

IMPLEMENTING MICROSERVICE ARCHITECTURE TO INDONESIA E-

GOVERNMENT APPLICATION: STUDY CASE CIVIL REGISTRATION WEB

APPLICATION

by

Rizal Hamdan Arigusti (韩充赞)

A Thesis

Submitted to the Faculty of Information Engineering Nanjing Xiaozhuang University

In Partial Fulfillment of the Requirements for the degree of

 Bachelor of Software Engineering

School of Information Engineering

Fangshan, Nanjing

May 2020

To: Dean Xiangzun Zhao
 School of Information Engineering

This thesis, written by Rizal Hamdan Arigusti, and entitled Implementing Microservice
Architecture in Indonesia E-Government Application: Study Case Civil Registration Web
Application, having been approved in respect to style and intellectual content, is referred to you
for judgment.

We have read this thesis and recommend that it be approved.

Qing Li

Haiyong Wu

Wan Li Song

Date of Defense: May 19, 2020
The thesis of Rizal Hamdan Arigusti is approved.

Nanjing Xiaozhuang University, 2020

Dedication

To my beloved family.

ACKNOWLEDGMENTS

Praise and deep gratitude to Allah SWT for the abundance of grace, and guidance of Him given to

the author that made this thesis can be completed properly. Greetings and Shalawat may always

be devoted to the Prophet Muhammad SAW. For the grace of Allah, the author finally able to

complete the thesis entitled Implementing Microservice Architecture To Indonesia E-

Government Application: (Study Case Civil Registration Web Application). This thesis is a

requirement for achieving a Bachelor of Software Engineering at the School of Information

Engineering, Nanjing Xiaozhuang University.

I would like to express my wholehearted thanks to my parents and my sister for their love and

support in my entire life and particularly through the process of pursuing the bachelor degree in

Islamic University of Indonesia and Nanjing Xiaozhuang University.

On this ocassion the author would like to say thank you profusely for all the help that has been

given, either directly or indirectly during the preparation of this final thesis to complete. In

particular gratitudes that are due to:

1. Professor Qing Li (李青) and Dr. Raden Teduh Dirgahayu S.T., M.Sc. as my lecturers and

advisors who has provided guidance and encouragement in the preparation of this thesis.

2. Professor Xiangzun Zhao as Dean of the School of Information Engineering, Nanjing

Xiaozhuang University.

3. Hendrik, S.T., M.Eng. as Head of Informatics Department, Islamic University of Indonesia.

4. Mrs. Sophie Mou who take care of the author when the author was in China.

5. Colleagues, friends, seniors, and juniors when the author was in Nanjing Xiaozhuang

University and Islamic University of Indonesia.

6. Last but not least, those who cannot be mentioned one by one, who have helped and
support me to finish this thesis.

The author realizes that this thesis has not been perfect, both in terms of material or presentation.

The suggestions and constructive criticisms are expected in the completion of this thesis.

Recently the author hope that this thesis can provide things that are useful and add insight to the

reader, and especially for the author as well.

Nanjing, May 2020

 RIZAL HAMDAN ARIGUSTI

STUDENT ID : L18139906

DECLARATION OF ORIGINALITY

I, the undersigued below:

Name : Rizal Ha:ndan Arigusti

StudentID :16523013

H""uby declared that the thesis I wrote with the title : IMPLEMENTING MICROSERVICE

ARC}IITECTURE TO INDONESIA E-GOVERNMENT APPLICATION: STUDY CASE

CIVIL REGISTRATION UTEB APPLICATION

Is truly a rssearch written and eonducted prnrly by myself, not copying from other

published researches, and also not a result of plagiarism.

I will allow Nanjing Xiaozhuang Universrty and Universitas Islam Indsaesia to maiieg€

and keep the copy of this thesis, to be used as they deem nesessary.

I made this s'tatement of deolaration with fttty recponsibility, and I'm willing to aeeept any

oonsequenoes acoording to tho nrles and regulations should the statement above proved to be

wrong in any way.

I.

)

Nanjing, May 2A2A

Rizat Hamdan Arigusti

i

TABLE OF CONTENTS

LIST OF TABLES ... iii

LIST OF FIGURES ... iv

ABSTRACT .. 1

CHAPTER 1. INTRODUCTION .. 2

1.1 Background ... 2

1.2 Problem Identification .. 4

1.3 Objectives ... 4

1.4 Research Scope ... 5

1.5 Research Benefit ... 5

1.6 Methodology ... 5

CHAPTER 2. THEORITICAL BASIS .. 7

2.1 Fundamental Theory ... 7

2.1.1 E-Government ... 7

2.1.2 Microservice Architecture .. 8

2.2 Microservice Tools ... 10

2.2.1 Docker Container .. 10

2.2.2 Kubernetes .. 10

2.3 Related Works ... 11

CHAPTER 3. ANALYSIS AND DESIGN ... 13

3.1 System Requirement Analysis .. 13

3.1.1 Actor Identification ... 14

3.1.2 Functional Requirement .. 14

3.1.3 Non-functional Requirement .. 17

3.2 Business Domain Analysis ... 17

3.3 System Design .. 18

3.3.1 Architectural Design ... 19

ii

CHAPTER 4. IMPLEMENTATION AND TESTING ... 22

4.1 Back-end Service Implementation .. 22

4.1.1 Implementation of Citizen-service .. 23

4.1.2 Implementation of Marriage-service ... 25

4.1.3 Implementation of Family-service .. 28

4.1.4 Implementation of Birth-service ... 30

4.1.5 Implementation of Admin-service .. 32

4.1.6 Implementation of Auth-service ... 34

4.1.7 Implementation of API Gateway .. 34

4.2 Front-end Services Implementation .. 38

4.2.1 Administrator UI Implementation ... 38

4.2.2 Citizens UI Implementation .. 46

4.3 Implementation of Kubernetes Cluster ... 51

4.3.1 Building Docker Image for Backend Services .. 51

4.3.2 Running Application on Kubernetes Cluster .. 52

4.4 Application Testing ... 56

4.4.1 Functional Requirement Testing ... 56

4.4.2 Kubernetes Cluster Testing ... 59

CHAPTER 5. CLOSING ... 62

5.1 Conclusion .. 62

5.2 Recommendations ... 63

BIBLIOGRAPHY ... 64

APPENDIX A. Dockerfiles .. 67

APPENDIX B. Kubernetes Configuration files .. 73

 iii

LIST OF TABLES

Table 3.1 Functional Requirements for the Application ... 14

Table 3.2 Identified Use Case Table ... 15

Table 3.3 Non-functional Requirements for the Application ... 17

Table 4.1 Programming Language, Framework, and Database Usage ... 23

Table 4.2 Citizen-service REST API Exposed URL .. 24

Table 4.3 Marriage-service REST API Exposed URL ... 26

Table 4.4 Family-service REST API Exposed URL .. 28

Table 4.5 Birth-service REST API Exposed URL .. 31

Table 4.6 Admin-service REST API Exposed URL ... 33

Table 4.7 API Gateway Routing Rules ... 35

Table 4.8 Backend Services’ Docker Images ... 51

Table 4.9 Functional Requirement Testing Result ... 56

Table 4.10 Kubernetes Cluster Testing Result ... 59

iv

LIST OF FIGURES

Figure 3.1 Use Case Diagram ... 16

Figure 3.2 Microservice Architecture Diagram for the Application ... 21

Figure 4.1 Administrator Login Page ... 38

Figure 4.2 Administrator Dashboard Page .. 39

Figure 4.3 Citizen Table Page ... 40

Figure 4.4 Citizen Form Page ... 41

Figure 4.5 Marriage Table Page .. 41

Figure 4.6 Marriage Form Page .. 42

Figure 4.7 Family Table Page ... 43

Figure 4.8 Family Form Page ... 44

Figure 4.9 Birth Table Page .. 44

Figure 4.10 Birth Form Page .. 45

Figure 4.11 Admin Registration Page ... 46

Figure 4.12 Citizen Login Page .. 47

Figure 4.13 Citizen Profile Page ... 47

Figure 4.14 Find Marriage Certificate Page ... 48

Figure 4.15 Find Marriage Certificate Result ... 48

Figure 4.16 Citizen’s Family Card Page ... 49

Figure 4.17 Find Birth Certificate Page .. 49

Figure 4.18 Find Birth Certificate Result ... 50

Figure 4.19 Register Birth Page .. 50

Figure 4.20 Register Marriage Page ... 51

Figure 4.21 Minikube Dashboard Overview Page .. 53

Figure 4.22 Kubernetes Deployments Component List .. 53

Figure 4.23 Kubernetes Pods Component List ... 54

v

Figure 4.25 Kubernetes Stateful Sets Component List ... 54

Figure 4.26 Kubernetes Services Component List ... 55

Figure 4.28 Kubernetes Secrets Component List ... 55

1

ABSTRACT

Developing e-government applications becomes one of the main concerns of the Indonesian

Government. However, there are some issues during the implementation of these applications.

These issues are low-level availability, the unreliability of e-government services, and inflexibility

scaling. This research conducted to propose a method to fix these issues. This method was

implementing microservice architecture to one of the e-government applications that is Civil

Registration Web Application.

To implement the microservice architecture, the author did system requirements analysis and

business domain analysis. Then the author designed the microservice architecture by considering

what services needed to run and how every service communicates with each other. After that, the

author developed all the services in the microservices architecture and run them on the Kubernetes

cluster. The result showed the application can run smoothly with its microservice architecture. The

result also showed that all services are more available and scalable when they were running on the

Kubernetes cluster.

Keywords: E-Government, Microservice, Kubernetes, Civil Registration Web Application

2

CHAPTER 1. INTRODUCTION

1.1 Background

E-government is an implementation of ICT (Information and Communication Technology) in

public services to make them more accessible, accountable, and effective (Prahono and Elidjen,

2015). It can give effectiveness and efficiency in delivering public services and will make some

stakeholders feel satisfied (Sabani, Deng and Thai, 2019). As a result, countries across the globe

are developing and improving their e-government applications.

Following the trend, developing and improving e-government applications also has become one

of the main concerns of the Indonesian Government. From 2014 to 2019, the Indonesia

government committed to spending US$6.78 billion in the e-government development program

(Sabani, Deng and Thai, 2019). However, researchers found performance problems during the

implementation of e-government in Indonesia. The Low-level availability, the unreliability of e-

government services, and the quality of application security become the main problems of

Indonesia's e-government (Sabani, Deng and Thai, 2019). Factors that cause these problems are a

lack of infrastructure and a lack of human resource quality (Prahono and Elidjen, 2015).

From a technical perspective, some techniques can address these e-government issues. From the

non-functional requirement aspects, a method like changing the application architecture can be

one of the solutions. Currently, two common application architectures used by many developers

around the world are monolith architecture and microservice architecture.

In monolith architecture, developers bundle every application tier (user interface, business logic,

and data access) and third-party modules into one unit. This architecture gives simplicity in

development and deployment, especially in small-scale applications. However, this architecture

3

has some limitations. One of the limitations is coming from the availability aspect. Since an

application is a bundled of modules, if there is some memory leak or bug, it can shut down the

entire application (Kharenko, 2019).

Microservice architecture comes to address these limitations. Fowler and Lewis describe

microservice is an approach to developing a single application as a suite of small services (Fowler

and Lewis, 2019). Newman also describes microservice as small, autonomous services that work

together (Newman, 2015). In microservice, every service is independently deployable. It makes

continuous delivery and deployment easier (Richardson, 2019). It also makes the codebase more

straightforward to understand and modify by developers since each service is small (Richardson,

2019).

Implementing microservice architecture into e-government can solve or at least minimize

availability issues in the application. In this architecture, independently deploying every service

becomes one of its benefits. Deployment of a service does not require the availability of other

microservices. Once running, if one required microservices is not available, the application still

works even though partly. This benefit becomes the source of other benefits such as reliability and

fault isolation (Soldani, Tamburri and Van Den Heuvel, 2018). So microservice architecture can

improve the availability of our e-government applications.

Another benefit of Microservices is it allows each service to be independently scaled to meet

demand for the application feature it supports. This enables teams to right-size infrastructure needs,

accurately measure the cost of a feature, and maintain availability if a service experiences a spike

in demand ("What are Microservices? | AWS", 2020). This benefit can make the e-government

applications become more flexible to scale.

4

These microservice architecture's benefits motivate the author to develop an e-government

application in which its architecture is using Microservice Architecture. Civil Registration Web

Application is the e-government application that will be the study case in this research. The author

chose the Civil Registration Web Application to be a study case because Civil Registration is one

of the most vital government services.

1.2 Problem Identification

The author identified three questions that are needed to answer after this research has completed.

These three questions are:

1. How to design and implement microservice architecture for a civil registration web

application?

2. How to develop a civil registration web application with microservice architecture?

3. How to improve the availability of the civil registration web application and make it

more flexible to scale?

1.3 Objectives

Objectives of this research are listed below:

1. Improving the availability of the e-government web application and make it more

flexible to scale by implementing the microservice architecture.

2. Developing a civil registration web application as a study case for the microservices

architecture.

5

1.4 Research Scope

The scope of this study are listed below:

1. This research was more focusing on the back-end development and implementation of

some microservice tools and technologies to the system. The system analysis was also

only done by doing observation and literature review.

2. This research was not including the implementation of the system to the real

government institution.

3. This research did not cover all the business processes provided by the civil registration

institutions in Indonesia.

1.5 Research Benefit

One of the benefits of microservice architecture is every service in the system is loosely coupled.

It means every service has a low dependency on other services. If one service is shutting down, it

will not affect other services. Another benefit of microservice architecture is every service can be

flexible to scale. If the demand for one service is high, developers only need to scale up one service.

there is no need to scale up the entire application. So from these two benefits, the implementation

of microservice architecture hopefully can address or at least can minimize the availability issues

of an e-government application in Indonesia and also makes it more flexible to scale.

1.6 Methodology

There are some software development methodology models that currently used by developers

around the world. These models include Waterfall, Agile SCRUM, Spiral, etc. In this research, the

author chose Waterfall as the software development methodology. The author used this model

because all functional requirements of the civil registration web application were relatively stable.

The waterfall model also divides the whole development process into several different phases

(Analysis, Design, Development, and Testing) that executed sequentially.

6

Based on the waterfall model, the author divided the whole research and development process into

four phases that executed sequentially. These phases are:

1. Analysis – in this phase, the author did requirement analysis and business domain

analysis based on previous literature and existing systems. The result of requirement

analysis and business domain analysis became a guide for the author to implement

some features and also to design microservice architecture for the system.

2. System Design – in this phase, the author designed the architecture of civil registration

web application based on the microservice architecture principles.

3. Implementation – in this phase, the author wrote some codes for every service in the

microservice architecture and run it in the Kubernetes cluster. The purpose of running

every service in Kubernetes is to manage every service and make them more available

and scalable.

4. Testing – in this phase, the author used some software testing techniques in order to

check whether the system can fulfill all the requirements that had defined before or not.

7

CHAPTER 2. THEORITICAL BASIS

2.1 Fundamental Theory

2.1.1 E-Government

E-Government is the use of information and communication technology (ICT) by government

institutions to achieve better communication between government to government (G2G),

government to business (G2B), and government to customers (G2C) (Prahono and Elidjen, 2015).

The implementation of e-government can improve accessibility, accountability, effectiveness,

efficiency, and transparency during government activities. By using e-government, some

institutions can deliver their public services effectively and efficiently (Sabani, Deng and Thai,

2019).

UNDP divides the development level of e-government in a country into five stages (Siau & Long,

2005). These five stages are listed below.

1. emerging stage – e-government only provides static information about their

institution’s profile and services in an online system. There is no interaction and

transaction between public citizens and the institution’s online system.

2. enhanced stage – e-government has started to become more dynamic and regularly

updated their information.

3. interactive stage – e-government become more interactive and more sophisticated. For

instance, citizens can download some forms and complete the form manually.

4. transactional stage – in this stage, e-government can provide two-way communication

and secure transaction between the public and the online system. For instance, online

civil registration portal, online taxes portal, etc. Most of the developing countries

currently are in this stage (Sabani, Deng and Thai, 2019).

8

5. seamless stage – this is the final stage where all of the e-governments are integrated. In

this stage, citizens can access all public services in a one-stop portal.

There are some instances of e-government applications in Indonesia. One of them is the civil

registration web application named Sistem Informasi Administrasi Kependudukan which becomes

the study case of this paper. Sistem Informasi Administrasi Kependudukan is an information

system that implements information and communication technology for facilitating civil

information management (Undang Undang Republik Indonesia No.24 Tahun 2013, 2013). Some

outputs of this system are civil identification number, family card, civils card, birth certificate,

death certificate, etc ("Sistem informasi administrasi kependudukan", 2020).

2.1.2 Microservice Architecture

There are so many solutions to improve the quality of software. From the non-functional

requirement perspective (availability, reliability, maintainability, and scalability), developers can

use mirroring/DRC/cloud techniques to improve the software's non-functional quality. Developers

also can use a certain algorithm to improve system performance (Jayanto, 2017).

Microservices architecture also becomes one of these solutions to improve the non-functional

quality of software (Jayanto, 2017). According to Google trends, microservices has become one

of the growing concepts since 2014 (Balalaie, Heydarnoori and Jamshidi, 2016). Many global big

companies, such as Google, Amazon, and Netflix have adapted microservices architecture into

their product (Stenroos, 2019). As a comparison and for better understanding, we also need to

understand one of the traditional architecture which is still used by some companies. This

architecture is monolith architecture..

9

Monolith architecture is a traditional architecture where entire application modules are bundled

and built into one unit. This architecture is designed for running solely on one single instance of

computation (Götz et al., 2018).

Because of monolith architecture build all the modules and program into one unit bundled

application, this kind of architecture is easy to develop and easy to deploy. However, some

drawbacks can make this architecture is not suitable for big-scale enterprise application. The first

drawback of this architecture is it lacks flexibility. For instance, if numbers of users who send

requests to the application are high and make the application can’t handle it with one instance,

developers can’t scale up horizontally. It only supports to scale up vertically instead. Some other

drawbacks like dependency hell, difficult to maintain, changing one module require to reboot the

entire application, and locking developers to use one language and one framework (Dragoni et al.,

2017).

Different from monolith architecture, microservice architecture is a cloud-native architecture that

consists of multiple small services. Each service is independent to deploy and also potentially built

on different platforms and technology stack. This architecture is running on its process while

communicating through a lightweight communication protocol like RESTful or RPC-based APIs

(Balalaie, Heydarnoori and Jamshidi, 2016).

Microservice architecture has some benefits. One of the key benefits of microservice architecture

is it supports independently scaling up of each service, so microservice provides the possibility to

improve scalability and flexibility to application development (Wan, Guan, Wang, Bai and Choi,

2018). Another benefit of microservice is if there is some failure in one component, it will not

affect other components in the system (Jayanto, 2017).

10

2.2 Microservice Tools

2.2.1 Docker Container

A container is a standard unit of software that packages up code and all its dependencies so the

application runs quickly and reliably from one computing environment to another ("What is a

Container? | Docker", 2020). It also provides operating-system-level virtualization under Linux

kernel, so it can isolate and control resources for a set of processes. Virtualization in the container

is different from the virtual machine. While a virtual machine emulates the physical hardware, the

container only virtualizes the operating system level so that it is lightweight with less overhead

(Amaral et al., 2015).

A container needs a tool named container engine to run its processes. Docker is one of the container

engines that currently used by many IT companies. It was launched in 2013 as an open-source

project and it can run in the various operating system such as Linux, Windows, and Mac. Some

cloud computing services like Amazon Web Service and Microsoft Azure also provide Docker in

some of their products.

Docker container is an excellent match for implementing microservice architecture (Amaral et al.,

2015). Every service’s code and dependencies are wrapped into one or more instances of container

and run them on various platform. Since a container is lightweight, so every service can boot in

very fast.

2.2.2 Kubernetes

Kubernetes (also known as k8s or “kube”) is an open source container orchestration platform that

automates many of the manual processes involved in deploying, managing, and scaling

containerized applications ("What is Kubernetes?", 2020).

11

("Kubernetes vs. Docker: What Does It Really Mean? | Sumo Logic", 2020) explained that

Kubernetes is made up many components which these components all talk to each other through

the API server. Every components operates its own function and then exposes metrics, that can be

collected for monitoring later on. All of these components can be divided into three main parts.

• The Control Plane/The Master – is the orchestrator. In Control Plane parts, There are

multiple components that help facilitate the container orchestration. For instance, Etcd for

storage, the API server for communication between components, the scheduler which

decides which nodes pods should run on, and the controller manager, responsible for

checking the current state against the desired state .

• Nodes – are where containers actually get deployed to run. Nodes are the physical

infrastructure that your application runs on, the server of VMs in your environment.

• Pods – are the lowest level resource in the Kubernetes cluster. A pod is made up of one or

more containers. When defining the cluster, limits are set for pods which define what

resources, CPU and memory, they need to run. The scheduler uses this definition to decide

on which nodes to place the pods.

2.3 Related Works

According to our best knowledge, some research focused on developing civil registration web

application. One example is research by Dedi, Iqbal, and Fahroji. They developed a civil

registration web application for the local area institution office in Indonesia (Iqbal, Fahroji & Dedi,

2019). They also claimed that most of the functional requirements of their application were

working. However, there was no implementation of microservice architecture in their works, so

our works in this paper could be an improvement for their works.

12

Different from Dedi, Iqbal, and Fahroji, Jayanto implemented microservice architecture for his

research. In his research (Jayanto, 2017), he designed and developed an online public complaint

system which is also categorized as an e-government application. He implemented microservice

architecture by using Java Spring Boot Framework and he also claimed that most of the functional

requirements in his application were working. Another work that implemented microservice

architecture is research by Sani, Fillah, Tjahyanto, and Suryotrisongko. They implemented

microservice architecture on the E-Incubator application. According to their research, E-Incubator

is an online incubation and investment application. Same as Jayanto's works, they also claimed

that most of the functional requirements in their application were working. They also added that

microservice architecture could make their application gave a faster response to the users’ requests.

However, Both Jayanto and Sani (with his co-authors) works didn’t use any container technology

for their developed application. In this research, we were not only implementing microservice

architecture but also using container technology to develop our application.

13

CHAPTER 3. ANALYSIS AND DESIGN

This chapter explained some results of the analysis phase and design phase during the civil

registration web application development. In the analysis phase, the author did some system

requirement analysis including its actors, functional requirements, and non-functional

requirements. The author also did business domain analysis to guide the author in designing

microservice architecture during the analysis phase. In the design phase itself, all of the analysis

results became a guide for the author to did a system design process.

3.1 System Requirement Analysis

Before implementing some codes into the system, the author needed to do system requirement

analysis. System requirement analysis is used for getting requirements of the system in more detail.

These requirements include users, functional features, and non-functional features of the civil

registration web application.

The author did system requirement analysis by doing observation of some similar systems or

applications. The first observation that the author did is accessing lampid.surabaya.go.id which is

a civil registration web application that is already developed by the Surabaya government. The

next observation that the author did is reviewing some literature that discuss how to develop civil

registration web application. For instance, the author reviewed a paper titled by Sistem Informasi

Administrasi Kependudukan Berbasis Web di Kelurahan Sangiang Jaya. From this paper, the

author got some basic functional requirements that should be included in the civil registration web

application. The author also did observations by reviewing some of Indonesia’s constitutions. Last

but not least, the author did a literature review to some publications related to microservice

architecture so the author can know how to implement a good microservice architecture to the civil

registration web application. From observations, the author got the requirements of the system.

14

3.1.1 Actor Identification

Actors are users that will interact with the civil registration web application. From the observation

process, the author identified two kinds of actors for the civil registration web application. These

actors are:

1. Administrator – People who are employed by government institutions to insert and verify

citizens` data.

2. Citizens – The main user of the system. This actor will insert populations and vital events

(birth, marriage, divorce, and dead) data into the system based on their experience.

3.1.2 Functional Requirement

There were some functional requirements identified by the author after the observation process

had done. All of these functional requirements will be explained in Table 3.1 below.

Table 3.1 Functional Requirements for the Application

Code Functional Requirement Description

FR-01 System should support administrator to insert citizens

identification card data and system will automatically create

the citizens` account

FR-02 System should support administrator to verify marriage

certificate data that are input by citizens

FR-03 System should support administrator to verify and update

family card data

FR-04 System should support administrator to verify birth certificate

data that are input by citizens

FR-05 System should support administrator to login their account

15

Table 3.1 Functional Requirements for the Application Continue

Code Functional Requirement Description

FR-06 System should support administrator to register other

administrators` account

FR-07 System should support citizens to login their account that has

created by administrator

FR-08 System should support citizen to see profile data for their

identification card

FR-09 System should support citizen to register marriage certificate

FR-10 System should support citizen to see data in their family card.

FR-11 System should support citizen to register birth certificate

Based on all the functional requirements in Table 3.1, the author identified eleven use cases that

are described in Table 3.2.

Table 3.2 Identified Use Case Table

Code Use Case Functional
Requirements

Actor

UC-01 Insert citizens identification card data FR-01 Administrator

UC-02 Verify citizen’s marriage certificate data FR-02 Administrator

UC-03 Verify and update citizen’s family card data FR-03 Administrator

UC-04 Verify citizen’s birth certificate data FR-04 Administrator

UC-05 Register other administrators’ account FR-06 Administrator

UC-06 Login as Administrator FR-05 Administrator

UC-07 Login as Citizen FR-07 Citizens

16

Table 3.2 Identified Use Case Table Continue
Code Description Functional

Requirements
Actor

UC-08 See profile data in identification card FR-08 Citizens

UC-09 Register and see marriage certificate FR-09 Citizens

UC-10 See family card data FR-10 Citizens

UC-11 Register and see birth certificate FR-11 Citizens

From the actors and the use cases that had identified, the author modeled a use-case diagram.

Figure 3.1 shows the use-case diagram that had modeled by the author.

Figure 3.1 Use Case Diagram

17

3.1.3 Non-functional Requirement

In this research, the author was more focusing on implementing microservice architecture into the

developed application. The author implemented the microservice architecture to make the

application more available and flexible to scale. So to achieve this purpose, the application should

have some non-functional requirements. These non-functional requirements are:

Table 3.3 Non-functional Requirements for the Application

Code Description

NFR-01 System should have multiple services that are connected each

other with some network protocol

NFR-02 Every service in the system should be independently developed

and deployed.

NFR-03 Every service in the system should be flexible to scale.

NFR-04 Every service in the system should have high runtime availability

3.2 Business Domain Analysis

In this research, the author used microservice architecture to develop the civil registration web

application. This application consisted of multiple small services that can connect through a

network communication protocol. Every service was also independently developed, deployed, and

scaled so it might fulfill non-functional requirements that had discussed before.

The author designed a microservice architecture based on Domain-Driven Design concept and also

based on the use cases that had discussed before. In the Domain-Driven Design concept, the author

18

needed to identify the business domain that will be supported by the web applications and also all

of its subdomain.

The author identified that civil registration became the business domain that supported by the

developed web application. Then based on the use cases, the author identified there were some

subdomain that were consisted in this business domain. Based on the UC-01, UC-07, and UC-08,

the application will have citizen registration process and this data registration process will be used

for other use cases such UC-02, UC-03, etc. So, the author identified that this citizen registration

becomes one of the subdomain in the civil registration business. Then, UC-02 and UC-09 also

have their own registration process that becomes the subdomain in the civil registration business.

This subdomain is marriage registration. UC-03 and UC-10 also shows that the application will

have another subdomain named family registration. The author then identified another

subdomain name birth registration based on the UC-04 and UC-11. Last identified subdomain is

admin registration that the author identified based on the UC-05 and UC-06. Then finally based

on the Domain Driven Design concept, every subdomain will have at least one independent service

that will handle their business process.

3.3 System Design

After the author analyzed system requirements, the author did system design for the application.

In system design itself, the author was more focusing on how to design the microservice

architecture. So, the author did an architectural design for the system. This architectural design

used for guiding authors when authors implemented some codes to create civil registration web

application.

19

3.3.1 Architectural Design

In architectural design, the author designed a system architecture for the application. The author

designed the system architecture based on the result of business domain analysis and system

requirement analysis. The system architecture that the author designed was also implementing the

microservice architecture where an application consists of multiple small services that

communicate through a computer network protocol like HTTP or AMQP.

From all the subdomains that were identified in business domain analysis, the author decided that

every subdomain has its service in the web application. These services will be connected to each

other and serve the request from the client. Every service also had its database whether it would

be a relational database or NoSQL database.

Based on the system requirement analysis results, there is an actor named Administrator.

Administrators are responsible for inserting or verifying some citizens’ data. So, the system should

provide an account for the Administrator. From this requirement, authors decided to create a

service for managing administrator account and it also will have its database to save the

administrator’s data.

Based on the system requirement analysis results, there was also an authentication rule for the

system. For instance, only an authenticated administrator can insert or verify citizens’ data. So, the

author decided that the application should have its authentication service, and this authentication

service will connect to the Administrator database..

The author also chose one of the microservice patterns to design the microservice architecture.

This pattern is the API Gateway pattern. In the API Gateway pattern, the author need to make an

API Gateway as one of the services, then this API Gateway became a medium between client to

every service and also became a medium between one service to another service. API Gateway

20

also can be used for checking whether a request from a client is the authenticated and authorized

one or not.

In designing a microservice architecture, the author needed to choose what kind of inter-process

communication that will be used for the application. this inter-process communication was used

for one service to connect other services. In this research, the author chose to use

Request/Response Communication with REST technology. This Request/Response was used for

communication between API Gateway to every service and between API Gateway to every Client

User Interface.

In this research, the author also chose to use Message-Based Communication with message

queue/broker technology. This Message-Based Communication was used for publish/subscribe

communication among services. So it could make all data in the application became more

consistent and also reduce the Request/Response Communication among services.

In the publish/subscribe communication, there are two message event that will be implemented in

the application. The first message event is marriage-event. This event is happened when there is a

marriage record that the administrator verify. After that, the marriage service will publish a

message event to the message broker then citizen service and family service will subscribe it.

Citizen service subscribe this event to update the marriage status data in the one citizen record and

family service subscribe this event to create a new family record that will automatically add the

people who married in the family members data of the record. Since the family service will create

a new record based on this event, there is no need to make a POST request to the family service

REST API.

Another message event that the author will implement is birth-event. This event is happened when

there is a birth record that the administrator verify. When this event is happening, birth service will

21

publish it to the message broker then the author will make family service and citizen service

subscribe it. Family service subscribe this event to add the new baby into the family members data

in the one family record and citizen service subscribe this event to create a new citizen record of

the new baby.

After the author decided what service that needed to create, what pattern that was used, and what

inter-process communications were used, the author designed the microservices architecture

diagram that can be seen on Figure 3.2.

Figure 3.2 Microservice Architecture Diagram for the Application

22

CHAPTER 4. IMPLEMENTATION AND TESTING

This chapter explained how the author implemented and tested the civil registration web

application. There were some technologies, tools, and libraries used by the author. The author used

three programming languages to create some back-end services, which one service only created

with one programming language. For the database, the author used MySQL, MongoDB, and Redis.

Every database connected to one or more service(s). Then the author used Kubernetes as a

container orchestrator with Docker as its container engine. Last but not least, the author also used

some external libraries to support some functionalities in every service. The author explains the

implementation phase results in REST API routing rules that exposed on every backend service,

some screenshots of UI from frontend services, and some screenshots of Kubernetes objects in the

dashboard. In the testing phase, the author tested the whole application based on the use-case that

had defined. The author also tested the Kubernetes cluster with some test cases to make sure the

availability and scalability of the application.

4.1 Back-end Service Implementation

Based on the microservice architecture diagram, there are six back-end services and one API

Gateway that needed to implement. Every service was implemented by the author to expose a

REST API and connect them to the API Gateway. Then the client will make an HTTP request to

the application through the API Gateway whenever they want to access the application.

The author used different programming languages, framework, and databases for every back-end

service that were developed. The author did this to achieve one of the benefit of microservice

architecture that is flexibility in using technology stack. For more detail, these programming

languages, frameworks, and databases usage are showed in Table 4.1 below.

23

Table 4.1 Programming Language, Framework, and Database Usage

Service Programming

Language

Framework Connected

Database

API Gateway Node JS Express JS Redis

Citizen-service Golang - MySQL

Marriage-service Golang - MongoDB

Family-service Golang - MongoDB

Birth-service Golang - MongoDB

Admin-account-service Python Flask MongoDB

Auth-service Python Flask MongoDB, Redis

4.1.1 Implementation of Citizen-service

Citizen-service was a service responsible for managing citizens’ profile data such as identification

number (NIK), full name, date of birth, etc. This service exposed a REST API and connected it to

the API Gateway. Whenever the client wants to access this service, the client needs to make an

HTTP request to the API Gateway by specifying the URL and the HTTP Method (GET, POST,

PUT, DELETE). Then, the API Gateway will check whether the request is authenticated or not. If

the request is authenticated, API Gateway will send the request to the Citizen-service then the

service will send a response to the client through the API Gateway.

The implementation result of this service is a REST API that can be accessed by the client by

specifying the URL and HTTP Method. All the URL and HTTP Methods that were exposed in this

service are shown in Table 4.2 below.

24

Table 4.2 Citizen-service REST API Exposed URL

No

URL Method Usage

1 http://ip.address/api/v1/citizens GET Getting all the citizens record

from database and send them

through a HTPP response.

2 http://ip.address/api/v1/citizens/{NIK*} GET Getting one citizen record that

the value of NIK column is

{NIK*} then send it through a

HTTP response.

3 http://ip.address/api/v1/citizens POST Inserting one citizen record to

the database and send HTTP

OK response status if it is

success.

4 http://ip.address/api/v1/citizens/auth POST Authenticating citizen account.

If authentication is success,

service will send JWT token to

the client.

5 http://ip.address/api/v1/citizens/{NIK*} PUT Updating one citizen record

that its NIK value is {NIK*}

then send HTTP OK response

status if it is success.

6 http://ip.address/api/v1/citizens/verify/{

NIK*}

PUT Changing verified status value

of one record into “True”. This

one record should be a record

that its NIK value is {NIK*}.

25

Table 4.2 Citizen-service REST API Exposed URL Continue

No

URL Method Usage

7 http://ip.address/api/v1/citizens/{NIK*} DELETE Deleting one citizen record in

database that its NIK value is

{NIK*}.

Based on the microservice architecture diagram that had defined before, Citizen-service connected

to its database. The author decided that Citizen-service will use the MySQL database and only

have one table which is the citizen table. In the citizen table, some data needed to record such as

NIK, full name, sex, etc.

The author used one of ORMs that can connect the Citizen-service to the MySQL database. This

ORM is gorm. With gorm, the author only needed to define all the citizen table columns in a struct

data type then do migrations to the MySQL database. Querying to the MySQL database is also

easier when the author used gorm. The author only needed to call a function that had already

provided by gorm.

Because the author decided that every service should connect its database and only responsible for

one kind of data. So, the author connected the Citizen-service to the RabbitMQ message brokers.

From RabbitMQ, Citizen-service subscribed to some event channels to make the citizens’ profile

data in the database more consistent.

4.1.2 Implementation of Marriage-service

Marriage-service was a service responsible for managing citizens’ marriage data such as married

certificate number, husband name, wife name, date of marriage, etc. Same as Citizen-service,

Marriage service also exposed a REST API and connected to the API Gateway. Based on the

26

microservice architecture, whenever clients need some data from Marriage-service, they need to

make a request to the API Gateway. If the request can pass the authentication checking process in

API Gateway, it will be forwarded to the Marriage-service. Then last, Marriage-service will send

its response to the client through the API Gateway.

The result of Marriage-service implementation is a REST API that can be accessed by the client

by specifying the URL and HTTP Method. All the URL and HTTP Methods that were exposed in

this service are shown in Table 4.3 below.

Table 4.3 Marriage-service REST API Exposed URL

No

URL Method Usage

1 http://ip.address/api/v1/married GET Getting all the marriage record

from database and send them

through a HTPP response.

2 http://ip.address/api/v1/married/{number

*}

GET Getting one marriage record

that the value of married

certificate number or

registration number

field is {number*} then send it

through a HTTP response.

3 http://ip.address/api/v1/married POST Inserting one marriage record

to the database and send HTTP

OK response status if it is

success.

27

Table 4.3 Marriage-service REST API Exposed URL Continue

No

URL Method Usage

4 http://ip.address/api/v1/married/verif/{nu

mber*}

PUT Changing verified status value

of one record into “True”. This

one record should be a record

that its married registration

number value is {number*}.

5 http://ip.address/api/v1/married/{number

*}

DELETE Deleting one married record in

database that its married

certificate number value is

{number*}.

Based on the microservice architecture diagram, Marriage-service will have its own database. The

author chose MongoDB as the database for this service. This database has one collection that is

married-regis. In married-regis, some data needed to record such as married certificate number,

registration number, husband name, wife name, etc.

The author used one of Golang external libraries as the MongoDB driver which its name is go-

mongo-driver. go-mongo-driver not only used for connecting the Marriage-service to the

MongoDB database but also used for saving, updating, and deleting one or more record(s) in

MongoDB collection. The author also defined the married-regis collection schema by using go

mongo-driver.

The author also made the Marriage-service able to publish an event to the RabbitMQ. Marriage-

service will publish this event when the Administrator verified a marriage record in the database.

Other services such as Citizen-service and Family-service subscribed to this event in RabbitMQ

then they will do their business logic whenever the event is published.

28

4.1.3 Implementation of Family-service

Family-service was a service responsible for managing citizens’ family data such as the family

identification number, head of household, family members, etc. Family-service also exposed a

REST API and connected it to the API Gateway. Based on the microservice architecture, whenever

clients need some data from Family-service, they need to make an HTTP request to the API

Gateway. If the request can pass the authentication checking process in API Gateway, it will be

forwarded to the Family-service. Then Family-service will send its response to the client through

the API Gateway.

The result of Family-service implementation is a REST API that can be accessed by the client by

specifying the URL and HTTP Method. All the URL and HTTP Methods that were exposed in this

service are shown in Table 4.4 below.

Table 4.4 Family-service REST API Exposed URL

No

URL Method Usage

1 http://ip.address/api/v1/family GET Getting all the family record

from database and send them

through a HTPP response.

2 http://ip.address/api/v1/family/{number*

}

GET Getting one family record that

the value of married certificate

number or registration number

field is {number*} then send it

through a HTTP response.

29

Table 4.4 Family-service REST API Exposed URL Continue

No

URL Method Usage

3 http://ip.address/api/v1/family/verify/{nu

mber*}

PUT Changing verified status value

of one record into “True”. This

one record should be a record

that its married registration

number value is {number*}.

4 http://ip.address/api/v1/family/add/{num

ber*}

PUT Adding one family member to

one record of family in

database. this one family record

is a family that its family card

number is {number*}

5 http://ip.address/api/v1/family/update-

location/{number*}

PUT Updating location data of one

family record. this one family

record is a family that its family

card number is {number*}

6 http://ip.address/api/v1/family/{number*

}

DELETE Deleting one married record in

database that its married

certificate number value is

{number*}.

Based on the microservice architecture diagram, Family-service will have its database. The

database that will be used in this service is MongoDB. This database has one collection which is

family-regis. In family-regis, some data needed to record such as family card number, head of

household, family members, address of the family, etc.

30

The author used one of Golang external libraries as the MongoDB driver which its name is go-

mongo-driver. go-mongo-driver not only used for connecting the Family-service to the MongoDB

database but also used for saving, updating, and deleting one or more record(s) in MongoDB

collection. The author also defined the family-regis collection schema by using go-mongo-driver.

Because the author decided that every service should connect its database and only responsible

for one kind of data. So, the author connected the Family-service to the RabbitMQ message

brokers. From RabbitMQ, Family-service subscribed to some event channels to make the family

data in the database more consistent.

4.1.4 Implementation of Birth-service

Birth-service was a service responsible for managing citizens’ birth data such as the date of birth,

time of birth, parents, etc. Same as three previous services, Birth-service also exposed a REST API

and connected to the API Gateway. Based on the microservice architecture, whenever clients need

some data from Family-service, they need to make an HTTP request to the API Gateway. If the

request can pass the authentication checking process in API Gateway, it will be forwarded to the

Birth-service. Then Birth-service will send its response to the client through the API Gateway.

As mentioned before, Birth-service was exposing a REST API to serve some clients’ requests. So,

there are some HTTP URLs and Methods that were exposed by Birth-service. All of these URLs

and Methods are shown in Table 4.5 below.

31

Table 4.5 Birth-service REST API Exposed URL

No

URL Method Usage

1 http://ip.address/api/v1/birth GET Getting all the birth record from

database and send them through

a HTPP response.

2 http://ip.address/api/v1/birth/{number*} GET Getting one birth record that the

value of birth registration

number is {number*} then send

it through a HTTP response.

3 http://ip.address/api/v1/birth POST Inserting one birth record to the

Birth-service database and send

HTTP OK response status to

the client if the inserting

process is success

4 http://ip.address/api/v1/birth/{number*} PUT updating one birth record from

database that its birth

registration number is

{number*}

5 http://ip.address/api/v1/birth/{number*} DELETE Deleting one birth record in

database that its birth

registration number is

{number*}.

Based on the microservice architecture diagram, Birth-service hast its database. The database that

is used in this service is MongoDB. This database has one collection which is birth-regis. In birth-

32

regis, some data needed to record such as birth registration number, full name, parents, date of

birth, etc.

The author used one of Golang external libraries as the MongoDB driver that its name is go-

mongo-driver. go-mongo-driver not only used for connecting the Birth-service to the MongoDB

database but also used for saving, updating, and deleting one or more record(s) in MongoDB

collection. The author also defined the birth-regis collection schema by using go-mongo-driver.

The author also made the Birth-service able to publish an event to the RabbitMQ. This event is

published by Birth-service when a birth record is a success to save in the database. Other services

like Citizen-service and Family-service subscribed to this event in RabbitMQ then they will do

their business logic when the event is published.

4.1.5 Implementation of Admin-service

Admin-service was a service responsible for managing Administrator data such as the

administrator’s username, password, full name, etc. Same as other backend services, Admin-

service also exposed a REST API and connected to the API Gateway. Based on the microservice

architecture, whenever clients need some data from Admin-service, they need to make an HTTP a

request to the API Gateway. If the request can pass the authentication checking process in API

Gateway, it will be forwarded to the Admin-service. Then Admin-service will send its response to

the client through the API Gateway.

Admin-service exposed some HTTP URLs and Methods, so clients or other services can make

some requests to this service. All of these URLs and Methods are shown in Table 4.6.

33

Table 4.6 Admin-service REST API Exposed URL

No

URL Method Usage

1 http://ip.address/api/v1/admin/{username

*}

GET Getting one administrator

record that the value of its

username is {username*} then

send it through a HTTP

response.

2 http://ip.address/api/v1/admin GET Getting all admin record to the

Admin-service database.

3 http://ip.address/api/v1/admin POST Inserting one admin record to

the Admin-service database and

send HTTP OK response status

to the client if the inserting

process is success

4 http://ip.address/api/v1/admin/{username

*}

DELETE Deleting one admin record in

database that its birth username

is {username*}.

Based on the microservice architecture diagram, Birth-service has its database. The database that

is used in this service is MongoDB. This database has one collection which is admin-regis. In

admin-regis, some data needed to record such as administrator’s full name, password, username,

location, etc.

The author used one of Python external libraries as the MongoDB ORM which its name is

mongoengine. mongoengine not only used for connecting the Admin-service to the MongoDB

database but also used for saving, updating, and deleting one or more record(s) in MongoDB

34

collection. The author also defined the admin-regis collection schema by extending a Python class

to one of the mongoengine class.

4.1.6 Implementation of Auth-service

Auth-service was a service responsible for handling authentication requests from the client. Auth-

service exposed a REST API and connected it to the API Gateway. Based on the microservice

architecture, whenever clients want to authenticate, they need to make an HTTP request to the API

Gateway. Then API Gateway directly forward the request to this service.

In Auth-service, there is only one exposed URL in its REST API. This URL is

http://ip.address/api/v1/auth and only allowed the POST request method. The POST request that

is made by the client need to have username and password fields in its body. Then Auth-service

will validate username and password fields based on the admin-regis record in the MongoDB

database. If the username and password are valid, then Auth-service creates a JSON Web Token

and saves them to the Redis Key-Value Store. After that, Auth-service returns a response that

contains the token that had created before in its response body. Whenever a client needs to make

an HTTP request to some backend services, he/she will put the token on HTTP Header so API

Gateway can check the request whether it is from the authenticated one or not.

4.1.7 Implementation of API Gateway

Based on the architectural design, the author chose to use the API Gateway pattern for microservice

architecture in the civil registration web application. So, by implementing this pattern, the author

needed to make an API Gateway as a backend service. The use of API Gateway actually can be

various. But in this research, the author implemented the API Gateway only for medium routing

and authentication checking.

35

For medium routing functionality in API Gateway, the author created a REST API. The author

implemented the REST API in API Gateway using the Node JS programming language and its

framework Express JS. The author then wrote some codes to make the routing rules (URLs and

HTTP Methods) in this service. These routing rules are used by API Gateway to specifying the

request forward destination. All of these routing rules are shown in Table 4.7 below.

Table 4.7 API Gateway Routing Rules

Exposed URL Method Destinat

ion

Service

Destination Exposed URL

(Method)

http://ip.address/citizens GET Citizen-

service

http://ip.address/api/v1/citizens

http://ip.address/citizens/{NIK*} GET Citizen-

service

http://ip.address/api/v1/citizens

/{NIK*}

http://ip.address/citizens POST Citizen-

service

http://ip.address/api/v1/citizens

http://ip.address/citizens/auth POST Citizen-

service

http://ip.address/api/v1/citizens

/auth

http://ip.address/citizens/{NIK*} PUT Citizen-

service

http://ip.address/api/v1/citizens

/{NIK*}

http://ip.address/citizens/verify/{NIK

*}

PUT Citizen-

service

http://ip.address/api/v1/citizens

/verify/{NIK*}

http://ip.address/citizens/{NIK*} DELETE Citizen-

service

http://ip.address/api/v1/citizens

/{NIK*}

http://ip.address/married GET Marriage

-service

http://ip.address/api/v1/married

36

Table 4.8 API Gateway Routing Rules Continue

Exposed URL Method Destinat

ion

Service

Destination Exposed URL

(Method)

http://ip.address/married/{number*} GET Marriage

-service

http://ip.address/api/v1/married

/{number*}

http://ip.address/married POST Marriage

-service

http://ip.address/api/v1/married

http://ip.address/married/verif/{numb

er*}

PUT Marriage

-service

http://ip.address/api/v1/married

/verif/{number*}

http://ip.address/married/{number*} DELETE Marriage

-service

http://ip.address/api/v1/married

/{number*}

http://ip.address/family GET Family-

service

http://ip.address/api/v1/family

http://ip.address/family/{number*} GET Family-

service

http://ip.address/api/v1/family/

{number*}

http://ip.address/family/verify/{numb

er*}

PUT Family-

service

http://ip.address/api/v1/family/

verify/{number*}

http://ip.address/family/add/{number

*21}

PUT Family-

service

http://ip.address/api/v1/family/

add/{number*}

http://ip.address/family/update-

location/{number*}

PUT Family-

service

http://ip.address/api/v1/family/

update-location/{number*}

http://ip.address/family/{number*} DELETE Family-

service

http://ip.address/api/v1/family/

{number*}

http://ip.address/birth GET Birth-

service

http://ip.address/api/v1/birth

37

Table 4.8 API Gateway Routing Rules Continue

Exposed URL Method Destinat

ion

Service

Destination Exposed URL

(Method)

http://ip.address/birth/{number*} GET Birth-

service

http://ip.address/api/v1/birth/{n

umber*}

http://ip.address/birth POST Birth-

service

http://ip.address/api/v1/birth

http://ip.address/birth/{number*} PUT Birth-

service

http://ip.address/api/v1/birth/{n

umber*}

http://ip.address/birth/{number*} DELETE Birth-

service

http://ip.address/api/v1/birth/{n

umber*}

http://ip.address/admin/{username*} GET Admin-

service

http://ip.address/api/v1/admin/

{username*}

http://ip.address/admin GET Admin-

service

http://ip.address/api/v1/admin

http://ip.address/admin POST Admin-

service

http://ip.address/api/v1/admin

http://ip.address/admin/{username*} DELETE Admin-

service

http://ip.address/api/v1/admin/

{username*}

http://ip.address/auth POST Auth-

service

http://ip.address/api/v1/auth

For authentication checking in API Gateway, the author created a middleware with Node JS in

API Gateway service. Some backend services in the application will be secured with this

middleware. Whenever a client makes an HTTP request to the API Gateway, this middleware took

place to check did the client provides an authentication token or not. If the client provides the token,

38

this middleware will check again whether this token valid or not. This token will be valid if the

token exists in the Redis Key-Value Store. Then this middleware will allow the API Gateway to

forward the client’s request to other backend services.

4.2 Front-end Services Implementation

4.2.1 Administrator UI Implementation

The author implemented Administrator UI to provide some features for Administrators that were

decided in functional requirements analysis. The author implemented this UI by using Argon

Dashboard Template. This template was created by creative-tim.com and can be found on their

GitHub repository.

Figure 4.1 shows the administrator login page. This page can be accessed via

http://admin.ip.address/login.html. From this page, administrators can fill in their username and

password that had registered in Admin-service. If the username and the password are valid, the

application will show the administrator dashboard page that is shown in Figure 4.2.

Figure 4.1 Administrator Login Page

39

Figure 4.2 shows the administrator dashboard page. This page can be accessed by the administrator

via http://admin.ip.address/index.html and only after they have authenticated. Whenever a browser

loads this page, the application will fetch some requests to the API-Gateway.

Figure 4.2 Administrator Dashboard Page

Figure 4.3 shows the citizen table page. this page can be accessed by the administrator via

http://admin.ip.address/citizens.html and only after they have authenticated. Whenever browser

load this page, the application will fetch get all citizen requests to the API-Gateway. If there is no

problem in backend services, the application will receive the data from the API-Gateway response

and list some citizen data on this page.

40

Figure 4.3 Citizen Table Page

Figure 4.4 shows the citizen form page. This page can be accessed by clicking modify link on one

row in the citizen table page. Then the application will show this page to the administrator. When

a browser loads this page, the application will send a get one citizen request to the API-Gateway.

Then the API-Gateway will send a response with some data from Citizen-service’s. After the

application receives the response, the application will map all the data to some text fields that are

provided on this page.

In the citizen form page, the administrator can delete one record of citizen profile data that is

showed on this page. The administrator only needs to click the delete button and the application

will send a delete one citizen record to the API-Gateway. On this page, the administrator also can

modify and update one citizen record. By clicking the modify button, then filled in some text field

and submit, the application will send an update one citizen request to the API-Gateway.

41

Figure 4.4 Citizen Form Page

Figure 4.5 shows the marriage table page. This page can be accessed by the administrator via

http://admin.ip.address/marriages.html and only after they have authenticated. Whenever the

browser loads this page, the application will fetch get all marriages requests to the API-Gateway.

If there is no problem with backend services, the application will receive the data from the API-

Gateway response and list some marriage data on this page.

Figure 4.5 Marriage Table Page

Figure 4.6 shows the marriage form page. The administrator can access this page by clicking the

badge icon button on the marriage table page. When the browser load this page, the application

42

sends a get one marriage request to the API-Gateway. After the application receives a response,

the application will map all the data to some text fields that are provided on this page.

In the marriage form page, the administrator can also verify one record of marriage certificate data

that is showed on this page. The administrator only needs to click the verify button and the

application will send a verify one marriage record to the API-Gateway.

Figure 4.6 Marriage Form Page

Figure 4.7 shows the family table page. This page can be accessed by the administrator via

http://admin.ip.address/families.html and only after they have authenticated. Whenever browser

loads this page, the application will fetch get all families request to the API-Gateway. If there is

no problem with backend services, the application will receive the data from the API-Gateway

response and list some family data on this page.

43

Figure 4.7 Family Table Page

Figure 4.8 shows the family form page. The administrator can access this page by clicking the

badge icon button on the family table page. When the browser load this page, the application sends

a get one family request to the API-Gateway. After the application receives a response, the

application will map all the data to some text fields and a table that is provided on this page.

In the family form page, the administrator can also verify one record of family card data that is

showed on this page. The administrator only needs to click the verify button and the application

will send a verify one family record to the API-Gateway. On this page, the administrator also can

modify and update one family record. By clicking the modify button, then filled in some text field

and submit, the application will send an update one family request to the API-Gateway.

44

Figure 4.8 Family Form Page

Figure 4.9 shows the birth table page. This page can be accessed by the administrator via

http://admin.ip.address/families.html and only after they have authenticated. Whenever the

browser loads this page, the application will fetch get all birth requests to the API-Gateway. If

there is no problem with backend services, the application will receive the data from the API-

Gateway response and list some birth data on this page.

Figure 4.9 Birth Table Page

45

Figure 4.10 shows the birth form page. The administrator can access this page by clicking the

badge icon button on the birth table page. When the browser load this page, the application sends

a get one birth request to the API-Gateway. After the application receives a response, the

application will map all the data to some text fields that are provided on this page.

In the birth form page, the administrator can also verify one record of birth certificate data that is

showed on this page. The administrator only needs to click the verify button and the application

will send a verify one birth record request to the API-Gateway.

Figure 4.10 Birth Form Page

Figure 4.9 shows the admin registration page. This page can be accessed by the administrator via

http://admin.ip.address/admin.html and only after they have authenticated. Whenever the browser

loads this page, the application will fetch get all admin requests to the API-Gateway. If there is no

problem with backend services, the application will receive the data from the API-Gateway

response and list some admin data on the admin table.

There is also an admin registration form on the admin registration page. The administrators use

this to register other administrators' accounts. They only need to fill the form then click submit.

After that, the application will send insert one admin request to the API-Gateway.

46

Figure 4.11 Admin Registration Page

4.2.2 Citizens UI Implementation

The author implemented Citizens UI to provide some features for citizens that were decided in

functional requirements analysis. The author implemented this UI by using Argon Design System

Template. This template was created by creative-tim.com and can be found on their Github

repository.

Figure 4.12 shows the citizen login page. This page can be accessed via

http://citizen.ip.address/index.html. From this page, citizens can fill in their NIK and password

that had registered in Citizen-service. If the NIK and the password are valid, the application will

show the citizen profile page that is shown on Figure 4.13.

47

Figure 4.12 Citizen Login Page

Figure 4.14 shows the citizen profile page. This page can be accessed by the citizens via

http://citizen.ip.address/index.html and only after they have authenticated. Whenever the browser

loads this page, the application will fetch get one citizen request to the API-Gateway based on the

authentication token. If there is no problem with backend services, the application will receive a

response from the API-Gateway and show the profile data on this page.

Figure 4.13 Citizen Profile Page

Figure 4.14 shows the find marriage certificate page. Whenever a citizen fills in the search text

field and clicks the search button, the application will fetch get one marriage request to the API-

Gateway based on the value of the filled-in text field. If the back end services can find the data in

the database, they will send a response to this page. The result can be seen in Figure 4.15.

48

Figure 4.14 Find Marriage Certificate Page

Figure 4.15 Find Marriage Certificate Result

Figure 4.16 shows the citizen’s family card page. This page can be accessed by the citizens via

http://citizen.ip.address/family.html and only after they have authenticated. Whenever the browser

loads this page, the application will fetch get one family request to the API-Gateway based on the

authenticated user’s family card number. If the back end services can find the data in the database,

the application will receive a response from the API-Gateway and show the family card data.

49

Figure 4.16 Citizen’s Family Card Page

Figure 4.17 Find Birth Certificate Page

Figure 4.17 shows the find birth certificate page. Whenever a citizen fills in the search text field

and clicks the search button, the application will fetch get one birth request to the API-Gateway

based on the value of the filled-in text field. The result of finding a birth certificate can be seen in

Figure 4.18.

50

Figure 4.18 Find Birth Certificate Result

Figure 4.19 shows the register birth page. Citizens can register a birth certificate on this page by

filling in all provided the text fields. After filling in, citizens click the submit button and the

application will send an insert one birth request to the API-Gateway.

Figure 4.19 Register Birth Page

Figure 4.20 shows the register marriage page. Citizens can register a marriage certificate on this

page by filling in all provided the text fields. After filling in, citizens click the submit button and

the application will send an insert one marriage request to the API-Gateway.

51

Figure 4.20 Register Marriage Page

4.3 Implementation of Kubernetes Cluster

For fulfilling non-functional requirements that had defined before, the author decided that all the

backend services will be run on the Kubernetes cluster. In the Kubernetes cluster, the author run

every backend service in a containerized application and also made some configurations so every

service can connect to each other.

4.3.1 Building Docker Image for Backend Services

Before running on the Kubernetes cluster, every backend service needed to build into a Docker

image. The author built every backend service’s docker image by creating a Dockerfile and run a

build command on the Docker application. All of the Dockerfile that were made by the author can

be seen in Appendix A. All of the Docker images that were built are shown in Table 4.8.

Table 4.8 Backend Services’ Docker Images

No

Backend Service Docker Image

1 Citizen-service rizalhamdana/citizen-service

52

Table 4.8 Backend Services’ Docker Images

No

Backend Service Docker Image

2 Marriage-service rizalhamdana/married-service

3 Family-service rizalhamdana/family-service

4 Birth-service rizalhamdana/birth-service

5 Admin-service rizalhamdana/admin-service

6 Auth-service rizalhamdana/auth-service

7 API Gateway rizalhamdana/api-gateway

4.3.2 Running Application on Kubernetes Cluster

The author created some Kubernetes objects to run all the backend services on the cluster. These

objects included workloads and services. The author created all of these objects by defining some

Kubernetes configuration files and applying them to the cluster with kubectl command. Some of

these Kubernetes configuration files are shown in Appendix B.

The author used an add-on from Kubernetes named minikube dashboard to monitor all of the

objects in the cluster. Figure 4.21 shows the minikube dashboard’s overview page for monitoring

the Kubernetes cluster.

53

Figure 4.21 Minikube Dashboard Overview Page

Figure 4.22 shows all the Deployments that are created on the Kubernetes cluster. Deployments

run multiple replicas of application (backend services) and automatically replace any instances

that fail or become unresponsive ("Deployment | Kubernetes Engine Documentation | Google

Cloud", 2020). In this way, Deployments help ensure that one or more instances of the application

(backend services) are available to serve user requests.

Figure 4.22 Kubernetes Deployments Component List

54

Figure 4.23 shows some Pods that are running on the Kubernetes cluster. Based on ("Pod

| Kubernetes Engine Documentation | Google Cloud", 2020) Pods are the smallest, most basic

deployable objects in Kubernetes. A Pod represents a single instance of a running process in the

cluster.

Figure 4.23 Kubernetes Pods Component List

Figure 4.24 shows all the StatefulSets on the Kubernetes cluster. StatefulSets represent a set of

Pods with unique, persistent identities and stable hostnames. The state information and other

resilient data for any given StatefulSet Pod is maintained in persistent disk storage associated with

the StatefulSet ("StatefulSet | Kubernetes Engine Documentation | Google Cloud", 2020).

Figure 4.24 Kubernetes Stateful Sets Component List

55

Figure 4.26 below shows all the Services objects that are created in the Kubernetes cluster.

Services is an abstract way to expose an application running on a set of Pods as a network service

("Service", 2020).

Figure 4.25 Kubernetes Services Component List

Figure 4.27 shows a list of Secrets objects in the Kubernetes cluster. Secrets are secure objects

which store sensitive data, such as passwords, OAuth tokens, and SSH keys, in the Kubernetes

cluster ("Secret | Kubernetes Engine Documentation | Google Cloud", 2020).

Figure 4.26 Kubernetes Secrets Component List

56

4.4 Application Testing

For testing the application, the author did a testing technique named black-box testing. The

author also divided this testing into two parts. The first part is testing the functional requirements

and the second part is testing the Kubernetes cluster.

4.4.1 Functional Requirement Testing

In the functional requirement testing, the author made some test cases to check whether the system

can fully support all the functional requirements or not and also to check does the system can

validate the data that are input by the users. Table 4.9 shows the result of this testing.

Table 4.9 Functional Requirement Testing Result

Code Test Case Expected Result Success/Not

Success

TC-01 Admin fills in recorded username and

password in each text field on Admin

Login Page and click Submit button.

Authentication success and

system will showed the Admin

Dashboard Page.

Success

TC-02 Admin fill in invalid username and

password in each text field on Admin

Login Page and click Submit button

System showed invalid

credentials message on Admin

Login Page.

Success

TC-03 Admin fills in all the text field in

Citizen Form Page to insert new

citizen record.

System showed a success

message on Admin Form Page.

Success

TC-04 Admin does not fill in one or more text

field(s) in Citizen Form Page to insert

new citizen record.

System showed a message that

one or more text field(s) should

be filled in.

Success

57

Table 4.9 Functional Requirement Testing Result Continue

Code Test Case Expected Result Success/Not

Success

TC-05 Admin clicks verify button for one

marriage record on Marriage Form

Page.

System showed a message that

one record is verified and then

showed “check” icon on the

verified status column for one

record in Marriage Table Page.

Success

TC-06 Admin clicks verify button for one

marriage record on Marriage Form

Page.

System automatically created a

family record that its family

members are husband and wife

in one marriage record

Success

TC-07 Admin fills in all the text fields in

Family Form Page in order to updating

a family record.

System shows a updating

success message on Family

Form Page

Success

TC-10 Admin clicks verify button for one

birth record on Birth Form Page.

System showed a message that

one record is verified and then

showed “check” icon on the

verified status column for one

record in Birth Table Page.

Success

TC-11 Citizen fills in recorded NIK and

password in each text field on Citizen

Login Page and click Submit button.

Authentication success and

system will show the Citizen

Profile Page.

Success

TC-12 Citizen fills in all the text fields on

Marriage Registration Form Page with

valid data in order to register new

marriage record

System show register success

message on Marriage

Registration Page

Success

58

Table 4.9 Functional Requirement Testing Result Continue

Code Test Case Expected Result Success/Not

Success

TC-13 Citizen does not fill in one or more text

field(s) on Marriage Registration

Form Page.

System showed a message that

one or more text field(s) should

be filled in.

Success

TC-14 Citizen fills in husband’s and/or wife’s

NIK text field(s) on Marriage

Registration Form Page with invalid

data in order to register new marriage

record.

System showed a message that

filled in husband’s and/or

wife’s NIK is invalid.

Success

TC-15 Citizen fills in all the text field on

Birth Registration Form Page with

valid data in order to register new birth

record

System show register success

message on Birth Registration

Page

Success

TC-16 Citizen does not fill in one or more text

field(s) on Birth Registration Form

Page.

System showed a message that

one or more text field(s) should

be filled in.

Success

TC-17 Citizen fills in father’s and/or mother’s

NIK text field(s) on Birth Registration

Form Page with invalid data

System showed a message that

filled in father’s and/or

mother’s NIK is invalid.

Success

TC-18 Citizen fills in reporter’s and/or

witness’s NIK text field(s) on Birth

Registration Form Page with invalid

data

System showed a message that

filled in reporter’s and/or

witness’s NIK is invalid.

Success

59

4.4.2 Kubernetes Cluster Testing

The author did Kubernetes cluster testing to make sure that every backend service in the cluster

is more available and flexible to scale. Table 4.10 below shows the result of this testing.

Table 4.10 Kubernetes Cluster Testing Result

Code Test Case Expected Result Success/Not

Success

KTC-01 Scaling up citizen-service

deployment component to three

replicas.

Kubernetes automatically

create three replicas of citizen-

service pods.

Success

KTC-02 Scaling up married-service

deployment component to three

replicas.

Kubernetes automatically

create three replicas of

married-service pods.

Success

KTC-03 Scaling up family-service

deployment component to three

replicas.

Kubernetes automatically

create three replicas of family-

service pods.

Success

KTC-04 Scaling up birth-service

deployment component to three

replicas.

Kubernetes automatically

create three replicas of birth-

service pods.

Success

KTC-05 Scaling up admin-service

deployment component to three

replicas.

Kubernetes automatically

create three replicas of admin-

service pods.

Success

KTC-06 Scaling up auth-service

deployment component to three

replicas.

Kubernetes automatically

create three replicas of auth-

service pods.

Success

60

Table 4.10 Kubernetes Cluster Testing Result Continue

Code Test Case Expected Result Success/Not

Success

KTC-07 Scaling up api-gateway

deployment component to three

replicas.

Kubernetes automatically run

three replicas of api-gateway

pods.

Success

KTC-08 Scaling down citizen-service

deployment component to one

replicas.

Kubernetes automatically run

one replicas of citizen-service

pods.

Success

KTC-10 Scaling down family-service

deployment component to one

replicas.

Kubernetes automatically run

one replicas of family-service

pods.

Success

KTC-11 Scaling down birth-service

deployment component to one

replicas.

Kubernetes automatically run

one replicas of birth-service

pods.

Success

KTC-12 Scaling down admin-service

deployment component to one

replicas.

Kubernetes automatically run

one replicas of admin-service

pods.

Success

KTC-13 Scaling down auth-service

deployment component to one

replicas.

Kubernetes automatically run

one replicas of auth-service

pods.

Success

KTC-14 Scaling down api-gateway

deployment component to one

replicas.

Kubernetes automatically one

run replicas of api-gateway

pods.

Success

61

Table 4.10 Kubernetes Cluster Testing Result Continue

Code Test Case Expected Result Success/Not

Success

KTC-15 Deleting one backend service pod. Kubernetes automatically

recreate one pod for that one

backend service and other

backend service pods are still

running in the Kubernetes

cluster.

Success

Testing result in Table 4.10 shows some insights to the author. From KTC-01 until KTC-14 results,

they show that every service can scale flexibly. The developers later can scale up or scale down

the number of pods that run for every service following the demands to the one or more service(s).

KTC-15 testing result shows the entire application can become more available since if there is one

service that shut down, it will not affect other services. KTC-15 result also shows that Kubernetes

can automatically recreate the pod of shut down service so the service can be available to serve the

request from the client.

62

CHAPTER 5. CLOSING

5.1 Conclusion

From the implementation and testing results, there were some conclusions that the author can

obtain. These conclusions are:

1. In this research, the author successfully designed and implemented microservice

architecture to the Civil Registration Web Application. The author designed the

microservice architecture by analysing and identifying some business subdomains in the

application. From the identified subdomains, the author implemented a REST API service

for every subdomain and connected them to database and message broker. After that the

author chose to use HTTP and AMQP as the communication protocol between services so

every service can work together to provide the application to the users.

2. The author successfully developed the Civil Registration Web Application. The author

developed the application by following the Waterfall Software Development Methodology.

The author first analysed the system requirements by doing observation to some related

previous literature. After that, the author designed the microservice architecture for the

application by considering the business subdomains, system requirements and

communication protocol for every service. Then the author developed every services with

some programming languages and connected them to database and message broker. Last

but not least, the author did black-box testing to test the functional requirements that had

defined before.

3. The application can be more available and flexible to scale. the author achieved this by

making all the services can be run on the Kubernetes cluster. The Kubernetes cluster then

will responsible to maintain the availability of the application. With Kubernetes

Deployment object, every service also can be scaled up and down so it can fulfill the

request demands from the users.

63

5.2 Recommendations

From the implementation and testing result, the author realized that the application that was

developed in this research still has some limitations. So in the future, this application still needs

further development. Some recommendations from the author so this application can be better.

These recommendations are:

1. The application that was developed only runs on the single-node Kubernetes cluster which

is the author laptop. So in the future, this application needs to deploy to the real server or

cloud services like AWS, Alibaba Cloud, Microsoft Azure, or GCP.

2. The application currently only covers four business processes or services of civil

registration in Indonesia. These four services are citizen registration, marriage registration,

family registration, and birth registration. In the future, the functional requirements need

to be added more so it can cover all the business processes or services of the civil

registration in Indonesia. For instances, in the future the application can support the death

registration, divorce registration, etc.

3. The application currently run the MySQL database and Redis in the Kubernetes cluster

with pods object. This situation is not good since literature said that pods are transient and

have big chance to restart or failover. So, in the future, the MySQL database and Redis

need to run on different servers or cloud platforms.

4. In this research, the microservice architecture was only tested with black-box testing to the

Kubernetes cluster. This technique and strategy are not really appropriate. So, in the future,

the microservice architecture needs to be evaluated and tested with different techniques

and strategies, for instance using Microservice Architecture Analysis Tool (MAAT) or

Chaos Engineering Testing.

64

BIBLIOGRAPHY

Fowler, M. and Lewis, J. (2019). Microservices. [online] martinfowler.com. Available at:
https://martinfowler.com/articles/microservices.html [Accessed 24 Nov. 2019].

Kharenko, A. (2019). Monolithic vs. Microservices Architecture. [online] Medium. Available at:

https://articles.microservices.com/monolithic-vs-microservices-architecture-5c4848858f59
[Accessed 24 Nov. 2019].

Newman, S. (2015). Building Microservices. 1st ed. O’Reilly Media, Inc., p.2.

Prahono, A. and Elidjen (2015). Evaluating the Role e-Government on Public Administration

Reform: Case of Official City Government Websites in Indonesia. Procedia Computer
Science, 59, pp.27-33.

Richardson, C. (2019). Microservices Pattern: Microservice Architecture pattern. [online]

microservices.io. Available at: https://microservices.io/patterns/microservices.html
[Accessed 25 Nov. 2019].

Sabani, A., Deng, H. and Thai, V. (2019). Evaluating the Development of E-Government in

Indonesia. In: 2nd International Conference on Software Engineering and Information
Management. New York: ACM, pp.254-258.

Soldani, J., Tamburri, D. and Van Den Heuvel, W. (2018). The pains and gains of microservices:

A Systematic grey literature review. Journal of Systems and Software, 146, pp.215-232.

Amaral, M., Polo, J., Carrera, D., Mohomed, I., Unuvar, M., & Steinder, M. (2015). Performance

Evaluation of Microservices Architectures Using Containers. 2015 IEEE 14Th International
Symposium On Network Computing And Applications. doi: 10.1109/nca.2015.49

Balalaie, A., Heydarnoori, A., & Jamshidi, P. (2016). Microservices Architecture Enables
DevOps: Migration to a Cloud-Native Architecture. IEEE Software, 33(3), 42-52. doi:
10.1109/ms.2016.64

Dragoni, N., Giallorenzo, S., Lafuente, A., Mazzara, M., Montesi, F., Mustafin, R., & Safina, L.
(2017). Microservices: Yesterday, Today, and Tomorrow. Present And Ulterior Software
Engineering, 195-216. doi: 10.1007/978-3-319-67425-4_12

65

Götz, B., Schel, D., Bauer, D., Henkel, C., Einberger, P., & Bauernhansl, T. (2018). Challenges
of Production Microservices. Procedia CIRP, 67, 167-172. doi:
10.1016/j.procir.2017.12.194

Iqbal, M., Fahroji, W., & Dedi. (2019). Sistem Informasi Administrasi Kependudukan Berbasis
Web di Kelurahan Sangiang Jaya. In SEMNASTIK (pp. 306-313). Semarang: Universitas
Dian Nuswantoro.

Jayanto, D. (2017). Rancang Bangun Back-End “SIAP”: Sistem Informasi Aspirasi Dan
Pengaduan Masyarakat Berbasis Web Dengan Menggunakan Metode Microservice
Springboot (Undergraduate). Institut Teknologi Sepuluh Nopember.

Sani, N., Fillah, W., Tjahyanto, A., & Suryotrisongko, H. (2019). Development of Microservice
Based Application E-Inkubator: Incubation and Investment Service Provider for
SMEs. Procedia Computer Science, 161, 1064-1071. doi: 10.1016/j.procs.2019.11.217

Siau, K., & Long, Y. (2005). Synthesizing e‐government stage models – a meta‐synthesis based
on meta‐ethnography approach. Industrial Management & Data Systems, 105(4), 443-458.
doi: 10.1108/02635570510592352

Sistem informasi administrasi kependudukan. (2020). Retrieved 12 January 2020, from
https://id.wikipedia.org/wiki/Sistem_informasi_administrasi_kependudukan

Stenroos, K. (2019). Microservices in Software Development (Undergraduate). Metropolia
University of Applied Sciences.

Undang Undang Republik Indonesia No.24 Tahun 2013. (2013).

Wan, X., Guan, X., Wang, T., Bai, G., & Choi, B. (2018). Application deployment using
Microservice and Docker containers: Framework and optimization. Journal Of Network And
Computer Applications, 119, 97-109. doi: 10.1016/j.jnca.2018.07.003

What is a Container? | Docker. (2020). Retrieved 12 January 2020, from
https://www.docker.com/resources/what-container

Deployment | Kubernetes Engine Documentation | Google Cloud. (2020). Retrieved 11 May
2020, from https://cloud.google.com/kubernetes-engine/docs/concepts/deployment

Kubernetes vs. Docker: What Does It Really Mean? | Sumo Logic. (2020). Retrieved 9 May
2020, from https://www.sumologic.com/blog/kubernetes-vs-docker/

Pod | Kubernetes Engine Documentation | Google Cloud. (2020). Retrieved 11 May 2020,
from https://cloud.google.com/kubernetes-engine/docs/concepts/pod

Secret | Kubernetes Engine Documentation | Google Cloud. (2020). Retrieved 11 May 2020,
from https://cloud.google.com/kubernetes-engine/docs/concepts/secret

66

Service. (2020). Retrieved 11 May 2020, from https://kubernetes.io/docs/concepts/services-
networking/service/

StatefulSet | Kubernetes Engine Documentation | Google Cloud. (2020). Retrieved 11 May
2020, from https://cloud.google.com/kubernetes-engine/docs/concepts/statefulset

What is Kubernetes?. (2020). Retrieved 9 May 2020, from
https://www.redhat.com/en/topics/containers/what-is-kubernetes

What are Microservices? | AWS. (2020). Retrieved 27 May 2020, from
https://aws.amazon.com/microservices/

67

APPENDIX A. DOCKERFILES

CITIZEN-SERVICE DOCKERFILE

FROM golang:1.14.0-alpine3.11 as builder

LABEL maintainer="Rizal Hamdan <ari.gusti12@gmail.com>"

RUN apk update && apk add --no-cache git

WORKDIR /app

COPY go.mod go.sum ./

RUN go mod download

COPY . .

RUN CGO_ENABLED=0 GOOS=linux go build -a -installsuffix cgo -o main ./src/main.go

FROM alpine:latest
RUN apk --no-cache add ca-certificates

WORKDIR /root/

COPY --from=builder /app/main .
COPY --from=builder /app/.env .

Expose port 8080 to the outside world
EXPOSE 8080

#Command to run the executable
CMD ["./main"]

68

MARRIAGE-SERVICE DOCKERFILE

FROM golang:1.14.0-alpine3.11 as builder

LABEL maintainer="Rizal Hamdan <ari.gusti12@gmail.com>"

RUN apk update && apk add --no-cache git

WORKDIR /app

COPY go.mod go.sum ./

RUN go mod download

COPY . .

RUN CGO_ENABLED=0 GOOS=linux go build -a -installsuffix cgo -o main ./src/main.go

FROM alpine:latest
RUN apk --no-cache add ca-certificates

WORKDIR /root/

Copy the Pre-built binary file from the previous stage. Observe we also copied
the .env file
COPY --from=builder /app/main .
COPY --from=builder /app/.env .

EXPOSE 8083

CMD ["./main"]

69

FAMILY-SERVICE DOCKERFILE

FROM golang:1.14.0-alpine3.11 as builder

LABEL maintainer="Rizal Hamdan <ari.gusti12@gmail.com>"

RUN apk update && apk add --no-cache git

WORKDIR /app

COPY go.mod go.sum ./

RUN go mod download

COPY . .

RUN CGO_ENABLED=0 GOOS=linux go build -a -installsuffix cgo -o main ./src/main.go

FROM alpine:latest
RUN apk --no-cache add ca-certificates

WORKDIR /root/

Copy the Pre-built binary file from the previous stage. Observe we also copied
the .env file
COPY --from=builder /app/main .
COPY --from=builder /app/.env .

EXPOSE 8082

CMD ["./main"]

70

BIRTH-SERVICE DOCKERFILE

FROM golang:1.14.0-alpine3.11 as builder

LABEL maintainer="Rizal Hamdan <ari.gusti12@gmail.com>"

RUN apk update && apk add --no-cache git

WORKDIR /app

COPY go.mod go.sum ./

RUN go mod download

COPY . .

RUN CGO_ENABLED=0 GOOS=linux go build -a -installsuffix cgo -o main ./src/main.go

FROM alpine:latest
RUN apk --no-cache add ca-certificates

WORKDIR /root/

Copy the Pre-built binary file from the previous stage. Observe we also copied
the .env file
COPY --from=builder /app/main .
COPY --from=builder /app/.env .

EXPOSE 8081

CMD ["./main"]

71

ADMIN-SERVICE DOCKERFILE

FROM python:3.7-alpine3.11

COPY . /app

WORKDIR /app

RUN apk update && apk add gcc python3-dev musl-dev

RUN pip install -r requirements.txt

EXPOSE 5000

CMD ["python", "./app.py"]

AUTH-SERVICE DOCKERFILE

FROM python:3.7-alpine3.11

COPY . /app

WORKDIR /app

RUN apk update && apk add gcc python3-dev musl-dev

RUN pip install -r requirements.txt

EXPOSE 5500

CMD ["python", "./app.py"]

72

API-GATEWAY DOCKERFILE

FROM node:10

WORKDIR /usr/src/app

COPY package*.json ./

RUN npm install

COPY . .

EXPOSE 3000
CMD ["node", "index.js"]

73

APPENDIX B. KUBERNETES CONFIGURATION FILES

CITIZEN-SERVICE DEPLOYMENT RESOURCE CONFIGURATION

apiVersion: apps/v1
kind: Deployment
metadata:
 name: citizen-service
 labels:
 app: citizen-service
spec:
 replicas: 1
 selector:
 matchLabels:
 app: citizen-service
 template:
 metadata:
 labels:
 app: citizen-service

spec:
 containers:

 - name: citizen-service
 image: rizalhamdana/citizen-service:1.0.2
 imagePullPolicy: IfNotPresent
 ports:
 - name: http
 containerPort: 8080
 envFrom:
 - secretRef:
 name: mysql-secret

74

MARRIAGE-SERVICE DEPLOYMENT RESOURCE CONFIGURATION

apiVersion: apps/v1
kind: Deployment
metadata:
 name: married-service
 labels:
 app: married-service
spec:
 replicas: 1
 selector:
 matchLabels:
 app: married-service
 template:
 metadata:
 labels:
 app: married-service
 spec:
 containers:
 - name: married-service
 image: rizalhamdana/married-service:1.0.2
 imagePullPolicy: IfNotPresent
 ports:
 - name: http
 containerPort: 8083

75

FAMILY-SERVICE DEPLOYMENT RESOURCE CONFIGURATION

apiVersion: apps/v1
kind: Deployment
metadata:
 name: family-service
 labels:
 app: family-service
spec:
 replicas: 1
 selector:
 matchLabels:
 app: family-service
 template:
 metadata:
 labels:
 app: family-service
 spec:
 containers:
 - name: family-service
 image: rizalhamdana/family-service:1.1.1
 imagePullPolicy: IfNotPresent
 ports:
 - name: http
 containerPort: 8082

76

BIRTH-SERVICE DEPLOYMENT RESOURCE CONFIGURATION

apiVersion: apps/v1
kind: Deployment
metadata:
 name: birth-service
 labels:
 app: birth-service
spec:
 replicas: 1
 selector:
 matchLabels:
 app: birth-service
 template:
 metadata:
 labels:
 app: birth-service
 spec:
 containers:
 - name: family-service
 image: rizalhamdana/birth-service:1.0.0
 imagePullPolicy: IfNotPresent
 ports:
 - name: http
 containerPort: 8083

77

ADMIN-SERVICE DEPLOYMENT RESOURCE CONFIGURATION

apiVersion: apps/v1
kind: Deployment
metadata:
 name: admin-flask-service
 labels:
 app: admin-flask-service
spec:
 replicas: 1
 selector:
 matchLabels:
 app: admin-flask-service
 template:
 metadata:
 labels:
 app: admin-flask-service
 spec:
 containers:
 - name: admin-flask-service
 image: rizalhamdana/admin-service:1.0.0
 imagePullPolicy: IfNotPresent
 ports:
 - name: http
 containerPort: 5000

78

AUTH-SERVICE DEPLOYMENT RESOURCE CONFIGURATION

apiVersion: apps/v1
kind: Deployment
metadata:
 name: auth-service
 labels:
 app: auth-service
spec:
 replicas: 1
 selector:
 matchLabels:
 app: auth-service
 template: e
 metadata:
 labels:
 app: auth-service
 spec:
 containers:
 - name: auth-service
 image: rizalhamdana/auth-service:1.0.
 imagePullPolicy: IfNotPresent
 ports:
 - name: http
 containerPort: 5000
 envFrom:
 - secretRef:
 name: auth-secret
 - secretRef:
 name: redis

79

AUTH-SERVICE SECRET RESOURCE CONFIGURATION

apiVersion: v1
kind: Secret
metadata:
 name: auth-secret
type: Opaque
stringData: # We dont need to worry about converting to base64
 JWT_PRIVATE_KEY: NullPointerException
 JWT_ALGORITHM: HS256

CITIZEN-SERVICE SERVICE RESOURCE CONFIGURATION

apiVersion: v1
kind: Service
metadata:
 name:
 labels:
 app: citizen-service
spec:
 type: NodePort
 selector:
 app: citizen-service `
 ports:
 - name: citizen-service
 protocol: TCP
 port: 8080
 targetPort: 8080

80

MARRIAGE-SERVICE SERVICE RESOURCE CONFIGURATION

apiVersion: v1
kind: Service
metadata:
 name: married-service
 labels:
 app: married-service
spec:
 type: NodePort
 selector:
 app: married-service
 ports:
 - name: married-service
 protocol: TCP
 port: 8083
 targetPort: 8083

FAMILY-SERVICE SERVICE RESOURCE CONFIGURATION

apiVersion: v1
kind: Service
metadata:
 name: family-service
 labels:
 app: family-service
spec:
 type: NodePort
 selector:
 app: family-service
 ports:
 - name: family-service
 protocol: TCP
 port: 8082
 targetPort: 8082

81

BIRTH-SERVICE SERVICE RESOURCE CONFIGURATION

apiVersion: v1
kind: Service
metadata:
 name: birth-service
 labels:
 app: birth-service
spec:
 type: NodePort
 selector:
 app: birth-service
 ports:
 - name: birth-service
 protocol: TCP
 port: 8081
 targetPort: 8081

ADMIN-SERVICE SERVICE RESOURCE CONFIGURATION

apiVersion: v1
kind: Service
metadata:
 name: admin -service
 labels:
 app: admin-service
spec:
 type: NodePort
 selector:
 app: admin-flask-service
 ports:
 - name: admin-service
 protocol: TCP
 port: 5000
 targetPort: 5000

82

AUTH-SERVICE SERVICE RESOURCE CONFIGURATION

apiVersion: v1
kind: Service
metadata:
 name: auth-service
 labels:
 app: auth-service
spec:
 type: NodePort
 selector:
 app: auth-service
 ports:
 - name: auth-service
 protocol: TCP
 port: 5500
 targetPort: 5500

API-GATEWAY SERVICE RESOURCE CONFIGURATION

apiVersion: v1
kind: Service
metadata:
 name: api-gateway
 labels:
 app: api-gateway
spec:
 type: NodePort
 selector:
 app: api-gateway
 ports:
 - name: api-gateway
 protocol: TCP
 port: 3000
 targetPort: 3000

