Implementasi Zero Defect Dengan Metode FMEA Guna Mengontrol Kualitas Produksi Pada Bagian Press Bridge & Rib Assy Up (Studi Kasus PT Yamaha Indonesia)

TUGAS AKHIR

Diajukan Sebagai Salah Satu Syarat Untuk

Memperoleh Gelar Sarjana Strata-1 Teknik Industri

Disusun Oleh:

Nama : Gita Febriani

Nim : 18522356

PROGRAM STUDI TEKNIK INDUSTRI FAKULTAS TEKNOLOGI INDUSTRI UNIVERSITAS ISLAM INDONESIA YOGYAKARTA

PERNYATAAN KEASLIAN

Yang bertanda tangan dibawah ini:

Nama : Gita Febriani

No. Mahasiswa : 18522356

Program Studi : Teknik Industri

Judul Tugas Akhir : Implementasi Zero Defect Dengan Metode FMEA Guna

Mengontrol Kualitas Produksi Pada Bagian Press Bridge & Rib

Assy UP (Studi Kasus PT. Yamaha Indonesia)

Dengan ini saya menyatakan bahwa tugas akhir yang saya susun sebagai syarat memperoleh gelar sarjana merupakan hasil karya tulisan saya sendiri. Jika dikemudian hari ternyata terbukti pengakuan saya tidak benar dan melanggar peraturan yang sah dalam karya tulis maka saya sanggup menerima hukuman atau sanksi apapun sesuai peraturan yang berlaku.

Jakarta, 2 Juni 2021

Gita Febriani

18522356

SURAT KETERANGAN SELESAI TUGAS AKHIR

***YAMAHA**

PT. YAMAHA INDONESIA
Jl. Rawagelam I/5, Kawasan Industri Pulogadung
Jakarta 13930 Indonesia, PO. Box. 1190/JAT
Telp.: (62 - 21) 4619171 (Hunting) Fax.: 4602864, 4607077

Confidenti

SURAT KETERANGAN

No.: 260/YI/ PKL /VIII/2022

Kami yang bertandatangan dibawah ini, Bagian Human Resource Development (HRD) PT. YAMAHA INDONESIA dengan ini menerangkan bahwa:

Nama

: Gita Febriani

Nomor Induk Mahasiswa

: 18522356

Jurusan

: TEKNIK INDUSTRI

Fakultas

: TEKNOLOGI INDUSTRI

Alamat

: UNIVERSITAS ISLAM INDONESIA -YOGYAKARTA

Telah melakukan program Internship melalui penelitian dan pengamatan untuk penyusunan Tugas Akhir dengan Judul "IMPLEMENTASI ZERO DEFFECT DENGAN METODE FMEA GUNA MENGONTROL KUALITAS PRODUKSI PADA BAGIAN PRESS BRIDGE & RIB ASSY UP (STUDI KASUS PT. YAMAHA INDONESIA)."

Program ini dilaksanakan mulai Tanggal 01 Maret 2022 sampai dengan Tanggal 31 Agustus 2022. Kami mengucapkan terima kasih atas usaha dan partisipasi yang telah diberikan.

Demikian surat keterangan ini dibuat untuk dapat dipergunakan sebagaimana mestinya.

Jakarta, 24 Agustus 2022

HRD Department

PT. YAMAHA INDONESIA

M. Isnaini Manager

LEMBAR PENGESAHAN PEMBIMBING

LAPORAN TUGAS AKHIR PT. YAMAHA INDONESIA

IMPLEMENTASI ZERO DEFECT DENGAN METODE FMEA GUNA MENGONTROL KUALITAS PRODUKSI PADA BAGIAN PRESS BRIDGE & RIB ASSY UP (STUDI KASUS PT. YAMAHA INDONESIA)

Diajukan sebagai salah satu syarat untuk memperoleh gelar sarjana S-I
Jurusan Teknik Industri — Fakultas Teknologi Industri
Universitas Islam Indonesia

Disusun oleh:
GITA FEBRIANI
NIM. 18522356

Jakarta, Juni 2022
Menyetujui,
Pembimbing Tugas Akhir

Dr. Taufik Immawan S.T., MM

LEMBAR PENGESAHAN PENGUJI LAPORAN TUGAS AKHIR PT. YAMAHA INDONESIA

IMPLEMENTASI ZERO DEFECT DENGAN METODE FMEA GUNA MENGONTROL KUALITAS PRODUKSI PADA BAGIAN PRESS BRIDGE & RIB ASSY UP (STUDI KASUS PT. YAMAHA INDONESIA)

Diajukan sebagai salah satu syarat untuk memperoleh gelar sarjana S-1 Jurusan Teknik Industri – Fakultas Teknologi Industri Universitas Islam Indonesia Disusun oleh: GITA FEBRIANI NIM. 18522356 Jakarta, Juni 2022 Menyetujui, Pembimbing Tugas Akhir Tim Penguji Dr. Taufik Immawan S.T., MM Ketua Yuli Agusti Rochman, S.T., M.Eng. Anggota I M. Isnaini Anggota II Mengetahui, Ket<mark>u</mark>a Prog<mark>r</mark>am Studi Teknik I<mark>ndust</mark>ri Universitas Islam Indonesia

Ir. Muhammad Ridwan Andi Purnomo, S.T., M.Sc., Ph.D, IPM.

HALAMAN PERSEMBAHAN

Bismillahirrahmanirrahim

Dengan Rahmat Allah yang Maha Pengasih Lagi Maha Penyayang dan berkat dukungan serta doa dari orang-orang terdekat akhirnya skripsi ini dapat diselesaikan dengan baik. Oleh karena itu, saya persembahkan Tugas Akhir ini kepada:

Kedua Orang Tua Tercinta, Ayahanda Idrus (Alm) dan Ibunda Alfiah yang selalu memberikan rasa kasih sayang, perhatian dan doa yang ikhlas untuk anaknya.

Semoga menjadi pembawa kebahagiaan dan bermanfaat.

MOTTO

"Boleh jadi kamu membenci sesuatu padahal ia amat baik bagimu, dan boleh jadi pula kamu menyukai sesuatu padahal ia amat buruk bagimu, Allah mengetahui sedang kamu tidak mengetahui" (Qs. Al-Baqarah ayat 216)

"Allah tidak akan membebani seseorang melainkan sesuai dengan kemampuannya"

(Qs. Al-baqarah ayat 286)

"Barangsiapa menempuh jalan untuk mendapatkan ilmu, Allah akan memudahkan baginya jalan menuju surga" (HR. Muslim)

KATA PENGANTAR

Bismillahirrahmanirrahim

Assalamu'alaikum Warahmatullahi Wabarakatuh

Segala puji bagi Allah SWT, yang telah melimpahkan rahmat serta berkah-Nya kepada penulis, sehingga penulis mampu melaksanakan serta menuntaskan tugas akhir ini. Tidak lupa shalawat serta salam untuk Nabi Muhammad SAW yang sudah membimbing serta berjuang sehingga kita bisa berada pada jalan yang terang demi meraih Ridha dari Allah SWT.

Diiringi ucapan syukur untuk seluruh anugerah dari Allah yang senantiasa memberikan kesempatan serta ilmu sehingga tugas akhir "Implementasi Zero Defect Dengan Metode FMEA Guna Mengontrol Kualitas Produksi Pada Bagian Press Bridge & Rib Assy Up (Studi Kasus PT. Yamaha Indonesia)" ini bisa penulis selesaikan dengan baik. Tujuan dilaksanakannya tugas akhir ini adalah sebagai persyaratan dalam mendapatkan gelar strata-1 dalam Program Studi Teknik Industri, Fakultas Teknologi Industri, Universitas Islam Indonesia.

Dalam melakukan Tugas Akhir di PT. Yamaha Indonesia ini, penulis memperoleh banyak kesempatan, dukungan, serta bantuan, dari beragam pihak. Sehingga penulis bersama segala kerendahan hati hendak menyampaikan terima kasih terhadap:

- Bapak Prof. Dr. Ir. Hari Purnomo M.T selaku Dekan Fakultas Teknologi Industri Universitas Islam Indonesia.
- Bapak Ir. Muhammad Ridwan Andi Purnomo, S.T., M.Sc., Ph.D.,IPM. selaku Ketua Jurusan Teknik Industri, Fakultas Teknologi Industri, Universitass Islam Indonesia.
- 3. Bapak Dr. Taufiq Immawan S.T., M.M selaku Ketua Program Studi Teknik Industri sekaligus dosen pembimbing yang senantiasa memberikan bimbingannya pada penyelenggaraan tugas akhir beserta penyusunan laporan.
- 4. Bapak Syamsudin, Bapak Faizin, Bapak Syafatahillah, Bapak Dowi untuk seluruh bimbingan dan pembelajaran yang sudah beliau berikan selama penulis magang di PT. Yamaha Indonesia.
- 5. Pak Suparno dan seluruh operator Press Bridge dan Rib atas bantuan dan kerjasamanya selama proses pengerjaan tugas akhir maupun proses magang.

- 6. Kedua orang tua serta kakak penulis yang sudah memberi dukungan sekaligus menjadi sumber motivasi dan inspirasi bagi penulis.
- 7. Teman-teman magang batch 14 (Alfian, Abas, Raihan, Niki, Ratri, Geovan, Yusril, Handias, Fauzan) yang telah memberikan kisah, pengalaman, pembelajaran dan banyak hal lainnya. Terima kasih karena telah menjadi bagian dari pendewasaan saya.
- 8. Seluruh pihak yang telah mendukung dan turut membantu penulis yang tidak mampu penulis sebutkan seluruhnya.

Semoga laporan ini mampu memberikan manfaat bagi pembaca pada umumnya, serta perusahaan pada khususnya. Penulis juga tentunya sadar dimana laporan Tugas Akhir ini tidak bisa dinyatakan sempurna serta memerlukan kritik beserta saran pembaca. Penulis berharap semoga laporan ini bisa memberikan manfaat untuk seluruh pihak.

Wassalamualaikum Warahmatullahi Wabarakatuh

Jakarta, Juni 2022

Gita Febriani

ABSTRAK

Tujuan pelaksanaan penelitian ini yakni mengidentifikasi tingkatan kecacatan produk pada divisi Press Bridge & Rib Assy Up di PT. Yamaha Indonesia melalui penggunaan metode FMEA (Failure Mode and Effect Analysis), dan mengetahui rekomendasi seperti apakah yang dapat diajukan kepada devisi Press Bridge & Rib Assy Up di PT. Yamaha Indonesia dalam mengimplementasikan zero defect guna mengontrol kualitas produksi. Penelitian ini mengidentifikasi penyebab kegagalan produksi divisi Press Bridge & Rib Assy Up di PT Yamaha Indonesia melalui penggunaan metode FMEA. Metode ini dipilih dikarenakan dipergunakan khusus dalam menganalisis faktor penyebab kegagalan produksi sehingga dapat dilakukan pencegahan terjadinya cacat secara bertahap sesuai prioritas sebagai implementasi zero defect yang digunakan untuk pengontrol kualitas produksi piano. Hasil penelitian menunjukkan kondisi NG ratio produk devisi Press Bridge & Rib Assy Up di PT. Yamaha Indonesia sebesar 363 produk atau sebesar 4,2% dari total produksi bulan Maret – Juli 2022 berjumlah 8.599 produk solid. Dari total 363 produk NG terdapat jenis cacat treble bridge geser sebanyak 95 produk repair atau sebesar 26,1%, jenis cacat rib pecah sebanyak 80 produk repair atau sebesar 22%, jenis cacat rib renggang sebanyak 74 produk repair atau sebesar 20,5%, jenis cacat soundoard pecah sebanyak 71 produk repair atau sebesar 19,6%, jenis cacat bass bridge pecah sebanyak 43 produk repair atau sebesar 11,8%. Usulan perbaikan yang harus dilakukan dalam menurunkan NG ratio bagian Press Bridge & Rib yakni lebih diutamakan mencegah produk dari cacat daripada mengatasi produk cacat dengan pendekatan zero defect untuk meminimalisir cacat produk dengan cara : mendesain ulang peletakkan barang dan space antar ruang proses produksi warehouse untuk menghindari cacat produk akibat kecelakaan kerja; membuat SOP (Standar Operasional Prosedur) untuk cara pengeleman, pengecekan MC ulang, pengecekan kadar air dalam kayu berulang dan seasoning disetiap tahap produksi agar kualitas produk berjalan dengan baik; bantalan press yang masih *playwood* jangan diganti dengan silicon karna kerataannya sama kurang baik, namun diganti dengan bahan besi plate agar kerataan press untuk produk lebih terjamin; melakukan perbaikan, perawatan kebersihan dan pengecekan kondisi setiap mesin produksi secara rutin agar proses produksi terkendali dengan baik; dan mengidentifikasi masalah perlu dijadwalkan dalam proses produksi secara teratur agar tindakan pencegahan cacat dapat dimaksimalkan.

Kata Kunci: FMEA, Zero Defect, Kualitas Produksi

DAFTAR ISI

HALAMAN JUDUL	. i
HALAMAN PERNYATAAN KEASLIAN	. ii
SURAT KETERANGAN SELESAI TUGAS AKHIR	. iii
LEMBAR PENGESAHAN PEMBIMBING	. iv
LEMBAR PENGESAHAN PENGUJI	. v
LEMBAR PERSEMBAHAN	. vi
MOTTO	. vii
KATA PENGANTAR	. viii
ABSTRAK	. x
DAFTAR ISI	. xi
DAFTAR GAMBAR	
DAFTAR TABEL	
BAB I PENDAHULUAN	
1.1 Latar Belakang Masalah	
1.2 Rumusan Permasalahan	
1.3 Batasan Permasalahan	
1.4 Tujuan Penelitian	
1.5 Manfaat Penelitian	. 3
1.6 Sistematika Penulisan	. 4
RAR II KAIIAN I ITERATUR	5
2.1 Kajian Induktif	. 5
2.1.1 Kualitas Produksi	. 5
2.1.2 Zero Defect	. 7
2.1.3 Failure Mode And Effect Analysis (FMEA)	. 8
2.2 Kajian Deduktif	. 12
2.2.1 Penelitian Terdahulu	. 12
BAB III METODE PENELITIAN	. 20
3.1 Obiek Penelitian	. 20

3.2 Metode Pengumpulan Data	20
3.3 Jenis Data	20
3.4 Alur Penelitian	21
3.5 Kebutuhan Data	23
BAB IV PENGUMPULAN DAN PENGOLAHAN DATA	24
4.1 Informasi Umum Perusahaan	24
4.2 Pengolahan Data	34
BAB V PEMBAHASAN	57
5.1 Pembahasan Hasil Penelitian	
5.2 Usulan Perbaikan	69
BAB VI PENUTUP	
6.1 Kesimpulan	71
6.2 Saran	72
DAFTAR PUSTAKA	73
LAMPIRAN	77

DAFTAR TABEL

Tabel 2.1 Resume Penelitian Terdahulu	. 12
Tabel 4.1 Data Produksi Piano Bulan Maret-Juli	. 32
Tabel 4.2 Jenis Sound Board Model UP Right Piano	. 32
Tabel 4.3 Jumlah Cacat Produk Sound Board	. 33
Tabel 4.4 Jenis Cacat Produk Soundboard	. 34
Tabel 4.5 Akumulasi Produk Cacat Sound Board Bulan Maret – Juli 2022	. 35
Tabel 4.6 Validasi Penyebab Cacat <i>Treble Bridge</i> Geser	
Tabel 4.7 Validasi Penyebab Cacat Rib Pecah	. 42
Tabel 4.8 Validasi Penyebab Cacat Rib Renggang	
Tabel 4.9 Validasi Penyebab Cacat Soundboard Pecah	. 45
Tabel 4.10 Validasi Penyebab Cacat Bass Bridge Pecah	. 46
Tabel 4.11 Perhitungan Kendali P	. 47
Tabel 4.12 Analisis FMEA Untuk Jenis Cacat Treble Bridge Geser	. 48
Tabel 4.13 Analisis FMEA Untuk Jenis Cacat Rib Pecah	. 50
Tabel 4.14 Analisis FMEA Untuk Jenis Cacat Rib Renggang	. 51
Tabel 4.15 Analisis FMEA Untuk Jenis Cacat Soundboard Pecah	. 53
Tabel 4.16 Analisis FMEA Untuk Jenis Cacat Bass Bridge Pecah	. 55

DAFTAR GAMBAR

Gambar 3.1 Flowchart Penelitian	21
Gambar 4.1 Logo Yamaha Corporation	26
Gambar 4.2 Lokasi PT. Yamaha Indonesia	27
Gambar 4.3 Struktur Organisasi	27
Gambar 4.4 Struktur Organisasi	29
Gambar 4.5 Upright Piano	29
Gambar 4.6 Grand Piano	30
Gambar 4.7 Layout Press Bridge & Rib	32
Gambar 4.8 Diagram Pareto	
Gambar 4.9 Diagram Fishbone Trible Bridge Geser	36
Gambar 4.10 Diagram Fishbone Rib Pecah	37
Gambar 4.11 Diagram Fishbone Rib Renggang	38
Gambar 4.12 Diagram Fishbone Soundboard Pecah	39
Gambar 4.13 Diagram Fishbone Bass Bridge Pecah	40
Gambar 4.14 Grafik Kendali Produk	47

BABI

PENDAHULUAN

1.1 Latar Belakang

PT. Yamaha Indonesia merupakan perusahaan yang memproduksi alat musik piano. Dalam proses pembuatan piano yang berkualitas baik, perusahaan melakukan peningkatan dengan melakukan kaizen. Cara ini dilakukan perusahaan untuk membantu meningkatkan produktifitas dan efisiensi. Dalam penentuan kaizen berdasarkan permintaan pengguna pada bagian produksi maupun hasil value *stream mapping* (VSM).

Press Bridge & Rip Assy Up yakni divisi kerja yang bertanggung jawab pada pelaksanaan produksi piano di PT Yamaha Indonesia. Berbagai tipe piano yang diproduksi oleh divisi ini seperti Up Right (Vertikal) dan Grand Piano (Horizontal) (Yamaha, 2022). Divisi ini bertugas membuat piano mulai dari mengerok lem sisa di sound board, mengepres rib di sound board, maupun memasangkan pin di bass bridge serta kabinet treble (Agustin, 2017).

Kelompok kerja Press Rib dan Bridge mempunyai tiga stasiun kerja yaitu pemasangan pin, press, dan kerok lem. Pada proses Press Rib dan Bridge mempunyai peranan yang sangat penting. Proses tersebut merupakan proses perakitan awal untuk menjadi produk piano. Jika terjadi kesalahan di proses tersebut, maka dapat berdampak pada proses-proses selanjutnya. Pada stasiun kerja pemasangan pin terdapat empat operator, press terdapat empat operator, dan kerok lem terdapat tiga operator.

Kecacatan pada produk yang diperoleh melalui rangkaian produksi oleh devisi Press Bridge & Rip Assy Up tersebut sulit untuk dihindari, namun dapat di minimalisasi dengan manajemen risiko yang tepat. Adapun pada upaya untuk meminimalkan kecacatan pada produk, devisi Press Bridge & Rip Assy Up perlu melakukan manajemen risiko yang tepat untuk mengendalikan kualitas produksi dengan mengimplementasikan zero defect. Zero defect merupakan langkah produksi untuk mencegah dan menanggulangi produk cacat agar menghasilkan produk tanpa cacat yang sesuai dengan standar perusahaan (Powell, et al., 2021).

Tindakan zero defect yang dilakukan diawali dengan identifikasi untuk hal yang mengakibatkan permasalahan kegagalan serta analisis pada sumber dari kegagalan produksi yang dilakukan (Suliantoro, et al., 2018). Zero defect menjadi salah satu teknik manajemen risiko produksi yang tidak hanya berguna untuk mengontrol kualitas produk yang dihasilkan, tapi juga dapat membantu menghindari segala kombinasi dari konsekuensi industri yang disebabkan oleh kegagalan proses produksi (Powell, et al., 2021).

Metode FMEA (Failure Mode and Effect Analysis) di sini diterapkan dalam mendukung keberhasilan implementasi zero defect yang dilakukan divisi Press Bridge & Rip Assy Up. FMEA ini dipilih sebab dapat menganalisis penyebab kegagalan produksi secara signifikan dan melakukan perbaikan secara prioritas sesuai dengan urgensi konsekuensi akibat dari kegagalan. Dalam beberapa penelitian, FMEA mampu mengevaluasi tingkat efek dari kegagalan sebuah sistem secara akurat (Vidiana, 2016; Suliantoro, 2018). Alasan inilah yang membuat peneliti tertarik membuktikan keampuhan metode ini untuk mendeteksi penyebab kecacatan produk piano dan mengatasi produk cacat yang dihasilkan sehingga zero defect yang dilakukan divisi Press Bridge & Rib Assy Up di PT Yamaha Indonesia dapat tercapai.

1.2 Rumusan Permasalahan

Rumusan masalah yang peneliti peroleh diantaranya:

- 1. Bagaimanakah kondisi NG ratio yang terjadi pada cabinet Bridge & Rib?
- 2. Usulan perbaikan apa yang harus dilakukan dalam menurunkan NG ratio cabinet Press Bridge & Rib ?

1.3 Batasan Permasalahan

Batasan yang diterapkan untuk masalah dalam penelitian ini berguna untuk mengarahkan dan membatasi pembahasan agar masalah dapat diperjelas, yaitu diantaranya:

- Penelitian dilaksanakan hanya pada PT. Yamaha Indonesia dalam departement assy UP bagian Press Bridge & Rib.
- 2. Analisis data dilaksanakan melalui penggunaan metode FMEA (*Failure Mode And Effect Analysis*) dalam pengaplikasian *zero defect* (tanpa cacat).
- 3. Data cacat yang diterapkan yakni di bulan Maret sampai Juli.
- 4. Penelitian ini hanya berfokus pada produk defect pada bagian Press Bridge Rib
- 5. Jenis cacat yang digunakan sebagai data merupakan seluruh jenis cacat yang pernah terjadi pada product *defect soundboard*.

1.4 Tujuan Penelitian

Pelaksanaan penelitian ini ditujukan untuk memberikan jawaban bagi rumusan masalah, adapun berikut tujuan yang bisa disampaikan:

- Untuk mengidentifikasi tingkat kecacatan produk pada divisi Press Bridge & Rib Assy Up di PT. Yamaha Indonesia dengan metode FMEA.
- 2. Untuk mengetahui rekomendasi seperti apakah yang dapat diajukan kepada divisi Press Bridge & Rib Assy Up di PT. Yamaha Indonesia dalam mengimplementasikan *zero defect* guna mengontrol kualitas produksi.

1.5 Manfaat Penelitian

Manfaat yang bisa diberikan dari pelaksanaan penelitian ini diantaranya:

Penelitiaan ini diharapkan mampu menjadi sumbangsih *literatur review* terkait metode FMEA yang digunakan untuk pendeteksi kecacatan produksi pada divisi Press Bridge & Rib Assy Up dengan baik sehingga implementasi zero defect dalam mengontrol kualitas produksi untuk meminimalkan produksi cacat dalam industri dapat optimal.

1.6 Sistematika Penulisan

BAB I: Mencakup muatan latar belakang, rumusan dan batasan masalah, tujuan, manfaat, serta sistematika yang dipergunakan untuk menulis laporan ini.

BAB II: Mencakup muatan kajian literatur induktif serta deduktif yang bisa memberikan bukti bahwasanya topik FMEA berfokus pada zero defect kualitas produksi Press Bridge & Rib Assy Up di PT. Yamaha Indonesia yang peneliti angkat memenuhi kriteria serta syarat yang sudah ditetapkan.

BAB III: Mencakup muatan berupa objek, metode untuk mengumpulkan data, jenis data, alur penelitian, serta kebutuhan data.

BAB IV: Menguraikan proses analisis serta pengolahan data yang didapatkan dari divisi Press Bridge & Rib Assy Up di PT. Yamaha Indonesia melalui penggunaan prosedur FMEA, termasuk grafik serta gambar yang didapatkan melalui hasil studi.

BAB V: Membahas implementasi *zero defect* melalui metode FMEA yang digunakan untuk mengontrol kualitas produksi dalam bagian *press bridge & rib assy up*.

BAB VI: Menguraikan kesimpulan dan beberapa rekomendasi bagi penelitian yang lebih mendalam.

BAB II

KAJIAN LITERATUR

2.1 Kajian Induktif

2.1.1 Kualitas Produksi

Kualitas produksi adalah seberapa baik proses produksi menjadikan suatu produk bermutu untuk memenuhi apa yang konsumen butuhkan, memenuhi standard dari industri, serta memenuhi tujuannya (Mizuno & Bodek, 2020). Adapun pada saat mengevaluasi mutu produksi, bisnis perlu memberikan pertimbangan untuk sejumlah faktor kunci, misalnya apakah sebuah produksi menuntaskan permasalahan masalah, bekerja dengan efisien ataupun sesuai dengan tujuan menghasilkan suatu produk.

Perusahaan pun bisa melaksanakan evaluasi pada mutu produksi berdasarkan berbagai perspektif. Perspektif di sini mencakup perspektif manufaktur, perspektif konsumen, perspektif dengan basis nilai maupun produk, serta perspektif transcendental dimana menandakan nilai dari sebuah produk dengan hubungannya pada biaya. Melalui penggunaan perspektif tersebut, bisa ditentukan sebuah kualitas produksi menurut Ariani (2016) ialah sebagai berikut:

- 1) Kinerja dan fungsi sesuai
- 2) Kesesuaian pada spesifikasi
- 3) Keandalan dari produk untuk suatu rentang waktu
- 4) Kemudahan servis produk
- 5) Umur serta daya tahan produk
- 6) Persepsi konsumen pada produk

7) Fitur fisik produk yang dihasilkan

Mutu dari produksi termasuk krusial dikarenakan mempunyai pengaruh tersendiri untuk kesuksesan perusahaan sekaligus mampu mendukung pembentukan reputasinya pada pasar. Ketika perusahaan bisa menciptakan produk yang kualitasnya tinggi serta mampu terus memenuhi permintaan konsumen, hal itu bisa menyebabkan produksi dengan biaya yang lebih rendah, naiknya pendapatan, serta return investasi lebih besar.

Perusahaan merilis produknya demi mencukupi apa yang pasar butuhkan, sementara konsumen akan berharap produk tersebut mampu mencukupi kebutuhannya ketika perusahaan mengiklankan produk tersebut. Manajemen dari kualitas produk akan bergantung dari identifikasi elemen serta penetapan area perbaikan. Proxis Grup (2019) menjelaskan, dalam membentuk strategi pengawasan kinerja serta keberhasilan produksi maka:

1) Faktor yang memberikan pengaruh

Kualitas produksi diawali oleh bagaimanakah produksi dari perusahaan. Sesudah dilaksanakan perancangan konsep maka ditentukan jumlah serta jenis sumber daya yang diperlukan. Sejumlah faktor yang bisa memberikan pengaruh pada kualitas sebuah produk yakni bahan, teknologi, transportasi produk, kesediaan pekerja, distribusi, serta penyimpanan. Melalui penggunaan sejumlah faktor ini ketika pembentukan strategi, maka bisa dikembangkan sebuah produk dengan kualitas yang tinggi dalam menghasilkan keuntungan yang efisien sekaligus mampu memenuhi apa yang konsumen butuhkan.

2) Komponen dari manajemen kualitas

Product Quality Management (PQM) ataupun manajemen kualitas produk yakni strategi untuk mendukung bisnis dalam mengidentifikasikan kecacatan produk serta kekhawatiran konsumen. Kemudian informasi dari strategi ini bisa dimanfaatkan dalam meminimalkan permasalahan serta untuk mendongkrak kualitas dari produk ke depannya. PQM meliputi sejumlah bidang yang mencakup perencanaan, pengendalian, peningkatan, serta jaminan kualitas.

2.1.2 Zero Defect

Zero defect adalah sebuah kata yang telah ada sejak tahun 1960-an yang digunakan untuk pengembangan sistem rudal binasa tentara Amerika Serikat (Wang, 2013), dan telah disebutkan di dunia industri bersama dengan sejarah kontrol kualitas. Zero defect terkait manufaktur diciptakan pada akhir tahun 1980-an dengan tujuan untuk mengurangi cacat pada output dari berbagai proses produksi (Lindström et al., 2020). Zero defect manufacturing terdiri dari empat strategi yaitu detection, repair, prediction, and prevention. Untuk sebuah hasil produk perusahaan dapat mencapai zero defect diperlukan langkah awal untuk mendeteksi kelainan pada sistem manufaktur secara real time, untuk memprediksi dan mencegah berbagai faktor yang dapat mempengaruhi kualitas terlebih dahulu, dan untuk mengambil tindakan cepat dan perbaikan untuk bagian-bagian di mana masalah terjadi.

Menurut Lindström et al (2020), Zero defect manufacturing merupakan konsep strategi yang mencoba menggabungkan dan mengintegrasikan tujuh aktivitas sebagai berikut:

- 1) pemantauan parameter proses
- 2) manufaktur kolaboratif

- 3) kontrol kualitas berkelanjutan
- 4) pemeliharaan prediktif on-line
- 5) Penyimpanan data, analitik dan visualisasi
- 6) Konfigurasi ulang dan reorganisasi produksi
- 7) Penjadwalan ulang produksi.

Zero defect manufacturing memiliki beberapa pendekatan seperti productoriented, process-oriented, dan people-oriented. Zero defect terhadap kualitas
produksi tergantung dari mana melihat target untuk mengurangi cacat. Di era revolusi
industri 4.0, konsep zero defect bergantung pada peralatan mesin dengan
kompleksitas tinggi, terdiri dari beberapa ratus komponen yang harus dipantau dan
disimpan untuk menghindari kegagalan tak terduga sebanyak mungkin (Aivaliotis et
al., 2019).

Dari sudut pandang ketergantungan struktural, kegagalan satu mesin pasti mempengaruhi mesin lain dalam proses awal hingga akhir. Dengan demikian, kualitas yang menjadi fokus *zero defect* menunjukkan kelengkapan hasil kerja mesinmesin tersebut dengan kegagalan atau ketidaknormalan status fasilitas/peralatan. Kualitas tidak terbatas pada kondisi satu mesin saja, tetapi dipengaruhi oleh kondisi semua sumber daya (mesin, pekerja, material, prosedur, lingkungan kerja, dll.). Diantaranya, kualitas suatu produk pasti sangat dipengaruhi oleh kondisi kesehatan mesin pada proses manufaktur. Sehingga diperlukan untuk melihat hubungan antara kualitas produk dan pendekatan pemeliharaan untuk mesin.

2.1.3 Failure Mode And Effect Analysis (FMEA)

Ada banyak contoh penarikan produk yang terkenal akibat produk atau proses produksi yang dirancang buruk. FMEA yakni sebuah metodologi untuk memberikan

antisipasi pada sebuah kegagalan dari perusahaan melalui proses identifikasi pada segala peluang kegagalan pada proses manufaktur maupun desain.

Pengembangan FMEA dilaksanakan di tahun 1950-an serta menjadi sebuah metode paling awal dalam meningkatkan keandalan secara terstruktur, juga menjadi metode penurun peluang kegagalan yang terbilang efektif. FMEA yakni sebuah pendekatan dalam menemukan peluang kegagalan pada proses maupun desain produk secara terstruktur (Mikulak et al, 2017). FMEA dirancang untuk mengidentifikasi, memprioritaskan, dan membatasi mode kegagalan suatu sistem.

FMEA meningkatkan rekayasa yang baik dengan menerapkan pengetahuan dan pengalaman untuk meninjau kemajuan desain suatu produk atau proses dengan menilai risiko kegagalannya. Menurut Liu (2019), ada dua kategori FMEA, yaitu :

1) Desain FMEA

DFME (Design FMEA) mampu mencari temuan peluang malfungsi dari produk, permasalahan peraturan dan keselamatan, serta masa pakai produk, yang asalnya dari:

- a. Geometri
- b. Properti Bahan
- c. Antarmuka komponen maupun sistem lain
- d. Toleransi
- Rekayasa Kebisingan: profil pengguna, lingkungan, interaksi sistem, degradasi

2) Proses FMEA

PFMEA (Process FMEA) mampu mencari temuan kegagalan yang bisa berimbas terhadap mutu produk, ketidakpuasan konsumen, turunnya keandalan dari proses, serta bahaya ataupun keselamatan lingkungan yang asalnya dari:

- a. Faktor manusia
- b. Bahan yang dipergunakan
- c. Metode yang diterapkan ketika memproses
- d. Sistem pengukuran yang berimbas terhadap penerimaan
- e. Mesin yang dipergunakan
- f. Faktor Lingkungan dalam kinerja proses

Metode FMEA mengunakan nilai Risk Priority Number (RPN) dengan kriteria pertimbangan tingkat, termasuk:

- a. Tingkat Keparahan 9/10 atau Keamanan dan Peraturan saja (Tindakan Mode Kegagalan)
- b. Kombinasi kekritisan untuk Keparahan dan Kejadian (Penyebab Tindakan)
- c. Kontrol Deteksi (Tindakan Rencana Uji dan Kontrol)
- d. RPN Pareto

Prosedur FMEA dilaksanakan melalui mempertimbangkan nilai Risk Priority Number (RPN) dengan meminimalkan risiko kegagalan melalui pengurangan Severity serta Occurrence, juga peningkatan Detection yang bisa dijabarkan menjadi:

 Severity, yakni tahap awal untuk memahami tingkatan bahaya yang bisa timbul dalam output yang diperoleh.

- Occurance, dalam tahapan ini dilaksanakan pengukuran pada tingkat ataupun frekuensi peristiwa tersebut serta melalui penyebabnya itu bisa ditimbulkan sebuah kegagalan.
- 3) *Detectability*, yakni sebuah parameter yang bisa dimanfaatkan dalam mendeteksi ataupun mengetahui penyebab dari kegagalan yang potensial.

Kemudian perhitungan untuk nilai RPN tersebut bisa dilaksanakan melalui penggunaan rumus:

$$RPN = S \times O \times D$$

Dimana:

S = Severity ataupun tingkat/keseriusan bahaya

O = Occurence ataupun tingkat/frekuensi kejadian

D= Detection ataupun kemudahan untuk terdeteksi

Setelah selesai, pernyataan masalah dan deskripsi terkait antara kedua dokumen diselesaikan dengan memanfaatkan informasi yang mudah ditemukan dan sudah di-brainstorming dari FMEA. Kemungkinan penyebab dalam FMEA segera digunakan untuk memulai diagram Fishbone. Brainstorming informasi yang sudah diketahui bukanlah penggunaan waktu atau sumber daya yang baik. Data yang dikumpulkan dari pemecahan masalah ditempatkan ke dalam FMEA untuk perencanaan masa depan produk baru atau kualitas proses. Hal ini memungkinkan FMEA untuk mempertimbangkan kegagalan yang sebenarnya, dikategorikan sebagai mode dan penyebab kegagalan, membuat FMEA lebih efektif dan lengkap. Desain atau kontrol proses dalam FMEA digunakan dalam memverifikasi akar penyebab dan menindaklanjuti secara permanen.

2.2 Kajian Deduktif

2.2.1 Penelitian Terdahulu

Subbab penelitian terdahulu ini mencakup beberapa hasil studi yang dikumpulkan dengan berdasar keterkaitannya pada topik penelitian ini, dimana diantaranya:

Tabel 2.1 Resume Penelitian Terdahulu

Peneliti	Judul	Metode & Objek	Hasil
		Penelitian	
(Agustin,	"Implementasi	Lean Six Sigma	Rata-rata tingkat Sigma
2017)	Lean Six Sigma	PT Yamaha	pada Press Bridge & Rib
	dalam Upaya	Indonesia	yakni 4.125 disertai
	Mengurangi		DPMO sejumlah 4639
	Produk Cacat		unit, dimana menandakan
	pada Bagian		bisa dilaksanakan
	Press Bridge &		pemberian tindakan
	RIB ASSY UP		perbaikan melalui
	Studi Kasus PT		pendekatan Kaizen.
	Yamaha		
	Indonesia"		
(Helianty &	"Perbaikan	Failure Mode and	Dilakukan usulan
Nugraha,	Kualitas Produk	Effect Analysis	perbaikan kualitas proses
2018)	Berdasarkan	(FMEA) & Fault	produksi, sehingga jumlah
	Metode Failure	Tree Analysis	produk yang tidak
	Mode And	(FTA)	
	(Agustin, 2017) (Helianty & Nugraha,	(Agustin, "Implementasi 2017) Lean Six Sigma dalam Upaya Mengurangi Produk Cacat pada Bagian Press Bridge & RIB ASSY UP Studi Kasus PT Yamaha Indonesia" (Helianty & "Perbaikan Nugraha, Kualitas Produk 2018) Berdasarkan Metode Failure	Penelitian (Agustin, "Implementasi Lean Six Sigma 2017) Lean Six Sigma PT Yamaha dalam Upaya Indonesia Mengurangi Produk Cacat pada Bagian Press Bridge & RIB ASSY UP Studi Kasus PT Yamaha Indonesia" (Helianty & "Perbaikan Failure Mode and Nugraha, Kualitas Produk Effect Analysis 2018) Berdasarkan (FMEA) & Fault Metode Failure Tree Analysis

No	Peneliti	Judul	Metode & Objek	Hasil
			Penelitian	
		Effect Analysis	PT. Indoneptune	memenuhi standar kualitas
		(FMEA)"	Net Manufacturing	dapat ditekan
3	(Suliantoro	"Analisis	FMEA serta FTA	Mengidentifikasikan risiko
	et al, 2018)	Penyebab	(Fault Tree	dari kegagalan dalam
		Kecacatan	Analysis)	tahapan produksi paving
		dengan	PT. Alam Daya	serta usul perbaikan untuk
		Menggunakan	Sakti	meminimalkan tingkatan
		Metode Failure		kecacatan produk
		Mode and Effect		
		Analysis		
		(FMEA) dan		
		Metode Fault		
		Tree Analysis		
		(FTA) di PT.		
		Alam Daya		
		Sakti Semarang"		
4	(Powell, et	"Digitally	Zero Defect	Menyarankan mengadopsi
	al, 2021)	Enhanced	Manufacturing	peran manusia dalam smart
		Quality	Perusahaan digital	manufacturing industry
		Management		4.0, misalnya biaya lebih
		For Zero-Defect		terjangkau, kualitas lebih
		Manufacturing"		bagus, serta lead lebih

No	Peneliti	Judul	Metode & Objek	Hasil
			Penelitian	
				singkat, kemampuan
				teknologi digital harus
				dikombinasikan dengan
				kemampuan manusia
5	(Chen et al,	"The Effect of	PDCA & FMEA	Penggunaan komprehensif
	2022)	Comprehensive	Zhongda Hospital	alat manajemen PDCA dan
		Use of PDCA	in China	FMEA dalam manajemen
		and FMEA		internal rumah sakit dapat
		Management		sangat meningkatkan
		Tools on the		efisiensi kerja, kerja tim,
		Work		dan identitas diri staf
		Efficiency,		medis
		Teamwork, and		
		Self-Identity of		
		Medical Staff: A		
		Cohort Study		
		with Zhongda		
		Hospital in		
		China as an		
		Example"		
6	(Ouyang et	"Multiple	FMEA	Proses perakitan akhir busi
	al, 2022)	Perspectives On		dari produsen otomotif di

Peneliti	Judul	Metode & Objek	Hasil
		Penelitian	
	Analyzing Risk	Perusahaan	Cina diadopsi untuk
	Factors In	Otomotif	memperjelas keuntungan
	FMEA"		dari metode yang
			diusulkan
(Hassan et	"Modified	FMEA	Penerapan metodologi ini
al, 2022)	FMEA Hazard	Sistem pipa produk	dalam domain pipa lintas
	Identification	minyak Nigeria B2	negara minyak dan gas
	For Cross-		membantu pengambilan
	Country		keputusan atas
	Petroleum		ketidakpastian dalam
	Pipeline Using		inspeksi dan pemeliharaan
	Fuzzy Rule Base		pipa
	And		
	Approximate		
	Reasoning"		
(Yuan &	"Managing	FMEA	Penerapan metode yang
Tang, 2022)	Uncertainty Of	Sistem Pesawat	diusulkan berhasil
	Expert's		menganalisis tujuh belas
	Assessment In		mode kegagalan bilah
	FMEA With		turbin pesawat.
	The Belief		
	(Hassan et al, 2022)	Analyzing Risk Factors In FMEA" (Hassan et "Modified al, 2022) FMEA Hazard Identification For Cross- Country Petroleum Pipeline Using Fuzzy Rule Base And Approximate Reasoning" (Yuan & "Managing Tang, 2022) Uncertainty Of Expert's Assessment In FMEA With	Penelitian Analyzing Risk Perusahaan Factors In Otomotif FMEA" (Hassan et "Modified FMEA al, 2022) FMEA Hazard Sistem pipa produk Identification minyak Nigeria B2 For Cross- Country Petroleum Pipeline Using Fuzzy Rule Base And Approximate Reasoning" (Yuan & "Managing FMEA Tang, 2022) Uncertainty Of Sistem Pesawat Expert's Assessment In FMEA With

No	Peneliti	Judul	Metode & Objek	Hasil
			Penelitian	
		Divergence		
		Measure"		
9	(Anastasya	"Pengendalian	FMEA	Kecacatan yang timbul
	& Yuamita,	Kualitas Pada	PDAM Tirta	yakni tutup botol melipat,
	2022)	Produksi Air	Sembada	botol penyok, label miring
		Minum Dalam		serta seal keriput.
		Kemasan Botol		
		330ml		
		Menggunakan		
		Metode Failure		
		Mode Effect		
		Analysis		
		(FMEA) di		
		PDAM Tirta		
		Sembada"		
10	(Kadena &	"FMEA in	FMEA	Hasil FMEA menunjukkar
	Kocak,	Smartphones: A	Smartphone	bahwa layar sentuh, diikut
	2022)	Fuzzy		oleh pembekuan dan
		Approach"		kegagalan baterai,
				memiliki nilai RPN
				tertinggi untuk kelompok
				pengguna pertama.

No	Peneliti	Judul	Metode & Objek	Hasil
			Penelitian	
9				Kelompok kedua, hasil
				RPN, menunjukkan bahwa
				baterai, mikrofon, dan
				layar sentuh memiliki
				risiko lebih tinggi
11	(Reda &	"Decision-	QFD & FMEA	Dengan bantuan tata letak
	Dvivedi,	Making On The	Perusahaan	pabrik masa depan dan
	2022)	Selection Of	Manufaktur Sepatu	peta aliran nilai, total
		Lean Tools	di Ethiophia	waktu siklus berkurang
		Using Fuzzy		56,3%, waktu tunggu
		QFD And		berkurang 69,7%, jarak
		FMEA		transportasi material dan
		Approach In		aktivitas transportasi
		The		berkurang lebih dari 75%,
		Manufacturing		dan pekerja yang
		Industry"		dibutuhkan berkurang dari
				202 hingga 200
12	(Li, et al.,	"A Failure	AHP-FMEA	Meminimalkan kegagalan
	2021).	Analysis Of	Turbin Angin	bencana pada turbin angin
		Floating	Lepas Pantai	lepas pantai terapung.
		Offshore Wind		
		Turbines Using		

No	Peneliti	Judul	Metode & Objek	Hasil
			Penelitian	
		AHP-FMEA		
		Methodology"		
13	(Yucesan, et	"A Holistic	Holistic FMEA	Hasil dari pendekatan yang
	al., 2021).	FMEA	Industri	diambil telah dibandingkar
		Approach By	Manufaktur	dengan metode yang ada
		Fuzzy-Based		menunjukkan keandalan
		Bayesian		dalam meminimalisir
		Network And		resiko pada industri
		Best-Worst		manufaktur
		Method"		
14	(Wang et al,	"FMEA-CM	FMEA-CM	Dibandingkan dengan hasi
	2021)	Based	Coal-To-Methanol	yang diperoleh dari FMEA
		Quantitative	Plant In China	tradisional dan metode
		Risk		TOPSIS fuzzy, hasil yang
		Assessment For		diperoleh dari adopsi
		Process		pendekatan FMEA-CM
		Industries—A		menunjukkan bahwa
		Case Study Of		FMEA-CM adalah metode
		Coal-To-		yang lebih akurat dan
		Methanol Plant		efektif untuk penilaian
		In China"		risiko Coal-To-Methanol
				Plant.

No	Peneliti	Judul	Metode & Objek	Hasil
			Penelitian	
15	(Yener &	"A FMEA	FMEA	Terlihat bahwa model
	Can, 2021).	Based Novel	Industri	pertama memberikan hasil
		Intuitionistic	manufaktur	pemeringkatan yang sama
		Fuzzy Approach		dengan MIF-MABAC.
		Proposal:		Selain itu, ketika
		Intuitionistic		memasukkan kendala
		Fuzzy Advance		nyata, model pertama
		MCDM And		dapat memberikan hasil
		Mathematical		yang lebih sesuai daripada
		Modeling		model kedua.
		Integration"		

Berdasarkan tabel diatas, peneliti memaparkan beberapa hasil studi sebelumnya yang mempunyai kaitan pada penelitian kali ini. Penggunaan metode dari sejumlah studi tersebut juga beragam, ada yang mempergunakan holistic FMEA, FMEA tradisional, dan FMEA pada umumnya. Ada pula yang dilengkapi dengan metode AHP, CM, Fuzzy, dan sebagainya. Dalam penelitian ini FMEA berfokus pada *zero defect* sebagai metode penelitian, inilah yang menjadi terobosan baru dari penelitian-peneltian sebelumnya.

BAB III

METODE PENELITIAN

3.1 Objek Penelitian

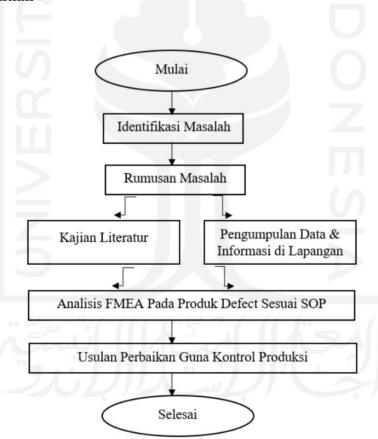
Objek yang peneliti terapkan yakni bagian perakitan piano Departemen Press Bridge & Rib PT Yamaha Indonesia. Peneliti di sini memberikan bahasan terkait implementasi zero defect dengan analisis FMEA yang digunakan sebagai pengontrol kualitas produksi piano.

3.2 Metode Pengumpulan Data

Penelitian ini mengidentifikasi penyebab kegagalan produksi divisi Press Bridge & Rib Assy Up melalui penggunaan metode FMEA. FMEA sendiri bisa dimanfaatkan dalam melaksanakan analisis pada tingkat sebuah kegagalan sehingga kegagalan yang ada dapat dikendalikan (Sugiyono, 2017). Menurut Arikunto (2017), metode FMEA secara efektif dapat mengantisipasi terjadinya resiko kegagalan dan menekan rasio kemungkinan terjadinya kegagalan terulang. Metode ini dipilih sebab digunakan khusus untuk menganalisis faktor penyebab kegagalan produksi sehingga dapat dilakukan pencegahan terjadinya cacat secara bertahap sesuai prioritas.

3.3 Jenis Data

Data yang peneliti terapkan diantaranya:


1. Data Primer

Data ini bisa peneliti dapat melalui objek dengan langsung. Dalam penelitian ini, data primer didapat dengan sesuai pada informasi serta kondisi pada perusahaan. Data primer yang peneliti terapkan yakni data produk *defect* di divisi Press Bridge & Rib.

2. Data Sekunder

Data ini akan peneliti dapatkan namun tidak dari lapangan, tetapi asalnya melalui bermacam sumber, termasuk skripsi, jurnal, buku, artikel, serta sebagainya.

3.4 Alur Penelitian

Gambar 3.1 Flowchart Penelitian

Mengacu pada flowchart tersebut bisa dijabarkan bahwasanya tahap pelaksanaan penelitian ini diantaranya:

1. Identifikasi Masalah

Langkah awal dalam penelitian yakni melaksanakan identifikasi di lapangan demi memahami permasalahan apakah yang dihadapi serta mempengaruhi kualitas produksi divisi *Press Bridge & Rib Assy Up* di PT Yamaha Indonesia.

2. Rumusan Masalah

Langkah kedua dalam penelitian yaitu membentuk perumusan permasalahan yang selaras pada masalah saat mengidentifikasi produksi divisi *Press Bridge & Rib Assy Up* sehingga dapat menemukan solusi atas rumusan masalah sebagai tujuan dan manfaat dalam penelitian ini.

3. Kajian Literatur, Pengumpulan Data dan Informasi di Lapangan

Langkah ketiga, melakukan kajian literatur untuk mengumpulkan sumber dari sejumlah penelitian terdahulu yang berhubungan pada teori peneliti. Selain itu untuk memanajemen waktu, disaat yang sama dilakukan pengumpulan data dan informasi di divisi *Press Bridge & Rib Assy Up* melalui observasi, wawancara dan kuisioner FMEA. Pengumpulan data diawali dengan mengumpulkan data profil perusahaan kemudian melakukan identifikasi terhadap proses produksi divisi *Press Bridge & Rib Assy Up*.

4. Analisis FMEA Pada Produk Defect Sesuai SOP (Standar Operasional Prosedur)

Langkah keempat, melakukan analisis FMEA dari kuesioner yang telah dibagikan, ditambah hasil observasi dan wawancara. Penilaian dan kategorisasi data disesuaikan dengan SOP produksi defect dari divisi *Press Bridge & Rib Assy Up*.

6. Usulan Perbaikan Guna Kontrol Produksi

Langkah terakhir, memberikan usulan perbaikan dari hasil analisis FMEA pada produk defect yang telah ditemukan untuk solusi mengontrol produksi selanjutnya menjadi zero defect.

3.5 Kebutuhan Data

Data yang peneliti perlukan ialah sebagai berikut :

- 1. Profil umum PT. Yamaha Indonesia
- 2. Profil divisi Press Bridge & Rib Assy Up di PT Yamaha Indonesia
- 3. Data pencegahan dan penanggulangan produk *defect* yang sesuai dengan SOP (Standar Operasional Prosedur) di devisi Press Bridge & Rib Assy Up
- 4. Data jenis kegagalan yang mempengaruhi kualitas produksi soundboard.
- 5. Data konsekuensi potensial jenis kegagalan yang dapat mempengaruhi hasil akhir produksi.
- 6. Data temuan NG produk Bridge & Rib dari periode Maret-Juli
- 7. Data Hasil Produksi kelompok Press Bridge & Rib dari periode Maret-Juli
- 8. Data peluang penyebab jenis kegagalan produksi dalam menghasilkan produk *defect*.
- 9. Data pencegahan jenis kegagalan produksi / pengukuran pada kapabilitas untuk mengendalikan kualitas produksi terhadap kegagalan yang bisa saja timbul.

BABIV

PENGUMPULAN DAN PENGOLAHAN DATA

4.1 Informasi Umum Perusahaan

4.1.1 Sejarah Perusahaan

PT. Yamaha Indonesia termasuk perusahaan penghasil alat musik piano. Perusahaan ini dibentuk dari kerja sama diantara pengusaha indonesia bersama Yamaha *Organ Works* di 27 Juni 1974. Mulanya, Mr. Genichi Kawakami selaku pemimpin Yamaha *Organ Works* memperoleh kesan baik terhadap warga Indonesia dimana secara umum menyukai seni musik, kondisi tersebut ia rasakan ketika kali pertama di tahun 1965 ketika mengunjungi Indonesia. Kemudian dalam kunjungannya yang selanjutnya Mr. Genichi Kawakami pada tahun 1972 menyampaikan gagasan yang ada dalam benaknya untuk membangun perusahaan alat musik ke Drs. Hoegeng Imamn Santoso selaku sahabatnya di Indonesia. Perusahaan ini mulanya menghasilkan sejumlah alat yang meliputi Pianica, Electone, Piano, serta lainnya.

Selanjutnya dengan perkembangan yang baik, seluruh produksi dari Recorder, Drum, serta Pianoca pada tahun 1990 dipindah pada anak perusahaan lain yakni PT. Yamaha Music Manufacturing Indonesia (YMMI). Sehingga dari situ YMII mulai menghasilkan Export Piano serta mulai memproduksi Clavinova di tahun 1995. Bersama dengan perjalanannya perusahaan pun menjadi lebih memperhatikan kualitas serta mutunya hingga mampu memperoleh ISO 9001 di tahun 1998. Selanjutnya di tahun yang sama YMII mengalihkan produksi Keyboard Electronic pada anak perusahaan lain, yakni PT. Yamaha Music Manufacturing Asia (YMMA).

Setelah meraih ISO 9001, PT. Yamaha Indonesia pun di tahun 2002 memperoleh ISO 14001 selaku tanda rasa peduli pada lingkungan. Kemudian perusahaan ini pun melaksanakan sertifikasi ISO:14001 serta ISO:9001 dengan pelaksanaan *audit* sekali setiap setengah tahun demi memastikan konsistensinya tersebut pada kualitas serta pengelolaan lingkungan. Kondisi ini tentunya menjadi bukti bahwasanya PT. Yamaha Indonesia secara serius memberikan perhatiannya pada kualitas serta lingkungan.

- PT. Yamaha Indonesia mempuyai satu lantai untuk beribadah maupun istirahat dan empat lantai untuk keperluan produksi. Produksi yang terdapat di sini mencakup proses mengolah kayu hingga siap untuk dipergunakan, mengecat, *assembly* (merakit), menyelaraskan nada serta suara, mengemas, hingga melaksanakan inspeksi pada kualitas serta lingkungan. Sampai sekarang PT. Yamaha Indonesia memperoleh posisi selaku perusahaan produksi piano utama.
- PT. Yamaha Indonesia di Oktober 1998 mulai berfokus hanya untuk memproduksi piano, dengan kegiatannya yang dilaksanakan pada Kawasan Industri Pulogadung seluas 15.711 m2, pada Jalan Rawagelam Jakarta Timur. Perusahaan ini menghasilkan piano berjenis Grand Piano serta UP Right yang mempunyai beragam model ataupun variasi, serta mampu memenuhi kebutuhan alat musik baik untuk pasar domestic maupun import, terutama area Amerika serta Asia Tenggara.

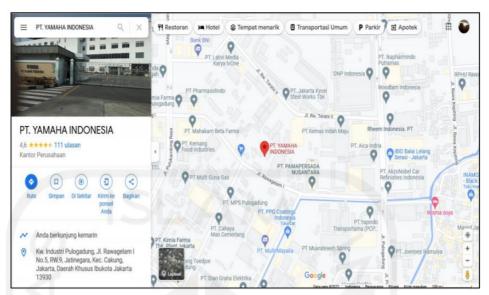
4.1.2 Visi Misi Perusahaan

- PT. Yamaha Indonesia mempunyai visi "menciptakan berbagai produk dan pelayanan yang mampu memuaskan berbagai macam kebutuhan dan keunginan dari berbagai pelanggan Yamaha di bidang akustik, rancangan, teknologi, karya cipta, dan pelayanan yang selalu mengutamakan pelanggan". Sementara itu untuk misi yang dimiliki PT. Yamaha Indonesia diantaranya:
 - 1. "Mempromosikan dan mendukung popularisasi Pendidikan music.
 - 2. Operasi dan manajemen yang berorientasi pada pelanggan.
 - 3. Kesempurnaan dalam produk dan pelayanan.
 - 4. Usaha yang berkesinambungan untuk mengembangkan dan menciptakan pasar.
 - 5. Peningkatan dalam bidang penelitian dan pengembangan secara berkala serta globalisasi dari bisnis Yamaha.
 - Secara terus menerus mengembangkan pertumbuhan bisnis yang positif melalui diversifikasi produk."

4.1.3 Logo Perusahaan

Setiap perusahaan mempunyai suatu tanda pengenal supaya para konsumennya bisa mengingat perusahaan itu dengan mudah. PT. Yamaha Indonesia yakni anak perusahaan Yamaha *Corporation* yang berada di kota Hamamatsu, Jepang. Oleh karena itu PT. Yamaha Indonesia menggunakan logo yang sama dengan Yamaha *Corporation*. Berikut merupakan logo dari Yamaha *Corporation*:

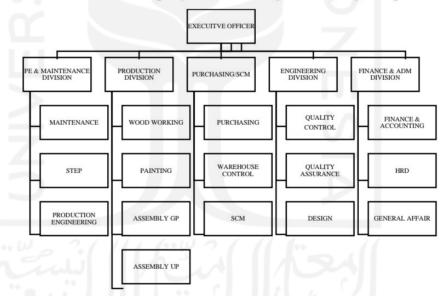
Gambar 4.1 Logo Yamaha Corporation


Pada logo tersebut terdapat garpu tala yang jumlahnya tiga, dimana merefleksikan kerja sama yang mengkombinasikan tonggak usahanya Yamaha, diantaranya Produksi, Teknologi, serta Penjualan. Garpu tala ini pun merefleksikan energi ataupun kekuatan dari musik maupun suara di dunia dengan wilayahnya yang digambarkan melalui lingkaran. Gambar ini pun mencerminkan tiga aspek krusial musik, yakni harmoni, melodi, serta irama. Sedangkan slogan "Make Waves" yang memiliki arti membuat gelombang. Konsep "Make Waves" terfokus terhadap hasrat perusahaan serta hal yang termasuk penting untuk seluruh orang, yakni mengekspresikan dirinya serta memberikan imbas untuk secara pribadi berkembang selaku pemain maupun pendengar serta bersama bergabung pada orang lainnya.

4.1.4 Lokasi Perusahaan

Nama : PT. YAMAHA INDONESIA

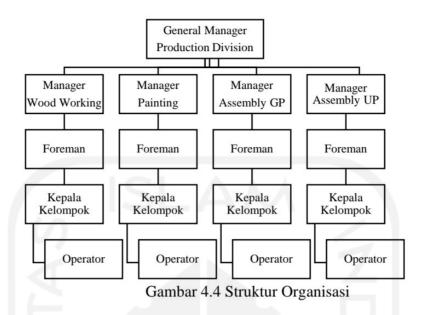
Alamat : Kawasan Industri Pulogadung, Jalan Rawagelam I No.5. Jakarta


Timur 13930. Fax: (021) 4602864, Telepon: (021) 4619171.

(Sumber: Google Maps, 2022) Gambar 4.2 Lokasi PT. Yamaha Indonesia

4.1.5 Struktur Organisasi

PT. Yamaha Indonesia mempunyai Struktur organisasi yang berupa:


Gambar 4.3 Struktur Organisasi

Mengacu dari gambar tersebut bisa dijabarkan:

1. Divisi *Production Engineering* dan *Maintenance*, mengatasi permasalahan *maintenance* (perbaikan) serta *kaizen* (perbaikan secara berkelanjutan). Divisi ini mencakup *Production Engineering*, *Supporting Team for Engineering Project* (*STEP*), serta *Maintenance*. Bia terdapat permintaan operator ataupun *user* dalam melaksanakan peningkatan pada mesin, maka bisa dilaksanakan pengajuan pada ini untuk berikutnya akan kembali dikaji

- terkait *kaizen*. Proses membuat mesin bisa dilaksanakan oleh vendor (pihak luar perusahaan) maupun di perusahaan (jika memungkinkan secara bahan maupun alat).
- 2. Divisi Produksi, meliputi bagian *Painting*, *Wood Working*, *Assembly GP* (*Grand Piano*), serta *Assembly UP* (*Upright Piano*). Adapun penanganan yang dilaksanakan divisi ini yakni pada fabrikasi/produksi, dari permulaan pembuatan mempergunakan bahan mentah, proses merakit, mengecat, serat diakhiri oleh pekerjaan *finishing*.
- 3. Divisi *Purchasing*, mengerjakan keperluan *order* produk, dari sisi vendor, harga, pembuatan laporan pengeluaran dan pembelian barang (material, inventory, serta sejenisnya), melangsungkan kerja sama pada divisi terkait demi menjaga operasional tetap lancar, serta menjaga ketersediaan material/barang dengan mempergunakan *audit control stock*. Bagian dari divisi ini diantaranya *Ware House*, *Purchasing*, serta *SCM*.
- 4. Divisi *Engineering*, meliputi bagian *Design*, *Quality Assurance*, serta QC (*Quality Control*). Divisi ini melaksanakan pekerjaan dalam hal penanggung jawab *design* serta *QC* (pengecekan akhir).
- 5. Divisi *Finance* & Administrasi, meliputi bagian *Finance* & *Accounting*, *General Affair*, serta *Human Resource Development*. Divisi ini bertanggung jawab dalam keperluan finansial. Beda diantara *Finance* serta *Accounting* yakni; *Finance* mempunyai kuasa untuk memegang uang serta bergaeran pada penerimaan maupun pemasukan uang. Sedangkan *Accounting* memegang urusan pencatatan, pengecekan, serta pelaporan keuangan yang keluar ataupun masuk.

Pada tabel diatas tidak langsung kepada objek yang akan dianalisis oleh peneliti, maka dari itu peneliti tambahkan struktur organisasi dari divisi produksi sampai kepada operator. Berikut merupakan struktur diatas yaitu pada divisi produksi:

4.1.6 Produk

PT. Yamaha Indonesia mempunyai produk yang meliputi *Grand* Piano serta *Upright* Piano, dimana jenis *Grand* Piano mempunyai posisi *horizontal* sementara *Upright* mempunyai posisi tegak ataupun *vertical*. Selain dua jenis tersebut juga menghasilkan beragam bagian dari piano untuk kemudian diexport serta akan dirakit di luar negeri. Piano dari perusahaan ini memiliki sejumlah warna yang diantaranya Polished White (putih), Polished Mahoghany (motif kayu coklat), Polished Walnut (motif kayu coklat kemerahan), serta Polished Ebony (hitam),

Berikut salah satu contoh produk Upright Piano yang dapat dilihat pada gambar 1.1

Gambar 4.5 Upright Piano

Berikut merupakan salah satu contoh produk Grand Piano yang dapat dilihat pada gambar 1.2 :

Gambar 4.6 Grand Piano

4.1.7 Proses Produksi

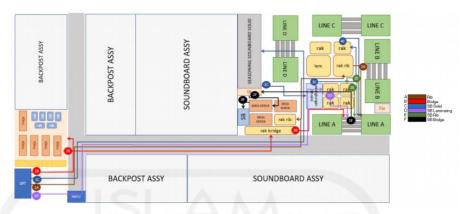
Produksi pada PT. Yamaha Indonesia dilaksanakan melalui Wood Working, Painting, serta Assembly. Assembly sendiri dibagi dalam Assembly Upright Piano serta Grand Piano. Namun peneliti di sini berfokus di departement Assembly Upright Piano. Press Bridge & Rib memulai produksi melalui pasang

pin di *treble bridge* serta *bass bridge* sampai kerok lem di *sound board* yang bisa dijabarkan menjadi:

1. Pasang Pin

Pasang Pin dilaksanakan ke *treble* serta *bass bridge* dengan cara mengetok pin menggunakan palu ke lubang yang tersedia pada *treble bridge* dan *bass bridge*. Tahapan ini mempergunakan tenaga manusia (manual). Proses ini kemudian diteruskan dengan perakitan senar *treble & bass* di bagian *string*.

2. Press Bridge & Rib


Press Bridge & Rib merupakan tahapan press rib dengan soundboard serta press bridge dengan soundboard hasil press rib. Proses ini menggunakan mesin back press dengan waktu 40 menit. Namun perakitan masih menggunakan tenaga manusia (manual).

3. Kerok Lem

Kerok Lem merupakan proses membersihkan sisa lem hasil press dengan menggunakan pahat yang terdapat dalam rib, bass serta treble bridge. Tahapan ini masih menggunakan tenaga manusia (manual). Kemudian akan dilaksanakan pengamplasan di pinggiran rib supaya area yang sudah memperoleh pengerokan bisa kembali halus. Tahapan berikutnya yakni pengeboran *soundboard* mempergunakan jig bor serta bor tangan. Adapun dalam mempergunakan jig bor perlu disesuaikan pada jenis pianonya. Lalu tahapan akhir yaitu melaksanakan *checklist* kualitas soundboard, rib, bass dan treble bridge sebelum dikirimkan di bagian berikutnya yakni *Painting Soundboard Assy UP*.

4.1.8 Layout

Berikut layout area produksi pada bagian Press Bridge & Rib, Adapun dalam bagian Press Bridge & Rib terdapat pada area Factory 4 lantai 3 PT. Yamaha Indonesia.

Gambar 4.7 Layout Press Bridge & Rib

4.1.9 Data Produksi

Data dari Produksi PT. Yamaha Indonesia mengikuti permintaan, dimana mengaplikasikan mekanisme make to order. Data produksi yang dimaksud diantaranya:

Tabel 4.1 Data Produksi Piano Bulan Maret-Juli

Bulan	Produksi Perbulan (unit)
Maret	1559
April	1022
Mei	1586
Juni	1830
Juli	2602

Source : Data Efficiency Assembly UP PT. Yamaha Indonesia

4.1.10 Jenis Soundboard Upright Piano

Jenis dari Sound Board yang dipergunakan pada piano model UP Right dalam divisi Press Bridge & Rib meliputi:

Tabel 4.2 Jenis Sound Board Model UP Right Piano

No	Sound Board Solid	Sound Board Laminating
	B2	JX
2	В3	JU
3	P22	B1
4	B121	M2A
5	U1J	K113

No	Sound Board Solid	Sound Board Laminating
6	P121	K109
7	P116	
8	K121	
9	B113	
10	M5	
11	M3	
12	M2L	
13	Classic T	
14	Concerto/Cambridge	
15	P124	

4.1.11 Data Reject

Data ini berupa produk cacat soundboard sound board dari Maret-Juli 2022 pada divisi Press Bridge & Rib Assy UP, dimana meliputi:

Tabel 4.3 Jumlah Cacat Produk Sound Board

Jumlah Cacat Produk

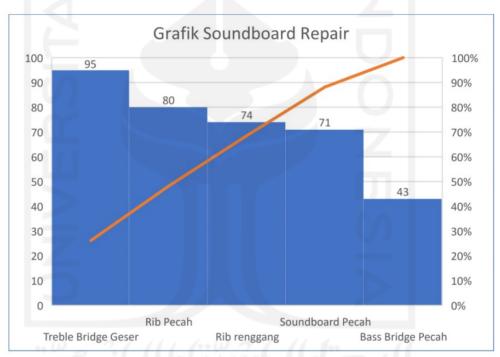
Material	Val. Class	April	Mei	Juni	Juli	Total Reject
VCT3891	9040	1	2	9	2	34
VDF6651	9040	6	5	6	5	25
Z598020	9030	13	5	8	9	77
Z598030	9030	0	0	2	24	68
Z598040	9030	5	4	5	30	57
Z598050	9030	17	14	22	29	102
Z598360	9030	0	0	0	0	0

Dari tabel 4.3 diketahui jumlah produk cacat dari jenis produk sound board yang diproduksi. Tabel selanjutnya merupakan banyak produk cacat yang dikategorikan berdasarkan jenis cacat produksi sound board di dalam Maret-Juli 2022 pada divisi *Press Bridge & Rib Assy UP*.

Tabel 4.4 Jenis Cacat Produk Soundboard

No	Jenis Cacat Sound Board	Mar	April	Mei	Jun	Jul	Total Reject
1	Soundboard Pecah	29	9	5	13	15	71
2	Rib Pecah	20	20	10	10	20	80
3	Bass Bridge Pecah	13	8	0	13	9	43
4	Treble Bridge Geser	43	3	12	7	30	95
5	Rib renggang	35	2	3	9	25	74
	Total	140	42	30	52	99	363

4.2 Pengolahan Data

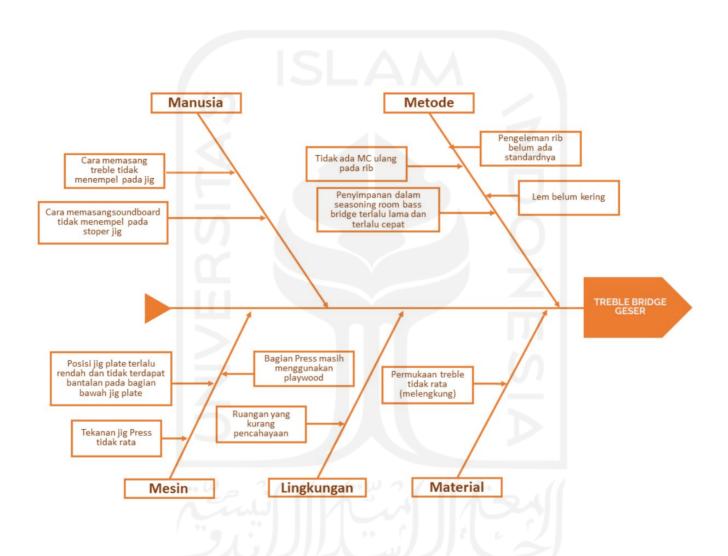

Peneliti di sini menjabarkan pengolahan data guna menetapkan jenis dari kecacatan yang mendominasi produk *soundboard* dan mengidentifikasi penyebab-penyebab pada produk di divisi *Press Bridge & Rib*.

4.2.1 Pareto

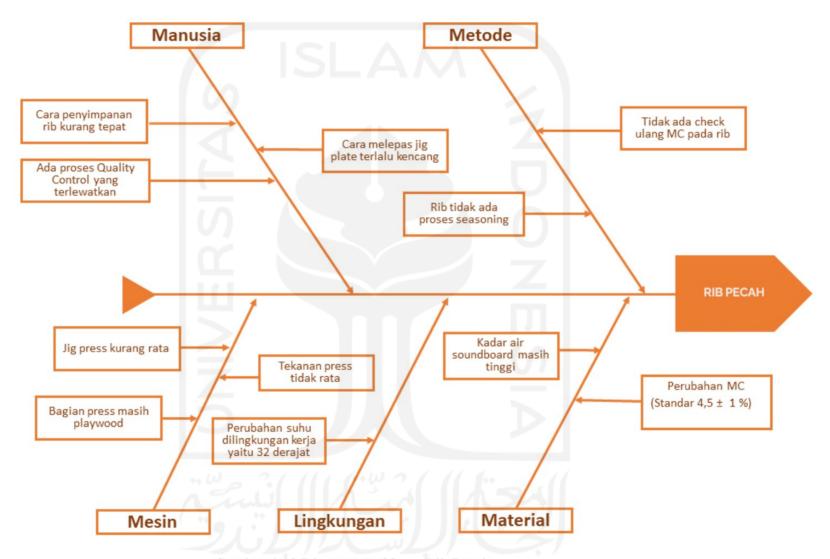
Sebelum mengelola data dalam diagram pareto, berikut hasil akumulasi produk soundboard cacat bulan Maret sampai bulan Juli dalam penelitian ini :

Tabel 4.5 Akumulasi Produk Cacat Sound Board Bulan Maret – Juli 2022

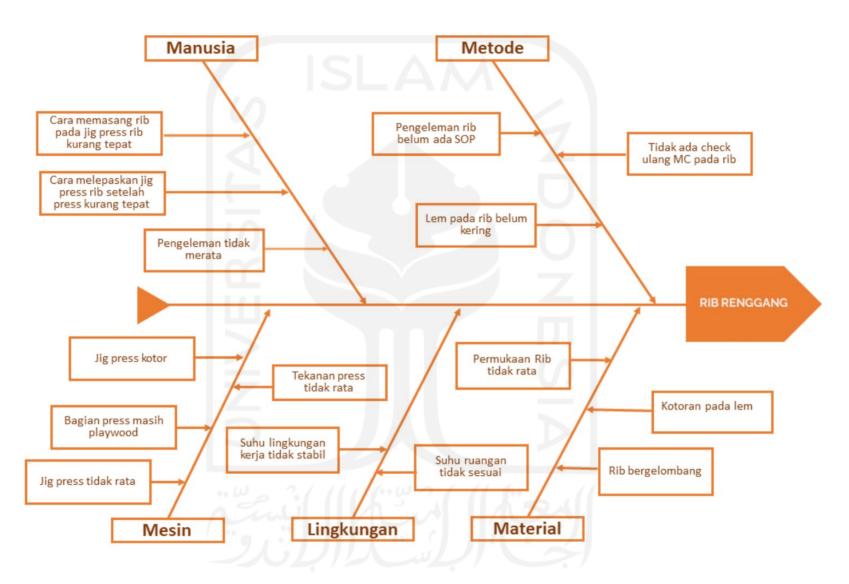
No	Jenis Cacat Sound Board	Total	Persentase
110	Tto Seins Cacat Sound Board	Reject	1 ci sciitasc
1	Soundboard Pecah	71	19,6%
2	Rib Pecah	80	22%
3	Bass Bridge Pecah	43	11,8%
4	Treble Bridge Geser	95	26,1%
5	Rib renggang	74	20,5%
	Total	363	100%

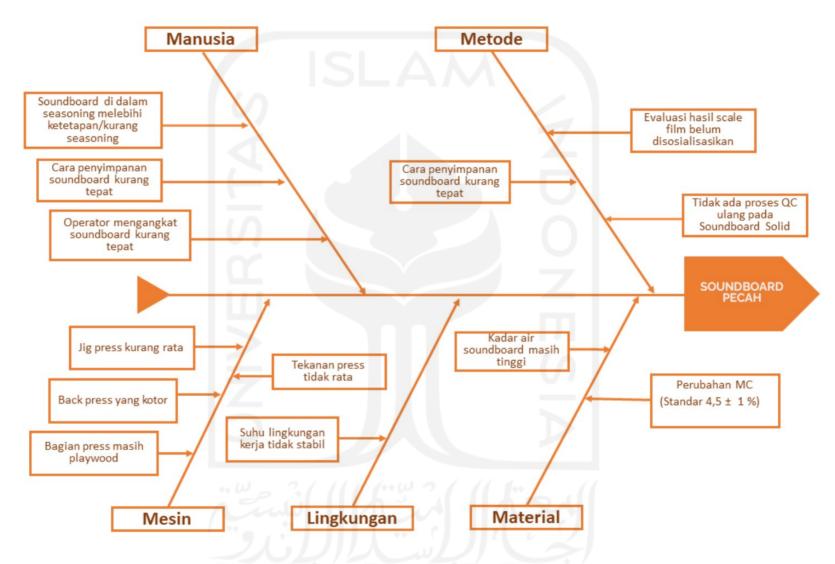


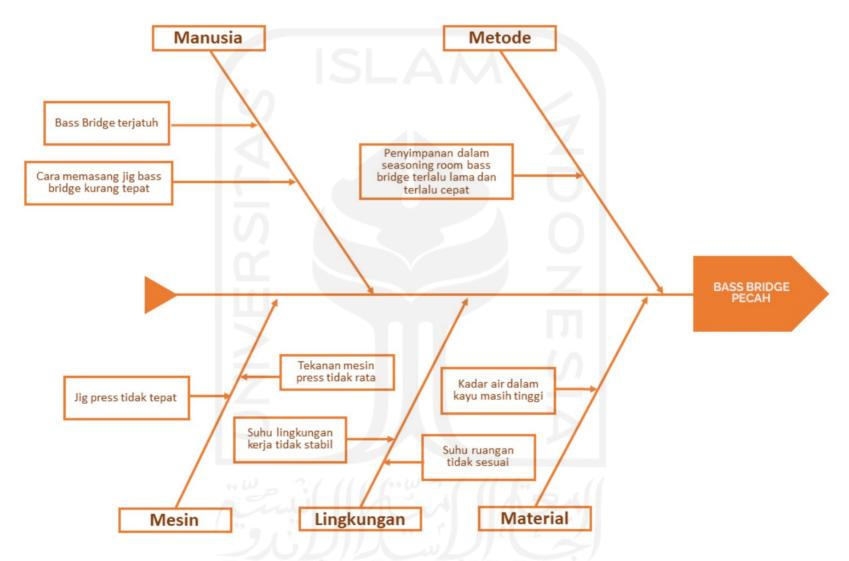
Gambar 4.8 Diagram Pareto


Berdasarkan diagram ini, didapati cacat yang paling mendominasi terjadi di produk soundboard pada Press Bridge & Rib bulan Maret sampai Juli adalah *Treble Bridge* geser dengan total 95 produk *repair*.

4.2.2 Diagram Fishbone


Seluruh jenis cacat yang ditemukan terjadi dapat diidentifikasi penyebab masalahannya sehingga produk yang cacat dapat diatasi dan dicegah. Diagram *Fishbone* digunakan peniliti dalam mengidentifikasi penyebab cacat dalam penelitian ini. Adapun hasil dari Diagram Fishbone yang diperoleh bagi setiap lima jenis cacat *soundboard* diantaranya:


Gambar 4.9 Diagram Fishbone Trible Bridge Geser


Gambar 4.10 Diagram Fishbone Rib Pecah

Gambar 4.11 Diagram Fishbone Rib Renggang

Gambar 4.12 Diagram Fishbone Soundboard Pecah

Gambar 4.13 Diagram Fishbone Bass Bridge Pecah

4.2.3 Validasi Data

Setelah dijabarkan setiap penyebab dari kecacatan dalam memahami sebesar apakah kontribusinya sebagai penyebab cacat dari produk *soundboard* di divisi Press Bridge & Rib, kemudian dilaksanakan validasi terhadap penyebab cacat yang terjadi. Validasi dilakukan melalui diskusi dan bukti pendukung berupa data produk repair dari Press Bridge & Rib PT. Yamaha Indonesia. Berikut diperoleh hasil diskusi meliputi:

Tabel 4.6 Validasi Penyebab Cacat Treble Bridge Geser

Kemungkinan Penyebab	Diskusi	Hasil
Manusia		
Cara memasang treble	Treble dipasang dengan hati-hati	Ada potensi
tidak menempel pada jig	agar menempel pada jig	penyebab kejadian
Cara memasang	Soundboard di pasang dengan	Ada potensi
soundboard tidak	hati-hati agar menempel pada	penyebab kejadian
menempel pada stoper jig	stoper jig	TI I
Metode		
Tidak terdapat MC ulang	Dilakukan MC ulang untuk rib	Ada potensi
pada rib		penyebab utama
Penyimpanan pada	Melaksanakan proses	Tidak ada potensi
seasoning room bass	penyimpanan dalam seasoning	kejadian
bridge terlalu lama dan	room bass bridge sesuai waktu	2411
terlalu cepat	yang ditentukan	
2002	Lem yang belum kering pada	Ada potensi
Lem belum kering	treble sehingga saat ada benturan	penyebab utama
	maka treble akan bergeser	
Mesin		
Posisi jig plate terlalu	Posisi jig plate diletakkan sesuai	Tidak ada potensi
rendah dan tidak terdapat	standar operasional dan selalu	kejadian
bantalan pada bagian	meletakkan bantalan pada bagian	
bawah jig plate	bawah jig plate	

Tidak ratanya tekanan jig	Memastikan jig press pada	Ada potensi
press	kondisi baik	penyebab kejadian
Bagian press masih	Penggunaan plywood masih	Tidak ada potensi
menggunakan plywood	difungsikan pada bagian press	kejadian
Lingkungan		
	Pengaturan pencahayaan ruangan	Ada potensi
Ruangan yang kurang	mempengaruhi suhu ruangan	penyebab kejadian
pencahayaan	yang dapat mempengaruhi	
(0)	kualitas produksi	
Material		7
Permukaan treble tidak	Terdapat beberapa treble yang	Ada potensi
rata (melengkung)	tidak rata (melengkung)	penyebab utama

Tabel 4.7 Validasi Penyebab Cacat Rib Pecah

Kemungkinan Penyebab	Diskusi	Hasil
Manusia		
Metode penyimpanan rib	Menyimpan rib sesuai SOP	Ada potensi
kurang tepat		penyebab utama
Terdapatnya proses QC	Operator melakukan proses	Ada potensi
yang terlewat	quality control sesuai tahap demi	penyebab kejadian
	tahap, alat uji rib bisa saja tidak	
w ?:	digunakan secara tepat	11), c
Cara melepas jig press	Melepas jig press perlahan dan	Ada potensi peyebab
terlalu kencang	tidak ditarik paksa	kejadian
Metode	•	
Rib tidak terdapat proses	Seasoning dilakukan disemua	Tidak ada potensi
seasoning	tahapan produksi tanpa ada yang	kejadian
seasoning	terlewatkan	
Tidak terdapat cek MC	Perubahan beberapa MC bisa saja	Ada potensi
kembali pada rib	terjadi, diperlukan pengecekan	penyebab kejadian
Kemban pada 110	ulang	

Mesin		
lia proce kurana rata	Ada berapa crone jig press yang	Ada potensi
Jig press kurang rata	kurang rata	penyebab kejadian
Bagian press masih	Ada beberapa press yang masih	Tidak ada potensi
plywood	mempergunakan plywood	penyebab kejadian
	Tekanan press kurang rata	Tidak ada potensi
Tekanan press kurang rata	dikarenakan pemakaian karet jig	kejadian
	sejajar	
Lingkungan	4	
Perubahan suhu diruang	Suhu kerja ruangan dibuat sesuai	Tidak ada potensi
kerja yaitu 32 derajat	SOP, tidak boleh tidak sesuai	kejadian
Material		
Kadar air soundboard	Pengecekan kadar air bisa saja	Ada potensi
masih tinggi	tidak tepat	penyebab kejadian
Perubahan MC (Standar	MC dapat berubah diluar ruang	Ada potensi
4,5 ± 1%)	seasoning	penyebab utama

Tabel 4.8 Validasi Penyebab Cacat Rib Renggang

Kemungkinan Penyebab	Diskusi	Hasil
Manusia		
Cara memasang rib jig	Memasang rib pada jig press	Tidak ada potensi
press rib tidak tepat	disesuaikan	kejadian
Cara pelepasan jig press	Melepaskan jig press dilakukan	Tidak ada potensi
rib kurang tepat setelah	dengan hati-hati karna ada bekas	kejadian
press	lem yang membuat rib sulit	* /
	dilepaskan	
Pengeleman tidak merata	Pengeleman sesuai perkiraan	Ada potensi
	operator, tidak ada aturan khusus	penyebab utama
Metode		
Pengeleman rib belum	Perlu adanya peraturan untuk	Ada potensi
mempunyai SOP	pengeleman rib	penyebab utama

Lem rib tidak kering	Lem kering atau tidaknya di rib	Ada potensi
Lem no ddak kenng	melengkung sulit diketahui	penyebab utama
Tidak terdapat cek ulang	MC berubah ketika suhu	Ada potensi
MC pada rib	disekitarnya berubah	penyebab kejadian
Mesin		
	Lem sisa yang belum bersih dan	Ada potensi
Jig press tidak bersih	mengering menjadi kotoran pada	penyebab kejadian
	jig press	
Bagian press masih	Ada beberapa press yang	Tidak ada potensi
plywood	menggunakan plywood	kejadian
Tia muses bureau a rote	Jig press kadang menekan tidak	Tidak ada potensi
Jig press kurang rata	rata	kejadian
Takanan praga tidak rata	Beberapa jig press menekan tidak	Tidak ada potensi
Tekanan press tidak rata	rata	kejadian
Lingkungan		7
Ketidakstabilan suhu	Suhu lingkungan kerja selalu	Tidak ada potensi
lingkungan kerja	diatur sesuai SOP	kejadian
	Suhu ruangan proses produksi	Ada potensi
Suhu ruangan tidak sesuai	diatur kecuali suhu diluar ruang	penyebab kejadian
	produksi	
Material		
	Permukaan tidak rata pada rib	Ada potensi
Permukaan rib tidak rata	mengakibatkan hasil press rib	penyebab kejadian
	juga tidak rata	
-201	Kotoran yang ditimbulkan dari	Ada potensi
Kotoran pada lem	sisa lem yang terlewat	penyebab utama
Kotoran pada tem	dibersihkan dari proses	
	sebelumnya	
Terdapat gelombang pada	Beberapa rib bergelombang dan	Ada potensi
rib	melengkung	penyebab kejadian

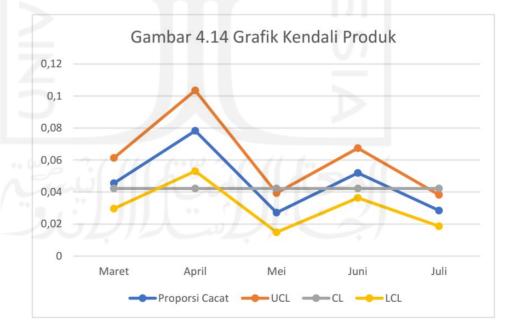
Tabel 4.9 Validasi Penyebab Cacat Soundboard Pecah

Kemungkinan Penyebab	Diskusi	Hasil	
Manusia			
Soundboard di dalam seasoning	Seasoning untuk soundboard	Ada potensi	
melebihi ketetapan / kurang	sesuai dengan prosedur	penyebab kejadian	
seasoning			
Cara penyimpanan soundboard	Soundboard di simpan operator di	Ada potensi	
kurang tepat	ruangan tersendiri	penyebab utama	
Operator mengangkat	Operator teledor dalam	Ada potensi	
soundboard kurang tepat	memindahkan soundboard	penyebab kejadian	
Metode			
Cara penyimpanan soundboard	Soundboard solid di simpan di	Ada potensi	
kurang tepat	ruangan tersendiri	penyebab utama	
Belum disosialisasikannya	Scale film terkadang tidak	Ada potensi	
evaluasi hasil scale film	disosialisasikan kembali	penyebab kejadian	
Tidak terdapat QC kembali	Soundboard solid tidak	Ada potensi	
untuk soundboard solid	memerlukan proses QC ulang	penyebab utama	
Mesin		7)	
Jig press kurang rata	Jig press pada kondisi normal	Ada potensi	
Jig piess kurang rata		penyebab kejadian	
Back press yang kotor	Sisa lem mengering mejadi	Ada potensi	
back piess yang kotor	kotoran	penyebab kejadian	
Bagian press masih plywood	Ada beberapa press	Ada potensi	
Dagian press masm pry wood	menggunakan plywood	penyebab utama	
Tidak ratanya tekanan press	Tekanan press tidak rata karna	Ada potensi kejadian	
Troux ruturya toxanan press	menggunakan karet sejajar		
Lingkungan			
Ketidakstabilan suhu	Suhu lingkungan kerja selalu	Tidak ada potensi	
lingkungan	diatur sesuai SOP	kejadian	
Material			

Kadar air soundboard masih	Pengecekan kadar air bisa saja	Ada potensi
tinggi	tidak tepat	penyebab kejadian
Perubahan MC (Standar 4,5 ±	MC dapat berubah diluar ruang	Ada potensi
1%)	seasoning	penyebab utama

Tabel 4.10 Validasi Penyebab Cacat Bass Bridge Pecah

Kemungkinan Penyebab	Diskusi	Hasil
Manusia		
Bass bridge terjatuh	Operator teledor dalam meletakkan bass bridge	Ada potensi penyebab utama
Cara memasang jig bass bridge kurang tepat	Pemasangan jig bass bridge tidak tepat dan dapat membuatnya terlepas	Ada potensi penyebab utama
Metode		7
Penyimpanan dalam seasoning room bass bridge terlalu lama dan terlalu cepat	Penyimpanan sesuai waktu yang ditentukan	Ada potensi penyebab kejadian
Mesin		
Jig press tidak tepat	Jig press dilakukan sesuai dengan prosedur jig press	Ada potensi penyebab kejadian
Tekanan mesin press tidak	Ada sejumlah mesin press dengan	Ada potensi
rata	tekanan yang tidak rata	penyebab kejadian
Lingkungan		3)
Ketidakstabilan suhu	Suhu lingkungan kerja selalu	Tidak ada potensi
lingkungan kerja	diatur sesuai SOP	kejadian
Suhu ruangan tidak sesuai	Suhu ruangan proses produksi diatur kecuali suhu diluar ruang produksi	Tidak ada potensi kejadian
Material		


Tingginya kadar air pada	Pengecekan kadar air bisa saja	Ada potensi
kayu	tidak tepat	penyebab kejadian

4.2.4 Peta Kendali P

Tabel 4.11 Perhitungan Kendali P

Bulan	Total	Total	Proporsi	UCL	CL	LCL	
Dulali	Produksi	Cacat	Cacat	UCL	CL	LCL	
Maret	1559	71	0,045542	0,061383	0,042214	0,029701	
April	1022	80	0,078277	0,103485	0,042214	0,053071	
Mei	1586	43	0,027112	0,039347	0,042214	0,014878	
Juni	1830	95	0,051912	0,067471	0,042214	0,036354	
Juli	2602	74	0,028439	0,038216	0,042214	0,018664	
Total	8599	363	0,231282				

Dari tabel 4.11, didapatkan grafik peta kendali produk cacat bulan Maret - Juli 2022 dalam penelitian ini yang dapat dilihat dibawah ini :

Melalui grafik ini didapati bahwasanya data dari press bridge & rib assy up PT. Yamaha Indonesia pada bulan Maret – Juli 2022 tidak melampaui batasan kendali UCL (*Upper Control Limit*) dalam peta kendali P yang diperoleh.

4.2.5 FMEA (Failure Mode & Effect Analysis)

Pada tahap ini, nilai RPN untuk analisis FMEA diperoleh melalui interview pada divisi Press Bridge & Rib untuk menetapkan nilai Severity, Detectablity, serta Occurance. Sesudah didapatkan prioritas yang mengakibatkan cacat dari nilai RPN yang diperoleh, kemudian peneliti bisa mengusulkan perbaikan selaku upaya meminimalisir kecacatan produk sehingga dapat terlaksanannya program zero defect sebagai pengontrol kualitas produksi dalam divisi Press Bridge & Rib Assy Up di PT Yamaha Indonesia. Berikut merupakan analisis FMEA pada produk soundboard bagian Press Bridge & Rib:

Tabel 4.12 Analisis FMEA Untuk Jenis Cacat Treble Bridge Geser

Mode of Failure (Defect)	Potential Failure	SEV	Cause of Failure	occ	Current Proses Control	DET	RPN	Rating
Treble Bridge	Perubahan MC dalam rib	7	Tidak terdapat MC ulang pada rib	7	Perlu dilaksanakan MC ulang pada rib	6	294	2
Geser	WC daram no	yang	Ruangan yang kurang pencahayaan	5	Ditempatkan diruang khusus	8	280	3

Mode of Failure (Defect)	Potential Failure	SEV	Cause of Failure	осс	Current Proses Control	DET	RPN	Rating
		DCITA	Penyimpanan dalam seasoning room bass bridge terlalu lama dan terlalu cepat	4	Penyimpanan dalam seasoning room bass bridge harus terjadwal	6	168	4
	Pengeleman Rib belum ada standarnya	8	Waktu melakukan pengeleman saat produksi tidak diperhatikan sehingga lem belum kering	6	Operator Perlu mengecek ulang pengeleman kembali untuk memastikan pengeleman sudah kering agar produk	8	384	1

Mode of Failure (Defect)	Potential Failure	SEV	Cause of Failure	осс	Current Proses Control	DET	RPN	Rating
		- V	Ţ		berkualitas baik dan tidak cacat	Z		
	Permukaan treble tidak rata (melengkung)	5	Tekanan jig press tidak rata	3	Perbaikan jig press	7	105	5

Tabel 4.13 Analisis FMEA Untuk Jenis Cacat Rib Pecah

Mode of Failure (Defect)	Potential Failure	SEV	Cause of Failure	осс	Current Proses Control	DET	RPN	Rating
Rib pecah	Penyimpanan dan peletakkan	6	Cara melepas jig press terlalu kencang	6	Melepas jig press dengan hati-hati	8	288	2

Mode of	Dodonati al		Cause of		Current				
Failure (Defect)	Potential Failure	SEV	Failure	осс	Proses Control	DET	RPN	Rating	
	rib kurang tepat	ITA 6	Terdapatnya proses QC yang terlewat	5	Proses quality control terjadwal	6	180	4	
		VEDS	Rib tidak ada proses seasoning	5	Dilakukan seasoning sebelum masuk ke ruang Soundboard	5	150	5	
	Perubahan MC pada rib	Perubahan 8	8	Tidak terdapat cek MC ulang pada rib	6	Dilaksanakan MC ulang pada rib sesuai SOP	4	192	3
		IC pada rib Pe		8	Mengatur dan mengecek suhu ruangan	8	512	1	

Mode of Failure (Defect)	Potential Failure	SEV	Cause of Failure	осс	Current Proses Control	DET	RPN	Rating
		V	71		kerja secara berkala	Z		

Tabel 4.14 Analisis FMEA Untuk Jenis Cacat Rib Renggang

Mode of Failure (Defect)	Potential Failure	SEV	Cause of Failure	осс	Current Proses Control	DET	RPN	Rating
Rib renggang	Belum ada pengaturan pengeleman	7	Kotoran pada lem	7	Membersihkan lem sisa agar saat mengering tidak menjadi kotoran	9	441	2
	Rib		Pengeleman tidak merata	7	Pengeleman diratakan sesuai prosedur	7	343	4

Mode of Failure (Defect)	Potential Failure	SEV	Cause of Failure	осс	Current Proses Control	DET	RPN	Rating
		T V	Lem pada rib belum kering	7	Mengecek ulang lem kering apa belum	8	392	3
		C	Suhu ruangan tidak sesuai	5	Mengatur suhu ruangan kerja	9	315	5
			Belum ada standar pengeleman Rib	8	Perlu dibuat SOP untuk standar pengeleman Rib	9	504	1

Tabel 4.15 Analisis FMEA Untuk Jenis Cacat Soundboard Pecah

Mode of Failure (Defect)	Potential Failure	SEV	Cause of Failure	осс	Current Proses Control	DET	RPN	Rating
Soundboard Pecah	soundboard kurang tepat	9	Soundboard di dalam seasoning melebihi ketetapan / kurang seasoning	6	Soundboard dalam seasoning sesuai waktu yang ditentukan	7	378	3
		INI J	Operator mengangkat soundboard kurang tepat	9	Mengangkat dan menyimpan soundboard harus hati-hati	9	729	1
	Tidak terdapat QC ulang untuk	7	Evaluasi hasil scale film	6	Evaluasi hasil scale film	8	336	4

Mode of Failure (Defect)	Potential Failure	SEV	Cause of Failure	осс	Current Proses Control	DET	RPN	Rating
	soundboard	1	belum		harus	7		
	solid	<	disosialisasi		disosialisasikan			
	Bagian press masih plywood	4	Ada beberapa press menggunakan plywood	4	Penggunaan plywood sebagai bagian press merupakan hal yang wajar	8	128	6
	Perubahan	MIN	Ketidakstabilan suhu lingkungan kerja	7	Mengatur suhu lingkungan kerja agar stabil	9	378	3
	MC	6	Kadar air soundboard masih tinggi	7	Mengukur kadar air pada material kayu untuk soundboard	6	252	5

Mode of Failure (Defect)	Potential Failure	SEV	Cause of Failure	осс	Current Proses Control	DET	RPN	Rating
		I V J	Perubahan MC (Standar 4,5 ± 1%)	8	Melakukan pengecekan MC ulang secara berkala	8	384	2

Tabel 4.16 Analisis FMEA Untuk Jenis Cacat Bass Bridge Pecah

Mode of Failure (Defect)	Potential Failure	SEV	Cause of Failure	осс	Current Proses Control	DET	RPN	Rating
Bass Bridge Pecah	Bass bridge terjatuh	8	Operator teledor dalam meletakkan bass bridge	9	Operator diwajibkan hati-hati dalam meletakan dan menyimpan bass bridge	8	576	1

Mode of Failure (Defect)	Potential Failure	SEV	Cause of Failure	осс	Current Proses Control	DET	RPN	Rating
		DOLLTA	Penyimpanan dalam seasoning room bass bridge terlalu lama dan terlalu cepat	6	Penyimpanan sesuai waktu yang ditentukan		336	2
	Cara memasang jig bass bridge	6	Pemasangan jig bass bridge tidak tepat dan dapat membuatnya terlepas	6	Pemasangan jig bass bridge harus teliti		252	3
	kurang tepat	7	Jig press tidak tepat	5	Jig press dilakukan sesuai dengan	6	180	5

Mode of Failure (Defect)	Potential Failure	SEV	Cause of Failure	осс	Current Proses Control	DET	RPN	Rating
					prosedur jig			
			T		press	Z		
					Terdapat			
		1	Tekanan		sejumlah	\cup		
			mesin press	6	press dengan	6	216	4
			tidak rata		tekanan yang	\cup		
					tidak rata	Z		

BAB V

PEMBAHASAN

5.1 Pembahasan Hasil Penelitian

5.1.1 Diagram Pareto

Diagram pareto dalam penelitian ini digunakan dengan tujuan mengetahui tingkat prioritas produk cacat yang dihasilkan bagian Press Bridge & Rib PT. Yamaha Indonesia. Berdasarkan hasil akumulasi produk cacat bulan Maret sampai Juli tahun 2022 pada BAB IV menunjukkan 5 jenis cacat yang perlu dicari bagaimana langkah perbaikan dan cara mengatasinya agar tidak terjadi lagi sehingga dapat meminimalisir produk cacat dari bagian Press Bridge & Rib PT. Yamaha Indonesia. Diagram pareto memperlihatkan dari total 363 produk cacat terdapat jenis cacat *treble bridge geser* sebanyak 95 produk repair atau sebesar 26,1%, jenis cacat rib pecah sebanyak 80 produk repair atau sebesar 22%, jenis cacat rib renggang sebanyak 74 produk repair atau sebesar 20,5%, jenis cacat *soundboard* pecah sebanyak 71 produk repair atau sebesar 19,6%, jenis cacat *bass bridge* pecah sebanyak 43 produk repair atau sebesar 11,8%. Mayoritas produk yang catat pada Press Bridge & Rib PT. Yamaha Indonesia dalam diagram pareto adalah produk dengan jenis cacat treble bridge geser.

Data keseluruhan produk cacat pada Press Bridge & Rib PT. Yamaha Indonesia dalam penelitian ini didapatkan dari produk yang cacat sesudah produksi atau produk jadi yang cacat sehingga diperlukan perbaikan, bukan data produk cacat yang dihasilkan sebelum proses produksi karena jika ditemukan maka sudah dipisahkan dan dikembalikan ke bagian Warehouse atau bukan berupa produk jadi. Proses repair produk jadi yang cacat dilakukan disela kegiatan proses produksi sebab dibutuhkan keahlian khusus operator dalam melakukan perbaikan untuk menghemat biaya operasional.

5.1.2 Diagram Fishbone

Diagram penelitian ini Fishbone dalam dipergunakan dalam mengidentifikasi penyebabnya produk cacat dengan menelusuri beragam faktor yang mampu mengakibatkan cacat ketika produksi, yang dianalisa melalui sejumlah faktor seperti manusia, metode, mesin, lingkungan, serta material. Setelah dianalisis dalam diagram fishbone, data faktor penyebab cacat kemudian divalidasi dalam tabel validasi pada BAB IV. Hasil tabel validasi didasarkan oleh data cacat produksi yang didapat dari Press Bridge & Rib dan didiskusikan langsung pada 11 orang tim operator produksi untuk memperkuat hasil analisa. Berikut hasil pembahasan Diagram Fishbone dan Tabel Validasi Data yang diperoleh untuk setiap lima jenis cacat soundboard dalam bagian Press Bridge & Rib PT. Yamaha Indonesia:

5.1.2.1 Jenis Cacat Treble Bridge Geser

a. Faktor Manusia

Faktor manusia yang mampu mengakibatkan kejadian cacat *treble bridge* geser ialah cara memasang treble tidak menempel pada jig, dan cara memasang soundboard tidak menempel pada stoper jig. Hasil validasi menyatakan bahwa prosedur pemasangan treble pada jig dan prosedur pemasangan soundboard pada stoper jig sudah memenuhi standar operasioanal, maka dua penyebab ini bukanlah penyebab utama produk cacat namun dua penyebab ini masih berpotensi menjadi penyebab produk cacat.

b. Faktor Metode

Faktor metode atau prosedur proses produksi yang dapat menyebabkan terjadinya cacat *treble bridge* geser ialah dalam prosedur tidak ada MC ulang pada rib, penyimpanan dalam *seasoning room bass bridge* terlalu lama dan terlalu cepat, dan lem belum kering yang tidak dicek ulang. Hasil validasi menyatakan bahwa tidak ada prosedur MC ulang untuk rib menjadi penyebab utama karna perubahan MC dapat menyebabkan *treble bridge* bergeser, sedangkan lama waktu penyimpanan dalam *seasoning room bass bridge* tidak berpotensi menjadi penyebab cacat produk sebab lama waktu penyimpanan telah sesuai dengan waktu

yang ditentukan dalam prosedur, dan lem pada treble belum kering namun tidak ada pengecekan ulang menjadi faktor penyebab produk cacat sebab lem yang belum kering kemungkinan besar akan bergeser jika ada benturan.

c. Faktor Mesin

Faktor mesin yang dapat menyebabkan terjadinya cacat *treble bridge* geser ialah posisi jig plate terlalu rendah dan tidak terdapat bantalan pada bagian bawah jig plate, tidak ratanya tekanan jig press, serta bagian press masih mempergunakan plywood. Hasil validasi menyatakan bahwa peletakkan posisi jig plate tidak berpotensi menjadi penyebab cacat produksi sebab sudah sesuai standar operasional pada bantalan bagian bawah jig plate, tekanan press tidak rata berpotensi menjadi penyebab *treble bridge* geser maka diperlukan perbaikan pada bagian press, sedangkan penggunaan plywood masih difungsikan pada bagian press tidak berpotensi menjadi penyebab utama *treble bridg/e* geser karna penggunakan silicon juga berpotensi menyebabkan cacat produksi.

d. Faktor Lingkungan

Faktor lingkungan yang mampu mengakibatkan kejadian cacat *treble bridge* geser ialah ruangan yang kurang pencahayaan. Hasil validasi menyatakan bahwa tidak semua ruangan diatur pencahayaannya sehingga mempengaruhi suhu ruangan yang dapat mempengaruhi kualitas produksi seperti pemuaian yang membuat treble kendor yang apabila terkena tekanan akan bergeser, inilah yang menyebabkan pengaturan pencahayaan ruangan berpotensi menyebabkan *treble bridge* bergeser.

e. Faktor Material

Faktor material yang dapat menyebabkan terjadinya cacat *treble bridge* geser ialah permukaan *treble* tidak rata (melengkung). Hasil validasi menyatakan bahwa terdapat beberapa *treble* yang tidak rata (melengkung), maka jika *treble* yang tidak rata berlanjut dirakitkan menjadi produk jadi, kemungkinan besar dapat menyebabkan *treble bridge* bergeser karna tidak memiliki ukuran dan bentuk yang sama atau seimbang.

5.1.2.2 Jenis Cacat Rib Pecah

a. Faktor Manusia

Faktor manusia yang mampu mengakibatkan kejadian cacat rib pecah ialah metode penyimpanan rib tidak tepat, terdapatnya QC yang terlewat, dan cara melepas jig press terlalu kencang. Hasil validasi menyatakan bahwa cara penyimpanan rib yang dilakukan operator berpotensi menjadi penyebab utama rib pecah seperti diletakkan dalam posisi miring atau terbalik. Proses *quality control* yang dilakukan operator sesuai tahap demi tahap bisa saja terlewatkan dan alat uji rib bisa saja tidak digunakan operator secara tepat, dua hal ini berpotensi menjadi penyebab rib pecah meski bukan penyebab utama rib pecah.

b. Faktor Metode

Faktor metode atau prosedur proses produksi yang dapat menyebabkan terjadinya rib pecah ialah tidak terdapatnya seasoning rib, serta tidak adanya cek MC kembali pada rib dalam prosedur. Hasil validasi menyatakan bahwa *seasoning* dilakukan disemua tahapan produksi tanpa ada yang terlewatkan, maka tidak ada proses seasoning pada rib tidak menjadi faktor penyebab terjadinya rib pecah. Perubahan beberapa MC bisa saja terjadi, diperlukan pengecekan ulang karna perubahan MC bisa mempengaruhi kualitas produk dan membuat rib pecah, ini menjadikan perubahan MC bisa menjadi penyebab rib pecah.

c. Faktor Mesin

Faktor mesin yang dapat menyebabkan cacat produksi berupa rib pecah ialah jig press kurang rata, bagian press masih plywood, dan tekanan press tidak rata. Hasil validasi menyatakan bahwa jig press kurang rata karna bagian press yang digunakan masih plywood tidak menyebabkan terjadinya rib pecah sebab ada sejumlah crone jig press kurang rata serta sejumlah press yang masih mengguanakan playwood mampu membuat produk jadi solid. Namun tekanan press tidak rata bisa menjadi penyebab rib pecah karna menggunakan karet jig sejajar membuat ukuran rib tidak seimbang.

d. Faktor Lingkungan

Faktor lingkungan yang dapat menyebabkan cacat produksi berupa rib pecah ialah perubahan suhu diruang kerja yaitu 32 derajat. Hasil validasi menyatakan bahwa suhu kerja ruangan dibuat sesuai SOP dan tidak boleh melanggar SOP. Maka dapat disimpulkan bahwa suhu diruang kerja tidak berpotensi membuat rib pecah sebab suhu ruang kerja sudah diatur sesuai SOP.

e. Faktor Material

Faktor material yang dapat menyebabkan cacat produksi berupa rib pecah ialah kadar air soundboard masih tinggi dan perubahan MC (standar $4,5\pm1\%$). Hasil validasi menyatakan bahwa kadar air soundboard yang masih tinggi berpotensi menyebabkan rib pecah sebab pengecekan kadar air dalam soundboar bisa saja tidak tepat, sedangakn perubahan MC menjadi penyebab utama rib pecah MC dapat berubah diluar ruang *seasoning*.

5.1.2.3 Jenis Cacat Rib Renggang

a. Faktor Manusia

Faktor manusia yang mampu mengakibatkan cacat produksi berupa rib renggang ialah metode pelepasan jig press rib sesudah press yang tidak tepat dan pengeleman tidak merata. Hasil validasi menyatakan bahwa cara melepaskan jig press dari press dilakukan dengan hati-hati karna ada bekas lem yang membuat rib sulit dilepaskan sehingga tidak berpotensi menjadi penyebab rib renggang, sedangkan pengeleman yang tidak merata sesuai perkiraan operator dan tidak ada aturan khusus berpotensi utama membuat rib renggang.

b. Faktor Metode

Faktor metode atau prosedur proses produksi yang menyebabkan cacat produk berupa rib renggang ialah pengeleman rib belum ada SOP, lem pada rib belum kering serta tidak terdapat prosedur cek kembali MC pada rib. Hasil validasi menyatakan bahwa perlu adanya peraturan untuk pengeleman rib dalam SOP sebab berpotensi utama membuat rib renggang, lem kering atau tidaknya di rib melengkung sulit diketahui maka lem oada rib belum kering juga berpotensi

membuat rib renggang, dan pengecekan MC pada rib berpotensi menjadi penyebab rib renggang meski bukan penyebab utama namun MC mudah berubah ketika suhu disekitarnya berubah dan berpotensi menyebabkan rib renggang.

c. Faktor Mesin

Faktor mesin yang menyebabkan cacat produk berupa rib renggang ialah jig press kotor, bagian press masih playwood, jig press kurang rata, serta tekanan press kurang rata. Hasil validasi menyatakan bahwa sisa lem yang belum bersih dan mengering menjadi kotoran pada jig press sehingga berpotensi menyebabkan rib renggang. Ada beberapa press yang menggunakan playwood, jig press kadang menekan kurang rata serta tekanan dari mesin jig press yang kurang rata bukanlah penyebab rib renggang.

d. Faktor Lingkungan

Faktor lingkungan yang menyebabkan cacat produk berupa rib renggang ialah ketidakstabilan suhu lingkungan kerja serta suhu ruangan yang kurang sesuai. Hasil validasi menyatakan bahwa suhu lingkungan kerja selalu diatur sesuai SOP maka tidak berpotensi membuat rib renggang, sedangkan suhu ruangan proses produksi diatur kecuali suhu diluar ruang produksi maka suhu diluar ruang produksi berpotensi membuat rib renggang.

e. Faktor Material

Faktor material yang menyebabkan cacat produk berupa rib renggang ialah permukaan rib tidak rata, kotoran pada lem, dan rib bergelombang. Hasil validasi menyatakan bahwa tidak ratanya permukaan rib mengakibatkan hasil press rib kurang rata berpotensi menyebabkan rib renggang, kotoran yang ditimbulkan dari sisa lem yang terlewat dibersihkan dari proses sebelumnya berpotensi menjadi penyebab utama rib renggang, sedangkan beberapa rib bergelombang dan melengkung memiliki potensi menjadi penyebab rib renggang.

5.1.2.4 Jenis Cacat Soundboard Pecah

a. Faktor Manusia

Faktor manusia yang menyebabkan cacat *soundboard* pecah ialah *soundboard* di dalam *seasoning* melebihi ketetapan / kurang *seasoning*, cara

penyimpanan soundboard kurang tepat, dan operator mengangkat soundboard kurang tepat. Hasil validasi menyatakan bahwa seasoning untuk soundboard sesuai dengan prosedur namun masih berpotensi menyebabkan soundboard pecah, soundboard disimpan operator diruangan tersendiri berpotensi menjadi penyebab utama soundboard pecah, dan operator teledor dalam memindahkan soundboard menjadi penyebab soundboard pecah.

b. Faktor Metode

Faktor metode atau prosedur proses produksi yang menyebabkan cacat soundboard pecah ialah cara penyimpanan soundboard kurang tepat, evaluasi hasil scale film belum disosialisasikan, serta tidak terdapatnya QC ulang pada soundboard solid. Hasil validasi menyatakan bahwa soundboard solid disimpan diruangan tersendiri menjadi penyebab utama soundboard pecah karna peletakkan yang tidak tepat, scale film terkadang tidak disosialisasikan kembali dapat menjadi penyebab soundboard pecah, dan soundboard solid tidak memerlukan proses QC ulang menjadi penyebab utama soundboard pecah.

c. Faktor Mesin

Faktor mesin yang menyebabkan *soundboard pecah* ialah *jig press* kurang rata, *back press* yang kurang bersih, dan bagian press mempergunakan *playwood*. Hasil validasi menyatakan bahwa meski *jig press* dalam kondisi normal masih terdapat potensi membuat *soundboard* pecah, sisa lem mengering mejadi kotoran pada *back press* juga berpotensi menjadi penyebab *soundboard* pecah, ada beberapa press menggunakan playwood ternyata berpotensi utama menyebabkan *soundboard* pecah, dan tekanan press kurang rata dikarenakan mempergunakan karet sejajar berpotensi menyebabkan *soundboard* pecah.

d. Faktor Lingkungan

Faktor lingkungan yang menyebabkan *soundboard* pecah ialah ketidakstabilan suhu lingkungan kerja. Hasil validasi menyatakan bahwasanya suhu lingkungan kerja selalu diatur sesuai SOP maka tidak berpotensi menyebabkan *soundboard* pecah.

e. Faktor Material

Faktor material yang menyebabkan *soundboard* pecah ialah kadar air *soundboard* masih tinggi dan perubahan MC (Standar $4,5 \pm 1\%$). Hasil validasi menyatakan bahwa pengecekan kadar air bisa saja tidak tepat menjadi potensi penyebab *soundboard* pecah, dan MC dapat berubah diluar ruang *seasoning* menjadi penyebab utama *soundboard* pecah.

5.1.2.5 Jenis Cacat Bass Bridge Pecah

a. Faktor Manusia

Faktor manusia yang menyebabkan cacat *bass bridge* pecah ialah bass bridge terjatuh, dan cara memasang jig bass bridge kurang tepat. Hasil validasi menyatakan bahwa operator teledor dalam meletakkan bass bridge menjadi penyebab utama soundboard pecah, sedangkan pemasangan jig bass bridge tidak tepat dan dapat membuatnya terlepas juga menjadi penyebab utama *bass bridge* pecah.

b. Faktor Metode

Faktor metode atau prosedur proses produksi yang menyebabkan cacat *bass* bridge pecah ialah penyimpanan dalam seasoning room bass bridge terlalu lama dan terlalu cepat. Hasil validasi menyatakan bahwa penyimpanan sesuai waktu yang ditentukan dalam seasoning room bass bridge masih berpotensi menjadi penyebab bass bridge pecah.

c. Faktor Mesin

Faktor mesin yang menyebabkan *bass bridge pecah* ialah jig press kurang tepat serta tekanan yang kurang rata pada mesin press. Hasil validasi menyatakan bahwa jig press dilakukan sesuai dengan prosedur jig press dan terdapat sejumlah beberapa mesin press dengan tekanan tidak rata berpotensi menyebabkan *bass bridge* pecah.

d. Faktor Lingkungan

Faktor lingkungan yang menyebabkan *bass bridge* pecah ialah ketidakstabilan suhu lingkungan serta suhu ruangan kurang sesuai. Hasil validasi menyatakan bahwa suhu lingkungan kerja selalu diatur sesuai SOP, dan suhu ruangan proses produksi diatur kecuali suhu diluar ruang produksi tidak berpotensi membuat *bass bridge* pecah.

e. Faktor Material

Faktor material yang menyebabkan *bass bridge* pecah ialah kadar air dalam kayu masih tinggi. Hasil validasi menyatakan bahwa pengecekan kadar air bisa saja tidak tepat maka kadar air dalam kayu masih berpotensi menyebabkan *bass bridge* pecah.

5.1.3 Peta Kendali P

Diagram peta kendali P dalam penelitian ini dipergunakan dengan tujuan mengendalikan cacat produk dalam divisi Press Bridge & Rib di PT. Yamaha Indonesia. Berdasarkan data yang diolah dalam diagram peta kendali P dari bulan Maret sampai bulan Juli nilai center line sebesar 0,042214. Pada bulan Maret didapatkan nilai proporsi cacat sebesar 0,045542, nilai UCL (*Upper Control Limit*) ataupun batasan kendali atas sejumlah 0,061383, serta nilai LCL (Lower Control Limit) ataupun batasan kendali bawah sejumlah 0,029701. Pada bulan April didapatkan nilai proporsi cacat sejumlah 0,078277, UCL sejumlah 0,103485, serta LCL sejumlah 0,053071. Pada bulan Mei didapatkan nilai proporsi cacat sejumlah 0,027112, UCL sejumlah 0,039347, serta LCL sejumlah 0,014878. Pada bulan Juni didapatkan nilai proporsi cacat sejumlah 0,051912, UCL sejumlah 0,067471, serta LCL sejumlah 0,036354. Pada bulan Juli didapatkan nilai proporsi cacat sejumlah 0,028439, UCL sejumlah 0,038216, serta LCL sejumlah 0,018664. Hasil grafik mencerminkan tidak adanya yang melampaui batasan kontrol atas atau data masih berada dalam batas kontrol artinya cacat produk yang terdapat dalam Press Bridge & Rib di PT. Yamaha Indonesia mampu dikendalikan dan ditangani oleh operator.

5.1.4 FMEA (Failure Mode & Effect Analysis)

FMEA dimanfaatkan sebagai penentu tingkatan prioritas penyebab terjadinya cacat. Berdasarkan tabel FMEA di BAB IV berikut pembahasan yang dapat peneliti jabarkan :

a. Analisis FMEA Untuk Jenis Cacat Treble Bridge Geser

Tabel 4.12 memperlihatkan hasil nilai RPN dari faktor penyebab cacat treble bridge geser. Prioritas utama adalah Pengeleman rib belum ada standarnya menyebabkan waktu melakukan pengeleman saat produksi tidak diperhatikan sehingg lem belum mengering memperoleh nilai RPN sebesar 384, untuk mengatasi problem tersebut maka perlu adanya Standard Operating Procedure untuk mengecek ulang pengeleman kembali untuk memastikan pengeleman sudah kering agar produk berkualitas baik dan tidak cacat pada treble bridge geser. Prioritas kedua adalah perubahan MC pada rib karena tidak ada MC ulang pada rib memperoleh nilai RPN sebesar 294, untuk mengatasi problem tersebut maka operator perlu melakukan MC ulang pada rib. Prioritas ketiga adalah perubahan MC pada rib karena ruangan yang kurang pencahayaan memperoleh nilai RPN sebesar 280, untuk mengatasi problem tersebut maka treble bridge perlu ditempatkan diruang khusus yang telah diatur pencahayaannya. Prioritas keempat adalah perubahan MC pada rib karena penyimpanan dalam seasoning room bass bridge terlalu lama dan terlalu cepat memperoleh nilai RPN sebesar 168, untuk mengatasi problem tersebut maka penyimpanan dalam seasoning room bass bridge harus terjadwal secara teratur. Prioritas terakhir adalah permukaan treble tidak rata (melengkung) karena tekanan jig press tidak rata memperoleh nilai RPN sebesar 105, untuk mengatasi problem tersebut maka perlu perbaikan jig press secara berkala.

b. Analisis FMEA Untuk Jenis Cacat Rib Pecah

Tabel 4.13 memperlihatkan hasil nilai RPN dari faktor penyebab cacat rib pecah. Prioritas utama adalah perubahannya MC dalam rib disebabkan suhu yang berubah diruang kerja memperoleh nilai RPN sebesar 512, untuk mengatasi problem tersebut maka operator perlu mengatur dan mengecek suhu ruang kerja secara berkala. Prioritas kedua adalah penyimpanan dan peletakkan rib kurang tepat

seperti cara melepas jig press terlalu kencang menyebabkan rib pecah memperoleh nilai RPN sebesar 288, untuk mengatasi problem tersebut maka operator diwajibkan melepaskan jig press dengan hati-hati agar rib tidak pecah. Prioritas ketiga adalah perubahan MC pada rib karena tidak ada MC ulang pada rib memperoleh nilai RPN sebesar 192, untuk mengatasi problem tersebut maka operator perlu melakukan MC ulang pada rib sesuai SOP. Prioritas keempat adalah penyimpanan dan peletakkan rib tidak tepat seperti terdapatnya QC yang terlewat memperoleh nilai RPN sebesar 180, untuk mengatasi problem tersebut maka proses *quality control* terhadap rib harus terjadwal dan diawasi secara cermat. Prioritas terakhir adalah penyimpanan dan peletakkan rib kurang tepat seperti tidak ada proses *seasoning* untuk rib memperoleh nilai RPN sebesar 150, untuk mengatasi problem tersebut maka harus dilakukan *seasoning* pada rib sebelum masuk ke ruang *soundboard*.

c. Analisis FMEA Untuk Jenis Cacat Rib Renggang

Tabel 4.14 memperlihatkan hasil nilai RPN dari faktor penyebab cacat rib renggang. Prioritas utama adalah belum ada standar pengeleman menjadi penyebab utama rib renggang memperoleh nilai RPN sebesar 504, untuk mengatasi problem tersebut maka perlu dibuatkan SOP untuk pengeleman rib. Prioritas kedua adalah belum ada pengaturan pengeleman rib menimbulkan kotoran pada lem memperoleh nilai RPN sebesar 441, untuk mengatasi problem tersebut maka operator perlu membersihkan lem sisa agar saat mengering tidak menjadi kotoran. Prioritas ketiga adalah belum ada pengaturan pengeleman rib sehingga lem pada rib belum kering terlewatkan dengan nilai RPN sebesar 392, untuk mengatasi problem tersebut maka operator perlu mengecek ulang lem kering apa belum pada rib. Prioritas keempat adalah belum ada pengaturan pengeleman rib sehingga pengeleman tidak rata memperoleh nilai RPN sebesar 343, untuk mengatasi problem tersebut maka pengeleman diratakan sesuai prosedur yang harus dibuatkan SOP. Prioritas terakhir adalah suhu ruangan tidak sesuai membuat pengeleman gagal sehingga rib renggang memperoleh nilai RPN sebesar 315, untuk mengatasi problem tersebut maka operator perlu mengatur suhu ruangan kerja secara berkala.

d. Analisis FMEA Untuk Jenis Cacat Soundboard Pecah

Tabel 4.15 memperlihatkan hasil nilai RPN dari faktor penyebab cacat soundboard pecah. Prioritas utama adalah cara penyimpanan soundboard kurang

tepat seperti cara mengangkat soundboard kurang tepat merupakan penyebab utama soundboard pecah memperoleh nilai RPN sebesar 729, untuk mengatasi problem tersebut maka mengangkat dan menyimpang soundboard harus hati-hati. Prioritas kedua adalah perubahan MC kurang atau lebih dari standar $4.5 \pm 1\%$ memperoleh nilai RPN sebesar 384, untuk mengatasi problem tersebut maka operator perlu melakukan pengecekan MC ulang secara berkala. Prioritas ketiga terdapat dua faktor yang memperoleh nilai RPN sama sebesar 378 yaitu soundboard di dalam seasoning melebihi ketetapan / kurang seasoning dan ketidakstabilan suhu lingkungan kerja, dalam menangani dua kedua problem ini maka soundboard dalam seasoning harus sesuai waktu yang ditentukan SOP dan operator perlu engatur suhu lingkungan kerja agar stabil. Prioritas keempat adalah tidak adanya proses QC kembali pada soundboard solid sebab evaluasi dari hasil scale film belum disosialisasi memperoleh nilai RPN sebesar 336, untuk mengatasi problem tersebut maka evaluasi hasil scale film harus disosialisasikan. Prioritas kelima yakni perubahannya MC akibat tingginya kadar air soundboard memperoleh nilai RPN sebesar 252, untuk mengatasi problem tersebut maka mengukur kembali kadar air pada material kayu untuk soundboard. Prioritas terakhir adalah bagian press masih menggunakan playwood memperoleh nilai RPN sebesar 128, untuk mengatasi problem tersebut maka penggunaan playwood sebagai bagian press masih diperbolehkan karena penggunaan silicon beresiko sama.

e. Analisis FMEA Untuk Jenis Cacat Bass Bridge Pecah

Tabel 4.16 memperlihatkan hasil nilai RPN dari faktor penyebab cacat bass bridge pecah. Prioritas utama adalah bass bridge terjatuh karena operator teledor dalam meletakkan bass bridge memperoleh nilai RPN sebesar 576, untuk mengatasi problem tersebut operator diwajibkan hati-hati dalam meletakan dan menyimpan bass bridge. Prioritas kedua adalah bass bridge terjatuh karena penyimpanan dalam seasoning room bass bridge terlalu lama dan terlalu cepat memperoleh nilai RPN sebesar 336, untuk mengatasi problem tersebut maka operator perlu menyimpan bass bridge dalam seasoning room bass bridge sesuai waktu yang ditentukan. Prioritas ketiga adalah cara memasang jig bass bridge kurang tepat dapat membuatnya terlepas memperoleh nilai RPN sebesar 252, untuk mengatasi problem tersebut maka pemasangan jig bass bridge harus teliti. Prioritas keempat adalah

tekanan mesin press tidak rata menyebabkan *bass bridge* pecah memperoleh nilai RPN sebesar 216, untuk mengatasi problem tersebut maka mengecek kondisi mesin secara berkala sebab kondisi tekanan mesin tidak rata merupakan hal yang wajar. Prioritas terakhir adalah cara memasang jig press tidak tepat menyebabkan *bass bridge* pecah memperoleh nilai RPN sebesar 180, untuk mengatasi problem tersebut maka jig press harus dilakukan sesuai dengan prosedur jig press yang telah ditetapkan.

5.2 Usulan Perbaikan

Melalui hasil analisis FMEA pada produk cacat *soundboard* di bagian Press Bridge & Rib Assy Up di PT Yamaha Indonesia didapatkan prioritas penyebab cacat yang dapat dibenahi dan perlu memperoleh solusi dalam memperbaiki masalah yang menyebabkan cacat ini. Peneliti pada perbaikan ini memberikan usul penanggulangan cacat dan perbaikan melalui metode *zero defect* yang memiliki beberapa pendekatan seperti *product-oriented, process-oriented,* dan *people-oriented. Zero defect* terhadap kualitas produksi tergantung dari mana melihat target untuk mengurangi cacat (Aivaliotis et al., 2019). Metode ini memiliki kelebihan mengatasi penyebab kegagalan dan mengontrol kualitas produk tidak terbatas pada kondisi satu mesin saja, tetapi dipengaruhi oleh kondisi semua sumber daya dalam penelitian ini yaitu manusia (operator Bridge & Rib Assy Up), metode atau SOP produksi, mesin produksi, lingkungan produksi dan material produksi.

Diketahui bahwa dipergunakan metode *Kaizen* oleh Press Bridge & Rib Assy Up di PT Yamaha Indonesia untuk memuat detail usulan pembenahan yang sudah diimplementasikan selama satu dekade terakhir, dalam penelitian ini peneliti mengusulkan metode *zero defect* untuk menanggulangi produk cacat. Pendekatan zero defect dalam penelitian ini ditunjukan untuk mengantisipasi cacat di Press Bridge & Rib Assy Up. Usulan yang bisa peneliti berikan demi mengontrol kualitas produk ialah sebagai berikut:

1. Mendesain ulang peletakkan barang dan space antar ruang proses produksi untuk menghindari cacat produk akibat kecelakaan kerja.

- 2. Membuat SOP (*Standard Operating Procedure*) untuk cara pengeleman, pengecekan MC ulang, pengecekan kadar air dalam kayu berulang dan seasoning disetiap tahap produksi agar kualitas produk berjalan dengan baik.
- 3. Bantalan press yang masih *playwood* jangan diganti dengan silicon karna kerataannya sama kurang baik. Namun diganti dengan bahan besi plate agar kerataan press untuk produk lebih terjamin.
- 4. Melakukan perbaikan, perawatan kebersihan dan pengecekan kondisi setiap mesin produksi secara berkala agar proses produksi terkendali dengan baik.
- 5. Mengidentifikasi masalah perlu dijadwalkan dalam proses produksi secara teratur agar tindakan pencegahan cacat dapat dimaksimalkan.

BAB VI

PENUTUP

6.1 Kesimpulan

Kesimpulan yang peneliti berikan yakni jawaban dari rumusan permasalahan yang sudah ditentukan dalam bagian Press Bridge & Rib Assy UP di PT. Yamaha Indonesia:

- 1. Kondisi NG ratio yang berlangsung dalam bagian Bridge & Rib *soundboard* dengan jumlah produk NG sebesar 363 produk solid NG atau NG ratio sebesar 4,2% dari total produksi bulan Maret Juli 2022 berjumlah 8.599 produk solid. Dari total 363 produk NG terdapat jenis cacat *treble bridge geser* sebanyak 95 produk repair atau sebesar 26,1%, jenis cacat rib pecah sebanyak 80 produk repair atau sebesar 22%, jenis cacat rib renggang sebanyak 74 produk repair atau sebesar 20,5%, jenis cacat *soundboard* pecah sebanyak 71 produk repair atau sebesar 19,6%, jenis cacat *bass bridge* pecah sebanyak 43 produk repair atau sebesar 11,8%.
- 2. Usulan perbaikan yang harus dilakukan dalam menurunkan NG ratio bagian Press Bridge & Rib yakni lebih diutamakan mencegah produk dari cacat daripada mengatasi produk cacat dengan pendekatan zero defect untuk meminimalisir cacat produk dengan cara: mendesain ulang peletakkan barang dan space antar ruang proses produksi warehouse untuk menghindari cacat produk akibat kecelakaan kerja; membuat SOP (Standard Operating Procedur) untuk cara pengeleman, pengecekan MC ulang, pengecekan kadar air dalam kayu berulang dan seasoning disetiap tahap produksi agar kualitas produk berjalan dengan baik; bantalan press yang masih playwood jangan diganti dengan silicon karna kerataannya sama kurang baik, namun diganti dengan bahan besi plate agar kerataan press untuk produk lebih terjamin; melakukan perbaikan, perawatan kebersihan dan pengecekan kondisi setiap mesin produksi secara rutin agar proses produksi terkendali dengan baik; dan mengidentifikasi masalah perlu dijadwalkan dalam proses produksi secara teratur agar tindakan pencegahan cacat dapat dimaksimalkan

6.2 Saran

- Untuk bagian Press Bridge & Rib Assy UP di PT. Yamaha Indonesia sebaiknya tidak hanya berfokus pada perbaikan produk cacat, pencegahan berupa antisipasi produk cacat juga harus difokuskan guna meminimalisir cacat produksi sekaligus menghemat biaya operasional.
- Perusahaan dapat menjadwalkan secara rutin perbaikan mesin sesuai dengan kapasitas mesin dalam berproduksi maupun pembersihan lingkungan tempat bekerja. Hal ini bertujuan untuk memberikan rasa aman dan nyaman kepada seluruh pekerja.
- 3. Perusahaan dapat melakukan perbaikan secara terus menerus, melakukan analisis kualitas produk dengan baik dan melakukan pengawasan dan control agar dapat memuaskan pelanggan dan sesuai dengan target yang diharapkan serta dapat meningkatkan keuntungan yang diperoleh.
- 4. Untuk usulan perbaikan yang telah terlaksana ataupun belum terlaksana (kaizen) yang telah diberikan untuk bagian press bridge & rib dapat di control dengan baik agar program dalam meminimalisir cacat produk dapat tercapai.
- 5. Untuk penelitian selanjutnya disarankan untuk membuat praktek pendekatan zero defect ke lapangan untuk mengidentifikasi penyebab cacat, memberikan solusi pencegahan produk dari cacat, dan dilanjut mengevaluasi perkembangan pendekatan ini secara langsung guna membuktikan keefektifan pendekatan ini dalam meminimalisir produk cacat. Disarankan pula mengidentifikasi cacat tidak hanya menggunakan FMEA, namun menggunakan lebih dari satu analisis produk cacat seperti Seven tools, Lean Six Sigma dan lain-lain.

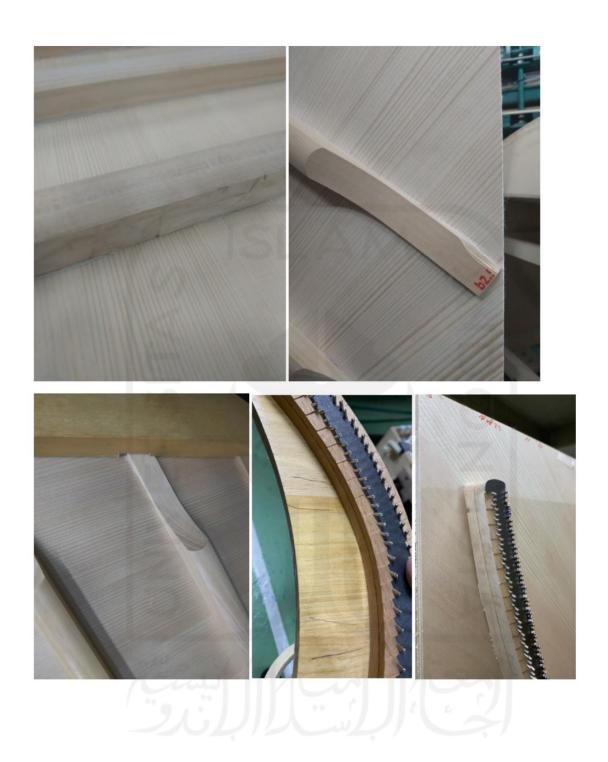
DAFTAR ISI

- Agustin, Alvin. (2017). Implementasi Lean Six Sigma dalam Upaya Mengurangi Produk Cacat pada Bagian Press Bridge & RIB ASSY UP Studi Kasus PT Yamaha Indonesia. *Skripsi*. Universitas Islam Indonesia.
- Aivaliotis, P., Georgoulias, K., and Chryssolouris, G. (2019). The Use of Digital Twin for Predictive Maintenance in Manufacturing. Int. J. Comput. Integr. Manuf. 32, 1067–1080.
- Anastasya, A., & Yuamita, F. (2022). "Pengendalian Kualitas Pada Produksi Air Minum Dalam Kemasan Botol 330ml Menggunakan Metode Failure Mode Effect Analysis (FMEA) di PDAM Tirta Sembada". *Jurnal Teknologi Dan Manajemen Industri Terapan*. 1(I). 15–21.
- Ariani, Dorothea Wahyu. 2016. Pengendalian Kualitas Statistik (Pendekatan Kuantitatif dalam Manajemen Kualitas). Ed-4. Yogyakarta: Penerbit Andi.
- Arikunto. (2017). *Prosedur Penelitian Suatu Pendekatan Praktek*. Jakarta: Rineka Cipta.
- Chen, Hui., Tao, Zhao., & Lu, Ming. (2022). "The Effect of Comprehensive Use of PDCA and FMEA Management Tools on the Work Efficiency, Teamwork, and Self-Identity of Medical Staff: A Cohort Study with Zhongda Hospital in China as an Example". *Molecular Imaging*. 1-8.
- Hassan, Shamsu., Wang, Jin., & Kontovas, Christos. (2022). "Modified FMEA Hazard Identification For Cross-Country Petroleum Pipeline Using Fuzzy Rule Base

- And Approximate Reasoning". *Journal of Loss Prevention in the Process Industries*. Vol.74.
- Helianty, Yanti & Nugraha, Ario Yuda (2018) Perbaikan Kualitas Produk Berdasarkan Metode Failure Mode And Effect Analysis (FMEA). *Skripsi*. Institut Teknologi Bandung.
- Kadena, E., & Kocak, Sinan. (2022). "FMEA in Smartphones: A Fuzzy Approach". *Mathematics*. 10 (3).
- Lindström, J., Kyösti, P., Lejon, E., Birk, W., Andersson, A., Borg, M., et al. (2020). "Zero Defect Manufacturing in an Industry 4.0 Context: A Case Study of Requirements for Change and Desired Effects". in 9th International Conference on Through-Life Engineering Service. *Cranfield UK: SSRN Journal*. 1–7.
- Li, He., Díaz, H., & Soares, C. Guedes. (2021). "A Failure Analysis Of Floating
 Offshore Wind Turbines Using AHP-FMEA Methodology". *Ocean*Engineering. Vol 234.
- Liu, H. (2019). Improved FMEA Methods for Proactive Healthcare Risk Analysis. Jerman: Springer Nature Singapore.
- Liu, Y., & Tang, Y. (2022). "Managing Uncertainty Of Expert's Assessment In FMEA With The Belief Divergence Measure". *Scientific Report*. No. 12.
- Mikulak, R. J., McDermott, R., & Beauregard, M. (2017). *The Basics of FMEA*. Amerika Serikat: Taylor & Francis.
- Mizuno, S., & Bodek, N. (2020). *Management for Quality Improvement: The Seven New QC Tools*. New York: Productivity Press.

- Ouyang, Linhan., Che, Yushuai., & Park, Chanseok. (2022). "Multiple Perspectives On Analyzing Risk Factors In FMEA". *Computers in Industry*. Vol. 141.
- Powell, D.J., Eleftheriadis, R.J., & Myklebust, O. 2021. "Digitally enhanced quality management for Zero-Defect Manufacturing. Procedia CIRP". Vol 1. No. 104.
- Proxis Group. 2019. Original Design Manufacturer dan Original Equipment Manufacturer. Diakses 20 Juni 2020 melalui https://proxsisgroup.com/pq/apasajakah-perbedaan-oemoriginal equipment-manufacturer-dan-odm-original-design-manufacturer/.
- Reda, Hiluf., & Dvivedi, Akshay. (2022). "Decision-Making On The Selection Of Lean Tools Using Fuzzy QFD And FMEA Approach In The Manufacturing Industry. *Expert Systems with Applications*". Vol. 192.
- Sugiyono. 2017. Metode Penelitian Kualitatif, Kuantitatif, R & D. Bandung: Alpha Bheta.
- Suliantoro, Hery., Bakhtiar, Arfan., & Sembiring, Joy I. 2018. "Analisis Penyebab Kecacatan dengan Menggunakan Metode Failure Mode and Effect Analysis (FMEA) dan Metode Fault Tree Analysis (FTA) di PT. Alam Daya Sakti Semarang". *Jurnal Universitas Diponegoro*. Vol 7. No 1.
- Wang, K.-S. (2013). "Towards Zero-Defect Manufacturing (ZDM)-a Data Mining Approach". *Adv. Manuf.* 1, 62–74.
- Wang, Lipeng., Yan, Fang., Wang, Fang., & Li, Zijun. (2021). "FMEA-CM Based Quantitative Risk Assessment For Process Industries—A Case Study Of Coal-

To-Methanol Plant In China". Process Safety And Environmental Protection. Vol. 149.


Yener, Yelda., & Can, Gülin Feryal. (2021). "A FMEA Based Novel Intuitionistic Fuzzy Approach Proposal: Intuitionistic Fuzzy Advance MCDM And Mathematical Modeling Integration". Expert Systems with Applications. Vol. 183.

Yucesan, M., Gul, M. & Celik, E. (2021). A Holistic FMEA Approach By Fuzzy-Based Bayesian Network And Best-Worst Method. *Complex Intell*. Syst. 7. 1547–1564.

LAMPIRAN

				KUESIONER		
Nama :						
lenis Kelamin :						
Perempuan						
) Laki-laki						
sia :						
batan :						
MEA Untuk Jenis Cac	at Treble Br	ridge Geser				
FMEA Untuk Jenis Cac	at Treble Br	ridge Geser Cause of Failure	OCC	Current Proses Control	DET	
			OCC	Current Proses Control	DET 1	
	SEV		2000	Current Proses Control		
	SEV		□1	Current Proses Control	01	
Potential Failure	SEV	Cause of Failure	□ 1 □ 2	48	02	
Potential Failure Perubahan MC	SEV	Cause of Failure Tidak ada MC	□ 1 □ 2 □ 3	Perlu dilakukan MC	01 02 03	
Potential Failure	SEV 1 2 3 4	Cause of Failure	□1 □2 □3 □4	48	01 02 03 04	
Potential Failure Perubahan MC	SEV 1 2 3 4 5 5	Cause of Failure Tidak ada MC	01 02 03 04	Perlu dilakukan MC	01 02 03 04 05	
Potential Failure Perubahan MC	SEV	Cause of Failure Tidak ada MC	□ 1 □ 2 □ 3 □ 4 □ 5 □ 6	Perlu dilakukan MC	01 02 03 04 05	

