TUGAS AKHIR

ANALISIS STABILITAS TANAH DENGAN DINDING PENAHAN TANAH KANTILEVER DAN PONDASI TIANG PANCANG MENGGUNAKAN PROGRAM PLAXIS 8.2 (ANALYSIS OF SOIL STABILITY WITH CANTILEVER RETAINING WALLS AND PILE FOUNDATIONS USING PLAXIS 8.2 PROGRAM) (STUDI KASUS JEMBATAN KIRINGAN SUNGAI OPAK)

Diajukan Kepada Universitas Islam Indonesia Yogyakarta Untuk Memenuhi Persyaratan Memperoleh Derajat Sarjana Teknik Sipil

MUHAMMAD NOFEAR FAVIAN ISLAMEY 16511021

PROGRAM STUDI TEKNIK SIPIL FAKULTAS TEKNIK SIPIL DAN PERENCANAAN UNIVERSITAS ISLAM INDONESIA 2022

TUGAS AKHIR

ANALISIS STABILITAS TANAH DENGAN DINDING PENAHAN TANAH KANTILEVER DAN PONDASI TIANG PANCANG MENGGUNAKAN PROGRAM PLAXIS 8.2 (ANALYSIS OF SOIL STABILITY WITH CANTILEVER RETAINING WALLS AND PILE FOUNDATIONS USING PLAXIS 8.2 PROGRAM)

Disusun oleh

ii

PERNYATAAN BEBAS PLAGIASI

Saya menyatakan dengan ini sesungguhnya bahwa laporan Tugas Akhir yang saya susun sebagai syarat untuk memenuhi salah satu persyaratan pada Program Studi Teknik Sipil Universitas Islam Indonesia merupakan hasil karya sendiri. Adapun bagian-bagian tertentu dalan penulisan laporan Tugas Akhir yang saya kutip dari hasil karya orang lain telah dituliskan dalam sumbernya secara jelas sesuai norma, kaidah, dan etika penulisan karya ilmiah. Apabila ditemukan sebagian atau seluruh dari laporan Tugas Akhir ini bukan hasil karya sendiri atau terjadinya plagiasi dalam bagian-bagian tertentu, saya bersedia menerima sanksi, termasuk pencabutan gelar akademik yang saya sandang sesuai dengan perundang-undangan yang berlaku.

> Yang membuat pernyataan METERAL METERAL METERAL Muhammad Nofear Favian Islamey

Yogyakarta, 09 November 2022

(16511021)

LEMBAR DEDIKASI

"Maka nikmat Tuhanmu yang manakah yang kamu dustakan." (QS.

Ar-Rahmaan: 13).

"It's okay to be confused. Confusion is the path to all clarity in the world." – Shahrukh Khan

"Don't write my story to make people feel bad for me. I hate that. Nothing to feel sorry about. I love what happened to me; it made me who I am." – Jimmy Butler

KATA PENGANTAR

Alhamdulillah puji syukur dipanjatkan kehadirat Allah SWT atas segala rahmat serta hidayah-Nya, sehingga laporan Tugas Akhir ini dapat diselesaikan dengan baik dan lancar. Shalawat serta salam tidak lupa kami curahkan kepada nabi besar kita, Nabi Muhammad SAW beserta keluarga, para sahabat dan umatnya hingga akhir zaman.

Selama proses penyusunan dan penyelesaian laporan Tugas Akhir ini, telah banyak mendapat bantuan dari banyak pihak dari segi bimbingan, arahan, sertta kritik dan saran demi terselesaikannya Tugas Akhir ini dengan hasil yang baik. Untuk itu, pada kesempatan kali ini penyusun ingin menyampaikan ucapan terimakasih yang sebesar-besarnya kepada:

- Bapak Ir. Akhmad Marzuko M.T. selaku dosen pembimbing Tugas Akhir Program Studi Teknik Sipil, Fakultas Teknik Sipil dan Perencanaan, Universitas Islam Indonesia.
- Bapak/Ibu dosen penguji Tugas Akhir, yang telah memberikan banyak kritik serta saran yang membangun dan memberikan evaluas agar lebih baik di kemudian hari.
- Bapak Arlian, S.H. dan Ibu Ida Isfandarita yang selalu memanjatkan doa dan memberikan support berupa kasih sayang, semangat dan bantuan lain baik berupa moril maupun materiil.
- 4. Saudara Early Dary Daffa yang selalu memberikan bantuan baik secara moril maupun materiil
- 5. Bella Rizqi Noor S.Ak. yang selalu meluangkan waktu, tenaga dan pikiran dalam proses pengerjaan Tugas Akhir.
- 6. Saudara-saudara kontrakan Lawang Sewu yang telah membantu dalam proses *brainstorming* dan pembelajaran.
- 7. Saudara-saudara *HOME* yang memberikan support berupa semangat dan tempat untuk mengerjakan Tugas Akhir.

- 8. Teman-teman Angkatan 2016 Teknik Sipil Universitas Islam Indonesia yang memberikan bantuan dan semangat.
- 9. Semua pihak yang telah membantu dalam proses penyelesaian Tugas Akhir ini

Akhir kata, dengan selesainya Laporan Tugas Akhir ini, penyusun menyadari adanya kekurangan pada tugas besar ini, untuk itu penyusun sangat mengharapkan kritik dan saran yang membangun agar dapat menjadi lebih baik di waktu mendatang.

Yogyakarta, 09 November 2022

zv

Muhammad Nofear Favian Islamey (16511021)

DAFTAR ISI

TUGAS A	KHIR	ii
PERNYA	ΓΑΑΝ BEBAS PLAGIASI	iii
LEMBAR	DEDIKASI	iv
KATA PE	NGANTAR	v
DAFTAR	ISI	vii
DAFTAR	TABEL	xi
DAFTAR	GAMBAR	XV
DAFTAR	LAMPIRAN	xxiv
DAFTAR	NOTASI	XXV
ABSTRAI	K ()	xxviii
ABSTRA	CT	xxix
BAB I PE	NDAHULUAN	1
1.1	Latar Belakang	1
1.2	Rumusan Masalah	3
1.3	Tujuan Penelitian	3
1.4	Manfaat Penelitian	4
1.5	Batasan Penelitian	4
1.6	Studi Kasus	5
BAB II TI	NJAUAN PUSTAKA	6
2.1	Tinjauan Umum	6
2.2	Perkuatan Tanah dengan Dinding Penahan Tanah	6
2.3	Perkuatan Tanah dengan Bored Pile	7
2.4	Perkuatan Tanah dengan Tiang Pancang	9
2.5	Perbandingan Penelitian Terdahulu dan Sekarang	10
BAB III L	ANDASAN TEORI	13
3.1	Tanah	13
	3.1.1 Definisi Tanah	13
	3.1.2 Kuat Geser Tanah	14

	3.2	Penyelidikan Tanah	15
	3.3	Stabilitas Lereng	15
		3.3.1 Umum	15
		3.3.2 Analisis Stabilitas Lereng Menggunakan Metode Fellinius	16
	3.4	Dinding Penahan Tanah	17
		3.4.1 Dinding Penahan Tanah Tipe Kantilever	18
		3.4.2 Tekanan Tanah Lateral	19
		3.4.3 Stabilitas Dinding Penahan Tanah	25
	3.5	Fondasi Tiang Bor	30
	3.6	Kapasitas Dukung Bored Pile Metode O'Neill dan Reese	33
	3.7	Pondasi Tiang Pancang	35
	3.8	Kapasitas Dukung Tiang Pancang Metode Meyerhoff	37
	3.9	Kapasitas Dukung Ijin	38
	3.10	Daya Dukung Lateral Terhadap Tiang	39
	3.11	Tekanan Lateral Akibat Gempa	44
	3.12	Plaxis	46
BAB	IV M	ETODE PENELITIAN	48
	4.1	Gambaran Umum	48
	4.2	Lokasi Studi Kasus	48
	4.3	Tahapan Penelitian	49
	4.4	Parameter Analisis	51
		4.4.1 Parameter Tanah	51
		4.4.2 Dinding Penahan Tanah dan Bored pile	51
		4.4.3 Dinding Penahan Tanah dan Tiang Pancang	51
		4.4.4 Muka Air Tanah	51
		4.4.5 Penampang Melintang Lereng	51
	4.5	Bagan Alir	52
	4.6	Time Schedule	56
BAB	V AN	JALISIS DAN PEMBAHASAN	57
	5.1	Gambaran Umum	57
	5.2	Data Tanah	57

	5.2.1 Data Tanah	57
	5.2.2 Data Beban	58
	5.3 Analisis Lereng Asli	59
	5.3.1 Analisis Lereng Asli Menggunakan Program Plaxis	60
	5.3.2 Pembuatan Jaring Elemen	60
	5.3.3 Tahap Perhitungan	61
	5.3.5 Analisis Lereng Asli Menggunakan Perhitungan Manual	Metode
	Fellenius	66
5.4	Analisis Stabilitas Lereng dengan Perkuatan Dinding Penahan	Tanah
	dan Bored Pile	69
	5.4.1 Data Dinding Penahan Tanah dan Bored Pile	70
	5.4.2 Analisis Stabilitas Lereng dengan Perkuatan Dinding F	enahan
	Tanah dan Bored Pile menggunakan Program Plaxis.	71
	5.4.3 Analisis Stabilitas Lereng dengan Perkuatan Dinding F	enahan
	Tanah dan Bored Pile menggunakan Perhitungan Manual	79
	5.4.4 Analisis Stabilitas Lereng dengan Perkuatan Dinding F	enahan
	Tanah dan Bored Pile menggunakan Perhitungan Manual	dengan
	Beban Gempa	86
5.5	Analisis Stabilitas Lereng dengan Perkuatan Dinding Penahan	Tanah
	dan Tiang Pancang variasi diameter tiang 30cm	97
	5.5.1 Data Dinding Penahan Tanah dan Tiang Pancang	98
	5.5.2 Analisis Stabilitas Lereng dengan Perkuatan Dinding F	enahan
	Tanah dan Tiang Pancang Menggunakan Program Plaxis.	99
	5.5.3 Analisis Stabilitas Lereng dengan Perkuatan Dinding F	Penahan
	Tanah dan Tiang pancang menggunakan Perhitungan	Manual
		106
	5.5.4 Analisis Stabilitas Lereng dengan Perkuatan Dinding F	enahan
	Tanah dan Tiang pancang menggunakan Perhitungan	dengan
	Beban Gempa	114
5.6	Analisis Stabilitas Lereng dengan Perkuatan Dinding Penahan	Tanah

dan Tiang Pancang variasi diameter tiang 40cm125

:	5.6.1 Data Dinding Penahan Tanah dan Tiang Pancang	126
:	5.6.2 Analisis Stabilitas Lereng dengan Perkuatan Dinding Pena	han
	Tanah dan Tiang pancang menggunakan program plaxis.	127
:	5.6.3 Analisis Stabilitas Lereng dengan Perkuatan Dinding Pena	han
	Tanah dan Tiang pancang menggunakan Perhitungan Mar	nual
		134
	5.6.4 Analisis Stabilitas Lereng dengan Perkuatan Dinding Pena	han
	Tanah dan Tiang pancang menggunakan Perhitungan den	gan
	Beban Gempa	142
5.7	Analisis Stabilitas Lereng dengan Perkuatan Dinding Penahan Ta	nah
	dan Tiang Pancang variasi diameter tiang 50cm	153
	5.7.1 Data Dinding Penahan Tanah dan Tiang Pancang	154
	5.7.2 Analisis Stabilitas Lereng dengan Perkuatan Dinding Pena	han
	Tanah dan Tiang Pancang Menggunakan Program Plaxis	154
	5.7.3 Analisis Stabilitas Lereng dengan Perkuatan Dinding Pena	han
	Tanah dan Tiang pancang menggunakan Perhitungan Mar	nual
		163
	5.7.4 Analisis Stabilitas Lereng dengan Perkuatan Dinding Pena	han
	Tanah dan Tiang pancang Menggunakan Perhitungan den	gan
	Beban Gempa	170
5.8	Pembahasan	181
BAB VI KE	ESIMPULAN DAN SARAN	186
6.1	Kesimpulan	186
6.2	Saran	186
Daftar Pusta	aka	188
LAMPIRAN	N	190

DAFTAR TABEL

Tabel 2. 1 Perbandingan Penelitian Terdahulu dan Sekarang11
Tabel 3. 1 Faktor-Faktor Kapasitas Dukung Vesic (1973)28
Tabel 3. 2 Hubungan Nilai Faktor30
Tabel 5. 1 Rekepitulasi Perhitungan Menggunakan Metode Fellenius68
Tabel 5. 2 Rekapitulasi Perhitungan Gaya Vertikal dan Momen Terhadap Titik O 80
Tabel 5. 3 Hasil Rekapitulasi Perhitungan Tekanan Tanah Aktif pada Dinding
Penahan Tanah dengan Perkuatan Bored pile82
Tabel 5. 4 Hasil Rekapitulasi Perhitungan Tekanan Tanah Pasif Pada Dinding
Penahan Tanah dengan Perkuatan Tiang Pancang82
Tabel 5. 5 Rekapitulasi Tahanan Gesek Ultimit <i>Bored Pile</i> dengan Beban Gempa 86
Tabel 5. 6 Rekapitulasi Perhitungan Gaya Vertikal dan Momen Terhadap Titik O
pada Dinding Penahan Tanah dengan Perkuatan <i>Bored Pile</i> 88 Tabel 5. 7 Hasil Rekapitulasi Perhitungan Tekanan Tanah Aktif pada Dinding Penahan Tanah dengan Perkuatan <i>Bored Pile</i> 89
Tabel 5. 8 Hasil Rekapitulasi Perhitungan Tekanan Tanah Aktif pada Dinding
Penahan Tanah dan <i>Bored Pile</i> dengan Beban Gempa 91
Tabel 5. 9 Hasil Rekapitulasi Perhitungan Tekanan Tanah Pasif pada Dinding Penahan Tanah dan Tiang Pancang dengan Beban Gempa92
Tabel 5. 10 Rekapitulasi Tahanan Gesek Ultimit Bored Pile dengan Beban Gempa
96

- Lanjutan Tabel 5. 10 Rekapitulasi Tahanan Gesek Ultimit *Bored Pile* dengan Beban Gempa 97
- Tabel 5. 11 Hitungan Momen Vertikal Terhadap Titik O Pada Dinding PenahanTanah dengan Perkuatan Tiang Pancang108
- Tabel 5. 12 Hasil Rekapitulasi Perhitungan Tekanan Tanah Aktif Pada DindingPenahan Tanah dengan Perkuatan Tiang Pancang110
- Tabel 5. 13 Hasil Rekapitulasi Perhitungan Tekanan Tanah Pasif Pada DindingPenahan Tanah dengan Perkuatan Tiang Pancang110
- Tabel 5. 14 Rekapitulasi Perhitungan Gaya Vertikal dan Momen Terhadap Titik Opada Dinding Penahan Tanah dengan Perkuatan Tiang Pancang115
- Tabel 5. 15 Hasil Rekapitulasi Perhitungan Tekanan Tanah Aktif Pada DindingPenahan Tanah dengan Perkuatan Tiang Pancang117
- Tabel 5. 16 Hasil Rekapitulasi Perhitungan Tekanan Tanah Pasif Pada DindingPenahan Tanah dengan Perkuatan Tiang Pancang117
- Tabel 5. 17 Hasil Rekapitulasi Perhitungan Tekanan Tanah Aktif pada DindingPenahan Tanah dan Tiang Pancang dengan Beban Gempa120
- Tabel 5. 18 Hasil Rekapitulasi Perhitungan Tekanan Tanah Pasif pada DindingPenahan Tanah dan Tiang Pancang dengan Beban Gempa121
- Tabel 5. 19 Hitungan Momen Vertikal Terhadap Titik O Pada Dinding PenahanTanah dengan Perkuatan Tiang Pancang136
- Tabel 5. 20 Hasil Rekapitulasi Perhitungan Tekanan Tanah Aktif Pada DindingPenahan Tanah dengan Perkuatan Tiang Pancang138
- Tabel 5. 21 Hasil Rekapitulasi Perhitungan Tekanan Tanah Pasif Pada DindingPenahan Tanah dengan Perkuatan Tiang Pancang138
- Tabel 5. 22 Rekapitulasi Perhitungan Gaya Vertikal dan Momen Terhadap Titik Opada Dinding Penahan Tanah dengan Perkuatan Tiang Pancang143

- Tabel 5. 23 Hasil Rekapitulasi Perhitungan Tekanan Tanah Aktif pada DindingPenahan Tanah dengan Perkuatan Tiang Pancang145
- Tabel 5. 24 Hasil Rekapitulasi Perhitungan Tekanan Tanah Pasif Pada DindingPenahan Tanah dengan Perkuatan Tiang Pancang145
- Tabel 5. 25 Hasil Rekapitulasi Perhitungan Tekanan Tanah Aktif pada DindingPenahan Tanah dan Tiang Pancang dengan Beban Gempa147
- Tabel 5. 26 Hasil Rekapitulasi Perhitungan Tekanan Tanah Aktif pada DindingPenahan Tanah dan Tiang Pancang dengan Beban Gempa148
- Tabel 5. 27 Hitungan Momen Vertikal Terhadap Titik O Pada Dinding PenahanTanah dengan Perkuatan Tiang Pancang164
- Tabel 5. 28 Hasil Rekapitulasi Perhitungan Tekanan Tanah Aktif Pada DindingPenahan Tanah dengan Perkuatan Tiang Pancang166
- Tabel 5. 29 Hasil Rekapitulasi Perhitungan Tekanan Tanah Pasif Pada DindingPenahan Tanah dengan Perkuatan Tiang Pancang167
- Tabel 5. 30 Rekapitulasi Perhitungan Gaya Vertikal dan Momen Terhadap Titik Opada Dinding Penahan Tanah dengan Perkuatan Tiang Pancang172
- Tabel 5. 31 Hasil Rekapitulasi Perhitungan Tekanan Tanah Aktif pada DindingPenahan Tanah dengan Perkuatan Tiang Pancang173
- Tabel 5. 32 Hasil Rekapitulasi Perhitungan Tekanan Tanah Pasif Pada DindingPenahan Tanah dengan Perkuatan Tiang Pancang174
- Tabel 5. 33 Hasil Rekapitulasi Perhitungan Tekanan Tanah Aktif pada DindingPenahan Tanah dan Tiang Pancang dengan Beban Gempa176
- Tabel 5. 34 Hasil Rekapitulasi Perhitungan Tekanan Tanah Aktif pada DindingPenahan Tanah dan Tiang Pancang dengan Beban Gempa177
- Tabel 5. 35 Perbandingan Angka Keamanan Terhadap Lereng Asli, Lereng denganPerkuatan Eksisting Berupa Dinding Penahan Tanah Kantilever dan

Bored Pile, dan Lereng dengan Perkuatan Alternatif Berupa Dinding Penahan Tanah dan Tiang Pancang dengan Variasi Diameter yaitu Diameter 30cm, 40cm, dan 50cm. 185

DAFTAR GAMBAR

Gambar 3. 1 Gaya yang Bekerja Dalam Irisan	17
Gambar 3. 2 Dinding Penahan Tanah Tipe Kantilever	18
Gambar 3. 3 Estimasi Dinding Penahan Tanah Tipe Kantilever	19
Gambar 3. 4 Definisi Koefisiensi Tanah saat Diam	20
Gambar 3. 5 Tanah Lateral Aktif	22
Gambar 3. 6 Tekanan Lateral Pasif	24
Gambar 3. 7 Pembuatan Tiang Bor dengan Mnggunakan Slurry	33
Gambar 3. 8 Definisi Tiang Ujung Jepit dan Ujung Bebas (McNulti,1956)	40
Gambar 3. 9 Grafik Tahanan Lateral Ultimit Tiang dalam Tanah Gran	ıuler
(Broms,1964)	41
Gambar 3. 10 Tiang Ujung Jepit dalam Tanah Granuler (Broms, 1964)	43
Gambar 3. 11 Diagram Keseimbangan Gaya pada Dinding Penahan Tanah/Ke	epala
Jembatan	46
Gambar 4. 1 Letak Jembatan Kiringan Berdasarkan Eksiting Jalan	48
Gambar 4. 2 Potongan Melintang Sungai	49
Gambar 4. 3 Penampang Melintang Lereng	52
Gambar 4. 4 Bagan Alir Pemodelan Lereng Pada Program Plaxis	53
Gambar 4. 5 Bagan Alir Tugas Akhir	54
Gambar 4. 6 Bagan Alir Pemodelan Lereng Pada Program Plaxis	56
Gambar 5. 1 Peta Wilayah Dengan Prosedur Spesifik Situs	58
Gambar 5. 2 Peta Gempa Wilayah Sungai Opak Imogiri	59

Gambar 5. 3 Potongan Melintang Lereng Asli	59
Gambar 5. 4 Pemodelan Potongan Melintang Lereng Asli pada Plaxis	60
Gambar 5. 5 Jaring-Jaring Elemen	60
Gambar 5. 6 Perhitungan Tegangan Awal	61
Gambar 5. 7 Proses Perhitungan Lereng Asli	62
Gambar 5. 8 Deformed Mesh Lereng Asli Tanpa Beban Gempa	62
Gambar 5. 9 Effective Stress Lereng Asli Tanpa Beban Gempa	63
Gambar 5. 10 Arah Pergerakan Tanah Lereng Asli Tanpa Beban Gempa	64
Gambar 5. 11 Daerah Potensial Longsor Lereng Asli Tanpa Beban Gempa	64
Gambar 5. 12 Kondisi Lereng	65
Gambar 5. 13 Nilai Faktor Aman	65
Gambar 5. 14 Penampang Irisan pada Lereng Asli	66
Gambar 5. 15 Penampang Lereng dengan Dinding Penahan Tanah dan Bored	l Pile
	70
Gambar 5. 16 Dimensi Dinding Penahan Tanah dan Bored Pile	70
Gambar 5. 17 Permodelan Potongan Melintang Menggunakan Dinding Per	ıahan
Tanah dan Bored Pile pada Program Plaxis	71
Gambar 5. 18 Jaring-Jaring Elemen Dinding Penahan Tanah dan Bored Pile	72
Gambar 5. 19 Perhitungan Tegangan Awal Dinding Penahan Tanah dan Bored	1 Pile
	72
Gambar 5. 20 Proses Perhitungan Dinding Penahan Tanah dan Bored Pile	pada
Plaxis.	73
Gambar 5. 21 Deformend Mesh Dinding Penahan Tanah dan Bored Pile 7	Tanpa
Beban Gempa	74

Gambar	5. 22	Deformend	Mesh	Dinding	Penahan	Tanah	dan	Bored	Pile	dengan
		Beban Gem	ра							74

- Gambar 5. 23 Effective Stresses Dinding Penahan Tanah dan *Bored Pile* Tanpa Beban Gempa 75
- Gambar 5. 24 Effective Stresses Dinding Penahan Tanah dan *Bored Pile* dengan Beban Gempa 75
- Gambar 5. 25 Arah Pergerakan Dinding Penahan Tanah dan *Bored Pile* Tanpa Beban Gempa 76
- Gambar 5. 26 Daerah Potensial Longsor Dinding Penahan Tanah dan *Bored Pile* Tanpa Beban Gempa 76
- Gambar 5. 27 Arah Pergerakan Dinding Penahan Tanah dan *Bored Pile* dengan Beban Gempa 77
- Gambar 5. 28 Daerah Potensial Longsor Dinding Penahan Tanah dan *Bored Pile* dengan Beban Gempa 77
- Gambar 5. 29 Angka Aman Dinding Penahan Tanah dan *Bored Pile* Kondisi Asli Tanpa Beban Gempa 78
- Gambar 5. 30 Angka Aman Dinding Penahan Tanah dan *Bored Pile* Kondisi Asli Dengan Beban Gempa 78
- Gambar 5. 31 Sketsa Dinding Penahan Tanah Kantilever dan *Bored Pile* 79
- Gambar 5. 32 Pembagian Pias-Pias pada Gaya Vertikal Dinding Penahan Tanah dengan Perkuatan *Bored pile* 80

Gambar 5. 33 Diagram Tekanan Tanah Lateral	81

- Gambar 5. 34 Pembagian Pias-Pias pada Gaya Vertikal Dinding Penahan Tanah
dengan Perkuatan Bored pile87
- Gambar 5. 35 Diagram Tekanan Tanah Lateral 88

Gambar 5. 36 Diagram Tekanan '	Tanah Dinamis pada Dinding Penahan '	Tanah dan
Bored Pile		90

Gambar 5. 37 Penampang Lereng dengan Dinding Penahan Tanah dan Tiang pancang 98

Gambar 5. 38 Dimensi Dinding Penahan Tanah dan Tiang Pancang 98

Gambar 5. 39 Permodelan Potongan Melintang Menggunakan Dinding PenahanTanah dan Tiang Pancang pada Program Plaxis99

Gambar 5. 40 Jaring-Jaring Elemen Dinding Penahan Tanah dan Tiang Pancang 100

- Gambar 5. 41 Perhitungan Tegangan Awal Dinding Penahan Tanah dan Tiang Pancang 100
- Gambar 5. 42 Proses Perhitungan Dinding Penahan Tanah dan Tiang Pancang pada Plaxis. 101

Gambar 5. 43 Deformend Mesh Dinding Penahan Tanah dan Tiang Pancang 102

Gambar 5. 44 Deformend Mesh Dinding Penahan Tanah dan Tiang dengan Beban Gempa 102

Gambar 5. 45 Effective Stresses Dinding Penahan Tanah dan Tiang pancang 103

Gambar 5. 46 Effective Stresses Dinding Penahan Tanah dan Tiang pancangDengan Beban Gempa103

Gambar 5. 47 Arah Pergerakan Dinding Penahan Tanah dan Tiang pancang Tanpa Beban Gempa 104

Gambar 5. 48 Daerah Potensial Dinding Penahan Tanah dan Tiang Pancang Tanpa Beban Gempa 104

Gambar 5. 49 Arah Pergerakan Dinding Penahan Tanah dan Tiang Pancang dengan Beban Gempa 105

Gambar 5. 50 Daerah Potensial Dinding Penahan Tanah dan Tiang Pancang dengan
Beban Gempa 105
Gambar 5. 51 Angka Aman Dinding Penahan Tanah dan Tiang Pancang Tanpa
Beban Gempa 106
Gambar 5. 52 Angka Aman Dinding Penahan Tanah dan Tiang Pancang dengan
Beban Gempa 106
Gambar 5. 53 Sketsa Dinding Penahan Tanah Kantilever dan Tiang Pancang 107
Gambar 5. 54 Pembagian Pias-Pias pada Gaya Vertikal Dinding Penahan Tanah
dengan Perkuatan Tiang Pancang 107
Gambar 5. 55 Diagram Tekanan Tanah Lateral Pada Dinding Penahan Tanah
dengan Perkuatan Tiang Pancang 109
Gambar 5. 56 Sketsa Susunan Lapisan Tanah dan Lapisan N-SPT 112
Gambar 5. 57 Pembagian Pias-Pias pada Gaya Vertikal Dinding Penahan Tanah
dengan Perkuatan Tiang Pancang 114
Gambar 5. 58 Diagram Tekanan Tanah Lateral116
Gambar 5. 59 Diagram Tekanan Tanah Dinamis pada Dinding Penahan Tanah dan
Tiang Pancang119
Gambar 5. 60 Sketsa Susunan Lapisan Tanah dan Lapisan N-SPT124
Gambar 5. 61 Penampang Lereng dengan Dinding Penahan Tanah dan Tiang
pancang 126
Gambar 5. 62 Dimensi Dinding Penahan Tanah dan Tiang Pancang 126
Gambar 5. 63 Permodelan Potongan Melintang Menggunakan Dinding Penahan
Tanah dan Tiang Pancang pada Program Plaxis127
Gambar 5. 64 Jaring-Jaring Elemen Dinding Penahan Tanah dan Tiang Pancang
128

Gambar	5.	65	Perhitungan	Tegangan	Awal	Dinding	Penahan	Tanah	dan	Tiang
			Pancang							128

- Gambar 5. 66 Proses Perhitungan Dinding Penahan Tanah dan Tiang Pancang pada Plaxis 129
- Gambar 5. 67 Deformend Mesh Dinding Penahan Tanah dan Tiang Pancang Tanpa Beban Gempa 130
- Gambar 5. 68 Deformend Mesh Dinding Penahan Tanah dan Tiang Dengan Beban Gempa 130

Gambar 5. 69 Effective Stresses Dinding Penahan Tanah dan Tiang Pancang Tanpa Beban Gempa 131

- Gambar 5. 70 Effective Stresses Dinding Penahan Tanah dan Tiang Pancang dengan Beban Gempa 131
- Gambar 5. 71 Arah Pergerakan Dinding Penahan Tanah dan Tiang pancang Tanpa Beban Gempa 132
- Gambar 5. 72 Daerah Potensial Longsor Dinding Penahan Tanah dan Tiang Pancang Tanpa Beban Gempa 132
- Gambar 5. 73 Arah Pergerakan Dinding Penahan Tanah dan Tiang Pancang dengan Beban Gempa 133
- Gambar 5. 74 Daerah Potensial Dinding Penahan Tanah dan Tiang Pancang dengan Beban Gempa 133
- Gambar 5. 75 Angka Aman Dinding Penahan Tanah dan Tiang Pancang Tanpa Beban Gempa 134
- Gambar 5. 76 Angka Aman Dinding Penahan Tanah dan Tiang Pancang Tanpa Beban Gempa 134
- Gambar 5. 77 Penampang Lereng dengan Dinding Penahan Tanah dan Tiang pancang 135

Gambar 5. 78 Pembagian Pias-Pias pada Gaya Vertikal Dinding Pena	han Tanah
dengan Perkuatan Tiang Pancang	135
Gambar 5. 79 Diagram Tekanan Tanah Lateral Pada Dinding Pena	han Tanah
dengan Perkuatan Tiang Pancang	137
Gambar 5. 80 Sketsa Susunan Lapisan Tanah dan Lapisan Nspt	140
Gambar 5. 81 Penampang Lereng dengan Dinding Penahan Tanah	dan Tiang
pancang	142
Gambar 5. 82 Pembagian Pias-Pias pada Gaya Vertikal Dinding Pena	han Tanah
dengan Perkuatan Tiang Pancang	143
Gambar 5. 83 Diagram Tekanan Tanah Lateral	144
Gambar 5. 84 Diagram Tekanan Tanah Dinamis pada Dinding Penahan	Tanah dan
Tiang Pancang	147
Gambar 5. 85 Sketsa Susunan Lapisan Tanah dan Lapisan Nspt	151
Gambar 5. 86 Penampang Lereng dengan Dinding Penahan Tanah	dan Tiang
pancang	153
Gambar 5. 87 Dimensi Dinding Penahan Tanah dan Tiang Pancang	153
Gambar 5. 88 Permodelan Potongan Melintang Menggunakan Dindin	g Penahan
Tanah dan Tiang Pancang pada Program Plaxis	154
Gambar 5. 89 Jaring-Jaring Elemen Dinding Penahan Tanah dan Tian	g Pancang
	155
Gambar 5. 90 Perhitungan Tegangan Awal Dinding Penahan Tanah	dan Tiang
Pancang	156
Gambar 5. 91 Proses Perhitungan Dinding Penahan Tanah dan Tiang Pa	ncang pada
Plaxis.	157

Gambar 5. 92 Deformend Mesh Dinding Penah	an Tanah dan Tiang Pancang Tanpa
Beban Gempa	158

- Gambar 5. 93 Deformend Mesh Dinding Penahan Tanah dan Tiang dengan Beban Gempa 158
- Gambar 5. 94 Effective Stresses Dinding Penahan Tanah dan Tiang Pancang Tanpa Beban Gempa 159
- Gambar 5. 95 Effective Stresses Dinding Penahan Tanah dan Tiang Pancang dengan Beban Gempa 159
- Gambar 5. 96 Arah Pergerakan Dinding Penahan Tanah dan Tiang Pancang Tanpa Beban Gempa 160
- Gambar 5. 97 Daerah Potensial Longsor Dinding Penahan Tanah dan Tiang Pancang Tanpa Beban Gempa 160
- Gambar 5. 98 Arah Pergerakan Dinding Penahan Tanah dan Tiang Pancang dengan Beban Gempa 161
- Gambar 5. 99 Daerah Potensial Longsor Dinding Penahan Tanah dan Tiang Pancang dengan Beban Gempa 161
- Gambar 5. 100 Angka Aman Dinding Penahan Tanah dan Tiang Pancang Tanpa Beban Gempa 162
- Gambar 5. 101 Angka Aman Dinding Penahan Tanah dan Tiang Pancang dengan Beban Gempa 162
- Gambar 5. 102 Penampang Lereng dengan Dinding Penahan Tanah dan Tiang pancang 163
- Gambar 5. 103 Pembagian Pias-Pias pada Gaya Vertikal Dinding Penahan Tanah dengan Perkuatan Tiang Pancang 164
- Gambar 5. 104 Diagram Tekanan Tanah Lateral Pada Dinding Penahan Tanah dengan Perkuatan Tiang Pancang 165

Gambar 5. 105 sketsa susunan lapisan tanah dan lapisan Nspt	169
Gambar 5. 106 Penampang Lereng dengan Dinding Penahan Tanah dan ' pancang	Гiang 170
Gambar 5. 107 Pembagian Pias-Pias pada Gaya Vertikal Dinding Penahan T dengan Perkuatan Tiang Pancang	Гanah 171
Gambar 5. 108 Diagram Tekanan Tanah Lateral	172
Gambar 5. 109 Diagram Tekanan Tanah Dinamis pada Dinding Penahan Tana	h dan
Tiang Pancang	175
Gambar 5. 110 Sketsa Susunan Lapisan Tanah dan Lapisan Nspt	180

DAFTAR LAMPIRAN

Lampiran 1. Denah Bor Log	191
Lampiran 2. Data Bor Log	192
Lampiran 3. Data Parameter Tanah	193

DAFTAR NOTASI

SF	= angka keamanan
τ	= tegangan geser
σ	= tegangan normal
c (= kohesi tanah
φ	= sudut geser dalam tanah
θ	= sudut keruntuhan
Pa	= tekanan tanah aktif total
Pp	= tekanan tanah pasif total
Pae	= tekanan tanah dinamis total
γ	= berat volume tanah basah
γd	= berat volume tanah kering
н	= tinggi dinding penahan tanah
Ka	= koefisien tekanan aktif
Кр	= koefisien tekanan pasif
Kae	= koefisien tekanan tanah dinamis total
β	= sudut kemiringan permukaan tanah urug terhadap horizontal
δ	= sudut gesek antara dinding dan tanah
Fgs	= faktor aman terhadap penggeseran
ΣRh	= tahanan dinding penahan tanah terhadap penggeseran
W	= berat total dinding penahan tanah dan tanah diatas pelat pondasi

δh	= sudut gesek antara tanah dan dasar pondasi
ca	= ad.c
	= adhesi antara tanah dan dasar pondasi
ad	= factor adhesi
ΣPh	= jumlah gaya-gaya horizontal
f	= koefisien gesek antara tanah dengan dasar pondasi.
Fgl	= faktor aman terhadap penggulingan
ΣMw	= momen yang melawan penggulingan
ΣMgl	= momen yang mengakibatkan penggulingan
В	= lebar kaki dinding penahan
ΣPah	= jumlah gaya-gaya horizontal
ΣPav	= jumlah gaya-gaya vertical
qu	= kapasitas dukung ultimit
q	= tekanan akibat beban struktur (ton/m ²)
dc, dq, dγ	= faktor kedalaman
ic, iq, iγ	= faktor kemiringan
в	= lebar dasar pondasi sebenarnya
e	= eksentrisitas
γ	= berat volume tanah
Nc, Nq, Nγ	= faktor kapasitas dukung
SPT	= Standar Penetration Test
q	= beban merata yang bekerja (ton /m ²)

Qu	= kapasitas dukung ultimit tiang (ton)
Qb	= tahanan ujung ultimit tiang (ton)
Qs	= tahanan selimut ultimit tiang (ton)
Wp	= berat tiang (ton)
Po'	= tekanan overburden efektif (ton $/m^2$)
Z	= kedalaman di tengah-tengah lapisan tanah (m)
As	= luas selimut tiang (m ²)
d	= diameter tiang (m)

ABSTRAK

Jembatan Kiringan, sebagai salah satu jembatan yang rusak diterjang banjir di Sungai Opak telah dibangun ulang oleh pemerintah melalui dana hibah Badan Penanggulangan Bencana Daerah (BPBD) Kabupaten Bantul pada tahun 2017. Proyek pembangunan yang awalnya hanya terpusat pada pembangunan jembatan saja, kemudian seiring berjalannya proses pembangunan dilakukan penambahan jumlah pekerrjaan berupa pekerjaan dinding penahan tanah pada sisi kiri dan kanan penampang sungai sebagai perkuatan jembatan dan juga mitigasi bencana tanah longsor.

Penelitian ini bertujuan untuk menganalisis perkuatan eksisting berupa dinding penahan tanah tipe kantilever dengan *bored pile* berikut dengan analisis perkuatan alternatif berupa dinding penahan tanah tipe kantilever dengan pondasi tiang pancang pada Sta. 0 + 275 di Jembatan Kiringan, Sungai Opak. Analisis dilakukan dengan membandingkan hasil dari analisis perhitungan dinding penahan tanah dengan pondasi *bored pile* dan dinding penahan tanah dengan pondasi tiang pancang. Perhitungan yang analis gunakan adalah program Plaxis yang kemudian akan dibandingkan dengan perhitungan manual.

Hasil Analisis pada tinjauan d30 menggunakan program Plaxis 8.2 menunjukkan kondisi lereng aman. Sedangkan pada perhitungan manual lereng dinyatakan kritis terhadap tahanan guling. Hasil Analisis pada tinjauan d40 menggunakan program Plaxis 8.2 menunjukkan kondisi lereng aman. Kemudian pada perhitungan manual bahwa kondisi lereng dinyatakan aman. Hasil Analisis pada tinjauan d40 menggunakan program Plaxis 8.2 menunjukkan kondisi lereng aman. Kemudian d40 menggunakan program Plaxis 8.2 menunjukkan kondisi lereng aman. Kemudian pada perhitungan manual bahwa kondisi lereng dinyatakan aman. Hasil analisis pada perkuatan pada perhitungan manual bahwa kondisi lereng dinyatakan aman. Hasil analisis pada perkuatan alternatif menunjukkan nilai tahanan terhadap geser maupun momen yang lebih baik dibandingkan perkuatan eksisting dikarenakan dimensi dinding penahan tanah eksisting belum memenuhi syarat. Sehingga nilai faktor aman yang didapatkan perkuatan alternatif lebih baik daripada perkuatan eksisting.

Kata kunci : dinding penahan tanah kantilever, pondasi bored pile, pondasi tiang pancang,

ABSTRACT

The Kiringan Bridge, as one of the bridges damaged by floods on the Opak River, has been rebuilt by the government through a grant from the Regional Disaster Management Agency (BPBD) of Bantul Regency in 2017. The construction project, which was originally only centered on the construction of bridges, then as the construction process progressed, an increase in the number of jobs was carried out in the form of soil retaining wall work on the left and right sides of the cross section of the river as bridge strengthening and also mitigating landslide disasters.

This study aims to analyze the existing reinforcement in the form of a cantilever-type soil retaining wall with *bored pile* along with an alternative reinforcement analysis in the form of a cantilever-type soil retaining wall with a pile foundation at Sta. 0 + 275 on the Kiringan Bridge, Opak River. The analysis was carried out by comparing the results of the calculation analysis of the soil retaining wall with the *bored pile* foundation and the soil retaining wall with the pile foundation. The calculation that analysts use is the Plaxis program which will then be compared with manual calculations.

Analysis results on d30 review using the Plaxis 8.2 program showed safe slope conditions. Meanwhile, in manual calculations, the slope is stated to be critical of rolling prisoners. Analysis results on the d40 review using the Plaxis 8.2 program showed safe slope conditions. Then on the manual calculation that the slope conditions are declared safe. Analysis results on the d40 review using the Plaxis 8.2 program showed safe slope conditions. Then on the d40 review using the Plaxis 8.2 program showed safe slope conditions. Then on the manual calculation that the slope conditions. Then on the manual calculation that the slope conditions. Then on the manual calculation that the slope conditions are declared safe. The results of the analysis on alternative reinforcement show a better resistance value to shear and moment than existing reinforcement because the dimensions of the existing soil retaining wall are not yet qualified. So that the value of the safe factor obtained by alternative reinforcement is better than the existing strengthening.

Keywords : cantilevered earth retaining wall, bored pile foundation, pile foundation,

BAB I

PENDAHULUAN

1.1 Latar Belakang

Menurut Darman dan Sidi (2000) Kepulauan Indonesia terletak di tenggara perpanjangan Lempeng Eurasia, dibatasi oleh Lempeng Indo-Australia (Samudera Hindia) di selatan dan barat, dan dibatasi oleh Laut Filipina dan Lempeng Pasifik di timur. Pertemuan dari banyaknya lempeng bumi ini menyebabkan Indonesia sangatlah rawan terjadi gempa tektonik apabila lempeng-lempeng ini mengalami beberapa aktivitas seperti bergeser, pecah, maupun bertumbuk. Indonesia juga berada pada cincin api pasifik juga rawan bencana apabila gunung api-gunung api mengalami aktivitas menyebabkan gempa vulkanik dan juga lelehan lahar yang mengalir ke sungai dapat meningkatkan debit aliran sungai sehingga tinggi muka air sungai akan bertambah yang dapat menyebabkan banjir.

Gempa dan banjir seringkali menjadi penyebab terjadinya longsor di lerenglereng perbukitan, tebing- tebing pegunungan, maupun daerah sungai. Longsor yang terjadi akan menghambat aktivitas warga dalam berproduktivitas sehingga akan berpengaruh pada ekonomi suatu daerah.

Roda perekonomian suatu daerah yang terhambat akan berpengaruh pada perekonomian di daerah sekitarnya hingga dapat mempengaruhi perekonomian negara. Pembangunan yang diadakan oleh pemerintah di Indonesia saat ini merupakan bentuk pengembangan dari segi infrastruktur guna pengukuhan perekonomian negara. Pembangunan infrastruktur seperti jalan, bangunan gedung, pelabuhan, jalan rel, maupun bandar udara yang baik akan sangat berpengaruh terhadap dorongan peningkatan produktivitas suatu negara maupun daerah terhadap faktor-faktor produksi. Pembangunan yang baik akan mempertimbangkan banyak faktor salah satunya tanah yang terdapat pada lahan yang menjadi tempat dibangunnya infrastruktur. Tanah adalah faktor yang sangat penting karena selain menjadi bahan untuk membangun infrastruktur juga dalam pembangunan tanah sebagai tempat didirikannya bangunan serta menjadi fondasi sebuah infrastruktur. Tanah harus memiliki serta memenuhi persyaratan dari segi teknis maupun non teknis sehingga tanah dapat menjadi faktor dalam menentukan kestabilan, kelayakan, dan umur dari konstruksi itu sendiri.

Untuk menjaga stabilitas suatu tanah dari kelongsoran pada daerah dengan daya dukung tanah yang kurang baik, harus diberikan sebuah sistem perkuatan tanah. Terjadinya longsor pada tanah dapat diartkan sebagai akibat dari peningkatan tegangan geser tanah atau penurunan kekuatan geser suatu massa tanah. Kemampuan dari kuat geser tanah tidak lagi mampu untuk menahan beban yang bekerja diatasnya (Hardiyatmo, 2018).

Kelongsoran dapat terjadi akibat perbuatan manusia maupun kejadian alam seperti banjir dan gempa. Seperti yang terjadi pada tahun 2017 di Jembatan Kiringan yang hanyut terhantam banjir. Jembatan ini digunakan penduduk Desa Canden dan Dusun Pelemadu sebagai sarana penghubung diatas Sungai Opak di Dusun Kiringan. Lereng-lereng pada sisi kiri dan sisi kanan Sungai Opak di Dusun Kiringan yang longsor dibangun ulang dengan dinding penahan tanah guna mitigasi bencana longsor di kemudian hari. Pembangunan ini merupakan penambahan pekerjaan pada proyek pembangunan Jembatan Kiringan yang dilakukan oleh pemerintah pada awal tahun 2020 melalui dana hibah Badan Penanggulangan Bencana Daerah (BPBD) Kabupaten Bantul.

Penulis melakukan pengamatan pada dinding penahan tanah yang menahan lereng sekitar jembatan. Dinding penahan tanah dibangun dengan spesifikasi berupa:

- 1. dinding penahan tanah tipe kantilever,
- 2. tinggi dinding penahan tanah 7 m,
- 3. tebal pelat dasar 0,6 m,
- 4. lebar pelat dasar 2,1 m.

Dari pengamatan pada dinding penahan tanah eksisting, penulis mendapati dimensi dinding penahan tanah tidak sesuai dengan estimasi yang disarankan oleh

Hadihardja (1997). Sehingga penulis ingin merencanakan ulang dinding penahan tanah dengan dimensi yang memenuhi persyaratan dan mengubah tipe pondasi menjadi pondasi tiang pancang dengan tiga variasi diameter sehingga dapat dibandingkan dengan pondasi eksisting yang menggunakan *bored pile*. Untuk mengetahui nilai daya dukung pondasi yang lebih efektif dan efisien, perbandingan dilakukan dengan menggunakan dua metode yaitu perhitungan menggunakan program Plaxis 8.2 dan divalidasi menggunakan perhitungan manual.

Dari uraian diatas penulis mengambil judul penelitian dalam tugas akhir ini adalah "ANALISIS STABILITAS TANAH DENGAN DINDING PENAHAN TANAH KANTILEVER DAN PONDASI TIANG PANCANG MENGGUNAKAN PROGRAM PLAXIS 8.2".

1.2 Rumusan Masalah

Berdasarkan latar belakang yang tertulis, dirumuskanlah sejumlah masalah seperti berikut ini.

- 1. Bagaimana stabilitas lereng dengan dinding penahan tanah kantilever dan tiang pancang?
- 2. Bagaimana perbandingan stabilitas lereng yang diberi dinding penahan tanah kantilever dan tiang pancang dengan stabilitas lereng kondisi asli dan stabilitas lereng eksisting yang diberi dinding penahan tanah kantilever dan *bored pile*?

1.3 Tujuan Penelitian

Mengenai tujuan penelitian ini ialah sebagai berikut.

- 1. untuk mengetahui stabilitas lereng dengan dinding penahan tanah kantilever dan tiang pancang,
- 2. untuk mengetahui perbandingan stabilitas lereng yang diberi dinding penahan tanah kantilever dan tiang pancang dengan stabilitas lereng kondisi asli dan stabilitas lereng eksisting yang diberi dinding penahan tanah kantilever dan *bored pile*.

1.4 Manfaat Penelitian

Penelitian ini akan mendapatkan manfaat sebagai berikut ini.

- dapat mengetahui stabilitas lereng dengan dinding penahan tanah kantilever dan tiang pancang,
- 2. dapat mengetahui stabilitas lereng kondisi asli dan stabilitas lereng dengan dinding penahan tanah kantilever dan *bored pile*,
- dapat mengetahui perbedaan dari kedua dinding penahan tanah yang menggunakan pondasi *bored pile* dan dengan dinding penahan tanah yang menggunakan pondasi tiang pancang,
- 4. dapat memberikan gambaran cara menganalisis perkuatan tanah menggunakan program plaxis 2d,
- 5. sebagai pertimbangan kedepannya untuk pemerintah jika ingin melakukan rehabilitasi atau pembangunan ulang.

1.5 Batasan Penelitian

Beberapa batasan masalah dalam penelitian ini adalah sebagai berikut ini.

1. Data tanah dan desain konstruksi berupa gambar kerja yang digunakan didapatkan dari Badan Penanggulangan Bencana Daerah (BPBD) Bantul 2020.

 Dimensi stabilitas lereng yang ditinjau hanya bagian Sta 0 + 275 sisi barat pada Sungai Opak dan disesuaikan di lapangan.

3. Analisis dan permodelan perkuatan tanah dengan Progam Plaxis 2D menggunakan Plaxis 8.2.

4. Hanya meneliti angka keamanan dari lereng asli dan lereng yang diperkuat dengan dinding penahan tanah kantilever dan *bored pile* serta lereng yang diperkuat dengan dinding penahan tanah kantilever dan tiang pancang dengan membandingkan hasil perhitungan kedua desain pada program Plaxis dan perhitungan manual.

5. Tidak menghitung penurunan yang terjadi pada pondasi.

6. Muka air tanah yang digunakan berdasarkan hasil pengujian bor log yaitu pada kedalaman 12 m di bawah permukaan tanah.

7. Faktor gempa yang diperhitungkan adalah faktor gempa yang berada di lokasi proyek yaitu di Sungai Opak di Imogiri, Bantul dan permodelan beban gempa pada program Plaxis menggunakan beban gempa statis dengan mengabaikan sesar.

8. Dinding penahan tanah eksisting menggunakan beton bertulang dengan tipe kantilever dengan tinggi 7,6 m dan lebar 2,1 m. Mutu beton yang digunakan yaitu fc'= 25 Mpa.

9. Jenis tulangan untuk dinding penahan tanah menggunakan tulangan pokok D16 dan tulangan sengkang P10 sedangkan pada pondasi menggunakan tulangan pokok D16 dan tulangan sengkang P10.

10. Bored pile yang digunakan memiliki diameter 40 cm dan tinggi 10 m dengan mutu beton yang digunakan yaitu fc' = 25 Mpa

11. Tiang pancang yang digunakan adalah model tiang pancang bulat atau *spun pile* sepanjang 10 m dengan diameter 30 cm, 40 cm, dan 50 cm dan beton yang digunakan adalah beton pracetak dengan mutu K-600.

12. Penelitian yang dilakukan tidak termasuk detail gambar, proses, dan rencana anggaran biaya.

1.6 Studi Kasus

Peneliti memilih kasus pada dinding penahan tanah di lereng sekitar Jembatan Kiringan Sungai Opak, Imogiri, Bantul. Pada penelitian ini akan dilakukan analisis kestabilan lereng kemudian melakukan desain ulang terhadap dinding penahan tanah dan *bored pile* menjadi dinding penahan tanah tipe kentilever dan tiang pancang. Program Plaxis 8.2 akan digunakan untuk menganalisis perkuatan eksisting dan desain perkuatan tanah yang baru.

BAB II

TINJAUAN PUSTAKA

2.1 Tinjauan Umum

Studi pustaka merupakan permulaan dalam proses pengumpulan data yang ditujukan untuk mendapatkan data dan informasi melalui dokumen secara tertulis maupun elektronik yang menjadi pendukung dalam proses penelitian. Dengan didukung oleh karya tulis yang telah ada, hasil penelitian akan semakin berkualitas. Sehingga dapat dikatakan bahwa studi pustaka mempengaruhi kualitas hasil penelitian yang dilakukan oleh peneliti. Dalam bab ini akan membahas sebagian besar penelitian-penelitian terdahulu yang sejenis dan pada akhir bab akan dijelaskan perbedaan dari penelitian sebelumnya dengan sekarang

2.2 Perkuatan Tanah dengan Dinding Penahan Tanah

Dinding penahan tanah merupakan suatu konstruksi yang digunakan untuk menahan beban tanah secara vertikal ataupun terhadap kemiringan tertentu dan mencegah keruntuhan tanah yang miring atau lereng yang kemantapannya tidak dapat dijamin oleh lereng tanah itu sendiri. Struktur cenderung akan terguling atau akan tergeser ketika tanah yang tertahan memberikan dorongan secara aktif pada struktur dinding. Fungsi dinding-dinding tersebut yaitu memberikan stabilitas tanah atau bahan lain yang kondisi massa bahannya tidak memiliki kemiringan alami, dan juga digunakan untuk menahan atau menopang timbunan tanah.

Berikut ini adalah sejumlah penelitian terdahulu mengenai perkuatan tanah dengan dinding penahan tanah sebagai referensi dan bukti keaslian dari penelitian dikarenakan topik penelitian yang sejenis.

 Studi Stabilitas Dinding Penahan Tanah Kantilever Pada Ruas Jalan Silaing Padang - Bukittinggi Km 64+500

Hakam dan Mulya (2011) dalam penelitiannya menganalisis stabilitas dinding penahan tanah dengan meninjau nilai faktor keamanan terhadap

guling, geser, dan keruntuhan daya dukung. Hasil dari studi menunjukkan bahwa dinding kantilever yang terpasang dengan dimensi H=8,5, B=3, Ta=0,5, Tb=0,7, dan Th=0,4 tidaklah aman karena nilai stabilitas yang tidak sesuai dengan yang disyaratkan yaitu Fs guling=1.577, Fs geser=1,384, dan Fs daya dukung tidak dicari karena nilai e<B/6. Dengan memperbesar dimensi menjadi H=9,5, B=5, Ta=0,5, Tb=0,95 Tt=0,95, Th=0,95, dan D=1,1 dinding kantilever dapat dinyatakan aman karena nilai faktor keamanan telah memenuhi syarat yaitu Fs guling=3,547, Fs Geser=2,559, dan Fs daya dukung=15,094.

 Finite Element Analysis Pada Dinding Penahan Tanah Simpang Underpass Universitas Lampung

SahFitri dkk. (2021) dalam penelitiannya menganalisis perilaku deformasi pada proyek Underpass Universitas Lampung dari STA 0+80 s/d 0+140 dengan menggunakan metode Finite Element Analysis (FEA). Dinding penahan tanah kantilever setinggi 5,27m pada STA 0+140 dipilih pada pemodelan ini. Dinding berfungsi untuk menahan gaya-gaya vertikal di atasnya dan gaya horizontal dibelakang dinding. Pengaruh beban gempa juga dimasukkan dalam analisis. Hasil menunjukkan bawah dinding aman terhadap gaya-gaya yang bekerja dengan faktor keamanan sebesar 1,351 (lebih besar dari 1,25 sebagai syarat minimum) dengan total deformasi yang terjadi akibat beban lajur dan beban gempa sebesar 1,43 meter.

2.3 Perkuatan Tanah dengan Bored Pile

Dibawah ini tersajikan sejumlah penelitian terdahulu mengenai perkuatan tanah dengan *Bored Pile* sebagai referensi guna bukti keaslian dari penelitian ini dikarenakan topik penelitian yang serupa.

 Pengaruh Variasi Dimensi Terhadap Kapasitas Dukung Fondasi Tiang Bor Kelompok Dengan Menggunakan Metode Elemen Hingga Haq (2018) dalam penelitiannya mencari pengaruh variasi dimensi tiang terhadap kekuatan *bored pile*. Analisis menggunakan 3 variasi diameter tiang yaitu 70, 80, dan 90 dan dilakukan perhitungan penggunakan metode manual
dan metode elemen hingga yang dibantu dengan program Plaxis 8.5 didapatkan hasil kapasitas dukung kelompok tiang metode Meyerhoff berdasarkan data laboratorium diameter 70 cm, 80 cm, dan 90 cm, diperoleh masing-masing sebesar 4.309,211 kN, 5.040,323 kN, dan 5.800,312 kN lebih besar dari nilai P = 2.523,564 kN, metode *Mayerhoff* berdasarkan data lapangan diameter 70 cm, 80 cm, dan 90 cm, diperoleh hasil 4.854,89 kN, 5.984,08 kN, dan 6.519,33 kN lebih besar dari nilai P = 2.523.564 kN, serta metode Reese & Wright diameter 70 cm, 80 cm, dan 90 cm, diperoleh masingmasing sebesar 3.333,08 kN, 4.006,47 kN, dan 4.632,09 kN lebih besar dari nilai P = 2.523,564 kN, sehingga pondasi bored pile dengan diameter 70 cm, 80 cm, dan 90 cm aman digunakan dalam pembangunan gedung Twin Building UMY. Dari analisis penurunan pondasi kelompok tiang bor dengan diameter 70 cm, 80 cm, dan 90 cm diperoleh dengan metode teoritis dan metode elemen hingga (PLAXIS 2D). Pada metode teoritis dari masingmasing diameter diperoleh penurunan sebesar 0,0519 m, 0,0452 m, dan 0,0413 m. Hasil tersebut masih lebih kecil dari penurunan ijin tiang sebesar 0,084 m. Sedangkan pada program PLAXIS 2D diperoleh penurunan pada diameter 70 cm, 80 cm, dan 90 cm sebesar 0,087 m, 0,084 m, dan 0,081 m. Hasil penurunan tersebut masih aman dari penurunan yang diijinkan.

2. Perencanaan Ulang Struktur Bawah Abutment Dengan Pondasi Bored Pile Fitri (2017) dalam penelitiannya mencari seberapa besar pengaruh perbedaan diameter bored pile terhadap kapasitas dukung pondasi. Analisis dilakukan dengan 3 alternatif diameter yaitu 40, 60, dan 80. Hasil analisis kapasitas dukung kelompok tiang metode Mayerhoff diameter 40 cm diperoleh hasil 12756,173 kN lebih kecil dari nilai P = 13784,9 kN sedangkan diameter 60 cm dan 80 cm, diperoleh hasil 15452,069 kN dan 14648,798 kN lebih besar dari nilai P = 13784,9 kN, serta metode Reese & Wright diameter 40 cm, 60 cm, dan 80 cm, diperoleh masing-masing sebesar 14099,468 kN, 14804,441 kN, dan 15441,556 kN lebih besar dari nilai P = 13784,9 kN, sehingga pondasi bored pile dengan diameter 40 cm, 60 cm, dan 80 cm aman digunakan dalam pembangunan Abutment A1 RAMP 2 pada Overpass Sta 0+716,523 Junction Kartasura. Berbagai alternatif yang digunakan, yakni diameter 40 cm, 60 cm, dan 80 cm, diambil alternatif ke-3 diameter 80 cm Metode mayerhoff dengan jumlah 12 tiang dalam satu kelompok tiang. Hal ini didasarkan jumlah tiang yang digunakan lebih sedikit, sehingga dapat menghemat waktu pekerjaan dan biaya konstruksi yang dikeluarkan. Selain itu, hasil kapasitas dukung kelompok tiang (Qg) lebih besar daripada beban aksial (P) dan beban aksial total (Pt) yang diterima, yakni sebesar 15995,843 kN > 13720,895 kN dan 15995,843 kN > 15140,794 kN, sehingga beban struktur gedung diatas pondasi mampu ditahan oleh kelompok pondasi tiang.

2.4 Perkuatan Tanah dengan Tiang Pancang

Dibawah ini tersajikan sejumlah penelitian terdahulu mengenai perkuatan tanah dengan tiang pancang sebagai referensi guna bukti keaslian dari penelitian ini dikarenakan topik penelitian yang serupa.

 Analisis Tiang Pancang Sebagai Dinding Penahan Tanah Menggunakan Program Metode Elemen Hingga

Cahyadinata dan Makarim (2020) dalam jurnal ini menjelaskan pembangunan dinding penahan tanah dari tiang pancang beton di daerah aliran sungai untuk menggantikan dinding penahan tanah lama yang rusak. Perhitungan akan mensimulasikan terjadinya hujan sehingga terjadi peningkatan muka air tanah dan permukaan sungai secara bertahap. Tiang yang digunakan pada pemodelan memiliki ukuran 400x400 mm dengan jarak antar tiang 0,8 meter yang dihubungkan oleh capping beam selebar 0,8 meter dan tebal 0,5 meter. Perhitungan dilakukan dengan program untuk mencari defleksi dan momen pada tiang pada pemodelan Mohr-Coulomb. Defleksi dan momen yang terjadi pada tiang saat muka air tanah -6 meter sebesar 2,376 cm dan 115,40 kNm, kemudian saat ±0 meter sebesar 4,245 cm dan 199,95 kNm. Hasil defleksi dan momen kemudian dibandingkan terhadap syarat batas yang sudah ditentukan sebelumnya. Setelah analisis dilakukan ditemukan bahwa kenaikan defleksi dan momen paling besar terjadi pada tahap dimana air naik mendekati puncak tiang.

2. Perencanaan Ulang Pondasi Tiang Pancang Dengan Variasi Diameter Menggunakan Metode Meyerhoff, Aoki & De Alencar, dan Luciano Decourt Dirgananta (2018) pada penelitian ini ingin mengetahui nilai kapasitas dukung pondasi tiang pancang pada proyek pembangunan gedung RSA UII, mengetahui perbandingan kapasitas dukung pondasi eksisting (bored pile pada proyek) dengan desain pondasi tiang pancang, dan mengetahui nilai penurunan pada pondasi tiang pancang dengan menggunakan variasi diameter tiang yang berbeda. Peneliti menggunakan metode Meyerhoff, Aoki De Alencar, dan Luciano Decourt untuk melakukan perhitungan. Hasil analisis kapasitas dukung kelompok tiang metode Meyerhoff diameter 0,3 m, 0,4 m, dan 0,5 m, diperoleh masing-masing sebesar 822,617 Ton, 864,149 Ton, dan 934,279 Ton. Metode Aoki De Alencar masing-masing sebesar 775,975 Ton, 804,466 Ton, dan 819,982 Ton. Metode Luciano Decourt masing-masing sebesar 733,560 Ton, 873,776 Ton, dan 904,250 Ton lebis besar dari P =730,553 Ton, sehingga pondasi tiang pancang dengan diameter 0,3 m, 0,4 m, dan 0,5 m, aman digunakan dalam pembangunan gedung RSA Universitas Islam Indonesia. Variasi diameter yang digunakan yaitu 0,3 m, 0,4 m, dan 0,5 m, diambil alternatif ke-3 diameter 0,5 m metode Meyerhoff dengan jumlah 3 tiang dalam suatu kelompok tiang. Hal ini didasarkan dengan jumlah tiang yang lebih sedikit tetapi tetap aman digunakan, sehingga dapat menghemat waktu pekerjaan dan biaya konstruksi yang dikeluarkan

2.5 Perbandingan Penelitian Terdahulu dan Sekarang

Dibawah ini penulis akan menjabarkan berbandingan antara penelitian terdahulu dengan penelitian sekarang dalam Tabel 2.1 berikut ini.

Penelitian terdahulu					Penelitian yang Dilakukan		
Penulis	Hakam dan Mulya (2011)	Safitri dkk. (2021)	Haq (2018)	Fitri (2017)	Cahyadinata dan Makarim (2020)	Dirgananta (2018)	Islamey (2022)
Judul	Studi Stabilitas Dinding Penahan Tanah Kantilever Pada Ruas Jalan Silaing Padang - Bukittinggi Km 64+500	Finite Element Analysis Pada Dinding Penahan Tanah Simpang Underpass Universitas Lampung	Pengaruh Variasi Dimensi Terhadap Kapasitas Dukung Fondasi Tiang Bor Kelompok Dengan Menggunakan Metode Elemen Hingga	Perencanaan Ulang Struktur Bawah Abutment Dengan Pondasi Bored Pile	Analisis Tiang Pancang Sebagai Dinding Penahan Tanah Menggunakan Program Metode Elemen Hingga	Perencanaan Ulang Pondasi Tiang Pancang Dengan Variasi Diameter Menggunakan Metode Meyerhoff, Aoki & De Alencar, dan Luciano Decourt	Analisis Perbandingan Dinding Penahan Tanah Kantilever Dengan Pondasi Bored Pile Dan Dinding Penahan Tanah Kantilever Dengan Pondasi Tiang Pancang Menggunakan Program Plaxis 8.2
Metode	Menggunakan metode slice (Fellenius)	Metode elemen hingga	Metode statis dan metode elemen hingga	Metode meyerhoff dan reese& wright	metode elemen hingga.	metode Meyerhoff, Aoki De Alencar, dan Luciano Decourt	metode elemen hingga, metode Fellenius, metode <i>O'Neill</i> dan <i>Reese</i> , dan metode Meyerhoff
Tujuan	Menganalisa stabilitas dinding kantilever dan mengetahui penyebab ketidakstabilan dinding kantilever	Mendapatkan angka aman dinding penahan tanah dengan total deformasi yang terjadi	Mengetahui besarnya pengaruh variasi diameter tiang dan besarnya penurunan yang terjadi terhadap kapasitas dukung fondasi tiang bor kelompok	Mengetahui perbandingan kapasitas dukung ultimit tiang desain eksisting (tiang pancang terpasang pada proyek)	Mengetahui besar nilai defleksi pada tiang saat kondisi awal dan kondisi kritis.	Mengetahui perbandingan kapasitas dan nilai penurunan pondasi eksisting dengan desain pondasi tiang pancang pada proyek pembangunan gedung RSA UII,	Mengetahui perbandingaan stabilitas lereng yang diberi dinding penahan tanah kantilever dan tiang pancang, kondisi asli dan eksisting

Tabel 2. 1 Perbandingan Penelitian Terdahulu dan Sekarang

Penelitian terdahulu					Penelitian yang Dilakukan		
Penulis	Hakam dan Mulya (2011)	Safitri dkk. (2021)	Haq (2018)	Fitri (2017)	Cahyadinata dan Makarim (2020)	Dirgananta (2018)	Islamey (2022)
Hasil	dinding kantilever tersebut dinyatakan aman dengan nilai faktor kemanan sebesar Fs guling=3,547, Fs Geser=2,559, Fs daya dukung=15,094.	dinding aman dengan faktor keamanan sebesar 1,351 (lebih besar dari 1,25 sebagai syarat minimum) dan total deformasi yang terjadi akibat beban lajur dan beban gempa sebesar 1,43 meter.	diperoleh penurunan sebesar 0,0519 m, 0,0452 m, dan 0,0413 m. Hasil tersebut masih lebih kecil dari penurunan ijin tiang sebesar 0,084 m. Sedangkan pada program PLAXIS 2D diperoleh penurunan sebesar 0,087 m, 0,084 m, dan 0,081 m. Hasil penurunan tersebut masih aman dari penurunan yang diijinkan	diperoleh masing- masing sebesar 14099,468 kN, 14804,441 kN, dan 15441,556 kN lebih besar dari nilai P = 13784,9 kN, sehingga pondasi bored pile aman digunakan.	Tiang mengalami defleksi sebesar 2,376 cm saat kondisi awal dan 4,245 cm saat kondisi kritis dan menerima momen sebesar 115,4 kNm saat kondisi awal dan 199,95 kNm saat kondisi kritis. hasil tersebut masih memenuhi syarat batas.	analisis kapasitas dukung kelompok tiang metode Meyerhoff sebesar 822,617 Ton, 864,149 Ton, dan 934,279 Ton. Metode Aoki De Alencar sebesar 775,975 Ton, 804,466 Ton, dan 819,982 Ton. Metode Luciano Decourt sebesar 733,560 Ton, 873,776 Ton, dan 904,250 Ton lebis besar dari P = 730,553 Ton, sehingga pondasi tiang pancang dengan diameter 0,3 m, 0,4 m, dan 0,5 m, aman digunakan dalam pembangunan gedung RSA Universitas Islam Indonesia	

Lanjutan Tabel 2.1 Perbandingan Penelitian Terdahulu dan Sekarang

Sumber : Hakam dan Mulya (2011), Safitri dkk. (2021), Haq (2018), Fitri (2017), Cahyadinata dan Makarim (2020), Dirgananta (2018).

BAB III

LANDASAN TEORI

3.1 Tanah

3.1.1 Definisi Tanah

Tanah merupakan kumpulan mineral, bahan organik, dan endapan-endapan dengan ikatan yang relatif lepas (loose), dan terletak pada batuan. dasar (bedrock). Zat-zat seperti karbonat. unsur organik, maupun zat-zat oksida adalah faktor yang dapat mempengaruhi ikatan antara butiran sehingga ikatan antar butiran menjadi relatif lemah. Kemudian air dan/atau udara mengisi ruang di antara partikel-partikel yang ada.

Pembentukan tanah berasal dari batuan induk yang mengalami proses fisik maupun kimia Proses pembentukan tanah secara fisik yaitu mengubah batuan menjadi partikel-partikel yang lebih kecil, terjadi akibat pengaruh air, angin, es, manusia, erosi, maupun perubahan suhu atau cuaca. Sedangkan pelapukan akibat proses kimia, secara umum. dapat terjadi oleh pengaruh karbondioksida, oksigen. air (lebih-lebih yang mengandung asam atau alkali) dan proses-proses kimia yang lain. Bentuk dari partikel-partikel tersebut dapat berupa solid, bergerigi, maupun diantara keduanya. Tanah residual merupakan hasil pelapukan yang masih berada di tempat asalnya, dan apabila tanah berpindah tempatnya. disebut tanah terangkut (transported soil).

Untuk menggambarkan ukuran partikel, digunakanlah istilah pasir. lempung. lanau atau lumpur dengan batas ukuran butiran yang telah ditentukan. Namun. penggambaran sifat tanah yang khusus juga menggunakan istilah serupa. Misalnya, lempung merupakan jenis tanah yang bersifat kohesif dan plastis. Sedangkan tanah yang tidak kohesif dan tidak plastis adalah penggambaran dari jenis tanah pasir (Hardiyatmo,2018).

3.1.2 Kuat Geser Tanah

Analisis-analisis kapasitas daya dukung tanah, stabilitas lereng, dan gaya dorong pada dinding penahan tanah sangat memerlukan parameter kuat geser tanah. Kondisi keruntuhan suatu bahan terjadi oleh akibat adanya kombinasi keadaan kritis dari tegangan normal dan tegangan geser, Mohr (1910) pada Hardiyatmo (2018). Hubungan fungsi antara tegangan normal dan tegangan geser pada bidang runtuhnya dapat dinyatakan dengan persamaan:

$$\tau = f(\sigma) \tag{3.24}$$

Dengan:

 τ = tegangan geser (saat terjadi keruntuhan atau kegagalan)

 σ = tegangan normal (saat kondisi tersebut).

Kuat geser tanah merupakan gaya perlawanan dari butir butir tanah terhadap desakan atau tarikan. Hardiyatmo (2018) menjelaskan apabila tanah mengalami pembebanan akan ditahan dengan parameter-parameter sebagai berikut:

- kohesi tanah yang bergantung pada jenis tanaj dan kepadatannya tetapi tidak tergantung dari tegangan normal yang bekerja pada bidang geser
- 2. gesekan antara bulir-bulir tanah yang besarnya berbanding lurus dengan tegangan normal pada bidang gesernya.

Tegangan geser didefinisikan oleh Coulomb (1776) sebagai:

$$\tau = c + \sigma . t g \varphi$$

(3.25)

Dengan:

- τ = kuat geser tanah (ton /m²)
- c = kohesi (ton $/m^2$)
- σ = tegangan total (ton /m²)
- u = tekanan air pori
- φ = sudut gesek dalam (°)

3.2 Penyelidikan Tanah

Penyelidikan tanah adalah upaya untuk mempertahankan kestabilan bangunan dan tidak menyebabkan penurunan tanah (*settlement*) yang terlalu besar. Agar bangunan dapat berdiri dengan stabil dan tidak timbul penurunan (settlement) yang terlalu besar, maka pondasi bangunan harus mencapai lapisan tanah yang cukup padat. Untuk mendapatkan dimana letak lapisan tanah yang memenuhi daya dukung tanah izin, maka perlu dilakukan penyelidikan tanah dengan tahapan penyelidikan tanah sebagai berikut.

- Evaluasi dan studi kondisi lapangan berupa topografi, vegetasi, bangunan yang ada, jalan akses, kondisi geologi, kegempaan regional, peraturan tempat, besar beban struktur, dan lainnya.
- 2. Penyelidikan tanah awal dilakukan pemboran dan uji lapangan dalam jumlah terbatas, gunanya untuk merencanakan penyelidikan tanah selanjutnya.
- 3. Penyelidikan tanah terinci dapat memenuhi kebutuhan perencana dan kontraktor untuk menentukan jenis, kedalaman, dan daya dukung fondasi serta untuk mengantisipasi penurunan yang akan terjadi.

3.3 Stabilitas Lereng

3.3.1 Umum

Pada permukaan tanah yang miring, kecenderungan pergerakan gaya gravitasi akan menggerakkan tanah ke bawah. Kelongsoran lereng akan terjadi apabila terlampau besarnya partikel gravitasi sehingga gesekan tanah tidak cukup mampu menahan tanah pada bidang longsor. Menurut Hardiyatmo (2018) kelongsoran lereng secara alamiah dapat terjadi dari hal-hal sebagai berikut.

- 1. Penambahan beban pada lereng.
- 2. Penggalian atau pemotongan tanah pada kaki lereng.
- 3. Penggalian yang mempertajam kemiringan lereng.
- 4. Perubahan ketinggian muka air dengan cepat.
- 5. Kenaikan tekanan secara lateral oleh air
- 6. Gempa bumi

- Penurunan tahanan geser tanah pembentuk lereng diakibatkan kenaikan kadar air, kenaikan tekanan air pori, tekanan rembesan, tanah pada lereng yang mengandung lempung yang mudah kembang susut, dan lain-lain.
- 3.3.2 Analisis Stabilitas Lereng Menggunakan Metode Fellinius

Pada perhitungan analisis stabilitas lereng dengan cara Fellinius (1927) gayagaya yang bekerja pada sisi kanan-kiri dari sembarang irisan mempunyai resultan nol pada arah tegak lurus bidang longsor. Maka pada metode ini faktor aman dinyatakan dalam:

$$F = \frac{jumlah momen dari tahanan geser sepanjang bidang longsor}{jumlah momen dari berat massa tanah yang longsor}$$

F $= \frac{\sum_{i=1}^{i=n} \operatorname{Ca1} + (\operatorname{Wi} \cos \theta i - \operatorname{ui} ai) \operatorname{tg} \varphi}{\sum_{i=1}^{i=n} \operatorname{Wi} \sin \theta i}$

Dengan :

F= faktor amanc= kohesi tanah (ton /m²) φ = sudut gesek dalam tanah (°)ai= Panjang lengkung lingkaran pada irisan ke-I (m)Wi= berat irisan tanah ke-I (m)ui= tekanan air pori pada irisan tanah ke-I (ton /m²) Θ i= sudut pada irisan ke-i (°)

Menurut Hardiyatmo (2018), metode Fellinius ini menghasilkan faktor aman yang lebih rendah dibandingkan dengan cara hitungan yang lebih teliti. Batas besarnya nilai kesalahan tergantung pada faktor aman, sudut pusat lingkaran yang dipilih, dan besarnya tekanan air pori. Kesalahan yang terjadi masih dalam fungsi dari faktor aman dan sudut pusat dari lingkaran meskipun analisis ditinjau dalam tujuan tegangan total. Pada perhitungannya, massa tanah yang longsor dipecah menjadi beberapa bagian irisan vertikal. Gaya yang bekerja dapat dilihat pada Gambar 3.1 berikut:

16

(3.26)

3.4 Dinding Penahan Tanah

Dinding penahan tanah (DPT) merupakan suatu bangunan konstruksi yang berfungsi untuk menahan tanah alami dan mencegah tanah mengalami keruntuhan akibat kemiringan atau kemantapan yang tidak dapat dijamin oleh lereng tanah itu sendiri. Tanah yang tertahan memberikan dorongan secara aktif pada struktur dinding, hingga struktur cenderung akan terguling atau akan tergeser. Kestabilan dinding penahan tanah akan didapat dari berat sendiri struktur dan berat tanah yang ada diatasnya. Macam- macam dinding penahan tanah adalah sebagai berikut:

- 1. DPT tipe kantilever
- 2. DPT tipe gravitasi
- 3. DPT tipe kirb
- 4. DPT tipe tanah bertulang
- 5. DPT tipe counterfort

Dalam penelitian ini tipe dinding penahan tanah yang akan digunakan adalah tipe kantilever. Maka tipe dinding penahan tanah yang akan dibahas dibatasi hanya tipe kantilever tersebut. 3.4.1 Dinding Penahan Tanah Tipe Kantilever

Dinding penahan tanah kantilever terbuat dari beton bertulang berbentuk huruf T yang terdiri dari dinding bagian vertikal (*stem*) dan pelat dasar (*base slab*) yang dibagi menjadi dua bagian yaitu tumit tapak (*heel*), dan ujung kaki tapak (*toe*). Jenis dinding ini terbilang ekonomis untuk ketinggian hingga 8 m (Das, 2007). Rupa dinding penahan tanah dapat dilihat pada Gambar 3.2 berikut.

Gambar 3. 2 Dinding Penahan Tanah Tipe Kantilever

(Sumber : Das, 2007)

Ketentuan estimasi dimensi dinding penahan tanah tipe kantilever yang dapat dilihat pada gambar 3.3 di bawah ini

Gambar 3. 3 Estimasi Dinding Penahan Tanah Tipe Kantilever (Sumber: Hadihardja, 1997)

3.4.2 Tekanan Tanah Lateral

Tekanan tanah lateral merupakan gaya yang muncul akibat dorongan tanah dibelakang struktur dinding penahan tanah. Besarnya tekanan lateral akan sangat dipengaruhi dengan perubahan letak (displacement) dari dinding penahan dan sifat tanahnya (Hardiyatmo, 2018). Berikut ini adalah macam-macam tekanan tanah.

1. Tekanan Tanah Lateral Saat Diam

Menurut Hardiyatmo (2018) Tekanan tanah lateral saat diam adalah tekanan tanah kearah lateral dengan tidak ada regangan yang terjadi dalam tanah. Tekanan tanah ini terjadi karena tekanan vertikal yang mengalami perubahan bentuk ke arah lateral akibat pengaruh rasio poisson sehingga tanah disekitarnya menahan perubahan ke arah lateral.

Untuk lebih jelasnya, diterangkan pada Gambar 3.3 sebagai berikut.

Gambar 3. 4 Definisi Koefisiensi Tanah saat Diam

- (a) Turap yang dianggap tidak mempunyai volume dipancang
- (b) Penggalian dengan tanpa menyebabkan pengurangan tekanan tanah horizontal
- (c) Keseimbangan arah horizontal
- (Sumber : Hardiyatmo, 2018)

Turap ditinjau dengan dianggap tidak memiliki volume, sangat kokoh, dan licin yang dipancang dalam tanah tak berkohesi (Gambar 3.3a). tanah sebelah kiri dinding turap digali perlahan hingga kondisinya seperti Gambar 3.3b. Seiring dilakukan penggalian, dikerjakan suatu gaya horizontal (P_h) yang besarnya sama dengan gaya horizontal ke arah dinding sebelum dilakukan penggalian. Tekanan horizontal (P_h) ini disebut tekanan tanah lateral saat diam (*lateral earth pressure at rest*), yaitu tekanan tanah ke arah lateral dengan tidak ada regangan yang terjadi dalam tanahl perbandingan antara tekanan tanah horizontal dan tekanan vertikal pada kedalaman yang ditinjau didefinisikan sebagai koefisien tekanan tanah saat diam. Koefisien tekanan tanah dalam kondisi diam dinyatakan dengan K_0 Menurut Hardiyatmo (2018) posisi tekanan tanah pada dinding akan berupa tekanan tanah saat diam dan tekanan tanah lateral horizontal pada dinding pada kedalaman tertentu, yang dapat ditulis dalam persamaan.

$$K_0 = \frac{\sigma_h}{\sigma_v} \tag{3.27}$$

karena $\sigma v = \gamma$. z , maka tekanan tanah lateral saat diam adalah.

$$\sigma_{\rm h} = K_0 \cdot \gamma \cdot z \tag{3.28}$$

karena $\sigma_h = P_0 \text{ dan } z = H \text{ maka}$

$$\mathbf{P}_0 = K_0 \cdot \boldsymbol{\gamma} \cdot \boldsymbol{H}$$

Dengan:

P_0 = tekanan tanah saat diam (ton /m)	
K_0 = koefisien tekanana tanah saat diam	
χ = Berat volume tanah basah (ton /m ³)	
H = kedalaman tanah	

2. Tekanan Tanah Aktif

Apabila dinding penahan tanah harus menahan tanah yang longsor, maka disitulah tekanan tanah aktif akan terjadi dan bekerja pada suatu dinding penahan tanah tersebut. Hal ini dapat terjadi saat tanah menglami kegagalan dan terjadi keruntuhan. Sehingga tanah bergerak keluar dari tanah urug kearah bawah dan samping sehingga menekan dinding penahan tanah. Perbandingan nilai tekanan horizontal dan vertikal dinamakan Ka. Nilai tekanan tanah aktif lebih kecil dibanding tekanan tanah saat diam sehingga cenderung mengurangi keseimbangan dinding penahan tanah, tekanan tanah aktif dapat digambarkan seperti Gambar 3.4 berikut.

(3.29)

Nilai tekanan tanah aktif dihitung dengan menggunakan teori Rankine yang dibagi menjadi tanah datar dan tanah miring. Pada tekanan tanah lateral aktif koefisien pada tanah datar dituliskan dalam persamaan sebagai berikut.

Ka
$$=\frac{1-\sin\varphi}{1+\sin\varphi}$$

Ka $=\tan^2(45^\circ - \frac{\varphi}{2})$ (3.30)

Sedangkan untuk tanah miring dituliskan dengan:

Ka =
$$\cos\beta \left(\frac{\cos\beta - \sqrt{\cos 2\beta - \cos 2\varphi}}{\cos\beta + \sqrt{\cos 2\beta - \cos 2\varphi}}\right)$$
 (3.31)

Dan nilai tekanan tanah aktif dapat dihitung dengan persamaan:

a. Menghitung tekanan tanah aktif untuk tanah kohesif

$$Pa = 0.5 x Ka x y x H^{2} - 2 x c \sqrt{Ka}$$
(3.32)

b. Menghitung tekanan tanah aktif untuk tanah non kohesif

Pa = 0,5 x Ka x
$$\gamma$$
 x H² (3.33)
Dengan:
Pa = tekanan tanah aktif (ton /m)
Ka = koefisien tekanan tanah aktif
 γ = berat volume tanah basah (ton /m³)
H = kedalaman tanah
c = kohesi (ton /m²)

3. Tekanan Tanah Pasif

Tekanan tanah pasif adalah tekanan tanah yang memberikan dorongan terhadap dinding penahan tanah kearah tanah urug dalam kondisi runtuh. Rasio antara nilai tekanan horizontal dan nilai tekanan vertikal disebut Kp. Nilai tekanan tanah pasif untuk tanah lateral dihitung dengan teori Rankine dengan pembagian untuk tanah datar dan tanah miring. Tekanan tanah lateral pasif dapat digambarkan sebagai Gambar 3.5 berikut.

Gambar 3. 6 Tekanan Lateral Pasif (Sumber: Hardiyatmo, 2018)

Persamaan untuk menghitung nilai koefisien tanah pasif dapat dilihat pada persamaan berikut ini.

Persamaan koefisien tanah pasif untuk tanah datar:

$$Kp = \frac{1+\sin\varphi}{1-\sin\varphi}$$

$$Kp = \tan^2(45^\circ + \frac{\varphi}{2})$$
(3.34)

Persamaan koefisien tanah pasif untuk tanah miring:

Kp =
$$\cos\beta \left(\frac{\cos\beta + \sqrt{\cos 2\beta - \cos 2\varphi}}{\cos\beta - \sqrt{\cos 2\beta - \cos 2\varphi}}\right)$$
 (3.35)

Perhitungan tekanan tanah pasif untuk tanah non kohesif dapat dilihat pada persamaan dibawah ini.

$$Pp = 0.5 x Kp x y x H^2$$
(3.36)

Dan untuk perhitungan tanah pasif untuk tanah kohesif dapat dilihat pada persamaan berikut.

Pp = 0,5 x Kp x y x H² + 2 x c
$$\sqrt{Ka}$$
 (3.37)

Dengan:

Рр	= tekanan tanah pasif (ton /m)
Кр	= koefisien tekanan tanah pasif
¥ –	= berat volume tanah basah (ton $/m^3$)
н	= kedalaman tanah (m)
c	= kohesi (ton $/m^2$)

3.4.3 Stabilitas Dinding Penahan Tanah

Pada perhitungan stabilitas dinding penahan tanah harus mencakupi hal-hal sebagai berikut.

- 1. Nilai faktor aman terhadap pergeseran, penggulingan dan daya dukung tanah dasar harus terpenuhi.
- Tekanan yang terjadi di dasar pondasi tidak boleh melebihi kapasitas dukung tanah ijin.
- 3. Tidak boleh terjadi penurunan yang berlebihan pada tanah dasar pondasi.

Gaya yang bekerja pada dinding penahan tanah yaitu berat sendiri (W), gaya tekanan tanah aktif total tanah urug (Pa), gaya tekanan tanah pasif total di depan dinding (Pp), tekanan air pori di dalam tanah (Pw), dan reaksi tanah dasar (R). gayagaya tersebut harus diimbangi dengan stabilitas dinding penahan tanah untuk menahan pengaruh tekananrembesan agar volume tanah dibelakang dinding penahan tanah tidak mengalami penambahan akibat kadar air tanah. Perhitungan stabilitas dinding penahan tanah tersebut dijelaskan sebagai berikut.

1. Stabilitas Terhadap Penggeseran

Gaya-gaya yang menggeser dinding penahan tanah akan ditahan oleh gesekan tanah dengan dasar pondasi dan tekanan tanah pasif. Untuk perhitungan faktor aman penggeseran dapat dihitung dengan persamaan sebagai berikut

$$Fgs = \frac{\Sigma Rh}{\Sigma Ph} \ge 1.5$$
(3.39)

Tahanan dinding penahan tanah terhadap penggeseran untuk tanah granuler (c=0) dinyatakan dalam persamaan dibawah ini

$$\Sigma Rh = W x f$$

= W tg \delta b, dengan \delta b = \oplus (3.40)

Tahanan dinding penahan tanah terhadap penggeseran untuk tanah kohesif (ϕ =0) dinyatakan dalam persamaan dibawah ini

$$\Sigma \operatorname{Rh} = \operatorname{Ca} x \operatorname{B} \tag{3.41}$$

Tahanan dinding pengahan tanah terhadap pergeseran untuk tanah c > 0 dan ϕ > 0 dinyatakan dalam persamaan dibawah ini

$$\Sigma \operatorname{Rh} = \operatorname{Ca} x \operatorname{B} + \operatorname{W} \operatorname{tg} \delta_{\mathrm{b}}$$
(3.42)

Dengan:

 ΣRh = tahanan dinding penahan tanah terhadap penggeseran

W = Berat total dinding penahan tanah (ton)

 δ_b = sudut gesek antara tanah dan fondasi, biasanya diambil $1/3 - 2/3 \phi$

$$Ca = ad x c$$

Ca = adhesi antara tanah dan dasar fondasi

c = kohesi tanah dasar (ton $/m^2$)

B = lebar fondasi (m)

 Σ Ph = jumlah gaya-gaya horizontal

 $F = tg \delta_b$

= koefisien gesek antara tanah dasar dan dasar fondasi

2. Stabilitas Terhadap Penggulingan

Dinding penaha tanah bisa terguling disebabkan oleh tekanan tanah lateral yang diakibatkan oleh tanah urug dibelakang dinding penahan dengan pusat rotasi pada ujung kaki depan pelat fondasi. Perhitungan faktor aman penggulingan dapat dinyatakan dalam persamaan

Fgl
$$= \frac{\Sigma M w}{\Sigma M g l} \ge 1,5$$
(3.43) $\Sigma M w$ $= W x B$ (3.44) $\Sigma M g l$ $= \Sigma P a h x h + \Sigma P a v x B$ (3.45)

Dengan:

ΣMw	= momen perlawanan terhadap guling (tm)
ΣMgl	= momen yang mengakibatkan guling (tm)
W	= berat tanah diatas pelat fondasi dan berat sendiri dinding penahan
	(ton)
В	= lebar kaki dinding penahan (m)
ΣPah	= jumlah gaya-gaya horizontal (ton)

 Σ Pav = jumlah gaya-gaya vertikal (ton)

3. Stabilitas Terhadap Keruntuhan Kapasitas Dukung Tanah Pada perhitungan stabilitas terhadap daya dukung tanah dasar melibatkan faktor kapasitas dukung menurut Vesic yang dapat dilihat pada Tabel 3.1 dibawah ini.

Φ (°)	Nc	Nq	Ny
5	6,49	1,57	0,45
6	6,81	1,72	0,57
7	7,16	1,88	0,71
8	7,53	2,06	0,86
9	7,92	2,25	1,03
10	8,34	2,47	1,22
11	8,80	2,71	1,44
12	9,28	2,97	1,69
13	9,81	3,26	1,97
14	10,37	3,59	2,29
15	10,98	3,94	2,65
16	11,63	4,34	3,06
17	12,34	4,77	3,53
18	13,10	5,26	4,07
19	13,93	5,80	4,68
20	14,83	6,40	5,39
21	15,81	7,07	6,20
22	16,88	7,82	7,13
23	18,05	8,66	8,20

Tabel 3. 1 Faktor-Faktor Kapasitas Dukung Vesic (1973)

Sumber: Hardiyatmo (2014)

Resultan beban-beban yang terjadi pada dinding penahan tanah adalah beban miring dan eksentris, sehingga kapasitas dukung ultimit pada dinding penahan tanah dihitung dengan menggunakan persamaan Hansen dan Vesic untuk beban miring dan eksentris dapat dilihat pada persamaan dibawah ini.

$$Qu = dc ic c Nc + dq iq Df \gamma Nq + d\gamma i\gamma 0.5 B\gamma N\gamma$$
(3.46)

Dengan faktor kemiringan beban dinyatakan dalam persamaan-persamaan dibawah ini.

iq =
$$(1 - \frac{0.5 \, x \, H}{V + A' \, x \, Ca \, x \, ctg \, \varphi})^5 \ge 0$$
 (3.47)

ic
$$= iq - \frac{(1-iq)}{Nc tg\varphi}$$
 (3.48)

$$i\gamma = (1 + \frac{0.5 x H}{V + A' x Ca x ctg \varphi})^5$$
 (3.49)

Dengan faktor kedalaman menurut Hansen dinyatakan dalam persamaan dibawah ini.

dc	$= 1+0,4 \times (\frac{D}{B})$	(3.50)
dq	= 1+ 2 x $(\frac{D}{B})$ x tan ϕ x (1 - sin ϕ) ²	(3.51)
dγ	= 1	(3.52)
Den	gan:	
dc =	$d\mathbf{q} = d\mathbf{\gamma}$ = faktor kedalaman	
ic = i	iq = iγ = faktor kemiringan	
D	= kedalaman fondasi (m)	
В	= lebar dasar fondasi (m)	
γ	= berat volume tanah basah (ton /m ³)	

 $Nc = Nq = N\gamma = faktor kapasitas dukung$

Nilai faktor aman terhadap keruntuhan kapasitas dukung tanah dasar dihitung dengan persamaan dibawah ini.

$$\mathbf{F} = -\frac{qu}{q} \ge 3 \tag{3.53}$$

Dengan:

qu = kapasitas dukung ultimit (ton $/m^2$)

q = tekanan akibat beban struktur (ton $/m^2$)

4. Stabilitas Lereng Terhadap Kelongsoran Global

Dinding penahan tanah yang digunakan untuk perkuatan lereng juga harus stabil dan aman terhadap keruntuhan lereng secara menyeluruh. Program *Plaxis* dapat melakukan perhitungan analisis stabilitas lereng terhadap kelongsoran. Bowless (1989) dalam Hardiyatmo membagi intensitas longsor sebuah lereng berdasarkan nilai angka aman (SF) lereng yang dapat dilihat pada Tabel 3.2 dibawah ini.

Nilai faktor keamanan	Kemungkinan longsor
F<1,07	Longsor biasa terjadi/sering (lereng labil)
1,07 <f<1,25< td=""><td>Longsor pernah terjadi (lereng kritis)</td></f<1,25<>	Longsor pernah terjadi (lereng kritis)
F>1,25	Longsor jarang terjadi (lereng relative stabil
	Sumber: Hardiyatmo(2012)

Tabel 3. 2 Hubungan Nilai Faktor

3.5 Fondasi Tiang Bor

Hardiyatmo (2014) menyatakan fondasi tiang bor adalah jenis fondasi yang sangat sering dipakai apabila efek dinamis dari tiang pancang mengganggu struktur sekitarnya dan jenis tanah yang keras sehingga sulit digunakan tiang pancang. Proses pemasangan tiang bor adalah dengan cara mengebor tanah terlebih dahulu, yang kemudian diisi tulangan yang telah dirangkai dan dicor beton. Tiang ini biasanya dipakai pada tanah stabil dan kaku, sehingga memungkinkan untuk membentuk lubang yang stabil dengan alat bor. Karena kemudahan pada variasi kedalaman dan diameter dari tiang bor, maka jenis pondasi ini dapat dipakai baik untuk beban ringan maupun struktur berat seperti bangunan bertingkat tinggi dan jembatan.

Fondasi tiang bor memiliki karakteristik khusus yang berbeda dengan fondasi tiang pancang, hal tersebut dikarenakan :

- tiang bor dilaksanakan dengan menggali lubang bor dan mengisinya dengan material beton, sedangkan tiang pancang dimasukkan ke tanah dengan mendesak tanah disekitarnya (*displacement pile*),
- 2. beton dicor dalam keadaan basah dan mengalami masa *curring* di bawah tanah,
- 3. terkadang digunakan *casing* untuk kestabilan dinding lubang bor dan dapat pula *casing* tersebut tidak dicabut karena kualitas lapangan,
- cara penggalian lubang bor disesuaikan dengan kondisi tanah.
 Menurut Hardiyatmo (2014) penggunaan tiang bor mempunyai beberapa

keuntungan dan kerugian antara lain :

Keuntungan :

- 1. tidak ada resiko kenaikan muka tanah,
- 2. kedalaman tiang dapat divariasikan,
- 3. tanah dapat diperiksa dan dicocokan dengan data laboratorium,
- tiang dapat dipasang sampai kedalaman yang dalam, dengan diameter besar, dan dapat dilakukan pembesaran ujung bawahnya jika tanah dasar berupa lempung atau batu lunak,
- 5. penulangan tidak dipengaruhi oleh tegangan pada waktu pengangkutan dan pemancangan.

Kerugian :

- 1. pengeboran dapat mengakibatkan gangguan kepadatan, bila tanah berupa pasir atau tanah yang berkerikil,
- 2. kualitas pengecoran memerlukan pengawasan yang ketat,
- pengecoran beton sulit bila dipengaruhi air tanah karena mutu beton tidak dapat dikontrol dengan baik,
- 4. air yang mengalir ke dalam lubang bor dapat mengakibatkan gangguan tanah, sehingga mengurangi kapasitas dukung tananh terhadap tiang, dan
- 5. pembesaran ujung bawah tiang tidak dapat dilakukan bila tanah berupa pasir. Pondasi tiang bor biasanya dipakai pada tanah yang stabil dan kaku, sehingga

memungkinkan untuk membentuk lubang yang stabil dengan alat bor. Umumnya terdapat tiga buah metode pelaksanaan tiang bor, yaitu dengan cara kering *(the dry*

method), dengan casing (*the casing method*) dan dengan *slurry* (*the slurry method*). Pelaksanaan metode-metode diatas adalah sebagai berikut.

- 1. Pelaksanaan dengan cara kering (*dry method*) Cara ini sesuai dengan tanah jenis kohesif dan muka air tanah berada pada kedalaman dibawah dasar lubang bor atau jika permeabilitas tanah cukup kecil, sehingga pengecoran beton dapat dilakukan sebelum pengaruh air terjadi.
- 2. Pelaksanaan dengan *casing* diperlukan dimana runtuhan tanah atau deformasi lateral dalam lubang bor dapat terjadi. Dalam kondisi tertentu, *casing* harus dimasukkan dengan alat penggetar (*vibrator*). Penggunaan *casing* harus cukup panjang dan mencakup seluruh bagian tanah yang dapat runtuh akibat penggalian selain itu juga untuk menanggulangi tekanan artesis. *Casing* juga digunakan pada pengecoran diatas tanah atau ditengah-tengah air.
- 3. Pelaksanaan dengan *Slurry* Metode ini hanya dapat dilakukan untuk suatu situasi yang membutuhkan *casing*. Tinggi *slurry* dalam lubang bor harus mencukupi untuk memberikan tekanan yang lebih tinggi air disekitar lubang bor. Dengan penggunaan *slurry* umumnya dikehendaki agar tidak membiarkan *slurry* terlalu lama dalam lubang galian sehingga campuran tersebut tidak mengakibatkan suatu bentuk bahan kental yang menempel pada dinding lubang bor. Penempatan bahan kental ini dapat mengurangi kapasitas gesekan selimut tiang bor.

Gambar 3. 7 Pembuatan Tiang Bor dengan Mnggunakan Slurry

- a) bor sampai tanah lekukan dan tambahkan adonan seperlunya,
- b) tarik bor dan masukkan kerangka tulangan,
- c) proses pengecoran dan penampang adonan yang dipindahkan kedalam parit pengendap,
- d) tiang bor yang telah selesai dikerjakan.

(Sumber : Bowles, 1988)

3.6 Kapasitas Dukung Bored Pile Metode O'Neill dan Reese

1. Kapasitas Dukung Tiang Tunggal

Kapasitas dukung tiang dapat dihitung menggunakan penjumlahan antara tahanan ujung, tahanan selimut tiang dan berat tiang. Menurut cara statis dalam buku Analisis dan Perancangan Fondasi-II, (Hardiyatmo, 2014) dinyatakan dalam persamaan 3.40 sebagai berikut.

$$Qu = Qb + Qs - Wp \tag{3.54}$$

Dengan :

- Qu = Kapasitas dukung ultimit tiang (ton)
- Qb = Tahanan ujung ultimit tiang (ton)
- Qs = Tahanan selimut ultimit tiang (ton)
- Wp = Berat tiang (ton)
- a. Tahanan Ujung Ultimit

Perhitungan tahanan ujung ultimit berdasarkan nilai SPT dapat dihitung dengan menggunakan metode O'Neil & Reese (1989) dalam buku Analisis dan Perancangan Fondasi-II, (Hardiyatmo, 2014) yang dinyatakan dalam persamaan 3.41 dan 3.42 sebagai berikut.

Qb = Ab x fb (3.55)
fb =
$$0.6 x \text{ or } x \text{ N60} \le 458.7156 \text{ ton }/\text{m}^2$$
 (3.56)

Dengan :

Qb	= Tahanan ujung ultimit tiang (ton)
Ab	= Luas penampang ujung tiang (m ²)
fb	= Tahanan ujung per satuan luas (ton /m ²)
N60	= Nilai N-SPT rata – rata antara ujung bawah tiang sampai
	2db dibawahnya
db	= Diameter ujung bawah tiang
σr	= Tegangan referensi = 10,1937 ton $/m^2$

b. Tahanan Gesek Ultimit

Perhitungan tahanan gesek ultimit dapat dihitung dengan menggunakan metode O'Neil & Reese (1989) dalam buku Analisis dan Perancangan Fondasi-II, (Hardiyatmo, 2014) yang dinyatakan dalam persamaan 3.57 – 3.60 sebagai berikut.

$$Qs = As x Po'rata-rata x$$
(3.57)

Po'
$$= \gamma \tanh x \ h \tanh (3.58)$$

$$\beta$$
 = 1,5 - 0,245 \sqrt{z} , untuk nilai N60 > 15 (3.59)

$$\beta = \frac{N60}{15} (1,5 - 0,245\sqrt{z}), \text{ untuk nilai N60} \le 15$$
(3.60)

Dengan :

Qs	= Tahanan selimut ultimit tiang (ton)
Po'	= Tekanan overburden efektif (ton $/m^2$)
Z	= Kedalaman di tengah-tengah lapisan tanah (m)
As	= Luas selimut tiang (m^2)

3.7 Pondasi Tiang Pancang

Setiap pondasi harus mampu mendukung beban sampai batas keamanan yang telah ditentukan, termasuk mendukung beban maksimum yang mungkin terjadi. Jenis pondasi yang sesuai dengan tanah pendukung yang terletak pada kedalaman 10 meter di bawah permukaan tanah adalah fondasi tiang (Sosrodarsono dan Nakazawa, 1990).

Pondasi tiang pancang adalah bagian dari struktur yang digunakan untuk menerima dan menyalurkan beban dari struktur atas ke tanah penunjang yang terletak pada kedalaman tertentu. Tiang pancang bentuknya panjang dan langsing yang menyalurkan beban ke tanah yang lebih dalam. Bahan utama dari tiang adalah kayu, baja, dan beton. Tiang pancang yang terbuat dari bahan ini adalah dipukul, dibor atau didongkrak ke dalam tanah dan dihubungkan dengan *Pile cap (poer)*. Karakteristik penyebaran beban tiang pancang diklasifikasikan berbeda-beda tergantung dari tipe tanah.

Tiang pancang umumnya digunakan untuk beberapa maksud antara lain sebagai berikut :

- 1. menerusakan beban bangunan di atasnya ke tanah pendukung yang kuat,
- meneruskan beban struktur atas ke tanah yang relatif kuat untuk sampai kedalaman tertentu sehingga pondasi bangunan mampu memberikan dukungan yang cukup untuk mendukung beban tersebut oleh gesekan sisi tiang dengan tanah disekitarnya,

- 3. menahan bangunan yang dipengaruhi oleh gaya angkat ke atas yang diakaibatkan tekanan hidrostatis atau momen penggulingan,
- 4. untuk menahan gaya-gaya horizontal dan gaya yang arahnya miring,
- 5. untuk memadatkan tanah pasir, sehingga kapasitas dukung tanah tersebut bertambah, dan
- 6. untuk mendukung pondasi bangunan yang permukaan tanahnya mudah tergerus air.

Metode yang digunakan dalam pemancangan tiang pancang adalah sebagai berikut ini.

- 1. pemancangan dilakukan dengan cara memukul secara bertahap pada pucuk tiang pancang dengan menggunakan sebuah martil tiang pancang. Cara ini menimbulkan suara yang bising dan getaran setempat yang mungkin tidak diperbolehkan oleh peraturan setempat atau badan-badan yang memelihara lingkungan serta dapat merusak hak milik orang yang dekat dengan tempat pemancangan,
- 2. pemancangan menggunakan alat penggetar yang ditempelkan di puncak tiang pancang. Metode ini dipakai dalam endapan-endapan yang kohesinya kecil,
- pemancangan dengan cara mendongkrak tiang pancang. Cara ini dipakai untuk bagian-bagian kaku yang pendek, dan
- 4. pemancangan dengan cara mengebor sebuah lubang yang diberi *casing* dari pipa baja terlebih dahulu, setelah itu lubang hasil bor tersebut diisi dengan beton hingga mengeras, sehingga menghasilkan tiang pancang.

Penggunaan pondasi tiang pancang tentunya memiliki beberapa keuntungan dan kerugian, adapun keuntungan dari penggunaan pondasi tiang pancang sebagai berikut :

- 1. tiang dibuat di pabrik dan dilakukan pemeriksaan kualitas yang ketat, sehingga mendapatkan hasil yang dapat diandalkan,
- pelaksanaan pemancangan relatif cepat, terutama untuk tiang baja. Walaupun lapisan antara tanah cukup keras, lapisan tersebut masih dapat ditembus sehingga pemancangan ke lapisan tanah keras masih dapat dilakukan,
- 3. memiliki persedian yang cukup banyak di pabrik,

- 4. untuk pekerjaan pemancangan yang kecil, biayanya tetap rendah,
- 5. daya dukungnya dapat diperkirakan berdasar rumus tiang pancang sehingga pekerjaan konstruksinya mudah diawasi, dan
- 6. cara pemasangan dinilai cocok untuk mempertahankan daya dukung beban vertikal.

Adapun kerugian dari penggunaan pondasi tiang pancang sebagai berikut :

- 1. menimbulkan masalah di daerah berpendudukan padat, karena pemasangannya menimbulkan getaran dan kegaduhan,
- untuk tiang yang panjang, diperlukan persiapan penyambungan dengan menggunakan pengelasan (untuk tiang pancang beton yang bagian atas atau bawahnya berkepala baja). Bila pekerjaan penyambungan tidak baik, akibatnya sangat merugikan,
- pekerjaan pemancangan harus berhti—hati karena dapat merusak kepala tiang, apabila kepala tiang rusak maka tidak bisa digunakan sebagai pondasi, dan
- 4. memerlukan mesin pemancang yang besar, karena tiang pancang beton memiliki dimensi yang besar dan sangat berat.

3.8 Kapasitas Dukung Tiang Pancang Metode Meyerhoff

Perhitungan kapasitas daya dukung menggunakan data SPT berdasarkan metode Meyerhoff dibagi menjadi dua yaitu untuk tanah kohesif dan tanah non-kohesif. Tanah kohesif ialah tanah yang mempunyai sifat lekatan antar butir. Sedangkan tanah non-kohesif adalah tanah yang tidak memiliki atau sangat sedikit lekatan antara butirannya.

Dikarenakan tanah yang menjadi objek penelitian adalah tanah non-kohesif, maka berikut ini adalah rumus kapasitas dukung tiang pancang untuk tanah nonkohesif metode meyerhoff.

1. Tahanan Ujung

Tahanan ujung metode Meyerhoff dapat diperoleh dengan Persamaan 3.61 berikut.

$$Q_p = 40 \times N_{rerata} \times A_p \tag{3.61}$$

Dengan :

kitar ujung tiang pancang
man 4D dari ujung tiang ke bawah
man 8D dari ujung tiang ke atas
g (m ²)

2. Tahanan Gesek

Untuk tiang pancang, koefisien perlawanan gesek pada tanah pasir berlempung adalah 0,2. Nilai kapasitas dukung selimut dapat dilihat dari Persamaan 3.62 berikut.

$Q_s = 0,2 \text{ N-SPT } A_s$	(3.62)
Dengan : N-SPT = Nilai rata-rata SPT sepanjang tiang	
A_s = Luas selimut tiang Kapasitas dukung ultimit	
$Q_u = Q_p + Q_s$	(3.63)

3.9 Kapasitas Dukung Ijin

3.

Untuk memperoleh kapasitas ijin tiang, maka diperlukan untuk membagi kapasitas ultimit dengan faktor aman tertentu. Faktor aman ini perlu diberikan dengan maksud sebagai berikut:

- 1. memberikan keamanan terhadap ketidakpastian metode hitungan yang digunakan,
- 2. memberikan keamanan terhadap variasi kuat geser dan kompresibilitas tanah,
- 3. meyakinkan bahwa bahan tiang cukup aman dalam mendukung beban yang bekerja,
- 4. meyakinkan bahwa penurunan total yang terjadi pada tiang tunggal atau

kelompok masih tetap dalam batas-batas toleransi,

5. meyakinkan bahwa penurunan tidak seragam diantara tiang-tiang masih dalam batas toleransi.

Daya dukung ijin pondasi dinyatakan pada Persamaan 3.10 berikut.

$$Qa = \frac{Qu}{SF}$$
(3.64)

Dengan :

- $Q_a = Kapasitas daya dukung ijin pondasi.$
- Qu = Kapasitas ultimit pondasi.
- SF = Angka aman untuk tahanan ujung.

3.10 Daya Dukung Lateral Terhadap Tiang

Beban lateral ialah beban dari arah horizontal yang berasal dari beban angin, tekanan tanah lateral, beban gelombang air, benturan kapal, dan lain sebagainya. Gaya lateral yang terjadi pada tiang bergantung pada kekakuan atau tipe tiang, macam tanah, penanaman ujung tiang pada pelat, sifat gaya-gaya, dan besar defleksi. Dalam analisis tiang dibedakan menurut model ikatan tiang terhadap pelat, karena model ikatan tersebut mempengaruhi kekakuan tiang dalam mendukung beban lateral. Tiang dibedakan menjadi dua tipe, yaitu:

- 1. tiang ujung jepit (fixed end pile)
- 2. tiang ujung bebas (free end pile)

Dalam buku (Hardiyatmo,2018) menuut McNulty (1956) mendefinisikan tiang ujung jepit (fixed end pile) sebagai tiang yang ujung atasnya terjepit (tertanam) dalam pelat penutup kepala tiang paling sedikit sedalam 60 cm (24 in.) Dengan demikian, untuk tiang - tiang yang bagian atasnya tidak terjepit ke dalam pelat penutup kepala tiang tetapi kurang dari 60 cm, termasuk tiang njung bebas (free end pile). Tipe -tipe pada tiang dapat dilibat pada Gambar 3.9 Berikut ini .

Gambar 3. 8 Definisi Tiang Ujung Jepit dan Ujung Bebas (McNulti,1956)

(Sumber: Hardiyatmo, 2018)

Perhitungan daya dulung lateral,dalam penelitian ini menggunakan metodemetode sebagai berikut.

1. Metode Broms

Untuk tiang dalam tanah granuler (c = 0), Broms (1964) dalam Hardiyatmo (2018) menyatakan sebagai berikut.

- a. Tekanan tanah aktif yang bekerja dibelakang tiang, diabaikan.
- Distribusi tekanan tanah pasif sepanjang tiang bagian depan sama dengan 3 kali telcanan tanah pasif Rankine.
- c. Bentuk penampang tiang tidak berpengaruh terbadap tekanan tanah ultimit atau tabanan lateral ultimit.
- d. Tahanan tanah lateral sepenuhnya termobilisasi pada gerakan tiang yang diperhitungkan.

Berikut untuk perhitungan beban lateral yang terjadi pada pondasi tiang.

 Menentukan kriteria jenis tiang panjang atau pendek
 Menentukan kriteria pada jenis tanah berpasir (granuler) akibat beban lateral dapat diurailan pada Persamaan 3.65 berikut ini.

$$T = \sqrt[5]{\frac{Ep.Ip}{nh}}$$
(3.65)

Dengan:

T = faktor kekakuan

Ep = modulus elastisitas tiang (t/m²)

Ip = momen inersia tiang (m^4)

nh = koefisien variasi modulus (t/m³)

Kriteria jenis tiang ditentukan berdasarkan syarat. Bila, nilai L> 2T maka dikategorikan tiang ujung jepit yang dianggap sebagai tiang pendek (kaku) dan bila, nilai L > 4T maka dikategorikan tiang ujung jepit yang dianggap sebagai tiang panjang (tiang kalu). L merupalan nilai dari panjang pondasi.

Berikut ini adalah grafik tahanan lateral untuk setiap jenis tiang yang ditampilkan pada gambar 3.10 dibawah ini

Gambar 3. 9 Grafik Tahanan Lateral Ultimit Tiang dalam Tanah Granuler (Broms,1964)

b. Daya Dukung Lateral Maksimum pada Tiang Secara Analitis
 Untuk tiang ujung jepit yang kaku, keruntuhan tiang akan berupa translasi, beban lateral ultimit dapat dinyatakan dalam persamaan 3.66 berikut ini

$$\operatorname{Hu} = \left(\frac{3}{2}\right) \cdot \gamma \cdot d \cdot L^2 \cdot K_p \tag{3.66}$$

Perhitungan Koefisien tekanan pasif menggunakan persamaan 3.67

$$Kp = \tan^2 x (45 + \varphi/2)$$
(3.67)

dengan :

Hu = beban lateral ultimit (kN)

 γ = berat volume tanah (kN/m3)

d = diameter tiang (m)

L = panjang tiang (m),

Momen maksimum yang mampu ditahan tiang (ultimate bending moment)

 $Mmax = \gamma_{sat} x d x L^3 x Kp$

dengan:

 γ_{sat} = Berat volume tanah (kN/m3)

d = Diameter tiang (m)

L = Panjang tiang (m),

Kp= Koefisien tekanan tanah pasif

Jika Mmak > My,maka keruntuhan tiang dapat diharapkan akan berbentuk seperti yang ditunjukkan dalam Gambar 3.4b. Serta memperhatikan keseimbangan horizontal tiang pada Gambar 3.4c diperoleh menggunakan Persamaan 3.69 berikut ini.

$$F = \left(\frac{3}{2}\right) \cdot \gamma \cdot d \cdot L^3 \cdot K_p - H_u$$
(3.69)

dengan:

 γ = Berat volume tanah (kN/m3)

(3.68)

d = Diameter tiang (m)

L = Panjang tiang (m),

- Kp = Koefisien tekanan tanah pasif
- Hu = Beban Lateral Ultimit (kN)

Gambar 3. 10 Tiang Ujung Jepit dalam Tanah Granuler (Broms, 1964)

Momen yang dapat diambil pada kepala tiang (pada permukaan tanah), dan dengan mensubstitusikan F pada Persamaan 3.69, dengan diperoleh (uutuk Mmaks > My) pada Persamaan 3.70 berikut ini.

$$My = \left(\frac{1}{2}\right) \cdot \gamma \cdot d \cdot L^3 \cdot K_p - H_u \cdot L$$
(3.70)

Perhitungan untuk memperoleh nilai daya dukung lateral maksimum pada tiang menggunakan Persamaan 3.71 berikut ini.

$$F = 0.82 \times \sqrt{\frac{Hu}{\gamma.d.K_p}}$$
(3.71)
$$Hu = \frac{2 \times My}{e + \frac{2f}{3}}$$
(3.72)

Perhitungan uatuk memperoleh nilai daya dulung lateral izin menggunakan Persamaan 3.73 berikut ini.

H _{izin}	= Hu/SF	(3.73)
dengan :		
H _{izin}	= daya dukung lateral izin tiang	
Hu	= daya dukung ultimit tiang	
SF	= faktor keamanan	
Daya duk	ung lateral pada tiang secara grafik	

Perhitungan daya dukung lateral pada tiang menggunakan grafik pada Gambar 3.4 dapat diperoleh menggunakan Persamaan 3.74 berikut ini.

c.

$$\frac{My}{\gamma_{sat} \times d^4 \times Kp}$$
(3.74)

Nilai dari hasil persamaan 3.74 tahanan ultimit tersebut dapat diplot pada Gambar 3.4

3.11 Tekanan Lateral Akibat Gempa

Tekanan tanah lateral akibat pengaruh gempa dapat dihitung dengan menggunakan pendekatan pseudostatis yang dikembangkan oleh Mononobe dan Okabe. Adapun asumsi dasar yang digunakan yaitu sebagai berikut:

- Kepala jembatan bebas berdeformasi sedemikian sehingga memberikan kondisi tekanan aktif untuk timbul. Bila kepala jembatan kaku terkekang dan tidak dapat bergerak, maka tekanan tanah yang diperoleh akan lebih besar dibandingkan dengan hasil analisis Mononobe-Okabe.
- Timbunan dibelakang kepala jembatan bersifat nonkohesif dengan sudut friksi φ.

3. Timbunan tidak jenuh sehingga tidak ada pengaruh likuifaksi.

Kondisi kesetimbangan gaya di belakang kepala jembatan dapat dilihat pada Gambar 3.12

Formula gaya tekan tanah akibat pengaruh gempa (EAE) yaitu sebagai berikut:

$$P_{AE} = \frac{1}{2} \gamma H_t^2 (1 - k_v) K_{AE}$$
(3.75)

dengan nilai koefisien tekanan aktif seismik (KAE) adalah

$$K_{AE} = \frac{\cos^{2}(\varphi - \theta - \beta a)}{\cos \theta \times \cos^{2} \beta a \times \cos(\delta + \theta + \beta a)} \times \left[1 - \sqrt{\frac{\sin(\delta + \varphi) \times \sin(\varphi - \theta - i)}{\cos(\delta + \varphi + \beta a) \times \cos(i - \beta a)}}\right]^{-2}$$
(3.76)

Selanjutnya untuk komponen tekanan tanah pasif yang cenderung mendorong tanah timbunan yaitu sebagai berikut :

$$P_{PE} = \frac{1}{2} \gamma H_t^2 (1 - k_v) K_{PE}$$
(3.75)

dengan nilai koefisien tekanan pasif seismik (KPE) adalah

$$K_{PE} = \frac{\cos^{2}(\varphi - \theta + \beta a)}{\cos \theta \times \cos^{2} \beta a \times \cos(\delta + \theta - \beta a)} \times \left[1 - \sqrt{\frac{\sin(\delta + \varphi) \times \sin(\varphi - \theta + i)}{\cos(\delta + \varphi - \beta a) \times \cos(i - \beta a)}}\right]^{-2}$$
(3.76)

Keterangan:

 γ = berat jenis tanah (kN/m3)

Ht = tinggi tanah (m)

- ϕ = sudut geser internal tanah (°)
- θ = arc tan(kh/(1-kv)) (°)
- δ = sudut geser diantara tanah dan kepala jembatan (°)

Kh = koefisien percepatan horizontal

 β_a = kemiringan dinding kepala jembatan terhadap bidang vertikal (°)

Gambar 3. 11 Diagram Keseimbangan Gaya pada Dinding Penahan Tanah/Kepala Jembatan

(Sumber: SNI 2833:2016 Perencanaan Jembatan Terhadap Beban Gempa)

Koefisien percepatan horizontal diambil dengan formulasi sebagai berikut:

$$k_{\rm h} = 0.5 \ {\rm x} \ {\rm A}_{\rm s}$$
 (3.77)

Dengan As adalah percepatan puncak di permukaan yang diperoleh dengan menggunakan percepatan puncak batuan dasar/PGA yang dikalikan dengan suatu faktor amplifikasi (*FPGA*). Pengaruh percepatan tanah arah vertikal dapat diabaikan.

3.12 Plaxis

Plaxis merupakan salah satu program permodelan berdasarkan metode elemen hingga yang mampu melakukan analisis permasalahan geoteknik dalam perancangan teknik sipil. Program ini memudahkan pengguna untuk dapat dengan cepat memodelkan geometri dan jaring-jaring elemen menurut penampang melintang dari kondisi yang diharapkan oleh analisis. Program plaxis ditujukan untuk pengimplementasian tahapan pelaksanaan di lapangan ke dalam tahapan pengerjaan pada program. Sehingga diharapkan pemrograman ini mampu sedekat mungkin dengan pelaksanaan yang ada di lapangan, dengan demikian hasil daripada respon program dapat diasumsikan sebagai gambaran kondisi asli di lapangan

Pembuatan program ini berdasarkan geometri yang akan dirancang. Dalam perencanaan analisis diperlukan data-data sebagai berikut.

- 1. Berat volume tanah kering (γ_d)
- 2. Berat volume tanah basah (γ)
- 3. Permeabilitas arah horizontal dan vertikal (kx dan ky)
- 4. Modulus young (Eref)
- 5. Poisson ratio (v)
- 6. Kohesi (c)
- 7. Sudut geser (ϕ)
- 8. Sudut dilatasi (ω)

Program plaxis ini memberikan analisis dengan elemen segitiga 6 nodal maupun 15 nodal. Pada analisis 15 nodal akan dapat dilakukan interpolasi dan peralihan nodal dengan turunan berderajat dua. Sehingga plaxis ini terdiri dari 4 program yaitu:

1. Input Program

Pada *Input Program* data yang harus dimasukkan adalah geometri yang akan dianalisis dan pengaturan global geometri.

2. Calculation Program

Untuk dapat dianalisis, pada proses *Calculation Program* harus memasukkan data tanah dan material perkuatan yang akan digunakan untuk melakukan perhitungan

3. Output Program

Kemudian pada tahap *Output Program* hasil dari analisis yang telah dilakukan akan ditampilkan.

4. Curve Program

Akan terdapat pula hasil keamanan lereng, gaya stabilitas, dan lain-lain dalam tahap *Curve Program*

BAB IV METODE PENELITIAN

4.1 Gambaran Umum

Penelitian yang dilakukan ditinjau pada bantaran Sungai Opak Sta. 0 + 275. Rehabilitasi dan rekonstruksi Jembatan Kiringan yang menjadi penghubung antara Kiringan dengan Pelemadu akibat runtuhnya jembatan tersebut karena banjir yang menerjang pada 28 November 2017 itu awalnya hanya difokuskan pada jembatannya saja. Akan tetapi pada saat berlangsungnya proses pembangunan terdapat penambahan sejumlah pekerjaan yaitu pekerjaan pembangunan dinding penahan tanah di sisi kiri dan kanan penampang sungai sebagai perkuatan terhadap jembatan dan sebagai mitigasi atas bencana banjir dan tanah longsor.

Pada pembangunan ulang di Jembatan Kiringan yang terletak di Desa Palemadu, dinding penahan tanah yang digunakan adalah dinding penahan tanah tipe kantilever dengan pondasi yang digunakan adalah *bored pile*.

4.2 Lokasi Studi Kasus

Penelitian dilakukan di Sta. 0 + 275 terhadap Sungai Opak. Berikut adalah gambar 4.1 lokasi penelitian dan gambar 4.2 gambar penampang melintang sungai.

Gambar 4. 1 Letak Jembatan Kiringan Berdasarkan Eksiting Jalan

(Sumber: Google Earth)

Gambar 4. 2 Potongan Melintang Sungai (Sumber: PT. Telaga Pasir Kuta)

4.3 Tahapan Penelitian

Tahapan penelitian ialah sebuah cara atau metode yang digunakan dalam pengolahan data untuk mendapatkan hasil yang diinginkan peneliti. Setelah mendapatkan data lalu dianalisis menurut proses pengerjaannya. Proses pengerjaan untuk menyelesaiikan penelitian dan perhitungan ini terdapat beberapa tahap. Berikut adalah tahapan dalam proses pengerjaan dalam penelitian ini.

1. Tahapan Persiapan

Di tahap persiapan, dilakukan pencarian berikut dengan mempelajari referensi-referensi yang berkaitan tengan topik penelitian dan melakukan pengamatan secara langsung di lapangan untuk penentuan konstruksi yang akan dianalisis

2. Tahap Pengumpulan Data

Tahap pengumpulan data dilakukan dengan melakukan permohonan data kepada Badan Penanggulangan Bencana Daerah (BPBD) Kabupaten Bantul selaku *owner* proyek. Kemudian menyerahkan permohonan data kepada PT. Telaga Pasir Kuta selaku kontraktor untuk mendapatkan data-data yaitu gambar rencana, data tanah, dan data laboratorium serta dilakukannya peninjauan langsung di lapangan untuk mengetahui kesesuaian terhadap data dan gambar rencana.

3. Analisis Stabilitas Lereng

Analisis yang dilakukan menggunakan program Plaxis untuk mendapat angka aman (SF) lereng asli kemudian dilakukan pembuktian dengan perhitungan manual dengan metode Fellenius. 4. Analisis Stabilitas Lereng Dengan Perkuatan Dinding Penahan Tanah Tipe Kantilever Dan *Bored Pile*

Analisis ini dilakukan dengan menggunakan program Plaxis terhadap kondisi eksisting. Lalu kemudian dibuktikan dengan menggunakan perhitungan manual. Berikut adalah langkah-langkah perhitungan manual

- a. Menghitung berat sendiri dan momen yang bekerja pada dinding penahan tanah.
- b. Menghitung tekanan tanah aktif, tekanan tanah pasif, dan tekanan tanah dinamis.
- Menghitung stabilitas terhadap pergeseran, penggulingan, dan keruntuhan kapasitas dukung tanah tanpa beban gempa dan dengan beban gempa.
- Redesign Dinding Penahan Tanah Tipe Kantilever Dan Tiang Pancang Analisis dilakukan menggunakan program plaxis kemudian dihitung manual untuk pembuktian. Berikut adalah langkah langkahnya.
 - Menghitung berat sendiri kemudian menghitung momen yang bekerja pada dinding penahan tanah
 - b. Menghitung tekanan tanah aktif, tekanan tanah pasif, dan tekanan tanah dinamis.
 - Menghitung stabilitas terhadap pergeseran, penggulingan, dan keruntuhan kapasitas dukung tanah tanpa beban gempa dan dengan beban gempa.
 - d. Perhitungan dilakukan menggunakan tiga diameter yang berbeda yaitu 30 cm 40 cm, dan 50 cm dengan kedalaman 10 m.
- 6. Membahas hasil analisis stabilitas lereng menggunakan perkuatan dinding penahan tanah tipe kantilever dan *bored pile* dan lereng menggunakan perkuatan dinding penahan tanah tipe kantilever dan tiang pancang.
- 7. Menarik kesimpulan serta saran terhadap penelitian yang telah dilakukan.

4.4 Parameter Analisis

4.4.1 Parameter Tanah

Parameter tanah yang dipakai guna masukan data tanah dalam program Plaxis 8.2 maupun dalam perhitungan analisis stabilitas lereng berdasarkan data tanah yang didapat dari PT. Telaga Pasir Kuta selaku kontraktor proyek Rekonstruksi Jembatan Kiringan. Berikut ini adalah tabel parameter tanah terlampir.

4.4.2 Dinding Penahan Tanah dan Bored pile

Dinding penahan tanah yang dipakai untuk perkuatan lereng di Jembatan Kiringan Sungai Opak sisi barat adalah dinding penahan tanah beton bertulang tipe kantilever dengan tinggi struktur dinding penahan tanah 7,6 m dan lebar 2,1 m. sedangkan untuk *bored pile* yang digunakan memiliki diameter 40 cm dan panjag struktur 10 m. Mutu beton yang digunakan untuk dinding penahan tanah dan *bored pile* adalah fc' = 25 Mpa.

4.4.3 Dinding Penahan Tanah dan Tiang Pancang

Dinding penahan tanah yang digunakan untuk redesign dalam perkuatan lereng di Jembatan Kiringan Sungai Opak adalah dinding penahan tanah beton bertulang tipe kantilever dengan tinggi dinding 7,7 m dan lebar 2,8 m. Sedangkan untuk tiang pancang menggunakan diameter 30 cm, 40 cm, dan 50 cm dengan panjang 10 m. Mutu beton yang digunakan adalah K-600.

4.4.4 Muka Air Tanah

Pada analisis stabilitas lereng ini, menggunakan data bor log untuk mendapatkan kedalaman muka air tanah. Muka air tanah berada di kedalaman 12 m dibawah permukaan tanah.

4.4.5 Penampang Melintang Lereng

Dibawah ini dapat dilihat gambar 4.3 gambar penampang melintang lereng pada Jembatan kiringan yang berada di aliran Sungai Opak di Dusun Kiringan, Desa Canden sta. 0 + 275 yang digunakan di penelitian ini.

Gambar 4. 3 Penampang Melintang Lereng

(Sumber: PT. Telaga Pasir Kuta, 2020)

4.5 Bagan Alir

Berikut ini adalah *flowchart* atau bagan alir penelitian dan penggunaan program Plaxis.

Gambar 4. 4 Bagan Alir Pemodelan Lereng Pada Program Plaxis

Gambar 4. 5 Bagan Alir Tugas Akhir

Lanjutan Gambar 4. 5 Bagan Alir Tugas Akhir

4.6 Time Schedule

Berikut ini adalah time schedule analisis data dan perhitungan tugas akhir

Г	T	Т						1				М	ARET	-	-	-	-		-							_							AP	RIL									
NC	D KETERANGAN	1	2 3	4 5	6 7	89	10 1	11 12	13	14	15 1	6 1	7 18	19	20 2	1 22	23	24 2	5 26	5 27	28 2	9 30	31	1 2	34	5 6	78	91	0 11	12	13 1	4 15	16 1	7 18	3 19	20	21 22	2 23	24	25 2	6 27	28 2	9 30
	1 PERSIAPAN																																										
	A. Permohonan Data Proyek																																				Т	Т			Τ	\square	\square
1	2 ANALISIS DATA DAN PERHITUNGAN STABILITAS LERENG																																										
	a. analisis stabilitas lereng asli dengan program plaxis																																										
	b. analisis stabilitas lereng asli dengan perhitungan manual																																										
\vdash	metode fellenius	++	++	+						\square	+	_	_		_	_	$\left \right $	_	_	+	_					\square		\square	+	\square	_	_		_	₽	\vdash	+	+	$\left \right $	+	+	\vdash	+
	c. analisis stabilitas lereng menggunakan perkuatan dinding penahan tanah dan boredpile dengan plaxis																																										
	d. analisis stabilitas eksternal lereng menggunakan perkuatan dinding penahan tanah dan bored pile dengan perhitungan																																										
	e. analisis stabilitas internal lereng menggunakan perkuatan dinding penahan tanah dan bored pile dengan perhitungan																																										
	f. perhitungan penulangan dinding penahan tanah dan bored																																										
	g. cek angka aman																																										
	h. analisis stabilitas lereng menggunakan perkuatan dinding penahan tanah dan tiang pancang dengan plaxis																																										
	i. analisis stabilitas eksternal lereng menggunakan perkuatan dinding penahan tanah dan tiang pancang dengan perhitungan																																								T		
	j. analisis stabilitas internal lereng menggunakan perkuatan dinding penahan tanah dan tiang pancang dengan perhitungan																																										
Γ	k. perhitungan penulangan dinding penahan tanah dan tiang			Π						Π																									Π	Π		Τ	Π			\square	
	l. cek angka aman																																										
;	3 PENYUSUNAN LAPORAN																																										
	a. menyusun laporan																																										
	b. konsultasi dosen																																										

Gambar 4. 6 Bagan Alir Pemodelan Lereng Pada Program Plaxis

BAB V

ANALISIS DAN PEMBAHASAN

5.1 Gambaran Umum

Dinding Penahan Tanah yang ditinjau terletak di Jembatan Kiringan di aliran Sungai Opak yang menghubungkan Dusun Kiringan dengan Dusun Pelemadu, Desa Canden. Letak peninjauan dilakukan pada dinding penahan tanah Sta. 0 + 275. Tinggi lereng pada Sta. 0 + 275 adalah 12,30 m dari elevasi dasar dengan jalan lingkungan di atas lereng selebar 2,5 m. Dinding penahan tanah yang terbuat dari beton bertulang dengan perkuatan *bored pile* dengan mutu beton Fc' 25 Mpa akan didesain ulang menjadi dinding penahan tanah dengan perkuatan tiang pancang dengan mutu betok K-600. Analisis stabilitas dinding penahan tanah dilakukan dengan dua metode analisis yaitu perhitungan menggunakan program Plaxis 8.2 dan perhitungan manual.

5.2 Data Tanah

Untuk melakukan analisis stabilitas lereng perlu adanya data tanah dari lapangan. Dalam penelitian ini, data tanah didapat dari Badan Penanggulangan Bencana Daerah Kabupaten Bantul selaku pemilik proyek serta PT. Telaga Pasir Kuta sebagai pelaksana proyek. Berikut adalah data parameter tanah, beban-beban yang bekerja serta geometri lereng.

5.2.1 Data Tanah

Data tanah yang digunakan adalah data tanah yang didapat dari penyelidikan oleh PT. Telaga Pasir Kuta. Data tanah yang didapat aalah denah lokasi bor log, data bor log, grafik SPT, dan data N-SPT. Denah lokasi bor log dan data parameter tanah dalam proyek ini dapat dilihat pada lampiran.

5.2.2 Data Beban

Beban yang bekerja pada lereng yang ditinjau adalah beban gempa. Berikut adalah uraian beban yang bekerja pada lereng.

1. Data Beban Gempa

Beban statis akan digunakan sebagai beban gempa yang digunakan untuk analisis yang akan dilakukan. Beban gempa statis yang digunakan berdasarkan peta zonasi gempa pada website Pusdiklat Jalan dan Jembatan (Pustajan). Wilayah Bantul khususnya daerah Imogiri termasuk wilayah dengan kelas spesifik situs dengan perhitungan lanjut karena lokasi yang dekat dengan sesar opak. Namun dalam penelitian ini hal tersebut tidak diperhitungkan sehingga percepatan puncak gempa (PGA) yang digunakan sebesar 0,6g. Peta dengan prosedur spesifik situs dan nilai spektra percepatan gempa puncak untuk wilayah Sungai Opak Imogiri dapat dilihat pada gambar 5.1 dan gambar 5.2 dibawah ini.

Gambar 5. 1 Peta Wilayah Dengan Prosedur Spesifik Situs

(Sumber: Pusjatan, 2021)

Gambar 5. 2 Peta Gempa Wilayah Sungai Opak Imogiri (Sumber: Pusjatan, 2021)

5.3 Analisis Lereng Asli

Tujuan dilakukannya analisis pada lereng asli adalah untuk mengehtahui angka keamanan lereng terhadap beban tanah sendiri, beban yang melintas, dan pengaruh terhadap beban gempa yang terhadi. Analisis dilakukan menggunakan dua metode yaitu menggunakan program Plaxis 8.2 dan perhitungan manual menggunakan metode Fellenius. Dibawah ini adalah gambar 5.3 tampang potongan melintang lereng asli dengan muka air normal.

Gambar 5. 3 Potongan Melintang Lereng Asli

(Sumber: PT Telaga Pasir Kuta, 2020)

5.3.1 Analisis Lereng Asli Menggunakan Program Plaxis

Permodelan lereng asli yang dilakukan secara dua dimensi dipengaruhi oleh beban gempa. Permodelan potongan melintang pada program Plaxis 8.2 dapat dilihat pada Gambar 5.4 dibawah ini.

Gambar 5. 4 Pemodelan Potongan Melintang Lereng Asli pada Plaxis

5.3.2 Pembuatan Jaring Elemen

Selanjutnya dilakukan permodelan geometri dengan membagi model menjadi elemen-elemen imajiner atau biasa disebut *meshing*. Jenis penyusunan atau *meshing* ini diambil jenis *fine*. Jaring-jaring elemen dapat dilihat pada gambar 5.5 berikut ini.

Gambar 5. 5 Jaring-Jaring Elemen

5.3.3 Tahap Perhitungan

1. Perhitungan Tegangan Awal

Perhitungan tegangan awal atau disebut juga sebagai beban gravitasi (*gravity load*) pada fase perhitungan hanya melibatkan struktur tanah dan batuan pembentuk lereng. Gambar tegangan awal pada Plaxis 8.2 dapat dilihat pada gambar 5.6 dibawah ini.

2. Tahap Calculation

Setelah melakukan input data dan parameter, maka selanjutnya dilakukan perhitungan dengan memasukkan tab parameter dengan *plastic analysis* untuk mengetahui *displacement* yang terjadi, *phi/c reduction* untuk mengetahui angka keamanan, dan *total multipliers* sebagai *loading input*. Dalam perhitungan plaxis ada beberapa tahapan yang dianalisis yaitu *gravity load*, berat sendiri, SF total tanpa beban gempa, dan SF total dengan beban gempa. Tab *Plaxis calculation* dapat dilihat pada gambar 5.7 dibawah ini.

Gambar 5. 7 Proses Perhitungan Lereng Asli

5.3.4 Hasil Output dengan Program Plaxis

Setelah perhitungan menggunakan program Plaxis selesai, tahap selanjutnya adalah melihat besarnya *displacement* keruntuhan lereng asli. Hasil perhitungan menggunakan program plaxis dijabarkan dalam poin-poin berikut ini.

1. Deformed Mesh

Hasil *deformed mesh* didapatkan *total displacement* sebesar 585,07 x 10^{-3} m dapat dilihat pada Gambar 5.8 sebagai berikut.

Gambar 5. 8 Deformed Mesh Lereng Asli Tanpa Beban Gempa

2. Effective Stresses

Besar nilai *effective stresses* adalah sebesar -250,07 kN/m² dapat dilihat pada Gambar 5.9 sebagai berikut.

Gambar 5. 9 Effective Stress Lereng Asli Tanpa Beban Gempa

Arah Pergerakan dan Daerah Potensial Longsor
 Arah pergerakan dan daerah potensial longsor lereng asli dapat dilihat pada
 Gambar 5.10 dan Gambar 5.11 sebagai berikut.

Gambar 5. 10 Arah Pergerakan Tanah Lereng Asli Tanpa Beban

Gambar 5. 11 Daerah Potensial Longsor Lereng Asli Tanpa Beban Gempa

4. Safety Factor

Kondisi lereng dan nilai angka aman ditunjukkan pada gambar 5.12 dan 5.13 dibawah ini

nput Output Curves	🗠 🔒 🚦	≜	+> Output.			
General Parameters	Multipliers Previe	w]				
Phase Number / ID.:	1 beban ser	ndiri		Calculation type	•	
Start from phase:	0 - Initial phase		•	1.100.04	Advanced	
Log info				Comments		
Prescribed ultim Accuracy condit Maximum numbe	ate state reached ion not reached in la er of iterations reach	ist step ned	< >			
					Parameters	
				÷	Next 🗮 In	sert 🛛 🐺 Del
dentification	Phase no.	Start from	Calculation	Loading input	Time Water	First Last
Initial phase	0	0	N/A Dipatia	N/A	0,00 day 0	0 0
X beban sendiri ✓ sf beban sendiri	1 2	1	Phi/c reduction	Incremental multi	0,00 day 0	3 102
K beban sendiri	1 2 Ga	ımbar	• 5. 12 K	Incremental multi	o,oo day o	3 102
K beban sendiri sf beban sendiri Incremental r	1 2 Ga nultipliers	ımbar	Phi/c reduction	ondisi Lero	eng ers	3 102
K beban sendiri Sf beban sendiri Incremental r Mdisp:	a Ga nultipliers	umbar	• 5. 12 K	Incremental multi ondisi Lero Total multipli Σ -Mdisp:	eng ers	3 102
S beban sendiri S f beban sendiri S f beban sendiri Incremental r Mdisp: MloadA:	1 2 Ga multipliers N/A N/A	ımbar	• 5. 12 K	Incremental multi ondisi Lero Total multipli Σ -Mdisp: Σ -MloadA:	eng 1,0000 1,0000	3 102
S beban sendiri S f beban sendiri S f beban sendiri Incremental r Mdisp: MloadA: MloadB:	a 2 Ga nultipliers N/A N/A	ımbar	• 5. 12 K	Incremental multi ondisi Lero Total multipli Σ -Mdisp: Σ -MloadA: Σ -MloadB:	eng 1,0000 1,0000	3 102
Incremental r Mdisp: MloadA: MloadB: Mweight:	1 2 Ga nultipliers N/A N/A N/A	ımbar	Phi/c reduction	Incremental multi ondisi Lero Total multipli Σ -Mdisp: Σ -MloadA: Σ -MloadB: Σ -Mweight:	eng 1,0000 1,0000 1,0000 1,0000	3 102
Eleban sendiri si fbeban sendiri si fbeban sendiri forcremental r Mdisp: MloadA: MloadB: MloadB: Mweight: Maccel:	1 2 Ga nultipliers N/A N/A N/A N/A		Phi/c reduction	Incremental multi ondisi Lero Total multipli Σ -Mdisp: Σ -MloadA: Σ -MloadB: Σ -Mweight: Σ -Maccel:	eng 1,0000 1,0000 1,0000 1,0000	3 102

Gambar 5. 13 Nilai Faktor Aman

Berdasarkan gambar 5.12 perhitungan tercapai pada kondisi akhir yang ditentukan, namun kondisi akurasi tidak tercapai pada langkah terakhir setelah jumlah maksimum iterasi tercapai. Nilai angka aman yang didapat sebesar 0,7273 ditunjukkan pada gambar 5.13.

5.3.5 Analisis Lereng Asli Menggunakan Perhitungan Manual Metode Fellenius

Metode perhitungan manual untuk menganalisis stabilitas lereng asli adalah metode Fellenius. Perhitungan ini dilakukan guna mengetahui nilai *safety factor* atau angka aman pada lereng. Perhitungan dilakukan berdasarkan pada daerah potensial keruntuhan. Detai gambar irisan daerah keruntuhan lereng asli dapat dilihat pada gambar 5.14 dibawah ini.

Gambar 5. 14 Penampang Irisan pada Lereng Asli

Menurut gambar 5.14 di atas, bidang longsor dibagi menjadi 8 irisan. Panjang total dari bidang longsor ke arah horisontal adalah sebesar 17,81 meter. Dikarenakan tanah memiliki lapisan lebih dari satu, untuk mempermudah

perhitungan maka lebar tiap irisan tidaklah seragam tetapi menyesuaikan potongan terhadap lapisan tanah. Contoh perhitungan manual Metode Fellenius pada irisan 1 adalah sebagai berikut.

Perhitungan Radians 1.

Rad
$$= \alpha x \frac{\Pi}{180}$$
$$= 61^{\circ} x \frac{\Pi}{180}$$
$$= 1,0647$$

Π

2. Perhitungan Berat Irisan

$$W_1 = \gamma x A_1$$

= 14,205 x 7,7323
= 11,1964 ton

- Perhitungan sin α 3.
 - = Sin (Rad₁) Sin_{α1} = Sin 1,0647 = 0,8746
- Perhitungan Cos α 4.

$$\cos_{\alpha 1} = \cos(\operatorname{Rad}_1)$$

= 0,4848

Perhitungan Wt x sin α 5.

Wt₁ = Wt x Sin
$$\alpha$$

= 11,1964 ton x 0,8746

$$= 9,7926$$
 ton

Perhitungan Wt x Cos α 6.

Wt₁ = Wt x Cos
$$\alpha$$

= 11,1964 ton x 0,4848
= 5,4281

Rekapitulasi hasil perhitungan menggunakan Metode Fellenius dapat dilihat pada Tabel 5.1 sebagai berikut

No irisan	Luas	Berat Wi (kN)	Berat Wi (ton)	Θ(°)	θ(rad)	Wi cos θ (ton)	Wi sin θ (ton)	Ui=ui.ai (kN)	Wi cos θ-Ui=ui.ai (ton)
1	7,7323	109,8364	11,1964	61	1,0647	5,4281	9,7926	0	5,4281
2	16,4145	233,1660	23,7682	46	0 7054	22.0400	22.0400	0	22.0400
2	5 <i>,</i> 8497	85,1028	8,6751	45	0,7854	22,9409	22,9409	0	22,9409
2	10,9977	156,2210	15,9247	24	0 5024	26.9420	19 1064	0	26.9420
5	11,0957	161,4228	16,4549	54	0,5954	20,8439	18,1004	0	20,8439
	6,5874	93,5732	9,5386		\sim				
4	13,3273	193,8886	19,7644	24	0,4189	28,9505	12,8896	0	28,9505
	1,6579	23,4202	2,3874						
	2,0685	29,3828	2,9952						
5	12,3787	180,0882	18,3576	15	0,2618	25,8731	6,9327	0	25,8731
	3,7729	53,2975	5,4330				(Ω)		
G	6,0019	87,3170	8,9008	7	0 1 2 2 2	16 1422	1 0920	0	16 1422
0	5,1130	72,2283	7,3627	/	0,1222	10,1425	1,9820	0	10,1425
7	1,4084	19,8956	2,0281	2	0,0349	2,0269	0,0708	0	2,0269
8	0,1503	2,1232	0,2164	-1	-0,0175	0,2164	-0,0038	0	0,2164
	0,0016	0,0230	0,0023	-1	-0,0175	0,0023	0,0000	0	-0,9977
	104,5578		··· W = ?.		128,4221	128,4221	72,7112		

Tabel 5. 1 Rekepitulasi Perhitungan Menggunakan Metode Fellenius

Berdasarkan hasil pengukuran didapatkan panjang garis lengkung pada tanah lapis 1 (A-B) = 5,7316 m, panjang garis lengkung pada tanah lapis 2 (B-C) = 7,8117 m dan panjang garis lengkung pada tanah lapis 3 (C-D) = 9,483 m. Jika panjang garis lengkung tersebut sudah diketahui, maka selanjutnya dapat dihitung nilai tahanan kelongsoran yang dikerahkan oleh komponen kohesi adalah sebagai berikut.

$$\Sigma$$
ciai = (5,7316 x 6,6708) + (7,8117 x 9,6138) + (9,483 x 5,5917)
= 16,9583 ton

Nilai tahanan longsoran oleh komponen gesekan pada ketiga lapisan adalah sebagai berikut.

(Wt cos θ -Ui) x Tan φ = 5,4281 x tan 20,55° + 104,6084 x tan 19,72° + 73,2092 x

```
tan 21,48°
```

$$= 68,3397$$
 ton

Nilai *safety factor* atau angka keamanan pada lereng asli dengan perhitungan manual menggunakan Metode Fellenius adalah sebagai berikut.

SF

$$= \frac{(\Sigma \text{ciai}) + ((\text{Wi} \cos \theta - \text{Ui}) \times \text{Tan } \phi))}{(\text{Wt} \times \sin \alpha) + (Beban \times Luas)}$$
$$= \frac{16,9583 + 68,3397}{72,7112 + 0}$$
$$= 1.1731$$

Berdasarkan nilai angka aman yang didapat pada perhitungan lereng asli di atas, diketahui bahwa lereng dinyatakan kritis dengan nilai angka 1,07>SF>1,25.

Karena kondisi lereng kritis dimana pernah terjadi longsor, untuk mitigasi bencana longsor perlu dilakukan perkuatan lereng berupa dinding penahan tanah dan pondasi tiang.

5.4 Analisis Stabilitas Lereng dengan Perkuatan Dinding Penahan Tanah dan Bored Pile

Analisis stabilitas lereng dengan perkuatan dinding penahan tanah dan *bored pile* perlu dilakukan untuk mengetahui kekuatan dinding penahan tanah dan *bored pile* dalam menahan beban-beban yang bekerja. Analisis tersebut dilakukan dengan menggunakan dua metode yaitu menggunakan program plaxis dan menggunakan perhitungan manual. Berikut adalah gambar 5.15 penampang lereng dengan dinding

penahan tanah dan *bored pile* dan gambar 5.16 dimensi dinding penahan tanah dan *bored pile* yang digunakan.

Gambar 5. 15 Penampang Lereng dengan Dinding Penahan Tanah dan Bored Pile

5.4.1 Data Dinding Penahan Tanah dan Bored Pile

Data-data yang digunakan dalam analisis ini adalah sebagai berikut.

- 1. dinding penahan tanah tipe kantilever
- 2. dinding penahan tanah dan *bored pile* menggunakan beton bertulang
- 3. berat volume beton bertulang yang digunakan adalah 2,4 ton/m³
- 4. mutu beton yang digunakan adalah fc' 25 Mpa
- 5. timbunan yang digunakan adalah jenis tanah pasir batu

5.4.2 Analisis Stabilitas Lereng dengan Perkuatan Dinding Penahan Tanah dan Bored Pile menggunakan Program Plaxis.

Analisis stabilitas lereng dengan perkuatan dinding penahan tanah dan *bored pile* menggunakan program plaxis dilakukan dalam kondisi dengan timbunan. Beban yang bekerja ialah beban gempa dengan nilai percepatan gempa sebesar 0,6 g. analisis dimodelkan secara dua dimensi pada potongan melintang sungai.

1. Permodelan Dinding Penahan Tanah pada Program Plaxis

Permodelan potongan melintang lereng dengan perkuatan dinding penahan tanah dan *bored pile* dalam program plaxis dilakukan secara dua dimensi dengan memasukkan seluruh parameter data geoteknik serta beban yang bekerja yaitu beban gempa.

Gambar 5. 17 Permodelan Potongan Melintang Menggunakan Dinding Penahan Tanah dan Bored Pile pada Program Plaxis

2. Pembuatan Jaring Elemen

Setelah menerapkan kondisi lapangan pada model selanjutnya membagi model geometri menjadi elemen-elemen imajiner yang biasanya disebut *meshing. Meshing* pada program plaxis menggunakan jenis fine. M*eshing* atau jaring-jaring elemen yang telah dibuat dapat dilihat pada gambar 5.18 dibawah ini.

Gambar 5. 18 Jaring-Jaring Elemen Dinding Penahan Tanah dan Bored Pile

3. Perhitungan Tegangan Awal

Perhitungan tegangan awal atau biasa disebut sebagai beban gravitasi (gravity load) dan dalam fase perhitungan hanya melibatkan struktur tanah dan batuan pembentuk lereng. Dibawah ini adalah gambar 5.19 tegangan awal.

Gambar 5. 19 Perhitungan Tegangan Awal Dinding Penahan Tanah dan Bored Pile

4. Tahap *Calculation*

Setelah data dan parameter dimasukkan, maka dilanjutkan perhitungan yaitu dengan memasukkan tab parameter dengan plastic analysis untuk mengetahui displacement yang terjadi, phi/c reduction untuk mengetahui angka keamanan dan staged construction sebagai loading input. Calculation dalam plaxis terdapat beberapa tahapan untuk analisis yaitu gravity load, berat sendiri, SF total tanpa beban gempa, dan SF total dengan beban gempa. Dibawah ini adalah gambar 5.20 tab plaxis calculation pada lereng dengan dinding penahan tanah dan *bored pile*.

Indeal Indeal Crideca	e 🔒	a ::::	+ Calculate	t			
General Parameters 1	Multipliers Prev	— ++ + iew]					
Phase	Garabaera Frev			Calculation type		_	
Number / ID.: 4	SF beba	n gempa		Phi/c reduction		•	
Start from phase: 2	2 - beban gempa		•		Advanced		
				Comments		_	
Log Into				Comments		_	
			^				
			<u>_</u>				
			~		0		
			~		Paran	neters	
			~		Paran Next	neters	
Identification	Phase no	. Start from	Calculation	Loading input	Paran Next	neters Tinsert Water Firs	it Lasi
Identification Initial phase	Phase no 0). Start from 0	Calculation	Loading input N/A	Paran Next Time 0,00 day	Mater Firs 0 0	it Last
Identification Initial phase beban sendiri	Phase no 0 1	 Start from 0 0 	Calculation N/A Plastic	Loading input N/A Total multipliers	Paran Next Time 0,00 day 0,00 day	Mater Firs 0 0 0	t Last
Identification Initial phase ➡ beban sendri ➡ beban sendri	Phase no 0 1 2	 Start from 1 0 1 	Calculation N/A Plastic Dynamic anal	Loading input N/A Total multipliers Total multipliers	Paran Next Time 0,00 day 0,00 day 0,14 s	Water Firs 0 0 0 0	t Last
Identification Initial phase beban sendiri beban genpa SF beban sendiri	Phase no 0 1 2 3	 Start from 0 1 	Calculation N/A Plastic Dynamic anal Phi/c reduction	Loading input NA Total multipliers Total multipliers Incremental multi	Earan Next Time 0,00 day 0,00 day 0,14 s 0,00 day	Water Firs 0 0 0 0	t Last

Gambar 5. 20 Proses Perhitungan Dinding Penahan Tanah dan Bored Pile pada Plaxis.

5. Hasil Output Dengan Program Plaxis

Setelah perhitungan menggunakan program Plaxis selesai, tahap selanjutnya adalah melihat besarnya *displacement* keruntuhan lereng asli. Hasil perhitungan menggunakan program plaxis dijabarkan dalam poin-poin berikut ini.

a. Deformed Mesh

Hasil deformed mesh didapatkan nilai total displacement tanpa beban gempa sebesar $63,36 \ge 10^{-3}$ m dan nilai total displacement dengan beban

gempa sebesar 495,20 x 10^{-3} m. berikut adalah gambar 5.21 dan gambar 5.22 deformed mesh dinding penahan tanah dan *bored pile* dengan dan tanpa beban gempa.

Gambar 5. 22 Deformend Mesh Dinding Penahan Tanah dan Bored Pile dengan Beban Gempa

b. Effective Stresses

Nilai effective stresses tanpa beban gempa sebesar -291,96 kN/m² dan nilai effective stresses dengan beban gempa sebesar -291,93 kN/m². Berikut adalah gambar 5.23 dan gambar 5.24 effective stresses dinding penahan tanah dan *bored pile* dengan dan tanpa beban gempa.

Gambar 5. 24 Effective Stresses Dinding Penahan Tanah dan Bored Pile dengan Beban Gempa

c. Arah Pergerakan dan Daerah Potensial Longsor

Gambar 5.25 dan gambar 5.26 dibawah ini adalah arah pergerakan dan daerah potensial longsor lereng yang diperkuat dengan dinding penahan tanah dan *bored pile* tanpa beban gempa. gambar 5.27 dan gambar 5.28 adalah arah pergerakan dan daerah potensial longsor lereng yang diperkuat dinding penahan tanah dan *bored pile* dengan beban gempa.

Gambar 5. 25 Arah Pergerakan Dinding Penahan Tanah dan

Bored Pile Tanpa Beban Gempa

Gambar 5. 26 Daerah Potensial Longsor Dinding Penahan Tanah dan *Bored Pile* Tanpa Beban Gempa

Gambar 5. 27 Arah Pergerakan Dinding Penahan Tanah dan

Bored Pile dengan Beban Gempa

Gambar 5. 28 Daerah Potensial Longsor Dinding Penahan Tanah dan *Bored Pile* dengan Beban Gempa

d. Angka Aman

Gambar 5.29 adalah nilai angka aman tanpa beban gempa dengan perkuat dinding penahan tanah dan *bored pile* dan gambar 5.30 adalah nilai angka aman pada kondisi dengan beban gempa.

Gambar 5. 29 Angka Aman Dinding Penahan Tanah dan *Bored Pile* Kondisi Asli Tanpa Beban Gempa

Mdisp:	N/A	\$	Σ -Mdisp:	1,0000	\$
MloadA:	N/A	\$	Σ -MloadA:	1,0000	\$
MloadB:	N/A	\$	Σ -MloadB:	1,0000	\$
Mweight:	N/A	\$	Σ -Mweight:	1,0000	\$
Maccel:	N/A	\$	Σ -Maccel:	-1,0000	\$
Msf:	0,1000	\$	∑ -Msf:	0,7958	\$

Gambar 5. 30 Angka Aman Dinding Penahan Tanah dan *Bored Pile* Kondisi Asli Dengan Beban Gempa

Lereng yang diperkuat dengan dinding penahan tanah dan *bored pile* tanpa beban memiliki nilai angka aman 1,5943, sedangkan pada kondisi dengan beban gempa nilai aman didapat 0,7958. Untuk memastikan nilai angka aman perlu dilakukan perhitungan secara manual pada perkuatan dinding penahan tanah dan *bored pile*.

5.4.3 Analisis Stabilitas Lereng dengan Perkuatan Dinding Penahan Tanah dan *Bored Pile* menggunakan Perhitungan Manual

Pada perhitungan stabilitas dinding penahan tanah dan *bored pile* terhadap kondisi tanpa beban gempa ini akan didapatkan nilai angka aman dari geser, guling, dan keruntuhan kapasitas dukung tanah. Gambar 3.31 adalah sketsa tanah dan dinding penahan tanah dengan *bored pile*.

Gambar 5. 31 Sketsa Dinding Penahan Tanah Kantilever dan Bored Pile

Berikut ini adalah perhitungan stabilitas dinding penahan tanah dan *bored pile* dengan tinjauan eksternal.

1. Gaya Vertikal

Gaya gaya seperti berat tanah di belakang dinding penahan tanah, berat struktur dinding penahan tanah, dan *bored pile* termasuk sebagai gaya vertikal. Gaya gaya tersebut dapat dibagi pias-pias yang dapat dilihat pada gambar 5.32 berikut.

Gambar 5. 32 Pembagian Pias-Pias pada Gaya Vertikal Dinding Penahan Tanah dengan Perkuatan *Bored pile*

Berikut ini adalah contoh perhitungan gaya vertikal pada pias 1 pada dinding penahan tanh.

Volume	= A x 1
	= 7 x 1
	$= 7 \text{ m}^3$
Berat (W)	= volume x berat volume tanah timbunan
	= 7 x 1,7839
	= 12,4872 ton

Dengan menggunakan cara yang sama berikut ini adalah tabel 5.2 rekapitulasi perhitungan gaya vertikal dan momen.

Tabel 5. 2 Rekapitulasi Perhitun	gan Gaya Vertikal dan Momen
Terhadaj	o Titik O

No pias	Luas (m2)	Berat (ton)	Jarak dari O (m)	Momen ke O (tm)
1	7,0000	12,4873	1,6000	19,980
2	2,1000	5,1376	0,9500	4,881
3	1,7500	4,2813	0,5500	2,355
4	1,2600	3,0826	1,0500	3,237
5	1,2566	3,0743	0,5000	1,537
t	otal	28,0631		31,9890

2. Tekanan Tanah Lateral

Tekanan tanah lateral adalah tekanan tanah aktif dan tenakan tanah pasif yang terjadi pada kondisi normal. Tekanan tanah aktif adalah tekanan yang mendorong tanah di belakang dinding penahan tanah. Sedangkan tanah pasif adalah tekanan yang menahan tanah yang terletak di depan dinding penahan tanah. Diagram tekanan tanah lateral ditampilkan pada gambar 5.33 dibawah ini.

a. Koefisien Tekanan Tanah Aktif

Ka_{tim} =
$$tan^2 \left(45 - \frac{\varphi}{2}\right)$$

= $tan^2 (45 - 15)$
= 0,333

b. Perhitungan Tekanan Tanah Aktif

Dibawah ini adalah contoh perhitungan tekanan tanah aktif dan pasif pada dinding penahan tanah

Pa1 =
$$-2 \times ct \times \sqrt{Ka \ tim} \times h \ tim$$

= $-2 \times 5 \times \sqrt{0,333} \times 7,6$
= $-4,473 \ ton$
Pa2 = $0,5 \times \gamma b \ tim \times h \ tim \times Ka \ tim \times h \ tim$

$$= 0.5 \times 1.7839 \times 7.6 \times 0.333 \times 7.6$$

= 17,173 ton

Berikut adalah rekapitulasi tekanan tanah aktif

Tabel 5. 3 Hasil Rekapitulasi Perhitungan Tekanan Tanah Aktif padaDinding Penahan Tanah dengan Perkuatan Bored pile

Tekanan	Rumus	Gaya	Lengan	Momen
Tanah	Kunus	(ton)	ke O	(Tm)
Pa1=	$-2 \times ct \times \sqrt{Ka \ tim} \times h \ tim$	-4,473	3,8	-16,997
Pa2=	$0,5 \times \gamma b tim \times h tim \times Ka tim \times h tim$	17,929	2,53	44,657
		13,096		27,437

c. Koefisien Tekanan Tanah Pasif

Kp1
$$= \frac{1}{Ka_{timbunan}}$$
$$= \frac{1}{0,3333}$$
$$= 3$$
Perhitungan Tekanan Tanah Pasif
Pp1
$$= 2 x \text{ ct } x \sqrt{Kp1} x \text{ h tim}$$

= 42,813 ton

d.

$$= 2 x 5 x \sqrt{3} x 4$$

= 7,062 ton
Pp2 = 0,5 x \gamma b tim x h tim x Kp1 x h tim
= 0,5 x 1,7839 x 4 x 3 x 4

Tabel 5. 4 Hasil Rekapitulasi Perhitungan Tekanan Tanah Pasif Pada Dinding Penahan Tanah dengan Perkuatan Tiang Pancang

Tekanan Tanah	Rumus	Gaya (ton)	Lengan ke O	Momen (tm)
Pp1=	-2.c tim. $\sqrt{Ka \ tim}$.h tim	7,062	2	14,125
Pp2=	0,5.γb tim.h tim.Ka tim.h tim	42,813	1,3333	57,085
	Σ	49,876		71,209

- 3. Stabilitas Dinding Penahan Tanah dengan Perkuatan Bored Pile
 - a. Stabilitas Terhadap Geser

Stabilitas terhadap pergeseran dinding penahan tanah dihitung dengan menganggap bahwa struktur dinding penahan tanah dan berat tanah lah yang akan menahan tahanan geser yang diberikan oleh dinding penahan tanah maka gaya lateral yang masih harus ditahan oleh *bored pile* adalah.

H =
$$Pa - \Sigma W - Pp$$

= 13,096 - 24,9887 - 49,876
= -61,768 < 0

Karena nilai gaya lateral lebih kecil daripada gaya aksial yang ditahan oleh *bored pile*, maka untuk mengetahui nilai angka keamanan terhadap pergeseran dilakukan dengan menganggap tahanan geser oleh dinding penahan tanah sepanjang 2,1 m pada tanah dasar dinding penahan tanah. Sehingga, $\delta b = \theta$ tanah dasar dan cd = c tanah dasar.

Rh = cd x B + (
$$\Sigma W$$
 x tan δb)
= 0,57 x 2,1 + 24,9888 x tan 21,48°
= 108,2076 ton
Fgs = $\frac{\Sigma Rh + Pp}{\Sigma Pa}$
= $\frac{108,2076 + 49,876}{13,096}$
= 4 6507

Dengan Fgs > 1,5, maka stabilitas dinding penahan tanahan terhadap stabilitas pergeseran terpenuhi

b. Stabilitas Terhadap Guling

Stabilitas guling terhadap dinding penahan tanah dihitung dengan membandingkan momen akibat dari tekanan tanah lateral aktif pada tanah didepan dinding yang berotasi pada ujung kaki depan pelat pondasi (momen yang mendorong) dengan momen akibat dari momen berat sendiri dinding penahan tanah dan tanah yang ada di atasnya serta momen akibat tekanan tanah pasif yang ada di belakang dinging penahan tanah (momen yang menahan).

ΣMpenahan	$=\Sigma Mw + \Sigma M pasif$
	= 31,9890 + 71,209
	= 103,1983 Tm
ΣMpendorong	$=\Sigma Maktif$
	= 27,4368 tm
Fgl	$= \frac{\Sigma M penahan}{\Sigma M pendorong}$
	$=\frac{103,1983}{27,4368}$
	= 3,7613

Karena Fgl \geq 1,5, maka stabilitas terhadap guling pada dinding penahan tanah sudah terpenuhi.

c. Stabilitas Terhadap Kapasitas Dukung Bored Pile

Kapasitas dukung ultimit bored pile dihitung dengan persamaan O'neill dan Reese (1989) sebagai berikut

Qu= qb + qs - wp
1) Kapasitas Ujung
Qb = ab x fb
Ab = 0,25 x
$$\pi$$
 x d²
= 0,25 x π x 0,4²
= 0,1257 m2
Fb = 0,6 x or x n60<=4500kPa
= 0,6 x 100 x 35
= 2100 kPa
Qb = 0,126 x 2100
= 26,9005 ton
Berat tiang bor ialah sebagai berikut
Wp = (0,25 x π x d² x L) x γ beton
= (0,25 x π x 0,4² x 10) x 2,4
= 3,0743 ton

Akibat tiang terendam air tanah seluruhnya, sehingga tiang akan mengalami gaya angkat ke atas.

U =
$$(0,25 \pi x d^2 x L) x \gamma w$$

= $(0,25 x \pi x 0,4^2 x 10) x 9,81 / 9,81$
= 1,2566 ton
Wp' = Wp - U

= 1,8177 ton

2) Kapasitas Selimut

Berikut adalah contoh perhitungan tahanan gesek ultimit bored

pile	
As1	$=\pi x d x t$
	$=\pi \ge 0.4 \ge 2.94$
	$=3,6945 \text{ m}^3$
Po1	'= (γ3-γw) x h1
	= (19,219-9,81) x 2,94
	$= 27,659 \text{ kN/m}^2$
Ζ	= h atas + (h1/2)
	= 0 x (2,94.2)
	= 1,47
N6(0 = 20>15, maka nilai beta adalah
Beta	$a = 1,5 - 0,245 \sqrt{z}$
	$= 1,5 - 0,245 \sqrt{z}$
	= 1,2029
Qs	= as1 x po1' rata-rata x beta
	= 3,695 x 13,83 x 1,203
	= 61,6439 kN / 9,81
	= 6,2654 ton
р	1 1 4 1 4 1 1 14

Dengan cara yang sama, berikut rekapitulasi perhitungan tahanan gesek ultimate bored pile pada tabel 5.5 dibawah ini.

Tahanan gesek	Kedalaman (m)	As (m2)	Po' (kN/m3)	Po' rerata (kN/m3)	Z (m)	β	Qs (kN)	Qs (ton)
Qs1	2,94	3.6945	27.6595	13,8298	1,47	1,2029	61,4639	6,2654
Qs2	5	6,2832	73,8645	50,7620	5,44	0,9285	296,1637	30,1899
Qs3	2,06	2,5887	92,3345	83,0995	8,97	0,7662	164,8285	16,8020
	4		ΔQs			ñ	522,4562	53,2575

Tabel 5. 5 Rekapitulasi Tahanan Gesek Ultimit Bored Pile dengan Beban Gempa

3) Kapasitas Ultimit

Berikut adalah perhitungan kapasitas dukung ultimit bored pile

Qu =
$$qb + qs - wp'$$

= 26,9005 + 53,2575 - 1,8177
= 78,3403 ton

4) Kapasitas Ijin

Berikut adalah perhitungan kapasitas ijin ultimit bored pile

Qall
$$= \frac{qu}{sf}$$

 $= \frac{78,3403}{3}$
 $= 26,1134 > 26,0082 \text{ (aman)}$

5.4.4 Analisis Stabilitas Lereng dengan Perkuatan Dinding Penahan Tanah dan Bored Pile menggunakan Perhitungan Manual dengan Beban Gempa

Pada perhitungan stabilitas dinding penahan tanah dan *bored pile* dengan beban gempa ini akan didapatkan nilai angka aman dari geser, guling, dan keruntuhan kapasitas dukung tanah. Beban yang digunakan pada perhitungan manual ini adalah beban sendiri tanah dan juga beban gempa. Berikut ini adalah perhitungan stabilitas dinding penahan tanah dan *bored pile* dengan beban gempa.

1. Gaya Vertikal

Gaya gaya seperti berat tanah di belakang dinding penahan tanah, berat struktur dinding penahan tanah, dan *bored pile* termasuk sebagai gaya vertikal. Gaya gaya tersebut dapat dibagi pias-pias yang dapat dilihat pada gambar 5.34 berikut.

Gambar 5. 34 Pembagian Pias-Pias pada Gaya Vertikal Dinding Penahan Tanah dengan Perkuatan *Bored pile*

Berikut ini adalah contoh perhitungan gaya vertikal pada pias 1 pada dinding penahan tanh.

Volume	$= A \times 1$
	= 7 x 1
	$= 7 m^3$
Berat (W)	= volume x berat volume tanah timbunan
	= 7 x 1,7839
	= 12.4872 ton

Dengan menggunakan cara yang sama berikut ini adalah tabel 5.6 rekapitulasi perhitungan gaya vertikal dan momen.

No pias	Luas (m2)	Berat (ton)	Jarak dari O (m)	Momen ke O (tm)
1	7,0000	12,4873	1,6	19,980
2	2,0970	5,1376	0,633	4,881
3	1,7500	4,2813	0,95	2,355
4	1,2600	3,0826	1,05	3,237
5	1,2566	3,0743	0,500	1,537
	total	28,0631		31,9890

Tabel 5. 6 Rekapitulasi Perhitungan Gaya Vertikal dan Momen Terhadap Titik O pada Dinding Penahan Tanah dengan Perkuatan *Bored Pile*

2. Tekanan Tanah Lateral

Tekanan tanah lateral adalah tekanan tanah aktif dan tenakan tanah pasif yang terjadi pada kondisi normal.tekanan tanah aktif adalah tekanan yang mendorong tanah di belakang dinding penahan tanah. Sedangkan tanah pasif adalah tekanan yang menahan tanah yang terletak di depan dinding penahan tanah. Diagram tekanan tanah lateral ditampilkan pada gambar 5.35 dibawah ini.

Gambar 5. 35 Diagram Tekanan Tanah Lateral

a. Koefisien Tekanan Tanah Aktif

Ka_{tim} = $tan^2 \left(45 - \frac{\varphi}{2}\right)$

$$= tan^2(45 - 15)$$

= 0,333

b. Perhitungan Tekanan Tanah Aktif

Dibawah ini adalah contoh perhitungan tekanan tanah aktif dan pasif pada dinding penahan tanah

Pa1	$= -2 \times ct \times \sqrt{Ka \ tim} \times h \ tim$			
	$= -2 \times 5 \times \sqrt{0,333} \times 7,6$			
	= -4,473 ton			
Pa2	= 0,5 \times γb tim \times h tim \times Ka tim \times h tim			
	$= 0,5 \times 1,7839 \times 7,6 \times 0,333 \times 7,6$			
	= 17,173 ton			

Berikut adalah rekapitulasi tekanan tanah aktif

Tabel 5. 7 Hasil Rekapitulasi Perhitungan Tekanan Tanah Aktif padaDinding Penahan Tanah dengan Perkuatan Bored Pile

Tekanan	Pumus	Gaya	Lengan	Momen
Tanah	Kullius	(ton)	ke O	(Tm)
Pa1=	$-2 \times ct \times \sqrt{Ka \ tim} \times h \ tim$	-4,532	3,8	-17,220
Pa2=	$0,5 \times \gamma b tim \times h tim \times Ka tim$			
	\times h tim	17,628	2,5333	44,657
		13,096		27,437

c. Tekanan Tanah Dinamis

Tekanan tanah dinamis dihitung berdasarkan SNI 2833-2016 pasal 9.6. Berikut ini adalah contoh perhitungan tekanan tanah dinamis pada dinding penahan tanah

Berikut ini adalah diagram tekanan tanah dinamis yang dapat dilihat pada gambar 5.36 dibawah ini

Gambar 5. 36 Diagram Tekanan Tanah Dinamis pada Dinding Penahan Tanah dan Bored Pile

Berikut perhitungan gaya tekanan tanah dinamis.

Pae
$$= \frac{1}{2} \times \gamma \times ht^{2} \times (1 - kv) \times kae \times B$$
$$= \frac{1}{2} \times 1,7839 \times 7,6^{2} \times (1 - 0) \times 0,5545 \times 1$$
$$= 28,5665 \text{ ton}$$
Lae
$$= \frac{1}{2} \times H$$
$$= \frac{1}{2} \times 7,6$$
$$= 3,8 \text{ m}$$
Mae
$$= \text{pae x lae}$$
$$= 28,5665 \times 3,8$$
$$= 108,5528 \text{ Tm}$$
Berikut adalah perhitungan tekanan tanah aktif yang dapa

Berikut adalah perhitungan tekanan tanah aktif yang dapat dilihat pada Tabel 5.8 dibawah ini

Tabel 5. 8 Hasil Rekapitulasi Perhitungan Tekanan Tanah Aktif padaDinding Penahan Tanah dan Bored Pile dengan Beban Gempa

Tekanan Tanah	Rumus	Gaya (ton)	Lengan Ke O (M)	Momen (Tm)
Pa 1	$-2 \times ct \times \sqrt{Katim} \times htim$	-4,532	3,800	-17,220
Pa 2	$0,5 \times \gamma \ tim \times h \ tim \times Ka \ tim \times h \ tim$	17,628	2,533	44,657
Pae	$\frac{1}{2} \times \gamma \times ht^2 \times (1 - Kv) \times Kae \times B$	28,5665	3,800	108,5528
	Jumlah	41,663		135,99

Kpe
$$= \frac{\cos^{2}(\varphi - \theta + \beta a)}{\cos \theta \times \cos^{2} \beta a \times \cos(\delta + \theta - \beta a)} \times \left[1 - \sqrt{\frac{\sin(\delta + \varphi) \times \sin(\varphi - \theta + i)}{\cos(\delta + \varphi - \beta a) \times \cos(i - \beta a)}}\right]^{-2}$$
$$= \frac{\cos^{2}(30 - 16, 7 + 0)}{\cos 16, 7 \times \cos^{2} 0 \times \cos(30 + 16, 7 - 0)} \times \left[1 - \frac{\cos^{2}(30 - 16, 7 + 0)}{\cos 16, 7 \times \cos^{2} 0 \times \cos(30 + 16, 7 - 0)}\right]^{-2}$$

= 0,5545

Berikut perhitungan gaya tekanan tanah dinamis.

Ppe
$$= \frac{1}{2} \times \gamma \times ht^{2} \times (1 - kv) \times kae \times B$$
$$= \frac{1}{2} \times 1,7839 \times 2^{2} \times (1 - 0) \times 0,5545 \times 1$$
$$= 7,9132 \text{ ton}$$
Lpe
$$= \frac{1}{2} \times H$$
$$= \frac{1}{2} \times 4$$
$$= 1 \text{ m}$$
Mpe
$$= \text{pae x lae}$$
$$= 7,9132 \times 2$$
$$= 15,8263 \text{ tm}$$

Dengan ini rekapitulasi perhitungan tekanan tanah pasif menjadi seperti pada tabel 5.9 dibawah ini

Tabel 5. 9 Hasil Rekapitulasi Perhitungan Tekanan Tanah Pasif padaDinding Penahan Tanah dan Tiang Pancang dengan Beban Gempa

Tekanan Tanah	gaya (ton)	Lengan ke O	Momen(tm)
Pp1=	7,062	2,000	14,125
Pp2=	42,813	1,333	57,085
Ppe=	7,9132	2	15,8263
Jumlah	57,789		87,036

1. Stabilitas Dinding Penahan Tanah dengan Perkuatan Bored Pile

a. Stabilitas Terhadap Geser

Stabilitas terhadap pergeseran dinding penahan tanah dihitung dengan menganggap bahwa struktur dinding penahan tanah dan berat tanah lah yang akan menahan tahanan geser yang diberikan oleh dinding penahan tanah maka gaya lateral yang masih harus ditahan oleh *bored pile* adalah.

H =
$$Pa - \Sigma W - Pp$$

= 41,663 - 24,9888 - 57,789
= -41,1151 < 0

Karena nilai gaya lateral lebih kecil daripada gaya aksial yang ditahan oleh *bored pile*, maka untuk mengetahui nilai angka keamanan terhadap pergeseran dilakukan dengan menganggap tahanan geser oleh dinding penahan tanah sepanjang 2,1 m pada tanah dasar dinding penahan tanah. Sehingga, $\delta b = \theta$ tanah dasar dan cd = c tanah dasar.

Rh = cd x B + (
$$\Sigma$$
W x tan δ b)
= 0,57 x 2,1 + 24,9888 x tan 21,48°
= 11,4315 ton
Fgs = $\frac{\Sigma$ Rh + Pp}{\SigmaPa
= $\frac{11,4315 + 57,789}{41,663}$
= 1,6615

Dengan Fgs > 1,5, maka stabilitas dinding penahan tanahan terhadap stabilitas pergeseran terpenuhi

b. Stabilitas Terhadap Guling

Stabilitas guling terhadap dinding penahan tanah dihitung dengan membandingkan momen akibat dari tekanan tanah lateral aktif pada tanah didepan dinding yang berotasi pada ujung kaki depan pelat pondasi (momen yang mendorong) dengan momen akibat dari momen berat sendiri dinding penahan tanah dan tanah yang ada di atasnya serta momen akibat tekanan tanah pasif yang ada di belakang dinging penahan tanah (momen yang menahan).

 $\Sigma Mpenahan = \Sigma Mw + \Sigma Mpasif$ = 31,9890 + 87,036 = 119,0247 Tm $\Sigma Mpendorong = \Sigma Maktif$

$$= 135,99 \text{ tm}$$

$$= \frac{\Sigma \text{Mpenahan}}{\Sigma \text{Mpendorong}}$$

$$= \frac{119,0274}{135,99}$$

$$= 0,875$$

Karena Fgl kurang dari 1,5, maka stabilitas terhadap guling pada dinding penahan tanah tidak terpenuhi, oleh karena itu stabilitas guling ditentukan oleh kekuatan tiang dalam menahan beban momen. Momen yang dapat ditahan oleh tiang adalah

Lapisan 3 kedalaman -15,00m

$$K_{p} = \tan^{2} \times (45 + \frac{\varphi}{2})$$

$$= \tan^{2} \times \left(45 + \frac{21,48}{2}\right)$$

$$= 2,1555$$
Lapisan 4 kedalaman -20,00m
$$K_{p} = \tan^{2} \times (45 + \frac{\varphi}{2})$$

$$= \tan^{2} \times (45 + \frac{22,86}{2})$$

$$= 2,2705$$
Lapisan 5 kedalaman -25,00m
$$K_{p} = \tan^{2} \times (45 + \frac{\varphi}{2})$$

$$= \tan^{2} \times (45 + \frac{20,78}{2})$$

$$= 2,0997$$
Mmak
$$= \gamma \times D \times L^{3} \times Kp$$

$$= (14,126 \times 0,4 \times 10^{3} \times 2,1555) + (14,372 \times 0,4 \times 10^{3} \times 2,271) + (14,107 \times 0,4 \times 10^{3} \times 2,099)$$

$$= 2044,915 \text{ kNm}$$

$$= 208,4261 \text{ tm}$$
Sehingga SF guling menjadi
Maktif = 135,99 \text{ tm}
Mmak = 208,4261 tm

Fgl
$$= \frac{\Sigma M \text{penahan}}{\Sigma M \text{pendorong}}$$
$$= \frac{208,4261}{135,99}$$
$$= 1,5327$$

Karena nilai Fgl \geq 1,5, maka stabilitas terhadap penggulingan dinding penahan tanah sudah terpenuhi.

c. Stabilitas Terhadap Kapasitas Dukung Bored Pile

asd Kapasitas dukung ultimit bored pile dihitung dengan persamaan O'neill dan Reese (1989) sebagai berikut

Qu = qb + qs - wp1) Kapasitas Ujung Qb = ab x fbAb = 0,25 x π x d² $= 0,25 \ge \pi \ge 0,4^2$ = 0,1257 m2 Fb = $0.6 \text{ x} \text{ or } \text{x} \text{ n60} \le 4500 \text{ kPa}$ $= 0.6 \times 100 \times 35$ = 2100 kPa Qb = $0,126 \ge 2100$ = 26,9005 tonBerat tiang bor ialah sebagai berikut Wp = $(0,25 \times \pi \times d^2 \times L) \times \gamma$ beton = $(0,25 \times \pi \times 0,4^2 \times 10) \times 2,4$ = 3,0743 ton

Akibat tiang terendam air tanah seluruhnya, sehingga tiang akan mengalami gaya angkat ke atas.

$$U = (0,25 \pi x d^2 x L) x \gamma w$$

= (0,25 x \pi x 0,4² x 10) x 9,81 / 9,81
= 1,2567 ton
Wp' = Wp - U
= 3,0743 - 1,2567

= 1,8177 ton

2) Kapasitas Selimut

Berikut adalah contoh perhitungan tahanan gesek ultimit *bored pile*

 $As1 = \pi x d x t$ $=\pi \ge 0.4 \ge 2.94$ $= 3,6945 \text{ m}^3$ Po1'= $(\gamma 3 - \gamma w) \times h1$ = (19,219-9,81) x 2,94 $= 27,659 \text{ kN/m}^2$ Ζ = h atas + (h1/2) = 0 x (2,94.2)= 1,47N60 = 20 > 15, maka nilai beta adalah Beta = 1,5 - 0,245 \sqrt{z} $= 1,5 - 0,245 \sqrt{z}$ = 1,2029 Qs = as1 x po1' rata-rata x beta = 3,695 x 13,83 x 1,203 = 61,6439 ton/ 9,81 = 6,2654 ton

Dengan cara yang sama, berikut rekapitulasi perhitungan tahanan gesek ultimate tiang pancang pada tabel 5.10 dibawah ini.

Tabel 5. 10 Rekapitulasi Tahanan Gesek Ultimit *Bored Pile* dengan Beban Gempa

Tahanan gesek	Kedalaman (m)	As (m2)	Po' (kN/m3)	Po' rerata (kN/m3)	Z (m)	β	Qs (ton)
Qs1	2,94	3.6945	27.6595	13,8298	1,47	1,2029	6,2654

Lanjutan Tabel 5. 11 Rekapitulasi Tahanan Gesek Ultimit *Bored Pile* dengan Beban Gempa

Qs2	5	6,2832	73,8645	50,7620	5,44	0,9285	30,1900
Qs3	2,06	2,5887	92,3345	83,0995	8,97	0,7662	16,8021
ΔQs						53,2575	

3) Kapasitas Ultimit

berikut adalah perhitungan kapasitas dukung ultimit *bored pile* Qu = qb + qs - wp'

$$= 26,9005 + 53,2575 - 1,8177$$

$$= 78.3403$$
 ton

4) Kapasitas Ijin

berikut adalah perhitungan kapasitas ijin ultimit *bored pile* Qall $=\frac{qu}{sf}$

$$=\frac{78,3403}{3}$$

= 26,1134 > 26,0082 (aman)

5.5 Analisis Stabilitas Lereng dengan Perkuatan Dinding Penahan Tanah dan Tiang Pancang variasi diameter tiang 30cm

Analisis stabilitas lereng dengan perkuatan dinding penahan tanah dan tiang pancang perlu dilakukan untuk mengetahui kekuatan dinding penahan tanah dan tiang pancang dalam menahan beban-beban yang bekerja. Penggalian lereng dilakukan guna memberi ruang lebih untuk dimensi dinding penahan tanah yang di perbesar dan ruang pada muka dinding penahan tanah agar tanah urug di depan dinding tidak mudah terkikis aliran sungai. Berikut adalah gambar 5.37 penampang lereng dengan dinding penahan tanah dan tiang pancang dan gambar 5.38 dimensi dinding penahan tanah dan tiang pancang yang digunakan.

Gambar 5. 37 Penampang Lereng dengan Dinding Penahan Tanah dan Tiang pancang

Gambar 5. 38 Dimensi Dinding Penahan Tanah dan Tiang Pancang

Analisis dilakukan dengan menggunakan dua metode yaitu menggunakan program plaxis dan menggunakan perhitungan manual.

5.5.1 Data Dinding Penahan Tanah dan Tiang Pancang

Data-data yang digunakan dalam analisis ini adalah sebagai berikut.

- 1. Dinding penahan tanah tipe kantilever.
- 2. Dinding penahan tanah dan tiang pancang menggunakan beton bertulang.
- 3. Berat volume beton bertulang yang digunakan adalah 2,4 ton/m³.
- 4. Mutu beton yang digunakan adalah fc' K-600.

5.5.2 Analisis Stabilitas Lereng dengan Perkuatan Dinding Penahan Tanah dan Tiang Pancang Menggunakan Program Plaxis.

Analisis stabilitas lereng dengan perkuatan dinding penahan tanah dan tiang pancang menggunakan program plaxis dilakukan dalam kondisi dengan timbunan. Beban yang bekerja ialah beban gempa dengan nilai percepatan gempa sebesar 0,6 g. analisis dimodelkan secara dua dimensi pada potongan melintang sungai.

 Permodelan Dinding Penahan Tanah pada Program Plaxis permodelan potongan melintang lereng dengan perkuatan dinding penahan tanah dan tiang pancang dalam program plaxis dilakukan secara dua dimensi dengan memasukkan seluruh parameter data geoteknik serta beban yang bekerja yaitu beban gempa.

Gambar 5. 39 Permodelan Potongan Melintang Menggunakan Dinding Penahan Tanah dan Tiang Pancang pada Program Plaxis

2. Pembuatan Jaring Elemen

Setelah menerapkan kondisi lapangan pada model selanjutnya membagi model geometri menjadi elemen-elemen imajiner yang biasanya disebut *meshing*. *Meshing* pada program plaxis menggunakan jenis fine. M*eshing* atau jaring-jaring elemen yang telah dibuat dapat dilihat pada gambar 5.40 dibawah ini.

Gambar 5. 40 Jaring-Jaring Elemen Dinding Penahan Tanah dan Tiang Pancang

3. Perhitungan Tegangan Awal

perhitungan tegangan awal atau biasa disebut sebagai beban gravitasi (gravity load) dan dalam fase perhitungan hanya melibatkan struktur tanah dan batuan pembentuk lereng. Dibawah ini adalah gambar 5.41 tegangan awal.

Gambar 5. 41 Perhitungan Tegangan Awal Dinding Penahan Tanah dan Tiang Pancang

4. Tahap *Calculation*

setelah data dan parameter dimasukkan, maka dilanjutkan perhitungan yaitu dengan memasukkan tab parameter dengan plastic analysis untuk mengetahui displacement yang terjadi, phi/c reduction untuk mengetahui angka keamanan dan staged construction sebagai loading input. Calculation dalam plaxis terdapat beberapa tahapan untuk analisis yaitu gravity load, berat sendiri, SF total tanpa beban gempa, dan SF total dengan beban gempa. Dibawah ini adalah gambar 5.42 tab plaxis calculation pada lereng dengan dinding penahan tanah dan tiang pancang.

Beneral [Susanchus] Phase Number (783) Start file genesi Lag info	Multipliers Previe 1	и 2005	•	Calculation type Ph/c reduction Commonts	Advanced	•			
Identification	Phase no.	Start from	Calculation	Loadro hout	Earar Next	neters	t 🔤	Delete	
Tritial phase	0	0	N/A	N/A	0,00 day	0 0	0		
behan sendri behan sendri behan sendri	1	0	Plastic Datastic anal	Total multipliers Total multipliers	0,00 day	0			
🕈 S ^a bebar sendri	3	1	Phi/c reduction	Incremental multi	0,00 day	ò			
In 32 perior busice	4	2	Phi/c reduction	Incremental multi	. 0,00 day	0			

Gambar 5. 42 Proses Perhitungan Dinding Penahan Tanah dan Tiang Pancang pada Plaxis.

5. Hasil Output dengan Program Plaxis

Setelah perhitungan menggunakan program Plaxis selesai, tahap selanjutnya adalah melihat besarnya *displacement* keruntuhan lereng asli. Hasil perhitungan menggunakan program plaxis dijabarkan dalam poin-poin berikut ini.

a. Deformed Mesh

Hasil deformed mesh didapatkan nilai total displacement tanpa beban gempa sebesar 71,28 x 10^{-3} m dan nilai total displacement dengan beban gempa sebesar 487,93 x 10^{-3} m. berikut adalah gambar 5.43 dan gambar 5.44 deformed mesh dinding penahan tanah dan tiang pancang dengan dan tanpa beban gempa.

Gambar 5. 43 Deformend Mesh Dinding Penahan Tanah dan

Gambar 5. 44 Deformend Mesh Dinding Penahan Tanah dan Tiang dengan Beban Gempa

b. Effective Stresses

Nilai effective stresses tanpa beban gempa sebesar -292,76 kN/m² dan nilai effective stresses dengan beban gempa sebesar -292,76 kN/m². Berikut adalah gambar 5.45 dan gambar 5.46 effective stresses dinding penahan tanah dan tiang pancang dengan dan tanpa beban gempa.

Gambar 5. 46 Effective Stresses Dinding Penahan Tanah dan Tiang pancang Dengan Beban Gempa

c. Arah Pergerakan Dan Daerah Potensial Longsor

Gambar 5.47 dan gambar 5.48 dibawah ini adalah arah pergerakan dan daerah potensial longsor lereng yang diperkuat dengan dinding penahan tanah dan tiang pancang tanpa beban gempa. gambar 5.49 dan gambar 5.50 adalah arah pergerakan dan daerah potensial longsor lereng yang diperkuat dinding penahan tanah dan tiang pancang dengan beban gempa.

Gambar 5. 47 Arah Pergerakan Dinding Penahan Tanah dan Tiang pancang Tanpa Beban Gempa

Gambar 5. 48 Daerah Potensial Dinding Penahan Tanah dan Tiang Pancang Tanpa Beban Gempa

d. Angka Aman

Gambar 5.51 adalah nilai angka aman tanpa beban gempa dengan perkuat dinding penahan tanah dan tiang pancang dan gambar 5.52 adalah nilai angka aman pada kondisi dengan beban gempa.

Mdisp:	N/A 🚖	∑ -Mdisp:	1,0000
AloadA:	N/A	∑ -MloadA:	1,0000
MloadB:	N/A	∑ -MloadB:	1,0000
Mweight:	N/A	∑ -Mweight:	1,0000
Maccel:	N/A	Σ -Maccel:	0,0000
Msf:	0,1000	Σ -Msf:	1,5823

Gambar 5. 52 Angka Aman Dinding Penahan Tanah dan Tiang Pancang dengan Beban Gempa

Lereng yang diperkuat dengan dinding penahan tanah dan *bored pile* tanpa beban memiliki nilai angka aman 1,5823, sedangkan pada kondisi dengan beban gempa nilai aman didapat 0,7523. Untuk memastikan nilai angka aman perlu dilakukan perhitungan secara manual pada perkuatan dinding penahan tanah dan *bored pile*.

5.5.3 Analisis Stabilitas Lereng dengan Perkuatan Dinding Penahan Tanah dan Tiang pancang menggunakan Perhitungan Manual

Pada perhitungan stabilitas dinding penahan tanah dan tiang pancang terhadap kondisi tanpa beban gempa ini akan didapatkan nilai angka aman dari geser, guling, dan keruntuhan kapasitas dukung tanah. Gambar 5.53 adalah sketsa tanah dan dinding penahan tanah dengan tiang pancang.

Gambar 5. 53 Sketsa Dinding Penahan Tanah Kantilever dan Tiang Pancang

Berikut ini adalah perhitungan stabilitas dinding penahan tanah dan *bored pile* dengan tinjauan eksternal.

1. Gaya Vertikal

Dalam perhitungan gaya vertikal ini, gaya-gaya yang bekerja meliputi gaya akibat berat struktur dinding penahan tanah dan tiang pancang, serta akibat berat tanah yang berada di belakang dinding penahan tanah tersebut. Adapun gaya-gaya tersebut dibagi dalam pias-pias pada dinding penahan tanah yang dapat dilihat pada Gambar 5.54 sebagai berikut.

Gambar 5. 54 Pembagian Pias-Pias pada Gaya Vertikal Dinding Penahan Tanah dengan Perkuatan Tiang Pancang

Contoh perhitungan untuk mencari gaya vertikal pada pias 1 pada dinding penahan tanah adalah sebagai berikut.

Volume = A x 1 = 7 x 1,225 = 8,575 m³ Berat W = volume x berat volume tanah timbunan = 8,575 x 1,7839 = 15,2969 ton.

Hasil rekapitulasi perhitungan gaya vertikal dan momen dapat dilihat pada Tabel 5.11 sebagai berikut.

Tabel 5. 1	2 Hitunga	n Momer	n Vertikal	Terhadap	Titik O Pad	la Dinding
	Penahan	Tanah de	ngan Perl	kuatan Tia	ng Pancang	1

No pias	Luas (m2)	Berat (ton)	Jarak dari O (m)	Momen ke O (Tm)
1	8,5750	15,2969	2,1875	33,462
2	2,1000	5,1376	1,4250	7,321
3	1,4000	3,4251	1,0750	3,682
4	1,9600	4,7951	1,4000	6,713
5	0,7069	1,7293	1,0250	1,773
total		30,3840		54,4831

2. Tekanan Tanah lateral

Pada perhitungan tekanan tanah lateral pada dinding penahan tanah, tekanan tanah yang terjadi adalah tekanan tanah aktif dan pasif pada kondisi normal. Tekanan tanah aktif adalah tekanan yang mendorong tanah yang terletak di belakang dinding penahan tanah. Sedangkan tekanan tanah pasif adalah tekanan yang menahan tanah yang terletak di depan dinding penahan tanah. Secara detail, diagram tekanan tanah lateral dapat dilihat pada Gambar 5.55 sebagai berikut.

a. Koefisien Tekanan Tanah Aktif

Ka tim =
$$\tan^2 (45 - \frac{\varphi}{2})$$

= $\tan^2 (45 - 15)$
= 0,333

b. Perhitungan Tekanan Tanah Aktif

Berikut ini merupakan contoh perhitungan tekanan tanah aktif dan pasif pada dinding penahan tanah.

Pa1	$= -2 \text{ x ct } x \sqrt{Ka tim} \text{ x h tim}$
	= -2 x 5 x √0,333 x 7
	= -4,532 ton
Pa2	= 0,5 x γ b tim x h tim x Ka tim x h tim
	= 0,5 x 1,7839 x 7 x 0,333 x 7
	= 17,628 ton

Adapun rekapitulasi perhitungan tekanan tanah aktif dapat dilihat pada Tabel 5.12 sebagai berikut.

Tabel 5.	13 Hasil Re	kapitulasi Per	hitungan Tekan	an Tanah A	Aktif Pada
D	inding Penał	han Tanah den	igan Perkuatan	Tiang Pano	ang

Tekanan	Rumus	Gaya	Lengan ke	Momen
Tanah		(ton)	O (m)	(tm)
Pa 1	-2.c tim.√ <i>Ka tim</i> .h tim	-4,532	3,85	-17,447
	0,5.γb tim.h tim.Ka tim.h			
Pa 2	tim	17,628	2,5667	45,245
	Σ	13,096		27,798

c. Koefisien Tekanan Tanah Pasif

Kp1	$=\frac{1}{Ka_{timbunan}}$
	$=\frac{1}{0,3333}$
	= 3

d. Perhitungan Tekanan Tanah Pasif

Pp1	$= 2 \text{ x ct } x \sqrt{Kp1} \text{ x h tim}$			
	$= 2 \times 5 \times \sqrt{3} \times 4$			
	= 7,062 ton			
Pp2	= 0,5 x γ b tim x h tim x Kp1 x h tim			
	= 0,5 x 1,7839 x 4 x 3 x 4			
	= 42,813 ton			

Tabel :	5. 14 Hasil Rekap	itulasi Perhitu	ngan Tekana	in Tanah	Pasif Pada
1	Dinding Penahan	Tanah dengan	Perkuatan T	Fiang Pan	cang

Tekanan Tanah	Rumus	Gaya (ton)	Lengan ke O	Momen (tm)
Pp1= -2.c tim. $\sqrt{Ka \ tim}$.h tim		7,062	2	14,125
Pp2=	0,5.γb tim.h tim.Ka tim.h tim	42,813	1,3333	57,085
	Σ	49,876		71,209

- 3. Stabilitas Dinding Penahan Tanah dengan Perkuatan Tiang Pancang
 - Stabilitas Terhadap Geser a.

Perhitungan stabilitas terhadap penggeseran dinding penahan tanah, dilakukan dengan menganggap bahwa tahanan geser yang diberikan oleh dinding penahan tanah ditahan oleh berat sendiri tanah dan struktur dinding penahan tanah itu sendiri, serta kekuatan pondasi tiang pancang dalam menahan gaya lateral yang bekerja.

Gaya aksial sepenuhnya ditahan oleh tiang pancang tunggal = 28,6547ton.

Maka gaya lateral yang masih harus ditahan oleh tiang pancang adalah sebagai berikut.

$$H = Pa - \Sigma W - Pp$$

= 13,096-28,6547-49,876
= -66,454 < 0

Karena nilai gaya lateral lebih kecil daripada gaya aksial yang ditahan oleh tiang pancang, maka untuk mengetahui nilai angka keamanan terhadap pergeseran dilakukan dengan menganggap tahanan geser diberikan oleh dinding penahan tanah sepanjang 2,8 m pada tanah dasar dinding penahan tanah. Sehingga, $\delta b = \phi$ tanah dasar dan cd = c tanah dasar.

Rh

Rh = cd x B + (
$$\Sigma$$
W) x tan δ b
= 0,57 x 2,8 + 28,6547 x tan 21,48°
= 12,8719 ton
Fgs = $\frac{\Sigma Rh + Pp}{\Sigma Pa}$
= $\frac{12,8719+49,876}{13,096}$
= 4 7913

Fgs > 1,5, maka stabilitas dinding penahan tanah terhadap stabilitas penggeseran terpenuhi.

b. Stabilitas Terhadap Guling

Stabilitas guling terhadap dinding penahan tanah dihitung dengan

membandingkan momen akibat dari tekanan tanah lateral aktif pada tanah didepan dinding yang berotasi pada ujung kaki depan pelat pondasi (momen yang mendorong) dengan momen akibat dari momen berat sendiri dinding penahan tanah dan tanah yang ada di atasnya serta momen akibat tekanan tanah pasif yang ada di belakang dinging penahan tanah (momen yang menahan).

$\Sigma M_{penahan}$	$=\Sigma Mw + \Sigma M pasif$	
	= 54,4831 + 71,209	
	= 124,1601 Tm	
$\Sigma M_{pendorong}$	$=\Sigma Maktif$	
	= 27,7978 tm	
Fgl	$= \frac{\Sigma M penahan}{\Sigma M pendorong}$	
	$=\frac{124,1601}{27,7978}$	
	= 4,4666	

Karena nilai Fgl > 1,5, maka stabilitas terhadap guling pada dinding penahan tanah terpenuhi.

c. Stabilitas Terhadap Kapasitas Dukung Tiang Pancang
 Gambar 5.56 dibawah ini adalah sketsa desain pondasi tiang pancang
 dan sketsa susunan lapisan tanah

Gambar 5. 56 Sketsa Susunan Lapisan Tanah dan Lapisan N-SPT

1) Kapasitas Ujung Ap = $1/4 \times \pi \times D^2$ $= \frac{1}{4} \times \pi \times 0,3^{2}$ $= 0,0707 \text{ m}^2$ $10D = 10 \times D$ $= 10 \times 0.3$ = 3 $4D = 4 \times D$ $= 4 \times 0,3$ = 1,2 $=\frac{(2\times35)+(1\times32)+(1,2\times40)}{3+1,2}$ N_b = 51,2 $Q_p = 40 \times N_b \times A_p$ $= 40 \times 51,2 \times 0,0707$ = 144,7646 Ton **Kapasitas Selimut** 2) Perhitungan daya dukung selimut tiang dilakukan berdasarkan lapisan tanah hingga kedalaman 10 m. $Q_s = 0.2 \times N - SPT \times A_s$ $= 0,2 \times N - SPT \times \pi \times D \times L$ $= 0,2 \times 30,4 \times \pi \times 0,3 \times 10$ = 57,3027 Ton 3) Kapasitas Ultimit Berikut adalah perhitungan kapasitas dukung ultimit tiang pancang Qu = qb + qs - wp'= 144,7646 + 57,3027 - 1,0224= 201,0448 ton 4) Kapasitas Ijin

Berikut adalah perhitungan kapasitas ijin ultimit tiang pancang

$$Qall = \frac{qu}{sf}$$

= $\frac{201,0448}{3}$
= 67,01493 > 28,6547 (aman)

5.5.4 Analisis Stabilitas Lereng dengan Perkuatan Dinding Penahan Tanah dan Tiang pancang menggunakan Perhitungan dengan Beban Gempa

Pada perhitungan stabilitas dinding penahan tanah dan tiang pancang dengan beban gempa ini akan didapatkan nilai angka aman dari geser, guling, dan keruntuhan kapasitas dukung tanah. Beban yang digunakan pada perhitungan manual ini adalah beban sendiri tanah dan juga beban gempa. Berikut ini adalah perhitungan stabilitas dinding penahan tanah dan tiang pancang dengan beban gempa.

1. Gaya Vertikal

Gaya-gaya seperti berat tanah di belakang dinding penahan tanah, berat struktur dinding penahan tanah, dan tiang pancang termasuk sebagai gaya vertikal. Gaya gaya tersebut dapat dibagi pias-pias yang dapat dilihat pada gambar 5.57 berikut.

Gambar 5. 57 Pembagian Pias-Pias pada Gaya Vertikal Dinding Penahan Tanah dengan Perkuatan Tiang Pancang

Berikut ini adalah contoh perhitungan gaya vertikal pada pias 1 pada dinding penahan tanh.

Volume	= A x 1,225
	= 7 x 1,225
	$= 8,575 \text{ m}^3$
Berat (W)	= volume x berat volume tanah timbunan
	= 8,575 x 1,7839
	= 15,297 ton

Dengan menggunakan cara yang sama berikut ini adalah tabel 5.14 rekapitulasi perhitungan gaya vertikal dan momen.

Tabel 5. 15 Rekapitulasi Perhitungan Gaya Vertikal dan Momen TerhadapTitik O pada Dinding Penahan Tanah dengan Perkuatan Tiang Pancang

No pias	Luas (m2)	Berat (ton)	Jarak dari O (m)	Momen ke O (tm)
1	8,5750	15,297	2,1875	33,462
2	2,1000	5,138	1,4250	7,321
3	1,4000	3,425	1,0750	3,682
4	1,9600	4,795	1,4000	6,713
5	0,7069	1,729	1,0250	1,773
total		30,3840		54,4831

2. Tekanan Tanah Lateral

Tekanan tanah lateral adalah tekanan tanah aktif dan tenakan tanah pasif yang terjadi pada kondisi normal.tekanan tanah aktif adalah tekanan yang mendorong tanah di belakang dinding penahan tanah. Sedangkan tanah pasif adalah tekanan yang menahan tanah yang terletak di depan dinding penahan tanah. Diagram tekanan tanah lateral ditampilkan pada gambar 5.58 dibawah ini.

Gambar 5. 58 Diagram Tekanan Tanah Lateral

a) Koefisien Tekanan Tanah Aktif

Ka tim =
$$\tan^2 (45 - \frac{\varphi}{2})$$

= $\tan^2 (45 - 15)$
= 0,333

b) Perhitungan Tekanan Tanah Aktif

Berikut ini merupakan contoh perhitungan tekanan tanah aktif dan pasif pada dinding penahan tanah.

Pa1 = -2 x ct x
$$\sqrt{Ka \ tim}$$
 x h tim
= -2 x 5 x $\sqrt{0,333}$ x 7
= -4,532 ton
Pa2 = 0,5 x γ b tim x h tim x Ka tim x h tim
= 0,5 x 1,7839 x 7 x 0,333 x 7
= 17,628 ton

Adapun rekapitulasi perhitungan tekanan tanah aktif dapat dilihat pada Tabel 5.15 sebagai berikut.

Tabel 5. 16 Hasil Rekapitulasi Perhitungan Tekanan Tanah Aktif PadaDinding Penahan Tanah dengan Perkuatan Tiang Pancang

Tekanan	Decement	Gaya	Lengan ke	Momen
Tanah	Rumus	(ton)	O (m)	(Tm)
Pa 1	-2.c tim. $\sqrt{Ka \ tim}$.h tim	-4,532	3,850	-17,447
Do 2	0,5.γb tim.h tim.Ka			
ra 2	tim.h tim	17,628	2,567	45,245
S	Σ	13,096		27,798

c) Koefisien Tekanan Tanah Pasif

Kn1	1
крі	— Ka _{timbunan}
	$=\frac{1}{0,3333}$
	= 3
D 1 1	T 1 T

d) Perhitungan Tekanan Tanah Pasif

Pp1 = 2 x ct x $\sqrt{Kp1}$ x h tim = 2 x 5 x $\sqrt{3}$ x 4 = 7,062 ton Pp2 = 0,5 x γ b tim x h tim x Kp1 x h tim = 0,5 x 1,7839 x 4 x 3 x 4 = 42,813 ton

Tekanan	Dumus	Gaya	Lengan	Momen
Tanah	Kullius	(ton)	ke O	(tm)
Pp1=	-2.c tim. $\sqrt{Ka \ tim}$.h tim	7,062	2	14,125
Pn7-	0,5.γb tim.h tim.Ka tim.		1 3333	57 085
1 p2-	h tim	42,813	1,5555	57,005
	Σ	49,876		71,209

e) Tekanan Tanah Dinamis

Tekanan tanah dinamis dihitung berdasarkan sni 2833-2016 pasal 9.6. Berikut ini adalah contoh perhitungan tekanan tanah dinamis pada dinding penahan tanah

Berikut ini adalah diagram tekanan tanah dinamis yang dapat dilihat pada gambar 5.59 dibawah ini

Gambar 5. 59 Diagram Tekanan Tanah Dinamis pada Dinding Penahan Tanah dan Tiang Pancang

Berikut perhitungan gaya tekanan tanah dinamis.

Dengan ini rekapitulasi perhitungan tekanan tanah aktif menjadi seperti pada tabel 5.17 dibawah ini

Tabel 5. 18 Hasil Rekapitulasi l	Perhitungan Tekanan Tanah Aktif pada
Dinding Penahan Tanah dan	Tiang Pancang dengan Beban Gempa

Tekanan Tanah	Rumus	Gaya (tm)	Lengan Ke O (M)	Momen (tm)
Pa 1	$-2 \times ct \times \sqrt{Ka \ tim} \times h \ tim$	-4,532	3,850	-17,447
Pa 2	$0,5 \times \gamma \ tim \times h \ tim \times Ka \ tim \times h \ tim$	17,628	2,567	45,245
Pae	$\frac{1}{2} \times \gamma \times ht^2 \times (1 - Kv) \times Kae \times B$	29,323	3,850	112,894
	Jumlah	42,419		140,692

Berikut perhitungan gaya tekanan tanah dinamis.

$$P_{PE} = \frac{1}{2} \times \gamma \times ht^{2} \times (1 - kv) \times kae \times B$$

= $\frac{1}{2} \times 1,7839 \times 4^{2} \times (1 - 0) \times 0,5545 \times 1$
= 7,9131 ton
$$L_{PE} = \frac{1}{2} \times H$$

= $\frac{1}{2} \times 4$
= 2 m
$$M_{PE} = pae \times lae$$

= 7,9131 X 2
= 15,8263 tm

Dengan ini rekapitulasi perhitungan tekanan tanah pasif menjadi seperti pada tabel 5.18 dibawah ini

Tabel 5. 19 Hasil Rekapitulasi Perhitungan Tekanan Tanah Pasif pada
Dinding Penahan Tanah dan Tiang Pancang dengan Beban Gempa

Tekanan Tanah	gaya (ton)	Lengan ke O	Momen(tm)
Pp1=	7,062	2,000	14,125
Pp2=	42,813	1,333	57,085
Ppe=	7,9151	2	15,8263
Jumlah	57,789		87,036

3. Stabilitas Dinding Penahan Tanah Dengan Perkuatan Tiang Pancang

a. Stabilitas Terhadap Geser

Η

Perhitungan stabilitas terhadap geser pada dinding penahan tanah dilakukan dengan menganggap bahwa tahanan geser yang diberikan dari dinding penahan tanah ditahan oleh berat sendiri tanah dan struktur dinding penahan tanah itu sendiri. Serta kekuatan pondasi tiang pancang menahan gaya lateral yang bekerja.

Gaya aksial sepenuhnya ditahan oleh tiang pancang tunggal sebesar 28,6547 ton

Maka gaya lateral yang perlu ditahan oleh tiang pancang adalah

 $= \Sigma Pa - \Sigma W - Pp$ = 42,419 - (28,6547 + 57,789) = -44,0243

Karena nilai gaya lateral lebih kecil daripada gaya aksial yang ditahan oleh tiang pancang, maka untuk mengetahui nilai angka keamanan terhadap pergeseran dilakukan dengan menganggap tahanan geser diberikan oleh dinding penahan tanah sepanjang 2,8 m pada tanah dasar dinding penahan tanah. Sehingga, $\delta b = \varphi$ tanah dasar dan cd = c tanah dasar.

Rh = cd x B + (
$$\Sigma$$
W) x tan δ b
= 0,57 x 2,8 + 28,6547 x tan 21,48°
= 12,8719 ton
Fgs = $\frac{\Sigma Rh + Pp}{\Sigma Pa}$
= $\frac{12,8719 + 57,789}{42,0243}$
= 1,6658

Fgs > 1,5, maka stabilitas dinding penahan tanah terhadap stabilitas penggeseran terpenuhi.

b. Stabilitas Terhadap Guling

Stabilitas guling terhadap dinding penahan tanah dihitung dengan membandingkan momen akibat dari tekanan tanah lateral aktif pada tanah didepan dinding yang berotasi pada ujung kaki depan pelat pondasi (momen yang mendorong) dengan momen akibat dari momen berat sendiri dinding penahan tanah dan tanah yang ada di atasnya serta momen akibat tekanan tanah pasif yang ada di belakang dinging penahan tanah (momen yang menahan).

$\Sigma M_{penahan}$	$=\Sigma Mw + \Sigma M pasif$
	= 54,4831 + 87,036
	= 139,9864 Tm
$\Sigma M_{pendorong}$	$=\Sigma Maktif$
Fgl	$= 140,692 \text{ Tm}$ $= \frac{\Sigma \text{Mpenahan}}{\Sigma \text{Mpendorong}}$ $= \frac{139,9864}{140,692}$
	= 0,9949

Karena nilai Fgl \leq 1,5, maka stabilitas terhadap penggulingan dinding penahan tanah belum terpenuhi, oleh karena itu stabilitas guling ditentukan oleh kekuatan tiang dalam menahan beban momen. Momen yang dapat ditahan oleh tiang adalah

Lapisan 3 kedalaman -15,00m

 $= \tan^2 \times (45 + \frac{\varphi}{2})$ K_p $= \tan^2 \times (45 + \frac{21,48}{2})$ = 2,1555 Lapisan 4 kedalaman -20,00m $=\tan^2 \times (45 + \frac{\varphi}{2})$ Kp $= \tan^2 \times (45 + \frac{22,86}{2})$ = 2,2705 Lapisan 5 kedalaman -25,00m $=\tan^2 \times (45 + \frac{\varphi}{2})$ Kp $= \tan^2 \times (45 + \frac{20,78}{2})$ = 2,0997 $= \gamma \times D \times L^3 \times Kp$ Mmak $=(14,126 \times 0.3 \times 10^{3} \times 2,1555) + (14,372 \times 0.3 \times 0.3)$ $10^3 \times 2,271) + (14,107 \times 0,3 \times 10^3 \times 2,099)$ = 1533,495 kNm = 156,3196 tm Sehingga SF guling menjadi Maktif = 140,692 tm= 156,3196 tm Mmak Σmpenahan Fgl Σmpendorong $=\frac{156,3196}{140,692}$ = 1,1111

Karena nilai Fgl \leq 1,5, maka stabilitas terhadap penggulingan dinding penahan tanah belum terpenuhi.

c. Stabilitas Terhadap Kapasitas Dukung Tiang Pancang
 Gambar 5.60 dibawah ini adalah sketsa desain pondasi tiang pancang

dan sketsa susunan lapisan tanah

1) Kapasitas Ujung $Ap = \frac{1}{4} \times \pi \times D^{2}$ $= \frac{1}{4} \times \pi \times 0,3^{2}$ $= 0,0707 \text{ m}^{2}$ $10D = 10 \times D$ $= 10 \times 0,3$ = 3 $4D = 4 \times D$ $= 4 \times 0,3$ = 1,2 $N_{b} = \frac{(2 \times 35) + (1 \times 32) + (1,2 \times 40)}{3 + 1,2}$ = 51,2 $Q_{p} = 40 \times N_{b} \times A_{p}$

- $= 40 \times 51,2 \times 0,0707$ = 144,7646 ton
- 2) Kapasitas Selimut

Perhitungan daya dukung selimut tiang dilakukan berdasarkan lapisan tanah hingga kedalaman 10 m.

$$Q_{s} = 0.2 \times N - SPT \times A_{s}$$
$$= 0.2 \times N - SPT \times \pi \times D \times L$$
$$= 0.2 \times 30.4 \times \pi \times 0.3 \times 10$$
$$= 57,3027 \text{ ton}$$

3) Kapasitas Ultimit

Berikut adalah perhitungan kapasitas dukung ultimit tiang pancang

Qu = qb + qs - wp'

$$= 144,7646 + 57,3027 - 1,0225$$

= 201,0448 ton

4) Kapasitas Ijin

Berikut adalah perhitungan kapasitas ijin ultimit tiang pancang Qall = $\frac{qu}{sf}$

$$=\frac{201,0448}{3}$$

= 67,0149 ton > 28,6547 ton (aman)

5.6 Analisis Stabilitas Lereng dengan Perkuatan Dinding Penahan Tanah dan Tiang Pancang variasi diameter tiang 40cm

Analisis stabilitas lereng dengan perkuatan dinding penahan tanah dan tiang pancang perlu dilakukan untuk mengetahui kekuatan dinding penahan tanah dan tiang pancang dalam menahan beban-beban yang bekerja. Penggalian lereng dilakukan guna memberi ruang lebih untuk dimensi dinding penahan tanah yang di perbesar dan ruang pada muka dinding penahan tanah agar tanah urug di depan dinding tidak mudah terkikis aliran sungai. Berikut adalah gambar 5.61 penampang lereng dengan dinding penahan tanah dan tiang pancang dan gambar 5.62 dimensi dinding penahan tanah dan tiang pancang yang digunakan.

Gambar 5. 61 Penampang Lereng dengan Dinding Penahan Tanah dan

Gambar 5. 62 Dimensi Dinding Penahan Tanah dan Tiang Pancang

Analisis dilakukan dengan menggunakan dua metode yaitu menggunakan program plaxis dan menggunakan perhitungan manual.

5.6.1 Data Dinding Penahan Tanah dan Tiang Pancang

Data-data yang digunakan dalam analisis ini adalah sebagai berikut

- 1. dinding penahan tanah tipe kantilever
- 2. dinding penahan tanah dan tiang pancang menggunakan beton bertulang
- 3. berat volume beton bertulang yang digunakan adalah 2,4 ton/m³
- 4. mutu beton yang digunakan adalah fc' K-600

5.6.2 Analisis Stabilitas Lereng dengan Perkuatan Dinding Penahan Tanah dan Tiang pancang menggunakan program plaxis.

Analisis stabilitas lereng dengan perkuatan dinding penahan tanah dan tiang pancang menggunakan program plaxis dilakukan dalam kondisi dengan timbunan. Beban yang bekerja ialah beban gempa dengan nilai percepatan gempa sebesar 0,6 g. analisis dimodelkan secara dua dimensi pada potongan melintang sungai.

1. Permodelan Dinding Penahan Tanah Pada Program Plaxis

Permodelan potongan melintang lereng dengan perkuatan dinding penahan tanah dan tiang pancang dalam program plaxis dilakukan secara dua dimensi dengan memasukkan seluruh parameter data geoteknik serta beban yang bekerja yaitu beban gempa.

Gambar 5. 63 Permodelan Potongan Melintang Menggunakan Dinding Penahan Tanah dan Tiang Pancang pada Program Plaxis

2. Pembuatan Jaring Elemen

Setelah menerapkan kondisi lapangan pada model selanjutnya membagi model geometri menjadi elemen-elemen imajiner yang biasanya disebut *meshing*. *Meshing* pada program plaxis menggunakan jenis fine. M*eshing* atau jaring-jaring elemen yang telah dibuat dapat dilihat pada gambar 5.64 dibawah ini.

Gambar 5. 64 Jaring-Jaring Elemen Dinding Penahan Tanah dan Tiang Pancang

3. Perhitungan Tegangan Awal

Perhitungan tegangan awal atau biasa disebut sebagai beban gravitasi (gravity load) dan dalam fase perhitungan hanya melibatkan struktur tanah dan batuan pembentuk lereng. Dibawah ini adalah gambar 5.65 tegangan awal.

Gambar 5. 65 Perhitungan Tegangan Awal Dinding Penahan Tanah dan Tiang Pancang

4. Tahap *Calculation*

Setelah data dan parameter dimasukkan, maka dilanjutkan perhitungan yaitu dengan memasukkan tab parameter dengan plastic analysis untuk mengetahui displacement yang terjadi, phi/c reduction untuk mengetahui angka keamanan dan staged construction sebagai loading input. Calculation dalam plaxis terdapat beberapa tahapan untuk analisis yaitu gravity load, berat sendiri, SF total tanpa beban gempa, dan SF total dengan beban gempa. Dibawah ini adalah gambar 5.66 tab plaxis calculation pada lereng dengan dinding penahan tanah dan tiang pancang.

Gambar 5. 66 Proses Perhitungan Dinding Penahan Tanah dan Tiang Pancang pada Plaxis

5. Hasil Output dengan Program Plaxis

Setelah perhitungan menggunakan program Plaxis selesai, tahap selanjutnya adalah melihat besarnya *displacement* keruntuhan lereng asli. Hasil perhitungan menggunakan program plaxis dijabarkan dalam poin-poin berikut ini.

a. Deformed Mesh

Hasil deformed mesh didapatkan nilai total displacement tanpa beban gempa sebesar 72,39 x 10^{-3} m dan nilai total displacement dengan beban gempa sebesar 72,91 x 10^{-3} m. berikut adalah gambar 5.67 dan gambar 5.68 deformed mesh dinding penahan tanah dan tiang pancang dengan dan tanpa beban gempa.

Gambar 5. 68 Deformend Mesh Dinding Penahan Tanah dan Tiang Dengan Beban Gempa

b. Effective Stresses

Nilai effective stresses tanpa beban gempa sebesar -319,04 kN/m² dan nilai effective stresses dengan beban gempa sebesar -318,95 kN/m². Berikut adalah gambar 5.69 dan gambar 5.70 effective stresses dinding penahan tanah dan tiang pancang dengan dan tanpa beban gempa.

Gambar 5. 70 Effective Stresses Dinding Penahan Tanah dan Tiang Pancang dengan Beban Gempa

ises 15 - 318,95 kN/m ²

Extreme eff

c. Arah Pergerakan dan Daerah Potensial Longsor

Gambar 5.71 dan gambar 5.72 dibawah ini adalah arah pergerakan dan daerah potensial longsor lereng yang diperkuat dengan dinding penahan tanah dan tiang pancang tanpa beban gempa. gambar 5.73 dan gambar 5.74 adalah arah pergerakan dan daerah potensial longsor lereng yang diperkuat dinding penahan tanah dan tiang pancang dengan beban gempa.

Res 62 Ougus - Spercery 010307)
 □ X
 To Edit Van Generaly Deformation Stress Weden Help
 □ X
 To Take Van Generaly Deformation Stress Weden Help
 □ X

Gambar 5. 72 Daerah Potensial Longsor Dinding Penahan Tanah dan Tiang Pancang Tanpa Beban Gempa

Gambar 5. 73 Arah Pergerakan Dinding Penahan Tanah dan Tiang Pancang dengan Beban Gempa

Gambar 5. 74 Daerah Potensial Dinding Penahan Tanah dan Tiang Pancang dengan Beban Gempa

d. Angka Aman

Gambar 5.75 adalah nilai angka aman tanpa beban gempa dengan perkuat dinding penahan tanah dan Tiang pancang dan gambar 5.76 adalah nilai angka aman pada kondisi dengan beban gempa.

Gambar 5. 75 Angka Aman Dinding Penahan Tanah dan Tiang

Pancang Tanpa Beban Gempa

Incremental r	nultipliers	Total multipliers	
Mdisp:	N/A	Σ -Mdisp: 1,0	000 🚖 八
MloadA:	N/A	Σ -MloadA: 1,0	000 😫 🔨
MloadB:	N/A	Σ -MloadB: 1,0	000 🚖 🔨
Mweight:	N/A	Σ -Mweight: 1,0	000
Maccel:	N/A	Σ -Maccel: -1,	0000
Msf:	0,1000 🗢	Σ -Msf: 0,7	781

Gambar 5. 76 Angka Aman Dinding Penahan Tanah dan Tiang Pancang Tanpa Beban Gempa

Lereng yang diperkuat dengan dinding penahan tanah dan tiang pancang tanpa beban memiliki nilai angka aman 1,5812, sedangkan pada kondisi dengan beban gempa nilai aman didapat 0,7781. Untuk memastikan nilai angka aman perlu dilakukan perhitungan secara manual pada perkuatan dinding penahan tanah dan tiang pancang

5.6.3 Analisis Stabilitas Lereng dengan Perkuatan Dinding Penahan Tanah dan Tiang pancang menggunakan Perhitungan Manual

Pada perhitungan stabilitas dinding penahan tanah dan tiang pancang terhadap kondisi tanpa beban gempa ini akan didapatkan nilai angka aman dari geser, guling, dan keruntuhan kapasitas dukung tanah. Gambar 3.53 adalah sketsa tanah dan dinding penahan tanah dengan tiang pancang.

Gambar 5. 77 Penampang Lereng dengan Dinding Penahan Tanah dan Tiang pancang

Berikut ini adalah perhitungan stabilitas dinding penahan tanah dan *bored pile* dengan tinjauan eksternal.

1. Gaya Vertikal

Gaya-gaya seperti berat tanah di belakang dinding penahan tanah, berat struktur dinding penahan tanah, dan tiang pancang termasuk sebagai gaya vertikal. Gaya gaya tersebut dapat dibagi pias-pias yang dapat dilihat pada gambar 5.78 berikut.

Gambar 5. 78 Pembagian Pias-Pias pada Gaya Vertikal Dinding Penahan Tanah dengan Perkuatan Tiang Pancang

Contoh perhitungan untuk mencari gaya vertikal pada pias 1 pada dinding penahan tanah adalah sebagai berikut.

Volume = A x 1 = 7 x 1,225 = 8,575 m³ Berat W = volume x berat volume tanah timbunan = 8,575 x 1,7839 = 15,2969 ton

Hasil rekapitulasi perhitungan gaya vertikal dan momen dapat dilihat pada Tabel 5.19 sebagai berikut.

Tabel 5. 20 Hitungan Momen Vertikal Terhadap Titik O Pada DindingPenahan Tanah dengan Perkuatan Tiang Pancang

No pias	Luas (m2)	Berat (ton)	Jarak dari O (m)	Momen ke O (tm)
1	8,5750	15,2969	2,1875	33,462
2	2,1000	5,1376	1,4250	7,321
3	1,4000	3,4251	1,0750	3,682
4	1,9600	4,7951	1,4000	6,713
5	1,2566	3,0743	1,0750	3,305
t	otal	31,7290		54,4831

2. Tekanan Tanah Lateral

Pada perhitungan tekanan tanah lateral pada dinding penahan tanah, tekanan tanah yang terjadi adalah tekanan tanah aktif dan pasif pada kondisi normal. Tekanan tanah aktif adalah tekanan yang mendorong tanah yang terletak di belakang dinding penahan tanah. Sedangkan tekanan tanah pasif adalah tekanan yang menahan tanah yang terletak di depan dinding penahan tanah. Secara detail, diagram tekanan tanah lateral dapat dilihat pada Gambar 5.79 sebagai berikut.

Gambar 5. 79 Diagram Tekanan Tanah Lateral Pada Dinding Penahan Tanah dengan Perkuatan Tiang Pancang

- a) Koefisien Tekanan Tanah Aktif Ka tim = tan² (45 - $\frac{\varphi}{2}$) = tan² (45 - 15) = 0,333
- b) Perhitungan Tekanan Tanah Aktif

Berikut ini merupakan contoh perhitungan tekanan tanah aktif dan pasif pada dinding penahan tanah.

Pa1 = -2 x ct x $\sqrt{Ka \ tim}$ x h tim = -2 x 5 x $\sqrt{0,333}$ x 7 = -4,532 ton Pa2 = 0,5 x γ b tim x h tim x Ka tim x h tim

Pa2

= 0,5 x 1,7839 x 7 x 0,333 x 7

Adapun rekapitulasi perhitungan tekanan tanah aktif dapat dilihat pada Tabel 5.20 sebagai berikut.

Tabel 5. 21	Hasil Rekapi	itulasi Perhitun	gan Tekanan	Tanah Akti	f Pada
Dindi	ng Penahan '	Tanah dengan l	Perkuatan Tia	ang Pancang	5

Tekanan	Rumus	Gaya	Lengan ke	Momen
Tanah		(ton)	O (m)	(Tonm)
Pa 1	-2.c tim.√ <i>Ka tim</i> .h tim	-4,532	3,85	-17,447
Pa 2	0,5.γb tim.h tim.Ka tim.h tim	17,628	2,5667	45,245
	ΣΟΓΑ	13,096		27,798

c) Koefisien Tekanan Tanah Pasif

Kp1
$$= \frac{1}{Ka_{timbunan}}$$
$$= \frac{1}{0,3333}$$
$$= 3$$

- d) Perhitungan Tekanan Tanah Pasif
 - Pp1 = 2 x ct x $\sqrt{Kp1}$ x h tim = 2 x 5 x $\sqrt{3}$ x 4 = 7,062 ton Pp2 = 0,5 x γ b tim x h tim x Kp1 x h tim = 0,5 x 1,7839 x 4 x 3 x 4 = 42,813 ton

Tekanan	Duraus	Carra (tam)	Lengan	Momen
Tanah	Kumus	Gaya (ton)	ke O	(tm)
Pp1=	-2.c tim. $\sqrt{Ka \ tim}$.h tim	7,062	2	14,125
Pp2=	0,5.γb tim.h tim.Ka tim.h tim	42,813	1,3333	57,085
	Σ	49,876		71,209

- 3. Stabilitas Dinding Penahan Tanah Dengan Perkuatan Tiang Pancang
 - Stabilitas Terhadap Geser a.

Perhitungan stabilitas terhadap penggeseran dinding penahan tanah, dilakukan dengan menganggap bahwa tahanan geser yang diberikan oleh dinding penahan tanah ditahan oleh berat sendiri tanah dan struktur dinding penahan tanah itu sendiri, serta kekuatan pondasi tiang pancang dalam menahan gaya lateral yang bekerja.

Gaya aksial sepenuhnya ditahan oleh tiang pancang tunggal = 28,6547ton.

Maka gaya lateral yang masih harus ditahan oleh tiang pancang adalah sebagai berikut.

$$H = Pa - \Sigma W - Pp$$

= 13,096 - 28,6547 - 49,876
= -66,454 < 0

Karena nilai gaya lateral lebih kecil daripada gaya aksial yang ditahan oleh tiang pancang, maka untuk mengetahui nilai angka keamanan terhadap pergeseran dilakukan dengan menganggap tahanan geser diberikan oleh dinding penahan tanah sepanjang 2,8 m pada tanah dasar dinding penahan tanah. Sehingga, $\delta b = \phi$ tanah dasar dan cd = c tanah dasar.

R

Rh = cd x B + (
$$\Sigma$$
W) x tan δ b
= 0,57 x 2,8 + 28,6547 x tan 21,48°
= 12,8719 ton
Fgs = $\frac{\Sigma Rh + Pp}{\Sigma Pa}$
= $\frac{12,8719 + 49,876}{13,096}$
= 4,7913

Fgs > 1,5, maka stabilitas dinding penahan tanah terhadap stabilitas penggeseran terpenuhi.

b. Stabilitas Terhadap Guling

Stabilitas guling terhadap dinding penahan tanah dihitung dengan

membandingkan momen akibat dari tekanan tanah lateral aktif pada tanah didepan dinding yang berotasi pada ujung kaki depan pelat pondasi (momen yang mendorong) dengan momen akibat dari momen berat sendiri dinding penahan tanah dan tanah yang ada di atasnya serta momen akibat tekanan tanah pasif yang ada di belakang dinging penahan tanah (momen yang menahan).

$\Sigma M_{penahan}$	$=\Sigma Mw + \Sigma M pasif$	
	= 54,4831 + 71,209	
	= 124,1601 Tm	
$\Sigma M_{pendorong}$	$=\Sigma Maktif$	
	= 27,7978 Tm	
Fgl	$= \frac{\Sigma M penahan}{\Sigma M pendorong}$	
	$=\frac{124,1601}{27,7978}$	
	= 4,5217	

Karena nilai Fgl > 1,5, maka stabilitas terhadap guling pada dinding penahan tanah terpenuhi.

c. Stabilitas Terhadap Kapasitas Dukung Tiang Pancang
 Gambar 5.80 dibawah ini adalah sketsa desain pondasi tiang pancang
 dan sketsa susunan lapisan tanah

Gambar 5. 80 Sketsa Susunan Lapisan Tanah dan Lapisan Nspt

Ap =
$$\frac{1}{4} \times \pi \times D^{2}$$

= $\frac{1}{4} \times \pi \times 0.4^{2}$
= 0.1257 m²
10D = 10 × D
= 10 × 0.4
= 4
4D = 4 × D
= 4 × 0.4
= 1.6
N_b = $\frac{(2 \times 35) + (2 \times 32) + (1.6 \times 40)}{4 + 1.6}$
= 51.1
Q_p = 40 × N_b × A_p
= 40 × 51.1 × 0.1257
= 257.3593 Ton

2) Kapasitas Selimut

Perhitungan daya dukung selimut tiang dilakukan berdasarkan lapisan tanah hingga kedalaman 10 m.

$$Q_{s} = 0,2 \times N - SPT \times A_{s}$$

- $= 0.2 \times N SPT \times \pi \times D \times L$ $= 0.2 \times 30.4 \times \pi \times 0.4 \times 10$ = 76,4035 Ton
- 3) Kapasitas Ultimit

Berikut adalah perhitungan kapasitas dukung ultimit tiang pancang

Qu =
$$qb + qs - wp'$$

= 257,3593 + 76,4035 - 1,8177
= 331,9451 ton

4) Kapasitas Ijin

Berikut adalah perhitungan kapasitas ijin ultimit tiang pancang $\text{Qall} = \frac{qu}{sf}$

$$=\frac{331,9451}{3}$$
$$= 110,6484 > 28,6547 \text{ (aman)}$$

5.6.4 Analisis Stabilitas Lereng dengan Perkuatan Dinding Penahan Tanah dan Tiang pancang menggunakan Perhitungan dengan Beban Gempa

Pada perhitungan stabilitas dinding penahan tanah dan tiang pancang dengan beban gempa ini akan didapatkan nilai angka aman dari geser, guling, dan keruntuhan kapasitas dukung tanah. Beban yang digunakan pada perhitungan manual ini adalah beban sendiri tanah dan juga beban gempa. Gambar 5.81 adalah sketsa tanah dan dinding penahan tanah dengan tiang pancang.

Gambar 5. 81 Penampang Lereng dengan Dinding Penahan Tanah dan Tiang pancang

Berikut ini adalah perhitungan stabilitas dinding penahan tanah dan tiang pancang dengan beban gempa.

1. Gaya Vertikal

Gaya-gaya seperti berat tanah di belakang dinding penahan tanah, berat struktur dinding penahan tanah, dan tiang pancang termasuk sebagai gaya vertikal. Gaya gaya tersebut dapat dibagi pias-pias yang dapat dilihat pada gambar 5.82 berikut.

Berikut ini adalah contoh perhitungan gaya vertikal pada pias 1 pada dinding penahan tanh.

Volume	= A x 1,225
	= 7 x 1,225
	$= 8,575 \text{ m}^3$
Berat (W)	= volume x berat volume tanah timbunan
	= 8,575 x 1,7839
	= 15,2969 ton.

Dengan menggunakan cara yang sama berikut ini adalah tabel 5.22 rekapitulasi perhitungan gaya vertikal dan momen.

Tabel 5. 23 Rekapitulasi Perhitur	ngan Gaya Verti	ikal dan Momen '	Terhadap
Titik O pada Dinding Penahan	Tanah dengan P	Perkuatan Tiang	Pancang

No pias	Luas (m2)	Berat (ton)	Jarak dari O (m)	Momen ke O (Tm)
1	8,5750	15,2969	2,1875	33,462
2	2,1000	5,1376	1,4250	7,321
3	1,4000	3,4251	1,0750	3,682
4	1,9600	4,7951	1,4000	6,713
5	1,2566	3,0743	1,0750	3,305
total		31,7290		54,4831

2. Tekanan Tanah Lateral

Tekanan tanah lateral adalah tekanan tanah aktif dan tenakan tanah pasif yang terjadi pada kondisi normal.tekanan tanah aktif adalah tekanan yang mendorong tanah di belakang dinding penahan tanah. Sedangkan tanah pasif adalah tekanan yang menahan tanah yang terletak di depan dinding penahan tanah. Diagram tekanan tanah lateral ditampilkan pada gambar 5.83 dibawah ini.

Gambar 5. 83 Diagram Tekanan Tanah Lateral

a. Koefisien Tekanan Tanah Aktif

Ka_{tim}

$$= tan^2 \left(45 - \frac{\varphi}{2}\right)$$
$$= tan^2 (45 - 15)$$
$$= 0.333$$

b. Perhitungan Tekanan Tanah Aktif

Dibawah ini adalah contoh perhitungan tekanan tanah aktif dan pasif pada dinding penahan tanah

Pa1 = -2 x ct x
$$\sqrt{Ka \ tim}$$
 x h tim
= -2 x 5 x $\sqrt{0,333}$ x 7
= -4,532 ton
Pa2 = 0,5 x γ b tim x h tim x Ka tim x h tim
= 0,5 x 1,7839 x 7 x 0,333 x 7
= 17,628 ton

Berikut adalah rekapitulasi tekanan tanah aktif

Tabel 5. 24 Hasil Rekapitulasi Perhitungan Tekanan Tanah Aktif padaDinding Penahan Tanah dengan Perkuatan Tiang Pancang

Tekanan Tanah	Rumus	Gaya (ton)	Lengan ke O	Momen (tm)
Pa1=	-2.c tim. $\sqrt{Ka \ tim}$.h tim	-4,532	3,85	-15,861
Pa2=	0,5.γb tim.h tim.Ka tim.h tim	17,628	2,5667	37,392
Pa3=	q.Ka1.h1	0,170	7,43	1,260
Pa 4=	q.Ka2.h2	2,525	4,66	11,767
Pa 5=	q.Ka3.h3	1,022	1,08	1,103
	Σ	13,096		27,7978

c. Koefisien Tekanan Tanah Pasif

Kn1	1
крт	[—] Ka _{timbuno}
	_ 1
	0,3333
	= 3

d. Perhitungan Tekanan Tanah Pasif

Pp1	$= 2 \text{ x ct } x \sqrt{Kp1} \text{ x h tim}$
	$= 2 \times 5 \times \sqrt{3} \times 4$
	= 7,062 ton
Pp2	= 0,5 x γ b tim x h tim x Kp1 x h tim
	= 0,5 x 1,7839 x 4 x 3 x 4
	= 42,876 ton

Tabel 5. 25 Hasil Rekapitulasi Perhitungan Tekanan Tanah Pasif PadaDinding Penahan Tanah dengan Perkuatan Tiang Pancang

Tekanan	Dumus	Gaya	Lengan	Momen
Tanah	Kunius	(ton)	ke O	(tm)
Pp1=	-2.c tim. $\sqrt{Ka \ tim}$.h tim	3,531	2	14,125
Pp2=	0,5.γb tim.h tim.Ka tim.h tim	42,876	1,3333	57,085
	Σ	49,876		71,209

e. Tekanan Tanah Dinamis

Tekanan tanah dinamis dihitung berdasarkan sni 2833-2016 pasal 9.6. Berikut ini adalah contoh perhitungan tekanan tanah dinamis pada dinding penahan tanah

Berikut ini adalah diagram tekanan tanah dinamis yang dapat dilihat pada gambar 5.84 dibawah ini

Gambar 5. 84 Diagram Tekanan Tanah Dinamis pada Dinding Penahan Tanah dan Tiang Pancang

Berikut perhitungan gaya tekanan tanah dinamis.

Pae	$=\frac{1}{2} \times \gamma \times ht^2 \times (1 - kv) \times kae \times B$
	$=\frac{1}{2} \times 1,7839 \times 7^2 \times (1-0) \times 0,5545 \ x \ 1$
	= 29,3232 ton
Lae	= ½ x H
	$= \frac{1}{2} \times 7,7$
	= 3,85 m
Mae	= Pae x Lae
	= 29,3232 X 3,85
	= 112,8944 Tm

Dengan ini rekapitulasi perhitungan tekanan tanah aktif menjadi seperti

pada tabel 5.25 dibawah ini

Tabel 5. 26 Hasil Rekapitulasi Perhitungan Tekanan Tanah Aktif pada Dinding Penahan Tanah dan Tiang Pancang dengan Beban Gempa

Tekanan Tanah	Rumus	Gaya (ton)	Lengan Ke O (M)	Momen (tm)
Pa 1	$-2 \times ct \times \sqrt{Ka \ tim} \times h \ tim$	-4,532	3,850	-17,447
Pa 2	$0,5 \times \gamma \ tim \times h \ tim \times Ka \ tim \times h \ tim$	17,628	2,567	45,245
Pae	$\frac{1}{2} \times \gamma \times ht^2 \times (1 - Kv) \times Kae \times B$	29,323	3,850	112,8944
	Jumlah	42,419		140,692

Dengan ini rekapitulasi perhitungan tekanan tanah pasif menjadi seperti pada tabel 5.26 dibawah ini

Tabel 5. 27 Hasil Rekapitulasi Perhitungan Tekanan Tanah Aktif padaDinding Penahan Tanah dan Tiang Pancang dengan Beban Gempa

Tekanan Tanah	gaya (ton)	Lengan ke O	Momen(tm)
Pp1=	7,062	2,000	14,125
Pp2=	42,813	1,333	57,085
Ppe=	7,9132	2	15,8263
	57,789		87,036

- 3. Stabilitas Dinding Penahan Tanah Dengan Perkuatan Tiang Pancang
 - a. Stabilitas Terhadap Geser

Perhitungan stabilitas terhadap geser pada dinding penahan tanah dilakukan dengan menganggap bahwa tahanan geser yang diberikan dari dinding penahan tanah ditahan oleh berat sendiri tanah dan struktur dinding penahan tanah itu sendiri. Serta kekuatan pondasi tiang pancang menahan gaya lateral yang bekerja.

Gaya aksial sepenuhnya ditahan oleh tiang pancang tunggal sebesar 28,6547 ton

Maka gaya lateral yang perlu ditahan oleh tiang pancang adalah

H =
$$\Sigma Pa - (\Sigma W + Pp)$$

= 42,419- (28,6547 + 57,789)
= -44,0243

Karena nilai gaya lateral lebih kecil daripada gaya aksial yang ditahan oleh tiang pancang, maka untuk mengetahui nilai angka keamanan terhadap pergeseran dilakukan dengan menganggap tahanan geser diberikan oleh dinding penahan tanah sepanjang 2,8 m pada tanah dasar dinding penahan tanah. Sehingga, $\delta b = \varphi$ tanah dasar dan cd = c tanah dasar.

Rh = cd x B + (
$$\Sigma$$
W) x tan δ b
= 0,57 x 2,8 + 28,6547 x tan 21,48°
= 12,8719 ton
Fgs = $\frac{\Sigma Rh + Pp}{\Sigma Pa}$
= $\frac{12,8719 + 57,789}{42,0243}$
= 1,6658

Fgs \geq 1,5, maka stabilitas dinding penahan tanah terhadap stabilitas penggeseran terpenuhi.

b. Stabilitas Terhadap Guling

Stabilitas guling terhadap dinding penahan tanah dihitung dengan membandingkan momen akibat dari tekanan tanah lateral aktif pada

tanah didepan dinding yang berotasi pada ujung kaki depan pelat pondasi (momen yang mendorong) dengan momen akibat dari momen berat sendiri dinding penahan tanah dan tanah yang ada di atasnya serta momen akibat tekanan tanah pasif yang ada di belakang dinging penahan tanah (momen yang menahan).

$\Sigma M_{penahan}$	$=\Sigma Mw + \Sigma M pasif$
	= 54,4831 + 87,036
	= 141,5188 tm
$\Sigma M_{pendorong}$	$= \Sigma Maktif$
	= 140,692 tm
Fgl	$= \frac{\Sigma M penahan}{\Sigma M pendorong}$
	$=\frac{141,5188}{140,692}$
	= 1,0058

Karena nilai Fgl \leq 1,5, maka stabilitas terhadap penggulingan dinding penahan tanah belum terpenuhi, oleh karena itu stabilitas guling ditentukan oleh kekuatan tiang dalam menahan beban momen. Momen yang dapat ditahan oleh tiang adalah

Lapisan 3 kedalaman -15,00m

$$K_{p} = \tan^{2} \times (45 + \frac{\varphi}{2})$$

$$= \tan^{2} \times (45 + \frac{21,48}{2})$$

$$= 2,1555$$
Lapisan 4 kedalaman -20,00m
$$K_{p} = \tan^{2} \times (45 + \frac{\varphi}{2})$$

$$= \tan^{2} \times (45 + \frac{22,86}{2})$$

$$= 2,2705$$
Lapisan 5 kedalaman -25,00m
$$K_{p} = \tan^{2} \times (45 + \frac{\varphi}{2})$$

$$= \tan^{2} \times (45 + \frac{\varphi}{2})$$

$$= \tan^{2} \times (45 + \frac{\varphi}{2})$$

	= 2,0997	
Mmak	$= \gamma \times D \times L^3 \times Kp$	
	$= (14,126 \times 0,4 \times 10^{3} \times 2,1555) + (14,372 \times 0,4 \times 10^{3} \times 10^$	
	$10^3 \times 2,271) + (14,107 \times 0,4 \times 10^3 \times 2,099)$	
	= 2044,6604 kNm	
	= 208,4261 tm	
Sehingga SF guling menjadi		
Maktif	= 140,692 tm	
Mmak	= 208,4261 tm	
Fgl	$=\frac{\Sigma M penahan}{\Sigma M pendorong}$	
	$=\frac{208,4261}{140,692}$	
	= 1,5	

Karena nilai Fgl \geq 1,5, maka stabilitas terhadap penggulingan dinding penahan tanah sudah terpenuhi.

c. Stabilitas Terhadap Kapasitas Dukung Tiang Pancang

Gambar 5.85 dibawah ini adalah sketsa desain pondasi tiang pancang dan sketsa susunan lapisan tanah

1) Kapasitas Ujung Ap $= \frac{1}{4} \times \pi \times D^2$
$$= \frac{1}{4} \times \pi \times 0.4^{2}$$

= 0.1257 m²
10D = 10 × D
= 10 × 0.4
= 4
4D = 4 × D
= 4 × 0.4
= 1.6
N_b = $\frac{(2\times35)+(2\times32)+(1.6\times40)}{4+1.6}$
= 51.1
Q_p = 40 × N_b × A_p
= 40 × 51.1 × 0.1257
= 257.359 Ton

2) Kapasitas Selimut

Perhitungan daya dukung selimut tiang dilakukan berdasarkan lapisan tanah hingga kedalaman 10 m.

$$Q_{s} = 0.2 \times N - SPT \times A_{s}$$
$$= 0.2 \times N - SPT \times \pi \times D \times L$$
$$= 0.2 \times 30.4 \times \pi \times 0.4 \times 10$$
$$= 76.4035 \text{ Ton}$$

3) Kapasitas Ultimit

Berikut adalah perhitungan kapasitas dukung ultimit tiang pancang

$$Qu = qb + qs - wp'$$

$$= 257,359 + 76,4035 - 1,8177$$

= 331,945 ton

4) Kapasitas Ijin

Berikut adalah perhitungan kapasitas ijin ultimit tiang pancang

$$\text{Qall} = \frac{qu}{sf}$$

$$=\frac{331,945}{3}$$
$$= 110,648 > 28,6546 \text{ (aman)}$$

5.7 Analisis Stabilitas Lereng dengan Perkuatan Dinding Penahan Tanah dan Tiang Pancang variasi diameter tiang 50cm

Analisis stabilitas lereng dengan perkuatan dinding penahan tanah dan tiang pancang perlu dilakukan untuk mengetahui kekuatan dinding penahan tanah dan tiang pancang dalam menahan beban-beban yang bekerja. Penggalian lereng dilakukan guna memberi ruang lebih untuk dimensi dinding penahan tanah yang di perbesar dan ruang pada muka dinding penahan tanah agar tanah urug di depan dinding tidak mudah terkikis aliran sungai. Berikut adalah gambar 5.86 penampang lereng dengan dinding penahan tanah dan tiang pancang dan gambar 5.87 dimensi dinding penahan tanah dan tiang pancang yang digunakan.

Gambar 5. 86 Penampang Lereng dengan Dinding Penahan Tanah dan

Gambar 5. 87 Dimensi Dinding Penahan Tanah dan Tiang Pancang

5.7.1 Data Dinding Penahan Tanah dan Tiang Pancang

Data-data yang digunakan dalam analisis ini adalah sebagai berikut

- 1. dinding penahan tanah tipe kantilever
- 2. dinding penahan tanah dan tiang pancang menggunakan beton bertulang
- 3. berat volume beton bertulang yang digunakan adalah 2,4 ton/m³
- 4. mutu beton yang digunakan adalah fc' K-600

5.7.2 Analisis Stabilitas Lereng dengan Perkuatan Dinding Penahan Tanah dan Tiang Pancang Menggunakan Program Plaxis

Analisis stabilitas lereng dengan perkuatan dinding penahan tanah dan tiang pancang menggunakan program plaxis dilakukan dalam kondisi dengan timbunan. Beban yang bekerja ialah beban gempa dengan nilai percepatan gempa sebesar 0,6 g. analisis dimodelkan secara dua dimensi pada potongan melintang sungai.

1. Permodelan Dinding Penahan Tanah pada Program Plaxis

Permodelan potongan melintang lereng dengan perkuatan dinding penahan tanah dan tiang pancang dalam program plaxis dilakukan secara dua dimensi dengan memasukkan seluruh parameter data geoteknik serta beban yang bekerja yaitu beban gempa.

Gambar 5. 88 Permodelan Potongan Melintang Menggunakan Dinding Penahan Tanah dan Tiang Pancang pada Program Plaxis

2. Pembuatan Jaring Elemen

Setelah menerapkan kondisi lapangan pada model selanjutnya membagi model geometri menjadi elemen-elemen imajiner yang biasanya disebut *meshing*. *Meshing* pada program plaxis menggunakan jenis fine. M*eshing* atau jaring-jaring elemen yang telah dibuat dapat dilihat pada gambar 5.89 dibawah ini.

Gambar 5. 89 Jaring-Jaring Elemen Dinding Penahan Tanah dan Tiang Pancang

3. Perhitungan Tegangan Awal

Perhitungan tegangan awal atau biasa disebut sebagai beban gravitasi (gravity load) dan dalam fase perhitungan hanya melibatkan struktur tanah dan batuan pembentuk lereng. Dibawah ini adalah gambar 5.90 tegangan awal.

Gambar 5. 90 Perhitungan Tegangan Awal Dinding Penahan Tanah dan Tiang Pancang

4. Tahap Calculation

Setelah data dan parameter dimasukkan, maka dilanjutkan perhitungan yaitu dengan memasukkan tab parameter dengan plastic analysis untuk mengetahui displacement yang terjadi, phi/c reduction untuk mengetahui angka keamanan dan staged construction sebagai loading input. Calculation dalam plaxis terdapat beberapa tahapan untuk analisis yaitu gravity load, berat sendiri, SF total tanpa beban gempa, dan SF total dengan beban gempa. Dibawah ini adalah gambar 5.91 tab plaxis calculation pada lereng dengan dinding penahan tanah dan tiang pancang.

Plaxis 8.2 Calculations - pa	ancang d50	.plx					-		×
File Edit View Calculate	Help								
Input Output Curves	8		≓> Output.						
General Parameters Multipli	ers Preview	N							
Phase				Calculation type					
Number / ID.: 4	SF beban g	jempa		Phi/c reduction		-			
Start from phase: 2 - beb	, an cempa			1	Advanced				
start from pridaes [2 - Deb	an genipa				Auvanceu				
Log info				Comments					
			~			_			
			. I I						
				1					
					Para	meters			
				Ē	Next	🚚 In	sert		Delete
T day if fare if an	Dharas an	Charle Grand	Coloriation		Time	141-1-1	First		
Identification	Phase no.	Start from	Calculation	Loading input	l ime	water	First	Last	
Initial phase	0	0	N/A Disetia	N/A Tatal auditaliana	0,00 day	0	U	U	
beban senum	2	1	Dynamic anal	Total multipliers	0.14 c	0			
SE beban sendiri	3	1	Phi/c reduction	Incremental multi	0.00 day	0			
SF beban gempa	4	2	Phi/c reduction	Incremental multi	0.00 day	0			
						_			
1									
									/

Gambar 5. 91 Proses Perhitungan Dinding Penahan Tanah dan Tiang Pancang pada Plaxis.

5. Hasil Output dengan Program Plaxis

Setelah perhitungan menggunakan program Plaxis selesai, tahap selanjutnya adalah melihat besarnya *displacement* keruntuhan lereng asli. Hasil perhitungan menggunakan program plaxis dijabarkan dalam poin-poin berikut ini.

a. Deformed Mesh

Hasil deformed mesh didapatkan nilai total displacement tanpa beban gempa sebesar 73,99 x 10^{-3} m dan nilai total displacement dengan beban gempa sebesar 74,05 x 10^{-3} m. berikut adalah gambar 5.92 dan gambar 5.93 deformed mesh dinding penahan tanah dan tiang pancang dengan dan tanpa beban gempa.

Gambar 5. 93 Deformend Mesh Dinding Penahan Tanah dan Tiang dengan Beban Gempa

b. Effective Stresses

Nilai effective stresses tanpa beban gempa sebesar -331,34 kN/m² dan nilai effective stresses dengan beban gempa sebesar -331,29 kN/m². Berikut adalah gambar 5.94 dan gambar 5.95 effective stresses dinding penahan tanah dan tiang pancang dengan dan tanpa beban gempa.

Gambar 5. 94 Effective Stresses Dinding Penahan Tanah dan Tiang Pancang Tanpa Beban Gempa

Gambar 5. 95 Effective Stresses Dinding Penahan Tanah dan Tiang Pancang dengan Beban Gempa

c. Arah Pergerakan Dan Daerah Potensial Longsor

Gambar 5.96 dan gambar 5.97 dibawah ini adalah arah pergerakan dan daerah potensial longsor lereng yang diperkuat dengan dinding penahan tanah dan tiang pancang tanpa beban gempa. gambar 5.98 dan gambar 5.99 adalah arah pergerakan dan daerah potensial longsor lereng yang diperkuat dinding penahan tanah dan tiang pancang dengan beban gempa.

Tiang Pancang Tanpa Beban Gempa

Gambar 5. 97 Daerah Potensial Longsor Dinding Penahan Tanah dan Tiang Pancang Tanpa Beban Gempa

Gambar 5. 99 Daerah Potensial Longsor Dinding Penahan Tanah dan Tiang Pancang dengan Beban Gempa

d. Angka Aman

Gambar 5.100 adalah nilai angka aman tanpa beban gempa dengan perkuat dinding penahan tanah dan Tiang pancang dan gambar 5.101 adalah nilai angka aman pada kondisi dengan beban gempa.

Incremental	multipliers		Total multiplie	rs		
Mdisp:	N/A	\$	Σ -Mdisp:	1,0000	\$	
MloadA:	N/A	\$	Σ -MloadA:	1,0000	\$	
MloadB:	N/A	\$	Σ -MloadB:	1,0000	\$	
Mweight:	N/A	\$	Σ -Mweight:	1,0000	\$	
Maccel:	N/A	\$	Σ -Maccel:	0,0000	\$	
Msf:	0,1000	\$	∑ -Msf:	1,5810	\$	
ar 5. 100	Angka Am Pancang	nan Di g Tanpa	inding Pena a Beban Ge	han Ta mpa	nah (da
ur 5. 100	Angka Am Pancang	nan Di g Tanpa	inding Pena a Beban Ge	ihan Ta empa	nah (da
n r 5. 100	Angka Am Pancang	nan Di 3 Tanp	inding Pena a Beban Ge	ihan Ta empa 's	nah (da
n r 5. 100 Incremental r Mdisp:	Angka Am Pancang ^{multipliers}	nan Di g Tanpa	inding Pena a Beban Ge ^{Total multiplien} Σ-Mdisp:	ahan Ta empa rs	nah (da
Incremental r Mdisp: MloadA:	Angka Am Pancang multipliers N/A N/A	nan Di g Tanps t	inding Pena a Beban Ge ^{Total multiplien} Σ -Mdisp: Σ -MloadA:	ahan Ta empa 1,0000 1,0000	nah (da <u>A</u>
Incremental m Mdisp: MloadA: MloadB:	Angka Am Pancang multipliers N/A N/A	nan Di g Tanpa	inding Pena a Beban Ge Σ -MloadA: Σ -MloadA: Σ -MloadB:	han Ta mpa 1,0000 1,0000 1,0000	nah (
Incremental m Mdisp: MloadA: MloadB: Mweight:	Angka Am Pancang multipliers N/A N/A N/A N/A	nan Di g Tanps t	inding Pena a Beban Ge Σ -Mdisp: Σ -MloadA: Σ -MloadB: Σ -Mweight:	ahan Ta empa 1,0000 1,0000 1,0000	nah (
Incremental m Mdisp: MloadA: MloadB: Mweight: Maccel:	Angka Am Pancang multipliers N/A N/A N/A N/A N/A	nan Di g Tanpa t	inding Pena a Beban Ge Σ -Mdisp: Σ -MloadA: Σ -MloadB: Σ -Mweight: Σ -Maccel:	han Ta mpa 1,0000 1,0000 1,0000 -1,0000	nah (

Lereng yang diperkuat dengan dinding penahan tanah dan tiang pancang tanpa beban memiliki nilai angka aman 1,5810, sedangkan pada kondisi dengan beban gempa nilai aman didapat 0,7759. Untuk memastikan nilai angka aman perlu dilakukan perhitungan secara manual pada perkuatan dinding penahan tanah dan tiang pancang

5.7.3 Analisis Stabilitas Lereng dengan Perkuatan Dinding Penahan Tanah dan Tiang pancang menggunakan Perhitungan Manual

Pada perhitungan stabilitas dinding penahan tanah dan tiang pancang terhadap kondisi tanpa beban gempa ini akan didapatkan nilai angka aman dari geser, guling, dan keruntuhan kapasitas dukung tanah. Gambar 3.102 adalah sketsa tanah dan dinding penahan tanah dengan tiang pancang.

Gambar 5. 102 Penampang Lereng dengan Dinding Penahan Tanah dan Tiang pancang

Berikut ini adalah perhitungan stabilitas dinding penahan tanah dan *bored pile* dengan tinjauan eksternal.

1. Gaya Vertikal

Dalam perhitungan gaya vertikal ini, gaya-gaya yang bekerja meliputi gaya akibat berat struktur dinding penahan tanah dan tiang pancang, serta akibat berat tanah yang berada di belakang dinding penahan tanah tersebut. Adapun gaya-gaya tersebut dibagi dalam pias-pias pada dinding penahan tanah yang dapat dilihat pada Gambar 5.103 sebagai berikut.

Gambar 5. 103 Pembagian Pias-Pias pada Gaya Vertikal Dinding Penahan Tanah dengan Perkuatan Tiang Pancang

Contoh perhitungan untuk mencari gaya vertikal pada pias 1 pada dinding penahan tanah adalah sebagai berikut.

Volume	$= A \times 1$	
	= 7 x 1,225	
	$= 8,575 \text{ m}^3$	
Berat W	= volume x berat volume tanah timbunan	
	= 8,575 x 1,7839	
	$= 15,2969 ext{ ton}$	

Hasil rekapitulasi perhitungan gaya vertikal dan momen dapat dilihat pada Tabel 5.27 sebagai berikut.

Tabel 5. 28 Hitungan Momen Vertikal Terhadap Titik O Pada Dinding

No pias	Luas (m2)	Berat (ton)	Jarak dari O (m)	Momen ke O (Tm)
1	8,5750	15,2969	2,1875	33,462
2	2,1000	5,1376	1,4250	7,321
3	1,4000	3,4251	1,0750	3,682
4	1,9600	4,7951	1,4000	6,713
5	1,9635	4,8037	1,1250	5,404
t	otal	33,4583		56,5823

2. Tekanan Tanah Lateral

Pada perhitungan tekanan tanah lateral pada dinding penahan tanah, tekanan tanah yang terjadi adalah tekanan tanah aktif dan pasif pada kondisi normal. Tekanan tanah aktif adalah tekanan yang mendorong tanah yang terletak di belakang dinding penahan tanah. Sedangkan tekanan tanah pasif adalah tekanan yang menahan tanah yang terletak di depan dinding penahan tanah. Secara detail, diagram tekanan tanah lateral dapat dilihat pada Gambar 5.104 sebagai berikut.

a) Koefisien tekanan tanah aktif

Ka tim =
$$\tan^2 (45 - \frac{\phi}{2})$$

= $\tan^2 (45 - 15)$
= 0,333

b) Perhitungan Tekanan Tanah Aktif

Berikut ini merupakan contoh perhitungan tekanan tanah aktif dan pasif pada dinding penahan tanah.

Pa1 = -2 x ct x
$$\sqrt{Ka \ tim}$$
 x h tim
= -2 x 5 x $\sqrt{0,333}$ x 7
= -4,532 ton
Pa2 = 0,5 x γ b tim x h tim x Ka tim x h tim
= 0,5 x 1,7839 x 7 x 0,333 x 7
= 14,588 ton

Adapun rekapitulasi perhitungan tekanan tanah aktif dapat dilihat pada Tabel 5.28 sebagai berikut.

Tabel 5. 29 Hasil Rekapitulasi Perhitungan Tekanan Tanah Aktif PadaDinding Penahan Tanah dengan Perkuatan Tiang Pancang

Tekanan	Rumus	Gaya	Lengan	Momen
Tanah		(ton)	ke O (m)	(tm)
Pa 1	-2.c tim.√ <i>Ka tim</i> .h tim	-4,532	3,85	-17,447
Pa 2	0,5.γb tim.h tim.Ka tim.h tim	17,628	2,5667	45,245
	Σ	13,096		27,798

a. Koefisien Tekanan Tanah Pasif

Kp1
$$= \frac{1}{Ka_{timbunan}}$$
$$= \frac{1}{0,3333}$$
$$= 3$$

b. Perhitungan Tekanan Tanah Pasif

Pp1 = 2 x ct x
$$\sqrt{Kp1}$$
 x h tim
= 2 x 5 x $\sqrt{3}$ x 4
= 7,062 ton
Pp2 = 0,5 x γ b tim x h tim x Kp1 x h tim
= 0,5 x 1,7839 x 4 x 3 x 4
= 42,876 ton

Tekanan	Dumus	Gaya	Lengan	Momen
Tanah	Kumus	(ton)	ke O	(tm)
Pp1=	-2.c tim. $\sqrt{Ka \ tim}$.h tim	7,062	2	14,125
Pn2-	0,5.γb tim.h tim.Ka	A A	1 3333	57 085
1 p2-	tim.h tim	42,813	1,5555	57,005
- S	Σ	49,876		71,209

Tabel 5. 30 Hasil Rekapitulasi Perhitungan Tekanan Tanah Pasif PadaDinding Penahan Tanah dengan Perkuatan Tiang Pancang

- 3. Stabilitas Dinding Penahan Tanah dengan Perkuatan Tiang Pancang
 - a. Stabilitas Terhadap Geser

Perhitungan stabilitas terhadap penggeseran dinding penahan tanah, dilakukan dengan menganggap bahwa tahanan geser yang diberikan oleh dinding penahan tanah ditahan oleh berat sendiri tanah dan struktur dinding penahan tanah itu sendiri, serta kekuatan pondasi tiang pancang dalam menahan gaya lateral yang bekerja.

Gaya aksial sepenuhnya ditahan oleh tiang pancang tunggal = 28,6547 ton.

Maka gaya lateral yang masih harus ditahan oleh tiang pancang adalah sebagai berikut.

 $H = Pa - (\Sigma W + Pp)$

= 13,096 - (28,6547 + 49,876)

$$= -66,454 < 0$$

Karena nilai gaya lateral lebih kecil daripada gaya aksial yang ditahan oleh tiang pancang, maka untuk mengetahui nilai angka keamanan terhadap pergeseran dilakukan dengan menganggap tahanan geser diberikan oleh dinding penahan tanah sepanjang 2,8 m pada tanah dasar dinding penahan tanah. Sehingga, $\delta b = \phi$ tanah dasar dan cd = c tanah dasar.

Rh = $\operatorname{cd} x B + (\Sigma W) x \tan \delta b$

$$= 0,57 \times 2,8 + 28,6547 \times \tan 21,48^{\circ}$$
$$= 12,8719$$
Fgs
$$= \frac{\Sigma Rh + Pp}{\Sigma Pa}$$
$$= \frac{12,8719 + 49,876}{13,096}$$
$$= 4,7913$$

Fgs > 1,5, maka stabilitas dinding penahan tanah terhadap stabilitas penggeseran terpenuhi.

b. Stabilitas Terhadap Guling

Stabilitas guling terhadap dinding penahan tanah dihitung dengan membandingkan momen akibat dari tekanan tanah lateral aktif pada tanah didepan dinding yang berotasi pada ujung kaki depan pelat pondasi (momen yang mendorong) dengan momen akibat dari momen berat sendiri dinding penahan tanah dan tanah yang ada di atasnya serta momen akibat tekanan tanah pasif yang ada di belakang dinging penahan tanah (momen yang menahan).

$\Sigma M_{penahan}$	$=\Sigma Mw + \Sigma M pasif$
	= 56,5823 + 71,209
	= 127,7917 Tm
$\Sigma M_{pendorong}$	$=\Sigma Maktif$
	= 27,7978 Tm
Fgl	$= \frac{\Sigma M penahan}{\Sigma M pendorong}$
	$=\frac{127,7917}{27,7978}$
	= 4,5972

Karena nilai Fgl > 1,5, maka stabilitas terhadap guling pada dinding penahan tanah terpenuhi.

c. Stabilitas Terhadap Kapasitas Dukung Tiang Pancang

Gambar 5.105 dibawah ini adalah sketsa desain pondasi tiang pancang dan sketsa susunan lapisan tanah

Perhitungan daya dukung selimut tiang dilakukan berdasarkan lapisan tanah hingga kedalaman 10 m.

rapisan tanàn migga keuaraman 10

 $\mathbf{Q}_{\mathrm{s}} = \mathbf{0}, \mathbf{2} \times \mathbf{N} - SPT \times \mathbf{A}_{s}$

- $= 0.2 \times N SPT \times \pi \times D \times L$ $= 0.2 \times 30.4 \times \pi \times 0.5 \times 10$ = 95,5044 Ton
- 3) Kapasitas Ultimit

Berikut adalah perhitungan kapasitas dukung ultimit tiang pancang

Qu =
$$qb + qs - wp'$$

= 402,124 + 95,5044 - 2,8402
= 494,788 Ton

4) Kapasitas Ijin

Berikut adalah perhitungan kapasitas ijin ultimit tiang pancang Opli – $\frac{qu}{dt}$

$$\begin{aligned}
\text{Qan} &= \frac{s_f}{s_f} \\
&= \frac{494,788}{3} \\
&= 164,929 > 28,6547 \text{ (aman)}
\end{aligned}$$

5.7.4 Analisis Stabilitas Lereng dengan Perkuatan Dinding Penahan Tanah dan Tiang pancang Menggunakan Perhitungan dengan Beban Gempa

Pada perhitungan stabilitas dinding penahan tanah dan tiang pancang dengan beban gempa ini akan didapatkan nilai angka aman dari geser, guling, dan keruntuhan kapasitas dukung tanah. Beban yang digunakan pada perhitungan manual ini adalah beban sendiri tanah dan juga beban gempa. Gambar 5.106 adalah sketsa tanah dan dinding penahan tanah dengan tiang pancang.

Gambar 5. 106 Penampang Lereng dengan Dinding Penahan Tanah dan Tiang pancang

Berikut ini adalah perhitungan stabilitas dinding penahan tanah dan tiang pancang dengan beban gempa.

1. Gaya Vertikal

gaya-gaya seperti berat tanah di belakang dinding penahan tanah, berat struktur dinding penahan tanah, dan tiang pancang termasuk sebagai gaya vertikal. Gaya gaya tersebut dapat dibagi pias-pias yang dapat dilihat pada gambar 5.107 berikut.

Gambar 5. 107 Pembagian Pias-Pias pada Gaya Vertikal Dinding Penahan Tanah dengan Perkuatan Tiang Pancang

Berikut ini adalah contoh perhitungan gaya vertikal pada pias 1 pada dinding penahan tanh.

Volume	= A x 1,225
	= 7 x 1,225
	$= 8,575 \text{ m}^3$
Berat (W)	= volume x berat volume tanah timbunan
	= 8,575 x 1,7839
	= 15,297 ton

Dengan menggunakan cara yang sama berikut ini adalah tabel 5.30 rekapitulasi perhitungan gaya vertikal dan momen.

No pias	Luas (m2)	Berat (ton)	Jarak dari O (m)	Momen ke O (Tm)
1	8,5750	15,2969	2,1875	33,462
2	2,1000	5,1376	1,4250	7,321
3	1,4000	3,4251	1,0750	3,682
4	1,9600	4,7951	1,4000	6,713
5	1,9635	4,8037	1,1250	5,404
t	otal	33,4583	ľ	56,5823

Tabel 5. 31 Rekapitulasi Perhitungan Gaya Vertikal dan Momen Terhadap Titik O pada Dinding Penahan Tanah dengan Perkuatan Tiang Pancang

2. Tekanan Tanah Lateral

Tekanan tanah lateral adalah tekanan tanah aktif dan tenakan tanah pasif yang terjadi pada kondisi normal.tekanan tanah aktif adalah tekanan yang mendorong tanah di belakang dinding penahan tanah. Sedangkan tanah pasif adalah tekanan yang menahan tanah yang terletak di depan dinding penahan tanah. Diagram tekanan tanah lateral ditampilkan pada gambar 5.108 dibawah ini.

Gambar 5. 108 Diagram Tekanan Tanah Lateral

a. Koefisien Tekanan Tanah Aktif

Ka_{tim} = $tan^2 \left(45 - \frac{\varphi}{2}\right)$ = $tan^2 (45 - 15)$ = 0,333

b. Perhitungan Tekanan Tanah Aktif

Dibawah ini adalah contoh perhitungan tekanan tanah aktif dan pasif pada dinding penahan tanah

Pa1 =
$$-2 \times ct \times \sqrt{Ka \ tim} \times h \ tim$$

= $-2 \times 5 \times \sqrt{0,333} \times 7$
= $-4,532 \ ton$
Pa2 = $0,5 \times \gamma b \ tim \times h \ tim \times Ka \ tim \times h \ tim$
= $0,5 \times 1,7839 \times 7 \times 0,333 \times 7$
= $17,628 \ ton$

Berikut adalah Tabel 5.31 hasil rekapitulasi tekanan tanah aktif

Tabel 5. 32 Hasil Rekapitulasi Perhitungan Tekanan Tanah Aktif padaDinding Penahan Tanah dengan Perkuatan Tiang Pancang

Tekanan Tanah	Rumus	Gaya (ton)	Lengan ke O (m)	Momen (tm)
Pa1=	$-2 \times ct \times \sqrt{Ka \ tim} \times h \ tim$	-4,532	3,85	-17,447
Pa2=	$0,5 \times \gamma b tim \times h tim \times Ka tim \times h tim$	17,628	2,5667	45,245
		13,096		27,798

c. Koefisien Tekanan Tanah Pasif

Kp1
$$= \frac{1}{Ka_{timbunan}}$$
$$= \frac{1}{0,3333}$$
$$= 3$$

d. Perhitungan Tekanan Tanah Pasif

Pp1 = 2 x ct x
$$\sqrt{Kp1}$$
 x h tim
= 2 x 5 x $\sqrt{3}$ x 2
= 3,531 ton
Pp2 = 0,5 x γ b tim x h tim x Kp1 x h tim
= 0,5 x 1,7839 x 2 x 3 x 2
= 42,876 ton

Tabel 5. 33 Hasil Rekapitulasi P	erhitungan Tek	anan Tanal	Pasif Pada
Dinding Penahan Tanah d	lengan Perkuata	an Tiang Pa	ncang

Tekanan	D	Gaya	Lengan	Momen
Tanah	Rumus	(ton)	ke O	(tm)
Pp1=	-2.c tim. $\sqrt{Ka \ tim}$.h tim	7,062	2	14,125
Pp2=	0,5.γb tim.h tim.Ka tim.h tim	42,813	1,3333	57,085
	Σ	49,876		71,209

e. Tekanan Tanah Dinamis

Tekanan tanah dinamis dihitung berdasarkan sni 2833-2016 pasal 9.6. Berikut ini adalah contoh perhitungan tekanan tanah dinamis pada dinding penahan tanah

Ht	= 7,7 m
В	= 1 m
γt	= 1,7839 ton/m3
kv	= 0°
βa	= 0°
Kh	$=\frac{As}{2}$
	$=\frac{0,6}{2}$
	= 0,3g
θ	$= arc tan \frac{Kh}{1-Kv}$
	= 0,2915 rad
	$= 16,7^{\circ}$
σ	$=0^{\circ}$
π	= 30°
Ι	$=0^{\circ}$
Kae	$= \frac{\cos^2(\varphi - \theta - \beta a)}{\cos \theta \times \cos^2 \beta a \times \cos(\delta + \theta + \beta a)} \times \left[1 - \frac{1}{\cos \theta \times \cos^2 \beta a \times \cos(\delta + \theta + \beta a)}\right]$
	$\sqrt{\frac{\sin(\delta+\varphi)\times\sin(\varphi-\theta-i)}{\cos(\delta+\varphi+\beta a)\times\cos(i-\beta a)}}\right]^{-2}$

Berikut ini adalah diagram tekanan tanah dinamis yang dapat dilihat pada gambar 5.109 dibawah ini

Berikut perhitungan gaya tekanan tanah dinamis.

Pae
$$= \frac{1}{2} \times \gamma \times ht^{2} \times (1 - kv) \times kae \times B$$
$$= \frac{1}{2} \times 1,7839 \times 7^{2} \times (1 - 0) \times 0,5545 \times 1$$
$$= 29,3232 \text{ ton}$$
Lae
$$= \frac{1}{2} \times H$$
$$= \frac{1}{2} \times 7,7$$
$$= 3,85 \text{ m}$$
Mae
$$= \text{Pae x Lae}$$
$$= 29,3232 \times 3,85$$
$$= 112,8944 \text{ Tm}$$

Dengan ini rekapitulasi perhitungan tekanan tanah aktif menjadi seperti pada tabel 5.33 dibawah ini

Tabel 5. 34 Hasil Rekapitulasi Perhitungan Tekanan Tanah Aktif padaDinding Penahan Tanah dan Tiang Pancang dengan Beban Gempa

Tekanan Tanah	Rumus	Gaya (ton)	Lengan ke O	Momen (tm)
Pa 1	$-2 \times ct \times \sqrt{Ka \ tim} \times h \ tim$	-4,532	3,850	-17,447
Pa 2	$0,5 \times \gamma \ tim \times h \ tim \times Ka \ tim \times h \ tim$	17,628	2,567	45,245
Pae	$\frac{1}{2} \times \gamma \times ht^2 \times (1 - Kv) \times Kae \times B$	27,618	3,850	106,331
	Jumlah	42,419		140,692

Berikut perhitungan gaya tekanan tanah dinamis.

P_{PE} =
$$\frac{1}{2} \times \gamma \times ht^2 \times (1 - kv) \times kae \times B$$

= $\frac{1}{2} \times 1,7839 \times 2^2 \times (1 - 0) \times 0,5545 \times 1$
= 7,9132 ton
L_{PE} = $\frac{1}{2} \times H$
= $\frac{1}{2} \times 2$
= 1 m
M_{PE} = ppe x lpe
= 7,9132 X 1
= 15,8263 tm

Dengan ini rekapitulasi perhitungan tekanan tanah pasif menjadi seperti pada tabel 5.34 dibawah ini

Tabel 5. 35 Hasil Rekapitulasi Perhitungan Tekanan Tanah Aktif pada
Dinding Penahan Tanah dan Tiang Pancang dengan Beban Gempa

Tekanan Tanah	Gaya (ton)	Lengan ke O	Momen(tm)	
Pp1=	7,062	2,000	14,125	
Pp2=	42,813	1,333	57,085	
Ppe=	7,9132	2	15,8263	
	57,789		87,036	

- 3. Stabilitas Dinding Penahan Tanah Dengan Perkuatan Tiang Pancang
 - a. Stabilitas Terhadap Geser

Η

Perhitungan stabilitas terhadap geser pada dinding penahan tanah dilakukan dengan menganggap bahwa tahanan geser yang diberikan dari dinding penahan tanah ditahan oleh berat sendiri tanah dan struktur dinding penahan tanah itu sendiri. Serta kekuatan pondasi tiang pancang menahan gaya lateral yang bekerja.

Gaya aksial sepenuhnya ditahan oleh tiang pancang tunggal sebesar 28,6547 ton

Maka gaya lateral yang perlu ditahan oleh tiang pancang adalah

 $= \Sigma Pa - (\Sigma W + Pp)$ = 42,419 - (28,6547 + 57,789) = -44,0243

Karena nilai gaya lateral lebih kecil daripada gaya aksial yang ditahan oleh tiang pancang, maka untuk mengetahui nilai angka keamanan terhadap pergeseran dilakukan dengan menganggap tahanan geser diberikan oleh dinding penahan tanah sepanjang 2,8 m pada tanah dasar dinding penahan tanah. Sehingga, $\delta b = \phi$ tanah dasar dan cd = c tanah dasar.

Rh = cd x B + (
$$\Sigma$$
W) x tan δ b
= 0,57 x 2,8 + 28,6547 x tan 21,48°
= 12,8719 ton
Fgs = $\frac{\Sigma Rh + Pp}{\Sigma Pa}$
= $\frac{12,8719 + 57,789}{42,419}$
= 1,6658

Fgs \geq 1,5, maka stabilitas dinding penahan tanah terhadap stabilitas geser akibat beban gempa terpenuhi.

b. Stabilitas Terhadap Guling

Stabilitas guling terhadap dinding penahan tanah dihitung dengan membandingkan momen akibat dari tekanan tanah lateral aktif pada tanah didepan dinding yang berotasi pada ujung kaki depan pelat pondasi (momen yang mendorong) dengan momen akibat dari momen berat sendiri dinding penahan tanah dan tanah yang ada di atasnya serta momen akibat tekanan tanah pasif yang ada di belakang dinging penahan tanah (momen yang menahan).

$\Sigma M_{penahan}$	$=\Sigma Mw + \Sigma M pasif$				
	= 56,5823 + 87,036				
	= 143,618 Tm				
$\Sigma M_{pendorong}$	$=\Sigma Maktif$				
	= 140,692Tm				
Fgl	$=\frac{\Sigma M penahan}{\Sigma M pendorong}$				
	$=\frac{143,618}{140,692}$				
	= 1,0207				

Karena nilai Fgl ≤1,5, maka stabilitas terhadap penggulingan dinding penahan tanah belum terpenuhi, oleh karena itu stabilitas guling

ditentukan oleh kekuatan tiang dalam menahan beban momen. Momen yang dapat ditahan oleh tiang adalah

Lapisan 3 kedalaman -15,00m

 $=\tan^2 \times (45 + \frac{\varphi}{2})$ Kp $= \tan^2 \times (45 + \frac{21,48}{2})$ = 2,1555 Lapisan 4 kedalaman -20,00m $= \tan^2 \times (45 + \frac{\varphi}{2})$ K_p $= \tan^2 \times (45 + \frac{22,86}{2})$ = 2,2705Lapisan 5 kedalaman -25,00m $= \tan^2 \times (45 + \frac{\varphi}{2})$ Kp $= \tan^2 \times (45 + \frac{20,78}{2})$ = 2.0997 $= \gamma \times D \times L^3 \times Kp$ Mmak $=(14,126 \times 0,5 \times 10^{3} \times 2,1555) + (14,372 \times 0,5 \times 10^{3} \times 10^{3}$ $10^3 \times 2,271) + (14,107 \times 0,5 \times 10^3 \times 2,099)$ = 2555,8255 kNm = 260,5327 tm Sehingga SF guling menjadi = 140,692 tmMaktif Mmak = 260,5327 tm ΣMpenahan Fgl ΣMpendorong $=\frac{260,5327}{140,692}$ = 1,8518

Karena nilai Fgl \geq 1,5, maka stabilitas terhadap penggulingan dinding penahan tanah sudah terpenuhi.

c. Stabilitas Terhadap Kapasitas Dukung Tiang Pancang
 Gambar 5.110 dibawah ini adalah sketsa desain pondasi tiang pancang
 dan sketsa susunan lapisan tanah

Gambar 5. 110 Sketsa Susunan Lapisan Tanah dan Lapisan Nspt

a. Kapasitas Ujung

$$Ap = \frac{1}{4} \times \pi \times D^{2}$$

$$= \frac{1}{4} \times \pi \times 0.5^{2}$$

$$= 0.19635 \text{ m}^{2}$$

$$10D = 10 \times D$$

$$= 10 \times 0.5$$

$$= 5$$

$$4D = 4 \times D$$

$$= 4 \times 0.5$$

$$= 2$$

$$N_{b} = \frac{(2 \times 35) + (2 \times 32) + (1 \times 32) + (2 \times 40)}{5 + 2}$$

$$= 51.2$$

$$Q_{p} = 40 \times N_{b} \times A_{p}$$

$$= 40 \times 51.2 \times 0.19635$$

= 402,124 Ton

b. Kapasitas Selimut

Perhitungan daya dukung selimut tiang dilakukan berdasarkan lapisan tanah hingga kedalaman 10 m.

 $Q_s = 0,2 \times N - SPT \times A_s$

 $= 0.2 \times N - SPT \times \pi \times D \times L$ $= 0.2 \times 30.4 \times \pi \times 0.5 \times 10$

= 95,5044 Ton

c. Kapasitas Ultimit

Berikut adalah perhitungan kapasitas dukung ultimit tiang pancang

$$Qu = qb + qs - wp'$$

$$=402,124+95,5044-2,8402$$

= 494,788 ton

d. Kapasitas Ijin

Berikut adalah perhitungan kapasitas ijin ultimit tiang pancang Qall = $\frac{qu}{sf}$

$$=\frac{494,788}{3}$$

= 164, 929 > 28,647 (aman)

5.8 Pembahasan

Analisis lereng dilakukan terhadap Jembatan Kiringan di aliran Sungai Opak Dusun Kiringan, Desa Canden Sta. +275 untuk mengetahui nilai angka aman pada lereng tersebut. Analisis yang dilakukan pada penelitian kali ini terhadap lereng asli, lereng dengan perkuatan eksisting berupa dinding penahan tanah kantilever dan *bored pile*, dan lereng dengan perkuatan alternatif berupa dinding penahan tanah dan tiang pancang dengan variasi diameter yaitu diameter 30cm, 40cm, dan 50cm. Analisis terhadap lima kondisi tersebut dilakukan dengan menggunakan perhitungan manual dan menggunakan program Plaxis 8.2 bertujuan untuk membandingkan hasilnya.

Dari hasil analisis lereng asli menggunakan program plaxis diketahui nilai

aman sebesar 0,7273. Nilai ini menandakan lereng dalam keadaan tidak stabil dengan nilai angka aman <1,25. Kemudian dilakukan perhitungan manual untuk validasi nilai angka aman pada lereng tersebut. Dilakukan perhitungan manual metode fellenius dan didapatkan angka aman senilai 1,1731. Dari hasil tersebut, lereng dalam keadaan tidak stabil dengan nilai angka aman SF<1,25. Hal ini terjadi karena tanah asli didominasi tanah berpasir dengan sudut gesek dalam dan kohesi yang kecil. Selain itu hasil uji bor log pada kedalaman 0 – 12m diketahui kondisi tanah adalah tanah sangat lunak sampai dengan lunak. Hal inilah yang sangat mempengaruhi kekuatan dari tanah tersebut dalam menahan beban yang bekerja. Untuk itu perlu dilakukan perkuatan lereng berupa dinding penahan tanah dan pondasi tiang.

Hasil analisis lereng dengan perkuatan eksisting berupa dinding penahan tanah dan bored pile menggunakan program plaxis untuk kondisi tanpa beban gempa didapat nilai angka aman sebesar 1,5943, dan untuk kondisi dengan beban gempa diketahui nilai angka aman sebesar 0,7958. Dari hasil perhitungan manual, untuk stabilitas lereng dengan perkuatan dinding penahan tanah dan bored pile tanpa beban gempa didapatkan nilai angka aman terhadap geser sebesar 4,6507, angka aman terhadap guling sebesar 3,7613, dan angka aman untuk daya dukung tanah terhadap keruntuhan didapatkan nilai Qall sebesar 26,1143 ton.. Sedangkan untuk stabilitas lereng dengan perkuatan dinding penahan tanah dan bored pile dengan beban gempa didapatkan nilai angka aman terhadap geser sebesar 1,6615, angka aman terhadap guling sebesar 1,5327, dan angka aman untuk daya dukung tanah terhadap keruntuhan didapatkan nilai Qall sebesar 26,1134 ton. Dari hasil tersebut, stabilitas lereng dengan perkuatan dinding penahan tanah dan bored pile baik tanpa beban gempa maupun dengan beban gempa dinyatakan aman. karena nilai faktor aman terhadap geser lebih besar dari 1,5, nilai angka aman terhadap guling lebih besar dari 1,5, dan nilai angka aman daya dukung tanah terhadap keruntuhan lebih besar dari beban yang bekerja yaitu 28,6547.

Hasil analisis lereng dengan alternatif perkuatan dinding penahan tanah dan tiang pancang variasi diameter 30 cm menggunakan program plaxis untuk kondisi tanpa beban gempa didapat nilai angka aman sebesar 1,5823, sedangkan untuk kondisi dengan beban gempa didapat nilai angka aman sebesar 0,7523. Dari hasil perhitungan manual, untuk stabilitas lereng dengan perkuatan dinding penahan tanah dan tiang pancang tanpa beban gempa didapatkan nilai angka aman terhadap geser sebesar 4,7913, angka aman terhadap guling sebesar 4,4666, dan angka aman untuk daya dukung tanah terhadap keruntuhan didapatkan nilai Qall sebesar 67,0149 Ton. Dari hasil tersebut, stabilitas lereng dengan perkuatan dinding penahan tanah dan tiang pancang tanpa beban gempa dinyatakan aman, karena nilai angka aman terhadap geser $\geq 1,5$, nilai angka aman terhadap guling $\geq 1,5$, dan nilai angka aman daya dukung tanah terhadap keruntuhan lebih besar dari beban yang bekerja yaitu 28,6547. Sedangkan untuk stabilitas lereng dengan perkuatan dinding penahan tanah dan tiang pancang dengan beban gempa didapatkan nilai angka aman terhadap geser sebesar 1,6658, angka aman terhadap guling sebesar 1,1111, dan angka aman untuk daya dukung tanah terhadap keruntuhan didapatkan nilai Qall sebesar 67,0149. Dari hasil tersebut, stabilitas lereng dengan perkuatan dinding penahan tanah dan tiang pancang dengan beban gempa dinyatakan tidak aman terhadap guling karena angka aman terhadap guling $\leq 1,5$, namun nilai angka aman terhadap geser $\geq 1,5$ dan nilai angka aman daya dukung tanah terhadap keruntuhan lebih besar dari beban yang bekerja yaitu 28,6547. Hal ini terjadi karena momen tahanan maksimum tiang tidak cukup mampu menahan momen yang terjadi sehingga nilai aman terhadap guling kurang dari 1,5..

Kemudian hasil analisis lereng dengan alternatif perkuatan dinding penahan tanah dan tiang pancang variasi diameter 40 cm menggunakan program plaxis untuk kondisi tanpa beban gempa didapat nilai angka aman sebesar 1,5812, sedangkan untuk kondisi dengan beban gempa didapat nilai angka aman sebesar 0,7781. Dari hasil perhitungan manual, untuk stabilitas lereng dengan perkuatan dinding penahan tanah dan tiang pancang tanpa beban gempa didapatkan nilai angka aman terhadap geser sebesar 4,7913, angka aman terhadap guling sebesar 4,5217, dan angka aman untuk daya dukung tanah terhadap keruntuhan didapatkan nilai Qall sebesar 110,6478 Ton. Sedangkan untuk stabilitas lereng dengan perkuatan dinding penahan tanah dan tiang pancang dengan beban gempa didapatkan nilai angka aman terhadap geser sebesar 1,6658, angka aman terhadap guling sebesar 1,5, dan angka aman untuk daya dukung tanah terhadap keruntuhan didapatkan nilai Qall sebesar 110,6478 Ton. Dari hasil tersebut, stabilitas lereng dengan perkuatan dinding penahan tanah dan tiang pancang baik tanpa beban gempa maupun dengan beban gempa dinyatakan aman. karena nilai faktor aman terhadap geser lebih besar dari 1,5, nilai angka aman terhadap guling lebih besar dari 1,5, dan nilai angka aman daya dukung tanah terhadap keruntuhan lebih besar dari beban yang bekerja yaitu 28,6547.

Berikutnya hasil analisis lereng dengan alternatif perkuatan dinding penahan tanah dan tiang pancang variasi diameter 50 cm menggunakan program plaxis untuk kondisi tanpa beban gempa didapat nilai angka aman sebesar 1,5810, sedangkan untuk kondisi dengan beban gempa didapat nilai angka aman sebesar 0,7759. Dari hasil perhitungan manual, untuk stabilitas lereng dengan perkuatan dinding penahan tanah dan tiang pancang tanpa beban gempa didapatkan nilai angka aman terhadap geser sebesar 4,7913, angka aman terhadap guling sebesar 4,5972, dan angka aman untuk daya dukung tanah terhadap keruntuhan didapatkan nilai Qall sebesar 28,6547 Ton. Sedangkan untuk stabilitas lereng dengan perkuatan dinding penahan tanah dan tiang pancang dengan beban gempa didapatkan nilai angka aman terhadap geser sebesar 1,6658, angka aman terhadap guling sebesar 1,8518, dan angka aman untuk daya dukung tanah terhadap keruntuhan didapatkan nilai Qall sebesar 164,9294 Ton. Dari hasil tersebut, stabilitas lereng dengan perkuatan dinding penahan tanah dan tiang pancang baik tanpa beban gempa maupun dengan beban gempa dinyatakan aman. karena nilai faktor aman terhadap geser lebih besar dari 1,5, nilai angka aman terhadap guling lebih besar dari 1,5, dan nilai angka aman daya dukung tanah terhadap keruntuhan lebih besar dari beban yang bekerja yaitu 28,6547.

Ringkasnya ditampilkan perbandingan angka keamanan terhadap lereng asli, lereng dengan perkuatan eksisting berupa dinding penahan tanah kantilever dan *bored pile*, dan lereng dengan perkuatan alternatif berupa dinding penahan tanah dan tiang pancang dengan variasi diameter yaitu diameter 30cm, 40cm, dan 50cm. pada tabel 5.35 sebagai berikut. Tabel 5. 36 Perbandingan Angka Keamanan Terhadap Lereng Asli, Lereng dengan Perkuatan Eksisting Berupa Dinding Penahan Tanah Kantilever dan *Bored Pile*, dan Lereng dengan Perkuatan Alternatif Berupa Dinding Penahan Tanah dan

	PLAXIS		MANUAL						
TINJAUAN	Tanpa	Dengan	Metode Tanpa Gempa			Dengan Gempa			
	Gempa	Gempa	Fellenius	Geser	Guling	Qall (ton)	Geser	Guling	Qall (ton)
Lereng Asli	0,7273	-0	1,1731	-	-	- () -	_	-
DPT dan Bored	1 59/13	0 7958		4 6507	3 7613	26 1134	1 662	1 533	26 1134
Pile	1,5745	0,7950		4,0507	3,7013	20,1134	1,002	1,555	20,1134
DPT dan Tiang	1 5822	0 7523	_	4 7913	4 4666	67 0149	1 666	1 1 1 1	67 0149
Pancang d30	1,0022	0,7525	>	1,7713	1,1000	07,0112	1,000	1,111	07,0112
DPT dan Tiang	1 5812	0 7781	_	4 7913	4 5217	110 6484	1 666	15	110 6484
Pancang d40	1,5012	0,7701		1,7915	1,5217	110,0101	1,000	1,5	110,0101
DPT dan Tiang	1 5810	0 7759	_	4 7913	4 5972	164 9294	1 666	1 852	164 9294
Pancang d50	1,5010	0,1157		1,7915	1,3972	101,9294	1,000	1,052	101,7274

Tiang Pancang dengan Variasi Diameter yaitu Diameter 30cm, 40cm, dan 50cm.

BAB VI

KESIMPULAN DAN SARAN

6.1 Kesimpulan

Berikut ini adalah kesimpulan dari hasil yang didapatkan dari penelitian yang telah dilakukan

- Hasil Analisis pada tinjauan d30 menggunakan program Plaxis 8.2 menunjukkan kondisi lereng aman. Sedangkan pada perhitungan manual lereng dinyatakan kritis terhadap tahanan guling. Hasil Analisis pada tinjauan d40 menggunakan program Plaxis 8.2 menunjukkan kondisi lereng aman. Kemudian pada perhitungan manual bahwa kondisi lereng dinyatakan aman. Hasil Analisis pada tinjauan d40 menggunakan program Plaxis 8.2 menunjukkan kondisi lereng aman. Kemudian pada perhitungan manual bahwa kondisi lereng dinyatakan aman.
- 2. Hasil analisis pada perkuatan alternatif menunjukkan nilai tahanan terhadap geser maupun momen yang lebih baik dibandingkan perkuatan eksisting dikarenakan dimensi dinding penahan tanah eksisting belum memenuhi syarat. Sehingga nilai faktor aman yang didapatkan perkuatan alternatif lebih baik daripada perkuatan eksisting.

6.2 Saran

Berikut ini adalah saran untuk hasil yang didapatkan dari penelitian yang telah dilakukan

- 1. perlu dilakukan analisis dengan program plaxis terbaru,
- 2. perlu dilakukan analisis dengan mempertimbangkan variasi muka air tanah saat normal maupun saat banjir,
- perlu dilakukan analisis dengan variasi jumlah tiang, tidak hanya dengan variasi dimensi dan letak struktur,

- 4. perlu dilakukan analisis biaya untuk menentukan penggunaan diameter tiang pancang,
- 5. perlu dilakukan perbandingan terhadap metode lainnya semisal perhitungan menggunakan data laboratorium.

Daftar Pustaka

- Abdul Hakam, R. P. (2011). Studi Stabilitas Dinding Penahan Tanah Kantilever Pada Ruas. *Jurnal Rekayasa Sipil*, Universitas Andalas. Padang.
- Darman, H. (2000). an Outline of the Geology of Indonesia. Research Gate, 2.
- Das, B. M. (2007). Principles of Foundation Engineering. Stamford: Global Engineering: Christopher M. Shortt.
- Dirgananta, M. F. (2018). Perencanaan Ulang Pondasi Tiang Pancang Dengan Variasi Diameter Menggunakan Metode Meyerhoff, Aoki & De Alencar, Dan Luciano Decourt. *Tugas Akhir*, Universitas Islam Indonesia. Yogyakarta.
- Fitri, A. A. (2017). Perencanaan Ulang Struktur Bawah Abutment Dengan Pondasi Bored Pile. *Tugas Akhir*, Universitas Islam Indonesia. Yogyakarta.
- Hadihardja, J. (1997). *REKAYASA PONDASI I: Konstruksi Penahan Tanah*. Depok: Gunadarma.
- Haq, D. (2018). Pengaruh Variasi Dimensi Terhadap Kapasitas Dukung Fondasi Tiang Bor. *Tugas Akhir*, Universitas Islam Indonesia. Yogyakarta.
- Hardiyatmo, H. C. (2014). Analisis dan Perancangan FONDASI I. Edisi Ketiga. Yogyakarta: Gadjah Mada University Press.
- Hardiyatmo, H. C. (2014). *Analisis dan Perancangan FONDASI II. Edisi Ketiga*. Yogyakarta: Gadjah Mada University Press.
- Hardiyatmo, H. C. (2018). Mekanika Tanah 1. Edisi Keenam. Yogyakarta: Gadjah Mada University Press.
- Hardiyatmo, H. C. (2018). *Mekanika Tanah 2. Edisi Keenam*. Yogyakarta: Gadjah Mada University Press.

- Makarim, H. W. (2020). Analisis Tiang Pancang Sebagai Dinding Penahan Tanah Menggunakan Program Metode Elemen Hingga. Jurnal Mitra Teknik Sipil, Universitas Tarumanagara. Jakarta.
- Nurtanti, E. Z. (2019). Analisis Perkuatan Tanah Dengan Menggunakan Dinding Penahan Tanah Beton Bertulang Dan Dinding Turap Baja Dengan Program Plaxis 8.6 Pada Sungai Pabelan. *Tugas Akhir*, Universitas Islam Indonesia. Yogyakarta.
- Safitri, P. I. (2021). Finite Element Analysis Pada Dinding Penahan Tanah Simpang Underpass Universitas Lampung. *Teknosia*, Universitas Lampung. Lampung.
- Standar Nasional Indonesia. (2012). SNI 1726 : 2012 Tata Cara Perencanaan Ketahanan Gempa Untuk Struktur Bangunan Gedung dan Non Gedung. Badan Standarisasi Nasional . Jakarta.
- Standar Nasional Indonesia. 2016. SNI 2833 : 2016 Perencanaan Jembatan Terhadap Beban Gempa. Badan Standarisasi Nasional . Jakarta.
- Plaxis. 2018. Manual Plaxis.
- PUSKIM. 2014. *Peta Zonasi Gempa*. https://puskim.pu.go.id/peta-zonasigempa. Diakses 25 Januari 2021.

Lampiran 1. Denah Bor Log

Lampiran 2 Data Bor Log

(Sumber: PT. Telaga Pasir Kuta, 2020)

Lampiran 3 Data Parameter Tanah

		jenis tanah					
parameter	satuan	tanah timbunan	tanah lapis 1	tanah lapis 2	tanah lapis 3	tanah lapis 4	tanah lapis 5
jenis tanah	0	pasir batu	pasir halus berlanau	pasir berlempung berlanau	pasir berlanau	pasir berlanau	pasir berlanau
γ unsat	ton/m ³	1,78389	1,44801	1,48298	1,43996	1,46504	1,43802
γ sat	ton/m ³	2,78389	1,91998	1,94200	1,95902	1,94200	1,91397
E ref	ton/m ³	1325,18	1325,18	1325,18	1325,18	1325,18	1325,18
kohesi (c)	ton/m ³	0,5097	0,6800	0,9800	0,5700	0,8000	0,9100
sudut geser (\$)	o	30	20,55	19,72	21,48	22,86	20,78
poisson ratio (v)		0,25	0,25	0,25	0,3	0,3	0,3
Kx	m/hari	0,537	0,579	0,537	0,569	0,542	0,633
Ку	m/hari	0,537	0,579	0,537	0,569	0,542	0,633

Tabel L-1. 1 Data Parameter Tanah

(Sumber: PT. Telaga Pasir Kuta, 2020)