

DEVELOPING MULTI TRANSLATION CHAT APPLICATION USING

DJANGO FRAMEWORKS AND M2M100 MODEL

by

Muhammad Sayyid Tsabit Anfaresi

A Thesis

Submitted to the Faculty of Nanjing Xiaozhuang University

in Partial Fulfillment of the Requirements for the degree of

 Bachelor of Software Engineering

School of Information Engineering

Fangshan, Nanjing

June 2023

ii

To: Dean Zheng Hao
 School of Information Engineering

This thesis, written by Muhammad Sayyid Tsabit Anfaresi and entitled DEVELOPING MULTI
TRANSLATION CHAT APPLICATION USING DJANGO FRAMEWORKS AND M2M100
MODEL, having been approved with respect to style and intellectual content, is referred to you for
judgment.

We have read this thesis and recommended its approval.

type the name of committee member here

type the name of committee member here

type the name of committee member here

Date of Defense: June 6, 2023

The thesis of Muhammad Sayyid Tsabit Anfaresi has been approved.

Dean Zheng Hao

 School of Information Engineering

Zhou Hong

Chief of Foreign Affairs Office

Nanjing Xiaozhuang University, 2023

ii

ACKNOWLEDGMENTS

Bismillahirrahmanirrahim, I would like to express my sincere gratitude to God and everyone

who contributed to the completion of this work.

First and foremost, I am extremely grateful to my supervisor Xiao Wenjie for her invaluable

guidance, expertise, and unwavering support throughout this research. Their insightful feedback

and constructive criticism greatly improved the quality of this work.

I would also like to thank the faculty at Nanjing Xiaozhuang University and Universitas Islam

Indonesia for their knowledge, encouragement, and commitment to academic excellence. Their

teaching and guidance played an important role in shaping my understanding of the subject. We

sincerely thank all the participants who generously donated their time and shared their insights for

the purpose of this study. And for all contributions contributed to the success of this research

project.

I would like to thank my family and friends for their support, unwavering belief in me, and

encouragement in this endeavor. Their love, understanding and encouragement are a source of

strength and motivation to me.

Finally, I would like to thank for every channel in YouTube platform which I listened to for

accompanying me in writing this thesis till the end.

Although I take sole responsibility for any errors or omissions in this research, I am grateful for

the collective support and inspiration that has guided me on this academic journey. Thank you for

your valuable contribution.

iii

TABLE OF CONTENTS

LIST OF TABLES ... vi

LIST OF FIGURES .. vii

ABSTRACT .. 1

1 INTRODUCTION .. 2

1.1 Background ... 2

1.2 Research Question .. 3

1.3 Objectives ... 3

1.4 Scope ... 3

1.5 Methodology ... 4

2 LITERATURE REVIEW ... 6

2.1 Chat App History .. 6

2.2 Hugging Face Hub .. 7

2.3 M2M100 Translation Model ... 8

2.4 Technology ... 10

2.4.1 Frontend Technologies .. 10

1 HTML ... 10

2 CSS ..11

3 Javascript ...11

2.4.2 Backend Technologies .. 12

1 Python ... 12

Why Chooses Python? .. 13

2 Pytorch .. 14

Why Pytorch? ... 14

3 SQLite ... 14

Why SQLite? .. 15

4 Django Frameworks ... 16

iv

Why Chooses Django? .. 16

5 Ajax .. 17

Why Chooses Ajax? .. 18

3 SYSTEM DESIGN ... 19

3.1 Requirement Analysis ... 19

3.1.1 Functional Requirements .. 19

1 Registration ... 19

2 Profile details .. 19

3 Message notification ... 20

4 Sending messages ... 20

5 Receive messages ... 20

6 Searching and adding friends ... 20

7 Auto translation .. 20

3.1.2 Non-functional Requirements ... 20

1 Low latency .. 21

2 High availability ... 21

3 No lag ... 21

3.2 Use Case Diagram... 21

3.3 User Interface .. 22

3.3.1 User Interface Mockup ... 23

3.4 Database Design.. 25

3.4.1 Auth user ... 26

3.4.2 Profile .. 26

3.4.3 Friends... 27

3.4.4 Profile friends.. 27

3.4.5 Chat message .. 27

3.5 Project Structure.. 28

4 CODE AND TEST ... 29

4.1 Models Creation .. 29

4.2 Features ... 30

v

4.2.1 URL Configuration ... 31

4.2.2 Writing views .. 32

4.3 Features Testing .. 33

4.3.1 Sign Up new user .. 33

4.3.2 User details.. 34

4.3.3 User login .. 34

4.3.4 Translation process ... 34

5 CONCLUSIONS... 35

REFERENCES ... 36

vi

LIST OF TABLES

Table 1 Properties of Auth model ... 26

Table 2 Properties of chapp_profile model ... 26

Table 3 Properties of Friends model ... 27

Table 4 Properties of profile friends’ model ... 27

Table 5 Properties of chat message model .. 27

Table 6 API List .. 31

Table 7 API List inside urls.py file ... 31

vii

LIST OF FIGURES

Figure 1 M2M100 model with language-specific parameters .. 9

Figure 2 SQLite's architecture .. 15

Figure 3 Django framework logo .. 16

Figure 4 Use case diagram of multilingual chat app... 22

Figure 5 Registration... 23

Figure 6 Details page .. 23

Figure 7 Login page .. 24

Figure 8 User section .. 24

Figure 9 Chat section .. 25

Figure 10 Database design for chat app .. 25

Figure 11 Project structure .. 28

Figure 12 Model creation for Profile .. 29

Figure 13 Project setting for models’ creation with Django ... 30

Figure 14 Database created by Django model .. 30

Figure 15 url.py setting on root folder .. 32

Figure 16 Example of views in Django .. 33

1

ABSTRACT

The significance of language as a powerful communication tool and its evolution in the context of

modern communication platforms. While chat applications have provided convenient means for

global interactions, language barriers and misinterpretations often arise due to the difficulty in

capturing the intended meaning. Although translation technologies like Google, Yandex, and Bing

exist, constantly switching between chat and translation applications can hamper user productivity.

To address this limitation, some chat applications integrate translation functions, enabling users to

translate texts without leaving the application.

However, these functions have certain limitations, such as the need to select and translate specific

chats and the inability to translate emoticons or stickers. To overcome these limitations, the

development of a web-based chat application capable of performing direct translation. By using

the utilization of the M2M100 NLP model in chat application development.

The M2M100 model stands out by offering translation capabilities for a wide range of languages,

surpassing other translation APIs such as those from Google and Microsoft which require

subscription costs. Being an open-source model, M2M100 proves to be a favorable choice for

initiating the development of the chat application. Despite the longer process involved, the model's

results are deemed satisfactory

.

2

1 INTRODUCTION

1.1 Background

Language is the most reliable and powerful communication tool for conveying information in

society[1]. Man uses language in all aspects of his life. Language has become an important part

of human life. Along with the time, communication change from face-to-face into several

media with smartphone platforms including web platforms. With many chats application giving

advantage to a person can interact and communicate from local and long distances only by

using the internet network[2], [3]. However, in the global context of information delivery, there

are often misinterpretations of meaning because the language used is sometimes difficult for a

country to capture. Not everyone has the opportunity or ability to learn a new language.

The problem is aided by the presence of translation technology such as Google, Yandex, and

Bing. By copying and pasting the translation platform, we can quickly obtain translation results.

However, this will greatly consume user productivity because they have to exchange chat and

translation applications. Therefore, some chat applications implement additional functions to

translate text, such as those found in WeChat applications[2].

This additional function is very useful for users to directly translate chat texts from the

application, so that they do not need to leave the application to translate languages from other

countries. Although this function is very useful, we need to press the chat we want to translate

first, and then use the translation function. Another limitation is that the translation process

stops when other users send emoticons or stickers. Create the text after it fails to translate.

For this reason, we need to develop a chat application that can perform the translation process

directly. This thesis describes the process of developing web-based chat applications. The

writing of the thesis also applies as a graduation requirement for bachelor’s degree in software

engineering.

3

1.2 Research Question

The formulation of the problem in this study is as follows:

1. What do we need to build a chat application?

2. What are the functions required to build a chat application?

3. How does the translation process on the application take place?

1.3 Objectives

The objectives of this study are as follows:

1. To identify what is needed to build and develop a chat app.

2. Create a chat app with a special function to automatically translate the text.

3. To understand how the translation process occurs inside an application.

1.4 Scope

The present study aims to develop a web-based chat application using Django framework and

Python programming language. Unlike other existing chat apps, this study did not use the

translation APIs of popular search engines, such as Google, Yandex or Bing. Instead, the study

implemented a state-of-the-art NLP model, specifically the M2M100, obtained from the

Hugging Face Hub. The use of the M2M100 model is new and applied only in the development

of translation and chatbot applications. Therefore, the study sought to explore the feasibility of

integrating this model into a multilingual chat application. The study used a mixed approach

including comprehensive literature review, system design, application development, and

testing. Research has developed an NLP-based chatbot that can translate and interpret multiple

languages in real time. The application uses many features such as user authentication, chat

history, and chat moderation. Furthermore, the application is designed to be extensible, secure,

and user-friendly.

Research results show that the M2M100 model is an effective tool for developing multilingual

chat applications. The application developed in this research has achieved a high level of

4

accuracy and efficiency in translating and interpreting different languages. The research

contributes to the development of studies on the application of NLP models in chatbot

development. Search results provide useful information for developers and researchers

working on similar projects.

1.5 Methodology

The Waterfall method was used to design the chat application. The Waterfall method was

introduced by Winston Royce in 1970, adopted later by software project managers, and then

developed again through teaching in every software project. Waterfall methodology is a widely

used project management method with a linear approach. In waterfall methodology, each stage

of the workflow must be completed before moving on to the next step. While there are various

types of project management methodologies, waterfalls are well suited for projects where the

objectives are clearly outlined from the beginning[4].

The classical waterfall approach models start with the analysis stage which includes the

analysis for requirements[4]. The model is considered offering well-defined set of criteria and

the requirement indications before even starting the designing and implementation phase of the

project, at the end it provides a basic plan of the project before starting in orderly sequence of

the project. There are five phases of the waterfall methodology[5].

Analysis phase. During this phase, we outline the big picture of our project’s requirements.

The key aspect of the waterfall methodology is that all requirements are gathered at the

beginning of the project both functional and non-functional requirements, allowing every other

phase to be planned without further correspondence until the product is complete. It is assumed

that all requirements can be gathered at this waterfall.

Design phase. The design phase of the waterfall process divided into two subphases: logical

design and physical design. The logical design subphase happen, when possible, solutions are

brainstormed and theorized. The physical design subphase happen, when those theoretical

5

ideas and schemas are made into concrete specifications. It means that the software developers

and the designers are going to define the plan for a solution, and it includes algorithm design,

software architecture design, logical diagram scheme, etc.

Implementation phase. The implementation phase happens, when programmers assimilate the

requirements and specifications from the previous phases and produce actual code. This is

where the real code is written and compiled into operational application, from where the

database and text files were created.

Verification phase. This phase is also known as verification and validation, happens when the

user gives reviews to the product to make sure that it meets the requirements laid out at the

beginning of the waterfall project. In this phase the bugs and system glitches are found, and

they are corrected. This is done after releasing the completed product to the user.

Maintenance phase. When the user is regularly using the product during the maintenance

phase, discovering bugs, inadequate features and other errors that occurred during production.

The production team must apply these fixes until the user satisfied.

6

2 LITERATURE REVIEW

2.1 Chat App History

The first instant messaging program was called “Talkomatic,” and it was developed in 1973 by

a team of students at the University of Illinois. It was designed for use on the PLATO computer

system and allowed up to five users to chat in real-time[2].

Later, in 1988, Internet Relay Chat (IRC) created allowing users to connect to networks with

client software to chat with groups in real-time. its ability to support large communities of users,

its flexibility and customizability, and its low bandwidth requirements[6]. It notes that IRC has

been used for a variety of purposes, including online gaming, technical support, and social

networking. However, there are challenges associated with using IRC, such as the potential for

abuse and harassment, as well as its lack of built-in security features.

Instant messaging has evolved significantly since the 1996 release of the first widely used

instant messaging program, ICQ. Yahoo! launched its Messenger in 1998 as Yahoo! Pager[3].

Microsoft released MSN Messenger in 1999, renaming it Windows Live Messenger in 2005[7].

Messaging platforms have changed the way people communicate, with many now preferring

to use them over traditional phone calls and emails. However, there are challenges associated

with their use, including privacy issues, cyberbullying and harassment, and the risk of addiction.

As messaging apps continue to evolve and integrate more with other forms of communication,

they will continue to play an important role in how we interact with each other.

Today, instant messaging has played a large role in bringing people together. In Asia-Pacific

the rise of messaging apps has been dramatic. According to Statista, social media consumption

in the region has grown dramatically, with the number of social media users expected to reach

1.4 billion by 20251. Messaging apps have gained a strong foothold in both popularity and

1 Social media in the Asia-Pacific region - statistics & facts. https://www.statista.com/topics/6606/social-media-

7

influence across the world’s most connected region, and the momentum will only continue to

grow. In fact, a survey conducted by Google found that messaging apps are the most popular

type of app in Asia-Pacific2.

2.2 Hugging Face Hub

The Hugging Face Hub is a platform with over 120000 models, 20000 datasets, and 50000

demo apps (Spaces), all open source and publicly available, in an online platform where people

can easily collaborate and build ML together[8]. The Hub works as a central place where

anyone can explore, experiment, collaborate and build technology with Machine Learning.

We can discover and use dozens of thousands of open-source ML models shared by the

community. Inside the model repos we can find Model Cards to inform users of each model’s

limitation and biases. We can also include additional metadata such as their tasks, languages,

and metrics. By adding an inference widget, we can play with the model directly in the browser,

or for production settings, an API is provided to instantly serve the model.

Other things we can find in Hugging Face Hub are datasets. The Hub is home to over 5000

datasets in more than 100 languages that can be used for a broad range of tasks across NLP[9],

Computer Vision, and Audio[8]. To make it simple to find, download, and upload datasets. The

Hub companied by extensive documentation in the form of Dataset Card and Dataset Preview,

while many datasets are public, organizations and individuals can create private datasets to

comply with license or privacy issues.

What makes Hugging Face Hub different is spaces. Spaces is a simple way to host ML demo

apps on the Hub[10]. They allow user to build their ML portfolio, showcase their projects at

in-asia-pacific/
2 Message received: What APAC’s messaging app developers and marketers

https://www.thinkwithgoogle.com/intl/en-apac/consumer-insights/consumer-trends/message-received-what-

apacs-messaging-app-developers-and-marketers-need-to-know-about-their-users/.

8

conferences or to stakeholders, and work collaboratively with other people in the ML

ecosystem.

2.3 M2M100 Translation Model

M2M100 is a new many-to-many multilingual translation model that can translate between the

9900 directions of 100 languages. The underlying dataset was mined from CommonCrawl

using a novel strategy which exploits language groupings to avoid mining every possible

direction while maintaining good accuracy[11].

M2M100 model uses a single unified architecture and a shared vocabulary across all languages,

which allows it to take advantage of transfer learning and improve translation quality for low-

resource languages[12]. The model was trained on a massive dataset of parallel sentences from

various sources, including web pages, books, and subtitles. The M2M100 model is available

for use through the Azure Cognitive Services platform, which provides a range of machine

learning and AI services for developers and businesses.

With many-to-many setting provided by M2M100: the selection of the 100 languages, the

evaluation benchmark, and the construction of a large-scale training set through data mining[13]

and backtranslation[14] that training data thousands of directions. M2M100 capable to create

a multilingual benchmark, covering the language matrix by mining relevant parallel data,

augmenting bitext data with backtranslation, and balancing languages in a many-to-many

setting.

Comparing to different types of models in performance on different types of directions, likely,

any language to English (To English), English to any language (From English), and all the

directions not involving English (Non-English)[15]. The results of the research show that

current multilingual MT systems are heavily skewed towards English, with most of the research

and development resources dedicated to improving English-centric MT. This results in a lack

of support for non-English languages and a bias towards English-speaking users. The study

9

also highlights the challenges of MT for low-resource languages, where there is limited training

data and resources available for MT systems.

The proposed framework suggests a more inclusive approach to multilingual MT, where

resources and research efforts are distributed more evenly across different languages, including

low-resource languages. The framework also suggests incorporating the linguistic and cultural

context of the languages in the MT system, to improve the accuracy and relevance of

translations.

Figure 1 M2M100 model with language-specific parameters

Here's how it works:

1) The input text is first tokenized and embedded into a sequence of vectors. The encoder

then processes this sequence of vectors, producing a set of hidden states that capture

the meaning of the input text.

2) The attention mechanism helps the decoder focus on the most relevant parts of the input

text when generating the output translation. This is especially important when

translating long sentences or text that contains complex structures.

3) The decoder then uses the hidden states and attention weights to generate a sequence

of output tokens, which are then converted into the final translated text.

4) The M2M100 model also uses a shared vocabulary across all languages, which helps it

take advantage of transfer learning and improve translation quality for low-resource

languages.

Overall, the M2M100 model is a powerful and flexible machine translation model that can

handle a wide range of languages and translation tasks.

10

2.4 Technology

The architecture of the application consists of the back end and the front end, both of them

having their own set dependencies (libraries and frameworks). The front end is the presentation

layer that the end user sees when they enter the site. The back end provides all the data and part

of the logic and it is running behind the scenes.

2.4.1 Frontend Technologies

1 HTML

HTML, an acronym for Hyper Text Markup Language, emerged as a programming language

in 1980 and was then standardized in 1995[16]. Since then, it has become one of the most

widely used languages. in the world, especially in the development of websites and the Web.

websites. HTML is primarily focused on defining the structure of web documents, including

things like headings, paragraphs, and images[17]. Considered the fundamental building block

of a programming language, HTML serves as an essential foundation for developers around

the world. Its importance goes beyond its stand-alone use, as it is often combined with other

programming languages such as JavaScript and CSS to enhance display properties.

The syntax of HTML revolves around the use of opening and closing tags, indicated by curly

braces (<html></html>). These tags include specific elements in the web document, allowing

developers to specify their structural features. By using these tags, developers define the site's

hierarchy, creating a logical framework that defines how content is presented and organized[18].

Additionally, HTML files have the .html file extension, which indicates their dedicated format.

The popularity of HTML as a platform programming language underscores its pivotal role in

shaping the digital landscape[18]. Its structural capabilities and integration with other

languages contributed to its enduring popularity and widespread adoption by developers.

Therefore, HTML is an essential tool for creating organized and cohesive web documents,

facilitating effective communication of information and engaging user experience.

11

2 CSS

CSS, which stands for Cascading Style Sheets, represents an evolved version of HTML and

provides a more user-friendly approach to HTML. CSS is used to improve the presentation of

web pages, including design aspects, colors, layout, and fonts, among other things. It integrates

seamlessly with HTML, ensuring compatibility between the two[16]. The structure of CSS

follows a defined set of rules that include selectors, properties, declaration blocks, and

corresponding values. It allows developers to specify which elements of the website should be

styled and define the desired look and feel. In the field of web design, CSS proves to be an

indispensable tool, as it helps to separate content and presentation. This separation promotes

modularity and flexibility, allowing web designers to change the visual aspects of a website

without altering its underlying content structure. CSS allows designers to create visually

appealing and cohesive web pages by applying style rules evenly across multiple pages. In

addition, CSS supports three methods for embedding style sheets in HTML code[17]:

External CSS, Internal CSS, and Inline CSS. The external CSS method involves linking an

external CSS file to an HTML document, providing a centralized location for style definitions.

The internal CSS method allows styling definitions to be embedded within the HTML

document itself, making it suitable for smaller scale projects. Finally, the inline CSS approach

involves directly applying style rules to specific HTML elements.

By using CSS, web designers and developers can have greater control over the visual aspects

of a website, ensuring a consistent and engaging user experience[7]. Its file extension, .css,

stands for CSS stylesheet-specific format. With its versatility, compatibility, and diverse

implementation options, CSS remains an essential component of modern web development and

design practices.

3 Javascript

JavaScript, originally developed by Brendan Eich in 1995, has become a widely used general-

purpose programming language for web development[16]. JavaScript, often abbreviated as JS,

acts as a client-side scripting language, enabling dynamic and interactive functionality in web

12

pages. It complements HTML and CSS by adding behavioral aspects to the web page,

improving user experience and facilitating responsive interactions.

As a programming language, JavaScript provides many functions, allowing developers to

manipulate and control various elements of a web page[16], [17]. JavaScript allows handling

of user events, such as mouse clicks and keyboard input, facilitating interactivity and

responsiveness. It can automatically modify the content and structure of web pages, allowing

to add, remove or modify elements seamlessly without requiring a full page reload.

JavaScript also makes it simple to incorporate third-party libraries and APIs, giving access to

a wide range of extra features and resources[16]. It is suitable for creating web applications

that require real-time updates or communication with databases because it enables data to be

retrieved and sent to servers.

JavaScript allows programmers to create modular, reusable code thanks to its syntax, which is

made up of functions, variables, and objects. It supports functional programming paradigms

and object-oriented programming models, allowing for flexibility and extensibility in the way

that code is organized[17].

2.4.2 Backend Technologies

1 Python

Python is a high-level, interpreted, and general-purpose programming language that

emphasizes readability and simplicity[19]. It supports multiple programming paradigms, such

as object-oriented, procedural, functional, and imperative. Python has a large and

comprehensive standard library that provides built-in modules for common tasks, such as data

structures, file handling, networking, database access, and web development. Python also has

a rich set of third-party libraries and frameworks that extend its functionality and enable rapid

development of applications in various domains, such as data science, machine learning, web

13

scraping, automation, and game development[20]. Python is widely used by programmers of

all levels of experience and backgrounds, due to its ease of use, versatility, and

expressiveness[21].

Why Choose Python?

Python is easy to learn and use. It has a simple and expressive syntax that resembles natural

language. It does not require semicolons or curly braces to define blocks of code. It also

supports multiple programming paradigms, such as procedural, object-oriented, functional, and

imperative.

Python is free and open source. Anyone can download, modify, and distribute the source code

of Python without any restrictions. Python also has a large and active community of developers

who contribute to its improvement and maintenance.

Python has a rich set of libraries and frameworks that provide ready-made solutions for various

tasks and domains[21]. For example, NumPy and Pandas for data analysis, Django and Flask

for web development, TensorFlow and PyTorch for machine learning, PyGame and Tkinter for

GUI development, etc.

Python is portable and cross-platform. It can run on different operating systems, such as

Windows, Linux, Mac OS, etc., without requiring any changes in the code. Python also

supports multiple implementations, such as CPython, Jython, IronPython, PyPy, etc., that can

integrate with other languages and platforms[21].

Python is interpreted and dynamically typed. This means that Python code is executed line by

line at run time, without needing prior compilation. This makes Python code easier to debug

and test. It also means that Python can handle different types of data without explicit

declaration[22].

14

2 Pytorch

PyTorch is an open-source deep learning and machine learning library developed by Facebook,

Inc. provides seamless GPU utilization and a deep learning platform that delivers maximum

flexibility and speed[20]. As a library, PyTorch provides an excellent means for researchers

and practitioners to develop and train deep learning experiments at scale while providing a neat

abstraction for several building blocks yet being flexible for deep customization. In the next

few chapters, while practically implementing deep learning models, you will see how PyTorch

takes cares of so many things in the background and thus equips the user with the speed and

required agility for accelerated experiments at scale.[22]

Why Pytorch?

Pytorch provides an extremely easy to use, extend, develop, and debug framework. Because it

is Pythonic, it is easy for the software engineering community to embrace. It is equally easy

for researchers and developers to get tasks done. PyTorch also makes it easy for deep learning

models to be productionized. It is equipped with a high-performance C++ runtime that

developers can leverage for production environments while avoiding inference via Python[20].

3 SQLite

SQLite is an embedded database. Rather than running independently as a standalone process,

it symbiotically coexists inside the application it serves—within its process space. Its code is

intertwined, or embedded, as a part of the program that hosts it. To an outside observer, it would

never be apparent that such a program had a relational database management system (RDBMS)

on board.[23]

SQLite architecture consists of eight separate modules grouped with three major subsystems.

These modules divide query processing into discrete tasks that work like an assembly line. The

interface is the first layer of the SQLite architecture. Then there is the compiler, where the

compilation process starts with the tokenizer and parser. Where SQLite’s tokenizer is

hardcoded. Its parsers generated by SQLite’s custom parser generator, which is called Lemon.

15

Figure 2 SQLite's architecture

Why SQLite?

SQLite comes with some advantages features and capabilities despite its small size. From its

initial conception, SQLite has a simple configuration so developer don’t have to setting up

outside. SQLite does not need to be "installed" before it can be used[23]. There is no

"configuration" procedure. There is no need to start, stop or configure any server processes.

Administrators do not need to create new database instances or assign access rights to users.

SQLite does not use any configuration files. There is no need to do anything to tell the system

that SQLite is running. No action is required to recover from a system crash or power failure.

There is nothing to fix the problem.

Another reason is Django framework supported SQLite for the model creation and API. SQLite

is easy to integrate into chat applications due to its simple API and support for various

programming languages[24]. It provides a seamless connection between the app and the

database, allowing efficient storage and retrieval of chat messages and user information.

Because it is a lightweight and embedded database engine, eliminating the need for a separate

database server and reducing resource consumption. This simplifies integration into chat

16

applications and ensures efficient storage and retrieval of chat messages and user information.

SQLite is cost-effective as an open-source database, making it an ideal choice for smaller-scale

projects or startups with limited resources. Additionally, it provides built-in encryption

capabilities, ensuring data security and confidentiality of chat conversations.

Lastly, SQLite's cross-platform compatibility allows chat apps to run seamlessly on various

operating systems, enabling wider reach and accessibility for users. Overall, these advantages

make SQLite a favorable option for developing chat apps that require efficient performance,

data security, and cost-effectiveness.

4 Django Frameworks

Figure 3 Django framework logo

Django is a high-level Python web framework that enables rapid development of secure and

maintainable websites[25]. It takes care of much of the hassle of web development, so you can

focus on writing your app without needing to reinvent the wheel. Django provides full MVC

Framework that includes the whole things. While Django alone could be used to make a

RESTful API, it is one of the frameworks that sows fantastical creations. It features filled

extension towards Django framework[24].

Why Chooses Django?

Django is a popular and powerful web framework that offers many benefits for building web

applications[24], [25]. One of its strongest points is its ability to build common web application

17

components, such as user authentication and database integration, quickly and easily with

minimal configuration. This allows developers to focus more on the specific functionality of

their application, rather than the underlying infrastructure. Django also has a large and active

developer community, providing access to a wealth of resources and troubleshooting and

debugging support.

Another important advantage of Django is its extensibility. Django is designed to handle large

and complex web applications, with features like automatic administration interfaces, object-

relational mapping, and automatic caching that optimize performance and reduce load on users.

server. Additionally, Django is highly modular and extensible, allowing developers to add new

features and functionality as needed without having to rewrite the entire application.

Lastly, Django offers robust security features, including built-in protection against common

web vulnerabilities, such as cross-site scripting (XSS) and SQL injection. This helps ensure

that applications built with Django are secure and protected from potential attacks.

5 Ajax

Ajax technologies have revolutionized the way developers build web applications by delivering

improved performance and interactivity[26]. With Ajax, developers can create web

applications that provide desktop software functionality, including complex user interfaces and

advanced capabilities. This has allowed developers to build applications that were previously

impossible on the web, and as a result users can now access many advanced features and tools

from the comfort for their browsing behaviors.

The use of Ajax also allows web applications to be more responsive and user-friendly,

improving the overall user experience. It's no surprise that Ajax has become an essential

technology in modern web application development, allowing developers to create highly

interactive and responsive software that is both efficient and reliable. With the continued

advancements in web development technology, it is likely that Ajax will remain the cornerstone

18

of web application development for many years to come.

Why Chooses Ajax?

One of the main advantages of Ajax technology is its ability to create web applications that

provide a more seamless and efficient user experience. Using Ajax allows the creation of web

pages that can be dynamically updated without requiring a full-page refresh. This means that

users can interact with web applications in real time without having to wait for the entire page

to reload every time they make a request. This can greatly improve the usability of web

applications, as users can quickly and easily access the information they need without annoying

delays.

Another advantage of Ajax technology is its ability to enable rich and interactive user interfaces

to be created. By allowing web applications to respond to user actions in real time, Ajax

provides a much more engaging user experience. With the help of Ajax, developers can create

web applications that provide functionality that was previously only available in desktop

software. This has greatly expanded the capabilities of web applications, making them more

flexible and adaptable to a wide range of user needs[26].

In addition, the use of Ajax technology can help improve the performance of web applications.

By minimizing the need to refresh the entire page and optimizing data transmission, Ajax can

help reduce the amount of bandwidth and server resources required to deliver web content.

This can lead to faster load times and smoother performance, even for highly interactive and

data-intensive applications.

.

19

3 SYSTEM DESIGN

In this section all of the requirement for the chat application are described. Also, all
technologies that will be used in the development process are mentioned.

3.1 Requirement Analysis

Requirement analysis is a process that enables the success of a system or software project to
be assessed. Requirements are generally split into two types: Functional and Non-functional
requirements[4].

3.1.1 Functional Requirements

These are the requirements that the end user specifically demands as a basic facility that the

system should offer[4]. All the functionalities need to be necessarily incorporated into the

system as a part of the contract. These are represented or stated in the form of input to be given

to the system, the operation performed and the output expected. They are basically the

requirements stated by the user which one can see directly in the first development.

1 Registration

Users must first register to use the software. Ideally, the users should authenticate their accounts

via their phone number, email address or social media accounts. Since we made it from scratch

user need to register with their username, first name, last name, email, and password. After that

the user should click the button to go to details page. The user will be stored in the database

2 Profile details

User need to fill up the detail form to complete the registration. In this part, user will need their

username, picture, and their language preferences. The language will determine their chat

application to receive other language as their language.

20

3 Message notification

Users able to see the messages they receive immediately, or as soon as they go online. With

that, users will be knowing who is currently online, or when was the last time they were present

online or not. With this functionality user will have indication when a person on the other end

is typing and display message statuses, whether they have been delivered, read, edited, or failed

to deliver.

4 Sending messages

User can send the messages through messages field and click the button nearby the messages

field to send the messages. After that user need to wait the translation process. After the

translation is done, the messages will be stored in the database.

5 Receive messages

User will get the messages from the other user. The messages get from the translated chat

database. When the user not open the chat, the user will receive a notification.

6 Searching and adding friends

User able to find friends by typing of another user username in search bar. The username will

show up after user type their name. Then, user can add them as their friends by clicking the

add button.

7 Auto translation

The auto translation function is cannot be turned off. This function will automatically translate

to user preferred language from the detail form before. The translation will use NLP algorithm

to do the job. Then the translated chat will be stored in the database.

3.1.2 Non-functional Requirements

Nonfunctional requirements describe user-level requirements that are not directly related to

functionality. This includes usability, reliability, performance, supportability, implementation,

interface, operational, packaging, and legal requirements[4].

21

1 Low latency

The chat application needs to have a low latency because it needs to look real-time so while
user sending a message, the other person should immediately be able to see that message.

2 High availability

Chat app should have high availability because the system should not go down no matter what
happens.

3 No lag

There should be no lag as it needs to be a real-time system where one could send and receive
messages instantly.

3.2 Use Case Diagram

Use Case Diagram is one of the diagrams of UML (Unified Model Language) which

demonstrates the interaction of the users (called Actors) with each other within the system[4].

In other words, a use case diagram represents the activity of a system between actors, elements

and their roles. The use case diagram consists of a system which is a whole scenario in which

all events and flows of the different elements are interacted with each other. Actors can be users

or internal elements in the system and the used cases that made connection with elements in

the system that is always represented by an oval shape in Figure 4.

22

Figure 4 Use case diagram of multilingual chat app

3.3 User Interface

A User Interface (UI) is an integral component of any electronic device that enables users to

interact with it directly[4]. The primary goal of a UI is to provide a communication bridge

between the user and the system. This allows electronic devices, such as computers, tablets,

and smartphones, to be operated efficiently and effectively. The UI provides users with a

platform to input commands and receive feedback in a clear and understandable way. Without

a well-designed UI, electronic devices would be challenging to use and operate. As such, the

UI plays a vital role in enhancing the overall user experience and ensuring that users can

interact with electronic devices with ease. Therefore, designing a user-friendly UI is crucial for

any electronic device to succeed in the market.

23

3.3.1 User Interface Mockup

In order to create the UI design, we choose the modern approach.

Figure 5 Registration

The registration page is the page where user can create a new account, in order to use the
application. This page need user to input their username, first name, last name, email address,
password, and confirm password. After all the requirements full filled then user can press the
button to go the next phase of registration.

Figure 6 Details page

24

The details page is the page where user can manage their preference language and profile
picture. This page will only show once after the user complete their registration. After the user
already set their preferences then user can continue to chat app by pressing the button.

Figure 7 Login page

Other page that we create is the login page. Login page is a must for an app that use
authentication. In the page only provide the user to input their username and password only.
Then they can enter the chat app.

Figure 8 User section

The user section page is the main place where the information of database taking place. Here
we can find the logout button, profile picture with username and their full name. We also create
the search bar to find another user. This will help user to find their friends easily.

25

Figure 9 Chat section

Last, we created the chat section page. Here where user and their friends make a conversation
each other. The chat section has the form to type the message they want to send and a button
to send the message. And there is a back button for user to get back to user section page.

3.4 Database Design

Figure 10 Database design for chat app

26

As shown in figure 6 of the chat application developed, it has a database design with five
models. The database contains many-to-many relationship and one-to-many relationship

3.4.1 Auth user

The auth user model is the default model of the Django framework. It has the following
properties:

NAME TYPE
id PK, INT
password CHAR
last_login DATE
is_superuser BOOLEAN
username CHAR
last_name CHAR
email CHAR
is_staff BOOLEAN
is_active BOOLEAN
date_joined DATE
first_name CHAR

Table 1 Properties of Auth model

Using this built-in model, we can use some of the functionality that Django has provided for
authentication.

3.4.2 Profile

Model profile is the child of model auth user. We're just deriving the properties of the auth user
model and adding some property attributes to the Profile Detail page. The following properties
are added.

NAME TYPE
unique_id PK, INT
user_id FK, INT
pic CHAR
language CHAR

Table 2 Properties of chapp_profile model

27

3.4.3 Friends

The friends’ model is a model for turning successfully registered users into friends by taking
unique_id from chat app profile. This model has only two properties:

NAME TYPE
id PK, INT
profile_id FK, INT

Table 3 Properties of Friends model

3.4.4 Profile friends

This model is useful for storing friendship relationships between users. After creating a
relationship, it is time we finally can chat with other users. The model properties are:

NAME TYPE
id PK, INT
profile_id FK, INT
friends_id FK, INT

Table 4 Properties of profile friends’ model

3.4.5 Chat message

This model is a place to store messages from users. After the user sends a message into the
system, the message will be translated with the configured NLP model. This model has the
following properties:

NAME TYPE
id PK, INT
body CHAR
seen BOOLEAN
msg_receiver_id FK, INT
msg_sender_id FK, INT
translated CHAR

Table 5 Properties of chat message model

28

3.5 Project Structure

Figure 11 Project structure

In the picture above, we defining the root folder as translatedChat then inside the root folder

we can find another main installation file from Django when we start a project which are:

chatapp folder, static folder, translatedChat folder, db.sqlite3, and manage.py.

Chatapp folder is the main area where we working on our project. Inside this folder we can

find our M2M100 NLP model inside the m2m100_1.2B folder. The migrations folder is a place

to save our database migration from our model file. The rest is static and templates where we

create our user interface and saving CSS file.

29

4 CODE AND TEST

This chapter details the most relevant parts of the application development, decisions taken and

algorithms. We have divided this chapter into three sections: models’ creation, features (the

most important ones) and a brief overview on how we tested our features.

4.1 Models Creation

A key defining aspect of any database-dependent application is its database structure. The

database design can vary depending on many different factors, such as the number of reads

over writes or the values that the user is likely to request the most. That is because as full stack

developers we want the database to have the best performance, which can often be achieved

by focusing the optimizations on the most common actions.

A model is the only source of accurate information about your data. It contains the essential

fields and behavior of the data you store. In general, each model corresponds to a database

table. With the help of the Django framework, Python model creation can be assisted with the

django.db.models.Model class. In Django Model class, each attribute of the model represents

a database field. With this, Django will give an automatically-generated database-access API.

Figure 12 Model creation for Profile

30

Once we defined models, we need to tell Django that we are going to use those models. By this
by editing our setting file and changing the INSTALLED_APPS setting to add the name of the
module that contains our models.py.

In this app, the models for our application live in the module chatapp.models so we should
write inside INSTALLED_APPS like this:

Figure 13 Project setting for models’ creation with Django

When we finish adding new apps to INSTALEED_APPS, be sure to run manage.py migrate,
optionally making migrations for them first with manage.py makemigrations command.
Afterward we can see the result of migration in our database editor

Figure 14 Database created by Django model

As we can see in the Figure 14, the model that we created will get the format like this
appname_modelname except the model from Django which is auth_user.

4.2 Features

In building features in web-based application development, we will start by creating a list of
APIs based on functional requirements that we have designed from the beginning of the chat

31

application development process. This API list will be very useful so that developers are able
to maintain stability in the development process, so that there are not many changes.

API Name Method
chatapp/ GET
chatapp/signup POST
chatapp/signup/2 POST
chatapp/login POST
chatapp/logout GET
chatapp/user GET
chatapp/friend/<str:pk> GET
chatapp/sent_msg/<str:pk> POST
chatapp/rec_msg/<str:pk> POST
chatapp/notification GET

Table 6 API List

4.2.1 URL Configuration

After we create the API list, we need to write it inside Django. To do that, first we need to
create our urls.py file inside our project file, at this project inside /chatapp folder, so we will
create the file inside that folder.

Table 7 API List inside urls.py file

Inside the urls.py file, remember to import path from django.urls module. This file will contain
every URLs that our application needs, then pass it into our main root folder. To do that we
will do some configuration inside our urls.py on root folder.

32

Figure 15 url.py setting on root folder

4.2.2 Writing views

Python functions that accept a web request and return a web response are referred to as view

functions or simply view. This response could be anything at all, including the HTML code for

a web page, a redirect, a 404 error, an XML file, an image, etc. Whatever arbitrary logic is

required to return that result is contained within the view itself. As long as it is on your Python

path, you can put this code wherever you like. There is no other prerequisite—no, sort of,

"magic" As a matter of convention, views are typically placed in a file called views.py that is

located in your project or application directory.

To create a view in Django. First, we open our Django project in your code editor and navigate

to the app directory where we want to create your view. Create a new Python file named

"views.py" in your app directory. This file contains your view functions or classes. If the file

already exists, open it for editing.

At the top of your views.py file, import the required modules and classes. Normally you should

import the HttpResponse class from the django.http module. This class allows you to build and

return HTTP responses. Define the view function. A view function receives an HttpRequest

33

object as a parameter and returns an HttpResponse object. Inside your view function, you can

implement the necessary logic to process user requests and generate responses. This includes

retrieving data from databases, handling form submissions, rendering templates, etc.

Figure 16 Example of views in Django

Save the views.py file to ensure your changes are saved. After creating the view, you need to

map it to a URL in Django's URL configuration. To do this, you'll need to specify a URL pattern

in your app's urls.py file and map it to the appropriate view function or class. This defines the

URL where the view can be accessed within the project.

4.3 Features Testing

In this part, test cases of the application are examined

4.3.1 Sign Up new user

 Test Step
Go to the Chat App page and sign up with required field then click “Create Profile”
button.

 Expected Result
If the registration complete, the user will go to the profile details page. If failed, there
will be error notification and user will remain in the registration page.

 Actual Result
There is no notification for user if they write wrong input, only remain in the
registration page.

34

4.3.2 User details

 Test Step
Choose the preference language for translation and input picture. After that click
“Continue to Chat” button.

 Expected Result
It should allow user to enter Chat App. If failed, there will be error notification and user
will remain in the user detail page.

 Actual Result
There is no notification for failed action, only remain in the registration page.

4.3.3 User login

 Test Step
User assign their username and password to the system, then click “Continue to Chat”
button.

 Expected Result
It should allow user to enter Chat App. If failed, there will be error notification and user
will remain in the user detail page.

 Actual Result
User can enter chat app, but there is no failed notification when user put wrong input.

4.3.4 Translation process

 Test Step
User sent a message to other user with their main language inside message field, then
click the button or press enter. The system will do the translation before it was sent.
Other user, will receive the translation result as a message.

 Expected Result
New message able to translate into other user preference language and sent to another
user.

 Actual Outcome
Message able to translate and show to another user.

35

5 CONCLUSIONS

M2M100 is an NLP model that successfully translates as many as 100 languages in the world.
By making this model for chat application development, this is certainly a differentiator with
the use of translation APIs on the internet, such as Google, Microsoft, and others that require
subscription costs. M2M100 is an open-source model so it is very good for the beginning of
the development of this chat application. Although the process carried out by the M2M100 is
longer, the results are not a problem.

With the Django framework, web development can be faster than having to code from scratch.
We are assisted by the modules provided by Django, such as modeling, views, and templates.
Therefore, Django is a promising choice.

However, this chat app still has many features that need to be developed again. Because the
use of chat apps is not intended for translation needs only. As for the development of this
application in the next stage, we will focus on some of the latest technology, improved features,
and improved efficiency of the translation process.

36

REFERENCES

[1] J. S. Y. Park, “Language as pure potential,” J Multiling Multicult Dev, vol. 37, no. 5, pp.
453–466, Jul. 2016, doi: 10.1080/01434632.2015.1071824.

[2] T. Barot and E. Oren, “Guide to Chat Apps,” Columbia Journalism School, 2015.
[3] A. Dana, A. Zuhdi, and G. Santoso, “Dospemku Chat Application Prototype with

Threading Feature using Cordova Framework for Android Based Competency
Consultation,” INTELMATICS, vol. 3, no. 1, pp. 23–32, 2023.

[4] S. Demirel and R. Das, “Software Requirement Analysis: Research Challenges and
Technical Approaches,” in International Symposium on Digital Forensic and Security,
Mar. 2018.

[5] H. K. Aroral, “Waterfall Process Operations in the Fast-paced World: Project
Management Exploratory Analysis,” International Journal of Applied Business and
Management Studies, vol. 6, no. 1, pp. 91–99, Apr. 2021.

[6] C. Kalt, “Internet Relay Chat: Architecture,” The Internet Society, 2000.
[7] S. John, “CHAT APP WITH REACT JS AND FIREBASE,” Vaasan

Ammattikorkeakoulu University of Applied Science, 2010.
[8] Hugging Face, “Hugging Face – The AI community building the future.,” The AI

community building the future, 2016.
[9] R. Morgan and R. Garigl, “Hugging face - Natural language processing with

Transformers,” Endeavour, vol. 19, no. 1. 2022.
[10] S. M. Jain, “Hugging Face,” in Introduction to Transformers for NLP, 2022. doi:

10.1007/978-1-4842-8844-3_4.
[11] L. Xue et al., “mT5: A massively multilingual pre-trained text-to-text transformer,” Oct.

2020, [Online]. Available: http://arxiv.org/abs/2010.11934
[12] A. Fan et al., “Beyond English-Centric Multilingual Machine Translation,” Oct. 2020,

[Online]. Available: http://arxiv.org/abs/2010.11125
[13] C. Raffel et al., “Exploring the Limits of Transfer Learning with a Unified Text-to-Text

Transformer,” Oct. 2019, [Online]. Available: http://arxiv.org/abs/1910.10683
[14] O. Ogundepo, A. Oladipo, M. Adeyemi, K. Ogueji, and J. Lin, “AfriTeVa: Extending

‘Small Data’ Pretraining Approaches to Sequence-to-Sequence Models,” in Proceedings
of the Third Workshop on Deep Learning for Low-Resource Natural Language
Processing, Association for Computational Linguistics, Jun. 2022, pp. 126–135.
[Online]. Available: https://data.statmt.org/cc-100/

[15] J. Sánchez Martínez, “Combining Multilingual Machine Translation and other NLP
tasks to Learn Intermediate Language Representations (Enhancing Intermediate
Representations by Jointly Learning Multilingual Translation and Part-Of-Speech
Tagging),” Universitat Politècnica de Catalunya, 2021. [Online]. Available:
https://mt.cs.upc.edu/people/

[16] S. Junlabuddee, “Learning Web Design: A Beginner’s Guide to HTML, CSS, JavaScript,
and Web.,” Journal of Information Science. 2020.

[17] M. Sholikhan, S. Kom, and M. Kom, “HTML, CSS dan Javascript,” Penerbit Yayasan

37

Prima Agus Teknik, 2022.
[18] Electron, “Electron | Build cross-platform desktop apps with JavaScript, HTML, and

CSS.,” Electron. 2017.
[19] L. Tulchak and A. Marchuk, “History of Python.”
[20] N. Ketkar and J. Moolayil, Deep Learning with Python. Apress, 2021. doi: 10.1007/978-

1-4842-5364-9.
[21] M. F. Sanner, “PYTHON: A PROGRAMMING LANGUAGE FOR SOFTWARE

INTEGRATION AND DEVELOPMENT”, [Online]. Available:
http://www.python.org/doc/Comparisons.html

[22] K. J. Millman and M. Aivazis, “Python for scientists and engineers,” Computing in
Science and Engineering, vol. 13, no. 2. 2011. doi: 10.1109/MCSE.2011.36.

[23] Michael. Owens, The Definitive Guide to SQLite. Apress, 2006.
[24] H. Gore et al., “Django: Web development simple & fast,” Ann Rom Soc Cell Biol, vol.

25, no. 6, 2021.
[25] Django Software Foundation, “Django: The Web framework for perfectionists with

deadlines,” Djangoproject.Com, 2013.
[26] L. Paulson, “Building Rich Web Applications with Ajax,” in IEE Computer Society, L.

Garber, Ed., 2005.

