TUGAS AKHIR

ANALISIS STABILITAS TIMBUNAN TUBUH EMBUNG (TANGGUL) DI ATAS TANAH LUNAK DENGAN *PLAXIS* 2D

(Studi Kasus : Embung Danau Asam di Kabupaten Kotawaringin Barat, Provinsi Kalimantan Tengah)

(STABILITY ANALYSIS OF EMBANKMENT AT SOFT SOIL USING PLAXIS 2D)

(Study Case : Embung Danau Asam in Kotawaringin Barat Regency, Central Kalimantan Province)

Diajukan Kepada Universitas Islam Indonesia Yogyakarta Untuk Memenuhi Persyaratan Memperoleh Derajat Sarjana Teknik Sipil

PROGRAM STUDI SARJANA TEKNIK SIPIL FAKULTAS TEKNIK SIPIL DAN PERENCANAAN UNIVERSITAS ISLAM INDONESIA 2023

PERNYATAAN BEBAS PLAGIASI

Saya menyatakan dengan sesungguhnya bahwa laporan Tugas Akhir yang saya susun merupakan syarat untuk penyelesaian program sarjana di Program Studi Teknik Sipil, Fakultas Teknik Sipil dan Perencanaan, Universitas Islam Indonesia merupakan hasil karya saya sendiri. Adapun bagian – bagian tertentu dalam penulisan laporan Tugas Akhir yang saya kutip dari hasil karya orang lain telah dituliskan dalam sumbernya secara jelas sesuai dengan norma, kaidah, dan etika penulisan karya ilmiah. Apabila di kemudian hari ditemukan seluruh atau sebagian laporan tugas akhir ini bukan hasil karya saya sendiri atau adanya plagiasi dalam bagian – bagian tertentu, saya bersedia menerima sanksi, termasuk pencabutan gelar akademik yang saya sandang sesuai dengan perundang – undangan yang berlaku

Yogyakarta, Maret 2023 Yang membuat pernyataan,

> Dyan rrapsan 18511197

KATA PENGANTAR

بِسْمُ الرَّحْدِ الرَّحِيمِ

Assalamu'alaikum Wr. Wb

Puji syukur atas kehadirat Allah SWT, yang telah meilmpahkan rahmat, taufik serta hidayah-Nya sehingga penulis dapat menyusun Tugas Akhir ini dengan sebaik – baiknya. Shalawat serta salam selalu kami haturkan kepada junjungan Rasulullah Muhammad SAW, keluarga, sahabat, serta pengikut beliau.

Salah satu syarat akademik dalam menyelesaikan studi tingkat strata satu di Program Studi Teknik Sipil, Fakultas Teknik Sipil dan Perencanaan, Universitas Islam Indonesia adalah dengan menyelesaikan Tugas Akhir sebagai penerapan teori Teknik Sipil yang dipelajari selama masa perkuliahan. Selama menyusun tugas akhir ini banyak pihak – pihak terkait yang memberikan dukungan dan bantuan hingga terselesaikannya tugas akhir ini, penulis ingin mengungkapkan rasa terima kasih untuk pihak – pihak terkait, kepada :

- 1. Bapak Muhammad Rifqi Abdurrozak, S.T., M.Eng., selaku Dosen Pembimbing Tugas Akhir, Terimakasih atas bimbingan, saran, serta dukungan yang diberikan selama penulis menyusun tugas akhir ini.
- Dr. Ir. Lalu Makrup, M. T., dan Ibu Hanindya Kusuma Artati, S.T., M.T., selaku Dosen Penguji Tugas Akhir
- 3. Ibu Ir. Yunalia Muntafi, S.T., M.T., Ph.D., selaku Ketua Jurusan Teknik Sipil Fakultas Teknik Sipil dan Perencanaan Universitas Islam Indonesia
- 4. Almarhum Bapak Sudarto dan Almarhumah Ibu Sri Yanti selaku orang tua saya yang senantiasa berdoa sepanjang hidupnya dan memotivasi saya. Serta Mas Singgih dan Danang selaku saudara saya yang selalu memberi dukungan.
- Seluruh civitas akademik di lingkungan Jurusan Teknik Sipil Fakultas Teknik Sipil dan Perencanaan Universitas Islam Indonesia

6. Teman – teman DPA 7 (tujuh) yang telah memberikan bantuan dan dukungan dititik terendah hidup saya.

Penulis menyadari bahwa penyusunan Tugas Akhir ini masih jauh dari kata sempurna. Penulis berharap kritik dan saran yang membangun dari berbagai pihak dan semoga Tugas Akhir ini bisa memberikan manfaat bagi pembaca dan juga kami sebagai penyusun.

Aamiin.

Wassalamu'alaikum Wr. Wb

Yogyakarta, Maret 2023 Waret 2023 Dyah Hapsari 18511197

DAFTAR ISI

COVER	i
LEMBAR PENGESAHAN	
TUGAS AKHIR	
Error! Bookmark not defined.	
PERNYATAAN BEBAS PLAGIASI	ii
KATA PENGANTAR	iv
DAFTAR ISI	vi
DAFTAR GAMBAR	ix
DAFTAR TABEL	xiii
DAFTAR LAMPIRAN	xiv
DAFTAR NOTASI DAN SINGKATAN	XV
ABSTRAK	xviii
BAB I PENDAHULUAN	1
1.1 Latar Belakang	1
1.2 Rumusan Masalah	2
1.3 Tujuan Penelitian	2
1.4 Manfaat Penelitian	3
1.5 Batasan Penelitian	3
BAB II TINJAUAN PUSTAKA	5
2.1 Tinjauan Umum	5
2.2 Analisis Timbunan Diatas Tanah Lunak	6
2.3 Stabilitas Lereng Bendungan Dengan Gempa	7
2.4 Pengaruh Muka Air terhadap Kestabilan Lereng	8
2.5 Bahaya <i>Pipping</i> Bendungan	10
2.6 Perbandingan Penelitian Terdahulu dengan Sekarang	11
BAB III LANDASAN TEORI	15

3.1 Tanah	15
3.1.1 Tanah Lunak	16
3.2 Lereng Tanggul	16
3.2.1 Keruntuhan Lereng	17
3.3 Rembesan	18
3.3.1 Hukum Darcy	18
3.3.2 Garis Freatik	19
3.3.3 Metode Cassagrande	19
3.3.4 Keruntuhan Akibat <i>Piping</i>	20
3.4 Analisis Stabilitas Lereng	21
3.4.1 Metode Irisan	22
3.4.2 Metode Irisan Bishop	24
3.5 Kriteria Nilai Faktor Keamanan Stabilitas Lereng Tanggul	24
3.6 Beban Gempa	26
3.6.1 Koefisien Gempa	26
3.6.2 Tingkat Risiko Bangunan	31
3.7 Perkuatan Tanah	33
3.8 Program <i>Plaxis</i>	33
3.8.1 Tampilan <i>Plaxis</i>	34
3.8.2 Analisa Pengujian Program	35
BAB IV METODE PENELITIAN	36
4.1 Tinjauan Umum	36
4.2 Lokasi Penelitian	36
4.3 Langkah Penelitian	37
4.4 Parameter Penelitian	37
4.4.1 Parameter Tanah	37
4.4.2 Geometri Dan Desain Tanggul	39
4.4.3 Variasi Muka Air Yang Akan Dimodelkan	40
4.5 Data Gempa	41
4.6 Input Plaxis	41
4.7 Bagan Alir Penelitian	48

BAB V	50
ANALISIS DATA DAN PEMBAHASAN	50
5.1 Data Penelitian	50
5.1.1 Data Teknis Waduk	51
5.1.2 Data Potongan Melintang Tanggul	52
5.1.3 Data Parameter Tanah	52
5.1.4 Analisis Tingkat Risiko Bendungan	52
5.2 Perhitungan Manual Rembesan Tanggul	54
5.2.1 Garis Freatik Kondisi Muka Air Banjir	54
5.2.2 Garis Freatik Kondisi Muka Air Normal	57
5.3 Perhitungan Stabilitas Timbunan	60
5.3.1 Analisis Timbunan Asli Pada Program Plaxis	60
5.3.2 Analisis Timbunan Asli Perhitungan Manual	77
5.4 Pembahasan	83
BAB VI KESIMPULAN DAN SARAN	85
6.1 Kesimpulan	85
6.2 Saran	87
DAFTAR PUSTAKA	XX
LAMPIRAN	xxiii

viii

DAFTAR GAMBAR

Gambar 1.1	Lokasi Embung Danau Asam	4
Gambar 1.2	Lokasi Potongan Tanggul P14	4
Gambar 3.1	Massa Tanah Jenuh Air Sebagian	15
Gambar 3.2	Kelongsoran Rotasi Lereng	17
Gambar 3.3	Jaringan Aliran Pada Bendungan Yang Homogen	19
Gambar 3.4	Rembesan Metode Cassagrande	19
Gambar 3.5	Ilustrasi Keruntuhan Akibat Piping	20
Gambar 3.6	Gaya – gaya yang bekerja pada irisan	21
Gambar 3.7	Skema Gaya Longsoran Rotasi	22
Gambar 3.8	Peta Percepatan Puncak di Batuan Dasar (S_B) untuk	27
	Probabilitas Terlampaui 20% dalam 10 Tahun	
Gambar 3.9	Peta Percepatan Puncak di Batuan Dasar (S_B) untuk	27
	Probabilitas Terlampaui 10% dalam 10 Tahun	
Gambar 3.10	Peta Percepatan Puncak di Batuan Dasar (S_B) untuk	28
	Probabilitas Terlampaui 10% dalam 50 Tahun	
Gambar 3.11	Peta Percepatan Puncak di Batuan Dasar (S_B) untuk	28
	Probabilitas Terlampaui 7% dalam 75 Tahun	
Gambar 3.12	Peta Percepatan Puncak di Batuan Dasar (S_B) untuk	29
	Probabilitas Terlampaui 2% dalam 50 Tahun	
Gambar 3.13	Peta Percepatan Puncak di Batuan Dasar (S_B) untuk	29
	Probabilitas Terlampaui 2% dalam 100 Tahun	
Gambar 3.14	Jendela Utama Program Plaxis	34
Gambar 4.1	Gambar Lokasi	36
Gambar 4.2	Kemiringan Tanggul Tanah Homogen	39
Gambar 4.3	Penampang Melintang Tanggul Patok P.14	39
Gambar 4.4	Penampang Melintang Tanggul Dengan Muka Air Banjir	40

Gambar 4.5	Penampang Melintang Tanggul Dengan Muka Air Normal	40
Gambar 4.6	Penampang Melintang Tanggul Tanpa Asumsi Rembesan	40
Gambar 4.7	Tab Project Pada Kotak Project Properties Plaxis 2D	42
Gambar 4.8	Tab Model Pada Kotak Project Properties Plaxis 2D	42
Gambar 4.9	Tab Constants Pada Kotak Project Properties Plaxis 2D	43
Gambar 4.10	Halaman Depan Plaxis 2D	43
Gambar 4.11	Tab Soil Pada Plaxis 2D	44
Gambar 4.12	Tab Structure Pada Plaxis 2D	44
Gambar 4.13	Tab Mesh Pada Plaxis 2D	45
Gambar 4.14	Output Dari Generate Mesh Pada Plaxis 2D	45
Gambar 4.15	Tab Flow Conditions Pada Plaxis 2D	46
Gambar 4.16	Jendela Phases Tab Staged Construction Pada Plaxis 2D	46
Gambar 4.17	Output Select Nodes And Stress Points Pada Plaxis 2D	47
Gambar 4.18	Proses Kalkulasi Plaxis 2D	47
Gambar 4.19	Bagan Alir Penelitian	48
Gambar 5.1	Tampungan Air Embung Danau Asam	50
Gambar 5.2	Skema Parameter Perhitungan Garis Depresi MAB	54
Gambar 5.3	Formasi Garis Depresi MAB	56
Gambar 5.4	Skema Parameter Perhitungan Garis Depresi MAN	57
Gambar 5.5	Formasi Garis Depresi MAN	59
Gambar 5.6	Lapisan Tanah Pondasi Yang Dimasukkan ke Plaxis 2D	60
Gambar 5.7	Project Properties Tab Project	61
Gambar 5.8	Project Properie Tab Model	61
Gambar 5.9	Tab Soil Pada Mode Tabs	62
Gambar 5.10	Modify Soil Layers	62
Gambar 5.11	Tab Structure Pada Mode Tabs	63
Gambar 5.12	Tab Mesh Pada Mode Tabs	63
Gambar 5.13	Hasil Meshing dengan Distribusi Elemen Very Fine	64
Gambar 5.14 Gambar 5.15	Tab Flow Conditions Pada Mode Tabs Phases Pada Phases Explorer	64 65
Gambar 5.16	Tab Staged Construction Pada Mode Tabs	65

	Beban Gempa, Hulu	
Gambar 5.18	Potensi Kelongsoran Timbunan Muka Air Kosong Tanpa	66
	Beban Gempa, Hilir	
Gambar 5.19	Potensi Kelongsoran Timbunan Muka Air Kosong Beban	67
	Gempa OBE, Hulu	
Gambar 5.20	Potensi Kelongsoran Timbunan Muka Air Kosong Beban	67
	Gempa OBE, Hilir	
Gambar 5.21	Potensi Kelongsoran Timbunan Muka Air Kosong Beban	68
	Gempa MDE, Hulu	
Gambar 5.22	Potensi Kelongsoran Timbunan Muka Air Kosong Beban	68
	Gempa MDE, Hilir	
Gambar 5.23	Potensi Kelongsoran Timbunan Muka Air Normal Tanpa	69
	Beban Gempa, Hulu	
Gambar 5.24	Potensi Kelongsoran Timbunan Muka Air Normal Tanpa	69
	Beban Gempa, Hilir	
Gambar 5.25	Potensi Kelongsoran Timbunan Muka Air Normal Beban	70
	Gempa OBE, Hulu	
Gambar 5.26	Potensi Kelongsoran Timbunan Muka Air Normal Beban	70
	Gempa OBE, Hilir	
Gambar 5.27	Potensi Kelongsoran Timbunan Muka Air Normal Beban	71
	Gempa MDE, Hulu	
Gambar 5.28	Potensi Kelongsoran Timbunan Muka Air Normal Beban	71
	Gempa MDE, Hilir	
Gambar 5.29	Potensi Kelongsoran Timbunan Muka Air Banjir Tanpa	72
	Beban Gempa, Hulu	
Gambar 5.30	Potensi Kelongsoran Timbunan Muka Air Banjir Tanpa	72
	Beban Gempa, Hilir	
Gambar 5.31	Potensi Kelongsoran Timbunan Muka Air Banjir Beban	73
	Gempa OBE, Hulu	

Potensi Kelongsoran Timbunan Muka Air Kosong Tanpa

Gambar 5.17

xi

Gambar 5.32	Potensi Kelongsoran Timbunan Muka Air Banjir Beban	73
	Gempa OBE, Hilir	
Gambar 5.33	Potensi Kelongsoran Timbunan Muka Air Banjir Beban	74
	Gempa MDE, Hulu	
Gambar 5.34	Potensi Kelongsoran Timbunan Muka Air Normal Beban	74
	Gempa MDE, Hilir	
Gambar 5.35	Potensi Kelongsoran Timbunan Kondisi Rapid Draw	75
	Down Tanpa Beban Gempa, Hulu	
Gambar 5.36	Potensi Kelongsoran Timbunan Kondisi Rapid Draw	75
	Down Tanpa Beban Gempa, Hilir	
Gambar 5.37	Timbunan Kondisi Rapid Draw Down Beban Gempa OBE	76
Gambar 5.38	Timbunan Kondisi Rapid Draw Down Beban Gempa MDE	76

Gambar 5.39 Luas Arsiran Irisan Timbunan Kondisi Rapid Draw Down 77

DAFTAR TABEL

Tabel 2.1	Perbandingan Penelitian Terdahulu Dengan Sekarang	12
Tabel 3.1	Faktor Keamanan Minimum Stabilitas Bendungan Tipe	25
	Urugan	
Tabel 3.2	Faktor Amplifikasi (F _{PGA})	30
Tabel 3.3	Kriteria Faktor Risiko Untuk Evaluasi Keamanan Bendungan	31
Tabel 3.4	Kelas Risiko Bendungan dan Bangunan Air	32
Tabel 3.5	Kriteria Beban Gempa Untuk Desain Bendungan	32
Tabel 4.1	Parameter Tanah Embung Danau Asam	38
Tabel 4.2	Kemiringan Tanggul Tanah Homogen	39
Tabel 5.1	Tingkat Risiko Bendungan	52
Tabel 5.2	Koordinat Parabola Garis Depresi MAB	55
Tabel 5.3	Koordinat Parabola Garis Depresi MAB Input Pada Plaxis 2D	55
Tabel 5.4	Koordinat Parabola Garis Depresi MAN	58
Tabel 5.5	Koordinat Parabola Garis Depresi MAN Input Pada Plaxis 2D	58
Tabel 5.6	Parameter Tanah Metode Irisan Pias - pias	77
Tabel 5.7	Perhitungan Stabilitas Lereng Dengan Slice Method Kondisi	79
	Rapid Drawdown, $T = 100$ Th, $k = 0,0713$	
Tabel 5.8	Rekapitulasi Nilai Faktor Aman Embung Danau Asam	82

DAFTAR LAMPIRAN

Lampiran 1	Hasil Boring Pada Lokasi BH - 01	xxiv
Lampiran 2	Hasil Boring Pada Lokasi BH - 02	xxvii
Lampiran 3	Peta Lokasi Bench Mark (BM) dan Control Point (CP)	XXX
	Terpasang	
Lampiran 4	Peta Situasi Hasil Pengukuran Topografi	xxxi
Lampiran 5	Potongan Penampang Melintang	xxxii
Lampiran 6	Data Parameter Tanah	xxxiii
Lampiran 7	Perhitungan Stabilitas Lereng Dengan Slice Method Kondisi	xxxiv
	Rapid Drawdown, $T = 100$ Th, $k = 0,0713$, Hulu	
Lampiran 8	Perhitungan Stabilitas Lereng Dengan Slice Method Kondisi	xxxvii
	<i>Rapid Drawdown</i> , $T = 100$ Th, $k = 0,0713$, Hilir	
Lampiran 9	Perhitungan Stabilitas Lereng Dengan Slice Method Kondisi	xl
	Rapid Drawdown, $T = 5.000$ Th, $k = 0,1070$, Hulu	
Lampiran 10	Perhitungan Stabilitas Lereng Dengan Slice Method Kondisi	xliii
	<i>Rapid Drawdown</i> , $T = 5.000$ Th, $k = 0,1070$, Hilir	

DAFTAR NOTASI DAN SINGKATAN

Notasi :

τ	= tegangan geser tanah (kN/m ²)
с	= kohesi tanah (kN/m²)
σ	= tegangan normal (kN/m²)
φ	= sudut gesek dalam tanah (°)
Q	= debit aliran (m ³ /s)
A	= luas penampang (m ²)
v	= kecepatan (cm/s)
i	= gradien hidrolik
Δ_h	= perbedaan tinggi muka air pada ujung yang berbeda (m)
L	= panjang lapisan yang dilewati rembesan (m)
i _c	= gradien hidrolik material
i _e	= gradien hidrolik keluaran
X_r dan X_1	= gaya geser disepanjang sisi irisan
E_r dan E_1	= gaya normal efektif disepanjang sisi irisan
T _i	= resultan gaya geser efektif disepanjang dasar irisan atau beban komponen tangensial dari tiap irisan
N _i	= resultan gaya normal efektif disepanjang dasar irisan atau beban komponen vertikal dari setiap irisan
T _e	= komponen tangensial beban seismic dari irisan
N _e	= komponen vertikal beban seismic setiap irisan
U_r dan U_1	= tekanan air pori pada kedua sisi irisan
U _{wi}	= tekanan air pori pada dasar irisan

b	= lebar irisan
M _d	= momen pendorong longsor
<i>M</i> _r	= momen penahan longsor
Δl_i	= panjang lengkung lingkaran irisan ke – i (m)
W _i	= berat massa tanah irisan ke - i
<i>c</i> ′	= kohesi tanah efektif (kN/m ²)
φ'	= sudut gesek dalam tanah efektif (°)
PGAM	= percepatan puncak di permukaan tanah
FPGA	= faktor amplifikasi untuk PGA
SPGA	= percepatan tanah dipermukaan
К	= koefisien gempa terkoreksi
α1	= koreksi pengaruh daerah bebas (bendungan urugan : 0,7)
g	= gravitasi (980 cm/s ²)
FR _{total}	= faktor risiko total
FR _k	= faktor risiko kapasitas tampung
FR _t	= faktor risiko tinggi bendungan
FR _e	= faktor risiko kebutuhan evakuasi
FR _h	= faktor risiko tingkat kerusakan
γ _b	= berat volume tanah basah (kN/m ³)
Ύd	= berat volume tanah kering (kN/m ³)
γ _{sat}	= berat volume tanah jenuh (kN/m ³)
γ _w	= berat volume air (kN/m ³)
W	= kadar air (%)
e	= angka pori
G _s	= berat jenis

Singkatan :

SF	= Safety Factor
OBE	= Operating Basis Earthquake
MDE	= Maximum Design Earthquake
SNI	= Standar Nasional Indonesia
PGA	= Peak Ground Acceleration
MAK	= Muka Air Kosong
MAN	= Muka Air Normal
MAB	= Muka Air Banjir
RDD	= Rapid Draw Down

ABSTRAK

Embung merupakan bangunan air yang digunakan sebagai tampungan air. Salah satu komponen dari bangunan air adalah tanggul. Tanggul yang dibangun dengan tujuan untuk mencegah banjir harus memiliki elevasi yang lebih tinggi dibanding muka air banjir dan persyaratan yang memenuhi SNI. Embung Danau Asam berlokasi di Kabupaten Kotawaringin Barat, Provinsi Kalimantan Tengah.

Pada penelitian ini, analisis meliputi rembesan menggunakan metode *Cassagrande*, mencari koefisien gempa termodifikasi yang selanjutnya digunakan dalam analisis stabilitas tubuh embung. Analisis stabilitas tubuh embung dilakukan menggunakan bantuan program *Plaxis* 2D dan apabila mengalami keruntuhan, perhitungan dilanjutkan menggunakan metode manual berupa metode irisan. Analisis dilakukan dengan kondisi tanpa beban gempa dan diberi beban gempa berupa beban gempa OBE dan MDE berdasarkan kondisi muka air waduk kosong, normal, banjir, dan surut cepat.

Hasil analisis Plaxis 2D didapatkan angka tidak aman lereng ($SF_{izin} < 1,5$) kondisi muka air kosong 1,48 (hulu) dan 1,46 (hilir). Kondisi muka air normal sebesar 1,36 (hilir). Kondisi muka air banjir sebesar 1,18 (hilir). Kondisi surut cepat sebesar 1,14 (hulu) dan 1,22 (hilir). Berdasarkan akibat beban gempa OBE angka tidak aman lereng ($SF_{izin} < 1,2$) kondisi muka air normal 1,15 (hilir). Kondisi muka air banjir 0,99 (hilir). Kondisi surut cepat 0,77 (hulu) dan 0,81 (hilir). Berdasarkan akibat beban gempa MDE angka tidak aman lereng ($SF_{izin} <$ 1,0) kondisi muka air banjir 0,88 (hilir). Kondisi surut cepat 0,64 (hulu) dan 0,67 (hilir). Angka tidak aman akibat pengaruh terhadap bahaya piping terjadi pada kondisi muka air banjir 2,67 < 4.

ABSTRACT

Embung is water building that is used as a reservoir. One of the component is the embankment. The embankments was built on purpose of preventing from flood. It must have a higher elevation than the elevation of flooding and follow the regulation that based in SNI. Embung Danau Asam is located in Kotawaringin Barat regency, Central Kalimantan Province.

In this study, the analysis includes seepage using Cassagrande method, looking for modified earthquake coefficients which are then used in the analysis of the stability of the embankment. The analysis of the embankment was carried out using Plaxis 2D and if it collapsed, the calculation is continued using the manual method as it named slice of method. The analysis was carried out under the conditions without earthquake and given the earthquake such as OBE and MDE based on the condition of an empty water level, normal, flood, and rapid draw down.

The results of the analysis using Plaxis 2D show that the unsafety factor slope ($SF_{permit} < 1.5$) in empty water level 1.48 (upstream) and 1.46 (downstream). In normal water level 1.36 (downstream). In flood water level 1.18 (downstream). In rapid draw down 1.14 (upstream) and 1.22 (downstream). Then, the given earthquake in the form of OBE with unsafety factor slope ($SF_{permit} <$ 1.2) in normal water level 1.15 (downstream). In flood water level 0.99 (downstream). In rapid drawdown 0.77 (upstream) and 0.81 (downstream). Then, the given earthquake in the form of MDE with unsafety factor slope ($SF_{permit} <$ 1.0) in flood water level 0.88 (downstream). In rapid drawdown 0.64 (upstream) and 0.67 (downstream). The unsafety factor that was caused by the influence of the piping was occurred in flood water level 2.67 < 4.

BAB I PENDAHULUAN

1.1 Latar Belakang

Pulau Kalimantan memiliki keindahan alam yang menjadi potensi besar pada sektor pariwisata. Berdasarkan data Dinas Kehutanan Provinsi Kalimantan Tengah, wilayah ini memiliki 11 sungai besar, apabila dikelola dengan benar maka sungai – sungai besar di Kalimantan bisa menjadi sumber penghidupan yang bisa dimanfaatkan diberbagai macam sektor. Namun, karena alih fungsi lahan, hutan dibabat secara masif di daerah bagian hulu, Hal ini menyebabkan bencana alam berupa banjir sering terjadi, salah satu solusi untuk mengatasi permasalahan banjir, diantaranya membangun bangunan air. Salah satu komponen dari bangunan air yaitu tanggul. Tanggul yang dibangun dengan tujuan untuk mencegah banjir harus memiliki elevasi yang lebih tinggi dibanding muka air banjir yang mungkin terjadi. Pada umumnya, tanggul yang sering dibangun di Indonesia menggunakan material urugan tanah. Tanggul yang dibangun untuk menampung tampungan air biasanya terdapat pada bangunan air berupa bendungan atau embung. Salah satu bangunan air yang ada di Kabupaten Kotawaringin Barat yaitu Embung Danau Asam. Pembangunan embung ini juga dapat dimanfaatkan sebagai pariwisata air.

Kondisi fisik wilayah Kalimantan Tengah terdiri dari daerah pantai dan rawa yang terdapat di wilayah bagian selatan. Tubuh tanggul dari Embung Danau Asam ini dibangun diatas tanah lunak dan berpotensi mengalami penurunan, karena persebaran tanah lunak cukup luas di Kalimantan. Struktur bangunan rentan mengalami kegagalan saat dibangun diatas tanah lunak. Kegagalan struktur berupa keruntuhan bendungan dapat disebabkan akibat dari terjadinya *overtopping*. Peristiwa ini terjadi karena tinggi elevasi muka air banjir melebihi tinggi puncak bendungan yang bisa menyebabkan aliran melewati puncak tubuh bendungan. Kejadian *overtopping* dapat menyebabkan ambrolnya atau runtuhnya bendungan. Apabila bangunan air ambrol, maka akan menimbulkan kerugian baik secara material ataupun non-material. Agar tidak terjadi kelongsoran maka perlu adanya sebuah perkuatan lereng.

1.2 Rumusan Masalah

Berdasarkan latar belakang tersebut, dirumuskan masalah sebagai berikut ini.

- 1. Bagaimana pengaruh rembesan akibat tinggi muka air normal dan muka air banjir pada timbunan ?
- 2. Bagaimana nilai angka aman timbunan pada saat variasi muka air kosong, muka air normal, muka air banjir, dan kondisi surut cepat tanpa beban gempa ?
- 3. Bagaimana angka aman timbunan pada saat variasi muka air kosong, muka air normal, muka air banjir, dan kondisi surut cepat diberi beban gempa OBE ?
- 4. Bagaimana angka aman timbunan pada saat variasi muka air kosong, muka air normal, muka air banjir, dan kondisi surut cepat diberi beban gempa MDE ?
- 5. Bagaimana hasil analisis stabilitas lereng menggunakan program *Plaxis* 2D pada saat variasi muka air kosong, muka air normal, muka air banjir, dan kondisi surut cepat serta perhitungan manualnya apabila terjadi keruntuhan ?

1.3 Tujuan Penelitian

Tujuan dari penelitian ini adalah sebagai berikut.

- 1. Mengetahui pengaruh rembesan akibat tinggi muka air normal dan muka air banjir pada timbunan.
- 2. Mengetahui nilai angka aman timbunan pada saat variasi muka air kosong, muka air normal, muka air banjir, dan kondisi surut cepat pada kondisi tanpa gempa.
- 3. Mengetahui nilai angka aman timbunan pada saat variasi muka air kosong, muka air normal, muka air banjir, dan kondisi surut cepat diberi beban gempa OBE.
- 4. Mengetahui nilai angka aman timbunan pada saat variasi muka air kosong, muka air normal, muka air banjir, dan kondisi surut cepat diberi beban gempa MDE.

5. Mengetahui hasil analisis stabilitas lereng menggunakan program *Plaxis* 2D pada saat variasi muka air kosong, muka air normal, muka air banjir, dan kondisi surut cepat serta perhitungan manualnya apabila terjadi keruntuhan.

1.4 Manfaat Penelitian

Penelitian dilakukan dengan harapan memperoleh manfaat agar pengetahuan bertambah mengenai stabilitas lereng dan mengetahui adanya program komputer dalam membantu menghitung stabilitas lereng.

1.5 Batasan Penelitian

Batasan masalah dalam penelitian tugas akhir ini adalah sebagai berikut.

- Lokasi berada di Kelurahan Kotawaringin Hilir, Kecamatan Kotawaringin Lama, Kabupaten Kotawaringin Barat, Provinsi Kalimantan Tengah.
- 2. Analisis stabilitas lereng menggunakan metode irisan (*method of slices*) dan program *Plaxis*.
- 3. Menghitung dan menganalisis stabilitas timbunan.
- 4. Data tanah didapat dari laporan geoteknik / mekanika tanah *review* desain embung Danau Asam Kabupaten Kotawaringin Barat.
- 5. Variasi muka air yang dianalisis berupa muka air kosong, muka air normal, muka air banjir dan kondisi surut cepat.

Lokasi berada di Kelurahan Kotawaringin Hilir, Kecamatan Kotawaringin Lama, Kabupaten Kotawaringin Barat, Provinsi Kalimantan Tengah, seperti Gambar 1.1 berikut.

Gambar 1.1 Lokasi Embung Danau Asam (Sumber: Laporan *Review* Desain Embung Danau Asam)

Lokasi potongan tanggul yang akan dilakukan untuk penelitian adalah Patok P14 yang disajikan pada Gambar 1.2 berikut.

BAB II

TINJAUAN PUSTAKA

2.1 Tinjauan Umum

Longsor merupakan bagian gerakan tanah yang mengalami perpindahan dengan membawa material berupa tanah juga batuan bergerak ke arah bawah, menuruni atau keluar dari lereng. Ketentuan lereng merujuk pada bentuk permukaan yang memiliki sudut terhadap bidang horizontal, baik lereng yang terbentuk secara alami maupun dibentuk karena manusia yang memiliki tujuan tertentu seperti pekerjaan menimbun dalam pembuatan tanggul. Tanggul yang dibangun di atas tanah lunak, berpotensi untuk mengalami keruntuhan. Hal ini karena adanya gaya yang bekerja mendorong condong ke arah bawah dan pengaruh muka air seiring dengan waktu yang menyebabkan tanah menjadi jenuh sehingga tanah tidak stabil dan longsor.

Pergerakan tanah akibat gaya dorong, akan dilawan dengan gaya tahan tanah agar tanah tetap stabil. Apabila gaya dorong tanah jauh lebih besar dibanding gaya penahan tanah, maka lereng akan mengalami keruntuhan tanah atau longsor. Gaya pendorong tanah dipengaruhi oleh beberapa faktor, diantaranya besarnya sudut kemiringan lereng, air, beban luar dan berat jenis material pembentuk lereng. Sedangkan gaya penahan dipengaruhi oleh kekuatan material tanah juga batuan dan kepadatan tanahnya termasuk kuat gesernya. Longsor yang mungkin terjadi pada tanggul, berupa longsor rotasi. Longsor rotasi memiliki bidang tanah yang mengalami keruntuhan berbentuk cekung atau busur lingkaran.

2.2 Analisis Timbunan Diatas Tanah Lunak

Tanah lunak yang dimaksud dalam modul Pelatihan Geosintetik volume 2. Perkuatan Timbunan di Atas Tanah Lunak adalah tanah yang didefinisikan tanah gambut dan tanah lempung dengan gaya geser kurang dari 25 kN/m². Pada beberapa kondisi, tanah dasar pada lokasi tertentu mengalami kondisi seperti tanah dasar memiliki zona lemah atau rongga akibat lubang amblasan, aliran sungai tua, adanya kantung lanau, lempung ataupun gambut. Dalam pedoman KP – 06 mengenai parameter bangunan, analisis untuk menghitung kemiringan – kemiringan yang penting yaitu menggunakan metode Irisan *Bishop (Bishop method of slices)*.

Hamdani, (2019) melakukan penelitian tugas akhir pada ruas jalan tol Balikpapan – Samarinda seksi V. STA 9 + 726 s/d 926. Peneliti menemukan masalah dalam proses pengerjaannya berupa kondisi tanah yang lunak yang akan mempengaruhi kualitas dan ketahanan jalan. Kondisi tanah tersebut perlu dilakukan perbaikan agar mampu mendukung beban struktur jalan dan beban lalu lintas. Hamdani melakukan analisis dengan mencari perbandingan angka aman antara tanah dengan kondisi tanpa dan dengan perkuatan *sheet pile* dan *geotextile*. Peneliti melakukan perhitungan secara manual dengan menggunakan metode fellenius.

Usnaini, (2007) menganilisis sifat – sifat fisik dan jenis lumpur lapindo, juga membandingkan antara metode *Bishop*, metode *Janbu* serta *Ordinary* untuk mendapatkan faktor aman minimum (SFmin). Simulasi lereng memiliki ketinggian badan jalan 2,1 meter, berat volume tanah 1,7 t/m³, sudut kemiringan 45°, serta lebar badan jalan 6 meter. Nilai aman minimum yang didapat tidak berbeda jauh dari beberapa metode yang digunakan. Faktor aman yang diperoleh dipengaruhi berat volume tanah basah (γ b), tinggi badan jalan, dan kemiringan lereng. semakin besar nilai – nilai tersebut maka ketidakstabilan lereng atau tingkat kelongsoran lereng semakin besar.

2.3 Stabilitas Lereng Bendungan Dengan Gempa

Sandi, (2020) melakukan penelitian pada bendungan Pondok. Bendungan Pondok dikategorikan sebagai bendungan berisiko tinggi, sehingga memiliki beban gempa dengan kala ulang (T) 100 tahun untuk gempa OBE dan kala ulang (T) 5.000 tahun untuk gempa MDE. Analisis dilakukan dengan program *Geostudio* dan manual. Didapat nilai yang relatif aman untuk bendungan pada kondisi muka air banjir, muka air normal, dan muka air minimum. Syarat nilai minimum angka aman pada kondisi tanpa beban gempa sebesar 1,5, dengan beban gempa OBE sebesar 1,2, dan dengan beban gempa MDE sebesar 1. Sedangkan pada kondisi surut cepat didapat nilai angka aman sebagai berikut. Perhitungan angka aman dengan garis freatik manual tanpa adanya beban gempa memiliki nilai angka aman 1,25 (tidak aman), dengan beban gempa OBE sebesar 0,929 (tidak aman) dan dengan beban gempa MDE sebesar 0,685 (tidak aman). Kemudian perhitungan dengan bantuan program *Geoslope* didapat nilai angka aman tanpa gempa sebesar 1,63 (aman), dengan beban gempa OBE sebesar 0,796 (tidak aman), dan dengan beban gempa MDE sebesar 0,576 (tidak aman).

Dipa (2017) melakukan evaluasi keamanan tubuh Bendungan Saradan dengan menganalisis angka aman pada dua stasiun, yaitu stasiun 03+50 (sebelah kiri bangunan *intake*) dan stasiun 06+00 (sebelah kanan *spillway*). Analisis dilakukan dengan bantuan program *Plaxis 8.2* dengan kondisi tidak diberi beban gempa dan diberi beban gempa OBE dan MDE. Nilai angka aman yang dinyatakan tidak aman yaitu pada stasiun 03+50 dengan SF = 1,344 pada saat muka air waduk kosong, SF = 1,318 pada saat muka air waduk surut tiba – tiba dari muka air penuh, dan SF = 1,323 pada saat muka air waduk surut tiba – tiba dari muka air normal. Selanjutnya kondisi tidak aman juga terjadi akibat gempa periode (T) = 100 th dengan SF = 1,029 untuk kondisi muka air penuh, SF = 0,994 berdasarkan kondisi muka air waduk surut tiba-tiba dari muka air waduk surut tiba-tiba dari muka air mormal. Selangkan akibat gempa periode (T) = 3000 th dengan SF =

0,786 akibat muka air waduk surut tiba-tiba dari muka air penuh, SF = 0,809 berdasarkan kondisi muka air waduk surut tiba-tiba dari muka air normal.

2.4 Pengaruh Muka Air terhadap Kestabilan Lereng

Sandi, (2020) melakukan analisis bangunan tubuh Bendungan Pondok yang terletak di Desa Dero, Kecamatan Beringin, Kabupaten Ngawi, Jawa Timur. Bendungan ini dibangun pada tahun 1992 dengan perencanaan material urugan sehingga perlu analisis lebih lanjut mengenai zona penyusun tubuh bendungan seperti kemiringan hulu dan hilir bendungan yang efektif dan efisien, juga ketebalan masing – masing bagian hulu dan hilirnya. Data penelitian yang digunakan peneliti berupa data sekunder seperti data teknis bendungan, data geometri bendungan dan data tanah bendungan. Peneliti menggunakan metode cassagrande untuk memperhitungkan rembesan pada bendungan, metode bishop untuk mencari perhitungan stabilitas lereng, dan melakukan pemodelan melalui *software GeoStudio*.

Ardiansyah, (2017) melakukan penelitian pada lereng tanah km. 77 di jalan Banjarnegara – Karangkobar. Peneliti memodelkan lereng menjadi dua kondisi yaitu kondisi muka air minimum dan maksimum dengan data masukan pembebanan yang sama yaitu beban kendaraan dan beban gempa. Peneliti melakukan penelitian dengan tujuan untuk mengetahui angka aman lereng dengan kondisi elevasi muka air tanah yang berada pada kedalaman 5 m dan 1 m dari permukaan tanah. Peneliti menerapkan agka aman dengan persyaratan > 1,5. Pada lereng asli dengan beban kendaraan untuk lereng pada kondisi muka air tanah normal dan ekstrim tidak memenuhi persyaratan angka aman. Lereng yang diperkuat dengan dinding penahan tanah pada kondisi muka air tanah yang sama, nilai angka aman memenuhi persyaratan. Sehingga peneliti menyimpulkan, naiknya muka air tanah terhadap angka aman dapat mengurangi nilai angka aman lereng, karena berat jenis air menambah beban terhadap lereng. Krisdianto, (2021) melakukan penelitian terhadap perubahan ketinggian muka air pada hulu bendungan dengan meninjau keamanan stabilitas tubuh bendungan. Peneliti melakukan perhitungan analisis secara manual dan bantuan aplikasi perangkat lunak Geostudio SLOPE/W. Besar debit rembesan menggunakan metode *Cassagrande* yang selanjutnya dilanjutkan dengan menganalisis keamanan lereng bendungan menggunakan metode *Fellenius*. Peneliti mengikuti angka aman yang ditentukan dalam SNI 8064:2016. Peneliti memberikan hasil analisis dengan menunjukkan angka aman bendungan tanpa beban dan dengan beban gempa untuk dibeberapa kondisi muka air pada bagian lereng hulu dan hilir bendungan.

Harison, dkk (2013) melakukan penelitian tentang analisa geoteknik dan penanggulangan kelongsoran Tanggul Sungai Banjir Kanal Barat wilayah Semarang. Lebih tepatnya pada lereng rawan longsor berada di lokasi WF – 80 dan WF – 91. Perhitungan dilakukan manual dengan menggunakan metode *Fellinius* dan diperoleh angka aman sebesar 0,98. Selanjutnya angka aman dihitung dengan bantuan program melalui *software finite element* berupa *Plaxis* pada kondisi lereng telah diberi perkuatan dinding penahan tanah sebesar 1,302 dan perkuatan dinding penahan tanah disertai *bored pile* sebesar 1,363. Peneliti berkesimpulan bahwa kelongsoran disebabkan karena dasar sungai yang dangkal sehingga tinggi muka air banjir akan bersejajar dengan tinggi tanggul. Hal ini akan mengurangi daya dukung tanah akibat rendaman air.

Nanda dan Hamdhan (2016) melakukan penelitian terhadap bendungan tipe urugan dengan melakukan analisis rembesan dan stabilitas yang dihitung menggunakan metode elemen hingga dengan model 2D dan 3D pada program *Plaxis AE*. Analisis menggunakan variasi pembebanan, saat selesai konstruksi, muka air minimum, muka air maksimum, dan surut cepat yang keseluruhan kondisi akan dikombinasikan dengan beban gempa pseudostatik. Pada pembeban setelah konstruksi, muka air minimum, muka air maksimum dan surut cepat model 2D sebelum diberi beban gempa diperoleh nilai faktor aman berturut – turut sebesar 2,088; 1,876; 1,965; dan 1,750. Selanjutnya, pada urutan yang sama dengan kondisi diberi beban gempa adalah 1,823; 1,688; 1,461; dan 1,452.

2.5 Bahaya *Pipping* Bendungan

Penelitian yang dilakukan oleh Amran dan Safi'i (2020) daerah Irigasi Rawa Seputih Surabaya bertujuan untuk merehabilitasi lereng tanggul penahan banjir yang mampu menahan debit banjir pada periode ulang tertentu dan menentukan faktor aman pada lereng tanggul yang akan direncanakan. Peneliti menggunakan metode irisan dengan cara *Fellenius* dalam mendapatkan faktor keamanan. Nilai yang didapat lebih besar dari yang disyaratkan yaitu sebesar 2,902. Debit rembesan dihitung menggunakan cara *Schaffernak* dengan kesimpulan bahwa hasil rembesan tersebut akan menyebabkan gejala *pipping* (proses terangkutnya butir – butir tanah halus yang menyebabkan aliran air dalam tubuh tanggul).

Gunawan dkk. (2017) melakukan penelitian dalam mendesain bronjong talud dan mendesain dimensi bendungan pada embung Manjang di Desa Ngawu, Kecamatan Playen, Kabupaten Gunung Kidul, DIY. Diawali dengan membentuk garis longsor agar ditemukan angka aman sebesar 2,545 menggunakan metode *Fellinius* dan desain bronjong dengan kedalaman 3 m dengan tinggi pondasi sebesar 1 meter dan lebar 4 m. Peneliti juga melakukan perhitungan stabilitas terhadap bahaya guling, geser, *pipping* dan daya dukung tanah dengan nilai sebagai berikut 5,053 ; 2,0 ; 6 ; dan 3,9.

Seroy dkk. (2020) melakukan penelitian pada embung Nunuka yang terletak di Desa Nunuka Kecamatan Bolangitang Timur Kabupaten Bolaan Mongondow Utara. Penelitian dilakukan untuk mencari besar faktor keamanan pada tubuh embung terhadap kestabilan lereng dan bahayanya terhadap *pipping* serta deformasi. Peneliti juga melakukan analisis lereng menggunakan program *Plaxis* dan *Geostudio*. Faktor keamanan yang didapat menggunakan Plaxis 8.5 memiliki faktor aman berkisar antara 1,722 – 1,813. Sedangkan, faktor keamanan yang didapat menggunakan *Geostudio* berkisar antara 1,63 – 1,1988. Analisis rembesan pada Embung Nunuka dilakukan pada kondisi aliran langgeng pada tinggi muka air dengan elevasi +90,5 dan elevasi +91,7. Pada perhitungan *pipping*, faktor keamanan terhadap erosi buluh pada zona lempung dinyatakan sebagai perbandingan antara gradien kritis (Ic) dengan komponen vertikal dari gradien keluaran (Iy), dengan hasil nilai faktor keamanan yang memenuhi persyaratan yaitu \geq 4 (tanpa filter) dan \geq 2 (dengan filter).

2.6 Perbandingan Penelitian Terdahulu dengan Sekarang

Peneliti terdahulu telah melakukan penelitian yang membantu penyusun untuk melakukan penelitian dengan membandingkan hasil penelitian dari peneliti – peneliti sebelumnya. Berikut Tabel 2.1 merupakan perbandingan penelitian terdahulu dan yang akan datang.

Peneliti	Usnaini (2007)	Harison, dkk. (2013)	Nanda Dan Hamdhan (2016)	Dipa (2017)
Judul	Analisis Stabilitas Lereng Pada Badan Jalan Yang Terbuat Dari Lumpur Lapindo	Analisa Geoteknik Dan Penanggulangan Kelongsor-an Tanggul Sungai Banjir Kanal Barat Semarang	Analisis Rembesan dan Stabilitas Bendungan Bajulmati dengan Metode Elemen Hingga Model 2D dan 3D	Evaluasi Keamanan Tubuh Bendungan Saradan Menggunakan Plaxis 8.2
Tujuan	Mengetahui sifat fisis dan jenis tanah lumpur Lapindo serta angka aman minimum.	Mengetahui kondisi pergerakan tanah pada lereng akibat ketidakstabilan lereng dan mengetahui nilai angka aman.	Melakukan analisis terhadap rembesan dan stabilitas yang akan terjadi pada bendungan menggunakan program kompu- ter <i>Plaxis</i> AE dengan model 2D dan 3D. Sehingga diketahui kirteria keamanan berdasarkan hasil analisis.	Mengetahui evaluasi keamanan bendungan urugan menggunakan metode elemen hingga pada Plaxis 8.2
Metode	Membandingkan faktor aman metode <i>Bishop, Janbu,</i> serta <i>Ordinary.</i> Menganalisis stabilitas melalui program <i>Geoslope</i>	Perhitungan manual menggunakan metode <i>Fellinius</i> dan software finite element berupa <i>Plaxis</i> .	Pemodelan dan analisis rembesan dihitung menngunakan <i>Plaxis</i> AE dengan metode elemen hingga.	Analisis dilakukan menggunakan metode elemen hingga dari <i>Plaxis</i> 8.2 dan bila dinyatakan collapse lereng dihitung kembali melalui metode pias – pias (method of slice)
Hasil	Nilai angka aman pada setiap metode tidak berbeda jauh satu sama lainnya. Begitu juga program <i>geoslope</i> . Semakin besar berat volume tanah, tinggi badan jalan, dan kemiringan lereng maka tingkat kelongsoran juga semakin besar.	Angka aman dihitung melalui metode <i>Fellinius</i> adalah sebesar 0,98. Lereng yang diberi perkuatan memiliki angka aman dari <i>Plaxis</i> sebesar 1,302 dengan dinding penahan tanah dan 1,363 dengan dinding penahan tanah disertai <i>bored pile</i> .	Stabilitas Bendungan Bajulmati pada kondisi setelah konstruksi, muka air minimum, muka air maksimum, dan surut cepat baik tanpa gempa dan diberi beban gempa memiliki nilai angka aman $\geq 1,5$.	Kondisi yang memiliki nilai angka aman tidak memenuhi syarat baik tanpa beban gempa dan diberi beban gempa yaitu saat muka air waduk kosong, saat muka air waduk surut tiba – tiba dari muka air penuh dan muka air waduk surut tiba – tiba dari muka air normal

Tabel 2.1 Perbandingan Penelitian Terdahulu dengan Sekarang

Peneliti	Gunawan, dkk. (2017)	Ardiansyah (2017)	Hamdani (2019)	Sandi (2020)
Judul	Stabilitas Lereng Dan Bendungan	Pengaruh Kondisi Muka	Analisis Stabilitas Timbunan	Analisis Stabilitas Tubuh
	Pada Embung Desa Ngawu,	Air Tanah Terhadap	Jalan Di Atas Tanah Lunak	Bendungan Mengguna-kan
	Kecamatan Playen, Kabupaten	Stabilitas Lereng Jalan	Dengan Perkuatan Sheet Pile	Metode Bishop Dan
	Gunung Kidul, DIY.	Dengan Dinding Penahan	Dan Geotekstil	Perhitungan Rembesan
		Tanah		Dengan Pendekatan Metode
				Cassagrande
	Peneliti memberikan alternatif	Mengetahui faktor aman	Mengetahui nilai angka aman	Mengetahui tingkat
	perbaikan kuat dukung tanah	lereng asli pada muka air	pada lereng timbunan tanah	klasifikasi resiko bendungan,
	dengan mendesain bronjong talud	tanah sedalam 5m dan 1m	asli, diperkuat Sheet Pile, dan	angka aman pada variasi
Tuiuon	dan dimensi bendungan pada	dari permukaan tanah, dan	diperkuat Geotextile.	muka air (banjir, normal,
i ujuali	Embung Manjang.	bisa mendesain dinding		minimum, rapid drawdown),
		penahan tanah dengam		rembesan dan pengaruhnya
		pertimbangan beban		terhadap stabilitas.
		kendaraan dan gempa.		
	Analisis stabilitas lereng dihitung	Stabilitas lereng dianalisis	Membandingkan angka aman	Perhitungan rembesan
	melalui metode Fellinius, selain itu	menggunakan aplikasi	antara tanah dengan dan tanpa	menggunakan metode
	peneliti meninjau stabilitas	program <i>Plaxis</i> 8.2.	perkuatan menggunakan	Cassagrande, stabilitas
Metode	terhadap guling, geser, piping dan		program <i>Plaxis</i> Versi 8.6.	lereng secara manual
metode	daya dukung tanah.			menggunakan metode
				Bishop, dan permodelan
				tubuh bendungan dengan
				program <i>geostudio</i>
Hasil	Didapatkan desain bronjong dengan	Hasil pada lereng asli,	Nilai angka aman pada lereng	Bendungan Pondok
	kedalaman 3 m dengan tinggi	nilai angka aman tidak	asli menunjukkan lereng	dikategorikan bendungan
	pondasi sebesar 1 meter dan lebar 4	memenuhi syarat.	terjadi keruntuhan. Nilai angka	berisiko tinggi. Dari semua
	m. Peneliti juga melakukan	Kemudian, pada lereng	aman pada lereng timbunan	kondisi muka air didapatkan
	perhitungan stabilitas terhadap	dengan dinding penahan	diperkuat perkuatan tanah	bahwa bendungan aman
	bahaya guling, geser, pipping dan	tanah nilai faktor aman	memberikan hasil lereng yang	terhadap kelongsoran,
	daya dukung tanah dengan nilai	memenuhi syarat.	aman terhadap keruntuhan,	kecuali dalam kondisi <i>rapid</i>
	5,053 ; 2,0 ; 6 ; dan 3,9.		penurunan, dan geser.	drawdown.

Lanjutan Tabel 2.1 Perbandingan Penelitian Terdahulu dengan Sekarang

Peneliti	Amran dan Safi'i (2020)	Seroy, dkk. (2020)	Krisdianto (2021)	Hapsari (2023)
Judul	Analisis Stabilitas Lereng Pada Tanggul Penahan Banjir Sungai Way Seputih Kecamatan Seputih Surabaya Kabupaten Lampung Tengah Provinsi Lampung	Analisa Kestabilan Bangunan Embung Nunuka	Analisis Stabilitas Pada Tubuh Bendungan Dengan Irisan <i>Fellenius</i> Dan Debit Rembesan Dengan Metode <i>Cassagrande</i> Menggunakan <i>Software Geostudio</i>	Analisis Stabilitas Timbunan Tubuh Embung (Tanggul) Di Atas Tanah Lunak Dengan <i>Plaxis</i> 2D
Tujuan	Merehabilitasi lereng tanggul penahan banjir yang menahan debit banjir pada periode ulang tertentu dan menentukan faktor aman lereng tanggul	Menemukan besar faktor keamanan pada tubuh embung terhadap kestabilan lereng dan bahayanya terhadap <i>pipping</i> serta deformasi.	Mengetahui tingkat klasifikasi resiko bendungan, angka aman pada variasi muka air dengan dan tanpa beban, serta rembesan bendungan.	Mengetahui nilai angka aman dari variasi muka air baik tanpa beban gempa dan diberi beban gempa dari tingkat klasifikasi risiko bendungan.
Metode	irisan berupa <i>Fellenius</i> untuk mencari faktor keamanan dan debit rembesan dihitung menggunakan cara <i>Schaffernak</i>	lereng menggunakan program <i>Plaxis</i> dan <i>Geostudio</i>	mengguna-kan metode <i>Cassagrande</i> , stabilitas lereng dengan metode <i>Fellenius</i> , dan permodelan tubuh bendungan dengan program geostudio	metode <i>Cassagrande</i> . Analisis stabilitas lereng menggunakan <i>Plaxis</i> 2D, apabila kondisi collapse dilanjutkan perhitungan manual melalui metode pias -pias (<i>method of</i> <i>slice</i>)
Hasil	Didapatkan nilai faktor aman sebesar 2,902. Rembesan diprediksi akan menyebabkan gejala <i>pipping</i> .	Faktor keamanan yang didapat menggunakan <i>Plaxis</i> 8.5 berki- sar antara 1,722 – 1,813. Sedangkan, faktor keamanan yang didapat menggunakan <i>Geostudio</i> berkisar antara 1,63 – 1,1988. Faktor keamanan terha- dap bahaya <i>pipping</i> meme-nuhi persyaratan yaitu \geq 4 (tanpa filter) dan \geq 2 (dengan filter).	Bendungan Pondok dikategorikan bendungan berisiko tinggi. Bendungan aman terhadap kelongsoran disetiap variasi muka air.	Angka aman pada variasi muka air kosong bernilai relatif sama. Angka aman pada variasi muka air normal dan banjir memiliki potensi kerun- tuhan pada bagian hilir, sedangkan pada surut cepat potensi keruntuhan akan berada pada kedua sisi.

Lanjutan Tabel 2.1 Perbandingan Penelitian Terdahulu dengan Sekarang

BAB III

LANDASAN TEORI

3.1 Tanah

Tanah terbentuk akibat proses teruarainya batuan menjadi partikel yang jauh lebih kecil akibat proses pelapukan secara fisik atau mekanis dan kimia (Hardiyatmo, 2014). Pelapukan secara fisik terjadi akibat erosi dari angin dan air, serta perubahan suhu yang menyebabkan batuan besar terpecah menjadi partikel – partikel kecil dengan komposisi yang sama dengan batuan induk. Pelapukan secara kimia sering terjadi pada daerah dengan intensitas hujan yang cukup tinggi. Reaksi batuan terhadap asam, basa, oksigen dan karbondioksida akan mengubah mineral yang ada di dalam batuan menjadi mineral – mineral baru yang dikenal dengan mineral lempung. Sehingga dari berbagai referensi, tanah merupakan campuran dari unsur mineral dan material organik seperti tumbuhan yang membusuk. Menurut Darwis (2018) Partikel tanah tersusun secara longgar, menciptakan formasi tanah yang terdiri dari ruang pori. Diantara butiran tanah yang terdapat ruang pori, akan terisi udara dan air. Massa tanah jenuh air sebagian digambarkan pada Gambar 3.1 sebagai berikut.

Gambar 3.1 Massa Tanah Jenuh Air Sebagian

3.1.1 Tanah Lunak

Klasifikasi tanah yang dilakukan untuk tujuan teknik didasarkan pada indentifikasi tanah berupa ukuran butir, gradasi, plastisitas dan kompresibilitas. Tanah lunak sering menimbulkan permasalahan pada struktur diatasnya yang disebabkan daya dukung tanah yang rendah dan waktu konsolidasi yang lama. Permasalahan tanah lunak perlu perbaikan agar tidak terjadi penurunan setelah konstruksi dan agar tidak terjadi kerusakan bangunan sebelum mencapai umur konstruksi.

3.2 Lereng Tanggul

Tanggul merupakan bangunan menerus digunakan untuk mengatur muka air. Pada umumnya menggunakan konstruksi urugan tanah dengan volume yang sangat besar. Tanggul memiliki tembok miring, sehingga kemiringan tanggul perlu didesain dan dianalisis sedemikian rupa. Analisis stabilitas pada permukaan yang miring ini disebut dengan analisis stabilitas lereng. Tujuan dilakukan analisis stabilitas lereng adalah menentukan faktor aman dari bidang longsor. Permukaan tanah yang memiliki elevasi berbeda secara ekstrim, memiliki gaya dorong yang bekerja ke arah bawah, dari tanah yang memiliki elevasi tinggi ke arah tanah dengan elevasi yang rendah. Reaksi dari gaya dorong tanah yang bergerak ke arah bawah yaitu gaya penahan tanah. Gaya yang bekerja menahan tanah, memberikan ke stabilan tanah apabila lebih besar dibanding gaya pendorongnya. Gaya penahan berupa gesek, lekatan antar tanah (kohesi), dan kekuatan geser tanah. Karena tanah mempunyai kohesi (c) dan sudut gesek dalam (ϕ), tegangan geser tanah dapat dicari melalui penyelesaian yang diberikan Mohr Coulomb (1776) dengan Persamaan 3.1 berikut.

 $\tau = c + \sigma \operatorname{tg} \varphi$ (asumsi tanpa air pori) (3.1)

Sehingga salah satu hal yang perlu dilakukan untuk membangun tanggul yaitu dilakukannya penyelidikkan tanah, sehingga didapat kekuatan geser dan kohesi yang bekerja pada partikel tanah.

3.2.1 Keruntuhan Lereng

Faktor – faktor dari lereng yang tidak stabil menurut Cruden dan Varnes (1996), dibedakan menjadi faktor penyebab dan faktor pemicu. Faktor penyebab berupa kemiringan lereng dan jenis batuan dan tanah. Sedangkan faktor pemicu menurut Goenadi et al. (2003), dikelomppokan menjadi faktor pemicu bersifat tetap (statis) dan berubah (dinamis). Faktor pemicu bersifat tetap (statis) dilihat dari jenis litologi penyusun struktur geologi dan sifat fisik tanah. Sedangkan faktor pemicu bersifat berubah (dinamis) berupa curah hujan dan penggunaan lahan. Tanah longsor dengan bidang gelincir mendekati bentuk busur lingkaran disebut dengan longsor rotasi. Biasanya terjadi pada timbunan atau galian dengan tanahnya yang homogen. Bidang longsor yang digambar berbentuk lingkaran dimaksudkan dalam mempermudah perhitungan dengan pertimbangan bentuk yang mendekati keadaan sebenarnya di alam. Selain cara analisis yang diperhitungkan untuk kondisi tanah homogen, ada kondisi dimana tanah tidak homogen dan memiliki bentuk aliran serta berat volume tanah tidak menentu akibat aliran rembesan. Dengan kondisi demikian, metode yang cocok digunakan yaitu metode irisan (method of slice). Kelongsoran lereng yang digambar berbentuk lingkaran dapat dilihat pada Gambar 3.2 berikut.

Gambar 3.2 Kelongsoran Rotasi Lereng (Sumber: Das M, 2002)
3.3 Rembesan

Rembesan pada air waduk merupakan air yang mengalir melalui material yang porus baik dari dalam tubuh tanggul atau fondasinya. Rembesan dapat menyebabkan stabilitas tanggul terganggu akibat *pipping* yang membentuk rongga sehingga mengakibatkan fondasi bangunan mengalami penurunan.

3.3.1 Hukum Darcy

Air yang merembes pada waduk yang dibangun dengan tanggul homogen memiliki debit rembesan yang bisa dihitung melalui persamaan Hukum Darcy. Persamaan yang digunakan untuk perhitungan rembesan disajikan pada Persamaan 3.2 dan Persamaan 3.3 sebagai berikut.

Rumus umum	: Q	$= \mathbf{A} \times \mathbf{V}$	(3.2)
Rumus turunan	$: \frac{d_h}{d_l}$	=i	
	Q	$= -\mathbf{K} \times \mathbf{A} \times \frac{h_l}{L}$	
		$= -\mathbf{K} \times \mathbf{A} \times \frac{d_h}{d_l}$	
	Q	$= -\mathbf{K} \times \mathbf{A} \times \mathbf{i}$	(3.3)
Dengan,			
Q : Debit Alira	un (m³/s)		
V : Kecepatan	Darcy (cm/s)	
K : Konduktiv	itas hidr	olik, ketepatan (cm/s)	
i : Gradien hie	drolik		

A : Luas penampang

L : Panjang lapisan yang dilewati rembesan (m)

3.3.2 Garis Freatik

Garis freatik pada tubuh embung merupakan aliran air yang mengalir dari bagian hulu ke hilir. Jaringan aliran untuk bendungan tanah dengan fondasi berupa tanah kedap air dapat digambarkan pada Gambar 3.3 berikut.

Gambar 3.3 Jaringan Aliran Pada Bendungan Yang Homogen (Sumber: Pusat Pendidikan dan Pelatihan Sumber Daya Air dan Konstruksi 2017)

Garis AB merupakan garis *phreatic*.Garis ini membatasi daerah yang jenuh dan yang kering. Garis aliran ini bisa dihitung dengan menggunakan metode *Cassagrande*.

3.3.3 Metode Cassagrande

Metode *Cassagrande* (1937) pada dasarnya melakukan pengujian model dalam memberikan cara perhitungan rembesan. Pemodelan metode *Cassagrande* dapat dilihat pada Gambar 3.4 berikut.

Gambar 3.4 Rembesan Metode Cassagrande (Sumber: Hardiyatmo, 2006)

3.3.4 Keruntuhan Akibat Piping

Aliran air rembesan mengalir dari suatu lapisan berbutir halus menuju lapisan yang lebih kasar, akan menyebabkan terangkutnya butiran halus lolos melewati bahan yang lebih kasar. Erosi butiran ini mengakibatkan turunnya tahanan aliran air dan naiknya gradien hidrolik. Lebih dari sepertiga kejadian keruntuhan bendungan diakibatkan karena rembesan air melalui pondasi atau tubuh bendungan yang disebut dengan *piping*. Berikut ilustrasi keruntuhan akibat *piping* yang disajikan pada Gambar 3.5.

(Sumber: HEC – RAS Hydraulic Reference Manual, 2021)

Angka keamanan dari *piping* pada penelitian ini akan dihitung dengan metode Harza melalui Persamaan 3.4, 3.5, dan 3.6 sebagai berikut.

$$SF = \frac{i_c}{i_e} \tag{3.4}$$

$$i_c = \frac{\gamma}{\gamma_w} = \frac{G_s - 1}{1 + e} \tag{3.5}$$

$$i_e = \frac{\Delta_h}{L} \tag{3.6}$$

Dengan ketentuan sebagai berikut :

SF = *Safety Factor* (angka keamanan)

 i_c = Gradien hidrolik material

 i_e = Gradien hidrolik keluaran

Menurut Hardiyatmo H.C. (2017) menyatakan angka keamanan yang digunakan sebagai persyaratan atau ketentuan bendungan yaitu harus lebih besar dari 3 - 4 (SF > 3 - 4).

3.4 Analisis Stabilitas Lereng

Metode irisan memecah massa tanah longsoran menjadi beberapa irisan yang vertikal. Irisan – irisan vertikal ini memiliki tebal satuan, yakni volume yang cenderung slip. Berikut Gambar 3.6 yang mengilustrasikan gaya – gaya yang bekerja.

Gambar 3.6 Gaya – gaya yang bekerja pada irisan (Sumber: Hardiyatmo, 1994)

Gambar 3.6 memperlihatkan irisan dengan gaya yang bekerja pada irisan tersebut, gaya – gaya yang bekerja pada irisan – irisan ini terdiri dari :

- $X_r dan X_1 = gaya geser disepanjang sisi irisan$
- E_r dan E_l = gaya normal efektif disepanjang sisi irisan

 T_i = resultan gaya geser efektif disepanjang dasar irisan N_i = resultan gaya normal efektif disepanjang dasar irisan U_r dan U_1 = tekanan air pori pada kedua sisi irisan U_i = tekanan air pori pada dasar irisanb= lebar irisan

3.4.1 Metode Irisan

Keseimbangan tiap irisan dipengaruhi oleh gaya – gaya yang bekerja padanya. Gaya – gaya tersebut diantaranya gaya geser dan gaya normal efektif, resultan gaya geser efektif dan resultan gaya normal efektif. Berikut skema gaya longsor rotasi yang disajikan pada Gambar 3.7 berikut.

Faktor aman merupakan nilai banding antar jumlah momen dari tahanan geser sepanjang bidang longsor dan jumlah momen dari berat massa tanah yang longsor yang dirumuskan pada Persamaan 3.7 berikut.

SF
$$=\frac{\sum M_r}{\sum M_d}$$
 (jumlah momen penahan longsor)

(3.7)

Dengan ketentuan sebagai berikut :

- SF > 1,5 kondisi lereng stabil
- SF = 1,5 kondisi lereng kemungkinan tidak stabil
- SF <1,5 kondisi lereng tidak stabil

Lengan momen dari berat massa tanah tiap irisan adalah R (jari – jari lingkaran bidang longsor) sin θ , sehingga momen dari massa tanah yang akan longsor tersajikan pada Persamaan 3.8 sebagai berikut.

$$\sum \mathbf{M}_d = R \sum_{i=1}^{i=n} W_i \sin \theta_i$$
(3.8)

Momen yang menahan tanah akan longsor disajikan pada Persamaan 3.9 berikut.

$$\sum \mathbf{M}_r = R \sum_{i=l}^{i=n} (c \Delta l_i + N_i \mathrm{tg} \varphi)$$
(3.9)

Keseimbangan arah vertikal dan gaya yang bekerja pada sembarang irisan yang mempunyai resultan nol pada arah tegak lurus bidang longsor, dapat dilihat pada Persamaan 3.10 berikut :

$$N_{i} = W_{i} \cos \theta_{i} - U_{wi}$$
$$= W_{i} \cos \theta_{i} - u_{wi} \Delta l_{i} \text{ (asumsi adanya air pori)}$$
(3.10)

Persamaan 3.11 merupakan momen yang menahan tanah longsor dengan memperhatikan tekanan air pori.

$$\sum \mathbf{M}_r = R \sum_{i=l}^{i=n} (cl_i + (W_i \cos \theta_i - u_{wi} \Delta l_i) \mathrm{tg} \varphi)$$
(3.11)

Sehingga faktor keamanan (*safety factor*, SF) dari uraian persamaan sebelumnya, disajikan pada Persamaan 3.12 berikut.

$$SF = \frac{\sum_{i=l}^{i=n} (c\Delta l_i + (W_i \cos \theta_i - u_{wi}\Delta l_i) \operatorname{tg} \varphi)}{\sum_{i=l}^{i=n} W_i \sin \theta_i}$$
(3.12)

Keterangan sebagai berikut :

c = kohesi tanah (kN/m^2)

$$\varphi$$
 = sudut gesek dalam tanah (°)

 Δl_i = panjang lengkung lingkaran irisan ke – *i* (m)

n = jumlah irisan

 W_i = berat massa tanah irisan ke – *i*

 u_{wi} = tekanan air pori pada irisan ke – *i* (m)

 θ_i = sudut yang didefinisikan

3.4.2 Metode Irisan Bishop

Metode *simplified bishop* dianggap lebih akurat dibanding metode lainnya. Metode ini menggunakan irisan dengan memperhitungkan gaya tambahan pada antar irisannya. Metode *Bishop* pada perhitungannya juga menggunakan iterasi, yaitu melakukan perulangan pada hitungan faktor keamanan. Persamaan faktor aman metode *Bishop* membutuhkan cara *trial and error*, karena adanya nilai faktor aman dikedua sisi persamaan. Sehingga diperoleh persamaan faktor aman yang dapat dilihat pada Persamaan 3.13 berikut :

SF
$$= \frac{\sum_{i=l}^{i=n} [c'b_i + (W_i - u_{wi}b_i) tg\varphi'] \left(\frac{1}{\cos\theta_i (1 + tg\theta_i tg\varphi'/F)}\right)}{\sum_{i=l}^{i=n} W_i \sin\theta_i}$$
(3.1)

Keterangan tambahan sebagai berikut :

c' = kohesi tanah efektif (kN/m^2)

$$\varphi'$$
 = sudut gesek dalam tanah efektif (°)

 $b_i = \text{lebar irisan ke} - i \text{ (m)}$

Beberapa masalah yang menjadikan ketidaktentuan hasil analisis stabilitas lereng menurut Hardiyatmo (2007), diantaranya lereng yang mengalami kelongsoran berada pada bidang tiga dimensi, kondisi benda uji berpengaruh terhadap hasil pengujian. Kondisi pembebanan di laboratorium memiliki kemungkinan untuk tidak cocok dengan kondisi kedudukan tegangan - tegangan di lapangan.

3.5 Kriteria Nilai Faktor Keamanan Stabilitas Lereng Tanggul

Faktor keamanan minimum yang disyaratkan untuk analisis stabilitas lereng bendungan tipe urugan berdasarkan SNI 8064:2016 disajikan dalam Tabel 3.1 Kriteria Faktor Keamanan Minimum Untuk Stabilitas Bendungan Tipe Urugan.

3)

No	Kondisi	Kuat	Tekanan Air Pori	FK	FK dg			
		Geser		Tanpa	Gempa			
				Gempa	*			
1.	Selesai konstruksi tergan-	1. Efektif	Peningkatan tekanan air	1,30	1,20			
	1 Jadwal konstruksi		fondasi dibitung monggu					
	2 Hubungan antara tekanan air		nakan data lah dan					
	2. Hubungan antara texanan an		nakan uata lab. uan					
	Lereng U/S dan D/S		Idem hanya tanna penga-	1 40	1.20			
	Lereng 0/5 dan D/5.		wasan instrumen	1,40	1,20			
	Dengan gempa tanpa kerusakan		Hanya pada urugan tanpa	1 30	1 20			
	digunakan 50% koefisien gempa		data laboratorium dan	1,50	1,20			
	desain.		dengan atau tanpa					
			pengawasan instrumen					
			(taksiran konservatif)					
			Tanpa pengawasan					
		2. Total	instrumen	1,30	1,20			
2.	Aliran langgeng tergantung:	1. Efektif	Dari analisis rembesan	1,50	1,20			
	1. Elevasi muka air normal							
	sebelah udik.							
	2. Elev. muka air sebelah hilir.							
	Lereng U/S dan D/S. Dg gem-pa							
	100% koof gampa							
	desain		10					
3.	Pengoperasian waduk	1. Efektif	Surut cepat dari el. Muka	1.30	1.10			
	tergantung :		air normal sampai elev.	-,	-,			
	1. Elev.m.a. maksimum di udik		muka air minimum.					
	2. Elev.m.a. minimum di udik		Lereng U/S dan D/S.					
	(dead storage).							
	Lereng U/S harus dianalisis untuk		Surut cepat dari elev.ma.	1,30	-			
	kondisi surut cepat.	1.00	maks. sampai el.m.a. min.	11				
		h^{3}	Pengaruh gempa diambil					
	(units		0% dari kf. gempa desain.					
4	Kondici dorurat targantung :	1 Efaktif	Surut const dari alay ma	1.20				
4.	1 Pembuntuan pada sistem	1. LICKII	maksimum sn el terendah	1,20	-			
	drainase		bangunan pengeluaran.					
	2. Surut cepat krena penggunaan		Pengaruh gempa diabai-					
	air melebihi kebutuhan.		kan.					
L	3.Surut cepat keperluan darurat.							
*) Ca	tatan: Periksa standar tentang meto	de analisis :	stabilitas lereng dinamik bend	ungan tip	e urugan.			
*) un) untuk OBE ; sedangkan **)untuk MDE, $FK \ge 1$							

Tabel 3.1 Faktor Keamanan Minimum Stabilitas Bendungan Tipe Urugan

Sumber : SNI 8064:2016 (Metode Analisis Stabilitas Lereng Statik Bendungan Urugan

3.6 Beban Gempa

Gempa bumi merupakan energi yang lepas dari dalam bumi, sehingga berakibat patahnya lapisan batuan pada kerak bumi secara tiba – tiba. Dalam analisis stabilitas bendungan urugan akibat beban gempa dapat dianalisis dengan cara analisis keseimbangan batas *pseudostatic* (koefisien gempa) dan analisis dinamik. Perhitungan nilai gempa dapat dilakukan dengan mengikuti pedoman konstruksi dan bangunan analisis stabilitas bendungan dengan tipe urugan akibat beban gempa berdasarkan Kementrian Pekerjaan Umum dan Perumahan Rakyat (Pd T-14-20040A), adapun tinjauan dalam menentukan beban gempa adalah sebagai berikut.

Gempa Dasar Operasi (*Operating Basis Earthquake*, OBE)
 Gempa dengan batasan goncangan di permukaan tanah pada lokasi studi dengan

50% kemungkinan tidak terlampaui dalam 100 tahun, yang sebaiknya ditentukan secara probabilistik.

2. Gempa Desain Maksimum (Maximum Design Earthquake, MDE)

Gempa dengan goncangan terbesar pada lokasi studi yang digunakan sebagai analisis.

3.6.1 Koefisien Gempa

Analisi gempa untuk desain bendungan dan pelengkapnya yang tahan gempa dapat dilakukan dengan cara menggunakan koefisien gempa. Koefisien ini diberikan dalam persen dari gravitasi. Sebagai contoh, koefisien gravitasi 10% (0,1 g) sering digunakan dalam hitungan. Jadi, gaya – gaya dinamis dianggap sebagai gaya statis, yang kadang – kadang disebut *pseudostatic analysis*. Faktor keamanan izin yang berkaitan dengan koefisien gempa menggambarkan perilaku lereng bendungan. Koefisien gempa ditentukan dari nilai percepatan gempa maksimum terkoreksi (*peak ground acceleration*, PGA) yang ditujukkan pada Persamaan 3.14 berikut.

 $PGAM = FPGA \times SPGA \tag{3.14}$

Dengan :

- PGAM = Percepatan puncak di permukaan tanah
- FPGA = Faktor amplifikasi untuk PGA
- SPGA = Percepatan tanah di permukaan

Peta gempa yang digunakan adalah peta gempa tahun 2017 yang dapat dilihat pada Gambar 3.8, 3.9, 3.10, 3.11, 3.12 dan 3.13 sebagai berikut.

Gambar 3.8 Peta Percepatan Puncak di Batuan Dasar (SB) untuk Probabilitas

Terlampaui 20% dalam 10 Tahun

(Sumber : Peta Sumber dan Bahaya Gempa Indonesia Tahun 2017)

Gambar 3.9 Peta Percepatan Puncak di Batuan Dasar (S_B) untuk Probabilitas Terlampaui 10% dalam 10 Tahun

(Sumber : Peta Sumber dan Bahaya Gempa Indonesia Tahun 2017)

Gambar 3.10 Peta Percepatan Puncak di Batuan Dasar (S_B) untuk Probabilitas Terlampaui 10% dalam 50 Tahun

(Sumber : Peta Sumber dan Bahaya Gempa Indonesia Tahun 2017)

Gambar 3.11 Peta Percepatan Puncak di Batuan Dasar (S_B) untuk Probabilitas Terlampaui 7% dalam 75 Tahun

(Sumber : Peta Sumber dan Bahaya Gempa Indonesia Tahun 2017)

Gambar 3.12 Peta Percepatan Puncak di Batuan Dasar (S_B) untuk Probabilitas

Terlampaui 2% dalam 50 Tahun

(Sumber : Peta Sumber dan Bahaya Gempa Indonesia Tahun 2017)

Gambar 3.13 Peta Percepatan Puncak di Batuan Dasar (S_B) untuk Probabilitas Terlampaui 2% dalam 100 Tahun

(Sumber : Peta Sumber dan Bahaya Gempa Indonesia Tahun 2017)

Gaya gempa ini berarah horizontal, kearah yang berbahaya, dengan garis kerja yang melewati titik berat konstruksi. Komponen vertikal relatif tidak akan berbahaya dibandingkan dengan komponen horizontal. Harga f tergantung dari lokasi tempat konstruksi sesuai dengan peta zona gempa. Koefisien jenis tanah untuk beban gempa dapat dilihat pada Tabel 3.2 Faktor Amplifikasi (F_{PGA}) berkut.

Kolog Situa	S _{PGA}					
Kelas Situs	$\mathbf{PGA} = 0.1$	PGA = 0.2	PGA = 0.3	$\mathbf{PGA} = 0.4$	PGA = 0.5	
Batuan Keras (SA)	0.8	0.8	0.8	0.8	0.8	
Batuan (SB)	1.0	1.0	1.0	1.0	1.0	
Tanah Keras (SC)	1.2	1.2	1.1	1.0	1.0	
Tanah Sedang (SD)	1.6	1.4	1.2	1.1	1.0	
Tanah Lunak (SE)	2.5	1.7	1.2	0.9	0.9	
Tanah Khusus (SF)	SS	SS	SS	SS	SS	

Tabel 3.2 Faktor Amplifikasi (F_{PGA})

Sumber : SNI 8460:2017

Selanjutnya menghitung koefisien gempa dan gaya – gaya vibrasi yang bekerja dengan arah yang berubah – ubah yang diganti dengan satu gaya statik mendatar, seperti pada Persamaan 3.15 dan 3.16 sebagai berikut.

K_h	$=\frac{PGA_{M}}{g}$	(3.15)
K	$= \alpha_1 \times K_h$	(3.16)
Dengan	المعلال الشكال المعد	
PGAM	= Percepatan puncak di permukaan tanah	
α_1	= Koreksi pengaruh daerah bebas (<i>freefield</i>) (bendungan u	urugan :0,7)

- K = Koefisien gempa terkoreksi untuk analisis stabilitas
- g = Gravitasi (980 cm/det²)

3.6.2 Tingkat Risiko Bangunan

Pengaruh tingkat risiko bangunan dilakukan dengan beberapa tinjauan diantaranya klasifikasi kelas risiko dan kriteria beban gempa.

1. Klasifikasi Kelas Risiko

Klasifikasi kelas risiko menyesuaikan parameter yang didapat berdasarkan data teknis bendungan. Klasifikasi kelas risiko didapatkan dari Persamaan 3.17 berikut.

$$FR_{total} = FR_k + FR_t + FR_e + FR_h$$

Dengan :

FR _k	= Faktor risiko kapasitas tampung
FRt	= Faktor risiko tinggi bendungan
FR _e	= Faktor risiko kebutuhan evakuasi
FR_h	= Faktor risiko tingkat kerusakan

Kriteria faktor risiko untuk evaluasi keamanan bendungan yang disajikan pada Tabel 3.3 berikut.

Eaktor Disiko	Angka Bobot Dalam Kurung				
Taktor KISIKO	Ekstrema	Tin	ıggi	Moderat	Rendah
Kapasitas (10 ⁶ m ³)	> 100	100 - 1,25		1,00 - 0,125	0,125
(FRk)	(6)	(6) (4)		(2)	(0)
Tinggi (m) (EDt)	> 45	45 -	- 30	30 - 15	< 15
Tinggi (iii) (FRt)	(6)	(4)		(2)	(0)
Kebutuhan Evaluasi	> 1000	1000 - 100		100 - 1	0
(jumlah orang) (FRe)	(12)	(8)		(4)	(0)
Tingkat Kerusakan	Sangat Tinggi	Tinggi	Agak Tinggi	Moderat	Tidak Ada
	(12)	(10)	(8)	(4)	(0)

Tabel 3.3 Kriteria Faktor Risiko Untuk Evaluasi Keamanan Bendungan

Sumber : Pedoman Konstruksi Dan Bangunan Analisis Stabilitas Bendungan Tipe

Urugan (Pd T-14-2004-A)

(3.17)

2. Kriteria Beban Gempa

Dari nilai faktor risiko, kemudian menentukan kriteria beban gempa dengan menentukan kelas risiko. Berikut Tabel 3.4 yang menyajikan kelas risiko bendungan dan bangunan air.

Tabel 3.4 Kelas Kisiko Bendungan dan Bangunan Air				
Faktor Risiko Total	Kelas Risiko			
(0 - 6)	I (rendah)			
(7 - 18)	II (moderat)			
(19 - 30)	III (tinggi)			
(31 - 36)	IV (ekstrem)			

Tabel 2.4 Valor Disilio Dondungan dan Dangunan Ai

Sumber : Pedoman Konstruksi Dan Bangunan Analisis Stabilitas Bendungan Tipe

Urugan (Pd T-14-2004-A)

Selanjutnya Tabel 3.5 menyajikan kriteria beban gempa untuk desain bangunan sebagai berikut.

			Persyar	atan diperkenankan	
Kelas risiko	Persyaratan ta	npa kerusakan	ada kerusakan tanpa		
dengan massa				keruntuhan	
guna	T (thn)	Metode Analisis	T (thn)	Metode Analisis	
IV	100 - 200 ad	Koef. Gempa	10.000	Koef. Gempa	
N = 50 - 100	≥ 0,1 g		(MDE)	atau dinamik *	
III	50 - 100 ad	Koef. Gempa	5.000	Koef. Gempa	
N = 50 - 100	≥ 0,1 g		(MDE)	atau dinamik *	
П	50 - 100 ad	Koef. Gempa	3.000	Koef. Gempa	
N = 50 - 100	≥ 0,1 g	· W 2 (((MDE)	atau dinamik *	
I	50 - 100 ad	Koef. Gempa	1.000	Koef. Gempa	
N = 50 - 100	≥ 0,1 g		(MDE)	atau dinamik *	
Catatan :					

Tabel 3.5 Kriteria Beban Gempa Untuk Desain Bendungan

Catatan :

- 1) Untuk bendungan besar dengan kondisi geologi setempat yang khusus, Peta Zona Gempa dalam BAB V tidak dapat digunakan, dan perlu dilakukan studi gempa tersendiri.
- 2) Analisis dinamik dapat dilakukan dengan analisis ragam sambutan gempa atau sejarah waktu percepatan gempa.

Sumber : Pedoman Konstruksi Dan Bangunan Analisis Stabilitas Bendungan Tipe

Urugan (Pd T-14-2004-A)

3.7 Perkuatan Tanah

Tanah lunak mempunyai daya dukung tanah dan kuat geser yang rendah dengan kompresibilitas yang tinggi, sehingga pori – pori tanah yang terisi air akan menyebabkan penurunan tanah. Permasalahan ini dapat diatasi melalui perbaikan tanah, dengan memperbaiki sifat teknis tanah seperti kuat geser, kekakuan, permeabilitas, dan kompresibilitasnya. Perbaikan tanah dapat dilakukan melalui berbagai metode dengan mempertimbangkan faktor – faktor yang mempengaruhi, diantaranya jenis tanah, area kedalaman dan lokasi penanganan, sifat tanah yang diinginkan, material yang tersedia, tenaga ahli, kondisi lingkungan, dan ekonomi. Perbaikan sifat tanah dapat dilakukan dengan melakukan perbaikan secara mekanis, perbaikan secara modifikasi hidrolik, perbaikan secara fisik dan kimia, serta modifikasi dengan penyisipan dan pengekangan.

3.8 Program Plaxis

Dalam mengatasi dan mendapatkan solusi yang optimal, dibutuhkan analisis yang baik dari lereng terebut dengan perkuatan tanah pada konstruksinya. Permasalahan geoteknik di lapangan dapat disimulasikan ke program aplikasi komputer, salah satunya *Plaxis*.

Plaxis merupakan program aplikasi yang dikembangkan berdasarkan metode elemen hingga. Program aplikasi ini memudahkan pengguna karena dengan cepat membuat model geometri dan jaring elemen berdasarkan penampang melintang dari kondisi yang dianalisis. Model geometri terdiri dari titik – titik, garis – garis dan klaster – klaster. Setelah model geometri terbentuk, parameter – parameter dari material dimasukkan untuk membentuk komponen geometri, sehingga jaring elemen hingga dapat disusun. Data – data yang dimasukkan ke dalam program *plaxis*, diantaranya parameter tanah dari hasil penyelidikan tanah, beban timbunan lokasi kelongsoran, dan rembesan air yang meluber di lokasi longsoran.

3.8.1 Tampilan Plaxis

Bagian – bagian penting dari jendela utama ditunjukkan dalam Gambar 3.13 jendela utama program masukan dibawah ini

Fungsi – fungsi dari beberapa bagian utama program masukan plaxis yang tertera dalam Gambar 3.14 diatas, diantaranya :

1.	Menu utama	: seluruh pilihan masukan dan fasilitas operasional dari program
2.	Toolbar (umum)	: berisi tombol – tombol untuk aktivitas khusus berkaitan dengan
		berkas, pencetakan, zooming, ataupun untuk pemilihan objek
3.	Toolbar (geometri)	: berisi tombol – tombol untuk aktivitas khusus berkaitan dengan
		pembuatan model geometri
4.	Mistar	: menunjukkan koordinat x dan y dari model geometri pada sisi
		kiri dan sisi atas bidang gambar
5.	Bidang gambar	: letak model geometri dibuat dan dimodifikasi
6.	Koordinat pusat	: jika koordinat pusat atau salib sumbu berada dalam rentang
		dimensi yang ditentukan maka pusat koordinat tersebut akan
		digambarkan sebagai sebuah lingkaran kecil dengan sumbu-x
		dan sumbu-y diindikasikan oleh anak panah.
7.	Masukan manual	: jika penggambaran dengan mouse tidak memberikan ketepatan
		yang diinginkan, maka baris masukan manual dapat digunakan.
		Bagian ini juga dapat digunakan untuk menentukan koordinat
		baru suatu titik tertentu

3.8.2 Analisa Pengujian Program

Pengujian dilakukan pada timbunan tanpa perkuatan geotekstil, sehingga didapat pola keruntuhan yang diprediksi. Apabila terjadi keruntuhan, perlu dilakukan pemasangan geotekstil dengan harapan keruntuhan dapat dicegah atau kerusakan dapat diminimalisir. Hasil pengujian selanjutnya berupa angka aman, dengan batas dari nilai angka aman sebesar 1,5. Apabila timbunan tanpa geotekstil tidak memenuhi nilai angka aman, maka perlu perkuatan geotekstil yang diharapkan memperoleh angka aman melebihi batas minimum.

BAB IV METODE PENELITIAN

4.1 Tinjauan Umum

Metode penelitian merupakan suatu cara dari peneliti untuk mengumpulkan informasi dan melakukan serangkaian pengujian dalam menginvestigasi data yang telah didapat dengan tujuan memperoleh pengetahuan dan jawaban dari objek yang diteliti. Metode penelitian mengarahkan peneliti untuk berpikir secara sistematis karena adanya tahapan – tahapan yang disusun sebagai pedoman. Metode penelitian berisi sampel data, lokasi, metode dan prosedur, parameter data, serta bagan alir dari penelitian yang dilakukan.

Data – data yang telah diperoleh, selanjutnya diolah dan dianalisis secara hitungan manual maupun melalui program *Plaxis* 2D v.20. Sehingga didapat nilai angka aman yang merupakan hasil dari analisis stabilitas lereng asli.

4.2 Lokasi Penelitian

Penelitian yang ditinjau berada di Kelurahan Kotawaringin Hilir, Kecamatan Kotawaringin Lama, Kabupaten Kotawaringin Barat, Provinsi Kalimantan Tengah. Secara geografis, Embung Danau Asam terletak pada koordinat 2°29'16.6"LS 111°26'14.6"BT.

Gambar 4.1 Lokasi Penelitian

4.3 Langkah Penelitian

Penelitian ini dilakukan melalui beberapa diantaranya tahapan, mengumpulkan literatur dan referensi mengenai stabilitas lereng. Informasi didapat dari buku – buku, jurnal, dan tugas akhir dari perpustakaan setempat dan internet. Menentukan parameter dan mengumpulkan data – data yang berkaitan dengan topik. Seperti data tanah yang didapat dari Laporan Geoteknik / Mekanika Tanah review Desain Embung Danau Asam Kabupaten Kotawaringin Barat. Menganalisis rembesan melalui metode Cassagrande, agar terbentuk aliran rembesan. Mencari nilai koefisien gempa dengan memberi kelas klasifikasi tingkat risiko bangunan di lokasi. Menghitung dan menganalisis stabilitas timbunan tanpa perkuatan melalui permodelan Plaxis. Dalam permodelan Plaxis, timbunan yang dimodelkan ada yang diberikan beban gempa dan tidak. Timbunan akan diberi variasi muka air pada lereng bagian hulu baik dengan beban gempa dan tanpa beban gempa. Output yang akan dihasilkan dari analisis ini berupa nilai angka aman yang akan memenuhi persyaratan atau tidak. Apabila nilai angka aman tidak memenuhi persyaratan, maka timbunan yang diprediksi mengalami keruntuhan. Timbunan yang mengalami keruntuhan berada dalam konsdisi angka aman yang tidak memenuhi persyaratan, sehingga dibeberapa kondisi tidak ditampilkan besaran dari angka aman pada program Plaxis 2D, sehingga angka aman dicari secara perhitungan manual melalui metode irisan. Setelah didapat angka aman pada variasi muka air yang berbeda, baik dibagian hulu dan hilir, selanjutnya melakukan pembahasan dari hasil analisis stabilitas timbunan yang telah dilakukan sehingga bisa ditarik kesimpulannya.

4.4 Parameter Penelitian

4.4.1 Parameter Tanah

Parameter tanah merupakan data yang penting dalam melakukan analisis *Plaxis* 2D. Data tanah ini didapat dari data analisis geotek mektan yang dilakukan oleh CV. Karya Dinamis disajikan pada Tabel 4.1 sebagai berikut.

			Tanah	Tanah	Tanah	Tanah
P	arameter	Satuan	Lempung	Lempung	Lempung	Lempung
				Berpasir	Lekat	Lekat
ïc	Berat volume	kN/m ³	15,6	15,8	16,9	17,1
pecif	tanah basah (γ_b)					
in Sj	Berat volume	kN/m ³	11,0	11,4	12,0	12,4
ne da avity	tanah kering (γ_d)		$\Delta \Lambda$			
Gr	Kadar air (w)	%	42,24	39,08	41,26	37,46
rat V	Angka pori (e)		1,27	1,22	1,10	1,02
Bei	Berat jenis (G_s)		2,54	2,57	2,56	2,56
an/ ser	Kohesi (C)	kN/m ²	5,88	4,90	13,73	16,67
t Tek It Gee	Sudut geser	0	15,36	16,70	21,65	23,36
Kua Kua	dalam (φ)					
			СН	CL	СН	СН
Klasifikasi	UNIFIED & ASTM		V			
1 allall						

Tabel 4.1 Parameter Tanah Embung Danau Asam

(Sumber : CV. Karya Dinamis)

Data material dalam penelitian analisis stabilitas timbunan, didapat dari Laporan Geoteknik/Mekanika Tanah *review* Desain Embung Danau Asam Kabupaten Kotawaringin Barat :

a. Data Material Tanah I (Timbunan) Berat jenis tanah (γ) = 15,6 kN/m³ Kohesi tanah (C) = 14,3 kN/m² Sudut gesek tanah (ϕ) = 29,5° b. Data Material Tanah II (Tanah dasar pondasi) Berat jenis tanah (γ sat) = 16,46 kN/m³ Kohesi tanah (C) = 5,88 kN/m² Sudut gesek tanah (ϕ) = 15,36° Berikut Tabel 4.2 yang merupakan kemiringan tampak samping yang dianjurkan untuk tanggul tanah homogen dari standar perencanaan irigasi KP 04, Tahun 2013

Klasifikasi Tanah	Kemiringan Talud Dalam	Kemiringan Talud Luar		
	(1:m)	(1:m)		
GW, GP, SW, SP	Lolos air, tidak dianjurkan			
GC, GM, SC, SM	1:2,5	1:2,0		
CL, ML	1:3,0	1:2,5		
CH, MH	1:3,5	1:2,5		

Tabel 4.2 Kemiringan Tanggul Tanah Homogen

(Sumber : Kementrian Pekerjaan Umum Direktoran Jenderal SDA, 2013)

Berikut Gambar 4.1 contoh gambar desain tubuh bendungan stabilitas tanggul.

Berdasarkan dari data pengukuran yang didapat, potongan melintang pada tanggul embung danau asam pada patok P.14 disajikam pada Gambar 4.2 berikut.

Gambar 4.3 Penampang Melintang Tanggul Patok P.14

4.4.3 Variasi Muka Air Yang Akan Dimodelkan

Berikut desain geometri beserta irisan (pias) timbunan tanpa perkuatan dan data tanah yang akan diolah untuk mencari nilai angka aman (*safety factor*).

- a. Timbunan tanpa perkuatan dengan tinggi muka air banjir (MAB) setinggi
 - 4,1 m. Disajikan pada Gambar 4.3 sebagai berikut.

Gambar 4.4 Penampang Melintang Tanggul Dengan Muka Air Banjir

b. Timbunan tanpa perkuatan dengan tinggi muka air normal (MAN) setinggi
2,6 m. Disajikan pada Gambar 4.4 sebagai berikut.

Gambar 4.5 Penampang Melintang Tanggul Dengan Muka Air Normal

c. Timbunan tanpa perkuatan dengan fungsi timbunan sebagai tampungan, tanggul dilapisi geomembran disajikan pada Gambar 4.5 sebagai berikut.

Gambar 4.6 Penampang Melintang Tanggul Tanpa Asumsi Rembesan

a. Data Geometri Tanah

Lebar rata – rata timbunan (B)	= 17 m
Tinggi timbunan (H)	= 5,04 m
Tinggi tanah pondasi (h)	= 6 m (tanah lapis 1)

4.5 Data Gempa

Data kegempaan pada penelitian menggunakan beban gempa jenis pseudostatik sebagai *input* data pada program *Plaxis*. Gempa merupakan getaran yang terjadi pada permukaan bumi akibat dari pelepasan energi dari bawah permukaan secara tiba – tiba yang menciptakan gelombang seismik. Kalimantan merupakan satu – satunya pulau di Indonesia dengan tingkat aktivitas kegempaan paling rendah, menurut Badan Meteorologi, Klimatologi, dan Geofisika. Hal ini karena pulau Kalimantan memiliki struktur sesar yang kondisinya sudah berumur tersier sehingga segmentasinya banyak yang sudah tidak aktif lagi untuk memicu gempa dan lokasi Kalimantan cukup jauh dari zona tumbukan lempeng sehingga suplai energi yang membangun medan tegangan tidak begitu kuat. Data beban yang digunakan berupa analisis beban gempa *pseudostatic* dengan acuan gambar sesuai Peta Sumber dan Bahaya Gempa Indonesia Tahun 2017.

4.6 Input Plaxis

Proses permodelan geometri timbunan dilakukan dalam tiga tahapan, diantaranya *pre-process, calculation,* dan *post-process. Pre-process* merupakan awal dari pembuatan model bangunan sehingga bisa terdefinisikan masalah, situasi awal suatu bangunan, dan simulasi dari tahapan konstruksinya. Bagan alir kerja dari *pre-process* diawali dengan menginput *borehole* kedalaman dan parameter tanah yang ada ditab *soil.* Selanjutnya tab *structure* untuk membuat garis geometri dan struktur perkuatan yang akan menjadi model analisis. Tab *mesh* untuk menentukan tipe elemen distribusi yang akan digunakan. Tab *flow condition* untuk memberikan kondisi aliran dengan mengatur konfigurasi yang dibutuhkan seperti muka air tanah. Kemudian tab *staged construction* untuk mendefinisikan tahapan konstruksi dan mensimulasikan konstruksi dalam beberapa tahapan. Pada fase setelah *initial phase*, dalam mencari angka aman, tipe kalkulasi yang digunakan adalah *safety*.

Berikut langkah – langkah yang digunakan dalam analisis menggunakan program *Plaxis* 2D v. 20.

1. Buka program plaxis

Program plaxis dijalankan dengan *double click right* ikon *Plaxis* 2D pada *mouse*, klik *Start New Project*. Sehingga muncul tampilan *peoject properties* seperti pada Gambar 4.7 dibawah ini.

Project Model	Constants	Cloud services			
	PLA)	(IS [®] 2D T Edition			
Project					
Title	Timbunan M	uka Air Tanah			
Company	only@::LAV	team::®			
Directory					
File name					
Comments			Comp	pany logo	
			^		
			_		

Gambar 4.7 Tab Project Pada Kotak Project Properties Plaxis 2D

Pada tab *project*, masukkan judul pada pemodelan yang akan dibuat. Selanjutnya pada tab *model* masukkan tipe model, kontur, dan satuan seperti pada Gambar 4.8 dibawah.

Project Model	Constants Cloud	services					
Type			Contour		_		
Model	Plane strain	~	× _{min}	-35.00	m		
Elements	15-Noded	\sim	× _{max}	40.00	m		
Units			y _{min}	-40.00	m		
Length	m	~	y _{max}	15.00	m		
Force	kN	~			У 🛉	 . 🕨	
Time	day	~					
Mass	t	\sim					
Temperature	к	\sim				×	
Energy	kJ	~					
Power	kW	\sim					
Stress	kN/m²						
Weight	kN/m³						

Gambar 4.8 Tab Model Pada Kotak Project Properties Plaxis 2D

1	a (11 to 12)				
1	a / 11 k - 11 - 1				
	.0 g (-r direction)	Tref	293.1	к	
9.810	m/s²				
9.810	kN/m³				
		Ice			
4181	kJ/t/K	cice	2108	kJ/t/K	
0.6000E-3	kW/m/K	λ _{ice}	2.220E-3	kW/m/K	
334.0E3	kJ/t	α _{ice}	0.05000E-3	1/K	
0.2100E-3	1/K	Vapour			
293.1	ĺκ	c vapour	1930	kJ/t/K	
	1	λ _{vapour}	0.02500E-3	kW/m/K	
		R	461.5	kJ/t/K	
	9.810 9.810 4181 0.6000E-3 334.0E3 0.2100E-3 293.1	9.810 m/s ² 9.810 kN/m ³ 4181 kJ/t/K 0.6000E-3 kJ/t 0.2100E-3 1/K 293.1 K	9.810 m/s² 2810 kN/m³ 4181 kJ/t/K 0.6000E-3 kW/m/K 334.0E3 kJ/t 0.2100E-3 1/K 293.1 K R R	9.810 m/s ²	9.810 m/s ² 9.810 m/s ² 4181 kJ/t/K 0.6000E-3 kW/m/K 334.0E3 kJ/t 0.2100E-3 1/K 293.1 K 293.1 K 4181 kJ/t/K 0.220E-3 kV/m/K 0.2200E-3 1/K Vapour C vapour 0.02500E-3 kV/m/K N vapour R 461.5 kJ/t/K

Pada tab *constants*, masukkan berat dari massa jenis air sebesar 9,81 kN/m³. Kemudian klik Ok seperti pada Gambar 4.9 berikut.

Gambar 4.9 Tab Constants Pada Kotak Project Properties Plaxis 2D

 Tampilan *lay out* pada program *Plaxis* 2D ditampilkan pada Gambar 4.10 berikut

3. Tab *Soil* pada halaman *Plaxis* 2D menyediakan *setting* material untuk tanah dasar dan struktur yang akan menjadi awal pemodelan ditampilkan pada Gambar 4.11.

Gambar 4.11 Tab Soil Pada Plaxis 2D

4. Tab *Structure* pada halaman *Plaxis* 2D menampilkan bentuk geometri bangunan yang akan dimodelkan dengan membuat tanah poligon pada fitur poligon disajikan pada Gambar 4.12 berikut.

Gambar 4.12 Tab Structure Pada Plaxis 2D

5. Geometri dibagi menjadi elemen hingga untuk melanjutkan perhitungan, komposisi elemen hingga ini disebut dengan *mesh*. Klik *generate mesh* pada tab *mesh* di toolbar pada halaman *Plaxis* 2D selanjutnya pilih jenis elemen distribusi yang tersedia seperti pada Gambar 4.13 dibawah ini.

Gambar 4.13 Tab Mesh Pada Plaxis 2D

Untuk melihat *output* dari geometri yang kita berikan *mesh* klik *view mesh*, selanjutnya program memproses dan muncul gambar seperti Gambar 4.14 berikut.

Gambar 4.14 Output Dari Generate Mesh Pada Plaxis 2D

6. Menentukan letak ketinggian muka air bisa dilakukan pada tab *soil* dan tab *flow conditions*. Pada tab *flow conditions* klik *create water level* dan pilih letak tinggi muka air yang akan dimodelkan seperti pada Gambar 4.15 berikut.

Gambar 4.15 Tab Flow Conditions Pada Plaxis 2D

7. Kemudian, pada tab staged construction, add phase pada phases explorer. Ini merupakan tahap perhitungan yang akan disimulasikan pada mode calculation. Jendela fase yang ditampilkan pada tab staged construction menampilkan informasi perhitungan seperti Gambar 4.16 berikut.

V Inital phase [InitalPhase] Si 🕒 🖃 🗌 V Timbunan Muka Ar [Phase_1] Si 💽 🕃	Name	Value	Log info for last calculation
	💷 💮 General		
FS Timbunan Muka Air [Phase_ 🖉 🛆 🗎	10 ID	PS Timbunan Muka Air [Phas	
	Start from phase	Timbunan Muka Air 🛛 💌	
	Calculation type	Safety -	
	Loading type	Incremental multiplier *	
	Ma	0.1000	Comments
	Pore pressure calcula	tion t: 🚡 Use pressures from p +	
	Thermal calculation ty	pe 🔲 Ignore temperature 🔹	
	First step		
	Last step		
	Design approach	(None) -	
	Special option	0	
	Deformation control	parameters	
	I Numerical control par	ameters	

Gambar 4.16 Jendela Phases Tab Staged Construction Pada Plaxis 2D

Select points for curves digunakan untuk memberi nodes pada titik mesh dari geometri yang ingin dianalisis secara detail. Ini memudahkan pengguna untuk melihat lebih detail dibagian mana titik longsor yang akan dijadikan output grafik. Berikut tampilan output setelah klik select points for curves disajikan pada Gambar 4.17 berikut.

Gambar 4.17 Output Select Nodes And Stress Points Pada Plaxis 2D

 Setelah memberi nodes, dilanjutkan perhitungan dengan mengkalkulasi data – data yang telah dimasukan sebelumnya pada geometri yang dimodelkan. Klik *calculate*, program akan memproses langkah yang telah dibuat pada *phases explorer* seperti pada Gambar 4.18 berikut.

Gambar 4.18 Proses Kalkulasi Plaxis 2D

9. Tahap terakhir adalah dengan melihat *output* dari geometri yang telah kita modelkan dengan mengklik *view calculation results* yang menampilkan output dari geometri yang dimodelkan.

4.7 Bagan Alir Penelitian

Proses penelitian ini dapat digambarkan melalui *flowchart* yang dilampirkan pada Gambar 4.19 berikut.

BAB V

ANALISIS DATA DAN PEMBAHASAN

5.1 Data Penelitian

Pembangunan Embung Danau Asam dilaksanakan di atas tanah lunak berupa tanah lempung yang tergenang air. Kondisi genangan embung tidak mengganggu, karena kawasan genangan bukan daerah perkebunan ataupun permukiman melainkan kawasan semak belukar tidak produktif. Lokasi Embung berada pada Kelurahan Kotawaringin Hilir, Kecamatan Kotawaringin Lama, Kabupaten Kotawaringin Barat, Provinsi Kalimantan Tengah. Harapan masyarakat sekitar terhadap pembangunan embung ini yaitu agar dapat dikelola menjadi tempat rekreasi pariwisata dan budidaya ikan air tawar.

Timbunan tanggul ini memiliki lebar atas selebar 7 meter dengan tinggi timbunan setinggi 5 meter. Tanggul memiliki panjang 2.200 meter. Berikut Gambar 5.1 Embung Danau Asam yang digunakan untuk menampung air.

Gambar 5.1 Tampungan Air Embung Danau Asam

Timbunan yang dibangun di atas tanah tersebut perlu diketahui besaran gaya yang bekerja, agar nilai angka aman dapat diketahui.

5.1.1 Data Teknis Waduk

Adapun data sekunder berupa data teknis embung adalah sebagai berikut.

1. Umum

	a.	Lokasi	:	Kelurahan Kotawaringin Hilir, Kecamatan
				Kotawaringin Lama, Kabupaten Kotawaringin
				Barat, Provinsi Kalimantan Tengah.
	b.	Fungsi	3	Sebagai tampungan air, pemanfaatan air baku
				dan pariwisata
	c.	Tahun konstruksi	:	2019
2.	Tan	ggul Bendungan		
	a.	Tipe urugan	:	Tanah homogen
	b.	Tinggi tanggul	:	5 m
	c.	Lebar puncak	:	7 m
	d.	Panjang tanggul	:	2.200 m
3.	Muł	ka Air Waduk		
	a.	MA Normal		
		Elevasi	:	+5,25 m
		Luas genangan	:	2,60 km ²
		Volume	:	1,65 Juta m ³
		tampungan		
	b.	MA Banjir		
		Elevasi	:	+6,75 m
		Luas genangan	:	3,79 km ²
		Volume	:	4,41 Juta m ³
		tampungan		
4.	Peli	mpah Utama		
	a.	Tipe	:	OGEE
	b.	Elevasi	:	+5,25 m
	c.	Lebar	:	$2 \times 14 \text{ m}$

5.1.2 Data Potongan Melintang Tanggul

Potongan melintang tanggul yang digunakan untuk penelitian terletak pada Patok P.14 yang dapat dilihat pada Gambar 4.2.

5.1.3 Data Parameter Tanah

Embung ini memiliki tipe pembentuk tanggul yang terbuat dari urugan tanah, parameter lapisan tanah yang digunakan dalam penelitian telah disajikan dalam Tabel 4.1 Parameter Tanah Embung Danau Asam dan Tabel 5.5 Parameter Untuk Menghitung Angka Aman Dengan Metode Irisan Pias – pias.

5.1.4 Analisis Tingkat Risiko Bendungan

Penentuan tingkat risiko bertujuan untuk menentukan klasifikasi kelas risiko, berikut analisis risiko yang disajikan dalam Tabel 5.1 Tingka Risiko Bendungan.

	Tuber ett	Inghat Homo D	enaangan	
No.	Faktor Risik	0	Kategori	Nilai
1	Faktor risiko kapasitas	1,65 juta m ³	Tinggi	(4)
	tampung (FRk)			
2	Faktor risiko tinggi	5 m	Rendah	(0)
	bendungan (FRt)		10	
3	Faktor risiko kebutuhan	> 1.000	Ekstrim	(12)
	evakuasi (FRe)			
4	Faktor risiko tingkat	Tinggi	Tinggi	(10)
	kerusakan (FRh)			
	Jum	llah	11-21	(26)

Tabel 5.1 Tingkat Risiko Bendungan

Setelah mendapatkan nilai faktor risiko, selanjutnya menentukan kriteria beban gempa dengan menentukan kelas risiko. Tingkat risiko yang dimiliki Embung Danau Asam sebesar 26, sehingga berdasarkan Tabel 5.1, Embung Danau Asam termasuk kelas risiko III. Embung Danau Asam berdasarkan kelas risiko termasuk dalam kelas risiko III (tinggi). Sehingga kriteria beban gempa untuk desain menggunakan kala ulang tahun 100 tahun untuk gempa OBE dan kala ulang 5.000 tahun untuk gempa MDE. 1. Data Beban Gempa

Pendekatan analisis stabilitas akibat gempa dapat dihitung melalui cara sebagai berikut.

a. Beban Gempa Pseudostatik

Analisis dengan cara memberi koefisien gempa digunakan untuk mewakili pengaruh gaya – gaya inersia akibat gempa terhadap massa yang berpotensi runtuh. Beban gempa dilakukan berdasarkan nilai koefisien pada peta gempa sesuai jenis gempa OBE dan MDE.

Pada kondisi gempa (OBE) diambil nilai percepatan puncak permukaan tanah sebesar 0,1 dan kondisi gempa (MDE) diambil nilai percepatan puncak permukaan tanah sebesar 0,15 dilakukan perhitungan sebagai berikut.

1) Perhitungan gempa OBE :

PGAM	= 0,1
g	$= 0.981 \text{ dm/s}^2$
Kh	$=\frac{0,1}{0,981}$
	= 0,1019 g
α	= 0,5
К	= 0,1019 × 0,5
	= 0,0509 g
Ks	$= 0,0509 \times (2 - 0,6(y/h))$
	$= 0,0509 \times (2 - 0,6(1))$
	= 0,0713 g

Sehingga koefisien termodifikasi untuk T = 100 tahun, sebesar 0,0713 g.

2) Perhitungan gempa MDE :

PGAM = 0,15
g = 0,981 dm/s²
Kh =
$$\frac{0,15}{0,981}$$

= 0,1529 g
 α = 0,5
$$\begin{aligned} & K &= 0,1529 \times 0,5 \\ &= 0,0764 \ g \\ & K_s &= 0,0764 \times (2 - 0,6(y/h)) \\ &= 0,0764 \times (2 - 0,6(1)) \\ &= 0,1070 \ g \end{aligned}$$

Sehingga koefisien termodifikasi untuk T = 5000 tahun, sebesar 0,1070 g.

5.2 Perhitungan Manual Rembesan Tanggul

Timbunan yang difungsikan sebagai tanggul untuk menampung air, perlu diperhatikan rembesan yang mengalir. Aliran rembesan dihitung dengan berbagai kondisi dari variasi muka air banjir dan muka air normal. Aliran rembesa dihitung menggunakan metode *Cassagrande*.

5.2.1 Garis Freatik Kondisi Muka Air Banjir

Penggambaran garis freatik secara manual pada kondisi muka air banjir dapat dilihat pada Gambar 5.2 berikut.

Gambar 5.2 Skema Parameter Perhitungan Garis Depresi MAB

1. Diketahui rembesan muka air banjir :

$$\begin{array}{ll} H_{hulu} & = 4,1 \\ \alpha & = 26,565^{\circ} \end{array}$$

d
$$= 2,62 + 18,45$$

m

m

Maka

S

$$= \sqrt{d^2 + h^2} - d$$

= $\sqrt{21.07^2 + 4.1^2} - 21.07$
= 0.395 m

Parabola bentuk dasar dapat diperoleh dengan persamaan $(y_0 = s)$:

$$= \sqrt{2y_0 x + y_0^2}$$
$$= \sqrt{2 \cdot 0.395 x + 0.395^2}$$

У

Diperoleh koordinat parabola sebagai Tabel 5.2 berikut :

x	-0,20	0	1	2	3	
у	0	0,395	0,973	1,318	1,590	
			$\overline{\mathbf{v}}$			
4	5	6	7	8	9	
1,822	2,027	2,214	2,385	2,546	2,697	
				1		
10	11	12	13	14	- 15	
2,839	2,975	3,105	3,230	3,350	3,466	
16	17	18	19	20	21	
3,578	3,687	3,793	3,896	3,996	4,094	

Tabel 5.2 Koordinat Parabola Garis Depresi MAB

Selanjutnya, koordinat parabola yang akan di*input* ke *Plaxis* 2D disajikan dalam Tabel 5.3 berikut :

Х	У		X	у
-35,00	4,1270		3,82	2,8361
-4,82	4,1270		4,82	2,6933
-4,24	3,9690		5,82	2,5425
-3,85	3,8727		6,82	2,3822
-3,45	3,7861		7,82	2,2103
-3,12	3,7213	1	8,82	2,0239
-2,17	3,5752	·W 21	9,82	1,8185
-1,17	3,4630		10,88	1,3547
-0,17	3,3470		11,78	0,9061
0,82	3,2269	Jul .	12,62	0,4842
1,82	3,1021		13,61	0,0125
2,82	2,9721	1	13,61	0,0125

Tabel 5.3 Koordinat Parabola Garis Depresi MAB Input Pada Plaxis 2D

Harga a untuk sudut kemiringan hilir kurang dari 30° ditentukan dengan persamaan :

a
$$= \frac{d}{\cos a} - \sqrt{\left(\frac{d^2}{\cos^2 a} - \frac{h^2}{\sin^2 a}\right)}$$

a + $\Delta a = \frac{y_0}{1 - \cos a}$

Sehingga,

$$a + \Delta a = \frac{0,395}{1 - \cos 26,565^{\circ}}$$

$$= 3,744 \quad m$$

$$a = \frac{21,07}{\cos 26,565^{\circ}} - \sqrt{\left(\frac{21,07^{2}}{\cos^{2} 26,565} - \frac{4,1^{2}}{\sin^{2} 26,565}\right)}$$

$$= 1,858 \quad m$$

$$\Delta a = 3,744 - 1,858$$

$$= 1,886 \quad m$$

Dari perhitungan diatas, didapatkan garis depresi aliran yang disajikan dalam Gambar 5.3 berikut.

Gambar 5.3 Formasi Garis Depresi MAB

Perhitungan debit rembesan dengan menggunakan metode *Cassagrande* pada kondisi muka air banjir, dapat dihitung dengan persamaan 3.3 Hukum Darcy. Pada lereng dengan sudut kemiringan hilir kurang dari 30°, debit rembesan dapat dihitung dengan Persamaan 5.1.

$$Q = k \times A \times I$$

$$= k \times y (1) \times \frac{dy}{dx}$$

$$= k \times a \sin a \times \frac{\sin a}{\cos a}$$
Sehingga,
$$Q = k \times a \sin a \times \tan a$$

$$= 10^{-8} \times 1,858 \sin 26,565^{\circ} \times \tan 26,565^{\circ}$$

$$= 4,2 \times 10^{-9} \text{ m}^{3}/\text{dt}$$
(3.3)

Berdasarkan data teknis Embung Danau Asam memiliki panjang puncak 2200 m, sehingga total rembesan sebagai berikut

$$\begin{aligned} Q_{total} &= 4,2 \times 10^{-9} \times 2200 \\ &= 9,1 \times 10^{-6} \text{ m}^{3}/\text{dt} \end{aligned}$$

$$= 7.8 \times 10^{-1}$$
 m³/hari

2. Gradien Hidrolik

Perhitungan angka keamanan bahaya piping tanpa penerapan filter untuk kondisi muka air banjir yaitu sebagai berikut.

$$i_c = \frac{2,54-1}{1+1,12}$$

= 0,73
$$i_e = \frac{4,1}{15,08}$$

= 0,27
$$SF = \frac{0,73}{0,27}$$

= 2,67 < 3 sampai dengan 4

Sehingga, faktor keamanan terhadap bahaya piping tidak memenuhi persyaratan.

5.2.2 Garis Freatik Kondisi Muka Air Normal

Penggambaran garis freatik secara manual pada kondisi muka air normal dapat dilihat pada Gambar 5.4 berikut.

Gambar 5.4 Skema Parameter Perhitungan Garis Depresi MAN

1. Diketahui rembesan muka air normal :

Parabola bentuk dasar dapat diperoleh dengan persamaan ($y_0 = s$) :

y
$$= \sqrt{2} \cdot 0,149x + 0,149^2$$

Diperoleh koordinat parabola sebagai Tabel 5.4 berikut :

Х	-0,07	0	1	2	3	
У	0	0,149	0,566	0,787	0,958	
4	5	6	7	8	9	
1,102	1,230	1,346	1,453	1,552	1,645	
10						
10	11	12	13	14	15	
1,734	1,818	1,898	1,975	2,049	2,121	
16	17	18	19	20	21	
2,190	2,257	2,322	2,385	2,447	2,507	

Tabel 5.4 Koordinat Parabola Garis Depresi MAN

Selanjutnya, koordinat parabola yang akan di*input* ke *Plaxis 2D* disajikan dalam Tabel 5.5 berikut :

Tabel 5.5 Koordinat Parabola Garis Depresi MAN Input Pada Plaxis 2D

11	X	У		X	у
	-35,00	2,6405		2,58	1,8301
	-8,30	2,6405		3,58	1,7336
\leq	-7,85	2,5815		4,58	1,6303
	-7,41	2,5304		5,58	1,5212
	-6,41	2,4394		6,58	1,4059
-	-5,41	2,3818		7,57	1,2843
)	-4,41	2,3352		8,57	1,1565
	-3,41	2,2815		9,58	1,0215
	-2,41	2,2217	. W 2 1	10,57	0,8816
2	-1,41	2,1557	3	11,57	0,7342
	-0,41	2,0835		12,34	0,6167
	0,58	2,0052		13,57	0,0026
	1,58	1,9207		13,58	0,0000

Harga a untuk sudut kemiringan hilir kurang dari 30° ditentukan dengan persamaan :

a
$$= \frac{d}{\cos a} - \sqrt{\left(\frac{d^2}{\cos^2 a} - \frac{h^2}{\sin^2 a}\right)}$$

a + $\Delta a = \frac{y_0}{1 - \cos a}$
Sehingga,

$$a + \Delta a = \frac{0,149}{1 - \cos 26,565^{\circ}}$$

= 1,413 m
$$a = \frac{23,62}{\cos 26,565^{\circ}} - \sqrt{\left(\frac{21,07^{2}}{\cos^{2} 26,565} - \frac{2,6^{2}}{\sin^{2} 26,565}\right)}$$

= 0,678 m
$$\Delta a = 1,413 - 0,678$$

= 0,735 m

Didapatkan garis depresi aliran yang disajikan dalam Gambar 5.5 berikut.

Gambar 5.5 Formasi Garis Depresi MAN

Perhitungan debit rembesan dengan menggunakan metode *Cassagrande* pada kondisi muka air banjir, dapat dihitung dengan persamaan 3.3 Hukum Darcy. Pada lereng dengan sudut kemiringan hilir kurang dari 30°, debit rembesan dapat dihitung dengan Persamaan 5.1

Q = k × a sin a × tan a
=
$$10^{-8} \times 0,678 \sin 26,565^{\circ} \times \tan 26,565^{\circ}$$

= $1,5 \times 10^{-9} \text{ m}^3/\text{dt}$

Berdasarkan data teknis Embung Danau Asam memiliki panjang puncak 2200 m, sehingga total rembesan sebagai berikut

$$Q_{\text{total}} = 1,5 \times 10^{-9} \times 2200$$

= 3,3 × 10⁻⁶ m³/dt
= 2,8 × 10⁻¹ m³/hari

2. Gradien Hidrolik

Perhitungan angka keamanan bahaya piping tanpa penerapan filter untuk kondisi muka air banjir yaitu sebagai berikut.

$$i_c = \frac{2,54-1}{1+1,12}$$

$$= 0,73$$

 $i_e = \frac{2,60}{20,89}$
 $= 0,12$
 $SF = \frac{0,73}{0,12}$
 $= 5,83 > 3$ sampai dengan 4

Sehingga, faktor keamanan terhadap bahaya piping memenuhi persyaratan.

5.3 Perhitungan Stabilitas Timbunan

Perhitungan stabilitas pada tubuh embung danau asam dengan garis freatik manual dilakukan dengan menggunakan program *Plaxis* 2D dan secara manual menggunakan metode irisan. Percobaan dilakukan dengan variasi muka air yang berbeda. Analisis pada tanah timbunan asli bertujuan untuk mengetahui gaya – gaya yang bekerja, nilai angka aman dan pengaruh perilaku gempa yang terjadi.

5.3.1 Analisis Timbunan Asli Pada Program Plaxis

Dalam permodelan analisis tanah timbunan asli, beban yang bekerja meliputi beban tanah dalam keadaan dua kondisi, yaitu tanpa beban gempa dan dengan beban gempa. Analisis meliputi kondisi sebelum diberi beban gempa dan setelah diberi beban gempa. Beban gempa yang diberi berupa beban gempa pseudostatik. Permodelan dilakukan dalam dua dimensi dengan variasi muka air yang beragam. Variasi muka air meliputi muka air kosong, muka air banjir, muka air normal, dan kondisi surut cepat. Lapisan tanah yang digunakan dalam pemodelan *Plaxis* 2D disajikan pada Gambar 5.6 berikut.

Gambar 5.6 Lapisan Tanah Pondasi Yang Dimasukkan ke Plaxis 2D

Tahap Input Plaxis (Pre – process)

Tahap ini dilakukan permodelan geometri secara lengkap berupa parameter material tanah, kondisi batas dan beban yang akan diaplikasikan yang selanjutnya akan dilakukan *meshing*. Tampilan awal yang tersedia dari *Plaxis* memberikan informasi deskripsi proyek, seperti pada Gambar 5.6 berikut.

Gambar 5.7 Project Properties Tab Project

Pada *Project Properties* tab *Model* memberikan batasan pada gambaran proyek berupa batas koordinat yang akan dimodelkan dalam kanvas seperti pada Gambar 5.7 berikut.

Gambar 5.8 Project Properie Tab Model

a. Selanjutnya memasukkan parameter tanah pada *tab soil* yang berada pada *mode tabs*. Pada menu *tab soil* terdapat *side toolbar* yang selanjutnya digunakan sebagai *tools* untuk membuat stratigafi tanah seperti pada Gambar 5.8 berikut.

Fitur *create borehole* dipilih dan selanjutnya klik lokasi di area gambar atau kanvas. Selanjutnya akan ditampilkan tampilan *modify soil layer* seperti pada Gambar 5.9 berikut.

Selanjutnya, memasukkan material *properties* tanah berdasarkan urutan lapisan yang berisi berat jenis tanah, modulus elastisitas, kohesi dan sudut geser tanah.

 Membuat struktur yang akan dibangun diatas lapisan tanah yang telah dibuat sebelumnya. Struktu digambar dengan bantuan *tools* yang berada pada *tab structure* seperti pada Gambar 5.10 sebagai berikut.

Gambar 5.11 Tab Structure Pada Mode Tabs

1. Tahap Kalkulasi (Calculation)

Setelah *input* parameter selesai, selanjutnya masuk pada tahapan kalkulasi. Pada tahapan ini berupa pemberian *mesh* dan mendefinisikan tahap konstruksi.

a. Geometri akan dibagi menjadi elemen hingga untuk selanjutnya dilakukan perhitungan. Komposisi elemen ini disebut mesh. Untuk melakukan meshing caranya dengan klik tombol Generate Mesh pada tool bar yang berada pada tab Mesh seperti pada Gambar 5.11 berikut. Pilih opsi yang sesuai pada menu Mesh, jenis elemen distribusi yang tersedia antara lain very coarse, coarse, medium, fine, dan very fine.

Gambar 5.12 Tab Mesh Pada Mode Tabs

Berikut Gambar 5.12 hasil *Mesh* dengan pilihan opsi *very fine*. Semakin halus *mesh*, maka perhitungannya semakin akurat. Tetapi membutuhkan ruang memori yang besar dan waktu yang lebih lama.

Gambar 5.13 Hasil Meshing dengan Distribusi Elemen Very Fine

b. Geometri yang telah dibuat dan diberi *mesh*, selanjutnya akan disimulasikan pada *phase explorer*. Namun, dibeberapa kondisi tertentu pada tanah yang memiliki air tanah perlu ditambah. Penambahan ini bisa melalui *tools* pada tab *Flow Conditions* yang disajikan pada Gambar 5.13 berikut.

Gambar 5.14 Tab Flow Conditions Pada Mode Tabs

c. *Phase explorer* menampilkan status perhitungan yang ditunjukkan oleh simbol diawal setiap baris. Berikut contoh fase yang digunakan pada permodelan dengan timbunan muka air kosong tanpa gempa yang disajikan pada Gambar 5.14 berikut.

Gambar 5.15 Phases Pada Phases Explorer

2. Tahap Output Plaxis (Post – process)

Plaxis Output akan menampilkan hasil analisis dan sebagai alat evaluasi terhadap model. Hasil analisis akan ditampilkan dengan bantuan *tools* dari tab *Staged Construction* berupa *View Calculation Results*. Tetapi sebelum bisa ditampilkan, *phases* yang telah dibuat sebelumnya perlu dikalkulasi terlebih dahulu melalui *tools Calculate*. Berikut Tab *Staged Construction* pada *Mode Tabs* yang disajikan pada Gambar 5.15 berikut.

Gambar 5.16 Tab Staged Construction Pada Mode Tabs

Hasil *output* didasarkan pada perhitungan *Phi-c Reduction*, dengan jaring elemen yang terdeformasi menunjukkan daerah tersebut kritis. Berikut mekanisme keruntuhan yang ditampilkan oleh penulis.

a. Timbunan Muka Air Kosong

Adapun gambar menampilkan kondisi timbunan sebelum diberi beban gempa pada analisis *Plaxis* 2D, dengan nilai SF bagian hulu sebesar 1,48 yang disajikan pada Gambar 5.16 berikut.

Selanjutnya gambar yang menampilkan potensi bagian hilir dengan nilai angka aman sebesar 1,46 sebagai Gambar 5.17 berikut. 30.00 32.50 35.00 37.50 40.00 27.50 10.00 7.50 5.00 1.46 2.50 0.00 -2.50 -5.00 -7.50 10.00 -12.50 -15.00 -17.50

Gambar 5.18 Potensi Kelongsoran Timbunan Muka Air Kosong Tanpa Beban Gempa, Hilir

b. Timbunan Muka Air Kosong Dengan Beban Gempa

Adapun gambar menampilkan kondisi timbunan setelah diberi beban gempa OBE pada analisis *Plaxis* 2D, dengan nilai SF bagian hulu sebesar 1,22 yang disajikan pada Gambar 5.18 berikut.

Gambar 5.19 Potensi Kelongsoran Timbunan Muka Air Kosong Beban Gempa OBE, Hulu

Selanjutnya gambar yang menampilkan potensi bagian hilir dengan nilai angka aman sebesar 1,20 sebagai Gambar 5.19 berikut.

Gambar 5.20 Potensi Kelongsoran Timbunan Muka Air Kosong Beban Gempa OBE, Hilir

Adapun gambar menampilkan kondisi timbunan setelah diberi beban gempa MDE pada analisis *Plaxis* 2D, dengan nilai SF bagian hulu sebesar 1,14 yang disajikan pada Gambar 5.20 berikut.

Gambar 5.21 Potensi Kelongsoran Timbunan Muka Air Kosong Beban Gempa MDE, Hulu

Selanjutnya gambar yang menampilkan potensi bagian hilir dengan nilai angka aman sebesar 1,12 sebagai Gambar 5.21 berikut.

Gambar 5.22 Potensi Kelongsoran Timbunan Muka Air Kosong Beban Gempa MDE, Hilir

c. Muka Air Normal Tanpa Beban Gempa

Adapun gambar menampilkan kondisi timbunan sebelum diberi beban gempa pada analisis Plaxis 2D, dengan nilai SF bagian hulu sebesar 1,87 yang disajikan pada Gambar 5.22 berikut.

Gambar 5.23 Potensi Kelongsoran Timbunan Muka Air Normal Tanpa Beban Gempa, Hulu

Selanjutnya gambar yang menampilkan potensi bagian hilir dengan

Gambar 5.24 Potensi Kelongsoran Timbunan Muka Air Normal Tanpa Beban Gempa, Hilir

d. Timbunan Muka Air Normal Dengan Beban Gempa

Adapun gambar menampilkan kondisi timbunan setelah diberi beban gempa OBE pada analisis *Plaxis* 2D, dengan nilai SF bagian hulu sebesar 1,40 yang disajikan pada Gambar 5.24 berikut.

Gambar 5.25 Potensi Kelongsoran Timbunan Muka Air Normal Beban Gempa OBE, Hulu

Gambar 5.26 Potensi Kelongsoran Timbunan Muka Air Normal Beban Gempa OBE, Hilir

Adapun gambar menampilkan kondisi timbunan setelah diberi beban gempa MDE pada analisis *Plaxis* 2D, dengan nilai SF bagian hulu sebesar 1,27 yang disajikan pada Gambar 5.26 berikut.

Gambar 5.27 Potensi Kelongsoran Timbunan Muka Air Normal Beban Gempa MDE, Hulu

Selanjutnya gambar yang menampilkan potensi bagian hilir dengan nilai angka aman sebesar 1,06 sebagai Gambar 5.27 berikut. 2.50 5.00 7.50 10.00 12.50 15.00 17.50 12.50 10.00 7.50 5.00 1,06 2.50 0.00 -2.50 -5.00 -7.50 -10.00 -12.50

E

Gambar 5.28 Potensi Kelongsoran Timbunan Muka Air Normal Beban Gempa MDE, Hilir

e. Muka Air Banjir Tanpa Beban Gempa

Adapun gambar menampilkan kondisi timbunan sebelum diberi beban gempa pada analisis *Plaxis* 2D, dengan nilai SF bagian hulu sebesar 2,05 yang disajikan pada Gambar 5.28 berikut.

Gambar 5.29 Potensi Kelongsoran Timbunan Muka Air Banjir Tanpa Beban Gempa, Hulu

Selanjutnya gambar yang menampilkan potensi bagian hilir dengan nilai angka aman sebesar 1,18 sebagai Gambar 5.29 berikut.

Gambar 5.30 Potensi Kelongsoran Timbunan Muka Air Banjir Tanpa Beban Gempa, Hilir

f. Timbunan Muka Air Banjir Dengan Beban Gempa

Adapun gambar menampilkan kondisi timbunan setelah diberi beban gempa OBE pada analisis *Plaxis* 2D, dengan nilai SF bagian hulu sebesar 1,44 yang disajikan pada Gambar 5.30 berikut.

Gambar 5.31 Potensi Kelongsoran Timbunan Muka Air Banjir Beban Gempa OBE, Hulu

Gambar 5.32 Potensi Kelongsoran Timbunan Muka Air Banjir Beban Gempa OBE, Hilir

Adapun gambar menampilkan kondisi timbunan setelah diberi beban gempa MDE pada analisis Plaxis 2D, dengan nilai SF bagian hulu sebesar 1,30 yang disajikan pada Gambar 5.32 berikut.

Gambar 5.33 Potensi Kelongsoran Timbunan Muka Air Banjir Beban Gempa MDE, Hulu

Selanjutnya gambar yang menampilkan potensi bagian hilir dengan

Gambar 5.34 Potensi Kelongsoran Timbunan Muka Air Normal Beban Gempa MDE, Hilir

g. Kondisi Rapid Draw Down Tanpa Beban Gempa

Adapun gambar menampilkan kondisi timbunan sebelum diberi beban gempa pada analisis *Plaxis* 2D, dengan nilai SF bagian hulu sebesar 1,14 yang disajikan pada Gambar 5.34 berikut.

Gambar 5.35 Potensi Kelongsoran Timbunan Kondisi *Rapid Draw Down* Tanpa Beban Gempa, Hulu

Gambar 5.36 Potensi Kelongsoran Timbunan Kondisi *Rapid Draw Down* Tanpa Beban Gempa, Hilir

h. Kondisi Rapid Draw Down Dengan Beban Gempa

Adapun kondisi timbunan setelah diberi beban gempa OBE pada analisis *Plaxis* 2D akan mengalami *collapse* seperti pada Gambar 5.36 berikut.

High Reservoir [InitialPhase] 🔂 📑 💷	Name	Value		Log info for last calculation
闷 Rapid Draw Down OBE [Phase 🔣 🕒 🔣 💷	🖯 General		^	Soil body seems to collapse. Please inspect Output results.
🜔 Rapid Drawdown OBE [Phase_2] 🛛 🖓 🔛	ID	Rapid Draw Down OBE [Phas		[Error code: 101]
🚵 Hiigh Reservoir [Phase_3] 🛛 🔂 🔛 💷	Start from phase	High Reservoir 🔹		
	Calculation type	Fully coupled flow-de -		
	Loading type	Staged construction •		
	ΣM weight	1.000		Comments
	Thermal calculation type	🔝 Ignore temperature 💌		
	Time interval	5.000 day		
	First step	11		
	Last step	90		
	Design approach	(None) ·		
	Special option	0		
	Deformation control para	meters		
	Force fully drained behavio	• 🔽		
	Reset displacements to ze	r 🔽		
	Reset small strain	v		
	Reset state variables			
	Reset time			
	Ignore suction		~	

Gambar 5.37 Timbunan Kondisi Rapid Draw Down Beban Gempa OBE

Selanjutnya, kondisi timbunan setelah diberi beban gempa MDE pada analisis *Plaxis* 2D akan mengalami *collapse* seperti pada Gambar 5.37 berikut.

High Reservoir [InitialPhase]	N 13	1	Nar	me	Value			Log info for last calculation		
Rapid Draw Down MDE [Phas	18 LB	30		General			^	Soil body seems to collapse. Please inspect Output results		
Rapid Drawdown MDE [Phase_2]		多田		ID	Rapid Draw Down MD	E [Pha:		[Error code: 101]		
High Reservoir [Phase_3]				Start from phase	High Reservoir	*				
				Calculation type	Fully coupled flor	-de 🔻				
				Loading type	E Staged construct	ion 🕶				
				ΣM weight		1.000		Comments		
				Thermal calculation type	Ignore temperat	re 🕶				
				Time interval	5.0	0 day				
				First step						
				Last step						
				Design approach	(None)	-				
						Special option		0		
			8	Deformation control para	meters					
				Force fully drained behavio	Image: A state of the state					
				Reset displacements to zer						
				Reset small strain	v					
				Reset state variables						
				Reset time						
				Tonore suction						

Gambar 5.38 Timbunan Kondisi Rapid Draw Down Beban Gempa MDE

5.3.2 Analisis Timbunan Asli Perhitungan Manual

Perhitungan analisis timbunan secara manual dihitung melalui metode irisan (*slice of method*). Adapun gambar menampilkan arsiran kondisi timbunan mengalami *rapid draw down* dengan sudut lereng 29°. Pada perhitungan dilakukan dengan menggambar 11 irisan seperti Gambar 5.38 berikut.

Gambar 5.39 Luas Arsiran Irisan Timbunan Kondisi Rapid Draw Down

Adapun parameter untuk menghitung angka aman dengan metode irisan pias – pias ini disajikan pada Tabel 5.6 berikut.

	Kekuata	in Geser		y be	Koefisien Gempa						
Tubuh Embung	С	φ	Kering	Basah	Jenuh	Air	γ'	T = 100	T = 5000		
	kN/m²	٥	kN/m³	kN/m³	kN/m³	kN/m³	kN/m³	g	g		
Timbunan	14,3	29,5	11,4	15,6	16,68	0.91	6,87	0.0712	0.107		
Lapis Tanah I	5,88	15,36	10,99	15,59	16,46	9,81	16,46	0,0715	0,107		

Tabel 5.6 Parameter Tanah Metode Irisan Pias - pias

Panjang total bidang longsor secara horizontal sebesar 22,23 m. Sehingga tiap irisan memiliki lebar yang sama sebesar 2,02 m. Timbunan memiliki tinggi sebesar 5,04 m. Tinjauan dilakukan pada pias 6.

1.	Le	bar irisan (b)	= 2,02	m	
2.	Par	njang lengkung pada irisan ke 6 (Δ l ₆)	= 2,03	m	
3.	Lu	as area yang terbagi menjadi			
	a.	Luas area timbunan tidak terendam air	= 0	m²	
	b.	Luas area timbunan terendam air	= 6,20	m²	
	c.	Luas area pondasi terendam air	= 10,54	m²	
4.	Be	rat massa tanah irisan ke 6 (W6)			
	a.	Berat massa timbunan terendam air	= 6,20 ×	× 16,68	kN
			= 103,4	2	kN
	b.	Berat massa pondasi terendam air	= 10,54	×16,46	kN
			= 173		kN

Sehingga berat massa timbunan (W I) dan berat massa pondasi (W II) ditotal menjadi 276,90 kN.

5. Beban komponen vertikal dari setiap irisan (N₆)

	a.	NI	$= W \cos \alpha$
			= 103,42 cos (-4,77)
			= 103,06 kN/m
	b.	NII	= 173 cos (-4,77)
			= 172,89 kN/m
6.	Beł	oan komponen tangensial dari tiap irisan (T ₆)	$=$ (W I + W II) sin α

7. Komponen vertikal beban *seismic* tiap irisan (Ne₆)

a.	Ne I	$=$ E I. sin α . Tg ϕ I
		= (10,32) sin (-4,77) Tg (29,5)
		= -0,49 kN/m
b.	Ne II	= E II. sin α . Tg ϕ II
		= (17,31) sin (-4,77) Tg (15,36)
		= -0,40 kN/m

8. Komponen tangensial beban *seismic* irisan (Te₆) = (E I + E II) $\cos \alpha$

$=(10,32+17,31)\cos(-4,77)$)
= 27,54 kN/m	

 $= 276,90 \sin(-4,77)$

= -23,03 kN/m

- 9. Tekanan air pori (U'_w)
- a. Tekanan air pori timbunan $= h_{w} \times \Delta l_{6} \times \gamma_{w}$ $= 3,07 \times 2,03 \times 9,81$ = 60,99 kN/m $= 5,23 \times 2,03 \times 9,81$ = 104 kN/m10. Tahanan longsor komponen kohesi (C) $= c_{6} \times \Delta l_{6}$ $= 5,88 \times 2,03$ = 11,93 kN/m

Berikut Tabel 5.7 perhitungan untuk menemukan angka aman melalui metode irisan (*slice method*) sebagai berikut.

	1. Courts				A (Luas)			Y			W			
Pias	D (Jarak	Δl (m)	ø (°)	AI	A II	A III	γI	γII	γШ	w I	w II	wШ	cos ø	sin ø
	norrzontar)			m²	m²	m²	kN/m³	kN/m³	kN/m ³	kN/m	kN/m	kN/m		
1	2,02	5,32	64,78	3,60	2,54	0	15,60	16,68	16,46	56,16	42	0	0,43	0,90
2	2,02	3,04	47,76	3,60	8,21	0,79	15,60	16,68	16,46	56,16	136,94	13	0,67	0,74
3	2,02	2,48	35,18	3,12	8,68	4,44	15,60	16,68	16,46	48,67	144,78	73	0,82	0,58
4	2,02	2,22	24,32	2,24	7,67	8,40	15,60	16,68	16,46	34,94	127,94	138	0,91	0,41
5	2,02	2,09	14,33	0,09	7,74	9,85	15,60	16,68	16,46	1,40	129,10	162	0,97	0,25
6	2,02	2,03	-4,77	0	6,20	10,54	15,60	16,68	16,46	0,00	103,42	173	1,00	-0,08
7	2,02	2,03	-4,66	0	4,15	10,54	15,60	16,68	16,46	0,00	69,22	173	1,00	-0,08
8	2,02	2,09	-14,21	0	2,11	9,86	15,60	16,68	16,46	0,00	35,19	162	0,97	-0,25
9	2,02	2,22	-24,19	0	0,29	8,43	15,60	16,68	16,46	0,00	4,84	139	0,91	-0,41
10	2,02	2,47	-35,04	0	0	6,10	15,60	16,68	16,46	0	0,00	100	0,82	-0,57
11	2,02	3,03	-47,59	0	0	2,46	15,60	16,68	16,46	0	0,00	40	0,67	-0,74

Tabel 5.7 Perhitungan Stabilitas Lereng Dengan Slice Method Kondisi Rapid Drawdown, T = 100 Th, k = 0,0713

N		Тф			Tgф		N'		k	E = k.W		Ne		
Pias	NI	N II	$(W I + W II) \sin \phi$	φI	φII	Tg 🛛 I	Tg 🛛 II	N' I	N' II	(OBE)	ΕI	ΕII	Ne I	Ne II
	kN/m	kN/m	kN/m	0	0			kN/m	kN/m	g	kN/m	kN/m	kN/m	kN/m
1	41,98	0,00	89,14	29,5	0	0,57	0	23,75	0		7,02	0,00	3,60	0
2	129,80	8,74	152,59	29,5	0	0,57	0	73,44	0	13	13,77	0,93	5,77	0
3	158,13	59,74	153,55	29,5	15,36	0,57	0,27	89,47	16,41		13,79	5,21	4,50	0,82
4	148,43	126,00	124,00	29,5	15,36	0,57	0,27	83,98	34,61		11,61	9,86	2,71	1,12
5	126,45	157,09	72,41	29,5	15,36	0,57	0,27	71,54	43,15		9,31	11,56	1,30	0,79
6	103,06	172,89	-23,03	29,5	15,36	0,57	0,27	58,31	47,49	0,0713	7,37	12,37	-0,35	-0,28
7	68,99	172,92	-19,70	29,5	15,36	0,57	0,27	39,03	47,50		4,94	12,37	-0,23	-0,28
8	34,12	157,33	-48,48	29,5	15,36	0,57	0,27	19,30	43,22		2,51	11,57	-0,35	-0,78
9	4,41	126,57	-58,84	0	15,36	0	0,27	0	34,77		0,34	9,89	0	-1,11
10	0,00	82,21	-57,64	0	15,36	0	0,27	0	22,58		0	7,16	0	-1,13
11	0,00	27,31	-29,90	0	15,36	0	0,27	0	7,50		0	2,89	0	-0,59
	354,11							750	5,05			15	,50	

Lanjutan Tabel 5.7 Perhitungan Stabilitas Lereng Dengan *Slice Method* Kondisi *Rapid Drawdown*, T = 100 Th, k = 0,0713

80

	Te Hw		łw	y w	U		U'		U' Tg φ		C		L.C		
Pias	(E I + E II) cos ø	Hw I	Hw II		UI	UII	U' I	U' II	U' I Tg φ	U'IITgφ	c I	сП	L.c I	L. c II	SF
	kN/m	m	m	kN/m ³	kN/m	kN/m	kN/m	kN/m	kN/m	kN/m	kN/m ²	kN/m ²	kN/m	kN/m	
1	2,99	2,00	0		19,66	0	104,65	0	59,21	0	14,3	0	76,13	0	
2	9,88	4,49	0		44,06	0	133,75	0	75,67	0	14,3	0	43,41	0	
3	15,53	4,03	2,02		39,52	19,86	97,98	49,22	55,43	13,52	0	5,88	0	14,58	
4	19,57	3,79	4,20	S	37,20	41,25	82,58	91,56	46,72	25,15	0	5,88	0	13,05	
5	20,22	3,77	4,89	\mathbf{r}	36,96	47,94	77,15	100,06	43,65	27,49	0	5,88	0	12,27	
6	19,67	3,07	5,23	9,81	30,07	51,28	60,99	104,00	34,51	28,57	0	5,88	0	11,93	0,87
7	17,25	2,05	5,23		20,16	51,30	40,88	104,02	23,13	28,57	0	5,88	0	11,92	
8	13,65	1,05	4,89		10,26	48,01	21,39	100,13	12,10	27,50	0	5,88	0	12,26	
9	9,34	0	4,19		0	41,10	0	91,15	0	25,04	0	5,88	0	13,04	
10	5,86	0	3,04		0	29,83	0	73,83	0	20,28	0	5,88	0	14,55	
11	1,95	0	1,26	0	0	12,40	0	37,51	0	10,30	0	5,88	0	17,79	
	135.91								55	6.85			240	.93	

Lanjutan Tabel 5.7 Perhitungan Stabilitas Lereng Dengan <i>Slice Method</i> Kondisi <i>Rapid Drawdown</i> , T = 100 Th, k = 0,0713

$$SF = \sum \frac{\{C.I + (N - U - Ne)tan\varphi\}}{\sum \{m, m\}}$$

 $=\frac{240,93+(756,05-556,85-21,70)}{(354,11+135,91)}$

= 0,87

Kondisi M. A.	Daerah	SF Tanpa Gempa	Statura	SF Gempa OBE	Status	SF Gempa MDE	Status
Waduk	Tinjauan	SF ijin = 1,5	Status	SF ijin = 1,2	7	SF ijin = 1,0	
Muka Air Kasang	Hulu	1,48	Tidak Aman	1,22	Aman	1, 14	Aman
Muka Ali Kosolig	Hilir	1,46	Tidak Aman	1,20	Aman	1,12	Aman
Multo Air Normal	Hulu	1,87	Aman	1,40	Aman	1,27	Aman
Muka Ali Nofilia	Hilir	1,36	Tidak Aman	1,15	Tidak Aman	1,06	Aman
Muka Air Baniir	Hulu	2,05	Aman	1,44	Aman	1,30	Aman
Muka Ali Daliji	Hilir	1,18	Tidak Aman	0,99	Runtuh	0,88	Runtuh
Kondigi PDD	Hulu	1,14	Tidak Aman	0,87	Runtuh	<mark>0,75</mark>	Runtuh
	Hilir	1,22	Tidak Aman	<mark>0,91</mark>	Runtuh	<mark>0,78</mark>	Runtuh

Tabel 5.8 Rekapitulasi Nilai Faktor Aman Embung Danau Asam

(*) = perhitungan manual *method of slice*

5.4 Pembahasan

Penulis melakukan penelitian mengenai analisis stabilitas lereng dari tubuh embung (tanggul) yang memiliki tipe urugan homogen, baik tanpa gempa maupun dengan gempa pada berbagai kondisi variasi muka air pada waduk. Penulis menyusun naskah, diawali dengan menganalisis aliran rembesan menggunakan metode *Cassagrande* sehingga didapatkan pola aliran rembesan yang mengalir melewati tanggul. Setelah mendapatkan pola aliran rembesan, timbunan dianalisis stabilitasnya terhadap bahaya *piping*. Selanjutnya, mengklasifikasikan tingkat risiko bendungan untuk mendapatkan kala ulang yang mendekati pada lokasi. Kala ulang ini digunakan untuk menghitung nilai koefisien gempa termodifikasi yang kemudian hasilnya digunakan untuk analisis stabillitas lereng, baik dengan bantuan program *Plaxis* 2D maupun dengan menghitung manual menggunakan *Slice Method*. Pola aliran yang didapatkan sebelumnya juga menjadi acuan penulis dalam memodelkan lereng untuk melakukan analisis.

Plaxis 2D merupakan program sebagai alat bantu pengguna untuk menganalisa permasalahan geoteknik secara praktis dengan menggunakan metode elemen hingga dua dimensi. Program ini dikembangkan untuk analisis stabilitas dengan mereduksi parameter *Phi-c* sehingga diketahui kekritisan bagian mana dari pemodelan. Program ini juga dikembangkan untuk analisis deformasi, sehingga bagian yang mengalami kekritisan akan terilustrasi potensi longsornya. Potensi longsor diakibatkan adanya pengaruh beban seperti beban sendiri dari berat massa tanah serta beban lain seperti tekanan dari muka air waduk dan beban gempa. Potensi kelongsoran biasanya berbentuk pola lingkaran pada tanah timbunannya.

Pada Patok 14 Tanggul Embung Danau Asam, penulis menganalisis pada kedua sisi bagian tanggul, yaitu bagian hulu dan hilir. Kedua sisi tanggul memiliki kemiringan yang hampir sama, sehingga saat keadaan muka air kosong tanpa diberi beban gempa dan setelah diberi beban gempa lereng memiliki nilai angka aman yang relatif sama. Nilai angka aman pada bagian hulu sebesar 1,48 dan bagian hilir sebesar 1,46 dengan kondisi tanpa beban gempa. Kemudian saat setelah diberi beban gempa kala ulang 100 tahun angka aman pada bagian hulu

sebesar 1,22 dan bagian hilir sebesar 1,20. Pada kondisi pembebanan kala ulang 5.000 tahun, angka aman pada bagian hulu sebesar 1,14 dan bagian hilir sebesar 1,12.

Pada kondisi waduk dengan muka air normal (man) potensi kelongsoran berada pada bagian hilir, dengan kondisi tanpa beban gempa maupun diberi beban gempa. Nilai angka aman pada kondisi tanpa beban gempa di bagian hulu sebesar 1,87 dan bagian hilir 1,36. Selanjutnya, angka aman pada kondisi diberi beban kala ulang 100 tahun, bagian hulu sebesar 1,40 dan bagian hilir 1,15. Angka aman pada kondisi diberi beban gempa kala ulang 5.000 tahun, bagian hulu sebesar 1,27 dan bagian hilir 1,06.

Pada kondisi waduk dengan muka air banjir (mab) potensi kelongsoran juga berada pada bagian hilir, dengan kondisi tanpa beban gempa maupun diberi beban gempa. Nilai angka aman pada kondisi tanpa beban gempa di bagian hulu sebesar 2,05 dan bagian hilir 1,18. Selanjutnya, angka aman pada kondisi diberi beban kala ulang 100 tahun, bagian hulu sebesar 1,44 dan bagian hilir 0,99. Angka aman pada kondisi diberi beban gempa kala ulang 5.000 tahun, bagian hulu sebesar 1,30 dan bagian hilir 0,88.

Kondisi tanggul pada muka air normal (man) dan muka air banjir (mab) tanpa diberi beban gempa memiliki potensi kelongsoran pada bagian hilir. Adanya gaya tambahan yang diberikan oleh air dalam menahan kelongsoran tanah, menyebabkan tanggul bagian hulu relatif aman.

Kondisi kritis terjadi saat embung mengalami muka air waduk surut cepat (*rapid drawdown*). Pemodelan air surut cepat dilakukan dari muka air waduk banjir hingga waduk mengalami kekosongan air pada jangka waktu 5 hari. Sehingga, walaupun muka air waduk kosong, tanggul masih memiliki aliran rembesan yang akan memperbesar potensi kelongsoran. Pada analisis *rapid drawdown* tanpa diberi beban gempa, potensi kelongsoran tanggul berada pada bagian hulu. Kemudian, setelah tanggul diberi beban gempa dengan kala ulang 100 tahun dan 5.000 tahun, tanggul mengalami keruntuhan dikedua sisi. Sehingga perhitungan dilanjutkan secara manual menggunakan *Method Of Slice*.

BAB VI KESIMPULAN DAN SARAN

6.1 Kesimpulan

Berdasarkan studi kasus dan pembahasan yang telah diuraikan pada bab sebelumnya, didapakan kesimpulan sebagai berikut.

- 1. Rembesan memberikan pengaruh terhadap keruntuhan timbunan dengan variasi muka air yang berbeda. Stabilitas timbunan terhadap bahaya *piping* dianalisis dengan cara menemukan angka aman, dengan persyaratan angka aman lebih besar dari 4 (SF > 4). Angka aman terhadap bahaya *piping* untuk kondisi muka air banjir yaitu sebesar 2,67dinyatakan tidak aman. Dan angka aman terhadap bahaya *piping* untuk kondisi muka air normal yaitu sebesar 5,83 dinyatakan aman.
- 2. Dua sisi bagian tanggul pada Patok 14, yaitu hulu dan hilir dianalisis stabilitas lerengnya. Dengan bantuan program *Plaxis 2D* pada kondisi tanpa beban gempa memiliki SF_{izin} = 1,5. Variasi muka air kosong menghasilkan nilai angka aman sebesar 1,48 pada bagian hulu dan 1,46 pada bagian hilir, sehingga dinyatakan tidak aman. Pada variasi muka air normal, nilai angka aman pada bagian hulu sebesar 1,87 dinyatakan aman dan bagian hilir 1,36 dinyatakan tidak aman. Pada variasi muka air banjir, nilai angka aman pada bagian hulu sebesar 2,05 dinyatakan aman dan bagian hilir 1,18 dinyatakan tidak aman. Pada kondisi air waduk surut cepat (*rapid drawdown*) menghasilkan nilai angka aman bagian hulu sebesar 1,14 dan bagian hilir 1,22 sehingga dikedua sisi dinyatakan tidak aman.
- 3. Pada kondisi diberi beban gempa kala ulang 100 tahun (OBE, dengan koefisien gempa 0,0713 g) memilliki $SF_{izin} = 1,2$. Pada variasi muka air kosong memiliki nilai angka aman pada bagian hulu sebesar 1,22 dan bagian hilir 1,20 sehingga dinyatakan aman. Pada variasi muka air normal, nilai

angka aman pada bagian hulu sebesar 1,40 dinyatakan aman dan bagian hilir 1,15 dinyatakan tidak aman. Pada variasi muka air banjir, nilai angka aman bagian hulu sebesar 1,44 dinyatakan aman dan bagian hilir 0,99 dinyatakan tidak aman atau akan mengalami keruntuhan. Selanjutnya, hasil analisis pada kondisi air waduk surut cepat (*rapid drawdown*) pada program *Plaxis 2D* akan mengalami keruntuhan, sehingga nilai angka aman dihitung melalui perhitungan manual, didapat angka aman bagian hulu sebesar 0,87 dan bagian hilirnya 0,91.

- 4. Pada kondisi diberi beban gempa kala ulang 5.000 tahun (MDE, dengan koefisien gempa 0,1070 g) memilliki SF_{izin} = 1,0. Pada variasi muka air kosong memiliki nilai angka aman pada bagian hulu sebesar 1,14 dan bagian hilir 1,12 sehingga dinyatakan aman. Pada variasi muka air normal, nilai angka aman pada bagian hulu sebesar 1,27 dinyatakan aman dan bagian hilir 1,06 dinyatakan aman. Pada variasi muka air banjir, nilai angka aman bagian hulu sebesar 1,30 dinyatakan aman dan bagian hilir 0,88 dinyatakan tidak aman atau akan mengalami keruntuhan. Selanjutnya, hasil analisis pada kondisi air waduk surut cepat (*rapid drawdown*) pada program *Plaxis 2D* akan mengalami keruntuhan, sehingga nilai angka aman dihitung melalui perhitungan manual, didapat angka aman bagian hulu sebesar 0,75 dan bagian hilirnya 0,78.
- 5. Hasil analisis stabilitas lereng dilakukan dengan dua metode. Dua metode tersebut berupa metode elemen hingga (*finite element method*) yaitu dengan bantuan *Plaxis* 2D dan metode irisan atau yang dikenal juga dengan metode kesetimbangan batas (*limit equilibrium method*). Metode kesetimbangan batas memberikan asumsi terhadap bidang longsor yang selanjutnya pada bidang kelongsoran tersebut dibagi menjadi beberapa irisan. Sedangkan, metode elemen hingga terdapat tahap *meshing* yaitu pencacahan model geometri menjadi gabungan dari elemen elemen yang jumlahnya tertentu (*finite*)

6.2 Saran

Berdasarkan kesimpulan yang telah dipaparkan diatas, maka dapat disarankan hal – hal sebagai berikut.

- 1. Timbunan masih memiliki potensi longsor dengan nilai angka aman yang belum memenuhi persyaratan dibeberapa kondisi, sehingga perlu diberi perkuatan tanah. Disamping itu, timbunan dibangun di atas tanah lunak sehingga perkuatan tanah akan sangat membantu tanah pondasi untuk menyokong bangunan struktur diatasnya. Bagi peneliti selanjutnya, perlu dilakukan analisis dengan perkuatan tanah.
- 2. Pada penelitian selanjutnya perlu dilakukan analisis dengan menggunakan *software* lain seperti *Geoslope, Plaxis 3D, Slide* ataupun perbandingan dari aplikasi berbeda lainnya.

DAFTAR PUSTAKA

- Aditya, C.R., 2010. Studi Analisis Geotekstil Pada Penanganan Jalan Dengan Konstruksi Bantalan Tertutup Pada Tanah Gambut (Studi Kasus Jalan Sui Duri-Singkawang). *Tugas Akhir*. Universitas Atma Jaya. Yogyakarta.
- Amran, Y. dan Safi'i, A., 2020. Analisis Stabilitas Lereng Pada Tanggul Penahan Banjir Sungai Way Seputih Kecamatan Seputih Surabaya Kabupaten Lampung Tengah Provinsi Lampung. *Tapak (Teknologi Aplikasi Konstruksi): Jurnal Program Studi Teknik Sipil*, 9(2), pp.130-139. Universitas Muhammadiyah Metro. Lampung.
- Ardiansyah, M. I., 2017. Pengaruh Kondisi Muka Air Tanah Terhadap Stabilitas Lereng Jalan Dengan Dinding Penahan Tanah. *Tugas Akhir*. Universitas Sebelas Maret. Surakarta.
- Chasanah, U., 2012. Analisis Stabilitas Lereng Dengan Perkuatan Geotekstil Menggunakan Program Geoslope. *Tugas Akhir*. Universitas Sebelas Maret. Surakarta.
- CV. Karya Dinamis. 2019. : Laporan Geoteknik / Mekanika Tanah *Review* Desain Embung Danau Asam Kabupaten Kotawaringin Barat. Bandar Lampung.
- Darwis, H., 2018. Dasar-dasar Mekanika Tanah. Pena Indis. Yogyakarta.
- Departemen Pekerjaan Umum., 2013. Standar Perencanaan Irigasi. *Kriteria Perencanaan Bagian, Parameter Bangunan (KP-06).*
- Departemen Pekerjaan Umum., 2009. Perencanaan dan Pelaksanaan Perkuatan Tanah dengan Geosintetik. Jakarta
- Departemen Pekerjaan Umum., 2009. Perkuatan Timbunan Di Atas Tanah Lunak. Modul Pelatihan Geosintetik Vol.2
- Dipa, A. R., 2017. Evaluasi Keamanan Tubuh Bendungan Saradan Menggunakan Plaxis 8.2. *Tugas Akhir*. Universitas Islam Indonesia. Yogyakarta.
- Fitradi, N. I., 2019. Analisis Stabilitas Lereng Dengan Perkuatan Geotekstil Dan Turap Beton Menggunakan Program Plaxis (Slope Stability Analysis With Geotextile And Concrete Sheet Pile Reinforcement Using Plaxis Program) Tugas Akhir Teknik Sipil. Universitas Islam Indonesia. Yogyakarta.
- Gunawan, S., Sulistyowati, V.Y.E. dan Timur, H.M., 2017. Stabilitas Lereng Dan Bendung Pada Embung Ds. Ngawu, Kec. Playen, Kab. Gunung Kidul,

DIY. *Jurnal Teknik Sipil Volume 14, No.2,* pp 124 - 133. Universitas Atma Jaya. Yogyakarta.

- Hamdani, A.T. 2019. Analisis Stabilitas Timbunan Jalan Di Atas Tanah Lunak Dengan Perkuatan Sheet Pile Dan Geotekstil (Studi kasus: tol Balikpapan– Samarinda seksi V. STA. 9+ 726 s/d STA. 9+ 926). Jurnal Teknik Sipil. Universitas Islam Indonesia. Yogyakarta.
- Hardiyatmo, H.C.. 2010. Mekanika Tanah 2, 5th Ed. Gadjah Mada University Press. Daerah Istimewa Yogyakarta.
- Hardiyatmo, H.C.. 2013. Geosintetik Untuk Rekayasa Jalan Raya Perancangan dan Aplikasi. Gadjah Mada University Press. Daerah Istimewa Yogyakarta.
- Hardiyatmo, H. C. 2014. Analisis dan Perancangan Fondasi I Edisi Ketiga. Yogyakarta: Gajah Mada University Press.
- Hardiyatmo, H. C. 2017 . Mekanika Tanah 1. Gadjah Mada University Press. Daerah Istimewa Yogyakarta.
- Hardiyatmo, H.C.. 2020. Perbaikan Tanah. Gadjah Mada University Press. Daerah Istimewa Yogyakarta.
- Harison, M.A., Saputro, S.A., Wardani, S.P.R. and Hardiyati, S., 2013. Analisa Geoteknik dan Penanggulangan Kelongsoran Tanggul Sungai Banjir Kanal Barat Semarang. *Jurnal Karya Teknik Sipil*, 2(1), pp.334-358. Universitas Diponegoro. Semarang.
- Krisdianto, F., 2021. Analisis Stabilitas Pada Tubuh Bendungan Dengan Irisan
 Fellenius Dan Debit Rembesan Dengan Metode Cassagrande
 Menggunakan Software Geostudio. *Tugas Akhir*. Universitas Islam
 Indonesia. Yogyakarta.
- Lembang, L.D., 2021. Analisis Stabilitas Lereng Dengan Perkuatan Geotekstil Menggunakan Metode Elemen Hingga (Studi Kasus Di Jalan Tol Ngawi-Kertosono Sta. 132+ 750). *Tugas Akhir*. Universitas Islam Indonesia. Yogyakarta.
- Muzani. 2021. Buku Referensi Bencana Tanah Longsor Penyebab Dan Potensi Longsor. Deepublish. Yogyakarta.
- Nanda, T.N.F. dan Hamdan, I. N., 2021Analisis Rembesan dan Stabilitas Bendungan Bajulmati dengan Metode Elemen Hingga Model 2D dan 3D. *Jurnal Teknik Sipil*. Institut Teknologi Nasional. Bandung.
- Pangemanan, V.G.M., Turangan, A.E. dan Sompie, O.B., 2014. Analisis Kestabilan Lereng Dengan Metode Fellenius (studi kasus: Kawasan Citraland). Jurnal Sipil Statik, 2(1). Universitas Sam Ratulangi. Manado.
- Purwanto, Edy. 2012. Perkuatan Tanah. *Handout Mata Kuliah*, Universitas Islam Indonesia. Yogyakarta.
- Rasdi, R.F.K., 2021. Analisis Stabilitas Timbunan Tanah Menggunakan Perkuatan Geotekstil Dengan Program Plaxis 8.2 (Studi Kasus Di Jalan Tol Balikpapan-Samarinda). *Tugas Akhir*. Universitas Islam Indonesia. Yogyakarta.
- Sandi, I. K., 2021. Analisis Stabilitas Tubuh Bendungan Menggunakan Metode Bishop Dan Perhitungan Rembesan Dengan Pendekatan Metode Cassagrande. Tugas Akhir. Universitas Islam Indonesia. Yogyakarta.
- Seroy, C.A., Manoppo, F.J. and Rondonuwu, S.G., 2020. Analisa kestabilan bangunan embung nunuka 1. *Jurnal Sipil Statik*, 8(2). Universitas Sam Ratulangi. Manado.
- Sosrodarsono, S. (2000). Mekanika Tanah dan Teknik Pondasi. Jakarta: Pradnya Paramita.
- Tay, P. A., Adi, F. S., Tjandra, D., & Wulandari, P. S., 2014. Analisa Perkuatan Geotekstil pada Timbunan Konstruksi Jalan dengan PLAXIS 2D. Jurnal Dimensi Pratama Teknik Sipil, 3(2). Universitas Kristen Petra. Surabaya.
- Usnaini, Hendra., 2007. Analisis Stabilitas Lereng Pada Badan Jalan Yang Terbuat Dari Lumpur Lapindo. *Tugas Akhir*. Universitas Islam Indonesia. Yogyakarta.
- US Army Corps of Engineers., 2021. HEC-HMS Technical Reference Manual USA. https://www.hec.usace.army.mil/confluence/hmsdocs/hmstrm/modelingreservoirs/dambreak
- Wardana, I.G.N., 2017. Penggunaan Bahan Geotekstil untuk Mencegah Kelongsoran pada Lereng. *Tugas Akhir*. Universitas Udayana. Bali.
- Wesley, L.D., 2012. Mekanika Tanah Untuk Tanah Endapan Dan Residu. Penerbit ANDI. Yogyakarta.
- Zain, M.N. dan Suryo, E.A., 2015. Analisis Stabilitas Lereng Embung Dengan Menggunakan Kombinasi Dinding Penahan Kantilever dan Geotekstil Dengan Bantuan Perangkat Lunak. *Doctoral dissertation* atau *jurnal*. Universitas Brawijaya. Malang.

Dari hasil boring titik **BH-01** dapat di deskripsikan sebagai berikut:

Kedalaman (m)	Deskripsi Tanah	Nspt	Konsistensi
0,0 - 3,0	Lempung organic putih lekat	0 - 7	Kenyal Sedang
3,0 - 6,0	Lempung lekat lanauan, coklat	6 - 9	Kenyal Sedang
6,0 - 8,5	Lempung lekat tufa'an merah	12	Kenyal Sedang
8,5 - 12,0	Lempung lekat coklat keabu - abuan	13 - 60	Kenyal Sedang - Keras
12,0 - 14,0	Batu - bara hitam	51	Keras
14,0 - 23,0	Lempung pasiran abu - abu	39 - 51	Keras
23,0 - 28,0	Lempung lekat abu - abu	58 - 60	Keras
28,0 - 30,0	Batu - bara hitam	> 60	Keras
30,0 - 40,0	Batu lempung abu - abu	59 - 60	Keras

Tabel 3.34. Hasil Boring pada Lokasi BH-01

Sumber: Hasil Penyelidikan Mekanika Tanah CV. Karya Dinamis, Tahun 2019

Laporan Akhir

Gambar 3.22. Gambar Hasil Bor Inti pada Lokasi BH-01 (1/2)

Laporan Akhir

Gambar 3.23. Gambar Hasil Bor Inti pada Lokasi BH-01 (2/2)

Dari hasil boring titik **BH-02** dapat di deskripsikan sebagai berikut:

Kedalaman (m)	Deskripsi Tanah	Nspt	Konsistensi
0,0 - 2,0	Pasir lempungan putih	0 - 5	Sedang
2,0 - 6,0	Lempung tufa'an putih, merah lekat	6 - 8	Kenyal Sedang
6,0 - 12,0	Lempung pasiran coklat, keabu - abuan, lanau	7 - 60	Kenyal Sedang - Keras
12,0 - 13,5	Batu - bara muda hitam	-	-
13,5 - 24,0	Lempung lekat abu - abu kecoklatan, kaku	36 - 47	Keras
24,0 - 40,0	Batu lempung muda, abu - abu kecoklatan sisipan batu - bara, hitam	50 - 60	Keras
0,0 - 2,0	Pasir lempungan putih	0 - 5	Sedang
2,0 - 6,0	Lempung tufa'an putih, merah lekat	6 - 8	Kenyal Sedang
6,0 - 12,0	Lempung pasiran coklat, keabu - abuan, lanau	7 - 60	Kenyal Sedang - Keras

Tabel 3.35. Hasil Boring pada Lokasi BH-02

Sumber: Hasil Penyelidikan Mekanika Tanah CV. Karya Dinamis, Tahun 2019

Laporan Akhir

Gambar 3.24. Gambar Hasil Bor Inti pada Lokasi BH-02 (1/2)

Laporan Akhir

Gambar 3.25. Gambar Hasil Bor Inti pada Lokasi BH-02 (2/2)

Laporan Akhir

Gambar 3.5. Peta Lokasi Bench Mark (BM) dan Control Point (CP) Terpasang

Laporan Akhir Review Desain Embung Danau Asam Kabupaten Kotawaringin Barat

Gambar 3.7. Peta Situasi Hasil Pengukuran Topografi

Relasi	: CV. KARYA DINAMIS									
Pekerjaan	: Review Desain Embung Danau A	sam								
Lokasi	: Kabupaten Kotawaringin Barat Pr	ovinsi Kalim	antan Tengah							
No. Bor	:			BH-01				BI	1-02	
Kedalaman	:	5,0 - 5,5	9,5 - 10,0	15,0 - 15,5	19,0 - 19,5	25,0 - 25,5	5,0 - 5,5	9,5 - 10,0	15,0 - 15,5	19,0 - 19,5
	JENIS PENGUJIAN									
	Kadar Air (Wc), %	32,87	34,41	41,69	38,71	37,20	42,24	39,08	41,26	37,46
dau	Berat Jenis (Gs)	2,56	2,54	2,56	2,57	2,55	2,54	2,57	2,56	2,56
ime	Berat Volume (gt), gr/cc	1,52	1,65	1,72	1,74	1,78	1,59	1,61	1,72	1,74
Volt fic C	Berat Volume Kering (gd), gr/cc	1,15	1,23	1,21	1,25	1,30	1,12	1,16	1,22	1,27
rat ¹ esil	Angka Pori (e)	1,23	1,06	1,11	1,05	0,97	1,27	1,22	1,10	1,02
Sr	Porositas (n)	0,552	0,516	0,526	0,512	0,491	0,559	0,550	0,524	0,506
	Derajat Kejemhan, %	68,30	82,08	96,17	94,86	98,25	84,33	82,07	95,81	93,80
it erg	Batas Cair (LL), %	52,63	53,21	48,60	49,30	51,64	52,36	41,60	52,67	53,36
imi	Batas Plastis (PL), %	22,30	21,86	31,20	24,40	23,20	22,30	21,10	22,39	24,70
At	Plastic Index (PI), %	30,33	31,35	17,40	24,90	28,44	30,06	20,50	30,28	28,66
	Gravel, %									
ize	Coarse (%)									
ribu	Medium(%)		T	2,60	1,20					
Gra	Sand, %	9,71	8,45	21,30	18,42	3,46	5,70	11,60	6,70	6,38
	Silt + Clay %	90,29	91,55	76,10	80,38	96,54	94,30	88,40	93,30	93,62
kan /	Tekanan puncak deviator (qu), kg/cm2	0,17	0,19	0,24	0,23	0,20	0,22	0,21	0,24	0,26
at Te tat G	Kohesi, kg/cm2	0,07	0,08	0,17	0,18	0,18	0,06	0,05	0,14	0,17
Ku	Sudut geser dalam derajat	16,46	17,46	20,56	22,42	24,43	15,36	16,70	21,65	23,36
KONSOLIDASI	Koefisien Konsolidasi (Cv), cm2/sec x 10 ⁴	0,47	0,52	0,81	0,92	0,46	0,42	0,46	0,64	0,52
	UNIFIED & ASTM	CH	CH	CL	CL	СН	СН	CL	СН	CH
	AASHTO	A-7-6	A-7-6	A-2-6	A-2-6	A-7-6	A-7-6	A-2-6	A-7-6	A-7-6
KLASIFIKASI TANAH	JENIS TANAH	Lempung lekat	Lempung lekat	Tanah Lempung Berpasir	Tanah Lempung Berpasir	Lempung lekat	Tanah Lempung	Tanah Lempung berpasir	Tanah Lempung Lekat	Tanah Lempung Lekat
		υĴ	肌	ركىت	IJ	è.)			

	h (la vala				A (Luas)			Ŷ			W			
Pias	b (Jarak	Δl (m)	ø (°)	AI	ΑII	A III	γI	γП	γШ	w I	w II	wШ	cos ø	sin ø
	norizoniai)			m²	m²	m²	kN/m³	kN/m³	kN/m³	kN/m	kN/m	kN/m		
1	2,02	5,32	64,78	3,60	2,54	0	15,60	16,68	16,46	56,16	42	0	0,43	0,90
2	2,02	3,04	47,76	3,60	8,21	0,79	15,60	16,68	16,46	56,16	136,94	13	0,67	0,74
3	2,02	2,48	35,18	3,12	8,68	4,44	15,60	16,68	16,46	48,67	144,78	73	0,82	0,58
4	2,02	2,22	24,32	2,24	7,67	8,40	15,60	16,68	16,46	34,94	127,94	138	0,91	0,41
5	2,02	2,09	14,33	0,09	7,74	9,85	15,60	16,68	16,46	1,40	129,10	162	0,97	0,25
6	2,02	2,03	-4,77	0	6,20	10,54	15,60	16,68	16,46	0,00	103,42	173	1,00	-0,08
7	2,02	2,03	-4,66	0	4,15	10,54	15,60	16,68	16,46	0,00	69,22	173	1,00	-0,08
8	2,02	2,09	-14,21	0	2,11	9,86	15,60	16,68	16,46	0,00	35,19	162	0,97	-0,25
9	2,02	2,22	-24,19	0	0,29	8,43	15,60	16,68	16,46	0,00	4,84	139	0,91	-0,41
10	2,02	2,47	-35,04	0	0	6,10	15,60	16,68	16,46	0	0,00	100	0,82	-0,57
11	2,02	3,03	-47,59	0	0	2,46	15,60	16,68	16,46	0	0,00	40	0,67	-0,74

Tabel Perhitungan Stabilitas Lereng Dengan Slice Method Kondisi Rapid Drawdown, T = 100 Th, k = 0,0713

	l	N	Т		ф	Τį	gφ	1	N'	k		E = k.W	Ν	le
Pias	N I	N II	(W I + W II) sin φ	φI	φII	Tg 🛉 I	Tg 🛛 II	N' I	N' II	(OBE)	ΕI	ΕII	Ne I	Ne II
	kN/m	kN/m	kN/m	°	0			kN/m	kN/m	g	kN/m	kN/m	kN/m	kN/m
1	41,98	0,00	89,14	29,5	0	0,57	0	23,75	0	ZI	7,02	0,00	3,60	0
2	129,80	8,74	152,59	29,5	0	0,57	0	73,44	0		13,77	0,93	5,77	0
3	158,13	59,74	153,55	29,5	15,36	0,57	0,27	89,47	16,41		13,79	5,21	4,50	0,82
4	148,43	126,00	124,00	29,5	15,36	0,57	0,27	83,98	34,61		11,61	9,86	2,71	1,12
5	126,45	157,09	72,41	29,5	15,36	0,57	0,27	71,54	43,15	\leq 1	9,31	11,56	1,30	0,79
6	103,06	172,89	-23,03	29,5	15,36	0,57	0,27	58,31	47,49	0,0713	7,37	12,37	-0,35	-0,28
7	68,99	172,92	-19,70	29,5	15,36	0,57	0,27	39,03	47,50		4,94	12,37	-0,23	-0,28
8	34,12	157,33	-48,48	29,5	15,36	0,57	0,27	19,30	43,22		2,51	11,57	-0,35	-0,78
9	4,41	126,57	-58,84	0	15,36	0	0,27	0	34,77		0,34	9,89	0	-1,11
10	0,00	82,21	-57,64	0	15,36	0	0,27	0	22,58		0	7,16	0	-1,13
11	0,00	27,31	-29,90	0	15,36	0	0,27	0	7,50		0	2,89	0	-0,59
			354.11					756	5.05				15	.50

Lanjutan Tabel Perhitungan Stabilitas Lereng Dengan *Slice Method* Kondisi *Rapid Drawdown*, T = 100 Th, k = 0,0713

	Te	H	łw	γw	U		U	J'	U' '	Tgφ	(L	С	
Pias	(E I + E II) cos ø	Hw I	Hw II		UI	UΠ	U' I	U' II	U' I Tg φ	U' II Tg φ	c I	с П	L.c I	L. c II	SF
	kN/m	m	m	kN/m³	kN/m	kN/m	kN/m	kN/m	kN/m	kN/m	kN/m²	kN/m²	kN/m	kN/m	
1	2,99	2,00	0	S	19,66	0	104,65	0	59,21	0	14,3	0	76,13	0	
2	9,88	4,49	0		44,06	0	133,75	0	75,67	0	14,3	0	43,41	0	
3	15,53	4,03	2,02		39,52	19,86	97,98	49,22	55,43	13,52	0	5,88	0	14,58	
4	19,57	3,79	4,20		37,20	41,25	82,58	91,56	46,72	25,15	0	5,88	0	13,05	
5	20,22	3,77	4,89	S	36,96	47,94	77,15	100,06	43,65	27,49	0	5,88	0	12,27	
6	19,67	3,07	5,23	9,81	30,07	51,28	60,99	104,00	34,51	28,57	0	5,88	0	11,93	0,87
7	17,25	2,05	5,23	<u> </u>	20,16	51,30	40,88	104,02	23,13	28,57	0	5,88	0	11,92	
8	13,65	1,05	4,89		10,26	48,01	21,39	100,13	12,10	27,50	0	5,88	0	12,26	
9	9,34	0	4,19	\geq	0	41,10	0	91,15	0	25,04	0	5,88	0	13,04	
10	5,86	0	3,04		0	29,83	0	73,83	0	20,28	0	5,88	0	14,55	
11	1,95	0	1,26		0	12,40	0	37,51	0	10,30	0	5,88	0	17,79	
	135,91								55	6,85			240),93	

Lanjutan Tabel Perhitungan Stabilitas Lereng Dengan Slice Method Kondisi Rapid Drawdown, T = 100 Th, k = 0,0713

 $SF = \sum \frac{\{C.I + (N - U - Ne)tan\varphi\}}{\sum (T + Te)}$

 $=\frac{240,93+(756,05-556,85-21,70)}{(354,11+135,91)}$

= 0.87

	h (la sala				A (Luas)			Y			W			
Pias	b (Jarak	Δl (m)	ø (°)	AI	ΑII	A III	γI	γП	γШ	w I	w II	wШ	cos ø	sin ø
	norizoniai)			m²	m²	m²	kN/m³	kN/m³	kN/m³	kN/m	kN/m	kN/m		
1	2,02	5,32	64,78	3,47	2,63	0	15,60	16,68	16,46	54,13	44	0	0,43	0,90
2	2,02	3,04	47,76	3,30	8,51	0,79	15,60	16,68	16,46	51,48	141,95	13	0,67	0,74
3	2,02	2,48	35,18	3,79	8,02	4,44	15,60	16,68	16,46	59,12	133,77	73	0,82	0,58
4	2,02	2,22	24,32	4,11	5,87	8,40	15,60	16,68	16,46	64,12	97,91	138	0,91	0,41
5	2,02	2,09	14,33	2,96	5,27	9,85	15,60	16,68	16,46	46,18	87,90	162	0,97	0,25
6	2,02	2,03	-4,77	1,59	4,61	10,54	15,60	16,68	16,46	24,80	76,89	173	1,00	-0,08
7	2,02	2,03	-4,66	0,35	3,58	10,54	15,60	16,68	16,46	5,46	59,71	173	1,00	-0,08
8	2,02	2,09	-14,21	0	2,11	9,86	15,60	16,68	16,46	0,00	35,19	162	0,97	-0,25
9	2,02	2,22	-24,19	0	0,29	8,43	15,60	16,68	16,46	0,00	4,84	139	0,91	-0,41
10	2,02	2,47	-35,04	0	0	6,10	15,60	16,68	16,46	0	0,00	100	0,82	-0,57
11	2,02	3,03	-47,59	0	0	2,46	15,60	16,68	16,46	0	0,00	40	0,67	-0,74

Perhitungan Stabilitas Lereng Dengan Slice Method Kondisi Rapid Drawdown, T = 100 Th, k = 0,0713, Hilir

	1	N	Т	(þ	Τį	gφ	1	N'	k		E = k.W	N	le
Pias	NI	NII	$(W I + W II) \sin \varphi$	φI	φII	Tg 🗄 I	Tg 🛛 II	N' I	N' II	(OBE)	ΕI	ΕII	Ne I	Ne II
	kN/m	kN/m	kN/m	°	0			kN/m	kN/m	g	kN/m	kN/m	kN/m	kN/m
1	41,76	0,00	88,66	29,5	0	0,57	0	23,63	0		6,99	0,00	3,58	0
2	130,02	8,74	152,83	29,5	0	0,57	0	73,56	0	21	13,79	0,93	5,78	0
3	157,67	59,74	153,22	29,5	15,36	0,57	0,27	89,21	16,41		13,75	5,21	4,48	0,82
4	147,65	126,00	123,65	29,5	15,36	0,57	0,27	83,54	34,61		11,55	9,86	2,69	1,12
5	129,91	157,09	73,30	29,5	15,36	0,57	0,27	73,50	43,15		9,56	11,56	1,34	0,79
6	101,35	172,89	-22,88	29,5	15,36	0,57	0,27	57,34	47,49	0,0713	7,25	12,37	-0,34	-0,28
7	64,96	172,92	-19,37	29,5	15,36	0,57	0,27	36,75	47,50	41	4,65	12,37	-0,21	-0,28
8	34,12	157,33	-48,48	29,5	15,36	0,57	0,27	19,30	43,22	n I	2,51	11,57	-0,35	-0,78
9	4,41	126,57	-58,84	0	15,36	0	0,27	0	34,77		0,34	9,89	0	-1,11
10	0,00	82,21	-57,64	0	15,36	0	0,27	0	22,58		0	7,16	0	-1,13
11	0,00	27,31	-29,90	0	15,36	0	0,27	0	7,50		0	2,89	0	-0,59
			354,56					754	4,06				15	,52

Lanjutan Perhitungan Stabilitas Lereng Dengan *Slice Method* Kondisi *Rapid Drawdown*, T = 100 Th, k = 0,0713, Hilir

	Te	H	łw	γw	U		τ	J'	U' 7	Γgφ	(L.	С	
Pias	(E I + E II) cos ø	Hw I	Hw II		UI	UΠ	U' I	U' II	U'ITgφ	U' II Tg φ	c I	сП	L.c I	L. c II	SF
	kN/m	m	m	kN/m³	kN/m	kN/m	kN/m	kN/m	kN/m	kN/m	kN/m²	kN/m²	kN/m	kN/m	
1	2,98	2,36	0	S	23,16	0	123,32	0	69,77	0	14,3	0	76,13	0	
2	9,89	4,42	0		43,38	0	131,68	0	74,50	0	14,3	0	43,41	0	
3	15,50	4,18	2,10		41,01	20,63	101,67	51,14	57,52	14,05	0	5,88	0	14,58	
4	19,51	2,89	4,20		28,39	41,16	63,02	91,37	35,66	25,10	0	5,88	0	13,05	
5	20,46	2,62	4,90	S	25,65	48,04	53,55	100,27	30,29	27,54	0	5,88	0	12,27	
6	19,55	2,29	5,22	9,81	22,47	51,25	45,57	103,95	25,78	28,55	0	5,88	0	11,93	0,91
7	16,96	1,90	5,23		18,62	51,28	37,76	103,99	21,36	28,57	0	5,88	0	11,92	
8	13,65	1,06	4,88		10,38	47,91	21,65	99,91	12,25	27,44	0	5,88	0	12,26	
9	9,34	0	4,19	\geq	0	41,08	0	91,09	0	25,02	0	5,88	0	13,04	
10	5,86	0	3,01		0	29,50	0	73,01	0	20,05	0	5,88	0	14,55	
11	1,95	0	1,25		0	12,31	0	37,23	0	10,23	0	5,88	0	17,79	
	135,66								53.	3,70			240),93	

Lanjutan Perhitungan Stabilitas Lereng Dengan *Slice Method* Kondisi *Rapid Drawdown*, T = 100 Th, k = 0,0713, Hilir

	h Canala				A (Luas)			Ŷ			W			
Pias	b (Jarak	Δl (m)	ø (°)	AI	A II	A III	γI	γII	γШ	w I	w II	wШ	cos ø	sin ø
	nonzontar)			m²	m²	m²	kN/m³	kN/m³	kN/m³	kN/m	kN/m	kN/m		
1	2,02	5,32	64,78	3,60	2,54	0	15,60	16,68	16,46	56,16	42	0	0,43	0,90
2	2,02	3,04	47,76	3,60	8,21	0,79	15,60	16,68	16,46	56,16	136,94	13	0,67	0,74
3	2,02	2,48	35,18	3,12	8,68	4,44	15,60	16,68	16,46	48,67	144,78	73	0,82	0,58
4	2,02	2,22	24,32	2,24	7,67	8,40	15,60	16,68	16,46	34,94	127,94	138	0,91	0,41
5	2,02	2,09	14,33	0,09	7,74	9,85	15,60	16,68	16,46	1,40	129,10	162	0,97	0,25
6	2,02	2,03	-4,77	0	6,20	10,54	15,60	16,68	16,46	0,00	103,42	173	1,00	-0,08
7	2,02	2,03	-4,66	0	4,15	10,54	15,60	16,68	16,46	0,00	69,22	173	1,00	-0,08
8	2,02	2,09	-14,21	0	2,11	9,86	15,60	16,68	16,46	0,00	35,19	162	0,97	-0,25
9	2,02	2,22	-24,19	0	0,29	8,43	15,60	16,68	16,46	0,00	4,84	139	0,91	-0,41
10	2,02	2,47	-35,04	0	0	6,10	15,60	16,68	16,46	0	0,00	100	0,82	-0,57
11	2,02	3,03	-47,59	0	0	2,46	15,60	16,68	16,46	0	0,00	40	0,67	-0,74

Perhitungan Stabilitas Lereng Dengan *Slice Method* Kondisi *Rapid Drawdown*, T = 5.000 Th, k = 0,1070, Hulu

	I	N	Т	(ф	Τį	gφ	1	N'	k		E = k.W	Ν	le
Pias	NI	N II	$(W I + W II) \sin \varphi$	φI	φII	Tg 🗄 I	Tg 🛛 II	N' I	N' II	(MDE)	ΕI	ΕII	Ne I	Ne II
	kN/m	kN/m	kN/m	°	٥			kN/m	kN/m	g	kN/m	kN/m	kN/m	kN/m
1	41,98	0,00	89,14	29,5	0	0,57	0	23,75	0		10,54	0,00	5,40	0
2	129,80	8,74	152,59	29,5	0	0,57	0	73,44	0	Ζ.	20,66	1,39	8,65	0
3	158,13	59,74	153,55	29,5	15,36	0,57	0,27	89,47	16,41		20,70	7,82	6,75	1,24
4	148,43	126,00	124,00	29,5	15,36	0,57	0,27	83,98	34,61		17,43	14,79	4,06	1,67
5	126,45	157,09	72,41	29,5	15,36	0,57	0,27	71,54	43,15		13,96	17,35	1,96	1,18
6	103,06	172,89	-23,03	29,5	15,36	0,57	0,27	58,31	47,49	0,107	11,07	18,56	-0,52	-0,42
7	68,99	172,92	-19,70	29,5	15,36	0,57	0,27	39,03	47,50	41	7,41	18,56	-0,34	-0,41
8	34,12	157,33	-48,48	29,5	15,36	0,57	0,27	19,30	43,22		3,77	17,37	-0,52	-1,17
9	4,41	126,57	-58,84	0	15,36	0	0,27	0	34,77		0,52	14,85	0	-1,67
10	0,00	82,21	-57,64	0	15,36	0	0,27	0	22,58		0,00	10,74	0	-1,69
11	0,00	27,31	-29,90	0	15,36	0	0,27	0	7,50		0,00	4,33	0	-0,88
			354,11					750	6,05				23	,27

Lanjutan Perhitungan Stabilitas Lereng Dengan Slice Method Kondisi Rapid Drawdown, T = 5.000 Th, k = 0,1070, Hulu

	Te	ŀ	łw	γw	U		L L	J'	U' T	Γgφ	(2	L	.C	
Pias	(E I + E II) cos ø	Hw I	Hw II		UI	UII	U' I	U' II	U' I Tg φ	U' II Tg φ	c I	сП	L.c I	L. c II	SF
	kN/m	m	m	kN/m³	kN/m	kN/m	kN/m	kN/m	kN/m	kN/m	kN/m²	kN/m ²	kN/m	kN/m	
1	4,49	2,00	0	\mathbf{C}	19,66	0	104,65	0	59,21	0	14,3	0	76,13	0	
2	14,82	4,49	0		44,06	0	133,75	0	75,67	0	14,3	0	43,41	0	
3	23,31	4,03	2,02		39,52	19,86	97,98	49,22	55,43	13,52	0	5,88	0	14,58	
4	29,36	3,79	4,20	· · · · · · · · · · · · · · · · · · ·	37,20	41,25	82,58	91,56	46,72	25,15	0	5,88	0	13,05	
5	30,34	3,77	4,89	S	36,96	47,94	77,15	100,06	43,65	27,49	0	5,88	0	12,27	
6	29,53	3,07	5,23	2,977309	30,07	51,28	60,99	104,00	34,51	28,57	0	5,88	0	11,93	0,75
7	25,88	2,05	5,23		20,16	51,30	40,88	104,02	23,13	28,57	0	5,88	0	11,92	
8	20,48	1,05	4,89		10,26	48,01	21,39	100,13	12,10	27,50	0	5,88	0	12,26	
9	14,02	0	4,19		0	41,10	0	91,15	0	25,04	0	5,88	0	13,04	
10	8,80	0	3,04		0	29,83	0	73,83	0	20,28	0	5,88	0	14,55	
11	2,92	0	1,26		0	12,40	0	37,51	0	10,30	0	5,88	0	17,79	
	203,96								550	5,85			240),93	

Lanjutan Perhitungan Stabilitas Lereng Dengan Slice Method Kondisi Rapid Drawdown, T = 5.000 Th, k = 0,1070, Hulu

Pias	h Garat	Δl (m)	ø (°)	A (Luas)				Ŷ			W			
	b (Jarak			AI	A II	A III	γI	γII	γШ	w I	w II	w III	cos ø	sin ø
	norrzontar)			m²	m²	m²	kN/m³	kN/m³	kN/m³	kN/m	kN/m	kN/m		
1	2,02	5,32	64,78	3,47	2,63	0	15,60	16,68	16,46	54,13	44	0	0,43	0,90
2	2,02	3,04	47,76	3,30	8,51	0,79	15,60	16,68	16,46	51,48	141,95	13	0,67	0,74
3	2,02	2,48	35,18	3,79	8,02	4,44	15,60	16,68	16,46	59,12	133,77	73	0,82	0,58
4	2,02	2,22	24,32	4,11	5,87	8,40	15,60	16,68	16,46	64,12	97,91	138	0,91	0,41
5	2,02	2,09	14,33	2,96	5,27	9,85	15,60	16,68	16,46	46,18	87,90	162	0,97	0,25
6	2,02	2,03	-4,77	1,59	4,61	10,54	15,60	16,68	16,46	24,80	76,89	173	1,00	-0,08
7	2,02	2,03	-4,66	0,35	3,58	10,54	15,60	16,68	16,46	5,46	59,71	173	1,00	-0,08
8	2,02	2,09	-14,21	0	2,11	9,86	15,60	16,68	16,46	0,00	35,19	162	0,97	-0,25
9	2,02	2,22	-24,19	0	0,29	8,43	15,60	16,68	16,46	0,00	4,84	139	0,91	-0,41
10	2,02	2,47	-35,04	0	0	6,10	15,60	16,68	16,46	0	0,00	100	0,82	-0,57
11	2,02	3,03	-47,59	0	0	2,46	15,60	16,68	16,46	0	0,00	40	0,67	-0,74

Perhitungan Stabilitas Lereng Dengan *Slice Method* Kondisi *Rapid Drawdown*, T = 5.000 Th, k = 0,1070, Hilir

	Ν		Т	φ		Tgф		N'		k	E = k.W		Ne	
Pias	NI	N II	$(W I + W II) \sin \varphi$	φI	φII	Tg ø I	Tg 🛛 II	N' I	N' II	(MDE)	ΕI	ΕII	Ne I	Ne II
	kN/m	kN/m	kN/m	°	٥			kN/m	kN/m	g	kN/m	kN/m	kN/m	kN/m
1	41,76	0,00	88,66	29,5	0	0,57	0	23,63	0		10,49	0,00	5,37	0
2	130,02	8,74	152,83	29,5	0	0,57	0	73,56	0	Ζ.	20,70	1,39	8,67	0
3	157,67	59,74	153,22	29,5	15,36	0,57	0,27	89,21	16,41		20,64	7,82	6,73	1,24
4	147,65	126,00	123,65	29,5	15,36	0,57	0,27	83,54	34,61		17,34	14,79	4,04	1,67
5	129,91	157,09	73,30	29,5	15,36	0,57	0,27	73,50	43,15		14,35	17,35	2,01	1,18
6	101,35	172,89	-22,88	29,5	15,36	0,57	0,27	57,34	47,49	0,107	10,88	18,56	-0,51	-0,42
7	64,96	172,92	-19,37	29,5	15,36	0,57	0,27	36,75	47,50	41	6,97	18,56	-0,32	-0,41
8	34,12	157,33	-48,48	29,5	15,36	0,57	0,27	19,30	43,22		3,77	17,37	-0,52	-1,17
9	4,41	126,57	-58,84	0	15,36	0	0,27	0	34,77		0,52	14,85	0	-1,67
10	0,00	82,21	-57,64	0	15,36	0	0,27	0	22,58		0,00	10,74	0	-1,69
11	0,00	27,31	-29,90	0	15,36	0	0,27	0	7,50		0,00	4,33	0	-0,88
			354,56					754	4,06				23	,29

Lanjutan Perhitungan Stabilitas Lereng Dengan Slice Method Kondisi Rapid Drawdown, T = 5.000 Th, k = 0,1070, Hilir

	Te	Te Hw		γw	U		t	J'	U' Τg φ		C		L.C		
Pias	(E I + E II) cos ø	Hw I	Hw II		UI	UII	U' I	U' II	U' I Tg φ	U' II Tg φ	c I	c II	L.c I	L. c II	SF
	kN/m	m	m	kN/m³	kN/m	kN/m	kN/m	kN/m	kN/m	kN/m	kN/m ²	kN/m ²	kN/m	kN/m	
1	4,47	2,36	0	0)	23,16	0	123,32	0	69,77	0	14,3	0	76,13	0	
2	14,85	4,42	0		43,38	0	131,68	0	74,50	0	14,3	0	43,41	0	
3	23,26	4,18	2,10		41,01	20,63	101,67	51,14	57,52	14,05	0	5,88	0	14,58	
4	29,28	2,89	4,20	· · · · · · · · · · · · · · · · · · ·	28,39	41,16	63,02	91,37	35,66	25,10	0	5,88	0	13,05	
5	30,71	2,62	4,90	S	25,65	48,04	53,55	100,27	30,29	27,54	0	5,88	0	12,27	
6	29,34	2,29	5,22	2,977309	22,47	51,25	45,57	103,95	25,78	28,55	0	5,88	0	11,93	0,78
7	25,45	1,90	5,23		18,62	51,28	37,76	103,99	21,36	28,57	0	5,88	0	11,92	
8	20,48	1,06	4,88		10,38	47,91	21,65	99,91	12,25	27,44	0	5,88	0	12,26	
9	14,02	0	4,19		0	41,08	0	91,09	0	25,02	0	5,88	0	13,04	
10	8,80	0	3,01		0	29,50	0	73,01	0	20,05	0	5,88	0	14,55	
11	2,92	0	1,25		0	12,31	0	37,23	0	10,23	0	5,88	0	17,79	
	203,58							533,70							

Lanjutan Perhitungan Stabilitas Lereng Dengan Slice Method Kondisi Rapid Drawdown, T = 5.000 Th, k = 0,1070, Hilir

