DAFTAR ISI

Judul	i
Pengesahan	ii
PERNYATAAN BEBAS PLAGIASI	iii
KATA PENGANTAR	iv
DAFTAR ISI	vi
DAFTAR TABEL	ix
DAFTAR GAMBAR	xi
DAFTAR LAMPIRAN	xiv
DAFTAR NOTASI DAN SINGKATAN	xviii
ABSTRAK	XX
ABSTRACT	xxi
BAB I PENDAHULUAN	1
1.1 LATAR BELAKANG	1
1.2 RUMUSAN MASALAH	4
1.3 TUJUAN PENELITIAN	4
1.4 MANFAAT PENELITIAN	4
1.5 BATASAN MASALAH	5
BAB II TINJAUAN PUSTAKA	6
2.1 PENGERTIAN SCC	6
2.2 PENELITIAN TERDAHULU	6
2.3 KEASLIAN PENELITIAN	8
BAB III LANDASAN TEORI	10
3.1 UMUM	10
3.2 SELF COMPACTNG CONCRETE (SCC)	11
3.2.1 Pengertian SCC	11
3.2.2 Karakteristik SCC	11
3.3 MATERIAL PEMBENTUK SCC	13

3.3.1 Semen Portland	14
3.3.2 Silica Fume	15
3.3.3 Superplasticizer	16
3.3.4 Agregat Halus	17
3.3.5 Agregat Kasar	21
3.3.6 Air	24
3.4 DESAIN CAMPURAN SCC MUTU TINGGI	25
3.5 PERAWATAN BENDA UJI	30
3.6 PENGUJIAN SCC MUTU TINGGI	31
3.6.1 <i>Slump</i>	31
3.6.2 Slump-flow	32
3.6.3 Kuat Tekan Beton	33
3.6.4 Modulus Elastisitas Beton	36
3.6.5 Kuat Tarik/Belah Beton	39
BAB IV METODOLOGI PENELITIAN	40
4.1 UMUM	40
4.2 PERALATAN PENELITIAN	40
4.2.1 Pengujian Agregat	40
4.2.2 Pembuatan Benda Uji	43
4.2.3 pengujian	44
4.3 PENGUJIAN AGREGAT	45
4.3.1 Agregat Halus	45
4.3.2 Agregat Kasar	48
4.4 MIX DESIGN BETON DAN JUMLAH BENDA UJI	51
4.5 PELAKSANAAN PENELITIAN SCC	52
4.5.1 Pembuatan Benda Uji	52
4.5.2 Pengujian Sampel Benda Uji	54
4.6 KERANGKA KONSEP PENELITIAN	56
BAB V HASIL DAN PEMBAHASAN	58
5.1 PENGUJIAN AGREGAT	58
5.1.1 Agregat Halus (Pasir Sungai Progo)	58

5.1.2 Agregat Kasar (Kerikil Clereng)	62
5.2 DESAIN CAMPURAN SCC MUTU TINGGI	66
5.3 KOMPOSISI CAMPURAN SCC MUTU TINGGI	70
5.4 PENGUJIAN SCC MUTU TINGGI	71
5.4.1 <i>Slump</i>	71
5.4.2 Slump-flow	73
5.4.3 Kuat Tekan Beton	74
5.4.4 Modulus Elastisitas Beton	89
5.4.5 Kuat Tarik/Belah Beton	98
BAB VI KESIMPULAN DAN SARAN	106
6.1 KESIMPULAN	106
6.2 SARAN	107
DAFTAR PUSTAKA	108
LAMPIRAN	111
3 1 5	
TO THE WASHINGTON	

DAFTAR TABEL

Tabel 2.1	Perbedaan antara penelitian terdahulu dan sekarang	9
Tabel 3.1	Kriteria persyaratan SCC	12
Tabel 3.2	Karakteristik viscocrete 1003	16
Tabel 3.3	Fraksi volume agregat kasar yang disarankan	26
Tabel 3.4	Estimasi pertama kebutuhan air pencampuran dan kadar udara	
	beton segar berdasarkan pasir dengan 35% rongga udara	28
Tabel 3.5	Rasio W/(c + p) maksimum yang disarankan (tanpa	
	superplasticizer)	29
Tabel 3.6	Penetapan nilai slump adukan beton	31
Tabel 3.7	Workability nilai slump pada beton tanpa zat-tambah	32
Tabel 3.7	Faktor pembesar standar deviasi	35
Tabel 4.1	Jumlah benda uji silinder beton non SCC (BN) dan SCC	52
Tabel 5.1	Hasil pengujian berat jenis dan penyerapan air pada agregat	59
Tabel 5.2	Hasil pengujian berat isi padat agregat halus	59
Tabel 5.3	Hasil pengujian analisa saringan agregat halus	60
Tabel 5.4	Hasil pengujian kandungan lumpur dalam agregat	62
Tabel 5.5	Hasil pengujian berat jenis dan penyerapan air pada agregat	63
Tabel 5.6	Hasil pengujian berat isi padat agregat kasar	64
Tabel 5.7	Hasil Analisa saringan agregat kasar (kerikil Clereng)	64
Tabel 5.8	Hasil <i>mix design</i> kebutuhan bahan 1 m³	71
Tabel 5.9	Hasil pengujian nilai slump	72
Tabel 5.10	Hasil pengujian nilai slump-flow SCC	74
Tabel 5.11	Hasil pengujian kuat tekan beton pada umur 7 hari	76
Tabel 5.12	2 Hasil pengujian kuat tekan beton pada umur 14 hari	77
Tabel 5.13	B Hasil pengujian kuat tekan beton pada umur 21 hari	77
Tabel 5.14	Hasil pengujian kuat tekan beton pada umur 28 hari	78

Tabel 5.15 perkembangan kekuatan kuat tekan beton terhadap kuat tekan	
rencana = 41,4 MPa	82
Tabel 5.16 Hasil analisa selisih atau penyimpangan dari kuat tekan beton	
pada umur 28 hari	88
Tabel 5.17 Analisa hasil tegangan regangan dari sampel beton non SCC	
(BN) pada no.2 dari umur pengujian 28 hari	90
Tabel 5.18 Hasil analisa modulus elastisitas dari kuat tekan beton pada	
umur 7 hari	94
Tabel 5.19 Hasil analisa modulus elastisitas dari kuat tekan beton pada	
umur 14 hari	95
Tabel 5.20 Hasil analisa modulus elastisitas dari kuat tekan beton pada	
umur 21 hari	95
Tabel 5.21 Hasil analisa modulus elastisitas dari kuat tekan beton pada	
umur 28 hari	96
Tabel 5.22 Hasil analisa kuat tarik/belah beton pada umur 7 hari	99
Tabel 5.23 Hasil analisa kuat tarik/belah beton pada umur 14 hari	100
Tabel 5.24 Hasil analisa kuat tarik/belah beton pada umur 21 hari	100
Tabel 5.25 Hasil analisa kuat tarik/belah beton pada umur 28 hari	101

METAL WHETE STATES

DAFTAR GAMBAR

Gambar 3.1 Konsep dasar produksi SCC	13
Gambar 3.2 Kerucut abrams	31
Gambar 3.3 Posisi alat pada pengujian slump-flow	32
Gambar 3.4 Kurva tegangan regangan beton	36
Gambar 3.5 Modulus sekan dan modulus tangen beton	37
Gambar 4.1 Timbangan	41
Gambar 4.2 Piknometer	41
Gambar 4.3 Oven listrik	42
Gambar 4.4 Ayakan <i>mesh</i>	42
Gambar 4.5 Mixer/pengaduk beton	43
Gambar 4.6 Cetakan silinder beton	43
Gambar 4.7 Kaliper	44
Gambar 4.8 Mesin los angeles	44
Gambar 4.9 Mesin uji desak tipe ADR 3000	45
Gambar 4.10 Flow chart tahapan pengujian benda uji di laboratorium	57
Gambar 5.1 Grafik hubungan persen lolos kumulatif dengan diameter	
lubang ayakan agregat halus (pasir sungai Progo)	61
Gambar 5.2 Grafik hubungan persen lolos kumulatif dengan diameter	
lubang ayakan agregat kasar (kerikil Clereng)	65
Gambar 5.3 Slump beton non SCC (untuk beton mutu tinggi tanpa zat-	
tambah)	72
Gambar 5.4 Slump-flow penelitian SCC	73
Gambar 5.5 Pengujian kuat tekan beton	75
Gambar 5.6 Grafik hubungan kuat tekan rerata pada beton tanpa zat-tambah	
(BN) dengan umur beton	78
Gambar 5.7 Grafik hubungan kuat tekan rerata pada SCC-1 dengan umur	
beton	79

Gambar 5.8 (Grafik hubungan kuat tekan rerata pada SCC-2 dengan umur	
1	beton	79
Gambar 5.9 (Grafik hubungan kuat tekan rerata pada SCC-3 dengan umur	
1	beton	80
Gambar 5.10	Grafik hubungan kuat tekan rerata pada SCC-4 dengan umur	
	beton	80
Gambar 5.11	Grafik hubungan kuat tekan rerata pada SCC-5 dengan umur	
	beton	81
Gambar 5.12	Komparasi grafik hubungan kuat tekan beton dan umur beton	
	untuk semua tipe benda uji	81
Gambar 5.13	grafik hubungan perkembangan kenaikan kekuatan kuat tekan	
	beton dan umur pengujian	82
Gambar 5.14	Grafik hubungan kuat tekan beton dan variasi tipe benda uji	
	pada umur pengujian 7 hari	83
Gambar 5.15	Grafik hubungan kuat tekan beton dan variasi tipe benda uji	
	pada umur pengujian 14 hari	83
Gambar 5.16	Grafik hubungan kuat tekan beton dan variasi tipe benda uji	
	pada umur pengujian 21 hari	84
Gambar 5.17	Grafik hubungan kuat tekan beton dan variasi tipe benda uji	
	pada umur pengujian 28 hari	84
Gambar 5.18	Komparasi grafik hubungan kuat tekan beton dan variasi tipe	
	benda uji pada umur pengujian 7, 14, 21, dan 28 hari	85
Gambar 5.19	Perbandingan bidang permukaan benda uji	86
Gambar 5.20	Grafik hubungan tegangan regangan beton non SCC (BN)	
	pada no.2 dari umur pengujian 28 hari	92
Gambar 5.21	Komparasi grafik hubungan modulus elastisitas beton dan	
	variasi tipe benda uji pada umur pengujian 7, 14, 21, dan	
	28 hari	97
Gambar 5.22	Komparasi grafik hubungan modulus elastisitas beton dan	
	variasi tipe benda uji pada umur pengujian 7, 14, 21, dan	
	28 hari (empiris)	97

Gambar 5.23	Grafik hubungan kuat tarik/belah beton dan variasi tipe benda	
	uji pada umur pengujian 7 hari	101
Gambar 5.24	Grafik hubungan kuat tarik/belah beton dan variasi tipe benda	
	uji pada umur pengujian 14 hari	102
Gambar 5.25	Grafik hubungan kuat tarik/belah beton dan variasi tipe benda	
	uji pada umur pengujian 21 hari	102
Gambar 5.26	Grafik hubungan kuat tarik/belah beton dan variasi tipe benda	
	uji pada umur pengujian 28 hari	103
Gambar 5.27	Komparasi grafik hubungan kuat tarik/belah beton dan variasi	
	tipe benda uji pada umur pengujian 7, 14, 21, dan 28 hari	103
Gambar 5.28	Perbedaan beton padat dengan beton yang berpori	104
	SCHUNGER JEEF	

DAFTAR LAMPIRAN

- Lampiran 1. Data hasil analisa modulus elastisitas beton dengan variasi benda uji non SCC (BN) pada no.1 dari umur pengujian 7 hari
- Lampiran 2. Data hasil analisa modulus elastisitas beton dengan variasi benda uji non SCC (BN) pada no.2 dari umur pengujian 7 hari
- Lampiran 3. Data hasil analisa modulus elastisitas beton dengan variasi benda uji SCC-1 pada no.1 dari umur pengujian 7 hari
- Lampiran 4. Data hasil analisa modulus elastisitas beton dengan variasi benda uji SCC-1 pada no.2 dari umur pengujian 7 hari
- Lampiran 5. Data hasil analisa modulus elastisitas beton dengan variasi benda uji SCC-2 pada no.1 dari umur pengujian 7 hari
- Lampiran 6. Data hasil analisa modulus elastisitas beton dengan variasi benda uji SCC-2 pada no.2 dari umur pengujian 7 hari
- Lampiran 7. Data hasil analisa modulus elastisitas beton dengan variasi benda uji SCC-3 pada no.1 dari umur pengujian 7 hari
- Lampiran 8. Data hasil analisa modulus elastisitas beton dengan variasi benda uji SCC-3 pada no.2 dari umur pengujian 7 hari
- Lampiran 9. Data hasil analisa modulus elastisitas beton dengan variasi benda uji SCC-4 pada no.1 dari umur pengujian 7 hari
- Lampiran 10. Data hasil analisa modulus elastisitas beton dengan variasi benda uji SCC-4 pada no.2 dari umur pengujian 7 hari
- Lampiran 11. Data hasil analisa modulus elastisitas beton dengan variasi benda uji SCC-5 pada no.1 dari umur pengujian 7 hari
- Lampiran 12. Data hasil analisa modulus elastisitas beton dengan variasi benda uji non SCC (BN) pada no.1 dari umur pengujian 14 hari
- Lampiran 13. Data hasil analisa modulus elastisitas beton dengan variasi benda uji non SCC (BN) pada no.3 dari umur pengujian 14 hari

- Lampiran 14. Data hasil analisa modulus elastisitas beton dengan variasi benda uji SCC-1 pada no.1 dari umur pengujian 14 hari
- Lampiran 15. Data hasil analisa modulus elastisitas beton dengan variasi benda uji SCC-1 pada no.2 dari umur pengujian 14 hari
- Lampiran 16. Data hasil analisa modulus elastisitas beton dengan variasi benda uji SCC-2 pada no.1 dari umur pengujian 14 hari
- Lampiran 17. Data hasil analisa modulus elastisitas beton dengan variasi benda uji SCC-2 pada no.2 dari umur pengujian 14 hari
- Lampiran 18. Data hasil analisa modulus elastisitas beton dengan variasi benda uji SCC-3 pada no.2 dari umur pengujian 14 hari
- Lampiran 19. Data hasil analisa modulus elastisitas beton dengan variasi benda uji SCC-3 pada no.3 dari umur pengujian 14 hari
- Lampiran 20. Data hasil analisa modulus elastisitas beton dengan variasi benda uji SCC-4 pada no.1 dari umur pengujian 14 hari
- Lampiran 21. Data hasil analisa modulus elastisitas beton dengan variasi benda uji SCC-4 pada no.2 dari umur pengujian 14 hari
- Lampiran 22. Data hasil analisa modulus elastisitas beton dengan variasi benda uji SCC-5 pada no.2 dari umur pengujian 14 hari
- Lampiran 23. Data hasil analisa modulus elastisitas beton dengan variasi benda uji SCC-5 pada no.3 dari umur pengujian 14 hari
- Lampiran 24. Data hasil analisa modulus elastisitas beton dengan variasi benda uji non SCC (BN) pada no.2 dari umur pengujian 21 hari
- Lampiran 25. Data hasil analisa modulus elastisitas beton dengan variasi benda uji non SCC (BN) pada no.3 dari umur pengujian 21 hari
- Lampiran 26. Data hasil analisa modulus elastisitas beton dengan variasi benda uji SCC-1 pada no.2 dari umur pengujian 21 hari
- Lampiran 27. Data hasil analisa modulus elastisitas beton dengan variasi benda uji SCC-1 pada no.3 dari umur pengujian 21 hari

- Lampiran 28. Data hasil analisa modulus elastisitas beton dengan variasi benda uji SCC-2 pada no.2 dari umur pengujian 21 hari
- Lampiran 29. Data hasil analisa modulus elastisitas beton dengan variasi benda uji SCC-2 pada no.3 dari umur pengujian 21 hari
- Lampiran 30. Data hasil analisa modulus elastisitas beton dengan variasi benda uji SCC-3 pada no.1 dari umur pengujian 21 hari
- Lampiran 31. Data hasil analisa modulus elastisitas beton dengan variasi benda uji SCC-3 pada no.3 dari umur pengujian 21 hari
- Lampiran 32. Data hasil analisa modulus elastisitas beton dengan variasi benda uji SCC-4 pada no.2 dari umur pengujian 21 hari
- Lampiran 33. Data hasil analisa modulus elastisitas beton dengan variasi benda uji SCC-4 pada no.3 dari umur pengujian 21 hari
- Lampiran 34. Data hasil analisa modulus elastisitas beton dengan variasi benda uji SCC-5 pada no.2 dari umur pengujian 21 hari
- Lampiran 35. Data hasil analisa modulus elastisitas beton dengan variasi benda uji SCC-5 pada no.3 dari umur pengujian 21 hari
- Lampiran 36. Data hasil analisa modulus elastisitas beton dengan variasi benda uji non SCC (BN) pada no.1 dari umur pengujian 28 hari
- Lampiran 37. Data hasil analisa modulus elastisitas beton dengan variasi benda uji non SCC (BN) pada no.2 dari umur pengujian 28 hari
- Lampiran 38. Data hasil analisa modulus elastisitas beton dengan variasi benda uji non SCC (BN) pada no.3 dari umur pengujian 28 hari
- Lampiran 39. Data hasil analisa modulus elastisitas beton dengan variasi benda uji SCC-1 pada no.1 dari umur pengujian 28 hari
- Lampiran 40. Data hasil analisa modulus elastisitas beton dengan variasi benda uji SCC-1 pada no.2 dari umur pengujian 28 hari
- Lampiran 41. Data hasil analisa modulus elastisitas beton dengan variasi benda uji SCC-1 pada no.3 dari umur pengujian 28 hari

- Lampiran 42. Data hasil analisa modulus elastisitas beton dengan variasi benda uji SCC-2 pada no.1 dari umur pengujian 28 hari
- Lampiran 43. Data hasil analisa modulus elastisitas beton dengan variasi benda uji SCC-2 pada no.2 dari umur pengujian 28 hari
- Lampiran 44. Data hasil analisa modulus elastisitas beton dengan variasi benda uji SCC-3 pada no.1 dari umur pengujian 28 hari
- Lampiran 45. Data hasil analisa modulus elastisitas beton dengan variasi benda uji SCC-3 pada no.2 dari umur pengujian 28 hari
- Lampiran 46. Data hasil analisa modulus elastisitas beton dengan variasi benda uji SCC-4 pada no.1 dari umur pengujian 28 hari
- Lampiran 47. Data hasil analisa modulus elastisitas beton dengan variasi benda uji SCC-4 pada no.2 dari umur pengujian 28 hari
- Lampiran 48. Data hasil analisa modulus elastisitas beton dengan variasi benda uji SCC-5 pada no.3 dari umur pengujian 28 hari

Lampiran 49. Dokumentasi pelaksanaan penelitian SCC

DAFTAR NOTASI DAN SINGKATAN

 Σ (%kom.) : berat tertinggal kumulatif (%)

 Σ : sigma/penjumlahan

°C : derajat celcius

 σ : tegangan

ε : regangan

ΔL : perubahan panjang akibat beban P

A : luas penampang benda uji (mm²)

ASTM : american standard testing and material

a : berat agregat kering mutlak sebelum diayak (gram)

B : berat piknometer berisi air (gram)

BK : berat pasir/kerikil kering mutlak (gram)

BKT : bahan konstruksi teknik

Ba : berat kerikil dalam air (gram)

Beton f'_c 41,4 MPa : beton dengan kuat tekan 41,4 MPa

Bj : berat kerikil kondisi jenuh kering muka/SSD (gram)

Bt : berat piknometer berisi air dan pasir (gram)

b : berat agregat setelah diayak (gram)

Cl : klorida

D : diameter silinder beton

DoE : design of Experiment

Ec : modulus elastisitas beton/baja

FAS : faktor air semen f'c : kuat tekan beton

 f'_{cr} : kuat tekan rerata beton

 f_{ct} : kuat tarik/belah beton

L : tinggi silinder beton

N : jumlah benda uji

P : beban tekan (N)

PBI : peraturan beton Indonesia

S : standar deviasi

SCC : self compacting conrete

SF : slump-flow

SNI : standar nasional Indonesia

SSD : saturated and surface dry

SiO₂ : silika

V : kadar rongga udara

Vol. : volume silinder yang digunakan (cm³)

W : berat agregat (gram)

W₁ : berat agregat halus kering oven (gram)

W₂ : berat agregat halus kering oven setelah dicuci (gram)

W/(c+p) : rasio

Wc : berat volume beton normal atau berat volume ekivalen

beton ringan (kg/m³)

X : nilai kuat tekan yang dipakai atau berlaku dalam data S

Xi : data kuat tekan masing-masing benda uji dalam data S

Xrt : data kuat tekan dari semua benda uji dalam data S