut memiliki resiko yang rendah (*low risk*) atau beresiko tinggi (*high risk*). Adapun parameter untuk menentukan pabrik asam sulfamate yang akan berdiri. Parameter yang dilihat antara lain:

1. Kondisi Operasi

Proses operasi yang digunakan yaitu dengan *hydroxide process*. Proses tersebut dijalankan pada tekanan 1 atm untuk keseluruhan alat proses, dan memiliki variasi suhu operasi yang dijalankan. Suhu tertinggi terdapat pada alat *Rotary Dryer* yang beroperasi pada suhu 100°C.

2. Karakteristik Bahan Baku dan Produk

a. Bahan Baku

Bahan baku yang digunakan yaitu Urea dan Oleum. Urea merupakan padatan yang mudah larut dalam air mudah menyerap air

(higroskopis). Sedangkan Oleum merupakan merupakan oksidan kuat, mudah terdekomposisi data panas, korosif, bereaksi dengan bahan yang mudah terbakar, dan mereduksi bahan organic.

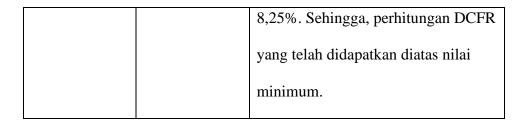
b. Produk

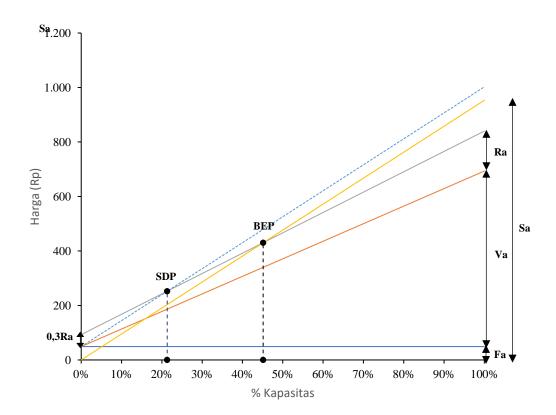
Produk yang dihasilkan merupakan Asam Sulfamat. Asam Sulfamat merupakan senyawa yang berwarna putih, tidak mudah menguap, tidak higroskopis, tidak berbau, dan cenderung stabil.

3. Sumber Bahan Baku

Bahan baku yang digunakan yaitu Urea dan Oelum. Urea dapat diperoleh dari PT. Petrokimia Gresik dengan kemurnian 98,5%. Sedangkan Oleum dapat diperoleh dari PT. Indonesian Acids Industry Ltd. yang berlokasi di Bekasi. Untuk memperoleh bahan baku tersebut secara keseluruhan dapat terjangkau karena memiliki akses transportasi atau mobilitas sangat cepat dengan lokasi rencana pabrik.

Berdasarkan penjelasan dari beberapa poin diatas. Dari segi kondisi operasi, sifat/karakteristik bahan baku serta produk dan sumber bahan baku, maka pabrik ini tergolong memiliki resiko yang rendah.


5.9 Analisa Kelayakan


Untuk Analisa kelayakan, dapat disinggung dari Analisa resiko yaitu pabrik tergolong dalam resiko rendah dan berikut adalah hasil dari Analisa kelayakan yang telah diperhitungkan. Berdasarkan Tabel, Analisa kelayakan ekonomi pada pabrik Asam Sulfamat memenuhi semua parameter kelayakan ekonomi. Dari hasil analisis ekonomi pabrik tersebut,

dapat disimpulkan bahwa pabrik yang akan berdiri termasuk kedalam pabrik yang memiliki resiko rendah (*low risk*).

Tabel 6.17 Analisa Kelayakan

Parameter	Terhitung	Keterangan	
ROI sebelum pajak	23,06%	Menurut Aries dan Newton, pabrik industrial chemical dengan resiko rendah dikatakan layak jika minimal ROI sebelum pajak sebesar 11%. Jadi dapat disimpulkan bahwa pabrik ini layak untuk didirikan	
POT sebelum pajak	3,22 Tahun	Menurut Aries dan Newton, untuk pabrik industrial chemical memiliki nilai maksimal 5 tahun untuk low risk. Jadi dapat disimpulkan bahwa pabrik ini layak untuk didirikan	
BEP	45,13%	Menurut Aries dan Newton, nilai BEP direntang angka dari 40% hingga 60%. Nilai tersebut sudah memenuhi persyaratan untuk disebut layak.	
SDP	21,33%		
DCFR	17,40%	Diketahui suku bunga bank sebsar 5,5%. Dari perhitungan diperoleh suku bunga bank minimum sebesar	

Gambar 6.2 Analisa Kelayakan

BAB VII

KESIMPULAN DAN SARAN

7.1 Kesimpulan

- Pabrik Asam Sulfamat dari Urea dengan kapasitas 10.000 Ton/tahun didirikan dengan alas an kebutuhan ekspor yan meningkat tiap tahunnya sehingga dapat mengurangi kebutuhan impor dan dapat menambah pendapatan negara dengan melakukan produksi dan mengekspor bahan tersebut.
- Pabrik Asam Sulfamat dari Urea dengan kapasitas 10.000 Ton/tahun membutuhkan bahan baku berupa urea sebesar 858,31 kg/jam dan oleum sebesar 2.546,32 kg/jam.
- 3. Pabrik Asam Sulfamat dari Urea dirancang dengan bentuk Perseroan Terbatas (PT) yang beroperasi selama 300 hari dalam 1 tahun dan akan didirikan pada tahun 2027 di Gresik dengan luas tanah sebesar 15188 m² dan luas bangunan sebesar 13744 m² dengan jumlah karyawan sebanyak 114 orang.
- 4. Ditinjau berdasarkan proses produksi, sifat bahan baku dan produk, pabrik Asam Sulfamat dari Urea tergolong pabrik yang memiliki resiko rendah (*low risk*)
 - Berdasarkan analisis ekonomi diperoleh data sebagai berikut :
- a. Keuntungan sebelum pajak sebesar Rp 113.173.406.242 per tahun dan setelah pajak sebesar Rp 88.275.256.869 per tahun

- b. Return Of Investment (ROI) sebelum pajak sebesar 23,06% dan setelah pajak sebesar 17,99%. Syarat minimum ROI untuk pabrik resiko rendah adalah 11%.
- c. Pay Out Time (POT) sebelum pajak 3,22 tahun dan setelah pajak 3,85 tahun.
- d. Break Even Point (BEP) sebesar 45,13%. Nilai tersebut sudah termsuk kedalam syarat BEP dari pabrik kimia yaitu antara 40% sampai 60%.
- e. Shut Down Point (SDP) sebesar 21,33%.
- f. Discounted Cash Flow Rate (DCFR) sebesar 17,40%. Syarat minimum DCFR adalah diatas suku bunga pinjaman bank yaitu 1,5 x suku bunga pinjaman bank.

Berdasarkan hasil Analisa ekonomi dan kelayakan dapat disimpulkan bahwa pabrik Asam Sulfamat dari Urea dengan kapasitas 10.000 Ton/tahun layak untuk didirikan

7.2 Saran

Dalam pra-rancangan pabrik kimia diperlukan pengetahuan dan pemahaman konsep-konsep dasar yang dapat meningkatkan kelayakan suatu pabrik kimia, antara lain :

 Optimasi pemilihan alat proses dan alat penunjang serta bahan baku perlu di perhatikan agar pabrik dapat menghasilkan untung yang lebih banyak

- 2. Pengolahan limbah perlu diperhatikan agar kedepannya pabrik-pabrik kimia akan lebih ramah lingkungan
- 3. Produksi Asam Sulfamat diharapkan akan memenuhi kebutuhan di masa yang akan datang dan dapat memenuhi pasar internasional.

DAFTAR PUSTAKA

- Badan Perencanaan Pembangunan, Penelitian, dan Pengembangan Daerah Kabupaten Gresik. 2011. *Rencana Tata Ruang Wilayah Kabupaten Gresik Tahun 2010-2030*. Perda Nomor 8 Tahun 2011. Pemerintah Kabupaten Gresik.
- Badan Pusat Statistika. 2022. Kebutuhan Impor Asam Sulfamat 2022.
- Benitez, J. 2009. *Mass Transfer Operations 2th Edition*. Hoboken, New Jersey: John Wiley and Sons.
- Coelf, M. dan Antonietti, M. 2008. *Mesocrystals and Nonclassical Crystallization*. Inggris: John Willey and Sons Ltd.
- Coulson, J.M. dan Richardson, J.F. 1993. "Chemical Engineering" 6 ed, vol.1.

 Japan:Pergamon Press.
- Cupery, M. 1938. Sulfamic Acid A New Industrial Chemical. *Industrial and Engineering Chemistry*. 30(6): 627-631.
- Cyntia, Rizky F., Ornastya P.W., dan Ahmad A.W. 2015. *Crystallizer*. UniversitasMuhammadiyah: Surakarta.
- Evans, J. E., dan Lobo, W. E. 1939. *Heat Transfer in the Radiant Section of PetroleumHeaters*. New York: Kellog Company.

- Geankoplis, C. J., Hersel, A. A. Lepek, D. H. 2018. *Transport Processes and Separation Process Principles 5th Edition*. Upper Saddle River, New Jersey: Prentice Hall.
- Holland, F. dan Bragg, R. 1995. *Fluid Flow for Chemical Engineers 2th Edition*.

 British:Butterworth-Heinemann.

Holland, F. A. dan Chapman, F. S., 1966. *Liquid Mixing and Processing in Stired Tank. 1st ed.* London: Reinhold Publishing Co-Chapman and Hall, Ltd.

Joback, K. G., & Reid, R. C. 1987. Estimation of Pure-Component Properties from Group-Contributions. *Chemical Engineering Communications*, 57(1-6), 233-243.

Kern, D. Q. 1965. Process Heat Transfer. New York: McGraw-Hill Book, Co.

Li, Chen. 2018. Sulfonating Agent Sulfamic Acid Production Plant. *Austalian Patent Office*. AU2018102002A4.

Lide, D. R. 2003. *Handbook of Chemistry and Physics Ed. 84th*. US: CRC Press. Maulana, Y.S. 2018. Analisis Faktor-Faktor yang Mempengaruhi Pemilihan Lokasi Pabrik PT. Sung Chang Indonesia Cabang Kota Banjar. *Jurnal Ilmiah ADBIS*. 2(2): 211-221.

McCabe, W., Smith, J. C., dan Harriot, P. 1993. *Unit Operation of Chemical Engineering*. United States of America: McGraw Hill Book, Co.

Megyesy, E. F. 2001. *Pressure Vessel Handbook 12th Edition*. Oklahoma: University of Tulsa.

- Perry, R. H. 1997. *Perry's Chemical Engineers' Handbook 7th Edition*. United States of America. The McGraw Hill Companies.
- Peters, M. S., dan Timmerhauss, H. C. 1991. "Plant Design and Economics for ChemicalEngineering", 4th Ed. Tokyo: Mc. Graw Hill.
- Poling, B. E., Thomson, G. H., Friend, D. G., Rowley, R. L., dan Wilding, W. V. 2008. *Perry's Chemical Engineers' Handbook. Ed. 8th*. United State: McGraw-Hill Companies, Inc.
- Sinnott, R. K. 2005. *Coulson and Richardson's Chemical Engineering Design 4th Edition*, Volume 6. (Hal. 322: Heat Capacities of the Element). Oxford: Elsevier Butterworth-Heinemann.
- Smith, J. M. 1982. *Chemical Engineering Kinetics* 2nd *Edition*. New York: McGraw HillBook Company.
- Speight, J. G. 2019. 6-History Of Gas Processing. Natural Gas, 2th Edition.

 Boston: GulfProfessional Publishing.
- Treybal, R. E. 1980. Mass Transfer Operations. New York: McGraw-Hill Book Co.
- Yaws, C. L. 1999. *Chemical Properties Handbook*. New York: McGraw Hill Education

LAMPIRAN A

Reaktor

Fungsi : Mereaksikan Urea dengan oleum untuk menghasilkan asam

sulfamat

Tipe reactor : Reaktor Alir Tangki Berpengaduk

Kondisi Operasi : Suhu 80°C

Tekanan 1 atm

Konversi 90%

Reaksi : $CO(NH_2)_{2(s)} + H_2S_2O_{7(aq)} \rightarrow 2NH_3SO_{3(s)} + CO_{2(g)}$

Langkah Perancangan:

A. Komposisi Umpan Masuk Reaktor

1. Reaksi Stoikiometri

Konversi: 90%

Reaksi : $CO(NH_2)_2 + H_2S_2O_7 \rightarrow 2NH_3SO_3 + CO_2$

Mula-mula: 14,31 14,31

Reaksi : 12,87 12,87 25,75 12,87

Sisa : 1,43 1,43 25,75 12,87

2. Neraca Massa Reaktor

Komponen	BM	Input		Output	
		Kmol/jam	Kg/jam	Kmol/jam	Kg/jam
$CO(NH_2)_2$	60	14,31	858,31	1,43	85,83

$H_2S_2O_7$	178	14,31	2546,32	1,43	254,63
$2NH_3SO_{3(aq)}$	97			25,75	2497,68
$2NH_3SO_{3(s)}$	97				
CO ₂	44			12,87	566,48
Total		28,62	3404,63	41,48	3404,63

3. Menghitung Densitas Komponen

Untuk menghitung densitas dapat digunakan persamaan:

$$\rho = \frac{A}{B^{(1+\left(1-\frac{t}{Tc}\right)^n)}}$$

Komponen	A	В	n	Тс	ρ
$CO(NH_2)_2$	0,57	0,34	0,29	705	1390,07
$H_2S_2O_7$	1,05	0,39	0,29	925	2272,30
$2NH_3SO_3$	0,57	0,34	0,70	1415,85	1390,07
CO_2					

(Yaws, 1999)

Sehingga diperoleh densitas:

 $CO(NH_2)_2: 1390,07 \text{ kg/m}^3$

 $H_2S_2O_7$: 2272,30 kg/m³

 $2NH_3SO_3: 1390,07 \text{ kg/m}^3$

4. Menghitung Viskositas Komponen

Untuk menghitung viskositas dapat digunakan persamaan :

$$\ln(\mu) = a + \frac{b}{t} + c\ln(t) + dt^2$$

Komponen	A	В	С	D	μ
$CO(NH_2)_2$	-1,753 8,42E+0		-8,24E-	5,47E-	0,686
	-1,733	0, 4 2L+02	13	16	0,000
II C O	6 124	2 40E+02	-7,71E-	1,79E-	2.065
$H_2S_2O_7$	-6,134	3,49E+03	03	05	3,065
$2NH_3SO_3$	-1,753	8,42E+02	-8,24E-	5,47E-	0,686
2NH ₃ SU ₃	-1,733	0,42L+02	13	16	0,080
CO_2					

(Yaws, 1999)

Sehingga diperoleh viskositas:

 $CO(NH_2)_2:0,686$ cP

 $H_2S_2O_7$: 3,065 cP

 $2NH_3SO_3:0,686 cP$

5. Menghitung Laju Alir Volumetrik

Setelah menghitung densitas dan viskositas dari masing-masing komponen, maka selanjutnya dapat menghitung kecepatan volumetris dengan persamaan :

$$Fv = \frac{massa}{\rho}$$

Komponen	Massa (kg/jam)	ρ (kg/m3)	Fv
$CO(NH_2)_2$	85,83	1390,07	0,06
$H_2S_2O_7$	254,63	2272,30	0,11
$2NH_3SO_3$	2497,68	1390,07	1,80
Total	2838,15		1,97

B. Menentukan Volume Cairan

Untuk menghitung volume cairan digunakan persamaan :

$$V = \frac{F_{Ao}X}{-r_A}$$

Berdasarkan perhitungan menggunakan persamaan tersebut dapat diperoleh volume cairan didalam reactor sebesar 3,08 m³

C. Menentukan Ukuran Reaktor

Angka keamanan: 20%

Volume reactor: 976,19 Gallon

Reaktor standar:

Kapasitas terhitung : 1000 gallon Kapasitas actual : 1075 gallon

Area jaket : 118 ft²

Diameter luar : 66 in Straight shell : 66 in

(Harry Silla, 2003)

1. Menghitung tebal dinding reaktor

Tebal dinding reactor dapat dihitung dengan persamaan:

$$ts = \frac{P_{gauge}R_o}{fall\ \varepsilon + 0.4\ P_{gauge}} + C''$$

Ts = Tebal dinding reactor (m)

Pgauge = tekanan terukur (kPa)

Ro = jari-jari luar (m)

Fall = allowable stress (kPa)

 ε = efisiensi sambungan

C'' = factor korosi (m)

Sehingga diperoleh tebal shell = 0,002 m = 0,077 in = 3/16 in

ID shell = 1,667 m

OD shell = 1,677 m

2. Menghitung tebal head reaktor

Bahan konstruksi = Stainless Steel SA-283

Bentuk head = Torispherical flanged and dished head

Tebal head dapat dihitung dengan persamaan:

$$t_h = \frac{P_{gauge}R_ow}{fall\ \varepsilon - 0.1\ P_{gauge}} + C''$$

Dimana nilai w dapat diperoleh dengan persamaan:

$$w = \frac{1}{4} \left(3 + \sqrt{\frac{r}{icr}} \right)$$

Sehingga diperoleh:

W sebesar 2,82 m

Tebal head sebesar 0,004 m

3. Menentukan ukuran head

ID = 1,667 m

r = 1,677 m

Icr = 0,102 m

a = ID/2 = 0.833 m

AB = 0,732 m

BC = 1,575 m

AC = 1,394 m

b = 0.282 m

Sf (straight of flange) = 2 in (Brownell,1959)

Jadi tinggi head total (OA) = Sf + b + th = 0.337 m

Persamaan volume head untuk Torispherical Dished Head adalah:

$$V_h = 0.000049 \times ID^3 = 7.556 \text{ ft3} = 0.214 \text{ m3}$$

Sehingga diperoleh:

Volume reactor = Vshell + Vhead = $4,12 \text{ m}^3$

Tinggi reactor = 2 OA + tinggi shell = 2,35 m

D. Pengaduk

1. Jenis Pengaduk

Komponen	Kg/Jam	Fraksi	μ (cP)	μ.massa
		Massa	μ(ει)	
CO(NH2)2	85,83	0,030	0,686	0,021
H2S2O7	254,63	0,090	3,065	0,275
2NH3SO3	2497,68	0,880	0,686	0,604
	2838,15	1,000		0,899

Diperoleh:

$$\mu = 0.899 \text{ cP}$$

Jenis Pengaduk = flat-blade turbin

2. Ukuran Pengaduk

Di = 0,417 m

B = 0.139 m

r = 0.139 m

S = 0.069 m

W = 0.111 m

z = 0,559 m

3. Kecepatan Putar Pengaduk

Kecepatan putar berkisar antara 400 rpm hingga 800 rpm.

Kecepatan putar (v) = 121,92 m/menit

$$rpm = v \times \frac{1}{\pi \times Di} = 69,881 \text{ rpm}$$

4. Bilangan Reynold

Bilangan Reynold dapat dihitung menggunakan persamaan:

$$Re = \frac{\rho \times N \times Di^2}{\mu}$$

Diperoleh nilai Re sebesar 575798,2. Karena nilai Re>2100 maka aliran turbulen.

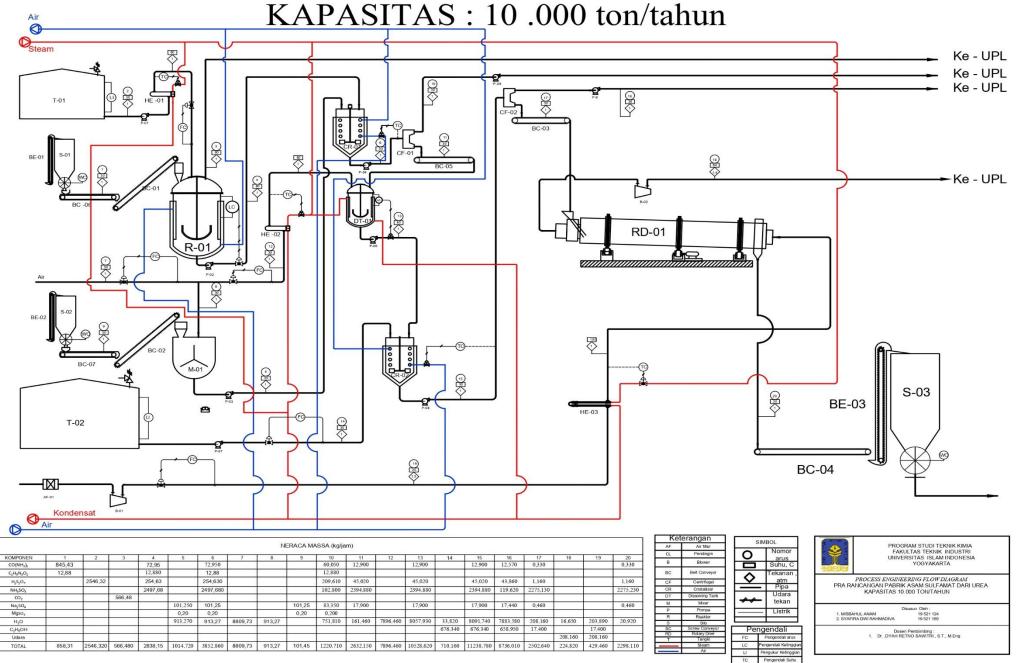
5. Daya Penggerak

Daya penggerak dapat dihitung menggunakan persamaan:

$$Po = Np \times \rho \times N^3 \times Di^5$$

Untuk nilai Np dapat diperoleh dari Buku Towler Gambar 10.59 Halaman 619. Berdasarkan gambar diperoleh nilai Np sebesar 4.

Sehingga diperoleh nilai Po sebesar 0,65 HP.


Efisiensi motor dapat diperoleh dari buku towler table 3.1 halaman 111 yakni sebesar 80%.

$$Daya\ motor = \frac{Po}{effisiensi}$$

Daya Motor = 0.8 HP

Daya motor standart = 1 HP

PROCESS ENGINEERING FLOW DIAGRAM PRARANCANGAN PABRIK ASAM SULFAMAT DARI UREA

LAMPIRAN C KARTU KONSULTASI BIMBINGAN PRA-RANCANGAN

Nama Mahasiswa 1 : Misbahul Anam

NIM Mahasiswa 1 : 19521124

Nama Mahasiswa 2 : Syafira Dwi Rahmadiva

NIM Mahasiswa 2 : 19521189

PRA-RANCANGAN PABRIK ASAM SULFAMAT DARI UREA KAPASITAS 10.000 TON/TAHUN

Mulai Masa Bimbingan : 9 April 2023

Batas Akhir Bimbingan : 6 Oktober 2023

No	Tangga l	Materi Bimbingan	Paraf Dosen
1	12-10- 2022	Perkenalan dan diskusi awal mengenai judul yang akan dipilih	R
2	19-10- 2022	Diskusi mengenai pengerjaan Prarancangan Pabrik	R

3	10-11- 2022	Diskusi mengenai kapasitas pabrik	R
4	21-03- 2023	Menentukan Diagram Alir	(K
5	31-03- 2023	Bimbingan Neraca Massa	(K
6	11-07- 2023	Revisi neraca massa dan Pemahaman tentang neraca massa	(K
7	26-07- 2023	Kinetika reaksi	(K
8	09-08- 2023	Materi tentang reaktor Adiabatis	(K
9	05-09- 2023	Alat Proses	(K
10	18-09- 2023	Perancangan PEFD	(K
11	22-09- 2023	Tata Letak Pabrik	(K

12	06-09- 2023	Grafik Ekonomi	K
----	----------------	----------------	---

Dosen Pembimbing

Dr. Dyah Retno Sawitri S.T., M.Eng