TUGAS AKHIR

PENGARUH METODE RAWATAN BETON TERHADAP KUAT TEKAN, MODULUS ELASTISITAS DAN KUAT LENTUR BETON (THE EFFECT OF CURING METHODS ON THE COMPRESSIVE STRENGTH, MODULUS OF ELASTICITY AND FLEXURAL STRENGTH)

Diajukan Kepada Universitas Islam Indonesia Yogyakarta Untuk Memenuhi Persyaratan Memperoleh Derajat Sarjana Teknik Sipil

Hasnaa Anggia Agustina 19511108

PROGRAM STUDI TEKNIK SIPIL FAKULTAS TEKNIK SIPIL DAN PERENCANAAN UNIVERSITAS ISLAM INDONESIA 2023

TUGAS AKHIR

PENGARUH METODE RAWATAN BETON
TERHADAP KUAT TEKAN, MODULUS
ELASTISITAS DAN KUAT LENTUR BETON
(THE EFFECT OF CURING METHODS ON THE
COMPRESSIVE STRENGTH, MODULUS OF
ELASTICITY AND FLEXURAL STRENGTH)

Disusun Oleh

Hasnaa Anggia Agustina 19511108

Telah diterima sebagai salah satu syarat persyaratan Untuk memperoleh derajat Sarjana Teknik Sipil

> Diuji pada tanggal 15 Maret 2023

Oleh Dewan Penguji:

Pembimbing

Penguji I

Penguji II

63

Malik Mushthofa, S.T., M.Eng

NIK: 185111302

Astriana Hardawati, S.T., M.Eng

NIK: 165111301

Elvis Saputra, S.T., M.

NIK: 205111302

Mengesahkan,

Ketua Prodi Studi Teknik Sipi

- 11 1.1. F

r. Yunalia Muntafi, S.T., M

NIK: 095**M**0101

PERNYATAAN BEBAS PLAGIASI

Saya menyatakan dengan sesungguhnya bahwa laporan Tugas Akhir yang saya susun sebagai syarat untuk memenuhi salah satu persyaratan pada Program Studi Teknik Sipil, Fakultas Teknik Sipil dan Perencanaan, Universitas Islam Indonesia seluruhnya merupakan hasil karya sendiri. Adapun bagian-bagian tertentu dalam penulisan laporan Tugas Akhir yang saya kutip dari hasil karya orang lain telah dituliskan dalam sumbernya secara jelas sesuai dengan norma, kaidah, dan etika penulisan karya ilmiah. Apabila di kemudian hari ditemukan seluruh atau sebagian laporan Tugas Akhir ini bukan hasil karya sendiri atau adanya plagiasi dalam bagian-bagian tertentu, saya bersedia menerima sanksi, termasuk pencabutan gelar akademik yang saya sandang sesuai dengan perundang-undangan yang berlaku.

Yogyakarta, 28 Februari 2023 Yang membuat pernyataan,

Hasnaa Anggia 🙏

(19511108)

KATA PENGANTAR

Bismillahirrahmannirrahiim.

Assalamualaikum warahmatullah wabarakatuh.

Alhamdulillahirabbil'alamiin, segala puji dan syukur atas kehadirat Allah Subhanahu wa ta'ala yang telah melimpahkan rahmat dan hidayah-Nya sehingga saya dapat menyelesaikan Proposal Tugas Akhir yang berjudul "Pengaruh Metode Rawatan Beton Terhadap Kuat Tekan, Modulus Elastisitas Dan Kuat Lentur Beton" dengan maksimal. Selawat serta salam selalu dilimpahkan kepada Rasulullah Muhammad Shallallahu 'alaihi wasallam, keluarga, sahabat dan pengikut beliau hingga akhir zaman.

Tugas Akhir ini diajukan untuk memenuhi salah satu syarat dalam menyelesaikan studi jenjang Strata Satu (S1) di Program Studi Teknik Sipil, Fakultas Teknik Sipil dan Perencanaan, Universitas Islam Indonesia. Dalam penulisan Tugas Akhir ini saya ingin menyampaikan terima kasih yang sebesarbesarnya kepada pihak-pihak yang terlibat dan senantiasa memberi dukungan kepada saya selama proses penyusunan hingga selesainya Tugas Akhir ini.

- 1. Ir. Yunalia Muntafi, S.T., M.T., Ph.D. selaku Ketua Program Studi Teknik Sipil, Fakultas Teknik Sipil dan Perencanaan, Universitas Islam Indonesia.
- 2. Malik Mushthofa, S.T., M.Eng. selaku Dosen Pembimbing Proposal Tugas Akhir, terima kasih atas bimbingan, nasihat, saran dan dorongan serta kesempatan yang diberikan kepada saya selama penyusunan Proposal Tugas Akhir ini. Semoga Allah SWT memberikan kesehatan kepada beliau, sehingga beliau selalu diberi kesempatan untuk membagi ilmu yang luar biasa kepada orang lain.
- 3. Astriana Hardawati, S.T., M.Eng. selaku Dosen Penguji 1 dalam Sidang Tugas Akhir saya yang telah memberikan banyak masukan, kritik dan saran kepada penulis untuk kesempurnaan Tugas Akhir ini.

- 4. Elvis Saputra, S.T., M.T. selaku Dosen Penguji 2 dalam Sidang Tugas Akhir saya yang telah memberikan banyak masukan, kritik dan saran kepada penulis untuk kesempurnaan Tugas Akhir ini.
- 5. M. Zakki Rizal, Suwarno dan Darussalam, selaku laboran di Laboratorium Bahan Konstruksi Teknik (BKT) yang telah membantu penulis selama proses pengumpulan data penelitian.
- 6. Ibu Hartatik dan Bapak Suyanto, ibu dan bapak penulis yang senantiasa memberikan dukungan dan pengorbanan baik secara material maupun spiritual hingga selesainya Tugas Akhir ini.
- 7. Demas Rakha Freeporta, adik penulis yang senantiasa membantu penulis dalam proses pembuatan dan pengujian beton.
- 8. Seluruh keluarga besar, yang sudah memberikan dukungan dan juga doa.
- 9. Raihan Prasetyawan Ardiansyah, yang telah menemani dan membantu saya menyelesaikan rangkaian proses tugas akhir ini, dan selalu memberikan semangat serta dukungan untuk menyelesaikan tugas akhir ini.
- 10. Teman teman seperjuangan kuliah "NOMAD", yang selalu mendukung penulis untuk segera menyelesaikan Tugas Akhir.
- 11. Teman Teman "Paguyuban 71", yang sudah memberikan semangat dan dukungan agar penulis segera menyelesaikan Tugas Akhir.
- 12. Semua pihak yang telah membantu penulis menyelesaikan Tugas Akhir ini. Akhirnya Penulis berharap agar Tugas Akhir ini dapat bermanfaat bagi berbagai pihak yang membacanya.

Wassalamualaikum warahmatullah wabarakatuh.

Yogyakarta, 28 Februari 2023 Penulis,

> Hasnaa Anggia Agustina 19511108

DAFTAR ISI

HALAMAN JUDUL	
HALAMAN PENGESAHAN	i
PERNYATAAN BEBAS PLAGIASI	ii
KATA PENGANTAR	iii
DAFTAR ISI	V
DAFTAR GAMBAR	vii
DAFTAR TABEL	X
DAFTAR LAMPIRAN	xi
DAFTAR NOTASI DAN SINGKATAN	xii
ABSTRAK	XV
ABSTRACT	XV
BAB I PENDAHULUAN	1
1.1 Latar Belakang	1
1.2 Rumusan Masalah	3
1.3 Tujuan Penelitian	3
1.4 Manfaat Penelitian	3
1.5 Batasan Penelitian	3
BAB II TINJAUAN PUSTAKA	6
2.1 Tinjauan Umum	6
2.2 Peneliti Terdahulu	7
2.3 Perbedaan Penelitian Terdahulu dengan Penelitian Sekarang	10
BAB III LANDASAN TEORI	13
3.1 Material Beton	13

	3.2	Bahan Penyusun Beton	13
	3.2.	1 Semen Portland (Portland Cement)	13
	3.2.	2 Agregat	14
	3.2.	3 Air	16
	3.3	Curing Compound	17
	3.4	Perencanaan Campuran Beton	17
	3.5	Perawatan beton (curing)	26
	3.6	Kuat Tekan Beton	28
	3.7	Modulus Elastisitas	28
	3.8	Kuat Lentur Beton	31
BA	AB IV	METODOLOGI PENELITIAN	32
	4.1	Umum	32
	4.2	Variabel Penelitian	32
	4.3	Bahan yang Digunakan	32
	4.4	Alat yang digunakan	33
	4.5	Benda Uji	35
	4.6	Pelaksanaan Penelitian	37
	4.6.	1 Persiapan	37
	4.6.	2 Pengujian Agregat	38
	4.6.	3 Perencanaan Campuran (Mix Design)	38
	4.6.	4 Pembuatan dan Pengujian Benda Uji <i>Trial</i> dengan Umur 3 dan 7 Hari	38
	4.6.	5 Pembuatan dan Perawatan Sampel	39
	4.6.	6 Pengujian Sampel	41
	4.6.	7 Olah Data	43
	4.6.	8 Analisis Pengujian	43
	4.6.	9 Pembahasan	43

4.6	.10 Kesimpulan dan Saran	43
4.6	.11 Kerangka Konsep Penelitian	43
BAB V	DATA, ANALISIS DAN PEMBAHASAN	46
5.1	Tinjauan Umum	46
5.2	Hasil Pemeriksaan Material Penyusun Beton	46
5.2	.1 Hasil Pemeriksaan Agregat Halus	46
5.2	.2 Hasil Pemeriksaan Agregat Kasar	55
5.3	Perencanaan Campuran Beton (Mix Design)	62
5.4	Hasil Pengujian Trial	71
5.5	Hasil Pengujian Slump	73
5.6	Hasil Pemeriksaan Berat Volume Beton	73
5.7	Hasil Pengujian Kuat Tekan Beton	77
5.8	Hasil Pengujian Modulus Elastisitas Beton	81
BAB V	I KESIMPULAN DAN SARAN	101
6.1	Kesimpulan	101
6.2	Saran	102
DAFTA	AR PUSTAKA	103
LAMPI	RAN	105

DAFTAR GAMBAR

Gambar 3. 1 Hubungan antara kuat tekan dan faktor air semen (FAS)	20
Gambar 3. 2 Grafik persen agregat halus terhadap kadar total yang dian	jurkan untuk
ukuran butir maksimum 10 mm	23
Gambar 3. 3 Grafik persen agregat halus terhadap kadar total yang dian	jurkan untuk
ukuran butir maksimum 20 mm	23
Gambar 3. 4 Grafik persen agregat halus terhadap kadar total yang dian	jurkan untuk
ukuran butir maksimum 40 mm	24
Gambar 3. 5 Grafik perkiraan berat isi beton basah yang telah selesai did	lapatkan 25
Gambar 3. 6 Sketsa pengujian kuat tekan beton	28
Gambar 3. 7 Kurva hubungan tegangan dan regangan beton	29
Gambar 3. 8 Modulus sekan dan modulus tangen beton	30
Gambar 3. 9 Sketsa pengujian kuat lentur beton	31
Gambar 4. 1 Perawatan beton dengan perendaman	39
Gambar 4. 2 Perawatan beton dengan ditutup karung goni basah	40
Gambar 4. 3 Perawatan beton dengan disemprot curing compound	41
Gambar 4. 4 Diagram alir penelitian	44
Gambar 5. 1 Kurva gradasi agregat halus daerah II sampel 1	51
Gambar 5. 2 Kurva gradasi agregat halus daerah II sampel 2	52
Gambar 5. 3 Kurva gradasi agregat kasar maksimum 20 mm sampel 1	60
Gambar 5. 4 Kurva gradasi agregat kasar maksimum 20 mm sampel 2	60
Gambar 5. 5 Hubungan antara kuat tekan dan faktor air semen (FAS)	64
Gambar 5. 6 Grafik persen agregat halus terhadap kadar total yang dian	jurkan untuk
ukuran butir maksimum 20 mm	67
Gambar 5. 7 Perkiraan berat isi beton basah yang telah selesai didapatkan	n 68
Gambar 5. 8 Hubungan antara berat volume dengan metode perawatan	76
Gambar 5. 9 Grafik nilai kuat tekan beton pada tiap metode perawatan	80

Gambar 5. 10 Grafik modulus elastisitas beton metode perawatan perenda	aman sampel
1	89
Gambar 5. 11 Grafik modulus elastisitas beton metode perawatan karung	goni sampel
1	89
Gambar 5. 12 Grafik modulus elastisitas beton metode perawatan diser	nprot curing
compound sampel 1	90
Gambar 5. 13 Nilai modulus elastisitas pada tiap metode rawatan	berdasarkan
persamaan ASTM C-469	94
Gambar 5. 14 Nilai modulus elastisitas pada tiap metode rawatan	berdasarkan
persamaan SNI 2847:2019	95
Gambar 5. 15 Nilai modulus elastisitas pada tiap metode rawatan berdasa	arkan ASTM
C-469 dan SNI 2847:2019	96
Gambar 5. 16 Grafik nilai kuat lentur beton pada tiap metode rawatan	99

DAFTAR TABEL

Tabel 2. 1 Penelitian terdahulu dan rencana penelitian	11
Tabel 3. 1 Faktor pengali untuk standar deviasi jika data hasil uji yang tersed	lia kurang
dari 30	19
Tabel 3. 2 Perkiraan kekuatan tekan (MPa) beton dengan FAS, dan agregat l	casar yang
biasa dipakai di Indonesia	20
Tabel 3. 3 Perkiraan kadar air bebas (Kg/m3) yang dibutuhkan untuk bebera	pa tingkat
kemudahan pengerjaan adukan beton	21
Tabel 3. 4 Persyaratan jumlah semen minimum dan faktor air semen maksin	ıum untuk
berbagi macam pembetonan dalam lingkungan khusus	22
Tabel 4. 1 Rincian benda uji	35
Tabel 5. 1 Hasil pengujian berat jenis dan penyerapan air agregat halus	47
Tabel 5. 2 Hasil pengujian analisa saringan agregat halus sampel 1	49
Tabel 5. 3 Hasil pengujian analisa saringan agregat halus sampel 2	50
Tabel 5. 4 Gradasi agregat halus	51
Tabel 5. 5 Hasil pengujian berat volume gembur agregat halus	53
Tabel 5. 6 Hasil pengujian berat volume padat agregat halus	54
Tabel 5. 7 Hasil pengujian lolos saringan no. 200	55
Tabel 5. 8 Hasil pengujian berat jenis dan penyerapan air agregat kasar	56
Tabel 5. 9 Hasil pengujian analisa saringan agregat kasar sampel 1	58
Tabel 5. 10 Hasil pengujian analisa saringan agregat kasar sampel 2	58
Tabel 5. 11 Gradasi agregat kasar	59
Tabel 5. 12 Hasil pengujian berat volume gembur agregat kasar	62
Tabel 5. 13 Hasil pengujian berat volume padat agregat kasar	62
Tabel 5. 14 Perkiraan kuat tekan beton (Mpa) dengan fas 0,5 dan jenis se	men serta
agregat yang dipakai di Indonesia	63
Tabel 5. 15 Perkiraan Kadar Air Bebas (Kg/m3) yang Dibutuhkan Untuk	Beberapa
Tingkat Kemudahan Pengeriaan Adukan Beton	65

Tabel 5. 16 Persyaratan jumlah semen minimum dan faktor air semen maksim	um
untuk berbagi macam pembetonan dalam lingkungan khusus	66
Tabel 5. 17 Rekapitulasi hasil perancanaan campuran	70
Tabel 5. 18 Rekapitulasi hasil pengujian kuat tekan beton trial	72
Tabel 5. 19 Hasil pengujian nilai slump	73
Tabel 5. 20 Rekapitulasi hasil pemeriksaan berat volume beton	75
Tabel 5. 21 Persentase selisih nilai berat volume untuk tiap metode rawatan	76
Tabel 5. 22 Rekapitulasi hasil pengujian kuat tekan beton	79
Tabel 5. 23 Persentase selisih nilai kuat tekan untuk tiap metode rawatan	81
Tabel 5. 24 Hasil perhitungan tegangan regangan beton metode perendaman sampe	el 1
	83
Tabel 5. 25 Hasil perhitungan tegangan regangan beton metode ditutup dengan karu	ang
goni basah sampel 1	85
Tabel 5. 26 Hasil perhitungan tegangan regangan beton metode disemprot deng	gan
curing compound sampel 1	87
Tabel 5. 27 Rekapitulasi hasil pengujian modulus elastisitas beton	93
Tabel 5. 28 Persentase selisih nilai modulus elastisitas untuk tiap metode rawatan	96
Tabel 5. 29 Rekapitulasi hasil perhitungan kuat lentur beton	98
Tabel 5. 30 Persentase selisih nilai kuat lentur untuk tiap metode rawatan	99

DAFTAR LAMPIRAN

Lampiran	1 Surat Izin Penggunaan Laboratorium	106
Lampiran	2 Laporan Sementara Hasil Pemeriksaan Agregat	107
Lampiran	3 Laporan Sementara Hasil Perencanaan Campuran	124
Lampiran	4 Laporan Sementara Hasil Berat Volume Beton	125
Lampiran	5 Laporan Sementara Hasil Pengujian Benda Uji Trial	126
Lampiran	6 Laporan Sementara Hasil Pengujian Kuat Tekan	127
Lampiran	7 Laporan Sementara Hasil Pengujian Modulus Elastisitas Beton	128
Lampiran	8 Laporan Sementara Hasil Pengujian Kuat Lentur	170
Lampiran	9 Dokumentasi Material Penelitian	171
Lampiran	10 Dokumentasi Peralatan Penelitian	173
Lampiran	11 Dokumentasi Perawatan	185
Lampiran	12 Dokumentasi Benda Uji	187

DAFTAR NOTASI DAN SINGKATAN

SNI = Standar Nasional Indonesia

PBI = Peraturan Beton Indonesia

f'c = Kuat tekan beton (MPa)

MPa = Megapascal

M = Nilai Tambah

 S_r = Deviasi standar

f'_{cr} = Kuat tekan beton rerata yang ditargetkan (MPa)

 $w = Kadar air bebas (kg/m^3)$

 W_h = Perkiraan jumlah air untuk agregat halus (kg/m³)

 W_k = Perkiraan jumlah air untuk agregat kasar (kg/m³)

c = Jumlah semen (kg/m^3)

fas = Faktor air semen

 BJ_{gab} = Berat jenis gabungan agregat

BJ_{Ag. Halus} = Berat jenis agregat halus

 $BJ_{Ag. Kasar}$ = Berat jenis agregat kasar

%Ag. Halus = Persentase agregat halus (%)

%Ag. Kasar = Persentase agregat kasar (%)

 $W_{Ag. Halus} = Kadar agregat halus (kg/m³)$

 $W_{Ag. Kasar}$ = Kadar agregat kasar (kg/m³)

 $W_{Ag. Gab}$ = Kadar agregat gabungan (kg/m³)

P = Beban maksimum (N)

A = Luas penampang benda uji (mm^2)

Ec = Modulus elastisitas (MPa)

W = Berat volume beton normal (kg/m^3)

 S_2 = Tegangan ketika 40% dari beban maksimum (MPa)

 S_1 = Tegangan ketika regangan 0,000050 (MPa)

 ϵ_2 = Regangan akibat Tegangan S₂

ε₁ = 0,000050
 R = Kuat lentur beton/ Modulus runtuh (MPa atau N/mm²)
 L = Panjang bentang diantara kedua tumpuan (mm)
 b = Lebar balok rata-rata pada penampang runtuh (mm)
 d = Tinggi balok rata-rata pada penampang runtuh (mm)

UNIVERSITAS UNIVERSITAS UNIVERSITAS UNIVERSITAS UNIVERSITAS UNIVERSITAS UNIVERSITAS UNIVERSITAS UNIVERSITAS UNIVERSITAS

ABSTRAK

Perawatan beton merupakan tindakan yang dilakukan untuk menjaga kondisi optimal permukaan beton setelah bekisting dibuka sehingga kekuatan beton dapat mencapai target yang direncanakan. Hal ini bertujuan untuk mencegah atau mengurangi kehilangan air dari beton yang diperlukan dalam proses hidrasi. Metode perawatan beton yang paling optimal adalah perendaman, namun metode ini tidak dapat diterapkan di lapangan. Oleh karena itu, perawatan beton *cast in situ* biasanya menggunakan metode lain seperti menggunakan material lembaran dan *curing compound*. Dalam penelitian ini perencanaan campuran berdasarkan SNI 2834-2000 dengan menggunakan metode perawatan berupa perendaman, menutupi permukaan beton dengan karung goni basah, dan menyemprotkan *curing compound* merk Antisol-S. Perawatan beton dilakukan secara berkelanjutan hingga umur pengujian beton 28 hari dengan kuat tekan rencana sebesar 30 MPa. Digunakan sampel berupa 15 silinder yang akan diuji kuat tekan dan modulus elastisitas serta 15 balok yang akan diuji kuat lentur.

Hasil pengujian kuat tekan dengan metode perendaman, menutupi permukaan beton dengan karung goni basah, dan menyemprotkan *curing compound* berturut-turut 32,0399 MPa, 29,2338 MPa, dan 24,4444 MPa. Pengujian modulus elastisitas dengan metode perendaman, menutupi permukaan beton dengan karung goni basah, dan menyemprotkan *curing compound* berturut-turut 24770,7 Mpa, 23672,9 MPa dan 23109,5 MPa. Pengujian kuat lentur dengan metode perendaman, menutupi permukaan beton dengan karung goni basah, dan menyemprotkan *curing compound* berturut-turut 4,95146 MPa, 4,35532 MPa dan 3,97008 MPa

Kata kunci: Metode Perawatan, Perendaman, Karung goni, Curing compound.

ABSTRACT

Concrete curing is a process performed to maintain the optimal condition of the concrete surface after the formwork is removed so that the strength of the concrete can reach the planned target. This is aimed to prevent or reduce water loss from the concrete that is needed in the hydration process. The most optimal method of concrete treatment is immersion, but this method cannot be applied in the field. Therefore, cast in situ concrete treatment usually uses other methods such as using sheet materials and curing compounds. In this study, the mix design is based on SNI 2834-2000 and treated using immersion, covering the concrete surface with wet jute bags, and spraying Antisol-S curing compound. Concrete treatment is carried out continuously until the age of 28 days with a planned compressive strength of 30 MPa. The samples used are 15 cylinders to be tested for compressive strength and modulus of elasticity, as well as 15 beams to be tested for flexural strength.

The compressive strength test results with immersion, covering the concrete surface with wet jute bags, and spraying curing compound were 32.0399 MPa, 29.2338 MPa, and 24.4444 MPa, respectively. The modulus of elasticity test results with immersion, covering the concrete surface with wet jute bags, and spraying curing compound were 24770.7 Mpa, 23672.9 MPa, and 23109.5 MPa, respectively. The flexural strength test results with immersion, covering the concrete surface with wet jute bags, and spraying curing compound were 4.95146 MPa, 4.35532 MPa, and 3.97008 MPa, respectively.

Keywords: Curing Method, Immersion, Jute Sacks, Curing Compound.

BABI

PENDAHULUAN

1.1 Latar Belakang

Beton diartikan sebagai campuran semen portland atau semen hidrolis lainnya, agregat halus, agregat kasar, dan air, dengan atau tanpa bahan tambahan (admixture) (SNI 2847, 2019). Kelebihan beton di antaranya adalah harganya yang relatif murah. Hal ini disebabkan oleh ketersediaan material penyusun beton yang banyak terdapat di alam bebas, kecuali semen. Selain itu, biaya perawatan beton juga tergolong murah karena beton memiliki sifat yang awet, tahan aus, dan tahan api. Beton juga memiliki daya tahan yang sangat kuat terhadap tekanan, sehingga seringkali digunakan untuk struktur bangunan yang memerlukan kekuatan yang tinggi. Selain itu, beton yang baru dicampur sangat mudah untuk dipindahkan, dicetak, dan dibentuk sesuai dengan kebutuhan, sehingga sangat cocok untuk digunakan dalam pembangunan (Tjokrodimulyo, 2007)

Perawatan beton merupakan upaya pemeliharaan permukaan beton dalam kondisi tertentu pasca-pembukaan bekisting agar optimasi kekuatan beton dapat dicapai mendekati kekuatan yang telah direncakan. Perawatan ini berupa pencegahan atau mengurangi kehilangan atau penguapan air dari dalam beton yang ternyata masih diperlukan untuk kelanjutan proses hidrasi. Bila terjadi kekurangan/kehilangan air maka proses hidrasi akan terganggu/terhenti dan mengakibatkan terjadinya penurunan perkembangan kekuatan beton. Sehari setelah pengecoran merupakan saat yang terpenting untuk periode sesudahnya, oleh sebab itu diperlukan perawatan dengan air sehingga untuk jangka panjang, kualitas beton baik kekuatan maupun kekedapan airnya dapat berjalan lebih baik (Amri, 2005).

Proses perawatan beton *(curing)* optimalnya dilakukan dengan cara perendaman, metode ini sangat efektif untuk mendapatkan hingga menaikkan mutu beton rencana. Hal ini dibuktikan oleh penelitian yang dilakukan oleh Mulyati dkk. (2020) dimana diantara metode perawatan perendaman, dibungkus dengan plastik

hitam, ditutup dengan karung goni basah dan dibasahi air, diperoleh bahwa beton dengan perawatan perendaman menghasilkan kuat tekan tertinggi yaitu sebesar 18,95 MPa, lebih tinggi dari kuat tekan rencana, beton dengan perawatan dibungkus plastik hitam, dibungkus dengan karung goni basah dan disiram air secara berturut-turut yaitu sebesar 18,675 MPa, 18,93 MPa, 17,41 MPa dan 13,70 MPa. Selain itu, hasil serupa juga diperoleh pada penelitian Saputra dkk. (2020), dimana beton dengan perawatan perendaman menghasilkan kuat tekan tertinggi yaitu sebesar 25,89 MPa, lebih tinggi dari kuat tekan beton dengan perawatan dibungkus plastik hitam sebesar 23,78 MPa, *curing compound* sebesar 22,48 MPa dan tanpa perawatan sebesar 21,72 MPa serta kuat tekan rencana sebesar 25 MPa. Sehingga, bisa dikatakan bahwa metode ini merupakan metode yang paling optimal dilakukan.

Metode perendaman memang optimal dilakukan untuk mendapatkan mutu beton rencana. Namun, metode ini tidak dapat diaplikasikan pada lapangan, sehingga di lapangan digunakan metode perawatan lain. Perawatan beton *cast in situ* lain selain perendaman yaitu perawatan menggunakan material lembaran dan perawatan menggunakan *curing compound*. Perawatan menggunakan material lembaran antara lain menggunakan karung goni. Penggunaan karung goni dilakukan dengan membasahi karung goni dengan air secara berkala. Sedangkan, perawatan menggunakan *curing compound* dilakukan dengan menyemprotkan cairan tersebut ke permukaan beton, sehingga membentuk membran untuk mencegah atau mengurangi penguapan air dari beton (Kementerian PUPR, 2021).

Pada penelitian ini digunakan *curing compound* merk Antisol-s yang memiliki kelebihan dapat mengurangi debu, sebagai bahan curing beton dan juga mengurangi timbulnya *plastic shrinkage* (Sika Indonesia, 2017). *Plastic Shrinkage* merupakan perubahan volume akibat berkurangnya air dalam beton segar (*fresh concrete*) pada proses hidrasi. Berkurangnya air tersebut akibat adanya penguapan air pada permukaan beton evaporasi dan penyerapan absorbsi. *Curing compound* efektif dalam meningkatkan tekan, kuat lentur dan impermeabilitas beton, serta mengurangi *drying shrinkage* dan retak. *Drying shrinkage* adalah penyusutan yang terjadi karena penguapan air pori dan penguapan permukaan evaporasi. Ketika beton berada di lingkungan kering maka akan terjadi penguapan dan terjadi kehilangan uap air (Xue, 2015).

Pada penelitian yang akan dilakukan digunakan metode rawatan beton dengan merendam didalam air, menutupi permukaan beton dengan karung goni basah serta menyemprotkan *curing compound* merk Antisol-s. Perawatan beton dilaksanakan secara berkelanjutan sampai umur pengujian beton yaitu 28 hari. Setelah itu, dilakukan pengujian kuat tekan dan modulus elastisitas pada sampel silinder serta pengujian kuat lentur pada sampel balok.

1.2 Rumusan Masalah

Berdasarkan penjelasan pada latar belakang diatas, maka dapat dirumuskan permasalah sebagai berikut.

- 1. Bagaimana pengaruh metode rawatan beton terhadap kuat tekan, modulus elastisitas dan kuat lentur beton?
- 2. Apa metode rawatan yang paling efektif digunakan di lapangan?

1.3 Tujuan Penelitian

Berdasarkan rumusan masalah diatas, maka tujuan dari penelitian ini adalah sebagai berikut.

- 1. Mengetahui pengaruh metode rawatan beton terhadap kuat tekan, modulus elastisitas dan kuat lentur beton.
- 2. Mengetahui metode rawatan yang paling efektif digunakan di lapangan.

1.4 Manfaat Penelitian

Manfaat yang dapat diperoleh melalui penelitian ini antara lain sebagai berikut.

- 1. Memberikan informasi mengenai perbedaan metode rawatan beton serta pengaruhnya terhadap kuat tekan, kuat lentur serta modulus elastisitas beton.
- 2. Dapat memberikan pilihan rawatan beton yang paling efektif yang dapat digunakan dalam pekerjaan konstruksi.

1.5 Batasan Penelitian

Agar penelitian ini terarah dan tidak keluar dari tujuan serta mudah dipahami, untuk itu diperlukan adanya batasan penelitian sebagai berikut.

- 1. Kuat tekan beton rencana (f'c) sebesar 30 MPa
- 2. Metode *Mix Design* menggunakan SNI 2834-2000
- 3. Metode rawatan beton yang digunakan yaitu direndam air, ditutup dengan karung goni basah dan disemprot dengan cairan *curing compound* yaitu Sika Antisol S.
- 4. Semen yang digunakan adalah semen PCC tipe I merk Tiga Roda
- 5. Agregat kasar yang digunakan berukuran maksimum 20 mm
- 6. Agregat kasar berasal dari Clereng
- 7. Agregat halus berasal dari Progo
- 8. Air yang digunakan berasal dari Laboratorium Bahan Konstruksi Teknik Jurusan Teknik Sipil, Fakultas Teknik Sipil dan Perencanaan, Universitas Islam Indonesia.
- 9. *Curing Compound* yang digunakan dengan merek Sika Antisol S yang berbahan dasar Sodium Silikat.
- 10. Tidak meneliti kandungan kimia pada Curing Compound
- 11. Benda uji yang digunakan adalah Balok berukuran 40 cm x 10 cm x 10 cm untuk uji lentur dan silinder berdiameter 15 cm dengan tinggi 30 cm untuk pengujian dan kuat tekan.
- 12. Perawatan beton selama 28 hari
- 13. Pengujian beton keras dilakukan pada umur 28 hari
- 14. Macam-macam pengujian yang akan dilakukan adalah sebagai berikut.
 - a. Pengujian berat jenis dan penyerapan air agregat halus menggunakan SNI 1970-2016.
 - Pengujian berat jenis dan penyerapan air agregat kasar menggunakan SNI 1969-2016.
 - c. Pengujian analisa saringan agregat halus menggunakan SNI 1968-1990
 - d. Pengujian analisa saringan agregat kasar menggunakan SNI 1968-1990
 - e. Pengujian berat volume gembur dan berat volume padat agregat halus menggunakan SNI 4804-1998
 - f. Pengujian berat volume gembur dan berat volume padat agregat kasar menggunakan SNI 4804-1998

- g. Pengujian butiran lolos ayakan no. 200 (Uji kadar lumpur dalam pasir) menggunakan SNI 4142-1996
- h. Pengujian slump beton menggunakan SNI 1972-2008
- i. Pengujian kuat tekan beton menggunakan SNI 1974-2011
- j. Pengujian modulus elastisitas statis beton menggunakan SNI 4169-1966
- k. Pengujian kuat lentur beton menggunakan SNI 4154-2014

BAB II

TINJAUAN PUSTAKA

2.1 Tinjauan Umum

Beton adalah fungsi dari material penyusunnya yang terdiri dari semen (*Portland cement*), agregat kasar, agregat halus, air dan bahan tambah (*admixture* atau *additive*) (Mulyono, 2004). Material beton memiliki karakteristik dimana nantinya akan dijadikan acuan dalam perencanaan campuran beton. Berdasarkan karakteristik material beton nantinya akan direncanakan campuran yang memnuhi spesifikasi teknis dan syarat lainnya yang telah ditentukan. Sehingga terdapat parameter-parameter yang paling mempengaruhi kekuatan beton (Nawy, 1985) yaitu sebagai berikut.

- 1. Kualitas semen
- 2. Proporsi semen terhadap campuran
- 3. Kekuatan dan kebersihan agregat
- 4. Interaksi atau adhesi antara pasta semen dengan agregat
- 5. Pencampuran yang cukup dari bahan-bahan pembentuk beton
- 6. Penempatan yang benar, penyelesaian dan pemadatan beton
- 7. Perawatan beton
- 8. Kandungan klorida tidak melebihi 0,15% dalam beton yang diekspos dan 1% bagi beton yang tidak diekspos

Perawatan Beton (curing) merupakan salah satu faktor yang akan mempengaruhi kekuatan beton. Perawatan beton perlu dilakukan supaya beton tidak mengalami retak plastis yang disebabkan oleh proses hidrasi yang dimana proses ini membantu dalam proses pengerasan beton. Perawatan beton (curing) merupakan suatu usaha yang dilakukan untuk menjaga beton supaya mempunyai kadar air tetap antara di permukaan beton maupun di dalam beton yang mencukupi (Jong, 2018). Banyak metode yang digunakan dalam perawatan beton seperti merendam beton ke dalam air, menggunakan karung goni basah, membungkus dengan plastik, membasahi beton dengan cara disemprot air rutin atau pun menggunakan curing compound. Pemilihan

metode perawatan beton sendiri dilihat dari kesesuaian penggunaan metode dengan lingkungan sekitar seperti perawatan curing pada gedung bertingkat tidak memungkinkan untuk beton itu di rendam air sehingga biasanya curing di lakukan dengan membungkus beton dengan plastic atau kain yang dibasahi, lain halnya dengan perawatan beton pada jalan tol, biasanya digunakan dengan cara menyemprotkan air atau curing compound pada jalan dan juga bisa dengan menutupi permukaan jalan tol menggunakan karung goni yang dibasahi.

Perawatan beton sendiri dilakukan untuk mendapatkan kuat tekan rencana yang telah direncanakan bahkan bisa juga membantu meningkatkan kekuatan beton hingga diatas kuat tekan rencana. Banyak metode yang bisa digunakan pada perawatan beton, dengan ini ada beberapa peneliti terdahulu yang melakukan riset atau pengujian tentang kuat tekan beton berdasarkan metode rawatan beton yang digunakan. Hal ini bertujuan agar mereka dapat mengetahui metode mana yang efektif digunakan pada proyek pembangunan yang dilaksanakan.

2.2 Peneliti Terdahulu

Penelitian terhadap Pengaruh Metode Rawatan Beton sudah pernah dilakukan sebelumnya oleh beberapa peneliti terdahulu, sehingga dapat dijadikan sebagai referensi yang nantinya digunakan dalam penelitian ini. Peneliti mengambil 8 jurnal terdahulu sebagai referensi dalam penelitian ini. Jurnal yang digunakan sebagai referensi akan dijabarkan sebagai berikut.

 Pengaruh Metode Perlakuan Dalam Perawatan Beton Terhadap Kuat Tekan dan Durabilitas Beton

Penelitian yang dilakukan oleh Fepy Supriani dan Mukhlis Islam ini menggunakan metode perawatan beton dengan cara Direndam air tawar selama 26 hari, Dibiarkan dalam ruangan tertutup tanpa perawatan selama 27 hari, Diletakkan di luar ruangan dengan penyiraman pagi dan siang selama 3 hari, dengan penyiraman pagi dan siang selama 14 hari, dengan penyiraman pagi dan siang selama 26 hari, Diletakkan di luar ruangan, ditutup dengan karung goni dan disiram setiap pagi dan siang selama 3 hari, disiram setiap pagi dan siang selama 14 hari, disiram setiap pagi dan siang selama 26 hari. Sehingga dengan variasi metode perawatan tersebut, penelitian ini bertujuan untuk mengetahui

perlakuan perawatan yang paling optimal dan umur beton berapa hari yang perlu dilakukan perawatan lebih khusus. Benda uji yang diunakan dalam penelitian ini adalah kubus dengan dimensi 15 cm x 15 cm x 15 cm dengan 5 buah sampel per perlakuan perawatan beton. Digunakan 5 buah sampel tiap perlakuan perawatan dan dilakukan pengujian kuat tekan pada umur 28 hari dan 56 hari. Hasil dari penelitian ini adalah Beton dengan perlakuan diletakkan diluar ruangan tanpa perawatan memiliki kuat tekan tertinggi kedua setelah perlakuan perendaman dengan air tawar, perubahan signifikan pada kekuatan beton yang dirawat terjadi di umur beton 56 hari dan mengalami penurunan kekuatan hingga 19 persen, serta terjadinya kenaikan kekuatan optimum sebesar 27,84 persen pada beton dengan perlakuan ditutup karung goni dan disiram rutin selama 3 hari.

- b. Pengaruh Perawatan Beton yang Berbeda-Beda Terhadap Kekuatan Beton Penelitian selanjutnya dilakukan oleh Yulfalentino dengan menggunakan metode perawatan beton berupa dibiarkan di alam terbuka, tanpa perawatan tapi terletak di dalam ruangan, perawatan dengan menyiram dua kali sehari pagi dan sore, perawatan dengan menutupi dengan goni basah dan perawatan dengan menyiram 3 kali sehari. Tujuan dari penelitian ini yaitu untuk mengetahui perawatan beton dengan sistim yang berbeda-beda serta kekuatan tekan beton yang dihasilkannya, serta membandingkan sistim perawatan beton yang paling baik dengan menghasilkan kuat tekan beton yang paling maksimal diantara sampel yang digunakan. Sampel yang dimaksud berupa delapan kubus di tiap perlakuannya, dengan adanya penelitian ini maka didapatkan hasil berupa perawatan beton yang berbeda-beda dapat mempengaruhi kekuatan beton. Untuk kekuatan beton yang paling tinggi didapatkan dari metode perawatan dengan menyiram tiga kali sehari dan yang terendah didapatkan dari perlakuan dibiarkan di alam terbuka.
- c. Pengaruh Metode Perawatan Beton Terhadap Kuat Tekan Beton Normal Penelitian yang dilakukan oleh Mulyati dan Ziga Arkis ini menggunakan metode perawatan berupa merendam beton di dalam air, membungkus beton dengan plastic hitam, menutupi permukaan beton dengan karung goni basah, dan membasahi permukaan beton dengan air. Tujuan dari penelitian ini adalah dapat diketahui seberapa besar kuat tekan beton yang dihasilkan dari beberapa metode

perawatan beton yang digunakan, serta dapat diketahui metode perawatan beton yang baik. Penelitian ini menggunakan benda uji berupa silinder dengan diameter 15 cm dan tinggi 30 cm sebanyak 12 buah untuk pengujian kuat tekan beton umur 28 hari. Hasil penelitian ini berupa kuat tekan beton tertinggi diperoleh dari metode perawatan beton dengan merendam dalam air dan kuat tekan beton terendah diperoleh dari metode perawatan beton dengan membasahi permukaan dengan air, sehingga dapat dinyatakan bahwa metode perawatan beton yang baik yaitu dengan merendam dalam air dan membungkus dengan plastik hitam dikarenakan membungkus dengan plastik hitam dalam mencapai kuat tekan beton rencana.

- d. Studi Pengaruh Perbedaan Metode Perawatan Terhadap Kuat Tekan Beton Penelitian selanjutnya ditulis dalam journal of applied civil engineering and infrastructure (JACEIT) tentang pengaruh perbedaan metode perawatan terhadap kuat tekan beton. Penelitian ini ditulis oleh Irawan Saputra, Mirza Ghulam Rifqi, dan M. Shofi'ul Amin dengan tujuan untuk mengetahui pengaruh metode perawatan beton terhadap nilai kuat tekan beton. Pada penelitian ini digunakan sampel benda uji berupa silinder dengan ukuran diameter 15 cm dan tinggi 30 cm. Metode yang digunakan adalah perawatan perendaman, perawatan dibungkus dengan lembaran plastik, dan perawatan *curing compound*. Pengujian kuat tekan dilakukan pada 7 hari, 14 hari dan 28 hari. Dari pengujian ini didapatkan bahwa pengujian kuat tekan beton jenis perawatan perendaman menghasilkan nilai tertinggi sebesar 25.89 MPa pada umur beton 28 hari.
- e. Pengaruh Perbedaan Metode Perawatan Terhadap Kuat Tekan Beton Penelitian ini dilakukan oleh Dahlia Patah, Amry Dasar dan Poppy Indrayani dengan tujuan menyelidiki dan membandingkan dalam iklim tropis seperti Indonesia, pengaruh metode perawatan terhadap kuat tekan beton. Metode perawatan yang digunakan ada 5 yaitu perendaman dengan air biasa, perendaman dengan air laut, membungkus dengan karung goni basah, membungkus dengan plastik film dan dilakukan penyiraman selama 7, 28, dan 90 hari. Pada tiap perlakuan digunakan sampel silinder (diameter 10 cm dan tinggi 20 cm) sebanyak 45 sampel. Setelah dilakukan penelitian didapatkan hasil

berupa metode perendaman dengan air biasa menghasilkan benda uji dengan kuat tekan tertinggi yaitu sebesar 24,99 N/mm2

2.3 Perbedaan Penelitian Terdahulu dengan Penelitian Sekarang

Berdasarkan jurnal peneliti terdahulu yang telah penulis uraikan terdapat perbedaan penelitian yang akan dilakukan dengan yang telah dilakukan dapat dilihat pada Tabel 2.1 berikut ini.

Tabel 2. 1 Penelitian terdahulu dan rencana penelitian

		Penelitian Terlebih Dahulu	ı Dahulu			Rencana Penelitian
Penelitian	Supriani F, dkk (2017)	Yulfalentino (2018)	Mulyati, dkk (2020)	Saputra I, dkk (2020)	Patah D, dkk (2022)	Anggia H (2022)
Judul Penelitian	I	O)	A	Ь	_	Pengaruh Metode Rawatan
	T	Berbeda-beda terhadap Kekuatan	Perawatan Beton		Metode Perawatan	Beton terhadan Kuat Tekan,
	Perawatan Beton	Beton	Terhadap Kuat	Perawatan Beton	Terhadap Kuat Tekan	Modulus Elastisitas dan Kuat
	Terhadap Kuat Tekan		Tekan Beton Normal	Terhadap Kuat Tekan	Beton	Lentur Beton
	dan Durabilitas Beton			Beton		
Tujuan	Mengetahui perlakuan	Mengetahui perawatan beton	Mengetahui besar kuat	Mengetahui pengaruh	Menyelidiki dan	Mengetahui pengaruh metode
	perawatan yang paling	dengan sistim yang berbeda-beda	eton	metode perawatan	membandingkan,	rawatan terhadap mutu dan
	optimal dan pada umur	serta kekuatan tekan beton yang	dihasilkan dari	beton terhadap nilai	dalam iklim tropis	kualitas beton serta
	beton berapa hari yang	dihasilkannya, serta	beberapa metode	kuat tekan beton	seperti Indonesia,	mengetahui metode curing
	perlu dilakukan	membandingkan sistim perawatan	perawatan beton yang		pengaruh metode	yang paling efektif dalam
	perawatan yang lebih	beton tersebut yang paling baik	digunakan, dan dapat		perawatan (curing)	menunjang mutu dan kualitas
	khusus	dengan menghasilkan kuat tekan	mengetahui metode		terhadap kuat tekan	beton
		beton yang paling maksimal	perawatan beton yang		beton.	
		diantara sampel yang ada	baik.			
Kuat Tekan Rencana	20 MPa	155	18,675 MPa	25 MPa	-	30 MPa
Metode Rawatan	Menyelimuti permukaan	Perawatan dengan menyiram tiga	Merendam beton di	Perawatan	Perendaman dengan	Perawatan perendaman,
	beton dengan karung	kali sehari; perawatan beton	dalam air,	perendaman,	air biasa, perendaman	딞
	goni basah, menyirami	dengan menutup pakai goni basah;	membungkus beton	perawatan dibungkus	dengan air laut,	pakai goni basah dan
	permukaan beton	perawatan beton dengan	dengan plastik hitam,	dengan lembaran	dibungkus dengan	perawatan dengan Curing
	dengan air secara	menyiram rutin dua kali sehari	menutupi permukaan	plastik, dan	karung goni basah,	Compound
	kontinyu, dan juga	pagi dan sore; tanpa perawatan	beton dengan karung	perawatan curing	dibungkus dengan	
	memvariasikan waktu	tapi disimpan dalam ruangan;	goni basah, dan	compound.	plastik film dan	
	perawatan beton selama 26 hari.	tanpa perawatan dan dibiarkan di alam terbuka	membasahi permukaan beton dengan air.	70	disiram-siram selama 7, 28 dan 90 hari	
Jenis Pengujian	Kuat Tekan	Kuat Tekan	Kuat Tekan	Kuat Tekan	Kuat Tekan	Kuat Tekan, Modulus
						Elastisitas dan Kuat Lentur
Benda Uji	Kubus dengan dimensi	Kubus	Silinder Diameter 15	Silinder Diameter 15	Silinder diameter 10	Silinder Diameter 15 cm,
	15 cm x 15 cm x 15 cm.		cm, tinggi 30 cm	cm, tinggi 30 cm	cm dan tinggi 20 cm	tinggi 30 cm dan Balok
						dimensi 10 cm x 10 cm x 40 cm.
Umur Beton	28 Hari dan 56 Hari	28 Hari	28 Hari	Umur 7, 14 dan 28	Umur 7, 28 dan 91 hari	28 Hari
				וומון		

Lanjutan Tabel 2.1 Penelitian terdahulu dan rencana penelitian

Rencana	Anggia H (2022)	
	Patah D, dkk (2022)	Hasil penelitian menunjukkan bahwa metode perawatan beton dengan membungkus karung goni menghasilkan peningkatan kekuatan tekan yang setara dengan perendaman air pada awal hidrasi semen. Namun, penggunaan metode perawatan tersebut, bersama dengan perendaman dalam air biasa dan pembungkusan dengan plastik, hanya dianjurkan untuk periode perawatan selama 28 hari karena peningkatan kuat tekan setelah 28 hari menjadi tidak signifikan (kurang dari 10%). Selain itu, kuat tekan beton tertinggi diperoleh dengan menggunakan perawatan perendaman air laut dan disiram dengan air biasa selama 91 hari. Kuat tekan beton 28 hari adalah 42,99 MPa, perawatan perendaman air laut adalah 32,96 MPa, perawatan bungkus goni basah adalah 38,29 MPa, perawatan bungkus plastik adalah 40,94 MPa dan perawatan disiram air adalah 37,13 MPa.
	Saputra I, dkk (2020)	Metode perawatan beton terbaik adalah merendam dalam air, dengan kuat tekan beton tertinggi, sedangkan yang kurang efektif adalah membasahi permukaan dengan air. Maka, perawatan beton yang optimal adalah membungkus dengan membungkus dengan plastik hitam agar mencapai kuat tekan beton menghasilkan nilai kuat tekan beton menghasilkan nilai kuat tekan 25,89 MPa, lebih tinggi dari beton menghasilkan nilai kuat tekan 25,89 MPa, lebih tinggi dari beton dengan pengunaan curing compound dengan kuat tekan 23,78 MPa dan beton dengan pengunaan curing compound dengan kuat tekan 23,78 MPa. Sementara itu, beton tanpa perawatan memiliki kuat tekan 21,72 MPa, lebih rendah 4,17 MPa dari beton perendaman.
Penelitian Terlebih Dahulu	Mulyati, dkk (2020)	Kuat tekan beton dengan perawatan perendaman dalam air adalah sebesar 18,95 MPa, membasahi permukaan dengan air sebesar 13,70 MPa, membungkus dengan plastik hitam sebesar 18,93 MPa dan membungkus dengan karung goni basah sebesar 17,41 MPa. Metode perawatan beton yang paling efektif adalah merendam dalam air, dengan kuat tekan beton tertinggi, sedangkan metode perawatan beton yang kurang efektif adalah membasahi permukaan dengan air, dengan kuat tekan beton terendah. Dengan demikian, perawatan beton yang perawatan beton yang perawatan beton yang perawatan beton terendah. Dengan demikian, perawatan beton yang paling baik adalah merendam dalam air dan membungkus dengan plastik hitam, karena mampu mencapai kuat tekan beton rencana.
Penelii	Yulfalentino (2018)	Perawatan beton memiliki pengaruh terhadap kekuatan beton yang dihasilkan. urutan kekuatan beton tertinggi hingga terendah secara berturut-turut adalah perawatan dengan menyiram tiga kali sehari pada Benda Uji 5 (BU5) dengan menutup beton dengan mentutup beton dengan mentutu kekuatan 188,33 Kg/cm², perawatan dengan menyiram dua kali sehari pada Benda Uji 3 (BU3) dengan kekuatan 181,11 Kg/Cm², tanpa perawatan dan disimpan dalam ruangan pada Benda Uji 2 (BU2) dengan kekuatan 165,56 Kg/cm², dan tanpa perawatan dan dibiarkan di alam terbuka pada Benda Uji 1 (BU1) dengan kekuatan 165,28 Kg/cm².
	Supriani F, dkk (2017)	Beton yang diberi perawatan perendaman dengan air tawar selama 28 hari memiliki kuat tekan optimum sebesar 31,3 MPa. Sedangkan beton yang tidak dirawat memiliki kuat tekan beton yang dirawat dengan penyiraman dan ditutup karung goni untuk pengujian 28 hari masih di bawah kuat tekan beton yang tidak dirawat. Perubahan signifikan untuk kekuatan beton yang dirawat terjadi pada umur 56 hari dan beton yang tidak dirawat mengalami penuruman kekuatan hingga 19%. Kenaikan kuat tekan optimum terjadi pada umur 56 hari dan beton yang tidak dirawat mengalami penuruman kekuatan hingga 19%. Kenaikan kuat tekan optimum terjadi pada beton yang dirawat dengan dirutup karung goni dan disiram rutin sebesar 27,84%.
	Penelitian	Hasil Penelitian

BAB III LANDASAN TEORI

3.1 Material Beton

Beton merupakan bahan bangunan yang paing umum dan seringkali digunakan dalam pembangunan infrastruktur seperti gedung perkantoran, jalan raya, bendungan, bandara jembatan maupun pada pembangunan sistem drainase. Beton sendiri diperoleh dengan cara mencampurkan semen, agregat (kasar dan halus), air dan atau tanpa bahan tambah dengan suatu nilai perbandingan tertentu yang dipadatkan seperti batu untuk memperoleh bentuk dan ukuran struktur yang diinginkan (Tjokrodimulyo, 1995). Beton yang digunakan pada saat ini merupakan beton normal. Beton normal yaitu beton yang memiliki berat isi (2200-2500) kg/m³ dengan menggunakan agregat alam yang dipecah atau beton yang hanya mengandung agregat sesuai ASTM C33M (Tri Mulyono, 2015).

3.2 Bahan Penyusun Beton

Beton merupakan salah satu komponen yang terbuat dari kombinasi agregat dan pengikat semen. Bahan penyusun tersebut memiliki fungsi dan juga pengaruh yang berbeda-beda, sehingga setiap bahan memiliki syarat yang harus dipenuhi sesuai SNI yang telah ditetapkan.

3.2.1 Semen Portland (Portland Cement)

Semen *Portland* merupakan semen hidrolis yang dihasilkan dengan cara menggiling terak semen portland terutama yang terdiri atas kalsium silikat yang bersifat hidrolis dan digiling bersama-sama dengan bahan tambahan berupa satu atau lebih bentuk kristal senyawa kalsium sulfat dan boleh ditambah dengan bahan tambahan lain (SNI 2049, 2015). Digunakan sebagai bahan perekat yang memiliki sifat mampu untuk mengikat bahan-bahan padat menjadi satu kesatuan. Dalam pembuatan beton penggunaan semen bertujuan untuk mengikat agregat halus

dengan agregat kasar serta sebagai *filler* rongga antar agregat. Semen terbuat dari serbuk halus dari kapur (CaO), alumina (A12O3), lempung yang mengandung silica (SiO2), oksida besi (Fe2O3), magnesium (MgO), sulfur (SO3) dan soda/potash (Na2+K2O). Semen yang ditambahkan dengan air sesuai takaran tertentu akan membentuk adukan yang disebut dengan pasta semen. Selanjutnya ketika pasta semen tersebut dicampur dengan agregat halus akan menjadi adukan yang disebut dengan mortar dan ketika mortar ditambahkan dan dicampur dengan agregat kasar akan membentuk adukan yang disebut dengan beton.

Berdasarkan SNI 2049:2015 dilihat dari jenis dan penggunaanya Semen *Portland* dibagi menjadi 5 tipe, yaitu.

- 1. Tipe 1 : semen yang digunakan untuk penggunaan umum yang tidak memerlukan persyaratan-persyaratan khusus seperti yang disyaratkan pada jenis-jenis lain.
- 2. Tipe 2 : semen yang dalam penggunaanya memerlukan ketahanan terhadap sulfat atau kalor hidrasi sedang.
- 3. Tipe 3 : semen yang dalam penggunaanya memerlukan kekuatan tinggi pada tahap permulaan setelah pengikatan terjadi.
- 4. Tipe 4: semen yang dalam penggunaanya memerlukan kalor hidrasi rendah
- 5. Tipe 5 : semen yang dalam penggunaanya memerlukan ketahan tinggi terhadap sulfat.

3.2.2 Agregat

Menurut SNI 2847:2019 agregat bahan berbutir, seperti pasir, kerikil, batu pecah, dan slag tanur, yang digunakan dengan media perekat untuk menghasilkan beton atau mortar semen hidrolis. Media perekat yang umum digunakan berupa semen *Portland* atau semen hidraulis. Berdasarkan ukurannya agregat dibagi menjadi 2 macam yaitu.

1. Agregat Halus

Agregat halus adalah pasir alam sebagai hasil disintegrasi alami batuan atau pasir yang dihasilkan oleh industri pemecah batu dan mempunyai ukuran butir terbesar 4,75 mm atau lolos saringan no. 4 (SNI 1969, 2016). Agregat

halus mempunyai ukuran 0,063 mm - 4,75mm yang meliputi pasir halus (*fine sand*) dan pasir kasar (*Coarse sand*).

Menurut Peraturan Beton Bertulang Indonesia (PBI, 1971), agregat halus yang digunakan harus memenuhi syarat sebagai berikut.

- a. Agregat halus terdiri dari butiran yang besarnya beraneka ragam besarnya dan apabila diayak dengan susunan ayakan yang ditentukan dalam Pasal
 3.5 ayat 1 (PBI, 1971), harus memenuhi syarat yaitu,
 - 1.) Sisa di atas ayakan 4 mm, harus minimum 2% berat;
 - 2.) Sisa di atas ayakan 1 mm, harus minimum 10% berat; dan
 - 3.) Sisa di atas ayakan 0,25 mm, harus berkisar 80% 90% berat;
- b. Agregat halus tidak boleh mengandung lumpur lebih dari 5% berat kering. Ketika kandungan lumpur melebihi 5% dan agregat tersebut digunakan untuk campuran beton maka agregat halus tersebut harus dicuci terlebih dahulu, atau dapat langsung digunakan dengan tetapi terdapat penurunan kekuatan beton sebesar 5%.
- c. Agregat halus tidak boleh mengandung bahan organic terlalu banyak serta harus dibuktikan dengan percobaan warna dari ABRAMS-HARDER dengan larutan natrium hidroksida (NaOH) 3%.
- d. Agregat halus harus terdiri dari butiran tajam, keras, dan bersifat kekal atau dengan kata lain tahan terhadap suhu dan cuaca.
- e. Angka kehalusan (*Fineness Modulus*) untuk *Coarse Sand* antara 3,2 4,5.
- f. Angka kehalusan (*Fineness Modulus*) untuk *Fine Sand* antara 2,2 3,2.

2. Agregat Kasar

Agregat kasar adalah kerikil sebagai disintegrasi alami dari batuan atau berupa batu pecah yang diperoleh dari industri pemecah batu dan mempunyai ukuran butir antara 4,75 mm sampai 40 mm (No. 1½ inci) (SNI 1969, 2016). Menurut Peraturan Beton Bertulang Indonesia (PBI, 1971) Pasal 3.4 agregat kasar yang digunakan harus memenuhi syarat sebagai berikut.

a. Agregat kasar tidak boleh mengandung lumpur lebih dari 1% dalam berat keringnya, sehingga ketika kadar lumpur lebih dari 1% maka agregat harus dicuci.

- b. Agregat kasar tidak memiliki pori-pori yang lebih dari 20% dari berat seluruhnya dan harus memiliki ketahanan terhadap suhu dan cuaca.
- c. Agregat kasar tidak boleh mengandung zat-zat yang dapat merusak beton, seperti zat reaktif alkali.
- d. Agregat kasar harus terdiri dari butir butir yang beraneka ragam besarnya dan apabila diayak dengan susunan ayakan, harus memenuhi syarat berikut.
 - 1.) Sisa di atas ayakan 31,5 mm, harus 0% berat.
 - 2.) Sisa di atas ayakan 4 mm, harus berkisar antara 90% dan 98%.
 - 3.) Selisih antara sisa-sisa kumulatif di atas dua ayakan yang berurutan, adalah maksimum 60% dan minimum 10% berat.

3.2.3 Air

Air yang dapat digunakan dan dapat dikatakan memenuhi syarat sebagai air campuran pembuatan beton merupakan air alami yang dapat diminum dan tidak memiliki rasa atau bau yang menyengat. Air murni yang dimaksud adalah air yang tidak mengandung oli minyak, asam, alkali, garam, bahan organic, dll. Menggunakan air yang tidak murni bisa mempengaruhi kuat beton, stabilitas volume, dan juga korosi tulangan. Air yang digunakan dalam pembuatan beton pratekan dan beton yang nantinya akan ditanami logam alumunium (termasuk air bebas yang terkandung dalam agregat) tidak boleh mengandung ion klorida dalam jumlah yang membahayakan (ACI 318-89, 1989)

Air digunakan dalam beton cair untuk bisa berikatan dengan semen. Selain untuk hidrasi semen, tetapi juga untuk mengubahnya menjadi suatu pasta sehingga betonnya lecak (*workable*). Air yang terikat dalam beton dengan faktor air semen 0,65 adalah sekitar 20% dari berat semen pada umur 4 minggu. Sehingga didapat dari perhitungan komposisi mineral semen, air yang dibutuhkan secara teoritis sebesar 35% - 37% dari berat semen. Kelebihan air dari jumlah yang diperlukan akan menimbulkan menurunnya kekuatan beton dan menjadikan beton keropos.

3.3 Curing Compound

Curing Compound merupakan material yang berbahan dasar synthetic rubber yang ditambahkan pelarut serta bahan lainnya agar dapat melindungi beton dari kehilangan air selama masa pengikatan awal. Kehilangan air dapat disebabkan dari panas matahari ataupun angin dari udara bebas. Umumnya pengaplikasian curing compound dapat mengering dalam waktu singkat dan membentuk lapisan tipis yang dapat melindungu beton dari hujan karena bersifat kedap air dan penguapan berlebih selama proses pengikatan awal.

Untuk pelaksanaan perawatan beton menggunakan *curing compound* sesuai dengan ASTM C 309 dapat diklasifikasikikan sebagai berikut.

- 1. Type I : Curing compound tanpa Dye yang umumnya terdiri dari parafin sebagai selaput lilin yang dicampur dengan air.
- 2. Type I D : *Curing compound* dengan *Fugitive Dye* (warna akan hilang selama beberapa minggu.
- 3. Type II : Curing compound dengan zat berwarna putih.

Di pasaran terdapat merk-merk *curing compound* seperti *Anisol Red* yang termasuk dalam tipe I - D, *Antisol White* yang termasuk dalam tipe II, serta *Antisol S* yang juga digunakan dalam penelitian ini termasuk dalam tipe I (*Non Pigmented Curing Compound*). *Curing Compound* berguna dalam perawatan pada daerah yang tinggi atau vertikal serta daerah yang mempunyai temperatur yang tinggi, terutama pada type I *curing compound* bersifat memantulkan cahaya.

3.4 Perencanaan Campuran Beton

Perencanaan campuran dimaksudkan untuk mengetahui komposisi atau proporsi bahan-bahan penyusun beton. Proporsi bahan-bahan penyusun beton ini ditentukan dengan cara *mix design*. Hal ini dilakukan agar proporsi campuran beton dapat memenuhi syarat teknis serta ekonomis. Dalam penelitian ini digunakan metode *mix design* berdasarkan SNI 2834:2000 tentang tata cara pembuatan rencana campuran beton normal. Adapun langkah perencanaanya yaitu sebagai berikut.

- 1. Menetapkan kuat tekan beton sesuai syarat (f'c) pada umur dan bentuk benda uji tertentu.
- 2. Menghitung nilai deviasi standar (S_r)

Didapatkan nilai deviasi standar pada pengalaman lapangan selama pembuatan beton menurut rumus persamaan 3.1 berikut.

$$S_{r} = \frac{\sqrt{\sum_{i=1}^{n} (xi-x)^{2}}}{n-1}$$
Dengan, (3.1)

 S_r = Deviasi Standar

x_i = Kuat tekan beton yang didapat dari masing-masing benda uji

x = Kuat beton rerata

$$X_{\text{rerata}} = \frac{\sum_{i=1}^{n} (xi - x)^2}{n}$$

n = Jumlah nilai hasil uji, diambil minimum 30 buah (1 hasil uji merupakan rerata dari 2 buah benda uji).

Dua hasil uji yang digunakan untuk perhitungan deviasi standar harus memenuhi ketentuan berikut.

- a. Mewakili bahan-bahan prosedur pengawasan mutu, serta kondisi produksi serupa dengan pekerjaan yang diusulkan.
- b. Mewakili kuat tekan beton persyaratan f'c, nilainya dalam batas 7 MPa dari nilai f'cr yang ditetapkan.
- c. Minimal terdiri dari 30 hasil uji yang urut atau 2 kelompok hasil uji diambil dalam produksi rentang jangka waktu ≥ 45 hari.
- d. Jika suatu produksi beton tidak mempunyai 2 hasil uji yang memenuhi syarat standar deviasi, namun hanya terdapat sebanyak 15-29 hasil uji yang urut, maka nilai standar deviasi adalah perkalian standar deviasi yang dihitung dari data hasil uji tersebut dengan faktor pengali dari tabel 3.1 berikut.

Tabel 3. 1 Faktor pengali untuk standar deviasi jika data hasil uji yang tersedia kurang dari 30

Jumlah Pengujian	Faktor Pengali Deviasi Standar
Kurang dari 15	Diterangkan lebih lanjut
15	1,16
20	1,08
25	1,03
30 atau lebih	1,00

Sumber: SNI 2834 (2000)

Jika data uji lapangan <15, maka kuat tekan rerata yang di targetkan f'_{cr} harus diambil tidak kurang dari (f'_c + 12 MPa).

3. Menghitung nilai tambah atau *margin* (M) dengan persamaan 3.2 sebagai berikut.

$$M = 1,64 \times S_{r}$$
 (3.2)

Dengan,

M = Margin / Nilai Tambah

S_r = Deviasi Standar

4. Menghitung kuat tekan beton rerata (f'_{cr}) yang ditargetkan dengan persamaan3.3 sebagai berikut.

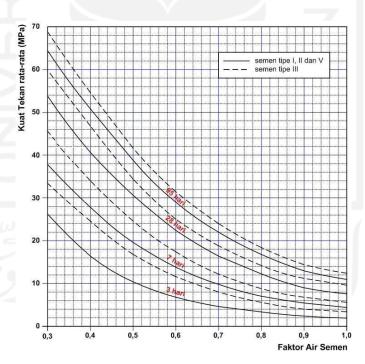
$$f'_{cr} = f'_{c} \times M \tag{3.3}$$

Dengan,

f'cr = Kuat tekan beton rerata yang diitargetkan (MPa)

f'_c = Kuat tekan beton rencana (MPa)

M = Margin/Nilai Tambah


- 5. Menetapkan jenis semen.
- 6. Menetapkan jenis agregat (kasar dan halus) yang digunakan.
- 7. Menetapkan faktor air semen (FAS) dengan tahapan sebagai berikut.
 - a. Menetapkan nilai kuat tekan pada umur 28 hari menggunakan Tabel 3.2 berikut sesuai jenis semen dan agregat yang akan dipakai.

Tabel 3. 2 Perkiraan kekuatan tekan (MPa) beton dengan FAS, dan agregat kasar yang biasa dipakai di Indonesia

		Kekuatan tekan (MPa)					
Jenis Semen	Jenis Agregat Kasar	Pada umur (hari)				Bentuk	
		3	7	28	29	Bentuk Uji	
Semen Portland	Batu tak dipecahkan	17	23	33	40	C:1:	
Tipe I	Batu pecah	19	27	37	45	Silinder	
Semen tahan	Batu tak dipecahkan	17	23	33	40	Kubus	
sulfat Tipe II, V	Batu pecah	19	27	37	45	Kubus	
	Batu tak dipecahkan	21	28	38	44	Silinder	
Semen Portland	Batu pecah	25	33	44	48	Similari	
Tipe III	Batu tak dipecahkan	25	31	46	53	Kubus	
	Batu pecah	30	40	53	60	Kubus	

Sumber: SNI 2834 (2000)

b. Menetapkan kurva lengkung baru berdasarkan hubungan antara nilai kuat tekan yang didapat pada butir 7a di atas dengan faktor air semen sebesar 0,5 pada Gambar 3.1 berikut.

Gambar 3. 1 Hubungan antara kuat tekan dan faktor air semen (FAS) (Sumber: SNI 2834, 2000)

- c. Menetapkan faktor air semen yang diperlukan dengan menghubungkan kuat tekan beton rencana yang diperoleh pada butir 4 dengan kurva lengkung baru pada butir 7b.
- 8. Menentukan faktor air maksimum, kemudian ambil nilai faktor air semen terkecil antara perhitungan butir 7 dengan butir 8.
- 9. Menentukan tinggi *slump*.
- 10. Menentukan ukuran agregat maksimum (hasil dari pengujian properties agregat).
- 11. Menetapkan nilai kadar air bebas memakai Tabel 3.3 dan persamaan 3.4 sebagai berikut.

Tabel 3. 3 Perkiraan kadar air bebas (Kg/m3) yang dibutuhkan untuk beberapa tingkat kemudahan pengerjaan adukan beton

Ukuran besar			Slum	p (mm)	
butir agregat maksimum	Jenis agregat	0-10	10-30	30-60	60-180
10	Batu tak dipecahkan	150	180	205	225
10	Batu pecah	180	205	230	250
20	Batu tak dipecahkan	135	160	180	195
20	Batu pecah	170	190	210	225
40	Batu tak dipecahkan	115	140	160	175
	Batu pecah	155	175	190	205

Sumber: SNI 2834 (2000)

$$W = \frac{2}{3} W_h + \frac{1}{3} W_k \tag{3.4}$$

Dengan,

w = Kadar air bebas (kg/m^3)

 W_h = Perkiraan jumlah air untuk agregat halus (kg/m³)

 W_k = Perkiraan jumlah air untuk agregat kasar (kg/m³)

12. Menetapkan kadar semen yang diperlukan dengan persamaan 3.5 sebagai berikut.

$$c = \frac{w}{fas} \tag{3.5}$$

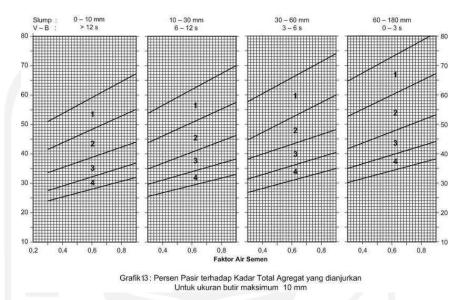
Dengan,

c = kadar semen (kg/m^3)

 $w = Kadar air bebas (kg/m^3)$

fas = Faktor air semen

13. Menentukan jumlah semen minimum berdasarkan lokasi beton rencana seperti Tabel 3.4 berikut.

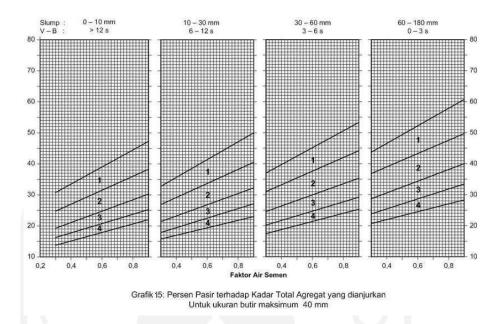

Tabel 3. 4 Persyaratan jumlah semen minimum dan faktor air semen maksimum untuk berbagi macam pembetonan dalam lingkungan khusus

	Lokasi	Jumlah Semen minimum Per m ³ beton (kg)	Nilai Faktor Air- Semen Maksimum
Ве	eton di dalam ruang bangunan:		
a.	keadaan keliling non-korosif	275	0,60
b.	keadaan keliling korosif disebabkan		
	oleh kondensasi atau uap korosif	325	0,52
Be	ton di luar ruangan bangunan:		\cup \cup
a.	tidak terlindung dari hujan dan terik		
	matahari langsung	325	0,60
b.	terlindung dari hujan dan terik		l () i
	matahari langsung	275	0,60
Be	ton masuk ke dalam tanah		
a.	mengalami keadaan basah dan kering		
	berganti-ganti	325	0,55
b.	mendapat pengaruh sulfat dan alkali		
	dari tanah		Lihat Tabel 5
Be	ton yang kontinu berhubungan:		
a.	air tawar		$I \cap I$
b.	air laut		Lihat Tabel 6

Sumber: SNI 03-2834 (2000)

- 14. Menetapkan jumlah semen yang digunakan, dengan mengambil nilai tertinggi dari hasil perhitungan jumlah semen maksimum (jika ditetapkan) dan jumlah semen minimum.
- 15. Menghitung faktor air semen yang disesuaikan, hanya dihitung ketika ada perubahan kadar semen dari hasil perhitungan menjadi jumlah semen minimum atau maksimum.
- 16. Menetapkan susunan butir agregat halus (diperoleh melalui pengujian properties agregat).
- 17. Menetapkan susunan butir agregat kasar (diperoleh melalui pengujian properties agregat).

18. Menetapkan persentase agregat halus menggunakan Gambar 3.2 sampai dengan Grafik 3.4 bergantung pada ukuran butir maksimum agregat kasar, nilai *slump* rencana dan gradasi agregat halus.


Gambar 3. 2 Grafik persen agregat halus terhadap kadar total yang dianjurkan untuk ukuran butir maksimum 10 mm

(Sumber: SNI 03-2834, 2000)

> Grafik 14: Persen Pasir terhadap Kadar Total Agregat yang dianjurkan Untuk ukuran butir maksimum 20 mm

Gambar 3. 3 Grafik persen agregat halus terhadap kadar total yang dianjurkan untuk ukuran butir maksimum 20 mm

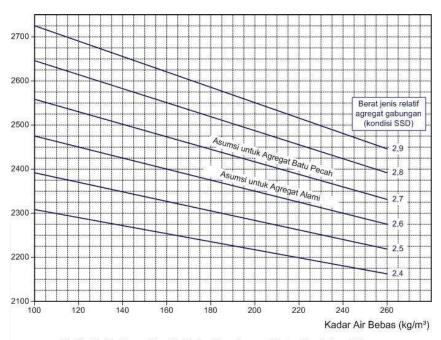
(Sumber: SNI 03-2834, 2000)

Gambar 3. 4 Grafik persen agregat halus terhadap kadar total yang dianjurkan untuk ukuran butir maksimum 40 mm (Sumber: SNI 2834, 2000)

19. Menghitung berat jenis relatif agregat (gabungan) dengan persamaan 3.6 berikut.

$$BJ_{Ag. Gab} = (\%Ag. Halus \times BJ_{Ag. Halus}) + (\%Ag. Kasar \times BJ_{Ag. Kasar})$$
 (3.6)
Dengan,

 $BJ_{Ag. Gab}$ = Berat jenis relatif agregat (gabungan) (%)


%Ag. Halus = Persentase agregat halus (%)

%Ag. Kasar = Persentase agregat kasar (%)

BJ_{Ag. Halus} = Berat jenis agregat halus

BJ_{Ag. Kasar} = Berat jenis agregat kasar

20. Menetapkan berat isi/volume beton menggunakan Grafik 16 berdasarkan berat air bebas dan berat jenis agregat gabungan.

Grafik 16: Perkiraan Berat Isi Beton Basah yang telah selesai dipadatkan

Gambar 3. 5 Grafik perkiraan berat isi beton basah yang telah selesai didapatkan

(Sumber: SNI 2834, 2000)

21. Menghitung kadar agregat gabungan dengan persamaan 3.7 berikut.

$$W_{Ag. Gab} = W_{beton} - W_{semen} - W$$
 (3.7)

Dengan,

 $W_{Ag. Gab} = Kadar agregat gabungan (kg/m³)$

 W_{beton} = Berat isi/volume beton (kg/m³)

 $W_{\text{semen}} = \text{Kadar semen (kg/m}^3)$

w = Kadar air bebas (kg/m³)

22. Menghitung kadar agregat halus dengan persamaan 3.8 berikut.

$$W_{Ag. Halus} = \% Ag. Halus \times W_{Ag. Gab}$$
 (3.8)

Dengan,

 $W_{Ag. Halus}$ = Kadar agregat halus (kg/m³)

%Ag. Halus = Persentase agregat halus (%)

 $W_{Ag. Gab}$ = Kadar agregat gabungan (kg/m³)

23. Menghitung kadar agregat kasar dengan persamaan 3.9 berikut.

$$W_{Ag. Kasar} = W_{Ag. Gab} - W_{Ag. Halus}$$
 (3.9)

Dengan,

 $W_{Ag. kasar}$ = Kadar agregat kasar (kg/m³)

 $W_{Ag. Halus}$ = Kadar agregat halus (kg/m³)

 $W_{Ag. Gab}$ = Kadar agregat gabungan (kg/m³)

24. Dari hasil *mix design* diperoleh proporsi campuran teoritis setiap m³ dengan kondisi agregat dalam keadaan jenuh kering permukaan (SSD). Sehingga untuk pengujian, diperoleh proporsi campuran dengan mengalikan hasil proporsi campuran teoritis per m³ dengan volume total benda uji.

3.5 Perawatan beton (curing)

Perawatan beton atau *curing* beton merupakan suatu pekerjaan untuk mempertahankan kadar air dan juga suhu beton pasca pengecoran dengan tujuan menghasilkan mutu beton sesuai yang direncanakan dan untuk memastikan reaksi hidrasi senyawa semen berlangsung optimal serta menjaga beton agar tidak terjadi penyusustan berlebihan akibat kehilangan kelembaban. Terdapat beberapa acuan dalam pelaksanaan perawatan beton seperti berikut.

1. ASTM C-150 (American Standard Testing and Material) mensyaratkan:

a. Semen tipe I : waktu minimum *curing* 7 hari

b. Semen tipe II : waktu minimum *curing* 10 hari

c. Semen tipe III : waktu minimum *curing* 3 hari

d. Semen tipe IV : waktu minimum *curing* 14 hari

- 2. ACI 318 (*American Concrete Institute*) mensyaratkan *curing* dilakukan sampai tercapai minimum 70% kuat tekan beton yang disyaratkan (f'c)
- 3. SNI 03-2847-2002 mensyaratkan curing selama 7 hari untuk beton normal dan 3 hari untuk beton dengan kuat tekan awal tinggi.

Beberapa metode perawatan *curing* yang dapat dilakukan adalah sebagai berikut:

1. Perawatan dengan pembasahan

Perawatan dengan metode ini dilakukan dilaboratorium maupun dilapangan, metode ini dapat dilkaukan dengan beberapa cara sebagai berikut.

- a. Meletakkan beton segar di dalam ruangan yang lembab
- b. Meletakkan beton segar di dalam genangan air

- c. Meletakkan beton segar di dalam air
- d. Menyelimuti permukaan beton dengan air
- e. Menyelimuti permukaan beton dengan karung basah
- f. Menyirami permukaan beton secara berkelanjutan
- g. Melapisi permukaan beton dengan air atau curing compound

2. Perawatan dengan penguapan

a. Perawatan dengan tekanan rendah
 Perawatan ini berlangsung selama 10-12 jam pada suhu 40°-55° C

b. Perawatan dengan tekanan tinggi Perawatan ini berlangsung selama 10-16 jam pada suhu 65°-95° C dengan suhu akhir 40°-55° C.

Sebelum dilakukannya perawatan ini beton harus dipertahankan pada suhu 10° - 30° C selama beberapa jam. Perawatan ini harus disertai dengan perawatan pembasahan setelah lebih dari 24 jam, minimal selama umur 7 hari dan supaya kuat tekan dapan tercapai mka perawatan pembasahan dilakukan selama 28 hari.

3. Perawatan dengan membrane

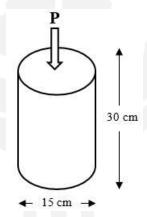
Penggunaan membrane merupakan penghalang fisik yang bertujuan untuk menghalangi penguapan air. Bahan yang digunakan harus kering dalam waktu 4 jam (sesuai *final setting time*), dan membentuk satu lembar film yang menerus, melekat dan tidak bergabung, tidak beracun, tidak selip, bebas dari lubang halus serta tidak membahayakan beton. Perawatan dengan metode ini dapat juga dilaksanakan sebelum maupun setelah perawatan dengan pembasahan.

4. Perawatan lainnya

Perawatan beton lainnya dapat dilakukan dengan menyinari beton menggunakan *infrared* atau infra merah. Dilakukan penyinaran selama 2-4 jam pada suhu 90°, hal ini dilakukan supata mempercepat penguapan air pada beon mutu tinggi. Selain dengan perawatan sinar infra merah, terdapat perawatan lainnya yaitu dengan hidrotermal (dengan memansakan cetakan untuk beton pra-cetak selama 4 jam pada suhu 65°).

3.6 Kuat Tekan Beton

Kuat tekan beton dapat diartikan dengan besar beban per satuan luas yang dapat ditahan benda uji, yang mengakibatkan benda uji beton hancur ketika diberikan beban vertical, yang dihasilkan dari mesin tekan. Nilai kuat tekan beton dapat ditentukan berdasarkan SNI 1974:2011 dengan persamaan 3.10 berikut.


$$f'_{c} = \frac{P}{A} \tag{3.10}$$

Dengan,

f'c = Kuat tekan beton (MPa atau N/mm²)

P = Beban maksimum (N)

A = Luas penampang benda uji (mm^2)

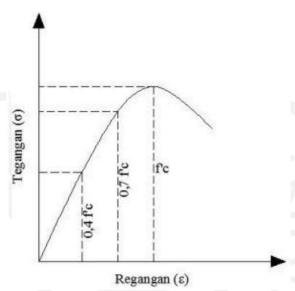
Gambar 3. 6 Sketsa pengujian kuat tekan beton

3.7 Modulus Elastisitas

Modulus elastisitas beton merupakan perbandingan antara tegangan dan regangan aksial dalam deformasi yang elastis. Modulus elastisitas beton dinyatakan dalam satuan MPa. Menurut ASTM C-469:1994, nilai modulus elastisitas beton dihitung menggunakan persamaan 3.11 sebagai berikut

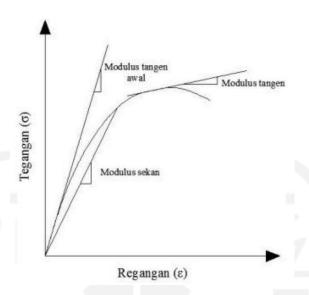
$$Ec = \frac{S_2 - S_1}{\varepsilon_2 - \varepsilon_1} \tag{3.11}$$

Dengan keterangan sebagai berikut.


Ec = Modulus elastisitas (MPa)

S₂ = Tegangan ketika 40% dari beban maksimum (MPa)

 S_1 = Tegangan ketika regangan 0,000050 (MPa)


 ϵ_2 = Regangan akibat Tegangan S₂

 $\epsilon_1 = 0.000050$

Gambar 3. 7 Kurva hubungan tegangan dan regangan beton (Sumber: Nawy, 1990)

Kurva tersebut merupakan kurva linier pada taraf pembebanan awal, sehingga modulus elastisitas pada kurva tersebut yaitu garis singgung pada kurva tegangan-regangan dari titik pusat. Kemiringan garis singgung tersebut didefinisikan sebagai modulus tangen awal. Jika dibuat modulus tangen pada titik pusat dengan tegangan sekitar 0,4×f'c maksimum, maka disebut modulus elastisitas sekan beton. Modulus sekan ini merupakan hasil dari modulus elastisitas yang ditinjau. Modulus tangen dan modulus sekan dapat dilihat pada Gambar 3.7 sebagai berikut.

Gambar 3. 8 Modulus sekan dan modulus tangen beton (Sumber: Nawy, 1990)

Menurut SNI 2847:2019, modulus elastisitas juga dapat dihitung dengan rumus pendekatan empiris yaitu menggunakan persamaan 3.12 dan persamaan 3.13 sebagai berikut.

1. Jika diketahui berat volume

Ec =
$$W_c^{1,5} \times 0.043 \times \sqrt{f'c}$$
 (3.12)

Dengan keterangan sebagai berikut.

Untuk Wc dengan rentang 1400-2560 kg/m3

Ec = Modulus elastisitas beton (MPa)

W = Berat volume beton normal (kg/m^3)

f'c = Kuat tekan beton (MPa)

2. Jika tidak diketahui berat volumenya

Ec =
$$4700 \times \sqrt{f'c}$$
 (3.13)

Dengan keterangan sebagai berikut.

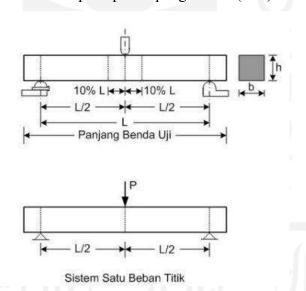
Ec = Modulus elastisitas beton (MPa)

f'c = Kuat tekan beton (MPa)

3.8 Kuat Lentur Beton

Kuat lentur beton merupakan kemampuan balok beton yang di letakkan pada dua titik tumpu untuk menahan gaya vertical yang diberikan hingga benda uji patah. Metode pengujian kuat lentur menggunakan sistem satu titik pembebanan berdasarkan SNI 4154-2014. Nilai kuat lentur beton dapat ditentukan berdasarkan SNI 4154:2014 dengan persamaan 3.14 berikut

$$R = \frac{_{3PL}}{_{2bd^2}}$$
 Dengan, (3.14)


R = Kuat lentur beton/ Modulus runtuh (MPa atau N/mm²)

P = Beban maksimum yang mengakibatkan keruntuhan balok uji (N)

L = Panjang bentang diantara kedua tumpuan (mm)

b = Lebar balok rata-rata pada penampang runtuh (mm)

d = Tinggi balok rata-rata pada penampang runtuh (mm)

Gambar 3. 9 Sketsa pengujian kuat lentur beton

BAB IV

METODOLOGI PENELITIAN

4.1 Umum

Metode penelitian merupakan prosedur, tata cara atau langkah-langkah dalam mengambil dan menganalisis suatu permasalah yang dilakukan untuk mendapatkan data untuk tujuan penelitian. Dalam penelitian ini digunakan metode eksperimental yang dilakukan di Laboratorium Bahan Konstruksi Teknik, Fakultas Teknik Sipil dan Perencanaan, Universitas Islam Indonesia. Penelitian ini dilakukan dengan memvariasaikan perawatan dalam beton untuk mengetahui metode manakah yang paling efektif dalam menunjang mutu beton. Dalam penelitian ini dilakukan untuk dapat mengetahui pengaruh variasi metode perawatan beton terhadap kuat tekan dan kuat lentur beton.

4.2 Variabel Penelitian

Adapun variabel yang digunakan pada penelitian ini adalah sebagai berikut.

- 1. Variabel bebas, meliputi metode perawatan beton (*curing*)
- 2. Variabel terikat, meliputi kuat tekan beton, modulus elastisitias beton dan kuat lentur beton
- 3. Variabel tetap, meliputi bentuk benda uji, dimensi benda uji dan kuat tekan beton rencana (f'c)

4.3 Bahan yang Digunakan

Adapun bahan-bahan yang digunakan dalam penelitian adalah sebagai berikut.

1. Semen Portland

Semen yang digunakan pada penelitian ini menggunakan semen *Portland* tipe I merk Tiga Roda dengan berat 40 kg. semen yang digunakan harus dijaga kualitasnya dengan cara menyimpannya pada tempat yang teduh dan kering.

2. Agregat

Agregat halus yang digunakan berasal dari Sungai Progo, Yogyakarta dan untuk agregat kasar yang digunakan berasal dari Clereng, Yogyakarta.

3. Air

Air yang digunakan berasal dari Laboratorium Bahan Konstruksi Teknik, Fakultas Teknik Sipil dan Perencanaan, Universitas Islam Indonesia. Air yang digunakan jernih secara visual dan tidak berbau maupun berwarna.

4. Curing Compound

Curing compound yang digunakan dalam penelitian ini adalah Sika Antisol-S yang diproduksi oleh Sika Indonesia.

4.4 Alat yang digunakan

Dalam penelitian ini diperlukan alat-alat dalam kondisi baik untuk menunjang dalam pembuatan benda uji. Alat alat yang diperlukan adalah sebagai berikut.

1. Timbangan

Pada penelitian ini timbangan dgunakan untuk menimbang berat material yang nantinya akan digunakan dalam proses pembuatan benda uji. Berat material yang dibutuhkan didapat dari hasil perhitungan *mix design*.

2. Ayakan Mesh

Pada penelitian ini ayakan *mesh* atau set saringan agregat digunakan untuk memisahkan butir agregat sesuai dengan ukurannya. Alat ini nantinya digunakan untuk pengujian analisa lolos saringan agregat kasar dan agregat halus.

3. Neraca *Ohauss*

Pada penelitian ini neraca *ohauss* digunakan dalam penimbangan berat material yang nantinya akan digunakan. Timbangan ini memiliki ketelitian lebih baik daripada timbangan biasa.

4. Piknometer

Piknometer adalah alat digunakan untuk pengukuran massa jenis atau densitas fluida. Pada penelitian ini piknometer berperan dalam pengujian berat jenis dan penyerapan air agregat halus.

5. Oven

Pada penelitian ini oven berguna untuk mengeringkan agregat (halus dan kasar). Oven nantinya digunakan pada pengujian berat jenis dan penyerapan air agregat.

6. Cetakan Silinder dan Balok

Pada penelitian ini cetakan digunakan sebagai wadah dalam membentuk benda uji (beton) sesuai dengan dimensinya. Cetakan yang digunakan adalah cetakan silinder dengan diameter 15 cm dan tinggi 30 cm serta cetakan balok dengan dimensi 10 cm x 10 cm x 40 cm.

7. Bak Penampung atau Ember

Pada penelitian ini ember digunakan sebagai wadah material dan juga alat untuk membantu memasukkan material ke dalam *concrete mixer*.

8. Alat Semprot

Pada penelitian ini alat semprot digunakan sebagai wadah sika antisol-S yang berperan sebagai *curing compound* agar memudahkan dalam pengaplikasian saat perawatan beton.

9. Karung Goni

Pada penelitian ini dibutuhkan karung goni yang nantinya digunakan dalam salah satu metode yang akan digunakan dalam perawatan beton.

10. Concrete Mixer

Pada penelitian ini *concrete mixer* berguna dalam pencampuran agregat (kasar dan halus), semen dan juga air dengan kadar masing-masing sesuai dengan hasil perhitungan *mix design*.

11. Sekop

Pada penelitian ini sekop digunakan untuk menuang adonan (beton segar) ke dalam cetakan silinder maupun cetakan balok.

12. Kerucut Abrams

Pada penelitian ini kerucut abrams berguna untuk mengetahui nilai *slump* beton segar sebelum dilakukan penuangan ke dalam cetakan.

13. Mesin Uji Tekan

Mesin uji tekan digunakan saat pengujian kuat tekan beton yang nantinya akan diketahui nilai beban yang dapat diterima oleh benda uji sampai dengan benda uji mengalami keruntuhan hingga hancur (beban maksimum).

14. Mesin Uji Lentur

Mesin uji lentur digunakan saat pengujian kuat lentur beton yang nantinya akan diketahui nilai beban yang dapat diterima oleh benda uji sampai dengan benda uji mengalami keruntuhan hingga hancur (beban maksimum).

4.5 Benda Uji

Benda uji yang digunakan berupa silinder dengan diameter 30 cm dan tinggi 15 cm untuk pengujian kuat tekan beton dan balok dengan dimensi 10 cm x 10 cm x 40 cm untuk pengujian kuat lentur beton. Benda uji ini di berikan metode perawatan yang berbeda beda-beda yaitu dengan cara perendaman, ditutup dengan karung goni basah serta disemprot dengan *curing compound* Sika Antisol S. Menurut SNI 2847-2019 jumlah benda uji silinder yang dirawat di lapangan setidaknya 2 spesimen yang berukuran 150 x 300 mm atau setidaknya 3 spesimen yang berukuran 100 x 200 mm. Sedangkan menurut SNI 2493-2011 jumlah benda uji biasanya 3 atau lebih tergantung pada kebiasaan dan sifat program pengujian. Berikut adalah rincian benda uji yang digunakan dalam penelitian ini dapat dilihat pada tabel 4.1 berikut.

Tabel 4. 1 Rincian benda uji

Jenis pengujian	Benda uji	Jenis	Kode Benda	Jumlah
		Perawatan	Uji	Sampel
			S1-R	
IIII V4 Talan I			S2-R	
Uji Kuat Tekan + Modulus Elastisitas	Silinder	Perendaman	S3-R	5
Wiodulus Elastisitas			S4-R	
			S5-R	

Lanjutan Tabel 4.1 Rincian benda uji

Jenis pengujian	Benda uji	Jenis	Kode Benda	Jumlah	
		Perawatan	Uji	Sampel	
			S1-G		
		Ditutup	S2-G		
		karung goni	S3-G	5	
		basah	S4-G		
Uji Kuat Tekan +	Silinder	$\sim \sim$	S5-G		
Modulus Elastisitas	Similaei		S1-C		
		Disemprot	S2-C		
		Curing	S3-C	5	
		compound	S4-C		
			S5-C		
			B1-R		
		Perendaman	B2-R	5	
			B3-R		
			B4-R		
			B5-R		
			B1-G		
		Ditutup	B2-G	5	
Uji Kuat Lentur	Balok	karung goni	B3-G		
		basah	B4-G		
			B5-G		
			B1-C		
		Disemprot	В2-С		
		Curing	В3-С	5	
		compound	В4-С		
			В5-С		
10 W _ 2	Total Samp	oel	. (1	30	

Keterangan:

- S1-R = Uji Kuat Tekan + Modulus Elastisitas, sampel silinder 1, perendaman
- S2-R = Uji Kuat Tekan + Modulus Elastisitas, sampel silinder 2, perendaman
- S3-R = Uji Kuat Tekan + Modulus Elastisitas, sampel silinder 3, perendaman
- S1-G = Uji Kuat Tekan + Modulus Elastisitas, sampel silinder 1, ditutup

- karung goni basah
- S2-G = Uji Kuat Tekan + Modulus Elastisitas, sampel silinder 2, ditutup karung goni basah
- S3-G = Uji Kuat Tekan + Modulus Elastisitas, sampel silinder 3, ditutup karung goni basah
- S1-C = Uji Kuat Tekan + Modulus Elastisitas, sampel silinder 1, disemprot *curing compound*
- S2-C = Uji Kuat Tekan + Modulus Elastisitas, sampel silinder 2, disemprot *curing compound*
- S3-C = Uji Kuat Tekan + Modulus Elastisitas, sampel silinder 3, disemprot *curing compound*
- B1-R = Uji kuat lentur, sampel balok 1, perendaman
- B2-R = Uji kuat lentur, sampel balok 2, perendaman
- B3-R = Uji kuat lentur, sampel balok 3, perendaman
- B1-G = Uji kuat lentur, sampel balok 1, ditutup karung goni basah
- B2-G = Uji kuat lentur, sampel balok 2, ditutup karung goni basah
- B3-G = Uji kuat lentur, sampel balok 3, ditutup karung goni basah
- B1-C = Uji kuat lentur, sampel balok 1, disemprot *curing compound*
- B2-C = Uji kuat lentur, sampel balok 2, disemprot curing compound
- B3-C = Uji kuat lentur, sampel balok 3, disemprot *curing compound*

4.6 Pelaksanaan Penelitian

Pelaksanaan penelitian dilaksanakan dalam beberapa tahapan yaitu sebagai berikut.

4.6.1 Persiapan

Persiapan merupakan tahapan awal dimana penulis menyiapkan hal hal apa saja yang harus dipersiapkan untuk dapat melanjutkan ke tahapan selanjutnya. Pada tahapan ini penulis melakukan studi literatur terhadap peneleiti peneliti terdahulu maupun buku dan jurnal untuk menunjang referensi dan wawasan penulis dalam pelaksanaan penelitian. Tidak hanya itu penulis juga melakukan penyiapan alat

bahan yang nantinya akan digunakan saat penelitian seperti *curing compound*, karung goni, semen, agregat, alat semprot, dll.

4.6.2 Pengujian Agregat

Pengujian agregat halus maupun kasar dilaksanakan agar dapat mengetahui karakteristik dan sifat agregat yang nantinya digunakan pada campuran beton. Dari karakeristik dan sifat agregat akan dijadikan acuan dalam proses *mix design*. Berikut adalah standar yang digunakan dalam proses pengujian agregat.

- 1. Pengujian berat jenis dan penyerapan air agregat halus menggunakan SNI 1970-2016.
- 2. Pengujian berat jenis dan penyerapan air agregat kasar menggunakan SNI 1969-2016.
- 3. Pengujian analisa saringan agregat halus menggunakan SNI 1968-1990.
- 4. Pengujian analisa saringan agregat kasar menggunakan SNI 1968-1990.
- 5. Pengujian berat volume gembur dan berat volume padat agregat halus menggunakan SNI 4804-1998
- 6. Pengujian berat volume gembur dan berat volume padat agregat kasar menggunakan SNI 4804-1998
- 7. Pengujian butiran lolos ayakan no. 200 (Uji kandungan lumpur dalam pasir) menggunakan SNI 4142-1996

4.6.3 Perencanaan Campuran (*Mix Design*)

Perencanaan campuran (*Mix Design*) dilakukan setelah didapatkannya sifat dan karakteristik dari hasil pengujian agregat (halus dan kasar). *Mix design* dilakukan berdasarkan SNI 2834-2000. Untuk perhitungan detail akan dibahas pada bab V.

4.6.4 Pembuatan dan Pengujian Benda Uji *Trial* dengan Umur 3 dan 7 Hari

Setelah dilakukan *Mix Design* dengan mutu 30 MPa, maka dilakukan pembuatan dan pengujian benda uji *trial*. Hal ini dilakukan untuk memastikan bahwa perhitungan rencana campuran yang dilakukan sudah benar. Penelitian dilanjutkan apabila hasil pengujian benda uji *trial* sudah sesuai dengan mutu rencana.

4.6.5 Pembuatan dan Perawatan Sampel

Pembuatan sampel dilakukan dengan acuan dari hasil *mix design*, sehingga hasil perhitungan berat agregat (kasar dan halus), berat semen, air akan dicampur dengan alat *concrete mixer* selama waktu yang tentukan. Kemudian beton segar akan dituang ke kerucut abrams untuk pengujian *slump*, apakah *slump* yang dihasilkan sudah memenuhi syarat atau belum, ketika *slump* sudah memenuhi syarat maka beton segar akan segera dimasukkan dalam cetakan (silinder maupun balok).

Ketika beton telah mencapai *setting time* atau mengeras maka beton dikeluarkan dari cetakan dan akan di lakukan perawatan. Perawatan akan diberikan dengan 3 metode berbeda hingga umur rencana yaitu selama 28 hari. Metode yang dimaksud adalah sebagai berikut.

1. Perendaman di Dalam Air

Metode ini dilakukan dengan cara merendam benda uji silinder maupun balok pada Air yang berada di Laboratorium Bahan Konstruksi Teknik Jurusan Teknik Sipil, Fakultas Teknik Sipil dan Perencanaan, Universitas Islam Indonesia sampai dengan umur rencana.

Gambar 4. 1 Perawatan beton dengan perendaman

2. Ditutup dengan Karung Goni Basah

Metode ini dilakukan dengan cara menutupi benda uji silinder maupun balok menggunakan karung goni basah yang nantinya akan disiram 3 kali sehari pada pagi, siang dan sore untuk menjaga karung goni tetap basah.

Gambar 4. 2 Perawatan beton dengan ditutup karung goni basah

3. Disemprot dengan Curing Compound Sika Antisol S

Metode ini dilakukan dengan cara mennyemprotkan benda uji silinder maupun balok menggunakan *Curing Compound* Sika Antisol S. Untuk penggunaan menurut Sika Indonesia yaitu permukaan vertical dilakukan dengan mengaplikasikan lapisan Antisol S secara merata ke seluruh permukaan, pengaplikasian dilakukan setelah pelepasan bekisting, setelah 3 hari serta setelah 7 hari. Sedangkan untuk permukaan horizontal pengaplikasian segera setelah finishing ketika semua air keluar (*Bleeding*) atau pada penelitian ini setelah dibukanya bekisting. Sedangkan menurut Saputra, dkk (2020) pengaplikasian lapisan *curing compound* dilakukan pada umur beton 3, 7, 14, 21, dan 28 hari.

Pastikan permukaan tertutupi dengan *curing compound* dan penerapannya tidak kurang dari cakupan yang ditentukan berikut.

- a. Untuk mencegah alat semprot tersumbat, maka alat harus dibersihkan secara rutin.
- b. Antisol S dapat diaplikasikan menggunakan jenis alat semprot apa saja, bahkan memakai alat semprot yang paling sederhana sekalipun.

c. Pengaplikasian Antisol sejak awal dapat membantu mengurangi keretakan akibat penyusutan plastis dengan mengurangi evaporasi air. *Curing compound* beton, tidak akan melawan efek retak yang mungkin terjadi sebagai hasil dari penyusutan jangka panjang. Beton standar praktik harus diterapkan saat memposisikan sambungan konstruksi dan sambungan kontrol penyusutan.

Pada penelitian ini penyemprotan *curing compound* dilakukan pada 3, 7, 14, 21, 28 hari dengan anjuran pengaplikasian menurut Sika Indonesia.

Gambar 4. 3 Perawatan beton dengan disemprot curing compound

4.6.6 Pengujian Sampel

Sampel atau benda uji pada tahapan ini dilakukan pengujian kuat tekan beton dan kuat lentur beton yaitu sebagai berikut.

- 1. Pengujian Kuat Tekan Beton
 - Pengujian ini dilakukan pada sampel silinder dengan diameter 15 cm dan tinggi 30 cm, yang berdasarkan pada SNI 1974-2011 sebagai berikut.
 - a. Menyiapkan benda uji berupa silinder yang telah dikeluarkan dari perawatan beton.
 - b. Ukur dimensi benda uji dan timbang berat benda uji.
 - c. Meletakkan benda uji ke dudukan landasan mesin tekan dan pastikan dial beban masih berada di angka 0, ketika dial beban belum 0 atur dial terlebih dahulu sebelum dilakukan pengujian.

- d. Mulai pengujian dengan memberikan pembebanan dengan kecepatan
 0,15 MPa/detik sampai 0,35 MPa/detik hingga benda uji hancur.
- e. Lakukan pencatatan beban maksimum yang dapat diterima oleh benda uji.

2. Pengujian Modulus Elastisitas Beton

Tujuan dari pengujian modulus elastisitas adalah untuk mengetahui tegangan regangan yang terjadi pada beton. Pengujian ini berdasarkan pada SNI 4169-1966. Pengujian dilakukan bersamaan dengan pengujian kuat tekan beton, karena kedua pengujian memiliki keterkaitan. Berikut langkah-langkah pengujian modulus elastisitas beton.

- a. Persiapkan seluruh benda uji yang akan diuji dan peralatannya.
- b. Ukur berat, diameter, dan tinggi benda uji dengan timbangan dan kaliper.
- c. Pasang alat *kompresometer ekstensiomete*r pada benda uji, kemudian pasang alat pengukur deformasi.
- d. Letakkan benda uji dalam mesin uji tekan, lalu jalankan mesin uji, hidraulik akan menekan benda uji perlahan.
- e. Lakukan pembacaan dan catat deformasi setiap peningkatan beban 10 kN.
- f. Pembacaan selesai ketika benda uji runtuh atau hancur.
- g. Lakukan pembacaan beban maksimum.

3. Pengujian Kuat Lentur Beton

Pengujian ini dilakukan pada sampel balok dengan dimensi 10 cm x 10 cm x 40 cm, yang berdasarkan pada SNI 4154-2014 sebagai berikut.

- a. Menyiapkan benda uji berupa balok.
- b. Buat garis-garis melintang sebagai tanda dan petunjuk letak titik perletakan dan titik pembebanan. Garis sejauh 10% dari jarak bentang, diluar titik perletakan beban.
- c. Ukur dimensi dan timbang berat benda uji.
- d. Meletakkan benda uji pada mesin uji lentur sesuai dengan posisi pada saat dicetak dan pasang pada tengah blok tumpuan.
- e. Letakkan blok beban sampai menyentuh permukaan specimen di tengah bentang.

- f. Jalankan mesin tekan, atur titik beban uji dari mesin tekan sehingga tepat ditengah-tengah blok beban. Beban diatur sedemikian sehingga tidak menimbulkan efek beban kejut.
- g. Pembebanan dilakukan dengan kecepatan konstan pada kecepatan 0,9 MPa/menit dan 1,2 MPa/ menit hingga mengalami keruntuhan.
- h. Catat beban maksimum yang dapat diterima oleh benda uji.

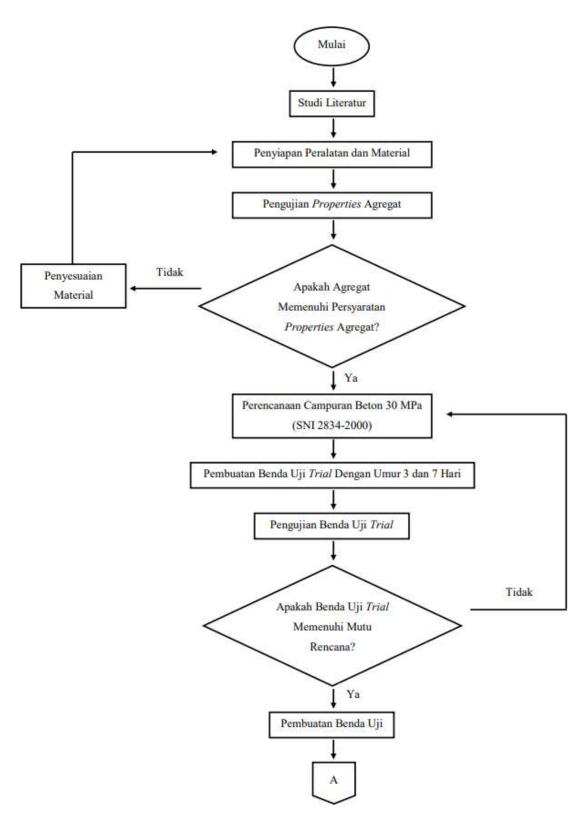
4.6.7 Olah Data

Olah data dilakukan pada data mentah yang diperoleh dari setiap pengujian. Pengolahan data didasarkan pada masing-masing kode dan landasan teori yang digunakan sehingga mendapatkan parameter yang bisa digunakan dalam tahapan selanjutnya.

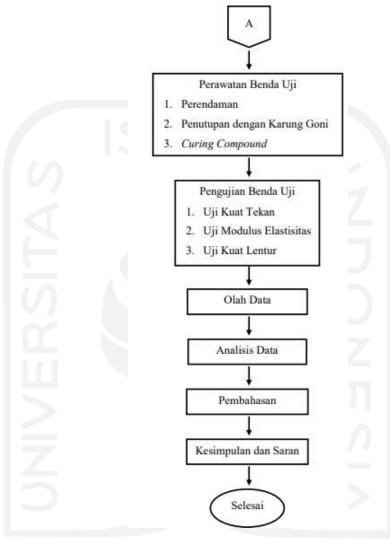
4.6.8 Analisis Pengujian

Parameter-parameter yang didapatkan dari tahapan olah data akan dibandingkan berdasarkan kelompok variabel untuk mendapatkan hasil dan nilai yang terjadi seperti sebab akibat yang berkaitan dengan pengujian kuat tekan dan kuat lentur dan juga perbedaan antara metode yang dilakukan dalam proses perawatan beton yang akan berdampak pada kualitas beton.

4.6.9 Pembahasan


Pembahasan merupakan tahapan dimana penulis membahas hasil analisis yang telah dilakukan sebelumnya untuk memberikan jawaban terhadap perbedaan yang ditemukan saat melakuakn perbandingan hasil pengujian (data) pada tahapan analisis pengujian.

4.6.10 Kesimpulan dan Saran


Kesimpulan dibuat sesuai dengan pembahasan dari analisis pengujian yang akan dikaitkan dengan tujuan dari penelitian yang dilakukan, selain itu pada tahapan ini akan diberikan saran-saran yang dapat digunakan untuk pengujian selanjutnya berdasaran kesimpulan yang telah dibuat.

4.6.11 Kerangka Konsep Penelitian

Adapun kerangka konsep atau biasa disebut dengan diagram alir yang dapat dilihat pada gambar 4.1 berikut.

Gambar 4. 4 Diagram alir penelitian

Lanjutan Gambar 4.4 Diagram alir penelitian

BAB V

DATA, ANALISIS, DAN PEMBAHASAN

5.1 Tinjauan Umum

Data penelitian yang didapatkan perlu dilakukan analisis serta pembahasan agar diperoleh hasil yang nantinya dapat mencapai tujuan dari penelitian itu sendiri. Bab ini menjelaskan dan menjabarkan tentang data atau hasil dari penelitian yang telah dilakukan di Laboratorium Bahan Konstruksi Teknik (BKT) yang diawali dengan pemeriksaan material penyusun beton, perencanaan campuran beton (*mix design*), pencampuran material penyusun beton, serta pelaksanaan pengujian beton.

5.2 Hasil Pemeriksaan Material Penyusun Beton

Pemeriksaan agregat bertujuan untuk mengetahui dan memeriksa sifat serta karakteristik agregat / material yang nantinya digunakan dalam pembuatan beton. Material penyusun beton harus memenuhi persyaratan sesuai dengan standar yang telah ditetapkan, sehingga perlu dilakukan pengujian atau pemeriksaan sebelum digunakan. Adapun pemeriksaan material penyusun beton dibagi menjadi 2 yaitu pemeriksaan agregat halus dan pemeriksaan agregat kasar.

5.2.1 Hasil Pemeriksaan Agregat Halus

Pemeriksaan agregat halus meliputi pengujian berat jenis dan penyerapan air agregat halus, pengujian analisa saringan agregat halus, pengujian berat volume gembur dan padat agregat halus serta pengujian lolos saringan no.200 (Uji Kadar Lumpur dalam Pasir). Adapun hasilnya adalah sebagai berikut.

- Pengujian Berat Jenis dan Penyerapan Air Agregat Halus
 Pengujian ini berdasarkan pada SNI 1970-2016. Penguji memperoleh data pengujian seperti pada tabel 5.1. Berikut merupakan contoh perhitungan pada sampel 1.
 - a. Berat jenis curah $=\frac{Bk}{B+500-Bt}$

$$= \frac{486}{698+500-1010}$$

$$= 2,59$$
b. Berat jenis SSD
$$= \frac{500}{B+500-Bt}$$

$$= \frac{500}{698+500-1010}$$

$$= 2,66$$
c. Berat jenis semu
$$= \frac{Bk}{B+Bk-Bt}$$

$$= \frac{486}{698+500-1010}$$

$$= 2,79$$
d. Penyerapan air
$$= \frac{500-Bk}{Bk}$$

$$= \frac{500-486}{486}$$

$$= 2,88 \%$$

Pada sampel 2 dilakukan perhitungan yang sama seperti perhitungan sampel 1 diatas, sehingga dapat dihitung nilai rata-ratanya. Berikut dapat dilihat tabel rekapitulasi hasil pengujian berat jenis dan penyerapan air agregat halus.

Tabel 5. 1 Hasil pengujian berat jenis dan penyerapan air agregat halus

Urajan	Hasil Per	Rata - rata	
Oraian	Sampel 1	Sampel 2	Kata - Tata
Berat pasir kering mutlak, gram (Bk)	488	486	487
Berat pasir kondisi jenuh kering muka (SSD), gram	500	500	500
Berat piknometer berisi pasir dan air, gram (Bt)	1007	1010	1008,50
Berat piknometer berisi air, gram (B)	703	698	700,50
Berat jenis curah, (Bk/(B+500-Bt))	2,49	2,59	2,54
Berat jenis jenuh kering muka, (500/(B+500-Bt))	2,55	2,66	2,61
Berat jenis semu, (Bk/(B+Bk-Bt))	2,65	2,79	2,72
Penyerapan air, ((500-Bk)/(Bk x 100))	2,46%	2,88%	2,67%

Berdasarkan pengujian berat jenis dan penyerapan air agregat halus didapatkan hasil sebagai berikut.

- a. Berat jenis jenuh kering muka (SSD) rata- rata = 2,61
- b. Penyerapan air rata- rata = 2,67%

2. Pengujian Analisa Saringan Agregat Halus

Pengujian ini berdasarkan pada SNI 1968-1990. Penguji memperoleh data yang nantinya akan diolah sehingga didapatkan nilai modulus halus butir (MHB) agregat serta daerah gradasi. Berat sampel yang digunakan dalam pengujian ini adalah 2000 gram. Data yang diperoleh dapat dilihat pada 5.2 dan 5.3. Berikut merupakan contoh perhitungan pada sampel 1.

a.	Persentase berat tertinggal	$= \frac{Berat\ tertinggal}{\Sigma Berat\ tertinggal}\ x\ 100$	0 %
	1) Lubang ayakan 4,8 mm	$= \frac{15}{1999} \times 100 \% =$	0,75 %
	2) Lubang ayakan 2,4 mm	$= \frac{97}{1999} \times 100 \% =$	4,85 %
	3) Lubang ayakan 1,2 mm	$= \frac{227}{1999} \times 100 \% =$	11,36 %
	4) Lubang ayakan 0,6 mm	$= \frac{523}{1999} \times 100 \% =$	26,16 %
	5) Lubang ayakan 0,3 mm	$=\frac{561}{1999} \times 100 \% =$	28,06 %
	6) Lubang ayakan 0,15 mm	$= \frac{419}{1999} \times 100 \% =$	20,96 %
	7) Pan	$= \frac{157}{1999} \times 100 \% =$	7,85 %

b. Persentase berat tertinggal kumulatif 1) Lubang ayakan 4 8 mm = 0.75 %

1) Lubang ayakan 4,8 mm	-0,73 %
2) Lubang ayakan 2,4 mm	= 0,75 % + 4,85 % = 5,60 %
3) Lubang ayakan 1,2 mm	= 5,60 % + 11,36 % = 16,96 %
4) Lubang ayakan 0,6 mm	= 16,96 % + 26,16 % = 43,12 %
5) Lubang ayakan 0,3 mm	=43,12 % + 28,06 % = 71,19 %
6) Lubang ayakan 0,15 mm	= 71,19 % + 20,96 % = 92,15 %
7) Pan	= 92,15 % + 7,85 % = 100

c. Persentase lolos kumulatif

1) Lubang ayakan 4,8 mm =
$$100 \% - 0.75 \%$$
 = 99.25%

```
= 100 \% - 5{,}60 \% = 94{,}40 \%
2) Lubang ayakan 2,4 mm
                              = 100 \% - 16,96 \% = 83,04\%
3) Lubang ayakan 1,2 mm
4) Lubang ayakan 0,6 mm
                              = 100 % - 43,12 %
                                                  = 56,88 %
                              = 100 % - 71,19 %
                                                  = 28,81 %
5) Lubang ayakan 0,3 mm
6) Lubang ayakan 0,15 mm
                              = 100 % - 92,15 %
                                                  = 7,85 %
7) Pan
                              = 100 % - 100 %
                                                  =0 \%
```

Untuk sampel 2 dilakukan perhitungan dengan langkah langkah yang sama seperti sampel 1 diatas. Berikut adalah tabel rekapitulasi sampel 1 dan sampel 2 pengujian analisa saringan agregat halus.

Tabel 5. 2 Hasil pengujian analisa saringan agregat halus sampel 1

Lubang Ayakan (mm)	Berat Tertinggal (gram)	Berat Tertinggal (%)	Berat Tertinggal Kumulatif (%)	Persen Lolos Kumulatif (%)
40	0	0	0	100
20	0	0	0	100
10	0	0	0	100
4,8	15	0,75	0,75	99,25
2,4	97	4,85	5,60	94,40
1,2	227	11,36	16,96	83,04
0,6	523	26,16	43,12	56,88
0.3	561	28,06	71,19	28,81
0,15	419	20,96	92,15	7,85
Pan	157	7,85	100	// -
Jumlah	1999	100	329,76	670,24

Tabel 5. 3 Hasil pengujian analisa saringan agregat halus sampel 2

Lubang Ayakan (mm)	Berat Tertinggal (gram)	Berat Tertinggal (%)	Berat Tertinggal Kumulatif (%)	Persen Lolos Kumulatif (%)
40	0	0	0	100
20	0	0	0	100
10	0	0	0	100
4,8	18	0,90	0,90	99,10
2,4	94	4,70	5,61	94,39
1,2	229	11,46	17,07	82,93
0,6	520	26,03	43,09	56,91
0,3	564	28,23	71,32	28,68
0,15	425	21,27	92,59	7,41
Pan	148	7,41	100	-
Jumlah	1998	100	330,58	669,42

Berdasarkan tabel 5.2 dan 5.3 maka didapatkan nilai modulus halus butir (MHB) dengan perhitungan sebagai berikut.

a. Modulus halus butir 1 (MHB₁)
$$= \frac{\Sigma persentase\ berat\ tertinggal\ kumulatif}{100}$$

$$= \frac{329,76}{100}$$

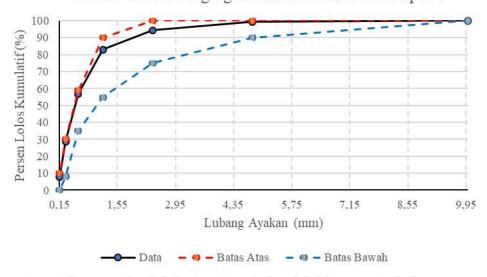
$$= 3,30$$
 b. Modulus halus butir 2 (MHB₂)
$$= \frac{\Sigma persentase\ berat\ tertinggal\ kumulatif}{100}$$

$$= \frac{330,58}{100}$$

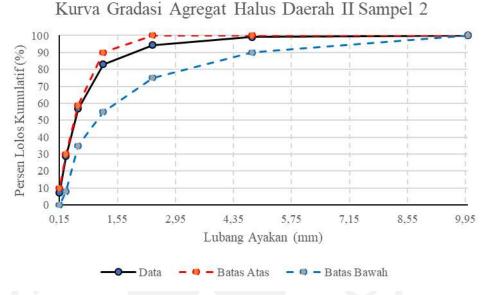
$$= 3,31$$
 c. MHB Rata-rata
$$= \frac{MHB1+MHB2}{2}$$

$$= \frac{3,30+3,31}{2}$$

$$= 3,30$$


SNI 03-1968 (1990) menyebutkan bahwa nilai modulus halus butir agregat halus berada dalam rentang 1,5-3,8. Sehingga nilai modulus halus butir agregat yang diperoleh dalam penelitian ini sudah memenuhi syarat spesifikasi. Penggunaan hasil analisa saringan juga bertujuan dalam menentukan gradasi agregat yang berdasarkan pada tabel 5.4 berikut.

Sehingga dari tabel berikut akan didapat kurva gradasi agregat halus yang dinyatakan pada gambar 5.1 dan 5.2 berikut.


Tabel 5. 4 Gradasi agregat halus

Lubang Ayakan	Persen Butir Agregat yang Lolos Saringan			
(mm)	Daerah I	Daerah II	Daerah III	Daerah IV
10	100 - 100	100 - 100	100 - 100	100 - 100
4,8	90 - 100	90 - 100	90 - 100	95 - 100
2,4	60 - 95	75 - 100	85 - 100	95 - 100
1,2	30 - 70	55 - 90	75 - 100	90 - 100
0,6	15 - 34	35 - 59	60 - 79	80 - 100
0,3	5 - 20	8 - 30	12 - 40	15 - 50
0,15	0 - 10	0 - 10	0 - 10	0 - 15

Kurva Gradasi Agregat Halus Daerah II Sampel 1

Gambar 5. 1 Kurva gradasi agregat halus daerah II sampel 1

Gambar 5. 2 Kurva gradasi agregat halus daerah II sampel 2

Berdasarkan kurva gradasi pada gambar 5.1 dan gambar 5.2, maka agregat halus yang digunakan pada penelitian ini termasuk dalam daerah gradasi II (pasir agak kasar)

- Pengujian Berat Volume Gembur dan Padat Agregat Halus
 Pengujian berat volume gembur dan padat agregat halus berdasarkan dengan SNI 4804-1998. Berikut merupakan contoh perhitungan sampel 1 untuk berat volume gembur dan padat agregat halus.
 - a. Berat Volume Gembur

1) Berat Agregat (W₃) = W₂⁻W₁
= 17484 - 10956
= 6528 gram
2) Volume Tabung (V) =
$$\frac{1}{4} \times \pi \times d^2 \times t$$

= $\frac{1}{4} \times \pi \times 14,91^2 \times 30,13$
= 5263,35 cm³
3) Berat Volume Gembur = $\frac{W_3}{V}$
= $\frac{6528}{5263,35}$
= 1,24 gram/cm³

b. Berat Volume Padat

1) Berat Agregat (W₃) = W₂⁻W₁
= 18660 - 10956
= 7704 gram
2) Volume Tabung (V) =
$$\frac{1}{4} \times \pi \times d^2 \times t$$

= $\frac{1}{4} \times \pi \times 14,91^2 \times 30,13$
= 5263,35 cm³
= $\frac{W^3}{V}$
= $\frac{7704}{5263,35}$
= 1,46 gram/cm³

Pada sampel 2 dilakukan perhitungan yang sama seperti perhitungan sampel 1 diatas, sehingga akan didapatkan nilai berat volume gembur dan berat volume padat untuk sampel 2. Kemudian dapat dihitung nilai rerata antara sampel 1 dan sampel 2. Berikut merupakan tabel rekapitulasi hasil pengujian berat volume gembur dan berat volume padat.

Tabel 5. 5 Hasil pengujian berat volume gembur agregat halus

Urajan	Hasil Per	Rata - rata	
Uraian	Sampel 1	Sampel 2	Kata - Fata
Diameter silinder (d), cm	14,91	14,91	14,91
Tinggi silinder (t), cm	30,13	30,13	30,13
Berat tabung (W1), gram	10956	10956	10956
Berat tabung + agregat SSD (W2), gram	17484	17557	17520,50
Berat agregat (W3), gram	6528	6601	6564,50
Volume tabung (V), gram	5263,35	5263,35	5263,35
Berat volume gembur (W3/V), gram/cm3	1,24	1,25	1,25

Hasil Pengamatan Uraian Rata - rata Sampel 1 Sampel 2 Diameter silinder (d), cm 14,91 14,91 14.91 Tinggi silinder (t), cm 30,13 30,13 30,13 Berat tabung (W1), gram 10956 10956 10956 Berat tabung + agregat SSD (W2), gram 18660 18568 18614 Berat agregat (W3), gram 7704 7612 7658 Volume tabung (V), gram 5263,35 5263,35 5263,35 Berat volume padat (W3/V), gram/cm3 1,46 1,45 1,455

Tabel 5. 6 Hasil pengujian berat volume padat agregat halus

Berdasarkan hasil rekapitulasi diatas, maka didapatkan nilai berat volume gembur agregat halus rata-rata sebesar 1,25 gram/cm³ dan nilai berat volume padat agregat halus rata-rata sebesar 1,455 gram/cm³.

4. Pengujian Lolos Saringan No. 200 (Uji Kadar Lumpur dalam Pasir)
Pengujian lolos saringan no.200 (uji kadar lumpur dalam pasir) berdasarkan pada SNI 4142-1996. Pengujian ini digunakan sampel berupa 500 gram agregat kering oven. Data hasil pengujian ini dapat dilihat pada tabel 5.7 dibawah ini. Adapun perhitungan pengujian lolos saringan no.200 adalah sebagai berikut.

Kadar Lumpur dalma pasir
$$= \frac{W1 - W2}{W1} \times 100\%$$

$$= \frac{500 - 493}{500} \times 100\%$$

$$= 1,40 \%$$

Pada sampel 2 dilakukan perhitungan yang sama seperti perhitungan sampel 1 diatas, sehingga akan didapatkan kadar lumpur dalam pasir untuk sampel 2. Kemudian dapat dihitung nilai rerata antara sampel 1 dan sampel 2. Berikut merupakan tabel rekapitulasi hasil pengujian Lolos saringan no.200.

Uraian	Hasil Pengamatan		Rata - rata
	Sampel 1	Sampel 2	Kata - rata
Berat Agregat Kering Oven (W1), gram	500	500	500
Berat Agregat Kering Oven setelah di cuci (W2), gram	493	494	494
Berat yang Lolos Ayakan No. 200 [(W1-W2/W1)]x100	1,40%	1,20%	1,30%

Tabel 5. 7 Hasil pengujian lolos saringan no. 200

Berdasarkan hasil pengujian lolos saringan no.200 didapatkan nilai rata-rata seperti berikut.

Berat lolos ayakan no.200 rata-rata
$$= \frac{sampel \ 1 + sampel \ 2}{2}$$
$$= \frac{1,40\% + 1,20\%}{2}$$
$$= 1,30 \%$$

5.2.2 Hasil Pemeriksaan Agregat Kasar

Pemeriksaan agregat kasar meliputi pengujian berat jenis dan penyerapan air agregat kasar, pengujian analisa saringan agregat kasar, pengujian berat volume gembur dan padat agregat kasar. Adapun hasilnya adalah sebagai berikut

 Pengujian Berat Jenis dan Penyerapan Air Agregat Kasar
 Pengujian ini berdasarkan pada SNI 1969-2016. Penguji memperoleh data pengujian seperti pada tabel 5.8. Berikut merupakan contoh perhitungan pada sampel 1.

e. Berat jenis curah
$$= \frac{BR}{Bj-B}$$

$$= \frac{4886}{5000-3102}$$

$$= 2,57$$
f. Berat jenis SSD
$$= \frac{Bj}{Bj-Ba}$$

$$= \frac{5000}{5000-3,102}$$

$$= 2,63$$
g. Berat jenis semu
$$= \frac{Bk}{Bk-Ba}$$

$$= \frac{4886}{4886-3102}$$

$$= 2,74$$
h. Penyerapan air
$$= \frac{Bj - Bk}{Bk}$$

$$= \frac{5000 - 4886}{4886}$$

$$= 2,33 \%$$

Pada sampel 2 dilakukan perhitungan yang sama seperti perhitungan sampel 1 diatas, sehingga dapat dihitung nilai rata-ratanya. Berikut dapat dilihat tabel rekapitulasi hasil pengujian berat jenis dan penyerapan air agregat kasar.

Tabel 5. 8 Hasil pengujian berat jenis dan penyerapan air agregat kasar

Uraian	Hasil Per	Rata - rata		
Oraian	Sampel 1	Sampel 2	Kata - Tata	
Berat Kerikil kering mutlak (Bk), gram	4886,00	4888	4887	
Berat kerikil Jenuh kering muka (Bj),	5000	5000	5000	
gram	3000	3000	3000	
Berat piknometer berisi pasir dan air	3102	3141	3121,50	
(Ba), gram	3102	3141	3121,30	
Berat Jenis Curah BK/(BJ-Ba)	2,57	2,63	2,60	
Berat Jenis jenuh kering muda (SSD) Bj/	2,63	2,69	2,66	
(Bj-Ba)	2,03	2,09	2,00	
Berat Jenis semu Bk/(Bk-Ba)	2,74	2,80	2,77	
Penyerapan Air (Bj-Bk)/Bk x 100%	2,33 %	2,29 %	2,31 %	

Berdasarkan pengujian berat jenis dan penyerapan air agregat kasar didapatkan hasil sebagai berikut.

c. Berat jenis jenuh kering muka (SSD) rata- rata = 2,66

d. Penyerapan air rata- rata = 2,31 %

2. Pengujian Analisa Saringan Agregat Kasar

Pengujian ini berdasarkan pada SNI 1968-1990. Penguji memperoleh data yang nantinya akan diolah sehingga didapatkan nilai modulus halus butir (MHB) agregat serta daerah gradasi. Berat sampel yang digunakan dalam pengujian ini adalah 5000 gram. Data yang diperoleh dapat dilihat pada 5.9 dan 5.10. Berikut merupakan contoh perhitungan pada sampel 1.

d. Persentase berat tertinggal
$$= \frac{Berat tertinggal}{\Sigma Berat tertinggal} \times 100 \%$$

	1) Lubang ayakan 40 mm	$=\frac{0}{4999} \times 100 \%$	= 0 %
	2) Lubang ayakan 20 mm	$=\frac{54}{4999} \times 100 \%$	= 1 %
	3) Lubang ayakan 10 mm	$=\frac{3485}{4999} \times 100 \%$	= 70 %
	4) Lubang ayakan 4,8 mm	$=\frac{1245}{4999} \times 100 \%$	= 24,92 %
	5) Lubang ayakan 2,4 mm	$=\frac{64}{4999} \times 100 \%$	= 1,28 %
	6) Lubang ayakan 1,2 mm	$=\frac{5}{4999} \times 100 \%$	= 0,10 %
	7) Pan	$=\frac{143}{4999} \times 100 \%$	= 2,86 %
e.	Persentase berat tertinggal kumula	ntif	
	8) Lubang ayakan 40 mm	= 0 %	
	9) Lubang ayakan 20 mm	= 0 % + 1 %	= 1 %
	10) Lubang ayakan 10 mm	= 1 % + 70 %	= 71 %
	11) Lubang ayakan 4,8 mm	= 71 % + 24,92 %	= 95,76 %
	12) Lubang ayakan 2,4 mm	= 95,76 % + 1,28 %	= 97,04 %
	13) Lubang ayakan 1,2 mm	= 97,04 % + 0,10 %	= 97,14 %
	14) Pan	= 97,14 % + 2,86 %	= 100 %
f.	Persentase lolos kumulatif		
	1) Lubang ayakan 40 mm	= 100 % - 0 %	= 100 %
	2) Lubang ayakan 20 mm	= 100 % - 1 %	= 99 %
	3) Lubang ayakan 10 mm	= 100 % - 71 %	= 29 %
	4) Lubang ayakan 4,8 mm	= 100 % - 95,76 %	= 4,24 %
	5) Lubang ayakan 2,4 mm	= 100 % - 97,04 %	= 2,96 %
	6) Lubang ayakan 1,2 mm	= 100 % - 97,04 %	= 2,86 %
	7) Pan	= 100 % - 100 %	= 0 %

Untuk sampel 2 dilakukan perhitungan dengan langkah langkah yang sama seperti sampel 1 diatas. Berikut adalah tabel rekapitulasi sampel 1 dan sampel 2 pengujian analisa saringan agregat kasar.

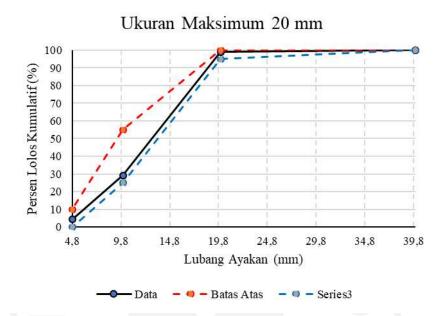
Tabel 5. 9 Hasil pengujian analisa saringan agregat kasar sampel 1

Lubang Ayakan (mm)	Berat Tertinggal (gram)	Berat Tertinggal (%)	Berat Tertinggal Kumulatif (%)	Persen Lolos Kumulatif (%)
40	0	0	0	100
20	54	1	1	99
10	3485	70	71	29
4,8	1245	24,92	95,76	4,24
2,4	64	1,28	97,04	2,96
1,2	5	0,10	97,14	2,86
0,6	0	0,00	97,14	2,86
0,3	0	0,00	97,14	2,86
0,15	0	0,00	97,14	2,86
Pan	143	2,86	100	-
Jumlah	4996	100	753,26	246,74

Tabel 5. 10 Hasil pengujian analisa saringan agregat kasar sampel 2

Lubang Ayakan (mm)	Berat Tertinggal (gram)	Berat Tertinggal (%)	Berat Tertinggal Kumulatif (%)	Persen Lolos Kumulatif (%)
40	0	0	0	100
20	56	1	1	98,88
10	3583	72	73	27,21
4,8	1070	21,40	94,20	5,80
2,4	75	1,50	95,70	4,30
1,2	19	0,38	96,08	3,92
0,6	0	0,00	96,08	3,92
0,3	0 / //	0,00	96,08	3,92
0,15	0	0,00	96,08	3,92
Pan	196	3,92	100	/ -
Jumlah	4999	100	748,13	251,87

Berdasarkan tabel 5.9 dan 5.10 maka didapatkan nilai modulus halus butir (MHB) dengan perhitungan sebagai berikut.


d. Modulus halus butir 1 (MHB₁)
$$= \frac{\Sigma persentase\ berat\ tertinggal\ kumulatif}{100}$$

$$= \frac{753,26}{100}$$

$$= 7,53$$

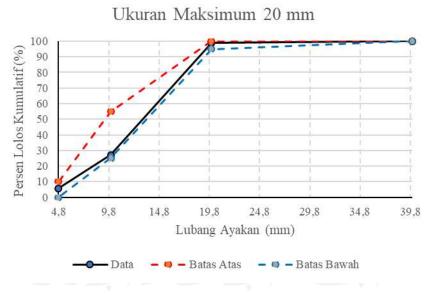
e. Modulus halus butir 2 (MHB₂)
$$= \frac{\Sigma persentase\ berat\ tertinggal\ kumulatif}{100}$$

$$= \frac{748,13}{100}$$

$$= 7,48$$
 f. MHB Rata-rata
$$= \frac{MHB1+MHB2}{2}$$

$$= \frac{7,53+7,48}{2}$$

$$= 7.507$$


SNI 03-1968 (1990) menyebutkan bahwa nilai modulus halus butir agregat kasar berada dalam rentang 5-8. Sehingga nilai modulus kasar butir agregat yang diperoleh dalam penelitian ini sudah memenuhi syarat spesifikasi. Penggunaan hasil analisa saringan juga bertujuan dalam menentukan gradasi agregat yang berdasarkan pada tabel 5.11 berikut. Sehingga dari tabel berikut akan didapat kurva gradasi agregat kasar yang dinyatakan pada gambar 5.3 dan 5.4 berikut.

Tabel 5. 11 Gradasi agregat kasar

Lubang Ayakan	Persen Butir Agregat yang Lolos Saringan/Besar Butiran Maksimum					
(mm)		40 m	m		20 mm	
40	95	_	100	100	-	100
20	30	7 .	70	95	-	100
10	10	I E J	35	25		55
4,8	0	<u> </u>	5	0		10

Gambar 5. 3 Kurva gradasi agregat kasar maksimum 20 mm sampel 1

Gambar 5. 4 Kurva gradasi agregat kasar maksimum 20 mm sampel 2

Berdasarkan kurva gradasi pada gambar 5.3 dan gambar 5.4, maka agregat kasar yang digunakan pada penelitian ini memiliki ukuran maksimum 20 mm.

3. Pengujian Berat Volume Gembur dan Padat Agregat Kasar

Pengujian berat volume gembur dan padat agregat kasar berdasarkan dengan SNI 4804-1998. Berikut merupakan contoh perhitungan sampel 1 untuk berat volume gembur dan padat agregat kasar.

a. Berat Volume Gembur

1) Berat Agregat (W₃) = W₂⁻W₁
= 18231 – 10956
= 7275 gram
2) Volume Tabung (V) =
$${}^{1}\!\!/_{4} \times \pi \times d^{2} \times t$$

= ${}^{1}\!\!/_{4} \times \pi \times 14,91^{2} \times 30,13$
= 5263,35 cm³
3) Berat Volume Gembur = $\frac{W^{3}}{V}$
= $\frac{7275}{5263,35}$
= 1,38 gram/cm³
b. Berat Volume Padat
1) Berat Agregat (W₃) = W₂⁻W₁
= 19122 – 10956
= 8166 gram
2) Volume Tabung (V) = ${}^{1}\!\!/_{4} \times \pi \times d^{2} \times t$
= ${}^{1}\!\!/_{4} \times \pi \times 14,91^{2} \times 30,13$
= 5263,35 cm³
3) Berat Volume Padat = $\frac{W^{3}}{V}$

Pada sampel 2 dilakukan perhitungan yang sama seperti perhitungan sampel 1 diatas, sehingga akan didapatkan nilai berat volume gembur dan berat volume padat untuk sampel 2. Kemudian dapat dihitung nilai rerata antara sampel 1 dan sampel 2. Berikut merupakan tabel rekapitulasi hasil pengujian berat volume gembur dan berat volume padat.

 $= 1,55 \text{ gram/cm}^3$

Tabel 5. 12 Hasil pengujian berat volume gembur agregat kasar

Uraian	Hasil Per	Rata -	
Uraian	Sampel 1	Sampel 2	rata
Diameter silinder (d), cm	14,91	14,91	14,91
Tinggi silinder (t), cm	30,13	30,13	30,13
Berat tabung (W1), gram	10956	10956	10956
Berat tabung + agregat SSD (W2), gram	18231	18066	18148.50
Berat agregat (W3), gram	7275	7110	7192.50
Volume tabung (V), gram	5263,35	5263,35	5263,35
Berat volume gembur (W3/V), gram/cm3	1,38	1,35	1,37

Tabel 5. 13 Hasil pengujian berat volume padat agregat kasar

Urajan	Hasil Per	Rata - rata	
Uraian	Sampel 1	Sampel 2	Kata - Tata
Diameter silinder (d), cm	14,91	14,91	14,91
Tinggi silinder (t), cm	30,13	30,13	30,13
Berat tabung (W1), gram	10956	10956	10956
Berat tabung + agregat SSD (W2), gram	19122	19115	19119
Berat agregat (W3), gram	8166	8159	8163
Volume tabung (V), gram	5263,35	5263,35	5263,35
Berat volume padat (W3/V), gram/cm3	1,55	1,55	1,55

Berdasarkan hasil dari pengujian diatas, maka didapatkan nilai berat volume gembur agregat kasar rata-rata sebesar 1,37 gram/cm³ dan nilai berat volume padat agregat kasar rata-rata sebesar 1,55 gram/cm³

5.3 Perencanaan Campuran Beton (Mix Design)

Pada penelitian ini digunakan perencanaan campuran beton berdasarkan SNI 2834-2000. Pada perencanaan beton ini digunakan mutu rencana 30 MPa. Adapun perhitungan perencanaan campuran beton adalah sebagai berikut.

- 1. Kuat tekan rencana (f'c) sebesar 30 MPa menggunakan benda uji silinder berdiameter 15 cm dan tinggi 30 cm.
- 2. Benda uji dilakukan pengujian pada umur 28 hari.
- 3. Semen yang digunakan adalah semen PCC tipe I merk Tiga Roda.

- 4. Berat jenis agregat halus adalah 2,61 dan berat jenis agregat kasar adalah 2,66 yang didapatkan dari pengujian berat jenis dan penyerapan air agregat halus dan agregat kasar.
- 5. Susunan butir agregat halus masuk dalam gradasi daerah II yang didapatkan dari pengujian analisa saringan agregat halus
- 6. Ukuran agregat kasar maksimum 20 mm yang didapatkan dari pengujian analisa saringan agregat kasar.
- 7. Nilai standar deviasi (S) adalah 7 MPa, diambil dari nilai tingkat pengendalian mutu pekerjaan.
- 8. Nilai tambah atau *margin* (M) adalah 12 MPa, didapat dari rumus,

9. Kekuatan beton rata-rata yang ditargetkan, dengan rumus sebagai berikut.

$$F'_{cr} = f'_{c} + M$$

= 30 + 12
= 42 Mpa


10. Menentukan nilai faktor air semen (fas), menggunakan tabel 5.14 dan gambar5.5 berikut

Tabel 5. 14 Perkiraan kuat tekan beton (Mpa) dengan fas 0,5 dan jenis semen serta agregat yang dipakai di Indonesia

اللياليا	Ionia Aguagat	Kuat Tekan (MPa)				
Jenis Semen	Jenis Agregat Kasar	Pac	la Un	Benda		
7.1.1	Kasar	3	7	28	91	Uji
Semen Portland	Batu tak dipecahkan	17	23	33	40	Silinder
tipe I atau Semen	Batu pecah	19	27	37	45	Simuel
Tahan Sulfat tipe	Batu tak dipecahkan	20	28	40	48	Kubus
II, V	Batu pecah	23	32	45	54	Kubus
	Batu tak dipecahkan 21 28 38		38	44	Silinder	
Semen Portland	Batu pecah	25	33	44	48	Simuei
tipe III	Batu tak dipecahkan	25	31	46	53	Kubus
	Batu pecah	30	40	53	60	Nubus
	Carrelle and CNII 202	4 (20)	20)			

Sumber: SNI 2834 (2000)

- a. Digunakan semen Portland tipe I, jenis agregat kasar adalah batu pecah, kuat tekan pada umur 28 hari dengan benda uji silinder. Sehingga berdasarkan tabel 5.14 didapatkan perkiraan kuat tekan beton dengan fas 0,5 sebesar 37 MPa.
- b. Menggunakan gambar 5.5 berikut ini, tarik garis horizontal ke kanan dengan acuan kuat tekan 37 MPa dan tarik garis vertikal ke atas dengan acuan fas 0,5 sampai dengan didapat titik perpotongan antara 2 garis tersebut, kemudian buat kurva baru yang memotong titik perpotongan tersebut.
- c. Setelah terdapat kurva acuan baru, maka tarik garis horizontal ke kanan dengan acuan kuat tekan rencana yaitu 42 MPa sampai memotong kurva acuan tersebut. Setelah menyentuh kurva tarik garis tadi ke arah vertikal bawah hingga menyentuh sumbu x. Sehingga akan didapatkan fas sebesar 0,43.

Gambar 5. 5 Hubungan antara kuat tekan dan faktor air semen (FAS)

11. Menentukan kadar air yang diperlukan

Kadar air dalam campuran beton ditentukan berdasarkan Tabel 5.16 berikut.

Tabel 5. 15 Perkiraan Kadar Air Bebas (Kg/m3) yang Dibutuhkan Untuk Beberapa Tingkat Kemudahan Pengerjaan Adukan Beton

Ukuran besar		Slump (mm)				
butir agregat maksimum			10-30	30-60	60-180	
10	Batu tak dipecahkan	150	180	205	225	
10	Batu pecah	180	205	230	250	
20	Batu tak dipecahkan	135	160	180	195	
<mark>20</mark>	Batu pecah	170	190	210	225	
40	Batu tak dipecahkan	115	140	160	175	
	Batu pecah	155	175	190	205	

Sumber: SNI 2834 (2000)

- a. Digunakan ukuran butir maksimum agregat dari hasil pengujian analisa saringan agregat kasar diperoleh sebesar 20 mm dan digunakan jenis batuan terdiri dari agregat halus (batu tak dipecahkan) dan agregat kasar (batu dipecah).
- b. Digunakan nilai slump 60-180 mm.
- c. Kadar air yang dibutuhkan dihitung sebagai berikut.

$$w = \frac{2}{3} W_h + \frac{1}{3} W_k$$

$$= (\frac{2}{3} \times 195) + (\frac{1}{3} \times 225)$$

$$= 205 \text{ kg/m}^3$$

12. Menetapkan jumlah semen minimum dan fas maksimum

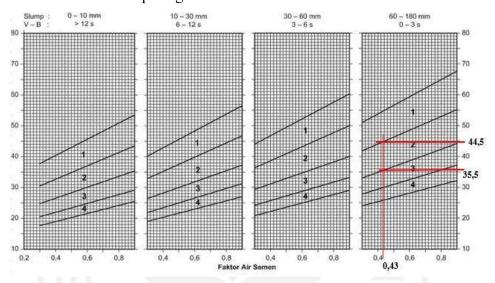
Jumlah semen minimum dan fas maksimum ditentukan berdasarkan tabel 5.16 berikut.

Tabel 5. 16 Persyaratan jumlah semen minimum dan faktor air semen maksimum untuk berbagi macam pembetonan dalam lingkungan khusus

	Lokasi	Jumlah Semen minimum Per m ³ beton (kg)	Nilai Faktor Air- Semen Maksimum
Be	ton di dalam ruang bangunan:	\ 8/	
a.	keadaan keliling non-korosif	275	0,60
b.	keadaan keliling korosif disebabkan		
	oleh kondensasi atau uap korosif	325	0,52
Bet	on di luar ruangan bangunan:	A A A	
c.	tidak terlindung dari hujan dan terik	$\rightarrow \wedge \wedge$	
	matahari langsung	325	0,60
d.	terlindung dari hujan dan terik		
	matahari langsung	275	0,60
Bet	ton masuk ke dalam tanah		
c.	mengalami keadaan basah dan kering		
	berganti-ganti	325	0,55
d.	mendapat pengaruh sulfat dan alkali		
	dari tanah		Lihat Tabel 5
Bet	ton yang kontinu berhubungan:		
c.	air tawar		
d.	air laut		Lihat Tabel 6

Sumber: SNI 03-2834 (2000)

Jenis pembetonan yang digunakan adalah beton didalam ruangan dengan keadaan keliling non korosif, maka didapat jumlah semen minimum sebesar 275 kg/m³ dan fas maksimum sebesar 0,60


13. Menetapkan kadar semen yang digunakan.

c =
$$\frac{w}{fas}$$

= $\frac{205}{0,43}$
= $476,7442 \text{ kg/m}^3$

Fas yang digunakan pada perhitungan adalah fas terkecil dimana 0,43 didapat dari grafik pada butir 10c. Kemudian didapat nilai kadar semen perhitungan sebesar 476,7442 kg/m³ sedangkan kadar semen minimum berdasarkan jenis pembetonan sebesar 275 kg/m³. Sehingga kadar semen yang digunakan adalah sebesar 476,7442 kg/m³.

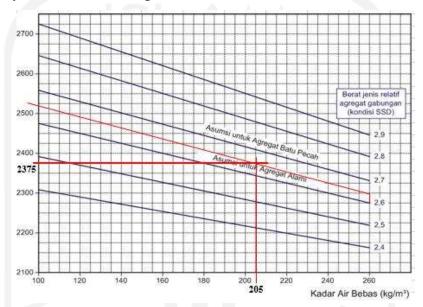
- 14. Menetapkan persentase agregat halus dan kasar.
 - a. Digunakan ukuran maksimum agregat kasar 20 mm, *slump* yang direncanakan masuk dalam *range* 60-180 mm, nilai fas sebesar 0,43 dan gradasi agregat halus masuk dalam gradasi II.

b. Kemudian tarik garis vertikal dari fas 0,43 keatas sampai menyentuh kurva atas dan bawah pada zona gradari II. Setelah menyentuh kurva tarik garis yang menyentuh batas atas dan batas bawah dari kurva ke arah horizontal kanan. Sehingga, didapatkan nilai persentase batas atas dan batas bawah seperti gambar 5.6 Berikut.

Gambar 5. 6 Grafik persen agregat halus terhadap kadar total yang dianjurkan untuk ukuran butir maksimum 20 mm

Sumber: SNI 03-2834 (2000)

c. Persentase agregat halus rata-rata
$$= \frac{44,5\%+35,5\%}{2}$$
$$= 40 \%$$
d. Persentase agregat kasar
$$= 100\% - \text{persentase agregat halus}$$
$$= 100\% - 40 \%$$
$$= 60 \%$$


15. Menetapkan berat jenis relative agregat gabungan (kondisi SSD).

$$BJ_{Ag. Gab} = (\%Ag. Halus \times BJ_{Ag. Halus}) + (\%Ag. Kasar \times BJ_{Ag. Kasar})$$

= $(40 \% \times 2,61) + (60\% \times 2,66)$
= $2,64$

16. Menetapkan berat isi/volume beton

Berat berat isi/volume beton ditentukan berdasarkan gambar 5.7 berikut

- a. Membuat kurva baru dengan nilai berat jenis relative agregat gabungan 2,64. Kemudian tarik garis vertikal keatas dari nilai kadar air 205 kg sampai menyentuh kurva yang telah dibuat.
- b. Dari titik perpotongan antara garis dan kurva pada poin b, ditarik garis horizontal ke kiri. Sehingga didapatkan nilai perkiraan berat isi beton yaitu sebesar 2375 kg/m³.

Gambar 5. 7 Perkiraan berat isi beton basah yang telah selesai didapatkan (Sumber: SNI 2834, 2000)

17. Menghitung kadar agregat gabungan

$$W_{Ag. Gab}$$
 = $W_{beton} - W_{semen} - W$
= $2375 - 476,7442 - 205$
= $1693,2558 \text{ kg/m}^3$

18. Menghitung kadar agregat halus

$$W_{Ag. \; Halus}$$
 = %Ag. Halus x $W_{Ag. Gab}$
= 40% x 1693,2558
= 677,3023 kg/m³

19. Menghitung kadar agregat kasar

$$W_{Ag. Kasar}$$
 = $W_{Ag. Gab}$ - $W_{Ag. Halus}$
= $1693,2558 - 677,3023$

= 1015,9535

20. Proporsi campuran per 1 m3 beton.

Dari hasil perencanaan campuran diperoleh proporsi tiap material untuk tiap 1 m3 beton sebagai berikut.

a. Semen = 476,7442 kg

b. Air = 205 kg

c. Agregat halus = 677,3023 kg

d. Agregat kasar = 1015,9535 kg

21. Proporsi campuran per 1 m3 beton dengan angka penyusutan.

Diambil nilai penyusutan sebesar 25 %, sehingga diperoleh tiap material untuk tiap 1 m3 beton dengan angka penyusutan sebagai berikut.

a. Semen = 595.9302 kg

b. Air = 256.25 kg

c. Agregat halus = 846,6279 kg

d. Agregat kasar = 1269,94186 kg

22. Hasil perencanaan campuran beton (*Mix Design*) dapat dilihat pada tabel 5. Berikut.

Tabel 5. 17 Rekapitulasi hasil perancanaan campuran

Formulir Perencanaan Campuran Beton (SNI 2834-2000)					
No	Uraian	Nilai	Satuan		
1	Kuat Tekan yang disyaratkan	30	MPa		
2	Deviasi Standar	7			
3	Nilai Tambah / Margin (M)	11,48	MPa		
	Dibulatkan	12	MPa		
4	Kuat Tekan Rata-rata yang ditargetkan	42	MPa		
5	Jenis Semen	Tipe I			
6	Jenis Agregat Halus	Alami			
7	Jenis Agregat Kasar	Batu Pecah			
8	Faktor Air Semen (FAS)	0,5			
9	Kuat Tekan Rata-rata yang ditargetkan	42			
10	FAS Bebas	0,43			
11	FAS Maksimum	0,6			
12	Jumlah Semen Minimum	275	kg/m3		
13	FAS Digunakan	0,43			
14	Nilai Slump Ditetapkan	60-180	mm		
15	Ukuran Agregat Maksimum	20	cm		
16	Kadar Air Bebas	205	kg/m3		
17	Kadar Semen	476,744186	kg/m3		
18	Kadar Semen Maksimum	-	-		
19	Kadar Semen Minimum	275	kg/m3		
20	Kadar Semen Digunakan	476,744186	kg/m3		
21	Faktor Air Semen Disesuaikan	0,43			
22	Susunan Besar Butir Agregat Halus	Gradasi 2			
23	Berat Jenis Agregat Halus (SSD)	2,61			
24	Berat Jenis Agregat Kasar (SSD)	2,66			
		35,50%	batas atas		
25	Persen Agregat Halus	44,5%	batas bawah		
26		40,00%	rata-rata		
26	Persen Agregat Kasar	60,00%			
27	Berat Jenis Agregat Gabungan	2,64			
28	Berat Isi Beton	2375	kg/m3		
29	Kadar Agregat Gabungan	1693,255814	kg/m3		
30	Kadar Agregat Halus	677,3023256	kg/m3		
31	Kadar Agregat Kasar	1015,953488	kg/m3		
32	Kadar semen dengan angka penyusustan	595,9302326	kg/m3		
33	Kadar agregat halus dengan angka penyusustan	846,627907	kg/m3		
34	Kadar agregat kasar dengan angka penyusutan	1269,94186	kg/m3		
35	Kadar air dengan angka penyusutan	256,25	kg/m3		

23. Volume benda uji

Dalam penelitian ini digunakan benda uji berupa 15 silinder berdiameter 15 cm dan tinggi 30 cm serta 15 balok dengan dimensi 10 cm x 10 cm x 40 cm. Adapun volume benda uji dihitung berdasarkan jumlah benda uji dalam satu kali *mixing*. Dalam penelitian ini, pembuatan benda uji dilakukan dalam dua kali *mixing*. *Mixing* pertama terdiri dari 15 silinder dan *mixing* kedua terdiri dari 15 balok. Sehingga, didapatkan volume benda uji untuk tiap kali *mixing* adalah sebagai berikut.

- a. Volume mixing $1 = (15 \text{ x} \frac{1}{4} \pi \text{ x} d^2 \text{ x} t)$ = $(15 \text{ x} \frac{1}{4} \pi \text{ x} 0.15^2 \text{ x} 0.3)$ = 0.07952 m^3
- b. Volume mixing $2 = (15 \times b \times h \times t)$ = $(15 \times 0.1 \times 0.1 \times 0.4)$ = 0.06 m^3

24. Proporsi campuran untuk tiap kali mixing

- a. Proporsi campuran untuk mixing 1
 - 1) Semen = 47,3893 kg
 - 2) Air = 20,3774 kg
 - 3) Agregat halus = 67,32517 kg
 - 4) Agregat kasar = 100,98776 kg
- b. Proporsi campuran untuk mixing 2
 - 1) Semen = 35,7558 kg
 - 2) Air = 15,375 kg
 - 3) Agregat halus = 50,7977 kg
 - 4) Agregat kasar = 76,1965 kg

5.4 Hasil Pengujian *Trial*

Pengujian *trial* dilakukan untuk mengetahui campuran yang direncanakan benar. Benda uji yang dibuat berupa 5 sampel silinder berdiameter 15 cm dan tinggi 30 cm. sebelum dilakukan pengujian, benda uji haru di ratakan permukaan atasnya menggunakan lapisan belerang (*capping*). Pengujian dilakukan ketika sampel beton

berumur 3 hari dan 7 hari. Oleh karena itu, pada perhitungan nilai kuat tekan beton perlu dibagi dengan angka konversi umur uji. Berikut merupakan contoh perhitungan kuat tekan beton *trial*.

1. Kuat tekan beton *trial* umur 3 hari

a.
$$f'c_{aktual}$$
 = $\frac{P}{A}$

$$= \frac{(234 \times 1000)}{\frac{1}{4} \times \pi \times 151,3^{2}}$$

$$= 13,0180 \text{ MPa}$$
b. $f'c_{terkonversi}$ = $f'c_{aktual} \times \frac{1}{\text{Angka Konversi}}$

$$= 13,0180 \times \frac{1}{0,4}$$

$$= 32,5450 \text{ MPa}$$

2. Kuat tekan beton *trial* umur 7 hari

a.
$$f'c_{aktual}$$
 = $\frac{P}{A}$

$$= \frac{(405 \times 1000)}{\frac{1}{4} \times \pi \times 151,2^{2}}$$

$$= 22,5510 \text{ MPa}$$
b. $f'c_{terkonversi}$ = $f'c_{aktual} \times \frac{1}{Angka \text{ Konversi}}$

$$= 22,5510 \times \frac{1}{0,65}$$

$$= 34,6938\text{MPa}$$

Dengan cara yang sama, dihitung juga kuat tekan beton pada sampel-sampel yang lain. Adapun rekapitulasi hasil pengujian kuat tekan beton *trial* dapat dilihat pada Tabel 5.18 sebagai berikut.

Tabel 5. 18 Rekapitulasi hasil pengujian kuat tekan beton trial

No.	Kode D	Diameter Penamp	Luas	Luas Mutu Penampang (mm2) (MPa)	Beban Maks	Mutu Realisasi (MPa)		Angka Konversi	Konversi 28 Hari
					(kN)	3 Hari	7 Hari	Umur Uji	(MPa)
1	TRL1	151,2167	17959,2916	30	405	•	22,5510	0,65	34,6938
2	TRL2	151,2167	17959,2916	30	375	-	21,1360	0,65	32,5170
3	TRL3	151,2167	17959,2916	30	343	-	19,5791	0,65	30,1218
4	TRL4	151,2167	17959,2916	30	234	13,0180	-	0,40	32,5450
5	TRL5	151,2167	17959,2916	30	246	13,8652	-	0,40	34,6631

Berdasarkan Tabel 5.18 di atas, dapat diketahui bahwa hasil pengujian benda uji *trial* telah memenuhi mutu rencana yaitu 30 MPa. Sehingga, penelitian dapat dilanjutkan untuk pembuatan benda uji.

5.5 Hasil Pengujian Slump

Pengujian slump dilakukan saat campuran beton telah tercampur merata menggunakan mesin pengaduk atau *mixer*. Pengujian ini memiliki tujuan untuk mengetahui tingkat kemudahan pengerjaan (*Workability*) pada beton. Semakin tinggi nilai *slump*, maka tingkat kemudahan pengerjaan beton juga semakin tinggi (mudah dikerjakan). Hasil pengujian *slump* penelitian ini dapat dilihat pada tabel 5.19 Berikut.

Tabel 5. 19 Hasil pengujian nilai slump

Keterangan	Tinggi Slump (cm)	Keterangan Syarat Nilai Slump (60-180mm)
Mixing 1	10	Memenuhi
Mixing 2	11	Memenuhi

5.6 Hasil Pemeriksaan Berat Volume Beton

Pemeriksaan berat volume beton dilakukan terhadap benda uji yang didiamkan setelah proses perawatan beton. Benda uji silinder ditimbang beratnya dan juga diukur dimensi untuk menghitung volume beton. Pemeriksaan ini dilakukan sebelum silinder diuji kuat tekan beton. Hal ini bertujuan untuk mengetahui perbandingan antara berat beton dengan volume beton. Adapun perhitungan dan rekapitulasi hasil pemeriksaan berat volume beton dapat dilihat sebagai berikut.

1. Perendaman

Berat Volume S1-R
$$= \frac{w}{V}$$

$$= \frac{12,8230}{\frac{1}{4} \times \pi \times 0,1491^{2} \times 0,3020}$$

$$= \frac{12,8230}{0,0053}$$

$$= 2432,9419 \text{ kg/m}^{3}$$

2. Ditutup karung goni basah

Berat Volume S1-G
$$= \frac{w}{v}$$

$$= \frac{12,6640}{\frac{1}{4} \times \pi \times 0,1498^{2} \times 0,3010}$$

$$= \frac{12,6640}{0,0053}$$

$$= 2388,2743 \text{ kg/m}^{3}$$

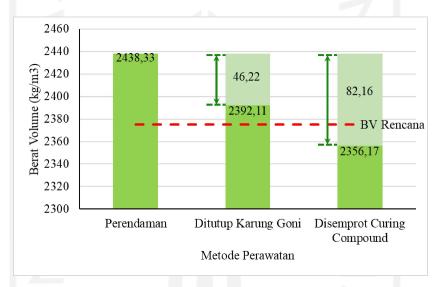
3. Disemprot curing compound

Berat Volume S1-C
$$= \frac{W}{V}$$

$$= \frac{12,5890}{\frac{1}{4} \times \pi \times 0,1503^{2} \times 0,3020}$$

$$= \frac{12,5890}{0,0054}$$

$$= 2348,4636 \text{ kg/m}^{3}$$


Tabel 5. 20 Rekapitulasi hasil pemeriksaan berat volume beton

Metode Perawatan	Umur Uji	Kode Benda Uji	No. Sampel	Diameter (mm)	Tinggi (mm)	Volume (m3)	Berat (kg)	Berat Volume (kg/m3)	Berat Volume Rerata
	لاذ	S1-R	1	149,067	302,000	0,0053	12,8230	12,8230 2432,9419	(CIII/gy)
	Ļ	S2-R	2	148,333	305,333	0,0053	12,7230	12,7230 2411,2815	
Perendaman	"	S3-R	3	150,000	303,333	0,0054	12,6890	2367,1995	2438,3290
		S4-R	4	150,033	302,333	0,0053	12,5810	2353,7684	
	人	S5-R	5	149,033	302,333	0,0053	13,8520	2626,4536	
		S1-G	1	149,767	301,000	0,0053	12,6640	2388,2743	
D:4-4-15	o c	S2-G	2	150,700	305,667	0,0055	12,8160	2350,6503	
dnınııd Lozusa geni	28	S3-G	3	148,000	304,000	0,0052	12,6620	2421,115	2392,1093
Karung gom	Пап	S4-G	4	149,333	304,000	0,0053	12,8370	2410,9409	
	J	D-SS	2	149,667	302,667	0,0053	12,7240	2389,5659	
		S1-C	1	150,333	302,000	0,0054	12,5890	2348,4636	
		S2-C	2	149,667	304,667	0,0054	12,3210	2298,6929	
Curing	0	S3-C	3	149,000	302,333	0,0053	12,5420	2379,1309	7356 1675
compound	_	S4-C	4	149,100	304,000	0,0053	12,6920	12,6920 2391,1747	2330,1073
	-	S5-C	5	150,333	300,667	0,0053	12,6130	12,6130 2363,3751	

Berdasarkan tabel rekapitulasi diatas diperoleh nilai berat volume beton rata rata (kg/m³) sebagai berikut.

- 1. Berat volume rata rata metode perendaman = 2438,3290
- 2. Berat volume rata rata metode ditutup dengan goni basah = 2392,1093
- 3. Berat volume rata rata metode disemprot *curing compound* = 2356,1675

Berdasarkan nilai berat volume rata rata tiap metode dapat di plot menjadi grafik hubungan antara berat volume dengan metode perendaman. Berikut dapat dilihat pada gambar 5.8 berikut.

Gambar 5. 8 Hubungan antara berat volume dengan metode perawatan

Berdasarkan Gambar 5.8 di atas, dapat diketahui terdapat selisih berat volume beton dengan perawatan ditutup karung goni dan *curing compound* dengan berat volume beton control (beton dengan perawatan perendaman). Adapun persentase selisih nilai tersebut dapat dilihat pada Tabel 5.21 sebagai berikut.

Tabel 5. 21 Persentase selisih nilai berat volume untuk tiap metode rawatan

No.	Metode Perawatan	Persentase Selisih Nilai Berat Volume (%)
1	Perendaman	0
2	Ditutup Karung Goni	1,8955
3	Disemprot Curing Compound	3,3696

Perbedaan selisih ini dimungkinkan terjadi karena perbedaan kandungan air dalam beton. Dapat dilihat jika beton yang direndam memiliki berat tertinggi, sedangkan kadar air dalam beton yang dirawat dengan ditutup karung goni dan *curing compound* lebih sedikit.

5.7 Hasil Pengujian Kuat Tekan Beton

Pengujian kuat tekan beton dilakukan ketika benda uji silinder telah berumur 28 hari. Hal ini bertujuan supaya peneliti memperoleh nilai kuat tekan beton dari pembebanan yang diberikan oleh mesin kuat tekan (compression machine). Sebelum pengujian benda uji silinder harus melalui proses pemberian kaping pada bagian atas permukaan beton dengan tujuan meratakan lapisan permukaan atas sampel supaya saat pemberian beban terdistribusi merata pada permukaan beton. Pemberian beban dilakukan secara konstan hingga beton mengalami keretakan (crack). Hal ini dikarenakan benda uji sudah tidak mampu lagi menahan beban yang diberikan oleh mesin kuat tekan. Kondisi ini ditandai dengan salah satu jarum dial beban yang turun sampai nilai beban sama dengan nol. Pada penelitian ini dilakukan uji tekan pada sampel silinder sebanyak 5 sampel per tiap variasi, sehingga total sampel uji tekan adalah sebanyak 15 sampel silinder. Beikut dapat dilihat contoh perhitungan kuat tekan pada tiap variasi.

1. Perendaman

f'c S1-R
$$= \frac{P(N)}{A(mm^2)}$$
$$= \frac{495000}{\frac{1}{4} \times \pi \times 149,0667^2}$$
$$= \frac{495000}{17452,2314}$$
$$= 28,3631 \text{ MPa}$$

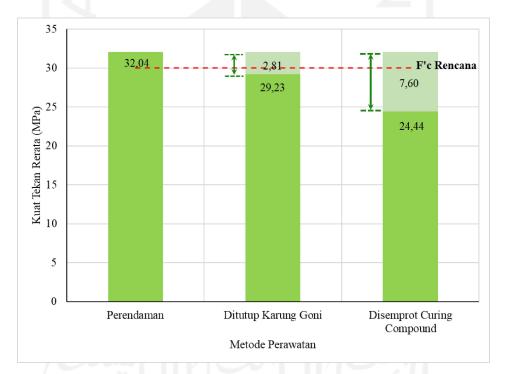
2. Ditutup karung goni

f'c S1-G
$$= \frac{P(N)}{A(mm^2)}$$
$$= \frac{550000}{\frac{1}{4} \times \pi \times 149,7667^2}$$
$$= \frac{550000}{17616.52357}$$

3. Disemprot karung goni basah

f'c S1-C
$$= \frac{P(N)}{A(mm^2)}$$
$$= \frac{370000}{\frac{1}{4} \times \pi \times 150,3333^2}$$
$$= \frac{370000}{17750,08576}$$
$$= 20,8450 \text{ kg/m}^3$$

Dengan cara yang sama dihitung pula kuat tekan beton untuk sampelsampel lainnya, sehingga diperoleh rekapitulasi hasil pengujian kuat tekan beton yang dapat dilihat pada Tabel 5.21 berikut


Tabel 5. 22 Rekapitulasi hasil pengujian kuat tekan beton

Metode Perawatan	Umur Uji	Kode Benda Uji	No. Sampel	Diameter (mm)	Tinggi (mm)	Luas Penampang (mm2)	Beban Maks (kN)	Kuat Tekan (MPa)	Kuat Tekan Rerata (Mpa)
		S1-R		149,0667	302,0000	17452,2	495	28,3631	
		S2-R	2	148,3333	305,3333	17280,9	520	30,091	
Perendaman		S3-R	3	150,0000	303,3333	17671,5	530	29,9919	32,0399
		S4-R	4	150,0333	302,3333	17679,3	625	35,3521	
		S5-R	5	149,0333	302,3333	17444,4	635	36,4013	
		S1-G	1	149,7667	301,0000	17616,5	055	31,2207	
7.7.7		S2-G	2	150,7000	305,6667	17836,8	515	28,8729	
Ditutup Karung goni	28 Hari	S3-G	3	148,0000	304,0000	17203,4	520	30,2267	29,2338
ecom.		S4-G	4	149,3333	304,0000	17514,7	270	32,544	
		S5-G	5	149,6667	302,6667	17593	410	23,3047	
		S1-C	1	150,3333	302,0000	17750,1	370	20,845	
		S2-C	2	149,6667	304,6667	17593	405	23,0205	
Curing compound		S3-C	3	149,0000	302,3333	17436,6	465	26,668	24,4444
		S4-C	4	149,1000	149,1000 304,0000	17460	450	25,7731	
		S5-C	5	150,3333	150,3333 300,6667	17750,1	460	25,9154	

Berdasarkan tabel rekapitulasi diatas diperoleh nilai kuat tekan beton (f'c) rata rata (MPa) sebagai berikut.

- 1. Kuat tekan rata rata metode perendaman = 32,0399
- 2. Kuat tekan rata rata metode ditutup dengan karung goni = 29,2338
- 3. Kuat tekan rata rata metode disemprot *curing compound* = 24,4444

Berdasarkan nilai kuat tekan rata rata tiap metode dapat di plot menjadi grafik nilai kuat tekan beton pada tiap metode perawatan. Berikut dapat dilihat pada gambar 5.9 Berikut.

Gambar 5. 9 Grafik nilai kuat tekan beton pada tiap metode perawatan

Pada grafik di atas, dapat diketahui terdapat selisih kuat tekan beton dengan perawatan ditutup karung goni dan *curing compound* dengan berat volume beton control (beton dengan perawatan perendaman). Adapun persentase selisih nilai tersebut dapat dilihat pada Tabel 5.23 sebagai berikut.

Tabel 5. 23 Persentase selisih nilai kuat tekan untuk tiap metode rawatan

No.	Metode Perawatan	Persentase Selisih Nilai Kuat Tekan (%)
1	Perendaman	0
2	Ditutup Karung Goni	8,7580
3	Disemprot Curing Compound	23,7063

Berdasarkan tabel di atas dapat diketahui bahwa metode perawatan dengan ditutup karung goni memiliki perbedaan selisih kuat tekan sebesar 8,76% dari metode perendaman dan metode perawatan dengan disemprot *curing compound* memiliki perbedaan selisih kuat tekan sebesar 23,71% dari metode perendaman. Hasil ini sesuai dengan penelitian oleh Irawan Saputra, dkk (2020), bahwa perawatan beton dengan dibungkus lembaran plastik memiliki perbedaan selisih kuat tekan sebesar 8%, perawatan dengan *curing compound* memiliki selisih kuat tekan sebesar 13%, dan jenis beton tanpa perawatan memiliki selisih kuat tekan 19%.

5.8 Hasil Pengujian Modulus Elastisitas Beton

Pengujian Modulus Elastisitas dilakukan bersamaan dengan uji kuat tekan beton berdasarkan dengan SNI 4169-1996. Pengujian ini berlaku terhadap setiap variasi perawatan sampel silinder, sehingga jumlah keseluruhan adalah 15 sampel silinder dengan rincian 5 sampel metode perawatan perendaman, 5 sampel metode perawatan ditutup karung goni dan 5 sampel metode perawatan disemprot menggunakan *curing compound*. Pengujian modulus elastisitas dilakukan untuk mengetahui nilai regangan dan tegangan beton. Sehingga data yang harus diperiksa terlebih dahulu adalah luas penampang benda uji (A) dan panjang awal kompresometer (L₀). Untuk selanjutnya penguji mendapatkan data berupa beban tiap 10 kN menggunakan mesin uji tekan dan data penurunan silinder beton (ΔL') tiap penambahan 10 kN menggunakan *handheld data logger*. Berikut merupakan contoh perhitungan nilai tegangan dan regangan saat beban mencapai 10 kN untuk tiap metode perawatan.

1. Perendaman

a.
$$\Delta L$$
 = $\frac{\Delta L'}{2} \times 10^{-3}$
= $\frac{13}{2} \times 10^{-3}$
= 0,0065 mm

b. Regangan (
$$\epsilon$$
) = $\frac{\Delta L}{L0}$ = $\frac{0,0065}{200}$ = 0,0000325

c. Tegangan (
$$\sigma$$
) = $\frac{P}{A}$
= $\frac{10000}{17452,2314}$
= 0,5730 MPa

2. Ditutup karung goni basah

a.
$$\Delta L$$

$$= \frac{\Delta L'}{2} \times 10^{-3}$$
$$= \frac{9}{2} \times 10^{-3}$$
$$= 0,0045$$

b. Regangan (
$$\epsilon$$
) = $\frac{\Delta L}{L0}$ = $\frac{0,0045}{200}$ = 0,0000225

c. Tegangan (
$$\sigma$$
) = $\frac{P}{A}$ = $\frac{10000}{17616,5236}$ = 0,5676 MPa

3. Disemprot curing compound

a.
$$\Delta L$$
 = $\frac{\Delta L'}{2} \times 10^{-3}$
= $\frac{22}{2} \times 10^{-3}$
= 0,0110
b. Regangan (ϵ) = $\frac{\Delta L}{L0}$
= $\frac{0,0110}{200}$
= 0,0000550

c. Tegangan (
$$\sigma$$
) = $\frac{P}{A}$ = $\frac{10000}{17750,0858}$ = 0,5634 MPa

Kemudian dilakukan perhitungan selanjutnya dengan cara yang sama seperti diatas. Sehingga, akan didapatkan nilai tegangan dan regangan di setiap penambahan beban 10 kN. Berikut merupakan tabel hasil perhitungan tegangan dan regangan pada sampel 1 tiap varian.

Tabel 5. 24 Hasil perhitungan tegangan regangan beton metode perendaman sampel 1

В	eban	Pembacaan	АТ	Dagangan	Tegangan,	Regangan
kN	N	Dial, ΔL' (μm)	ΔL (mm)	Regangan, ε	σ (MPa)	Terkoreksi, ε
10	10000	13	0,0065	0,0000325	0,5730	0,0000440
20	20000	21,5	0,0108	0,0000538	1,1460	0,0000652
30	30000	29	0,0145	0,0000725	1,7190	0,0000840
40	40000	38	0,0190	0,0000950	2,2920	0,0001065
50	50000	47	0,0235	0,0001175	2,8650	0,0001290
60	60000	54,5	0,0273	0,0001363	3,4380	0,0001478
70	70000	63	0,0315	0,0001575	4,0109	0,0001690
80	80000	71	0,0355	0,0001775	4,5839	0,0001890
90	90000	80,5	0,0403	0,0002013	5,1569	0,0002128
100	100000	88,4	0,0442	0,0002210	5,7299	0,0002325
110	110000	97,4	0,0487	0,0002435	6,3029	0,0002550
120	120000	104,9	0,0525	0,0002623	6,8759	0,0002738
130	130000	115,4	0,0577	0,0002885	7,4489	0,0003000
140	140000	122,4	0,0612	0,0003060	8,0219	0,0003175

Lanjutan Tabel 5. 22 Hasil perhitungan tegangan regangan beton metode perendaman sampel 1

В	eban	Pembacaan	$\Delta \mathbf{L}$	Regangan,	Tegangan,	Regangan
kN	N	Dial, ΔL' (μm)	(mm)	Regangan, E	σ (MPa)	Terkoreksi, ε
150	150000	130,4	0,0652	0,0003260	8,5949	0,0003375
160	160000	141,9	0,0710	0,0003548	9,1679	0,0003663
170	170000	148,9	0,0745	0,0003723	9,7409	0,0003838
180	180000	158,9	0,0795	0,0003973	10,3139	0,0004088
190	190000	167,4	0,0837	0,0004185	10,8869	0,0004300
200	200000	175,4	0,0877	0,0004385	11,4599	0,0004500
210	210000	185,4	0,0927	0,0004635	12,0328	0,0004750
220	220000	193,4	0,0967	0,0004835	12,6058	0,0004950
230	230000	203,9	0,1020	0,0005098	13,1788	0,0005213
240	240000	213,4	0,1067	0,0005335	13,7518	0,0005450
250	250000	222,4	0,1112	0,0005560	14,3248	0,0005675
260	260000	231,9	0,1160	0,0005798	14,8978	0,0005913
270	270000	244,9	0,1225	0,0006123	15,4708	0,0006238
280	280000	258,3	0,1292	0,0006458	16,0438	0,0006573
290	290000	266,3	0,1332	0,0006658	16,6168	0,0006773
300	300000	277,8	0,1389	0,0006945	17,1898	0,0007060
310	310000	286,3	0,1432	0,0007158	17,7628	0,0007273
320	320000	299,8	0,1499	0,0007495	18,3358	0,0007610
330	330000	306,8	0,1534	0,0007670	18,9088	0,0007785
340	340000	316,8	0,1584	0,0007920	19,4817	0,0008035
350	350000	328,3	0,1642	0,0008208	20,0547	0,0008323
360	360000	341,3	0,1707	0,0008533	20,6277	0,0008648
370	370000	356,3	0,1782	0,0008908	21,2007	0,0009023
380	380000	367,3	0,1837	0,0009183	21,7737	0,0009298
390	390000	380,3	0,1902	0,0009508	22,3467	0,0009623
400	400000	391,8	0,1959	0,0009795	22,9197	0,0009910
410	410000	401,3	0,2007	0,0010033	23,4927	0,0010148
420	420000	415,8	0,2079	0,0010395	24,0657	0,0010510
430	430000	423,7	0,2119	0,0010593	24,6387	0,0010708
440	440000	436,7	0,2184	0,0010918	25,2117	0,0011033
450	450000	450,2	0,2251	0,0011255	25,7847	0,0011370
460	460000	464,7	0,2324	0,0011618	26,3577	0,0011733
470	470000	488,2	0,2441	0,0012205	26,9307	0,0012320

Lanjutan Tabel 5. 22 Hasil perhitungan tegangan regangan beton metode perendaman sampel 1

В	eban	Pembacaan	$\Delta \mathbf{L}$	Regangan,	Tegangan,	Regangan
		Dial, ∆L'	(mm)	E	σ	Terkoreksi,
kN	N	(µm)	(111111)	С	(MPa)	3
480	480000	530,2	0,2651	0,0013255	27,5036	0,0013370
490	490000	572,2	0,2861	0,0014305	28,0766	0,0014420
495	495000	615,3	0,3077	0,0015383	28,3631	0,0015498
480	480000	705,3	0,3527	0,0017633	27,5036	0,0017748
470	470000	855,3	0,4277	0,0021383	26,9307	0,0021498
460	460000	915,3	0,4577	0,0022883	26,3577	0,0022998

Tabel 5. 25 Hasil perhitungan tegangan regangan beton metode ditutup dengan karung goni basah sampel 1

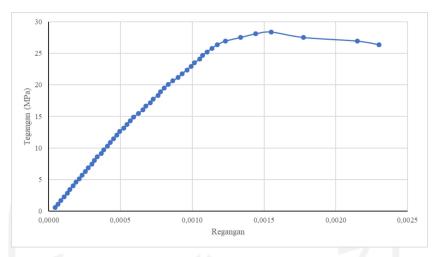
В	eban	Pembacaan	$\Delta \mathbf{L}$	Regangan,	Tegangan,	Regangan
kN	N	Dial, ΔL' (μm)	(mm)	E E	σ (MPa)	Terkoreksi, ε
10	10000	9	0,0045	0,0000225	0,5676	0,0000510
20	20000	18	0,0090	0,0000450	1,1353	0,0000735
30	30000	25,5	0,0128	0,0000638	1,7029	0,0000923
40	40000	34	0,0170	0,0000850	2,2706	0,0001135
50	50000	42,5	0,0213	0,0001063	2,8382	0,0001348
60	60000	51,5	0,0258	0,0001288	3,4059	0,0001573
70	70000	59,5	0,0298	0,0001488	3,9735	0,0001773
80	80000	68	0,0340	0,0001700	4,5412	0,0001985
90	90000	77	0,0385	0,0001925	5,1088	0,0002210
100	100000	85,9	0,0430	0,0002148	5,6765	0,0002433
110	110000	94,9	0,0475	0,0002373	6,2441	0,0002658
120	120000	102,9	0,0515	0,0002573	6,8118	0,0002858
130	130000	110,9	0,0555	0,0002773	7,3794	0,0003058
140	140000	121,9	0,0610	0,0003048	7,9471	0,0003333
150	150000	130,4	0,0652	0,0003260	8,5147	0,0003545
160	160000	138,9	0,0695	0,0003473	9,0824	0,0003758
170	170000	148,4	0,0742	0,0003710	9,6500	0,0003995
180	180000	156,9	0,0785	0,0003923	10,2177	0,0004208
190	190000	166,4	0,0832	0,0004160	10,7853	0,0004445
200	200000	175,4	0,0877	0,0004385	11,3530	0,0004670
210	210000	185,9	0,0930	0,0004648	11,9206	0,0004933
220	220000	195,4	0,0977	0,0004885	12,4883	0,0005170

Lanjutan Tabel 5. 23 Hasil perhitungan tegangan regangan beton metode ditutup dengan karung goni basah sampel 1

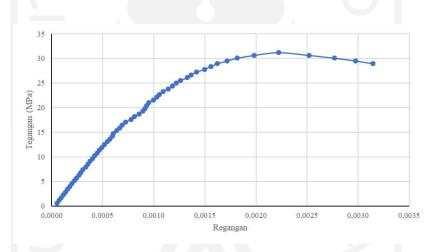
В	eban	Pembacaan	$\Delta \mathbf{L}$	Regangan,	Tegangan,	Regangan
kN	kN	Dial, ΔL' (μm)	(mm)	E E	σ (MPa)	Terkoreksi, ε
230	230000	205,9	0,1030	0,0005148	13,0559	0,0005433
240	240000	216,4	0,1082	0,0005410	13,6236	0,0005695
250	250000	226,9	0,1135	0,0005673	14,1912	0,0005958
260	260000	230	0,1150	0,0005750	14,7589	0,0006035
270	270000	242,9	0,1215	0,0006073	15,3265	0,0006358
280	280000	254,3	0,1272	0,0006358	15,8942	0,0006643
290	290000	263,8	0,1319	0,0006595	16,4618	0,0006880
300	300000	277	0,1385	0,0006925	17,0295	0,0007210
310	310000	298,8	0,1494	0,0007470	17,5971	0,0007755
320	320000	311,8	0,1559	0,0007795	18,1648	0,0008080
330	330000	330,8	0,1654	0,0008270	18,7324	0,0008555
340	340000	345,8	0,1729	0,0008645	19,3001	0,0008930
350	350000	354,3	0,1772	0,0008858	19,8677	0,0009143
360	360000	359,8	0,1799	0,0008995	20,4354	0,0009280
370	370000	369,3	0,1847	0,0009233	21,0030	0,0009518
380	380000	387,8	0,1939	0,0009695	21,5707	0,0009980
390	390000	399,8	0,1999	0,0009995	22,1383	0,0010280
400	400000	410,3	0,2052	0,0010258	22,7060	0,0010543
410	410000	425,7	0,2129	0,0010643	23,2736	0,0010928
420	420000	444,7	0,2224	0,0011118	23,8413	0,0011403
430	430000	461,7	0,2309	0,0011543	24,4089	0,0011828
440	440000	475,7	0,2379	0,0011893	24,9766	0,0012178
450	450000	493,7	0,2469	0,0012343	25,5442	0,0012628
460	460000	518,7	0,2594	0,0012968	26,1118	0,0013253
470	470000	534,7	0,2674	0,0013368	26,6795	0,0013653
480	480000	555,2	0,2776	0,0013880	27,2471	0,0014165
490	490000	586,6	0,2933	0,0014665	27,8148	0,0014950
500	500000	611,6	0,3058	0,0015290	28,3824	0,0015575
510	510000	637,6	0,3188	0,0015940	28,9501	0,0016225
520	520000	674,6	0,3373	0,0016865	29,5177	0,0017150

Lanjutan Tabel 5. 23 Hasil perhitungan tegangan regangan beton metode ditutup dengan karung goni basah sampel 1

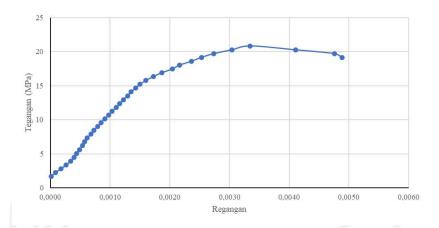
В	eban	Pembacaan	$\Delta \mathbf{L}$	Regangan,	Tegangan,	Regangan
kN	kN	Dial, ΔL' (μm)	(mm)	E E	σ (MPa)	Terkoreksi, ε
530	530000	715,1	0,3576	0,0017878	30,0854	0,0018163
540	540000	781,5	0,3908	0,0019538	30,6530	0,0019823
550	550000	877	0,4385	0,0021925	31,2207	0,0022210
540	540000	995,9	0,4980	0,0024898	30,6530	0,0025183
530	530000	1095,3	0,5477	0,0027383	30,0854	0,0027668
520	520000	1178,8	0,5894	0,0029470	29,5177	0,0029755
510	510000	1246,8	0,6234	0,0031170	28,9501	0,0031455


Tabel 5. 26 Hasil perhitungan tegangan regangan beton metode disemprot dengan *curing compound* sampel 1

В	eban	Pembacaan	$\Delta \mathbf{L}$	Regangan,	Tegangan,	Regangan
kN	N	Dial, ΔL'	(mm)	Kegangan, E	(MD _a)	Terkoreksi,
		(μm)			(MPa)	3
10	10000	22	0,0110	0,0000550	0,5634	-0,0000703
20	20000	38,5	0,0193	0,0000963	1,1268	-0,0000290
30	30000	56,5	0,0283	0,0001413	1,6901	0,0000160
40	40000	83,5	0,0418	0,0002088	2,2535	0,0000835
50	50000	121,9	0,0610	0,0003048	2,8169	0,0001795
60	60000	155,9	0,0780	0,0003898	3,3803	0,0002645
70	70000	186,9	0,0935	0,0004673	3,9436	0,0003420
80	80000	209,9	0,1050	0,0005248	4,5070	0,0003995
90	90000	225,9	0,1130	0,0005648	5,0704	0,0004395
100	100000	244,9	0,1225	0,0006123	5,6338	0,0004870
110	110000	264,3	0,1322	0,0006608	6,1972	0,0005355
120	120000	278,8	0,1394	0,0006970	6,7605	0,0005718
130	130000	297,3	0,1487	0,0007433	7,3239	0,0006180
140	140000	321,3	0,1607	0,0008033	7,8873	0,0006780
150	150000	342,3	0,1712	0,0008558	8,4507	0,0007305
160	160000	366,3	0,1832	0,0009158	9,0140	0,0007905
170	170000	389,8	0,1949	0,0009745	9,5774	0,0008493
180	180000	414,3	0,2072	0,0010358	10,1408	0,0009105
190	190000	440,2	0,2201	0,0011005	10,7042	0,0009753
200	200000	462,7	0,2314	0,0011568	11,2676	0,0010315
210	210000	490,2	0,2451	0,0012255	11,8309	0,0011003


Lanjutan Tabel 5. 24 Hasil perhitungan tegangan regangan beton metode disemprot dengan *curing compound* Sampel 1

Beban		Pembacaan	$\Delta \mathbf{L}$	Dogongon	Tegangan,	Regangan
kN	N	Dial, ∆L'	(mm)	Regangan, ε	σ	Terkoreksi,
KI	11	(µm)			(MPa)	3
220	220000	515,2	0,2576	0,0012880	12,3943	0,0011628
230	230000	538,7	0,2694	0,0013468	12,9577	0,0012215
240	240000	567,2	0,2836	0,0014180	13,5211	0,0012928
250	250000	590,1	0,2951	0,0014753	14,0844	0,0013500
260	260000	622,1	0,3111	0,0015553	14,6478	0,0014300
270	270000	651,1	0,3256	0,0016278	15,2112	0,0015025
280	280000	690,1	0,3451	0,0017253	15,7746	0,0016000
290	290000	739,6	0,3698	0,0018490	16,3379	0,0017238
300	300000	795,5	0,3978	0,0019888	16,9013	0,0018635
310	310000	868	0,4340	0,0021700	17,4647	0,0020448
320	320000	915,5	0,4578	0,0022888	18,0281	0,0021635
330	330000	994,4	0,4972	0,0024860	18,5915	0,0023608
340	340000	1061,9	0,5310	0,0026548	19,1548	0,0025295
350	350000	1145,8	0,5729	0,0028645	19,7182	0,0027393
360	360000	1267,2	0,6336	0,0031680	20,2816	0,0030428
370	370000	1388,9	0,6945	0,0034723	20,8450	0,0033470
360	360000	1692,8	0,8464	0,0042320	20,2816	0,0041068
350	350000	1954,7	0,9774	0,0048868	19,7182	0,0047615
340	340000	2003,7	1,0019	0,0050093	19,1548	0,0048840


Berdasarkan nilai tegangan dan regangan pada Tabel 5.22, Tabel 5.23 dan Tabel 5.24 di atas, dapat dibuatkan grafik hubungan regangan dan tegangan beton untuk tiap metode perawatan. Adapun grafik hubungan tegangan dan reganan beton perawatan perendama sampel 1, beton perawatan ditutup dengan karung goni basah sampel 1 dan beton perawatan disemprot dengan *curing compound* sampel 1 dapat dilihat secara berturut-turut pada Gambar 5.10, Gambar 5.11, Gambar 5.12 sebagai berikut.

Gambar 5. 10 Grafik modulus elastisitas beton metode perawatan perendaman sampel 1

Gambar 5. 11 Grafik modulus elastisitas beton metode perawatan karung goni sampel 1

Gambar 5. 12 Grafik modulus elastisitas beton metode perawatan disemprot *curing compound* sampel 1

Nilai modulus elastisitas beton diperoleh dari kemiringan kurva linier pada daerah elastis. Persamaan untuk menghitung nilai modulus elastisitas beton dari hasil pengujian menggunakan persamaan 3.11. ASTM C-469 (1994), mensyaratkan nilai regangan 1 (ε1) adalah sebesar 0,000050, maka nilai tegangan 1 (S₁) diperoleh dengan mengolah data tegangan dan regangan dengan bantuan software AutoCAD 2020. Setelah didapatkan nilai tegangan 1 (S₁), maka modulus elastisitas beton dapat dihitung sebagai berikut.

1. Perendaman

a.
$$S_1 = 1,2733$$

$$S_2 = 11,4599$$

$$\varepsilon_1 = 0,00005$$

$$\varepsilon_2 = 0.0004385$$

b.
$$E_c = \frac{S_2 - S_1}{\varepsilon_2 - \varepsilon_1}$$

= $\frac{11,4599 - 1,2733}{0,0004385 - 0,00005}$
= 25466,3817 MPa

2. Ditutup Karung Goni

a.
$$S_1 = 1,2078$$

$$S_2 = 12,4883$$

$$\epsilon_1 = 0.00005$$

$$\varepsilon_2 = 0.0004885$$

b.
$$E_c = \frac{S_2 - S_1}{\varepsilon_2 - \varepsilon_1}$$

= $\frac{12,4883 - 1,27078}{0,0004885 - 0,00005}$
= 24155,1938 MPa

3. Disemprot Curing Compound

a.
$$S_1 = 0,5784$$

 $S_2 = 8,4507$
 $\varepsilon_1 = 0,00005$
 $\varepsilon_2 = 0,008558$
b. $E_c = \frac{S_2 - S_1}{\varepsilon_2 - \varepsilon_1}$
 $= \frac{8,4507 - 0,5784}{0,008558 - 0,00005}$
 $= 24155,1938 \text{ MPa}$

Nilai modulus elastisitas juga dapat dihitung menggunakan rumus pendekatan empiris SNI 2847-2019. Adapun perhitungan nilai modulus elastisitas menggunakan rumus pendekatan empiris sesuai persamaan 3.12 dan persamaan 3.13 adalah sebagai berikut.

1. Perendaman

a.
$$E_c = W_c^{1,5} \times 0,043 \times \sqrt{f'c}$$

 $= 2432,941899^{1,5} \times 0,043 \times \sqrt{28,3631}$
 $= 27481,674 \text{ MPa}$
b. $E_c = 4700 \times \sqrt{f'c}$
 $= 4700 \times \sqrt{28,3631}$

2. Ditutup Karung Goni

a.
$$E_c = W_c^{1.5} \times 0.043 \times \sqrt{f'c}$$

= 2388,274255^{1.5} x 0.043 x $\sqrt{31,2207}$
= 28042,452 MPa

= 25030,814 MPa

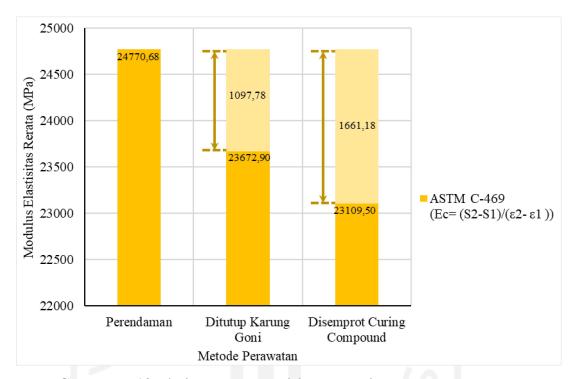
b.
$$E_c = 4700 \text{ x } \sqrt{f'c}$$

= $4700 \text{ x } \sqrt{31,2207}$
= $26261,474 \text{ MPa}$

3. Disemprot Curing Compound

a.
$$E_c = W_c^{1.5} \times 0.043 \times \sqrt{f'c}$$

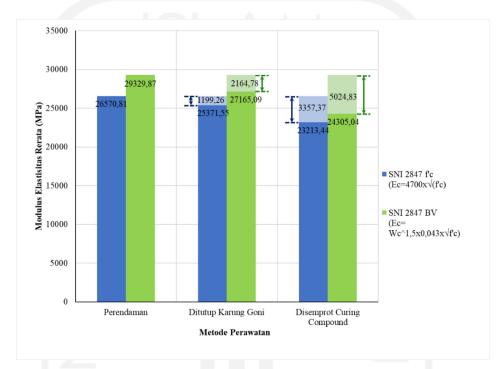
 $= 2348.463609^{1.5} \times 0.043 \times \sqrt{20.8450}$
 $= 22343.173 \text{ MPa}$
b. $E_c = 4700 \times \sqrt{f'c}$
 $= 4700 \times \sqrt{20.8450}$
 $= 21458.457 \text{ MPa}$


Adapun rekapitulasi nilai modulus elasitisitas beton untuk semua sampel tiap metode perawatan dapat dilihat pada Tabel 5.25 sebagai berikut.

Tabel 5. 27 Rekapitulasi hasil pengujian modulus elastisitas beton

No. Diameter Tin (mm) (m		ī.	Tinggi (mm)	Wc	Kuat Tekan (MPa)	ASTM C-469 (E _c = $\frac{S_2-S_1}{\varepsilon_2-\varepsilon_1}$)	Rerata	SNI 2847-2019 (E _c =4700 $x\sqrt{f'c}$)	Rerata	SNI 2847-2019 (E _c = W _c ^{1,5} x0,043x $\sqrt{f'c}$)	Rerata
1 14	14	149,067	302,000	2432,94	28,3631	25466,3817		25030,814		27481,674	
2 148,333	148,33	33	305,333	2411,28	30,091	24365,0492	\leq	25781,954		27929,188	
3 150,000	150,00	01	303,333	2367,2	29,9919	26946,9798	24770,7	25739,470	26570,8	27122,048	29329,9
4 150,033	150,03	3	302,333	2353,77	35,3521	23435,9476		27945,068		59195,866	
5 149,033	149,03	3	302,333	2626,45	36,4013	23639,0551		28356,744		34920,590	
1 149,767	149,767		301,000	2388,27	31,2207	24155,1938		26261,474		28042,452	
2 150,700	150,700		305,667	2350,65	28,8729	22652,1072)	25254,762		26332,732	
3 148,000	148,000		304,000	2421,11	30,2267	25550,9451	23672,9	25840,022	25371,6	28163,498	27165,1
4 149,333	149,333		304,000	2410,94	32,544	24556,9991		26812,270		29039,158	
5 149,667	149,667		302,667	2389,57	23,3047	21449,2595		22689,230		24247,607	
1 150,333	150,333	3	302,000	2348,46	20,845	11568,3518		21458,457		22343,173	
2 149,667	149,66	7	304,667	2298,69	23,0205	21449,2595		22550,457		22737,745	
3 149,000	149,000	(302,333	2379,13	26,668	24667,0182	23109,5	24271,305	23213,4	2248,625	24305
4 149,100	149,100)	304,000	2391,17	25,7731	26639,0395		23860,609		25525,197	
5 150,333	150,333		300,667	2363,38	25,9154	31223,8219		23926,355		25150,471	

Nilai modulus elastisitas yang dihitung menggunakan persamaan ASTM C-469 pada tabel diatas, dapat divisualisasikan dalam sebuah grafik yang dapat dilihat pada Gambar 5.13 sebagai berikut.

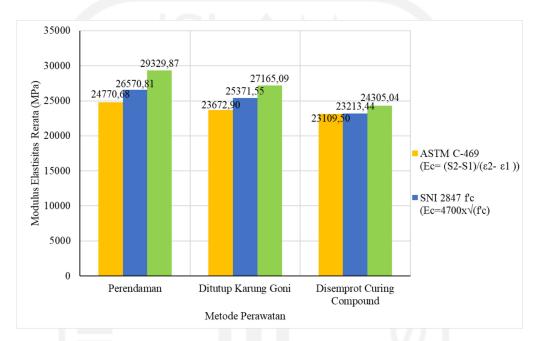


Gambar 5. 13 Nilai modulus elastisitas pada tiap metode rawatan berdasarkan persamaan ASTM C-469

Berdasarkan Gambar 5.13 di atas, dapat dilihat jika nilai modulus elastisitas beton yang dirawat dengan ditutup karung goni dan disemprot *curing compound* memiliki perbedaan selisih jika dibandingkan dengan beton yang dirawat dengan perendaman. Modulus elastisitas rata-rata beton yang dirawat dengan ditutup karung goni adalah 23672,90 MPa atau memiliki selisih sebesar 1097,78 MPa dibandingkan modulus elastisitas beton yang dirawat dengan perendaman. Modulus elastisitas rata-rata beton yang dirawat dengan disemprot *curing compound* adalah

23109,50 MPa atau memiliki selisih sebesar 1661,18 MPa dibandingkan modulus elastisitas beton yang dirawat dengan perendaman.

Hal serupa juga terjadi pada nilai modulus elastisitas yang dihitung dengan rumus pendekatan empris sesuai SNI 2847:2019 yang jika divisualkan ke dalam bentuk grafik dapat dilihat pada Gambar 5.14 sebagai berikut.



Gambar 5. 14 Nilai modulus elastisitas pada tiap metode rawatan berdasarkan persamaan SNI 2847:2019

Dapat dilihat jika nilai modulus elastisitas rata-rata beton yang dirawat dengan ditutup karung goni dan disemprot *curing compound* memiliki selisih jika dibandingkan dengan nilai modulus elastisitas beton yang dirawat dengan perendaman. Adapun selisih nilai modulus elastisitas dengan rumus pendekatan $E_c=4700x\sqrt{f'c}$ beton yang dirawat dengan ditutup karung goni dan disemprot *curing compound* secara berturut-turut adalah sebesar 1199,26 MPa dan 3357,37 MPa. Sedangkan, selisih nilai modulus elastisitas yang dihitung dengan rumus pendekatan $E_c=W_c^{1,5}x0,043x\sqrt{f'c}$ beton yang dirawat dengan ditutup karung goni

dan disemprot *curing compound* secara berturut-turut adalah sebesar 2164,78 MPa dan 5024,83 MPa.

Adapun nilai modulus elastisitas beton yang dihitung dengan persamaan ASTM C-469 dan SNI 2847:2019 divisualisasikan dalam grafik yang dapat dilihat pada Gambar 5.15 sebagai berikut.

Gambar 5. 15 Nilai modulus elastisitas pada tiap metode rawatan berdasarkan ASTM C-469 dan SNI 2847:2019

Sedangkaan, persentase selisih nilai modulus elastisitas yang dihitung dengan persamaan ASTM C-469 dan SNI 2847:2019 untuk tiap metode rawatan beton yang dapat dilihat pada Tabel 5.26 berikut.

Tabel 5. 28 Persentase selisih nilai modulus elastisitas untuk tiap metode rawatan

		Persentase S	Selisih Nilai Mo	dulus Elastisitas (%)
No.	Metode Perawatan	ASTM C-469 $(E_c = \frac{S_2 - S_1}{\varepsilon_2 - \varepsilon_1})$	SNI 2847-2019 (E _c =4700 $x\sqrt{f'c}$)	SNI 2847-2019 (E _c = W _c ^{1,5} x0,043x $\sqrt{f'c}$)
1	Perendaman	0	0	0
2	Ditutup Karung Goni	4,4318	4,5134	7,3808
3	Disemprot Curing Compound	6,7063	12,6356	17,1321

Hasil ini sesuai dengan penelitian oleh Kocab (2016), bahwa metode rawatan beton berpengaruh kuat pada perkembangan dan hasil akhir modulus elastisitas beton.

5.9 Hasil Pengujian Kuat Lentur Beton

Pengujian kuat lentur beton dilakukan dengan sistem pembebanan 1 titik pada benda uji balok dengan ukuran 10 cm x 10 cm x 40 cm. Pengujian benda uji dilakukan ketika benda uji telah berumur 28 hari berdasarkan dengan SNI 4154-2014. Sistem pembebanan 1 titik terletak pada tengah bentang memberikan beban secara tegak lurus sumbu benda uji hingga diperoleh beban maksimum yang mampu diterima oleh benda uji. Berikut merupakan contoh perhitungan kuat lentur beton.

1. Perendaman

$$R_{1} = \frac{3PL}{2bd^{2}}$$

$$= \frac{3 x (1095 \times 9,81) \times 300}{2 \times 100,95 \times 99,98^{2}}$$

$$= 4,7903 \text{ MPa}$$

2. Ditutup karung goni basah

$$R_{1} = \frac{3PL}{2bd^{2}}$$

$$= \frac{3 x (1023 x 9,81) x 300}{2 x 100,67 x 100,85^{2}}$$

$$= 4.4107 \text{ MPa}$$

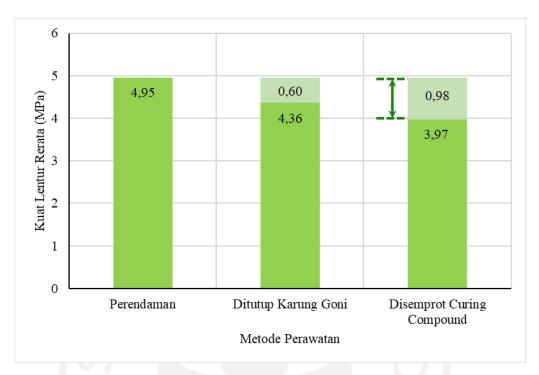
3. Disemprot curing compound

$$R_1 = \frac{3PL}{2bd^2}$$

$$= \frac{3 x (990 x 9,81) x 300}{2 x 100,67 x 100,85^2}$$

$$= 4,2684 \text{ MPa}$$

Kemudian dilakukan perhitungan selanjutnya dengan cara yang sama seperti diatas. Sehingga, akan didapatkan nilaikuat lentur pada tiap varian. Berikut merupakan tabel rekapitulasi hasil perhitungan kuat lentur pada tiap varian.


Tabel 5. 29 Rekapitulasi hasil perhitungan kuat lentur beton

Metode Perawatan	Umur Uji	Kode Benda Uji	No. Sampel	Kuat Lentur (Mpa)	Kuat Lentur Rerata (Mpa)
		S1-R	1	4,7903	
		S2-R	2	5,06809	
Perendaman		S3-R	3	4,12854	4,95146
	10	S4-R	4	4,91412	
		S5-R	5	5,85624	
		S1-G	1	4,41068	
Ditutup karung goni	28 Hari	S2-G	2	4,74489	
		S3-G	3	3,98038	4,35532
		S4-G	4	4,06457	
		S5-G	5	4,57607	
		S1-C	1	4,2684	
		S2-C	2	3,85595	
Curing compound		S3-C	3	3,72524	3,97008
Compound		S4-C	4	4,27261	
		S5-C	5	3.72822	

Berdasarkan tabel rekapitulasi diatas diperoleh nilai kuat lentur beton (f'c) rata rata (MPa) sebagai berikut.

4.	Kuat lentur rata rata metode perendaman	= 4,95146
5.	Kuat lentur rata rata metode ditutup dengan karung goni	= 4,35532
6.	Kuat lentur rata rata metode disemprot curing compound	= 3,97008

Berdasarkan nilai kuat lentur rata rata tiap metode dapat di plot menjadi grafik nilai kuat lentur beton pada tiap metode perawatan. Berikut dapat dilihat pada gambar 5.16 sebagai berikut.

Gambar 5. 16 Grafik nilai kuat lentur beton pada tiap metode rawatan

Pada grafik di atas dapat dilihat jika nilai kuat lentur beton metode perawatan dengan cara ditutup karung goni dan dengan cara disemprot *curing compound* memiliki selisih dari beton yang dirawat dengan cara perendaman. Adapun persentase selisih nilai kuat lentur tersebut dapat dilihat pada Tabel 5.30 sebagai berikut.

Tabel 5. 30 Persentase selisih nilai kuat lentur untuk tiap metode rawatan

No.	Metode Perawatan	Persentase Selisih Nilai Kuat Lentur (%)
1	Perendaman	0
2	Ditutup Karung Goni	12,040
3	Disemprot Curing Compound	19,820

Dilihat dari tabel di atas dapat diketahui bahwa metode perawatan dengan ditutup karung goni memiliki selisih nilai kuat lentur sebesar 12,04% dari metode perendaman dan metode perawatan dengan disemprot *curing compound* memiliki selisih nilai kaut lentur sebesar 19,82%. Hasil ini sesuai dengan hasil penelitian oleh

Gabriel Wettey and Danso (2021), bahwa perawatan beton dengan dibungkus karung goni memiliki selisih nilai kuat lentur sebesar 7,12%, dan perawatan dengan *curing compound* memiliki selisih nilai kuat lentur sebesar 14,59%.

BAB VI

KESIMPULAN DAN SARAN

6.1 Kesimpulan

Berdasarkan hasil penelitian, analisis data dan pembahasan pada bab sebelumnya, diperoleh kesimpulan sebagai berikut.

- 1. Metode perawatan berpengaruh kepada kuat tekan, modulus elastisitas dan kuat lentur beton. Adapun persentase selisih nilai kuat tekan, modulus elastisitas dan kuat lentur dengan perawatan ditutup karung goni dan *curing compound* terhadap beton perawatan perendaman adalah sebagai berikut.
 - a. Kuat Tekan

Berdasarkan penelitian ini, dapat diketahui terdapat selisih nilai kuat tekan beton metode rawatan ditutup karung goni dengan metode rawatan perendaman adalah sebesar 2,81 MPa Atau 8,76%. Sedangkan, selisih nilai kuat tekan beton dengan metode rawatan *curing compound* dengan metode rawatan perendaman adalah sebesar 7,60 MPa atau 23,71%.

b. Modulus Elastisitas

Metode rawatan beton memengaruhi nilai modulus elastisitas beton. Dihitung berdasarkan ASTM C-469, terdapat selisih nilai modulus elastisitas beton metode rawatan ditutup karung goni dengan metode rawatan perendaman adalah sebesar 1097,78 MPa atau 4,43%. Sedangkan, selisih nilai modulus elastisitas beton dengan metode rawatan *curing compound* dengan metode rawatan perendaman adalah sebesar 1661,18 MPa atau 6,71%.

c. Kuat Lentur

Berdasarkan penelitian ini, dapat diketahui selisih nilai kuat lentur beton metode rawatan ditutup karung goni dengan metode rawatan perendaman adalah sebesar 0,60 MPa Atau 12,04%. Sedangkan, selisih nilai kuat

lentur beton dengan metode rawatan *curing compound* dengan metode rawatan perendaman adalah sebesar 0,98 MPa atau 19,82%.

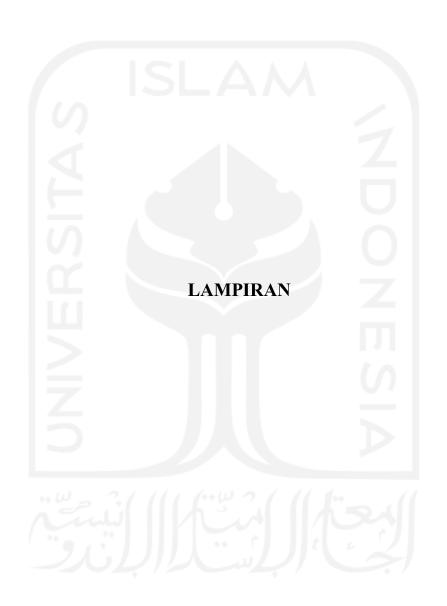
2. Metode perendaman merupakan metode yang paling efektif untuk memperoleh beton dengan mutu optimum. Namun, metode perendaman tidak memungkinkan untuk dilakukan di lapangan sehingga berdasarkan hasil penelitian ini lebih disarankan menggunakan metode perawatan dengan ditutup karung goni daripada perawatan menggunakan *curing compound*.

6.2 Saran

Berdasarkan hasil penelitian, beberapa hal berikut dapat dijadikan saran untuk pengembangan penelitian selanjutnya tentang pengaruh metode rawatan beton terhadap kuat tekan dan kuat lentur beton.

- 1. Perlu dilakukan penelitian lebih lanjut mengenai kuat tekan, modulus elastisitas dan kuat lentur beton dengan metode perawatan lain.
- 2. Perlu mengkaji lebih lanjut mengenai kandungan kimia yang ada dalam *curing compound* Sika Antisol-S.
- 3. Perlu melakukan penelitian mengenai pengaruh metode rawatan terhadap mutu beton pada umur beton 3 hari, 7 hari, 21 hari, 56 hari dan 91 hari.

DAFTAR PUSTAKA


- Amri., 2005, Teknnologi Beton A-Z, Edisi Pertama, Universitas Indonesia, Press, Jakarta
- Direktorat Jenderal Cipta Karya. 2021. *Buku Saku Pedoman Perawatn Beton*. Penerbit Kementrian PUPR. Jakarta.
- Kocab, D. 2016. Development of the Elastic Modulus of Concrete under Different Curing Conditions. 18th International Conference on Rehabilitation and Reconstruction of Buildings. No.195:96-101. Czech Republic.
- Mulyati. dan Arkis, Z. 2020. Pengaruh Metode Perawatan Beton Terhadap Kuat Tekan Beton Normal. *Jurnal Teknik Sipil ITP*. Vol. 7 No.2 Juli 2020
- Mulyono, T., 2004., Teknologi Beton, Penerbit Andi, Yogyakarta
- Nugraha, P dan Antoni, Adi K., 2007, Teknologi Beton, Penerbit Andi, Yogyakarta
- Saputra, D., Rifqi, M. G., dan Amin, M. S. Studi Pengaruh Perbedaan Metode Perawatan Beton Terhadap Kuat Tekan Beton. *Journal of Applied Civil Engineering and Infrastructure (JACEIT)*. Vol. 1 No. 1 (2020) 15 19. Banyuwangi
- SNI 03-2834. 2000. *Tata Cara Pembuatan Rencana Campuran Beton Normal.*Badan Standarisasi Nasional. Jakarta.
- SNI 1969. 2016. *Metode Uji Berat Jenis dan Penyerapan Air Agregat Kasar*. Badan Standarisasi Nasional. Jakarta.
- SNI 1970. 2016. *Metode Uji Berat Jenis dan Penyerapan Air Agregat Halus*. Badan Standarisasi Nasional. Jakarta.
- SNI 1974. 2011. Cara Uji Kuat Tekan Beton Dengan Benda Uji Silinder. Badan Standarisasi Nasional. Jakarta.
- SNI 2847. 2019. Persyaratan Beton Struktural Untuk Bangunan Gedung dan Penjelasan. Badan Standarisasi Nasional. Jakarta.
- SNI 4154. 2014. Metode Uji Kekuatan Lentur Beton (menggunakan balok sederhaa dengan beban terpusat di tengah bentang. Badan Standarisasi Nasional. Jakarta.

Tjokrodimuljo, K. 2007, Teknologi Beton, Penerbit Nafiri, Yogyakarta

Wettey. G dan Danso. 2021. Investigating the Effect of Curing Methods on the Strength Properties of Concrete. Conference, 9-11 August 2021, Accra, Ghana

Xue, B. et al. 2015. Effect of Curing Compounds on the Properties and Microstructur of Cemen Concretes. *Construction and Building Materials*. No.101:410-416. China.

Lampiran 1 Surat Izin Penggunaan Laboratorium

Lampiran 2 Laporan Sementara Hasil Pemeriksaan Agregat

PEMERIKSAAN BERAT JENIS DAN PENYERAPAN AIR AGREGAT HALUS (SNI 1970-2016)

Asal Pasir	Progo
Keperluan	Tugas Akhir

	Hasi	l Pengama	atan
Uraian	Sampel 1	Sampel 2	Rata- rata
Berat pasir kering mutlak, gram (Bk)	486	488	487
Berat pasir kondisi jenuh kering muka (SSD), gram	500	500	500
Berat piknometer berisi pasir dan air, gram (Bt)	1010	1007	1008,50
Berat piknometer berisi air, gram (B)	698	703	700,50
Berat Jenis Curah, Bk / (B+500-Bt)	2,59	2,49	2,54
Berat Jenis jenuh kering muka (SSD), 500 / (B+500-Bt)	2,66	2,55	2,61
Berat Jenis semu, Bk / (B+Bk-Bt)	2,79	2,65	2,72
Penyerapan Air (500-Bk)/Bk x 100%	2,88	2,46	2,67

Diperiksa oleh : Laboran Yogyakarta, 15 Desember 2022 Dikerjakan oleh:

(.....) (Hasnaa Anggia Agustina)

PEMERIKSAAN MODULUS HALUS BUTIR (MHB) / ANALISA SARINGAN AGREGAT HALUS (SNI 1968-1990)

Asal Kerikil	Progo
Keperluan	Tugas Akhir
Sampel	1 SLAM

Lubang Ayakan (mm)	Berat Tertinggal (gram)	Berat Tertinggal (%)	Berat Tertinggal Kumulatif (%)	Persen Lolos Kumulatif (%)
40	0	0	0	100
20	0	0	0	100
10	0	0	0	100
4,8	15	0,75	0,75	99,25
2,4	97	4,85	5,60	94,40
1,2	227	11,36	16,96	83,04
0,6	523	26,16	43,12	56,88
0,3	561	28,06	71,19	28,81
0,15	419	20,96	92,15	7,85
Pan	157	7,85	-	-
Jumlah	1999	100	229,76	670,24

Modulus Halus Butir
$$= \frac{229,76}{100}$$
$$= 2,30$$

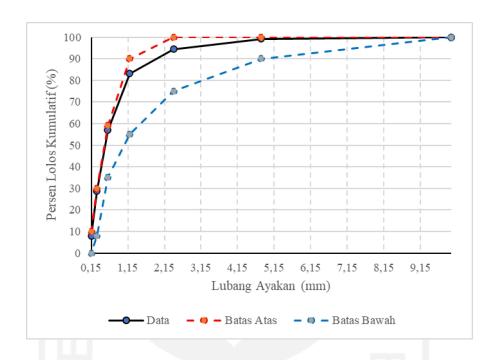
GRADASI AGREGAT HALUS

Lubang		P	ersen	Butir	Αę	gregat	yang	Lo	los Sa	ringa	n	
Ayakan (mm)	Da	era	h I	Dac	eral	h II	Dae	rał	ıIII	Dae	rał	ı IV
10	100	-	100	100	-	100	100	-	100	100	-	100
4,8	90		100	90	Ā	100	90	-	100	95	_	100
2,4	60	-	95	75		100	85	-	100	95	-	100
1,2	30	-	70	55	-	90	75	-	100	90	-	100
0,6	15	-	34	35	-	59	60	-	79	80	-	100
0,3	5	-	20	8	-	30	12	-	40	15	-	50
0,15	0	_	10	0	_	10	0	_	10	0	_	15

Keterangan:

Daerah I : Pasir Kasar

Daerah II : Pasir Agak Kasar Daerah III : Pasir Agak Halus


Daerah IV : Pasir Halus

Hasil Analisa Saringan:

Pasir Masuk Daerah : Daerah II

Jenis Pasir : Pasir Agak Kasar

GAMBAR ANALISA SARINGAN AGREGAT HALUS

Diperiksa oleh : Laboran Yogyakarta, 15 Desember 2022 Dikerjakan oleh:

(.....)

(Hasnaa Anggia Agustina)

PEMERIKSAAN MODULUS HALUS BUTIR (MHB) / ANALISA SARINGAN AGREGAT HALUS (SNI 1968-1990)

Asal Kerikil	Progo
Keperluan	Tugas Akhir
Sampel	2

Lubang Ayakan (mm)	Berat Tertinggal (gram)	Berat Tertinggal (%)	Berat Tertinggal Kumulatif (%)	Persen Lolos Kumulatif (%)
40	0	0	0	100
20	0	0	0	100
10	0	0	0	100
4,8	18	0,90	0,90	99,10
2,4	94	4,70	5,61	94,39
1,2	229	11,46	17,07	82,93
0,6	520	26,03	43,09	56,91
0,3	564	28,23	71,32	28,68
0,15	425	21,27	92,59	7,41
Pan	148	7,41	(-0	-
Jumlah	1998	100	230,58	669,42

Modulus Halus Butir
$$= \frac{230,58}{100}$$
$$= 2,31$$

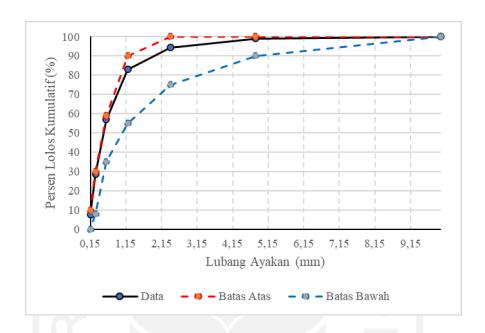
GRADASI AGREGAT HALUS

Lubang	Persen Butir Agregat yang Lolos Saringan											
Ayakan (mm)	Daerah I		Daerah II		Daerah III		Daerah IV					
10	100	-	100	100	-	100	100	-	100	100	-	100
4,8	90	-	100	90	-	100	90	-	100	95	-	100
2,4	60	1-7	95	75	-	100	85	-	100	95	-	100
1,2	30	-	70	55	_	90	75	-	100	90	-	100
0,6	15	_	34	35	_	59	60	-	79	80	-	100
0,3	5	-	20	8	-	30	12	-	40	15	-	50
0,15	0	_	10	0	-	10	0	_	10	0	_	15

Keterangan:

Daerah I : Pasir Kasar

Daerah II : Pasir Agak Kasar Daerah III : Pasir Agak Halus


Daerah IV : Pasir Halus

Hasil Analisa Saringan :

Pasir Masuk Daerah : Daerah II

Jenis Pasir : Pasir Agak Kasar

GAMBAR ANALISA SARINGAN AGREGAT HALUS

Diperiksa oleh : Laboran Yogyakarta, 15 Desember 2022 Dikerjakan oleh:

(.....)

(Hasnaa Anggia Agustina)

PEMERIKSAAN BERAT VOLUME GEMBUR AGREGAT HALUS (SNI 4804-1998)

Asal Kerikil	Progo
Keperluan	Tugas Akhir

Uraian	Hasil Pengukuran
Diameter Silinder	14,91 cm
Tinggi Silinder	30,13 cm
IO	

	Hasil Pengamatan			
Uraian	Sampel 1	Sampel 2	Rata- rata	
Berat Tabung (W1), gram	10956	10956	10956	
Berat Tabung + Agregat kering tungku (W2), gram	17484	17557	17520,50	
Berat Agregat (W3), gram	6528	6601	6564,50	
Volume Tabung (V), cm3	5263,35	5263,35	5263,35	
Berat Volume Gembur (W3/V), gram/cm3	1,24	1,25	1,25	

Berat Volume Gembur = $\frac{\text{Berat agregat}}{\text{Volume Tabung}}$ = $\frac{6564,50}{5263,35}$ = 1,25 gram/cm3

Diperiksa oleh : Laboran Yogyakarta, 15 Desember 2022 Dikerjakan oleh:

(.....) (Hasnaa Anggia Agustina)

PEMERIKSAAN BERAT VOLUME PADAT **AGREGAT HALUS** (SNI 4804-1998)

Asal Kerikil	Progo
Keperluan	Tugas Akhir

Uraian	Hasil Pengukuran
Diameter Silinder	14,91 cm
Tinggi Silinder	30,13 cm

	Hasil Pengamatan			
Uraian	Sampel	Sampel	Rata-	
	1	2	rata	
Berat Tabung (W1), gram	10956	10956	10956	
Berat Tabung + Agregat kering tungku (W2), gram	18660	18568	18614	
Berat Agregat (W3), gram	7704	7612	7658	
Volume Tabung (V), cm3	5263,35	5263,35	5263,35	
Berat Volume Gembur (W3/V), gram/cm3	1,46	1,45	1,45	

Berat Volume Padat		Berat agregat	_ (/)
Derat volume radat	_	Volume Tabung	
		7658,00	
		5263,35	
	=	1,45	gram/cm3

Yogyakarta, 15 Desember 2022 Diperiksa oleh: Dikerjakan oleh:

Laboran

(.....) (Hasnaa Anggia Agustina)

PEMERIKSAAN BUTIRAN YANG LOLOS AYAKAN NO. 200/UJI KANDUNGAN LUMPUR DALAM PASIR AGREGAT HALUS (SNI 4142-1996)

Asal Kerikil	Progo
Keperluan	Tugas Akhir

	Hasil Pengamatan			
Uraian		Sampel	Rata-	
1.70	1	2	rata	
Berat Agregat Kering Oven (W1), gram	500	500	500	
Berat Agregat Kering Oven setelah di cuci (W2), gram	493	494	494	
Berat yang Lolos Ayakan No. 200 [(W1-W2/W1)]x100	1,40%	1,20%	1,30%	

Diperiksa oleh : Laboran Yogyakarta, 15 Desember 2022 Dikerjakan oleh:

(.....) (Hasnaa Anggia Agustina)

PEMERIKSAAN BERAT JENIS DAN PENYERAPAN AIR AGREGAT KASAR ASLI (SNI 1969-2016)

Asal Pasir	Clereng
Keperluan	Tugas Akhir

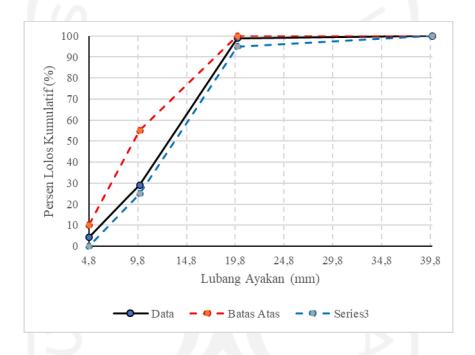
	Hasi	Hasil Pengamatan			
Uraian	Sampel 1	Sampel 2	Rata- rata		
Berat Kerikil kering mutlak (Bk)	4886,00	4888	4887		
Berat kerikil Jenuh kering muka (Bj)	5000	5000	5000		
Berat piknometer berisi pasir dan air (Ba)	3102	3141	3121,50		
Berat Jenis Curah BK/(BJ-Ba)	2,57	2,63	2,60		
Berat Jenis jenuh kering muda (SSD) Bj/ (Bj-Ba)	2,63	2,69	2,66		
Berat Jenis semu Bk/(Bk-Ba)	2,74	2,80	2,77		
Penyerapan Air (Bj-Bk)/Bk x 100%	2,33	2,29	2,31		

Diperiksa oleh : Laboran Yogyakarta, 15 Desember 2022 Dikerjakan oleh:

1	· · · · · · · · · · · · · · · · · · ·	\ <i>(</i>	Unanna	Angria	Agustina
l		, (Hasiiaa	Anggia	Agusuna

PEMERIKSAAN MODULUS HALUS BUTIR (MHB) / ANALISA SARINGAN AGREGAT KASAR ASLI (SNI 1968-1990)

Asal Kerikil	Clereng
Keperluan	Tugas Akhir
Sampel	1


Lubang Ayakan (mm)	Berat Tertinggal (gram)	Berat Tertinggal (%)	Berat Tertinggal Kumulatif (%)	Persen Lolos Kumulatif (%)
40	0	0	0	100
20	54	1	1	99
10	3485	70	71	29
4,8	1245	24,92	95,76	4,24
2,4	64	1,28	97,04	2,96
1,2	5	0,10	97,14	2,86
0,6	0	0,00	97,14	2,86
0,3	0	0,00	97,14	2,86
0,15	0	0,00	97,14	2,86
Pan	143	2,86		-
Jumlah	4996	100	653,26	246,74

Modulus Halus Butir
$$= \frac{653,26}{100}$$
$$= 6,53$$

GRADASI AGREGAT KASAR

Lubang Ayakan	Persen Butir Agregat yang Lolos Saringan/Besa Butiran Maksimum			an/Besar		
(mm)		40 n	nm		20 mn	ı
40	95	-	100	100	-	100
20	30	-	70	95	-	100
10	10	_	35	25	-	55
4,8	0	_	5	0	-	10

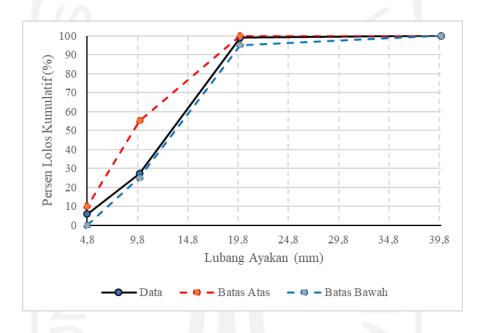
GAMBAR ANALISA SARINGAN AGREGAT KASAR ASLI

Diperiksa oleh : Laboran Yogyakarta, 15 Desember 2022 Dikerjakan oleh:

(.....) (Hasnaa Anggia Agustina)

PEMERIKSAAN MODULUS HALUS BUTIR (MHB) / ANALISA SARINGAN AGREGAT KASAR ASLI (SNI 1968-1990)

Asal Kerikil	Clereng
Keperluan Tugas Akhir	
Sampel	2


Lubang Ayakan (mm)	Berat Tertinggal (gram)	Berat Tertinggal (%)	Berat Tertinggal Kumulatif (%)	Persen Lolos Kumulatif (%)
40	0	0	0	100
20	56	1	1	98,88
10	3583	72	73	27,21
4,8	1070	21,40	94,20	5,80
2,4	75	1,50	95,70	4,30
1,2	19	0,38	96,08	3,92
0,6	0	0,00	96,08	3,92
0,3	0	0,00	96,08	3,92
0,15	0	0,00	96,08	3,92
Pan	196	3,92	-	-
Jumlah	4999	100	648,13	251,87

Modulus Halus Butir
$$= \frac{648,13}{100}$$
$$= 6,48$$

GRADASI AGREGAT KASAR

Lubang Ayakan	Persen Butir Agregat yang Lolos Saringan/Besa Butiran Maksimum			an/Besar		
(mm)		40 n	nm		20 mn	1
40	95	-	100	100	-	100
20	30	-	70	95	-	100
10	10	_	35	25	_	55
4,8	0	-	5	0	-	10

GAMBAR ANALISA SARINGAN AGREGAT KASAR ASLI

Diperiksa oleh : Laboran Yogyakarta, 15 Desember 2022 Dikerjakan oleh:

(.....) (Hasnaa Anggia Agustina)

PEMERIKSAAN BERAT VOLUME GEMBUR AGREGAT KASAR ASLI (SNI 4804-1998)

Asal Kerikil	Progo
Keperluan	Tugas Akhir

Uraian	Hasil Pengukuran
Diameter Silinder	14,91 cm
Tinggi Silinder	30,13 cm

100	Hasil Pengamatan			
Uraian	Sampel 1	Sampel 2	Rata- rata	
Berat Tabung (W1), gram	10956	10956	10956	
Berat Tabung + Agregat kering tungku (W2), gram	18231	18066	18148,50	
Berat Agregat (W3), gram	7275	7110	7192,50	
Volume Tabung (V), cm3	5263,35	5263,35	5263,35	
Berat Volume Gembur (W3/V), gram/cm3	1,38	1,35	1,37	
		7	<u> </u>	

Danat Waluma Cambun -	Berat agregat	
Berat Volume Gembur = -	Volume Tabung	
	7192,50	171
-	5263,35	10
-	1,37	gram/cm3

Diperiksa oleh : Laboran Yogyakarta, 15 Desember 2022 Dikerjakan oleh:

((Hasnaa Anggia Agustina)
((Hashaa Higgia Hgastina)

PEMERIKSAAN BERAT VOLUME PADAT AGREGAT KASAR ASLI (SNI 4804-1998)

Asal Kerikil	Progo
Keperluan	Tugas Akhir

Uraian	Hasil Pengukuran
Diameter Silinder	14,91 cm
Tinggi Silinder	30,13 cm

	Hasi	il Pengam	atan
Uraian	Sampel	Sampel	Rata-
	1	2	rata
Berat Tabung (W1), gram	10956	10956	10956
Berat Tabung + Agregat kering tungku (W2), gram	19122	19115	19119
Berat Agregat (W3), gram	8166	8159	8163
Volume Tabung (V), cm3	5263,35	5263,35	5263,35
Berat Volume Gembur (W3/V), gram/cm3	1,55	1,55	1,55

Berat Volume Padat = $\frac{\text{Berat agregat}}{\text{Volume Tabung}}$ = $\frac{8162,50}{5263,35}$ = 1,55 gram/cm3

Diperiksa oleh : Laboran Yogyakarta, 15 Desember 2022 Dikerjakan oleh:

()	(Hasnaa Anggia Agustina)
$(\cdots$	· · · · · · · · · · · · · · · · · · ·	(Hashaa Anggia Agustina)

Lampiran 3 Laporan Sementara Hasil Perencanaan Campuran

	Formulir Perencanaan Campui (SNI 2834-2000)	an Beton	
No	Uraian	Nilai	Satuan
1	Kuat Tekan yang disyaratkan	30	MPa
2	Deviasi Standar	7	
3	Nilai Tambah / Margin (M)	11,48	MPa
3	Dibulatkan	12	MPa
4	Kuat Tekan Rata-rata yang ditargetkan	42	MPa
5	Jenis Semen	Tipe I	
6	Jenis Agregat Halus	Alami	
7	Jenis Agregat Kasar	Batu Pecah	
8	Faktor Air Semen (FAS)	0,5	
9	Kuat Tekan Rata-rata yang ditargetkan	42	
10	FAS Bebas	0,43	
11	FAS Maksimum	0,6	
12	Jumlah Semen Minimum	275	kg/m3
13	FAS Digunakan	0,43	
14	Nilai Slump Ditetapkan	60-180	mm
15	Ukuran Agregat Maksimum	20	cm
16	Kadar Air Bebas	205	kg/m3
17	Kadar Semen	476,744186	kg/m3
18	Kadar Semen Maksimum	U3 I	-
19	Kadar Semen Minimum	275	kg/m3
20	Kadar Semen Digunakan	476,744186	kg/m3
21	Faktor Air Semen Disesuaikan	0,43	
22	Susunan Besar Butir Agregat Halus	Gradasi 2	
23	Berat Jenis Agregat Halus (SSD)	2,61	
24	Berat Jenis Agregat Kasar (SSD)	2,66	
	1 2 mil 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	35,50%	batas atas
25	Persen Agregat Halus	44,5%	batas bawah
		40,00%	rata-rata
26	Persen Agregat Kasar	60,00%	
27	Berat Jenis Agregat Gabungan	2,64	
28	Berat Isi Beton	2375	kg/m3
29	Kadar Agregat Gabungan	1693,255814	kg/m3
30	Kadar Agregat Halus	677,3023256	kg/m3
31	Kadar Agregat Kasar	1015,953488	kg/m3
32	Kadar semen dengan angka penyusustan	595,9302326	kg/m3
33	Kadar agregat halus dengan angka penyusustan	846,627907	kg/m3
34	Kadar agregat kasar dengan angka penyusutan	1269,94186	kg/m3
35	Kadar air dengan angka penyusutan	256,25	kg/m3

Lampiran 4 Laporan Sementara Hasil Berat Volume Beton

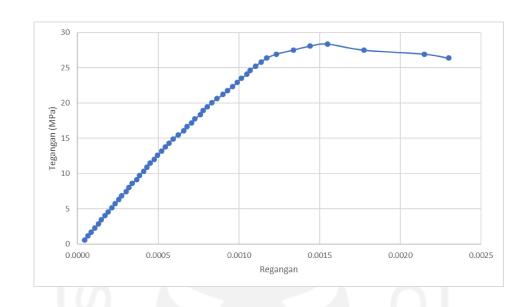
Metode Perawatan	Umur Uji	Kode Benda Uji	No. Sampel	Diameter (mm)	Tinggi (mm)	Volume (m3)	Berat (kg)	Berat Volume (kg/m3)	Berat Volume Rerata (kg/m3)
	لِن	S1-R	1	149,067	302,000	0,0053	12,8230	12,8230 2432,9419	
	ال.	S2-R	2	148,333	305,333	0,0053	12,7230	12,7230 2411,2815	
Perendaman		S3-R	3	150,000	303,333	0,0054	12,6890	12,6890 2367,1995	2438,3290
7		S4-R	4	150,033	302,333	0,0053	12,5810	2353,7684	
		S5-R	5	149,033	302,333	0,0053	13,8520	2626,4536	
	1	S1-G	1	149,767	301,000	0,0053	12,6640	2388,2743	
Dittitus	o C	S2-G	2	150,700	305,667	0,0055	12,8160	2350,6503	
Ditutup Leaning geni		S3-G	3	148,000	304,000	0,0052	12,6620	2421,115	2392,1093
karung gom	Пап	S4-G	4	149,333	304,000	0,0053	12,8370	2410,9409	
		S5-G	5	149,667	302,667	0,0053	12,7240	2389,5659	
		S1-C	1	150,333	302,000	0,0054	12,5890	2348,4636	
	2	S2-C	2	149,667	304,667	0,0054	12,3210	2298,6929	
Curing	1	S3-C	3	149,000	302,333	0,0053	12,5420	2379,1309	3356 1675
compound	5	S4-C	4	149,100	304,000	0,0053	12,6920	2391,1747	6/01,000
	2	S5-C	5	150,333	300,667	0,0053	12,6130	2363,3751	

Lampiran 5 Laporan Sementara Hasil Pengujian Benda Uji Trial

Konversi 28	Hari (MPa)	34,6938	32,5170	30,1218	32,5450	34,6631
21 1	Angka Konversi Umur Uji	0,65	0,65	0,65	0,40	0,40
Mutu Realisasi (MPa)	7 Hari	22,5510	21,1360	16/2/61	-	-
Mutu Reali	3 Hari		ı	ı	13,0180	13,8652
Beban	Maks (kN)	405	375	343	234	246
Mutu	Rencana (MPa)	30	98	30	30	30
	Luas Penampang (mm2)	17959,2916	17959,2916	17959,2916	17959,2916	17959,2916
	Diameter (mm)	TRL1 151,2167	TRL2 151,2167	TRL3 151,2167	TRL4 151,2167	TRL5 151,2167
	No. Kode	TRL1	TRL2	TRL3	TRL4	TRL5
	No.	1	7	3	4	S

Lampiran 6 Laporan Sementara Hasil Pengujian Kuat Tekan

Metode Perawatan	Umur Uji	Kode Benda Uji	No. Sampel	Diamete r (mm)	Tinggi (mm)	Luas Penampan g (mm2)	Beban Maks (KN)	Kuat Tekan (MPa)	Kuat Tekan Rerata (Mpa)
		S1-R	-	149,0667	302,0000	17452,2	495	28,3631	
		S2-R	2	148,3333	305,3333	17280,9	520	30,091	
Perendaman		S3-R	3	150,0000	303,3333	17671,5	530	29,9919	32,0399
	12	S4-R	4	150,0333	302,3333	17679,3	625	35,3521	
		S5-R	5	149,0333	302,3333	17444,4	635	36,4013	
		S1-G	1	149,7667	301,0000	17616,5	550	31,2207	
		S2-G	2	150,7000	305,6667	17836,8	515	28,8729	
Ditutup Karung coni	28 Hari	S3-G	3	148,0000	148,0000 304,0000	17203,4	520	30,2267	29,2338
60m		S4-G	4	149,3333	304,0000	17514,7	570	32,544	
		S5-G	5	149,6667	149,6667 302,6667	17593	410	23,3047	
		S1-C	1	150,3333	302,0000	17750,1	370	20,845	
		S2-C	2	149,6667	149,6667 304,6667	17593	405	23,0205	
Curing compound		S3-C	3	149,0000	149,0000 302,3333	17436,6	465	26,668	24,4444
		S4-C	4	149,1000	149,1000 304,0000	17460	450	25,7731	
		S5-C	5	150,3333	150,3333 300,6667	17750,1	460	25,9154	

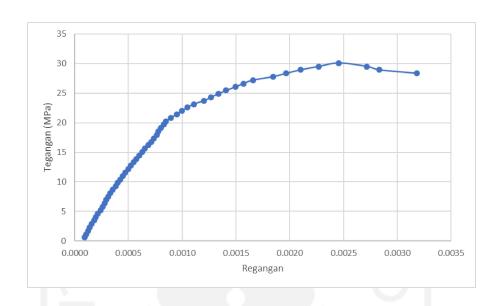

Lampiran 7 Laporan Sementara Hasil Pengujian Modulus Elastisitas Beton

Data Sampel				
Metode Perawatan	Perendaman			
Umur Uji	28	Hari		
No, Sampel	1			
Mutu Beton Rencana	30	Mpa		
Mutu Beton Hasil Uji	28,3631 M			
Diameter	149,0667	mm		
Tinggi	302	mm		
Luas	17452,2314	mm^2		
L0	200	mm		

В	Beban Pembacaan Dial, ΔL' (μm)		ΔL (mm)	Regangan, ε	Tegangan, σ (MPa)
kN	N	,	` ´		, ,
10	10000	13	0,0065	0,0000325	0,5730
20	20000	21,5	0,0108	0,0000538	1,1460
30	30000	29	0,0145	0,0000725	1,7190
40	40000	38	0,0190	0,0000950	2,2920
50	50000	47	0,0235	0,0001175	2,8650
60	60000	54,5	0,0273	0,0001363	3,4380
70	70000	63	0,0315	0,0001575	4,0109
80	80000	71	0,0355	0,0001775	4,5839
90	90000	80,5	0,0403	0,0002013	5,1569
100	100000	88,4	0,0442	0,0002210	5,7299
110	110000	97,4	0,0487	0,0002435	6,3029
120	120000	104,9	0,0525	0,0002623	6,8759
130	130000	115,4	0,0577	0,0002885	7,4489
140	140000	122,4	0,0612	0,0003060	8,0219
150	150000	130,4	0,0652	0,0003260	8,5949
160	160000	141,9	0,0710	0,0003548	9,1679
170	170000	148,9	0,0745	0,0003723	9,7409
180	180000	158,9	0,0795	0,0003973	10,3139
190	190000	167,4	0,0837	0,0004185	10,8869
200	200000	175,4	0,0877	0,0004385	11,4599
210	210000	185,4	0,0927	0,0004635	12,0328
220	220000	193,4	0,0967	0,0004835	12,6058

	eban	Pembacaan Dial, ΔL' (μm)	ΔL (mm)	Regangan, ε	Tegangan, σ (MPa)
kN	N				
230	230000	203,9	0,1020	0,0005098	13,1788
240	240000	213,4	0,1067	0,0005335	13,7518
250	250000	222,4	0,1112	0,0005560	14,3248
260	260000	231,9	0,1160	0,0005798	14,8978
270	270000	244,9	0,1225	0,0006123	15,4708
280	280000	258,3	0,1292	0,0006458	16,0438
290	290000	266,3	0,1332	0,0006658	16,6168
300	300000	277,8	0,1389	0,0006945	17,1898
310	310000	286,3	0,1432	0,0007158	17,7628
320	320000	299,8	0,1499	0,0007495	18,3358
330	330000	306,8	0,1534	0,0007670	18,9088
340	340000	316,8	0,1584	0,0007920	19,4817
350	350000	328,3	0,1642	0,0008208	20,0547
360	360000	341,3	0,1707	0,0008533	20,6277
370	370000	356,3	0,1782	0,0008908	21,2007
380	380000	367,3	0,1837	0,0009183	21,7737
390	390000	380,3	0,1902	0,0009508	22,3467
400	400000	391,8	0,1959	0,0009795	22,9197
410	410000	401,3	0,2007	0,0010033	23,4927
420	420000	415,8	0,2079	0,0010395	24,0657
430	430000	423,7	0,2119	0,0010593	24,6387
440	440000	436,7	0,2184	0,0010918	25,2117
450	450000	450,2	0,2251	0,0011255	25,7847
460	460000	464,7	0,2324	0,0011618	26,3577
470	470000	488,2	0,2441	0,0012205	26,9307
480	480000	530,2	0,2651	0,0013255	27,5036
490	490000	572,2	0,2861	0,0014305	28,0766
495	495000	615,3	0,3077	0,0015383	28,3631
480	480000	705,3	0,3527	0,0017633	27,5036
470	470000	855,3	0,4277	0,0021383	26,9307
460	460000	915,3	0,4577	0,0022883	26,3577

Grafik Modulus Elastisitas Metode Perendaman Sampel 1

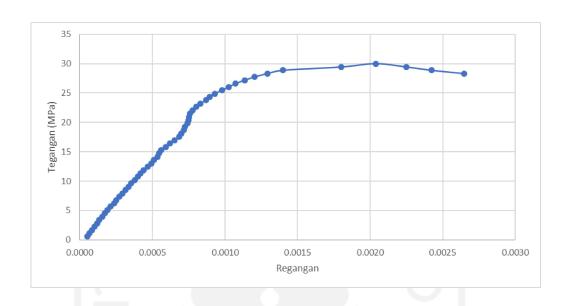

ASTM C-469	(s2-s1)/(ε2-ε1)	25466,382	MPa
SNI 2847-2019	$4700 \times \sqrt{f'c}$	25030,814	MPa
SINI 2047-2019	Wc1,5 x 0,043 x $\sqrt{f'c}$	24859,354	MPa

Data Sampel				
Metode Perawatan	Perendam	an		
Umur Uji	28	Hari		
No. Sampel	2			
Mutu Beton Rencana	na 30 M ₁			
Mutu Beton Hasil Uji	30,0910	Mpa		
Diameter	148,3333	mm		
Tinggi	305,3333	mm		
Luas	17280,9413	mm^2		
L0	200	mm		

В	eban	Pembacaan Dial, ∆L'	$\Delta \mathbf{L}$	December 6	Tegangan, σ
kN	N	(µm)	(mm)	Regangan, ε	(MPa)
10	10000	6,5	0,0033	0,0000163	0,5787
20	20000	12	0,0060	0,0000300	1,1573
30	30000	18,5	0,0093	0,0000463	1,7360
40	40000	25	0,0125	0,0000625	2,3147
50	50000	31	0,0155	0,0000775	2,8934
60	60000	41	0,0205	0,0001025	3,4720
70	70000	46,5	0,0233	0,0001163	4,0507
80	80000	54,5	0,0273	0,0001363	4,6294
90	90000	65,5	0,0328	0,0001638	5,2080
100	100000	73	0,0365	0,0001825	5,7867
110	110000	80	0,0400	0,0002000	6,3654
120	120000	86,4	0,0432	0,0002160	6,9441
130	130000	92,4	0,0462	0,0002310	7,5227
140	140000	100,9	0,0505	0,0002523	8,1014
150	150000	110,4	0,0552	0,0002760	8,6801
160	160000	120,4	0,0602	0,0003010	9,2588
170	170000	129,4	0,0647	0,0003235	9,8374
180	180000	138,4	0,0692	0,0003460	10,4161
190	190000	147,9	0,0740	0,0003698	10,9948
200	200000	157,4	0,0787	0,0003935	11,5734
210	210000	167,9	0,0840	0,0004198	12,1521
220	220000	177,4	0,0887	0,0004435	12,7308
230	230000	187,4	0,0937	0,0004685	13,3095
240	240000	196,9	0,0985	0,0004923	13,8881

В	eban	Pembacaan Dial, ∆L'	$\Delta \mathbf{L}$	D	Tegangan, σ
kN	N	(μ m)	(mm)	Regangan, ε	(MPa)
250	250000	208,9	0,1045	0,0005223	14,4668
260	260000	219,4	0,1097	0,0005485	15,0455
270	270000	229,4	0,1147	0,0005735	15,6241
280	280000	241,9	0,1210	0,0006048	16,2028
290	290000	254,3	0,1272	0,0006358	16,7815
300	300000	262,3	0,1312	0,0006558	17,3602
310	310000	273,3	0,1367	0,0006833	17,9388
320	320000	279,3	0,1397	0,0006983	18,5175
330	330000	288,3	0,1442	0,0007208	19,0962
340	340000	299,8	0,1499	0,0007495	19,6749
350	350000	307,8	0,1539	0,0007695	20,2535
360	360000	326,3	0,1632	0,0008158	20,8322
370	370000	348,3	0,1742	0,0008708	21,4109
380	380000	366,3	0,1832	0,0009158	21,9895
390	390000	387,3	0,1937	0,0009683	22,5682
400	400000	411,3	0,2057	0,0010283	23,1469
410	410000	449,2	0,2246	0,0011230	23,7256
420	420000	475,2	0,2376	0,0011880	24,3042
430	430000	502,5	0,2513	0,0012563	24,8829
440	440000	531,5	0,2658	0,0013288	25,4616
450	450000	566,5	0,2833	0,0014163	26,0402
460	460000	595,5	0,2978	0,0014888	26,6189
470	470000	631,5	0,3158	0,0015788	27,1976
480	480000	705,5	0,3528	0,0017638	27,7763
490	490000	755,5	0,3778	0,0018888	28,3549
500	500000	808,5	0,4043	0,0020213	28,9336
510	510000	875,5	0,4378	0,0021888	29,5123
520	520000	950,3	0,4752	0,0023758	30,0910
510	510000	1055,4	0,5277	0,0026385	29,5123
500	500000	1101,3	0,5507	0,0027533	28,9336
490	490000	1241,3	0,6207	0,0031033	28,3549

Grafik Modulus Elastisitas Metode Perendaman Sampel 2


ASTM C-469	(s2-s1)/(ε2-ε1)	24365,049	MPa
SNI 2847-2019	$4700 \times \sqrt{f'c}$	25781,954	MPa
SINI 2047-2019	Wc1,5 x 0,043 x $\sqrt{f'c}$	27929,188	MPa

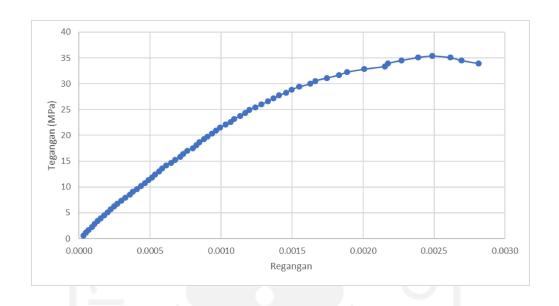
Data Sampel				
Metode Perawatan	Perendaman			
Umur Uji	28	Hari		
No. Sampel	3			
Mutu Beton Rencana	30	Mpa		
Mutu Beton Hasil Uji	29,9919 M ₁			
Diameter	150,0000	mm		
Tinggi	303,3333	mm		
Luas	17671,4587	mm^2		
L0	200	mm		

В	eban	Pembacaan Dial, ΔL'	$\Delta \mathbf{L}$	D	Tegangan, σ
kN	N	(µm)	(mm)	Regangan, ε	(MPa)
10	10000	6,5	0,0033	0,0000163	0,5659
20	20000	13	0,0065	0,0000325	1,1318
30	30000	19,5	0,0098	0,0000488	1,6977
40	40000	27	0,0135	0,0000675	2,2635
50	50000	33,5	0,0168	0,0000838	2,8294
60	60000	40	0,0200	0,0001000	3,3953
70	70000	48,5	0,0243	0,0001213	3,9612
80	80000	55,5	0,0278	0,0001388	4,5271
90	90000	62,5	0,0313	0,0001563	5,0930
100	100000	71,5	0,0358	0,0001788	5,6588
110	110000	80,5	0,0403	0,0002013	6,2247
120	120000	86,4	0,0432	0,0002160	6,7906
130	130000	94,4	0,0472	0,0002360	7,3565
140	140000	102,9	0,0515	0,0002573	7,9224
150	150000	111,9	0,0560	0,0002798	8,4883
160	160000	120,4	0,0602	0,0003010	9,0541
170	170000	128,4	0,0642	0,0003210	9,6200
180	180000	137,9	0,0690	0,0003448	10,1859
190	190000	146,4	0,0732	0,0003660	10,7518
200	200000	153,9	0,0770	0,0003848	11,3177
210	210000	162,4	0,0812	0,0004060	11,8836
220	220000	173,4	0,0867	0,0004335	12,4495
230	230000	182,9	0,0915	0,0004573	13,0153
240	240000	190,9	0,0955	0,0004773	13,5812

В	Seban	Pembacaan Dial, ΔL'	$\Delta \mathbf{L}$	D	Tegangan, σ
kN	N	(μm)	(mm)	Regangan, ε	(MPa)
250	250000	200,9	0,1005	0,0005023	14,1471
260	260000	204,4	0,1022	0,0005110	14,7130
270	270000	210,4	0,1052	0,0005260	15,2789
280	280000	222,9	0,1115	0,0005573	15,8448
290	290000	234,9	0,1175	0,0005873	16,4106
300	300000	246,9	0,1235	0,0006173	16,9765
310	310000	259,3	0,1297	0,0006483	17,5424
320	320000	266,3	0,1332	0,0006658	18,1083
330	330000	273,3	0,1367	0,0006833	18,6742
340	340000	276,3	0,1382	0,0006908	19,2401
350	350000	282,3	0,1412	0,0007058	19,8059
360	360000	285	0,1425	0,0007125	20,3718
370	370000	287	0,1435	0,0007175	20,9377
380	380000	290	0,1450	0,0007250	21,5036
390	390000	297	0,1485	0,0007425	22,0695
400	400000	307,3	0,1537	0,0007683	22,6354
410	410000	318,3	0,1592	0,0007958	23,2013
420	420000	333,3	0,1667	0,0008333	23,7671
430	430000	343,3	0,1717	0,0008583	24,3330
440	440000	358,3	0,1792	0,0008958	24,8989
450	450000	377,8	0,1889	0,0009445	25,4648
460	460000	396,8	0,1984	0,0009920	26,0307
470	470000	415,3	0,2077	0,0010383	26,5966
480	480000	440,2	0,2201	0,0011005	27,1624
490	490000	467,7	0,2339	0,0011693	27,7283
500	500000	502,7	0,2514	0,0012568	28,2942
510	510000	545,7	0,2729	0,0013643	28,8601
520	520000	706,6	0,3533	0,0017665	29,4260
530	530000	801,5	0,4008	0,0020038	29,9919
520	520000	886	0,4430	0,0022150	29,4260
510	510000	955,5	0,4778	0,0023888	28,8601
500	500000	1045,6	0,5228	0,0026140	28,2942

Grafik Modulus Elastisitas Metode Perendaman Sampel 3

ASTM C-469	$(s2-s1)/(\epsilon 2-\epsilon 1)$	26946,980	MPa
SNI 2847 2010	$4700 \times \sqrt{f'c}$	25739,470	MPa
SNI 2847-2019	Wc1,5 x 0,043 x $\sqrt{f'}$ c	27122,048	MPa



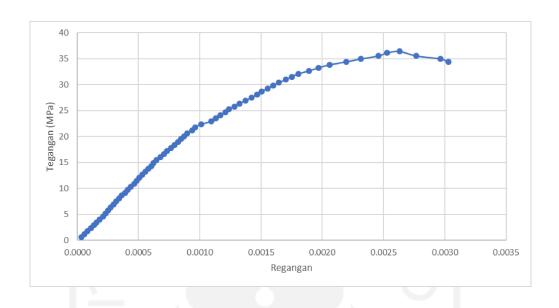
Data Sampel				
Metode Perawatan	Perendam	nan		
Umur Uji	28	Hari		
No. Sampel	4			
Mutu Beton Rencana	30	Mpa		
Mutu Beton Hasil Uji	35.3521	Mpa		
Diameter	150.0333	mm		
Tinggi	302.3333	mm		
Luas	17679.3135	mm^2		
L0	200	mm		

В	Seban	Pembacaan Dial, ΔL'	$\Delta \mathbf{L}$	D	Tegangan, σ
kN	N	(μ m)	(mm)	Regangan, ε	(MPa)
10	10000	16	0,0080	0,0000400	0,5656
20	20000	23,5	0,0118	0,0000588	1,1313
30	30000	30	0,0150	0,0000750	1,6969
40	40000	40	0,0200	0,0001000	2,2625
50	50000	47	0,0235	0,0001175	2,8282
60	60000	55,5	0,0278	0,0001388	3,3938
70	70000	64	0,0320	0,0001600	3,9594
80	80000	74	0,0370	0,0001850	4,5251
90	90000	84,9	0,0425	0,0002123	5,0907
100	100000	93,4	0,0467	0,0002335	5,6563
110	110000	102,4	0,0512	0,0002560	6,2220
120	120000	111,4	0,0557	0,0002785	6,7876
130	130000	123,4	0,0617	0,0003085	7,3532
140	140000	134,4	0,0672	0,0003360	7,9189
150	150000	146,4	0,0732	0,0003660	8,4845
160	160000	155,4	0,0777	0,0003885	9,0501
170	170000	166,4	0,0832	0,0004160	9,6158
180	180000	177,4	0,0887	0,0004435	10,1814
190	190000	189,4	0,0947	0,0004735	10,7470
200	200000	199,4	0,0997	0,0004985	11,3127
210	210000	209,4	0,1047	0,0005235	11,8783
220	220000	217,9	0,1090	0,0005448	12,4439
230	230000	228,9	0,1145	0,0005723	13,0096
240	240000	237,4	0,1187	0,0005935	13,5752
250	250000	248,4	0,1242	0,0006210	14,1408
260	260000	263,3	0,1317	0,0006583	14,7065

В	eban	Pembacaan Dial, ΔL'	$\Delta \mathbf{L}$	D	Tegangan, σ
kN	N	(μm)	(mm)	Regangan, ε	(MPa)
270	270000	274,8	0,1374	0,0006870	15,2721
280	280000	288,3	0,1442	0,0007208	15,8377
290	290000	297,8	0,1489	0,0007445	16,4034
300	300000	308,8	0,1544	0,0007720	16,9690
310	310000	324,8	0,1624	0,0008120	17,5346
320	320000	334,3	0,1672	0,0008358	18,1003
330	330000	343,3	0,1717	0,0008583	18,6659
340	340000	355,3	0,1777	0,0008883	19,2315
350	350000	365,3	0,1827	0,0009133	19,7971
360	360000	378,8	0,1894	0,0009470	20,3628
370	370000	389,8	0,1949	0,0009745	20,9284
380	380000	400,8	0,2004	0,0010020	21,4940
390	390000	416,3	0,2082	0,0010408	22,0597
400	400000	431,2	0,2156	0,0010780	22,6253
410	410000	441,2	0,2206	0,0011030	23,1909
420	420000	457,2	0,2286	0,0011430	23,7566
430	430000	472,2	0,2361	0,0011805	24,3222
440	440000	482,7	0,2414	0,0012068	24,8878
450	450000	500,2	0,2501	0,0012505	25,4535
460	460000	517,2	0,2586	0,0012930	26,0191
470	470000	535,2	0,2676	0,0013380	26,5847
480	480000	551,7	0,2759	0,0013793	27,1504
490	490000	567,2	0,2836	0,0014180	27,7160
500	500000	586,6	0,2933	0,0014665	28,2816
510	510000	603,1	0,3016	0,0015078	28,8473
520	520000	623,6	0,3118	0,0015590	29,4129
530	530000	655,6	0,3278	0,0016390	29,9785
540	540000	669,1	0,3346	0,0016728	30,5442
550	550000	701,6	0,3508	0,0017540	31,1098
560	560000	735,6	0,3678	0,0018390	31,6754
570	570000	759	0,3795	0,0018975	32,2411
580	580000	806,5	0,4033	0,0020163	32,8067
590	590000	865	0,4325	0,0021625	33,3723
600	600000	874	0,4370	0,0021850	33,9380
610	610000	912	0,4560	0,0022800	34,5036
620	620000	958,4	0,4792	0,0023960	35,0692
625	625000	998,4	0,4992	0,0024960	35,3521
620	620000	1049,4	0,5247	0,0026235	35,0692
610	610000	1080,9	0,5405	0,0027023	34,5036
600	600000	1128,8	0,5644	0,0028220	33,9380

Grafik Modulus Elastisitas Metode Perendaman Sampel 4

ASTM C-469	(s2-s1)/(ε2-ε1)	23435,948	MPa
SNI 2847-2019	$4700 \times \sqrt{f'c}$	27945,068	MPa
SINI 2047-2019	Wc1,5 x 0,043 x $\sqrt{f'c}$	29195,866	MPa

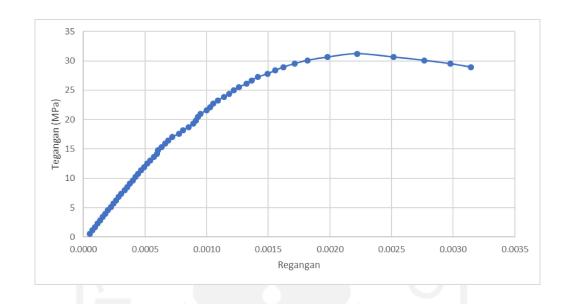


Data Sampel				
Metode Perawatan	Perendaman			
Umur Uji	28	Hari		
No. Sampel	5			
Mutu Beton Rencana	30	Mpa		
Mutu Beton Hasil Uji	Hasil Uji 36.4013 Mp			
Diameter	149.0333	mm		
Tinggi	302.3333	mm		
Luas	17444.4271	mm^2		
L0	200	mm		

В	eban	Pembacaan Dial, ΔL'	$\Delta \mathbf{L}$	D	Tegangan, σ
kN	N	(µm)	(mm)	Regangan, ε	(MPa)
10	10000	13	0,0065	0,0000325	0,5732
20	20000	23	0,0115	0,0000575	1,1465
30	30000	33,5	0,0168	0,0000838	1,7197
40	40000	44	0,0220	0,0001100	2,2930
50	50000	54	0,0270	0,0001350	2,8662
60	60000	62	0,0310	0,0001550	3,4395
70	70000	72	0,0360	0,0001800	4,0127
80	80000	83,4	0,0417	0,0002085	4,5860
90	90000	91,4	0,0457	0,0002285	5,1592
100	100000	99,4	0,0497	0,0002485	5,7325
110	110000	108,9	0,0545	0,0002723	6,3057
120	120000	118,9	0,0595	0,0002973	6,8790
130	130000	126,4	0,0632	0,0003160	7,4522
140	140000	135,9	0,0680	0,0003398	8,0255
150	150000	144,4	0,0722	0,0003610	8,5987
160	160000	155,9	0,0780	0,0003898	9,1720
170	170000	164,9	0,0825	0,0004123	9,7452
180	180000	174,4	0,0872	0,0004360	10,3185
190	190000	185,4	0,0927	0,0004635	10,8917
200	200000	193,4	0,0967	0,0004835	11,4650
210	210000	202,9	0,1015	0,0005073	12,0382
220	220000	211,9	0,1060	0,0005298	12,6115
230	230000	222,4	0,1112	0,0005560	13,1847
240	240000	231,9	0,1160	0,0005798	13,7580
250	250000	241,9	0,1210	0,0006048	14,3312
260	260000	247,9	0,1240	0,0006198	14,9045

В	eban	Pembacaan Dial, ΔL'	$\Delta \mathbf{L}$	D	Tegangan, σ
kN	N	(μm)	(mm)	Regangan, ε	(MPa)
270	270000	258,8	0,1294	0,0006470	15,4777
280	280000	271,3	0,1357	0,0006783	16,0510
290	290000	282,3	0,1412	0,0007058	16,6242
300	300000	293,3	0,1467	0,0007333	17,1975
310	310000	305,3	0,1527	0,0007633	17,7707
320	320000	317,8	0,1589	0,0007945	18,3440
330	330000	328,3	0,1642	0,0008208	18,9172
340	340000	337,8	0,1689	0,0008445	19,4905
350	350000	347,8	0,1739	0,0008695	20,0637
360	360000	358,8	0,1794	0,0008970	20,6370
370	370000	375,3	0,1877	0,0009383	21,2102
380	380000	385,3	0,1927	0,0009633	21,7835
390	390000	404,8	0,2024	0,0010120	22,3567
400	400000	436,7	0,2184	0,0010918	22,9300
410	410000	452,2	0,2261	0,0011305	23,5032
420	420000	467,2	0,2336	0,0011680	24,0765
430	430000	483,2	0,2416	0,0012080	24,6497
440	440000	495,2	0,2476	0,0012380	25,2230
450	450000	512,2	0,2561	0,0012805	25,7962
460	460000	528,7	0,2644	0,0013218	26,3695
470	470000	549,7	0,2749	0,0013743	26,9427
480	480000	568,2	0,2841	0,0014205	27,5160
490	490000	586,1	0,2931	0,0014653	28,0892
500	500000	601,1	0,3006	0,0015028	28,6624
510	510000	620,6	0,3103	0,0015515	29,2357
520	520000	638,6	0,3193	0,0015965	29,8089
530	530000	657,6	0,3288	0,0016440	30,3822
540	540000	680,1	0,3401	0,0017003	30,9554
550	550000	699,6	0,3498	0,0017490	31,5287
560	560000	721,6	0,3608	0,0018040	32,1019
570	570000	756,5	0,3783	0,0018913	32,6752
580	580000	786,5	0,3933	0,0019663	33,2484
590	590000	823	0,4115	0,0020575	33,8217
600	600000	877	0,4385	0,0021925	34,3949
610	610000	925,4	0,4627	0,0023135	34,9682
620	620000	983,4	0,4917	0,0024585	35,5414
630	630000	1010,4	0,5052	0,0025260	36,1147
635	635000	1051,4	0,5257	0,0026285	36,4013
620	620000	1106,6	0,5533	0,0027665	35,5414
610	610000	1185,6	0,5928	0,0029640	34,9682
600	600000	1210,6	0,6053	0,0030265	34,3949

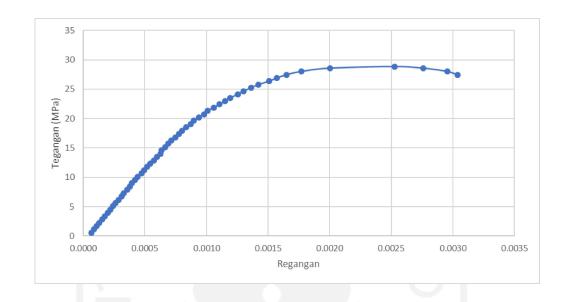
Grafik Modulus Elastisitas Metode Perendaman Sampel 5


ASTM C-469	$(s2-s1)/(\epsilon 2-\epsilon 1)$	23639,055	MPa
SNI 2847-2019	4700 x √ <i>f</i> ′c	28356,744	MPa
SINI 2047-2019	Wc1,5 x 0,043 x $\sqrt{f'c}$	34920,590	MPa

Data Sampel					
Metode Perawatan	Ditutup Karı	ıng Goni			
Umur Uji	28	Hari			
No. Sampel	1				
Mutu Beton Rencana	30	Mpa			
Mutu Beton Hasil Uji	31.2207	Mpa			
Diameter	149.7667	mm			
Tinggi	301.0000	mm			
Luas	17616.5236	mm^2			
L0	200	mm			

В	eban	Pembacaan Dial, ∆L'	$\Delta \mathbf{L}$	Dogangan c	Tegangan, σ
kN	N	(µm)	(mm)	Regangan, ε	(MPa)
10	10000	9	0,0045	0,0000225	0,5676
20	20000	18	0,0090	0,0000450	1,1353
30	30000	25,5	0,0128	0,0000638	1,7029
40	40000	34	0,0170	0,0000850	2,2706
50	50000	42,5	0,0213	0,0001063	2,8382
60	60000	51,5	0,0258	0,0001288	3,4059
70	70000	59,5	0,0298	0,0001488	3,9735
80	80000	68	0,0340	0,0001700	4,5412
90	90000	77	0,0385	0,0001925	5,1088
100	100000	85,9	0,0430	0,0002148	5,6765
110	110000	94,9	0,0475	0,0002373	6,2441
120	120000	102,9	0,0515	0,0002573	6,8118
130	130000	110,9	0,0555	0,0002773	7,3794
140	140000	121,9	0,0610	0,0003048	7,9471
150	150000	130,4	0,0652	0,0003260	8,5147
160	160000	138,9	0,0695	0,0003473	9,0824
170	170000	148,4	0,0742	0,0003710	9,6500
180	180000	156,9	0,0785	0,0003923	10,2177
190	190000	166,4	0,0832	0,0004160	10,7853
200	200000	175,4	0,0877	0,0004385	11,3530
210	210000	185,9	0,0930	0,0004648	11,9206
220	220000	195,4	0,0977	0,0004885	12,4883
230	230000	205,9	0,1030	0,0005148	13,0559
240	240000	216,4	0,1082	0,0005410	13,6236
250	250000	226,9	0,1135	0,0005673	14,1912

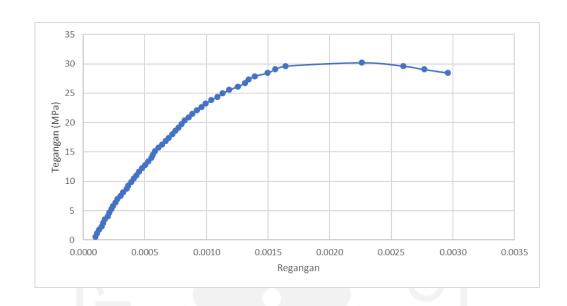
В	Seban	Pembacaan Dial, ∆L'	$\Delta \mathbf{L}$	Danaman	Tegangan, σ
kN	N	(µm)	(mm)	Regangan, ε	(MPa)
260	260000	230	0,1150	0,0005750	14,7589
270	270000	242,9	0,1215	0,0006073	15,3265
280	280000	254,3	0,1272	0,0006358	15,8942
290	290000	263,8	0,1319	0,0006595	16,4618
300	300000	277	0,1385	0,0006925	17,0295
310	310000	298,8	0,1494	0,0007470	17,5971
320	320000	311,8	0,1559	0,0007795	18,1648
330	330000	330,8	0,1654	0,0008270	18,7324
340	340000	345,8	0,1729	0,0008645	19,3001
350	350000	354,3	0,1772	0,0008858	19,8677
360	360000	359,8	0,1799	0,0008995	20,4354
370	370000	369,3	0,1847	0,0009233	21,0030
380	380000	387,8	0,1939	0,0009695	21,5707
390	390000	399,8	0,1999	0,0009995	22,1383
400	400000	410,3	0,2052	0,0010258	22,7060
410	410000	425,7	0,2129	0,0010643	23,2736
420	420000	444,7	0,2224	0,0011118	23,8413
430	430000	461,7	0,2309	0,0011543	24,4089
440	440000	475,7	0,2379	0,0011893	24,9766
450	450000	493,7	0,2469	0,0012343	25,5442
460	460000	518,7	0,2594	0,0012968	26,1118
470	470000	534,7	0,2674	0,0013368	26,6795
480	480000	555,2	0,2776	0,0013880	27,2471
490	490000	586,6	0,2933	0,0014665	27,8148
500	500000	611,6	0,3058	0,0015290	28,3824
510	510000	637,6	0,3188	0,0015940	28,9501
520	520000	674,6	0,3373	0,0016865	29,5177
530	530000	715,1	0,3576	0,0017878	30,0854
540	540000	781,5	0,3908	0,0019538	30,6530
550	550000	877	0,4385	0,0021925	31,2207
540	540000	995,9	0,4980	0,0024898	30,6530
530	530000	1095,3	0,5477	0,0027383	30,0854
520	520000	1178,8	0,5894	0,0029470	29,5177
510	510000	1246,8	0,6234	0,0031170	28,9501


ASTM C-469	$(s2-s1)/(\epsilon 2-\epsilon 1)$	24155,194	MPa
SNI 2847-2019	$4700 \times \sqrt{f'c}$	26261,474	MPa
5111 2047-2019	Wc1,5 x 0,043 x $\sqrt{f'c}$	28042,452	MPa

Data Sampel					
Metode Perawatan	Ditutup Karung Gon				
Umur Uji	28	Hari			
No. Sampel	2				
Mutu Beton Rencana	30	Mpa			
Mutu Beton Hasil Uji	28,8729	Mpa			
Diameter	150,7000	mm			
Tinggi	305,6667	mm			
Luas	17836,7771	mm^2			
L0	200	mm			

В	eban	Pembacaan Dial, ∆L'	$\Delta \mathbf{L}$	December 6	Tegangan, σ
kN	N	(μ m)	(mm)	Regangan, ε	(MPa)
10	10000	15	0,0075	0,0000375	0,5606
20	20000	23,5	0,0118	0,0000588	1,1213
30	30000	32,5	0,0163	0,0000813	1,6819
40	40000	40,5	0,0203	0,0001013	2,2426
50	50000	49,5	0,0248	0,0001238	2,8032
60	60000	59	0,0295	0,0001475	3,3638
70	70000	68	0,0340	0,0001700	3,9245
80	80000	77	0,0385	0,0001925	4,4851
90	90000	84,9	0,0425	0,0002123	5,0458
100	100000	93,9	0,0470	0,0002348	5,6064
110	110000	102,9	0,0515	0,0002573	6,1670
120	120000	113,4	0,0567	0,0002835	6,7277
130	130000	120,4	0,0602	0,0003010	7,2883
140	140000	130,9	0,0655	0,0003273	7,8490
150	150000	139,4	0,0697	0,0003485	8,4096
160	160000	146,9	0,0735	0,0003673	8,9702
170	170000	155,9	0,0780	0,0003898	9,5309
180	180000	165,4	0,0827	0,0004135	10,0915
190	190000	177,9	0,0890	0,0004448	10,6521
200	200000	186,4	0,0932	0,0004660	11,2128
210	210000	196,4	0,0982	0,0004910	11,7734
220	220000	206,9	0,1035	0,0005173	12,3341
230	230000	217,4	0,1087	0,0005435	12,8947
240	240000	228,4	0,1142	0,0005710	13,4553
250	250000	238,9	0,1195	0,0005973	14,0160

В	Seban	Pembacaan Dial, ΔL'	$\Delta \mathbf{L}$	D	Tegangan, σ
kN	N	(µm)	(mm)	Regangan, ε	(MPa)
260	260000	242,9	0,1215	0,0006073	14,5766
270	270000	253,8	0,1269	0,0006345	15,1373
280	280000	264,3	0,1322	0,0006608	15,6979
290	290000	274,8	0,1374	0,0006870	16,2585
300	300000	287,8	0,1439	0,0007195	16,8192
310	310000	299,8	0,1499	0,0007495	17,3798
320	320000	309,8	0,1549	0,0007745	17,9405
330	330000	323,3	0,1617	0,0008083	18,5011
340	340000	337,3	0,1687	0,0008433	19,0617
350	350000	347,8	0,1739	0,0008695	19,6224
360	360000	364,3	0,1822	0,0009108	20,1830
370	370000	380,3	0,1902	0,0009508	20,7437
380	380000	392,3	0,1962	0,0009808	21,3043
390	390000	412,8	0,2064	0,0010320	21,8649
400	400000	430,7	0,2154	0,0010768	22,4256
410	410000	449,7	0,2249	0,0011243	22,9862
420	420000	465,2	0,2326	0,0011630	23,5469
430	430000	490,7	0,2454	0,0012268	24,1075
440	440000	509,2	0,2546	0,0012730	24,6681
450	450000	533,2	0,2666	0,0013330	25,2288
460	460000	557,2	0,2786	0,0013930	25,7894
470	470000	591,6	0,2958	0,0014790	26,3501
480	480000	617,1	0,3086	0,0015428	26,9107
490	490000	648,6	0,3243	0,0016215	27,4713
500	500000	696,6	0,3483	0,0017415	28,0320
510	510000	789	0,3945	0,0019725	28,5926
515	515000	998,4	0,4992	0,0024960	28,8729
510	510000	1092,8	0,5464	0,0027320	28,5926
500	500000	1169,8	0,5849	0,0029245	28,0320
490	490000	1202,8	0,6014	0,0030070	27,4713

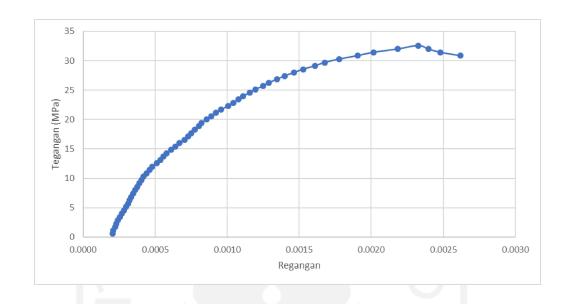


ASTM C-469	$(s2-s1)/(\epsilon 2-\epsilon 1)$	22652,107	MPa
SNI 2847-2019	$4700 \times \sqrt{f'c}$	25254,762	MPa
SNI 2047-2019	Wc1,5 x 0,043 x $\sqrt{f'c}$	26332,732	MPa

Data Sampel					
Metode Perawatan	Ditutup Karung Gon				
Umur Uji	28	Hari			
No. Sampel	3				
Mutu Beton Rencana	30	Mpa			
Mutu Beton Hasil Uji	30,2267	Mpa			
Diameter	148,0000	mm			
Tinggi	304,0000	mm			
Luas	17203,3614	mm^2			
L0	200	mm			

В	eban	Pembacaan Dial, ΔL'	$\Delta \mathbf{L}$	Degarger e	Tegangan, σ
kN	N	(µm)	(mm)	Regangan, ε	(MPa)
10	10000	8,5	0,0043	0,0000213	0,5813
20	20000	14	0,0070	0,0000350	1,1626
30	30000	20,5	0,0103	0,0000513	1,7438
40	40000	28,5	0,0143	0,0000713	2,3251
50	50000	34,5	0,0173	0,0000863	2,9064
60	60000	39	0,0195	0,0000975	3,4877
70	70000	49	0,0245	0,0001225	4,0690
80	80000	54	0,0270	0,0001350	4,6503
90	90000	60,5	0,0303	0,0001513	5,2315
100	100000	65	0,0325	0,0001625	5,8128
110	110000	73,5	0,0368	0,0001838	6,3941
120	120000	80	0,0400	0,0002000	6,9754
130	130000	89,9	0,0450	0,0002248	7,5567
140	140000	98,9	0,0495	0,0002473	8,1379
150	150000	109,9	0,0550	0,0002748	8,7192
160	160000	114,9	0,0575	0,0002873	9,3005
170	170000	124,9	0,0625	0,0003123	9,8818
180	180000	133,9	0,0670	0,0003348	10,4631
190	190000	142,4	0,0712	0,0003560	11,0444
200	200000	149,9	0,0750	0,0003748	11,6256
210	210000	160,4	0,0802	0,0004010	12,2069
220	220000	169,9	0,0850	0,0004248	12,7882
230	230000	180,4	0,0902	0,0004510	13,3695
240	240000	190,4	0,0952	0,0004760	13,9508
250	250000	194,9	0,0975	0,0004873	14,5320

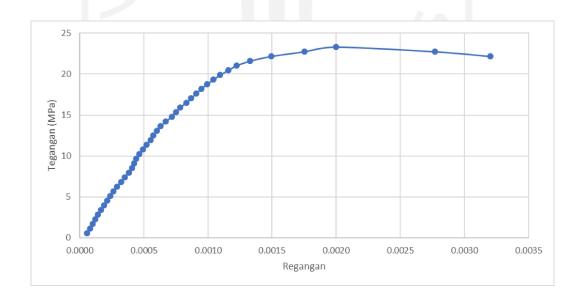
В	Seban	Pembacaan Dial, ΔL'	$\Delta \mathbf{L}$	D	Tegangan, σ
kN	N	(µm)	(mm)	Regangan, ε	(MPa)
260	260000	202,4	0,1012	0,0005060	15,1133
270	270000	212,9	0,1065	0,0005323	15,6946
280	280000	225,9	0,1130	0,0005648	16,2759
290	290000	236,9	0,1185	0,0005923	16,8572
300	300000	247,4	0,1237	0,0006185	17,4385
310	310000	257,8	0,1289	0,0006445	18,0197
320	320000	269,3	0,1347	0,0006733	18,6010
330	330000	278,8	0,1394	0,0006970	19,1823
340	340000	287,8	0,1439	0,0007195	19,7636
350	350000	297,8	0,1489	0,0007445	20,3449
360	360000	311,8	0,1559	0,0007795	20,9261
370	370000	322,8	0,1614	0,0008070	21,5074
380	380000	337,8	0,1689	0,0008445	22,0887
390	390000	353,3	0,1767	0,0008833	22,6700
400	400000	367,3	0,1837	0,0009183	23,2513
410	410000	385,3	0,1927	0,0009633	23,8326
420	420000	404,8	0,2024	0,0010120	24,4138
430	430000	421,7	0,2109	0,0010543	24,9951
440	440000	443,7	0,2219	0,0011093	25,5764
450	450000	470,7	0,2354	0,0011768	26,1577
460	460000	494,7	0,2474	0,0012368	26,7390
470	470000	505,7	0,2529	0,0012643	27,3202
480	480000	525,7	0,2629	0,0013143	27,9015
490	490000	567,7	0,2839	0,0014193	28,4828
500	500000	592,1	0,2961	0,0014803	29,0641
510	510000	625,6	0,3128	0,0015640	29,6454
520	520000	874	0,4370	0,0021850	30,2267
510	510000	1007,9	0,5040	0,0025198	29,6454
500	500000	1076	0,5380	0,0026900	29,0641
490	490000	1153	0,5765	0,0028825	28,4828


ASTM C-469	$(s2-s1)/(\epsilon 2-\epsilon 1)$	25550,945	MPa
SNI 2847-2019	$4700 \times \sqrt{f'c}$	25840,022	MPa
SN1 2047-2019	Wc1,5 x 0,043 x $\sqrt{f'c}$	28163,498	MPa

Data Sampel					
Metode Perawatan	Ditutup Karung Gon				
Umur Uji	28	Hari			
No. Sampel	4				
Mutu Beton Rencana	30	Mpa			
Mutu Beton Hasil Uji	32,5440	Mpa			
Diameter	149,3333	mm			
Tinggi	304,0000	mm			
Luas	17514,7281	mm^2			
L0	200	mm			

В	Seban	Pembacaan Dial, ΔL'	$\Delta \mathbf{L}$	D	Tegangan, σ
kN	N	(μm)	(mm)	Regangan, ε	(MPa)
10	10000	1,5	0,0008	0,0000038	0,5709
20	20000	3,5	0,0018	0,0000088	1,1419
30	30000	8	0,0040	0,0000200	1,7128
40	40000	12	0,0060	0,0000300	2,2838
50	50000	16	0,0080	0,0000400	2,8547
60	60000	22	0,0110	0,0000550	3,4257
70	70000	27,5	0,0138	0,0000688	3,9966
80	80000	33	0,0165	0,0000825	4,5676
90	90000	38,5	0,0193	0,0000963	5,1385
100	100000	44	0,0220	0,0001100	5,7095
110	110000	48,5	0,0243	0,0001213	6,2804
120	120000	53	0,0265	0,0001325	6,8514
130	130000	58,5	0,0293	0,0001463	7,4223
140	140000	64	0,0320	0,0001600	7,9933
150	150000	70,5	0,0353	0,0001763	8,5642
160	160000	75,5	0,0378	0,0001888	9,1352
170	170000	81	0,0405	0,0002025	9,7061
180	180000	86,9	0,0435	0,0002173	10,2771
190	190000	95,9	0,0480	0,0002398	10,8480
200	200000	104,4	0,0522	0,0002610	11,4190
210	210000	111,9	0,0560	0,0002798	11,9899
220	220000	123,9	0,0620	0,0003098	12,5609
230	230000	133,4	0,0667	0,0003335	13,1318
240	240000	142,4	0,0712	0,0003560	13,7028
250	250000	151,4	0,0757	0,0003785	14,2737
260	260000	164,4	0,0822	0,0004110	14,8446

В	Seban	Pembacaan Dial, ΔL'	$\Delta \mathbf{L}$	D	Tegangan, σ
kN	N	(µm)	(mm)	Regangan, ε	(MPa)
270	270000	175,9	0,0880	0,0004398	15,4156
280	280000	186,9	0,0935	0,0004673	15,9865
290	290000	200,4	0,1002	0,0005010	16,5575
300	300000	211,4	0,1057	0,0005285	17,1284
310	310000	219,9	0,1100	0,0005498	17,6994
320	320000	229,9	0,1150	0,0005748	18,2703
330	330000	240,4	0,1202	0,0006010	18,8413
340	340000	247,9	0,1240	0,0006198	19,4122
350	350000	261,8	0,1309	0,0006545	19,9832
360	360000	275,8	0,1379	0,0006895	20,5541
370	370000	288,8	0,1444	0,0007220	21,1251
380	380000	301,8	0,1509	0,0007545	21,6960
390	390000	322,3	0,1612	0,0008058	22,2670
400	400000	336,3	0,1682	0,0008408	22,8379
410	410000	350,8	0,1754	0,0008770	23,4089
420	420000	364,3	0,1822	0,0009108	23,9798
430	430000	381,8	0,1909	0,0009545	24,5508
440	440000	397,3	0,1987	0,0009933	25,1217
450	450000	419,7	0,2099	0,0010493	25,6927
460	460000	435,7	0,2179	0,0010893	26,2636
470	470000	457,7	0,2289	0,0011443	26,8346
480	480000	478,7	0,2394	0,0011968	27,4055
490	490000	504,7	0,2524	0,0012618	27,9765
500	500000	530,7	0,2654	0,0013268	28,5474
510	510000	563,2	0,2816	0,0014080	29,1184
520	520000	590,6	0,2953	0,0014765	29,6893
530	530000	630,6	0,3153	0,0015765	30,2602
540	540000	681,1	0,3406	0,0017028	30,8312
550	550000	725,5	0,3628	0,0018138	31,4021
560	560000	793,5	0,3968	0,0019838	31,9731
570	570000	850,5	0,4253	0,0021263	32,5440
560	560000	878	0,4390	0,0021950	31,9731
550	550000	912	0,4560	0,0022800	31,4021
540	540000	966,9	0,4835	0,0024173	30,8312


ASTM C-469	$(s2-s1)/(\epsilon 2-\epsilon 1)$	24556,999	MPa
SNI 2847-2019	$4700 \times \sqrt{f'c}$	26812,270	MPa
SNI 2847-2019	Wc1,5 x 0,043 x $\sqrt{f'c}$	29039,158	MPa

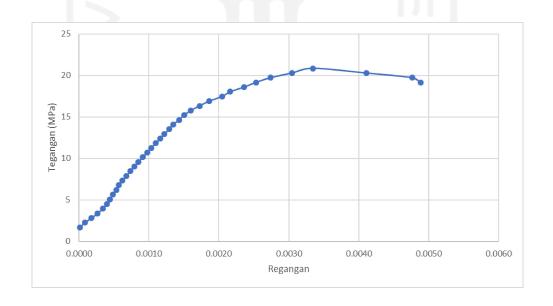
Data Sampel					
Metode Perawatan	Ditutup Karı	ıng Goni			
Umur Uji	28	Hari			
No. Sampel	5				
Mutu Beton Rencana	30	Mpa			
Mutu Beton Hasil Uji	23,3047	Mpa			
Diameter	149,6667	mm			
Tinggi	302,6667	mm			
Luas	17593,0061	mm^2			
L0	200	mm			

В	Seban	Pembacaan Dial, ΔL'	$\Delta \mathbf{L}$	D	Tegangan, σ
kN	N	(μ m)	(mm)	Regangan, ε	(MPa)
10	10000	14,5	0,0073	0,0000363	0,5684
20	20000	23	0,0115	0,0000575	1,1368
30	30000	31,5	0,0158	0,0000788	1,7052
40	40000	39	0,0195	0,0000975	2,2736
50	50000	48	0,0240	0,0001200	2,8420
60	60000	57,5	0,0288	0,0001438	3,4104
70	70000	67,5	0,0338	0,0001688	3,9789
80	80000	77	0,0385	0,0001925	4,5473
90	90000	85,9	0,0430	0,0002148	5,1157
100	100000	95,9	0,0480	0,0002398	5,6841
110	110000	107,9	0,0540	0,0002698	6,2525
120	120000	120,9	0,0605	0,0003023	6,8209
130	130000	131,4	0,0657	0,0003285	7,3893
140	140000	145,4	0,0727	0,0003635	7,9577
150	150000	154,4	0,0772	0,0003860	8,5261
160	160000	160,9	0,0805	0,0004023	9,0945
170	170000	167,4	0,0837	0,0004185	9,6629
180	180000	176,9	0,0885	0,0004423	10,2313
190	190000	188,9	0,0945	0,0004723	10,7997
200	200000	198,9	0,0995	0,0004973	11,3682
210	210000	212,4	0,1062	0,0005310	11,9366
220	220000	220,4	0,1102	0,0005510	12,5050
230	230000	232,4	0,1162	0,0005810	13,0734
240	240000	243,9	0,1220	0,0006098	13,6418
250	250000	259,9	0,1300	0,0006498	14,2102
260	260000	278,3	0,1392	0,0006958	14,7786

В	Seban	Pembacaan Dial, ∆L'	$\Delta \mathbf{L}$	Dagangan a	Tegangan, σ	
kN	N	(µm)	(mm)	Regangan, ε	(MPa)	
270	270000	291,3	0,1457	0,0007283	15,3470	
280	280000	304,3	0,1522	0,0007608	15,9154	
290	290000	323,3	0,1617	0,0008083	16,4838	
300	300000	339,3	0,1697	0,0008483	17,0522	
310	310000	354,3	0,1772	0,0008858	17,6206	
320	320000	370,8	0,1854	0,0009270	18,1890	
330	330000	388,8	0,1944	0,0009720	18,7575	
340	340000	408,8	0,2044	0,0010220	19,3259	
350	350000	429,7	0,2149	0,0010743	19,8943	
360	360000	455,2	0,2276	0,0011380	20,4627	
370	370000	480,7	0,2404	0,0012018	21,0311	
380	380000	523,2	0,2616	0,0013080	21,5995	
390	390000	588,6	0,2943	0,0014715	22,1679	
400	400000	691,6	0,3458	0,0017290	22,7363	
410	410000	790,8	0,3954	0,0019770	23,3047	
400	400000	1099,2	0,5496	0,0027480	22,7363	
390	390000	1271,5	0,6358	0,0031788	22,1679	

ASTM C-469	$(s2-s1)/(\epsilon 2-\epsilon 1)$	21449,260	MPa
SNI 2847-2019	4700 x √ <i>f</i> ′c	22689,230	MPa
	Wc1,5 x 0,043 x $\sqrt{f'c}$	24247,607	MPa

Modulus Elastisitas Beton Metode Disemprot *Curing Compound* **Sampel 1**


Data Sampel				
Metode Perawatan	Disemprot Curing (Compound		
Umur Uji	28	Hari		
No. Sampel	1			
Mutu Beton Rencana	30	Mpa		
Mutu Beton Hasil Uji	20,8450	Mpa		
Diameter	150,3333	mm		
Tinggi	302,0000	mm		
Luas	17750,0858	mm^2		
L0	200	mm		

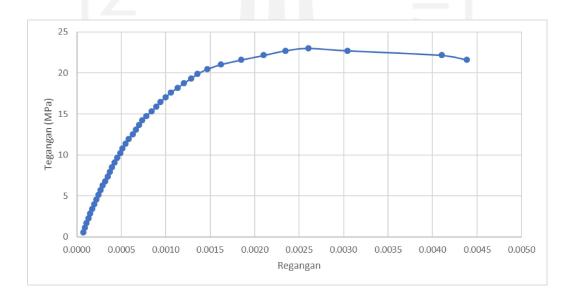
В	eban	Pembacaan Dial, ΔL'	$\Delta \mathbf{L}$	Dogangan c	Tegangan, σ
kN	N	(µm)	(mm)	Regangan, ε	(MPa)
10	10000	22	0,0110	0,0000550	0,5634
20	20000	38,5	0,0193	0,0000963	1,1268
30	30000	56,5	0,0283	0,0001413	1,6901
40	40000	83,5	0,0418	0,0002088	2,2535
50	50000	121,9	0,0610	0,0003048	2,8169
60	60000	155,9	0,0780	0,0003898	3,3803
70	70000	186,9	0,0935	0,0004673	3,9436
80	80000	209,9	0,1050	0,0005248	4,5070
90	90000	225,9	0,1130	0,0005648	5,0704
100	100000	244,9	0,1225	0,0006123	5,6338
110	110000	264,3	0,1322	0,0006608	6,1972
120	120000	278,8	0,1394	0,0006970	6,7605
130	130000	297,3	0,1487	0,0007433	7,3239
140	140000	321,3	0,1607	0,0008033	7,8873
150	150000	342,3	0,1712	0,0008558	8,4507
160	160000	366,3	0,1832	0,0009158	9,0140
170	170000	389,8	0,1949	0,0009745	9,5774
180	180000	414,3	0,2072	0,0010358	10,1408
190	190000	440,2	0,2201	0,0011005	10,7042
200	200000	462,7	0,2314	0,0011568	11,2676
210	210000	490,2	0,2451	0,0012255	11,8309
220	220000	515,2	0,2576	0,0012880	12,3943
230	230000	538,7	0,2694	0,0013468	12,9577
240	240000	567,2	0,2836	0,0014180	13,5211
250	250000	590,1	0,2951	0,0014753	14,0844

В	Seban	Pembacaan Dial, ∆L'	$\Delta \mathbf{L}$	Dogongon o	Tegangan, σ	
kN	N	(µm)	(mm)	Regangan, ε	(MPa)	
260	260000	622,1	0,3111	0,0015553	14,6478	
270	270000	651,1	0,3256	0,0016278	15,2112	
280	280000	690,1	0,3451	0,0017253	15,7746	
290	290000	739,6	0,3698	0,0018490	16,3379	
300	300000	795,5	0,3978	0,0019888	16,9013	
310	310000	868	0,4340	0,0021700	17,4647	
320	320000	915,5	0,4578	0,0022888	18,0281	
330	330000	994,4	0,4972	0,0024860	18,5915	
340	340000	1061,9	0,5310	0,0026548	19,1548	
350	350000	1145,8	0,5729	0,0028645	19,7182	
360	360000	1267,2	0,6336	0,0031680	20,2816	
370	370000	1388,9	0,6945	0,0034723	20,8450	
360	360000	1692,8	0,8464	0,0042320	20,2816	
350	350000	1954,7	0,9774	0,0048868	19,7182	
340	340000	2003,7	1,0019	0,0050093	19,1548	

Grafik Modulus Elastisitas

Metode Disemprot *Curing Compound* Sampel 1

ASTM C-469	(s2-s1)/(ε2-ε1)	11568,352	MPa
SNI 2847-2019	4700 x √ <i>f</i> ′c	21458,457	MPa
	Wc1,5 x 0,043 x $\sqrt{f'c}$	22343,173	MPa


Modulus Elastisitas Beton Metode Disemprot *Curing Compound* **Sampel 2**

Data Sampel					
Metode Perawatan	Disemprot Curing Compound				
Umur Uji	28	Hari			
No. Sampel	2				
Mutu Beton Rencana	30	Mpa			
Mutu Beton Hasil Uji	23,0205	Mpa			
Diameter	149,6667	mm			
Tinggi	304,6667	mm			
Luas	17593,0061	mm^2			
L0	200	mm			

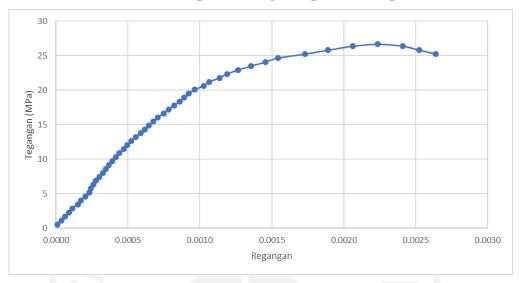
В	Seban	Pembacaan Dial, ΔL'	$\Delta \mathbf{L}$	D	Tegangan, σ
kN	N	(μ m)	(mm)	Regangan, ε	(MPa)
10	10000	12	0,0060	0,0000300	0,5684
20	20000	18	0,0090	0,0000450	1,1368
30	30000	25	0,0125	0,0000625	1,7052
40	40000	35	0,0175	0,0000875	2,2736
50	50000	41,5	0,0208	0,0001038	2,8420
60	60000	51,5	0,0258	0,0001288	3,4104
70	70000	60	0,0300	0,0001500	3,9789
80	80000	70	0,0350	0,0001750	4,5473
90	90000	79,5	0,0398	0,0001988	5,1157
100	100000	89,4	0,0447	0,0002235	5,6841
110	110000	98,4	0,0492	0,0002460	6,2525
120	120000	110,4	0,0552	0,0002760	6,8209
130	130000	120,4	0,0602	0,0003010	7,3893
140	140000	130,4	0,0652	0,0003260	7,9577
150	150000	140,9	0,0705	0,0003523	8,5261
160	160000	151,4	0,0757	0,0003785	9,0945
170	170000	164,4	0,0822	0,0004110	9,6629
180	180000	177,4	0,0887	0,0004435	10,2313
190	190000	187,9	0,0940	0,0004698	10,7997
200	200000	200,9	0,1005	0,0005023	11,3682
210	210000	215,9	0,1080	0,0005398	11,9366
220	220000	232,9	0,1165	0,0005823	12,5050
230	230000	246,9	0,1235	0,0006173	13,0734
240	240000	262,9	0,1315	0,0006573	13,6418
250	250000	275,8	0,1379	0,0006895	14,2102
260	260000	293,8	0,1469	0,0007345	14,7786

В	Seban	Pembacaan Dial, ∆L'	$\Delta \mathbf{L}$	Dagangan a	Tegangan, σ
kN	N	(µm)	(mm)	Regangan, ε	(MPa)
270	270000	318,3	0,1592	0,0007958	15,3470
280	280000	339,8	0,1699	0,0008495	15,9154
290	290000	357,8	0,1789	0,0008945	16,4838
300	300000	381,8	0,1909	0,0009545	17,0522
310	310000	403,8	0,2019	0,0010095	17,6206
320	320000	434,7	0,2174	0,0010868	18,1890
330	330000	463,2	0,2316	0,0011580	18,7575
340	340000	495,2	0,2476	0,0012380	19,3259
350	350000	525,2	0,2626	0,0013130	19,8943
360	360000	567,7	0,2839	0,0014193	20,4627
370	370000	628,6	0,3143	0,0015715	21,0311
380	380000	720,6	0,3603	0,0018015	21,5995
390	390000	822,4	0,4112	0,0020560	22,1679
400	400000	920,3	0,4602	0,0023008	22,7363
405	405000	1023,5	0,5118	0,0025588	23,0205
400	400000	1200,3	0,6002	0,0030008	22,7363
390	390000	1623,5	0,8118	0,0040588	22,1679
380	380000	1736,5	0,8683	0,0043413	21,5995

Grafik Modulus Elastisitas Metode Disemprot *Curing Compound* Sampel 2

ASTM C-469	(s2-s1)/(ε2-ε1)	21449,260	MPa
SNI 2847-2019	4700 x √ <i>f</i> ′c	22550,457	MPa
	Wc1,5 x 0,043 x $\sqrt{f'}$ c	22737,745	MPa

Modulus Elastisitas Beton Metode Disemprot *Curing Compound* **Sampel 3**


Data Sampel				
Metode Perawatan	Disemprot Curing	Compound		
Umur Uji	28	Hari		
No. Sampel	3			
Mutu Beton Rencana	30	Mpa		
Mutu Beton Hasil Uji	26,6680	Mpa		
Diameter	149,0000	mm		
Tinggi	302,3333	mm		
Luas	17436,6246	mm^2		
L0	200	mm		

В	Seban	Pembacaan Dial, ΔL'	$\Delta \mathbf{L}$	Degangan Tegangan	
kN	N	(µm)	(mm)	Regangan, ε	(MPa)
10	10000	13,5	0,0068	0,0000338	0,5735
20	20000	24,5	0,0123	0,0000613	1,1470
30	30000	34,5	0,0173	0,0000863	1,7205
40	40000	45,5	0,0228	0,0001138	2,2940
50	50000	55	0,0275	0,0001375	2,8675
60	60000	70	0,0350	0,0001750	3,4410
70	70000	78,5	0,0393	0,0001963	4,0145
80	80000	90,9	0,0455	0,0002273	4,5880
90	90000	101,9	0,0510	0,0002548	5,1615
100	100000	105,9	0,0530	0,0002648	5,7351
110	110000	112,9	0,0565	0,0002823	6,3086
120	120000	120,9	0,0605	0,0003023	6,8821
130	130000	129,9	0,0650	0,0003248	7,4556
140	140000	139,4	0,0697	0,0003485	8,0291
150	150000	147,9	0,0740	0,0003698	8,6026
160	160000	156,9	0,0785	0,0003923	9,1761
170	170000	166,4	0,0832	0,0004160	9,7496
180	180000	175,9	0,0880	0,0004398	10,3231
190	190000	185,9	0,0930	0,0004648	10,8966
200	200000	197,4	0,0987	0,0004935	11,4701
210	210000	207,9	0,1040	0,0005198	12,0436
220	220000	219,4	0,1097	0,0005485	12,6171
230	230000	231,4	0,1157	0,0005785	13,1906
240	240000	244,9	0,1225	0,0006123	13,7641
250	250000	255,8	0,1279	0,0006395	14,3376
260	260000	267,8	0,1339	0,0006695	14,9111

В	eban	Pembacaan Dial, ∆L'	$\Delta \mathbf{L}$	Dagangan a	Tegangan, σ	
kN	N	(µm)	(mm)	Regangan, ε	(MPa)	
270	270000	280,3	0,1402	0,0007008	15,4846	
280	280000	292,3	0,1462	0,0007308	16,0582	
290	290000	308,8	0,1544	0,0007720	16,6317	
300	300000	322,3	0,1612	0,0008058	17,2052	
310	310000	337,8	0,1689	0,0008445	17,7787	
320	320000	353,8	0,1769	0,0008845	18,3522	
330	330000	366,3	0,1832	0,0009158	18,9257	
340	340000	378,3	0,1892	0,0009458	19,4992	
350	350000	395,3	0,1977	0,0009883	20,0727	
360	360000	420,2	0,2101	0,0010505	20,6462	
370	370000	435,2	0,2176	0,0010880	21,2197	
380	380000	463,7	0,2319	0,0011593	21,7932	
390	390000	484,7	0,2424	0,0012118	22,3667	
400	400000	515,7	0,2579	0,0012893	22,9402	
410	410000	552,2	0,2761	0,0013805	23,5137	
420	420000	591,6	0,2958	0,0014790	24,0872	
430	430000	626,1	0,3131	0,0015653	24,6607	
440	440000	700,6	0,3503	0,0017515	25,2342	
450	450000	765,6	0,3828	0,0019140	25,8077	
460	460000	834	0,4170	0,0020850	26,3813	
465	465000	903,4	0,4517	0,0022585	26,6680	
460	460000	973	0,4865	0,0024325	26,3813	
450	450000	1018,9	0,5095	0,0025473	25,8077	
440	440000	1064,8	0,5324	0,0026620	25,2342	

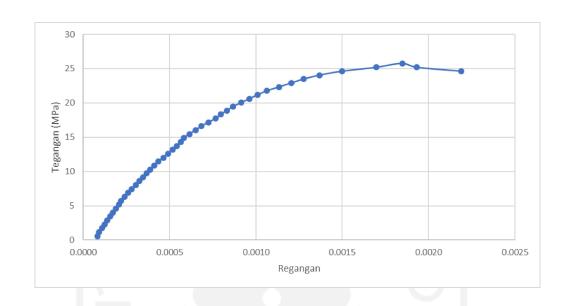
Grafik Modulus Elastisitas

Metode Disemprot *Curing Compound* Sampel 3

ASTM C-469	$(s2-s1)/(\epsilon 2-\epsilon 1)$	24667,018	MPa
SNI 2847 2010	$4700 \times \sqrt{f'c}$	24271,305	MPa
SNI 2847-2019	Wc1,5 x 0,043 x $\sqrt{f'c}$	25768,625	MPa

Modulus Elastisitas Beton Metode Disemprot *Curing Compound* **Sampel 4**

Data Sampel				
Metode Perawatan	Disemprot Curing (Compound		
Umur Uji	28	Hari		
No. Sampel	4			
Mutu Beton Rencana	30	Mpa		
Mutu Beton Hasil Uji	25,7731	Mpa		
Diameter	149,1000	mm		
Tinggi	304,0000	mm		
Luas	17460,0373	mm^2		
L0	200	mm		


В	Seban	Pembacaan Dial, ΔL'	$\Delta \mathbf{L}$	D	Tegangan, σ
kN	N	(µm)	(mm)	Regangan, ε	(MPa)
10	10000	8,5	0,0043	0,0000213	0,5727
20	20000	12,5	0,0063	0,0000313	1,1455
30	30000	19,5	0,0098	0,0000488	1,7182
40	40000	25,5	0,0128	0,0000638	2,2909
50	50000	31,5	0,0158	0,0000788	2,8637
60	60000	38,5	0,0193	0,0000963	3,4364
70	70000	45	0,0225	0,0001125	4,0092
80	80000	51,5	0,0258	0,0001288	4,5819
90	90000	59	0,0295	0,0001475	5,1546
100	100000	64	0,0320	0,0001600	5,7274
110	110000	72	0,0360	0,0001800	6,3001
120	120000	80,5	0,0403	0,0002013	6,8728
130	130000	87,9	0,0440	0,0002198	7,4456
140	140000	97,4	0,0487	0,0002435	8,0183
150	150000	105,9	0,0530	0,0002648	8,5910
160	160000	113,9	0,0570	0,0002848	9,1638
170	170000	122,4	0,0612	0,0003060	9,7365
180	180000	130,9	0,0655	0,0003273	10,3093
190	190000	140,4	0,0702	0,0003510	10,8820
200	200000	150,4	0,0752	0,0003760	11,4547
210	210000	161,4	0,0807	0,0004035	12,0275
220	220000	172,9	0,0865	0,0004323	12,6002
230	230000	182,9	0,0915	0,0004573	13,1729
240	240000	192,9	0,0965	0,0004823	13,7457
250	250000	202,4	0,1012	0,0005060	14,3184
260	260000	208,9	0,1045	0,0005223	14,8911

В	Seban	Pembacaan Dial, ∆L'	$\Delta \mathbf{L}$	Dagangan a	Tegangan, σ
kN	N	(μm)	(mm)	Regangan, ε	(MPa)
270	270000	221,9	0,1110	0,0005548	15,4639
280	280000	235,9	0,1180	0,0005898	16,0366
290	290000	249,9	0,1250	0,0006248	16,6094
300	300000	265,8	0,1329	0,0006645	17,1821
310	310000	283,3	0,1417	0,0007083	17,7548
320	320000	294,3	0,1472	0,0007358	18,3276
330	330000	308,8	0,1544	0,0007720	18,9003
340	340000	322,8	0,1614	0,0008070	19,4730
350	350000	341,8	0,1709	0,0008545	20,0458
360	360000	360,8	0,1804	0,0009020	20,6185
370	370000	380,3	0,1902	0,0009508	21,1912
380	380000	401,3	0,2007	0,0010033	21,7640
390	390000	429,2	0,2146	0,0010730	22,3367
400	400000	457,7	0,2289	0,0011443	22,9095
410	410000	486,2	0,2431	0,0012155	23,4822
420	420000	523,2	0,2616	0,0013080	24,0549
430	430000	575,7	0,2879	0,0014393	24,6277
440	440000	655,1	0,3276	0,0016378	25,2004
450	450000	715	0,3575	0,0017875	25,7731
440	440000	748,1	0,3741	0,0018703	25,2004
430	430000	852	0,4260	0,0021300	24,6277

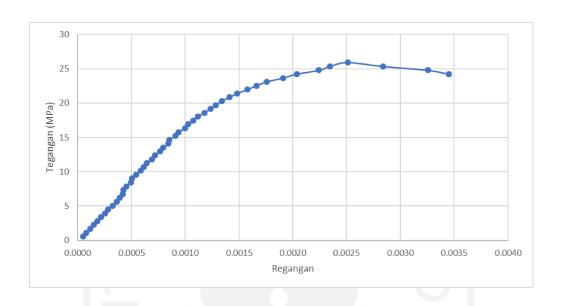
Grafik Modulus Elastisitas

Metode Disemprot *Curing Compound* Sampel 4

ASTM C-469	$(s2-s1)/(\epsilon 2-\epsilon 1)$	26639,039	MPa
SNI 2847-2019	$4700 \times \sqrt{f'c}$	23860,609	MPa
5111 2047-2019	Wc1,5 x 0,043 x $\sqrt{f'c}$	25525,197	MPa

Modulus Elastisitas Beton Metode Disemprot *Curing Compound* **Sampel 5**

Data Sampel				
Metode Perawatan	Disemprot Curing (Compound		
Umur Uji	28	Hari		
No. Sampel	5			
Mutu Beton Rencana	30	Mpa		
Mutu Beton Hasil Uji	25,9154	Mpa		
Diameter	150,3333	mm		
Tinggi	300,6667	mm		
Luas	17750,0858	mm^2		
L0	200	mm		


В	Seban	Pembacaan Dial, ΔL'	$\Delta \mathbf{L}$	D	Tegangan, σ
kN	N	(μm)	(mm)	Regangan, ε	(MPa)
10	10000	17,5	0,0088	0,0000438	0,5634
20	20000	30	0,0150	0,0000750	1,1268
30	30000	44	0,0220	0,0001100	1,6901
40	40000	57,5	0,0288	0,0001438	2,2535
50	50000	70,5	0,0353	0,0001763	2,8169
60	60000	83,4	0,0417	0,0002085	3,3803
70	70000	98,9	0,0495	0,0002473	3,9436
80	80000	111,1	0,0556	0,0002778	4,5070
90	90000	127,4	0,0637	0,0003185	5,0704
100	100000	142,9	0,0715	0,0003573	5,6338
110	110000	154,9	0,0775	0,0003873	6,1972
120	120000	165,4	0,0827	0,0004135	6,7605
130	130000	166,9	0,0835	0,0004173	7,3239
140	140000	179,9	0,0900	0,0004498	7,8873
150	150000	195,9	0,0980	0,0004898	8,4507
160	160000	200,9	0,1005	0,0005023	9,0140
170	170000	214,9	0,1075	0,0005373	9,5774
180	180000	231,9	0,1160	0,0005798	10,1408
190	190000	243,9	0,1220	0,0006098	10,7042
200	200000	255,3	0,1277	0,0006383	11,2676
210	210000	273,8	0,1369	0,0006845	11,8309
220	220000	286,3	0,1432	0,0007158	12,3943
230	230000	304,8	0,1524	0,0007620	12,9577
240	240000	315,8	0,1579	0,0007895	13,5211
250	250000	335,3	0,1677	0,0008383	14,0844
260	260000	338,8	0,1694	0,0008470	14,6478

В	Seban	Pembacaan Dial, ΔL'	$\Delta \mathbf{L}$	Dagangan	Tegangan, σ
kN	N	(μm)	(mm)	Regangan, ε	(MPa)
270	270000	360,8	0,1804	0,0009020	15,2112
280	280000	372,8	0,1864	0,0009320	15,7746
290	290000	397,3	0,1987	0,0009933	16,3379
300	300000	409,3	0,2047	0,0010233	16,9013
310	310000	428,2	0,2141	0,0010705	17,4647
320	320000	445,7	0,2229	0,0011143	18,0281
330	330000	468,7	0,2344	0,0011718	18,5915
340	340000	491,7	0,2459	0,0012293	19,1548
350	350000	512,2	0,2561	0,0012805	19,7182
360	360000	533,7	0,2669	0,0013343	20,2816
370	370000	561,7	0,2809	0,0014043	20,8450
380	380000	591,1	0,2956	0,0014778	21,4083
390	390000	628,1	0,3141	0,0015703	21,9717
400	400000	663,1	0,3316	0,0016578	22,5351
410	410000	700,1	0,3501	0,0017503	23,0985
420	420000	762	0,3810	0,0019050	23,6619
430	430000	812,5	0,4063	0,0020313	24,2252
440	440000	895,5	0,4478	0,0022388	24,7886
450	450000	935,5	0,4678	0,0023388	25,3520
460	460000	1002,9	0,5015	0,0025073	25,9154
450	450000	1133,8	0,5669	0,0028345	25,3520
440	440000	1299,8	0,6499	0,0032495	24,7886
430	430000	1378	0,6890	0,0034450	24,2252

Grafik Modulus Elastisitas

Metode Disemprot *Curing Compound* Sampel 5

ASTM C-469	$(s2-s1)/(\epsilon 2-\epsilon 1)$	17334,759	MPa
SNI 2847-2019	$4700 \times \sqrt{f'c}$	23926,355	MPa
SINI 2047-2019	Wc1,5 x 0,043 x $\sqrt{f'c}$	25150,471	MPa

Lampiran 8 Laporan Sementara Hasil Pengujian Kuat Lentur

Metode Perawatan	Umur Uji	Kode Benda Uji	No. Sampel	Kuat Lentur (Mpa)	Kuat Lentur Rerata (Mpa)
		S1-R	1	4,7903	
		S2-R	2	5,06809	
Perendaman		S3-R	3	4,12854	4,95146
	1.0	S4-R	4	4,91412	
		S5-R	5	5,85624	
1/0		S1-G	1	4,41068	
D'4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	28 Hari	S2-G	2	4,74489	
Ditutup karung goni		S3-G	3	3,98038	4,35532
gom		S4-G	4	4,06457	
		S5-G	5	4,57607	
		S1-C	1	4,2684	
Coming		S2-C	2	3,85595	
Curing compound		S3-C	3	3,72524	3,97008
Compound		S4-C	4	4,27261	
		S5-C	5	3,72822	

Lampiran 9 Dokumentasi Material Penelitian

Gambar L-9. 1 Pasir

Gambar L-9. 2 Semen

Gambar L-9. 3 Kerikil

Gambar L-9. 4 Curing compound Sika Antisol S

Lampiran 10 Dokumentasi Peralatan Penelitian

Gambar L-10. 1 Gelas ukur

Gambar L-10. 2 Piknometer

Gambar L-10. 3 Konus

Gambar L-10. 4 Timbangan digital

Gambar L-10. 5 Neraca ohaus

Gambar L-10. 6 Saringan agregat kasar

Gambar L-10. 7 Saringan agregat halus

Gambar L-10. 8 Mesin pengguncang agregat halus

Gambar L-10. 9 Mesin pengguncang agregat kasar

Gambar L-10. 10 Oven binder

Gambar L-10. 11 Ember

Gambar L-10. 12 Troli

Gambar L-10. 13 Palu karet

Gambar L-10. 14 Perata beton

Gambar L-10. 15 Sekop

Gambar L-10. 16 Alat uji *slump*

Gambar L-10. 17 Batang penusuk

Gambar L-10. 18 Pan

Gambar L-10. 19 Concrete mixer

Gambar L-10. 20 Alat capping

Gambar L-10. 21 Alat uji modulus elatisitas

Gambar L-10. 22 Compression testing machine

Gambar L-10. 23 Universal testing machine (UTM)

Lampiran 11 Dokumentasi Perawatan

Gambar L-11. 1 Perendaman

Gambar L-11. 2 Ditutup karung goni

Gambar L-11. 3 Penyemprota curing compound

Lampiran 12 Dokumentasi Benda Uji

Gambar L-12. 1 Benda uji sebelum pengujian

Gambar L-12. 2 Proses capping benda uji silinder

Gambar L-12. 3 Proses pemberian batas benda uji balok

Gambar L-12. 4 Pengujian kuat tekan dan modulus elastisitas

Gambar L-12. 5 Pengujian kuat lentur

Gambar L-12. 6 Kerusakan benda uji silinder setelah pengujian

Gambar L-12. 7 Kerusakan benda uji balok setelah pengujian

