
DEVELOPING A GAME THAT TEACH ALGORITHMIC THINKING

FOR EDUCATION PURPOSES

by

Muhammad Shafri Syamsuddin (何伟光)

A Thesis

Submitted to the Faculty of Nanjing Xiaozhuang University

in Partial Fulfillment of the Requirements for the degree of

 Bachelor of Software Engineering

School of Information Engineering

Fangshan, Nanjing

May 2022

ACKNOWLEDGMENTS

 The author would like to express the whole heart thanks to his family for

financial supports in the author’s entire life and this pursue of bachelor’s degree in

Nanjing Xiaozhuang University and Universitas Islam Indonesia.

 The author would like to express an immeasurable appreciation for all the help

and support that has been given, either directly and indirectly during the preparation for

the completion of this thesis. In particular, to:

1. Certain someone who have been very impactful in these recent months to how I

see life, to how I see motivations, to how I see belief, to how I overcome my

depression, who accompany me talks about what is the purpose of life, how to

take control and a lot of emotional supports. I am very fortunate that I met this

human, this anomaly in my life that somehow saved me.

2. Myself, for not giving up.

3. Li Qing (李青) Laoshi as my advisors, who helped me from the beginning of the

first draft till the completion of the thesis, he is such a nice guy with great

attitude, great voice too.

4. Mrs. Sheila Nurul Huda as my favorite lecturer in University Islam Indonesia,

Gotta catch em all, amirite?

5. Mrs. Sophie Mou , the best cici in Nanjing Xiaozhuang University, who always

take jokes lightly , cheers up the mood in the university wechat groups, really

talkative person on meetings, thank you for the companion for these 2 years

online.

6. To my fellow classmates in both Nanjing Xiaozhuang University and Universitas

Islam Indonesia.

7. Last but not least, to anyone, any people, that create any sort of

content/education/philosophy that impact me in any way and make me a person

that I am right now, thank you.

TABLE OF CONTENTS

ACKNOWLEDGMENTS .. 4

TABLE OF CONTENTS .. 5

List of tables .. 7

List of figures .. 8

Abstract ... 9

CHAPTER 1. INTRODUCTION ... 10

1.1 Background of The Study ... 10

1.2 Problem Statement ... 11

1.3 Purpose of the Study ... 11

1.4 Limitation of Study .. 11

1.5 Benefit of The Study .. 12

1.6 Writing Structure .. 12

1.7 Schedule ... 13

CHAPTER 2. REVIEW OF LITERATURE .. 14

2.1 Fundamental Theory ... 14

2.1.1 Algorithmic and Computational Thinking .. 14

2.1.2 Games on Improving Algorithmic and Computational Thinking 16

2.1.3 Games Addiction ... 18

2.2 Theoretical Basis .. 19

2.2.1 Windows Operating System .. 19

2.2.2 Unity 3D .. 19

CHAPTER 3. ANALSYIS AND DESIGN .. 20

3.1 Research Methodology ... 20

3.1.1 Introduction ... 20

3.1.2 Software Development Method .. 20

3.2 Project Planning ... 21

3.2.1 Requirements... 21

3.2.2 Specifications .. 22

3.2.3 Project Scope ... 22

3.3 Game Design Document .. 23

3.3.1 Introduction ... 23

3.3.2 Background ... 23

3.3.3 Character ... 24

3.3.4 Gameplay .. 24

CHAPTER 4. IMPLEMENTATION & TESTING .. 26

4.1 Graphics and Animations ... 26

4.2 Programming .. 31

4.3 Testing .. 37

4.4 Stage Testing .. 43

4.4.1 Introducing Movement .. 43

4.4.2 Introducing Lasers ... 44

4.4.3 Rotating Platforms .. 44

CHAPTER 5. CONCLUSION .. 45

5.1 Conclusion .. 45

5.2 Recommendations .. 45

REFERENCES .. 47

List of tables

Table 1.1: Schedule ... 13

Table 2: Specifications .. 22

List of figures

Figure 1: The Robot .. 26

Figure 2: The Spike ... 27

Figure 3: The Box ... 28

Figure 4: The Rotating Platform ... 29

Figure 5: The Laser ... 29

Figure 6: Character Movement Code .. 31

Figure 7: Character Movement Code 2 ... 32

Figure 8: Character Control Code ... 33

Figure 9: The Laser Particle System ... 34

Figure 10: Rotate Platform Code .. 35

Figure 11: Trigger Collision Code .. 36

Figure 12: Main Menu .. 37

Figure 13: Stage 1-1 .. 38

Figure 14: Instruction Demo ... 38

Figure 15: Executed Instructions .. 39

Figure 16: Pause Menu ... 39

Figure 17: The Laser ... 40

Figure 18: Blocked Laser .. 40

Figure 19: Robot Dies Demo .. 41

Figure 20: Platform ... 42

Figure 21: Rotated Platform .. 42

Figure 22: Stage 1-2 .. 43

Figure 23: Stage 1-4 .. 43

Figure 24: Stage 2-1 .. 44

Figure 25: Stage 2-3 .. 44

Figure 26: Stage 3-3 .. 44

file:///E:/Study%20Stuff/FILE%20NXU/Speedrun%20Skripsi%205%20hari.docx%23_Toc104107938
file:///E:/Study%20Stuff/FILE%20NXU/Speedrun%20Skripsi%205%20hari.docx%23_Toc104107939
file:///E:/Study%20Stuff/FILE%20NXU/Speedrun%20Skripsi%205%20hari.docx%23_Toc104107940
file:///E:/Study%20Stuff/FILE%20NXU/Speedrun%20Skripsi%205%20hari.docx%23_Toc104107941
file:///E:/Study%20Stuff/FILE%20NXU/Speedrun%20Skripsi%205%20hari.docx%23_Toc104107942
file:///E:/Study%20Stuff/FILE%20NXU/Speedrun%20Skripsi%205%20hari.docx%23_Toc104107943
file:///E:/Study%20Stuff/FILE%20NXU/Speedrun%20Skripsi%205%20hari.docx%23_Toc104107944
file:///E:/Study%20Stuff/FILE%20NXU/Speedrun%20Skripsi%205%20hari.docx%23_Toc104107945
file:///E:/Study%20Stuff/FILE%20NXU/Speedrun%20Skripsi%205%20hari.docx%23_Toc104107946
file:///E:/Study%20Stuff/FILE%20NXU/Speedrun%20Skripsi%205%20hari.docx%23_Toc104107947
file:///E:/Study%20Stuff/FILE%20NXU/Speedrun%20Skripsi%205%20hari.docx%23_Toc104107948
file:///E:/Study%20Stuff/FILE%20NXU/Speedrun%20Skripsi%205%20hari.docx%23_Toc104107949
file:///E:/Study%20Stuff/FILE%20NXU/Speedrun%20Skripsi%205%20hari.docx%23_Toc104107950
file:///E:/Study%20Stuff/FILE%20NXU/Speedrun%20Skripsi%205%20hari.docx%23_Toc104107951
file:///E:/Study%20Stuff/FILE%20NXU/Speedrun%20Skripsi%205%20hari.docx%23_Toc104107952
file:///E:/Study%20Stuff/FILE%20NXU/Speedrun%20Skripsi%205%20hari.docx%23_Toc104107953
file:///E:/Study%20Stuff/FILE%20NXU/Speedrun%20Skripsi%205%20hari.docx%23_Toc104107954
file:///E:/Study%20Stuff/FILE%20NXU/Speedrun%20Skripsi%205%20hari.docx%23_Toc104107955
file:///E:/Study%20Stuff/FILE%20NXU/Speedrun%20Skripsi%205%20hari.docx%23_Toc104107956
file:///E:/Study%20Stuff/FILE%20NXU/Speedrun%20Skripsi%205%20hari.docx%23_Toc104107957
file:///E:/Study%20Stuff/FILE%20NXU/Speedrun%20Skripsi%205%20hari.docx%23_Toc104107958
file:///E:/Study%20Stuff/FILE%20NXU/Speedrun%20Skripsi%205%20hari.docx%23_Toc104107959
file:///E:/Study%20Stuff/FILE%20NXU/Speedrun%20Skripsi%205%20hari.docx%23_Toc104107960
file:///E:/Study%20Stuff/FILE%20NXU/Speedrun%20Skripsi%205%20hari.docx%23_Toc104107961
file:///E:/Study%20Stuff/FILE%20NXU/Speedrun%20Skripsi%205%20hari.docx%23_Toc104107962
file:///E:/Study%20Stuff/FILE%20NXU/Speedrun%20Skripsi%205%20hari.docx%23_Toc104107963

Abstract

Owing to their ease of engagement and motivational nature, especially for younger age

groups, games have been omnipresent in education since earliest times. More recently,

computer video games have become widely used, particularly in secondary and tertiary

education, to impart core knowledge in some subject areas and as an aid to attracting

and retaining students.

Gaming community also have a niche group called speedrunners, where they compete to

complete a game in the shortest way possible. Academics have proposed that game

based learning to teach Algorithmic Thinking or Computational Thinking. And there are

a lot of research suggesting that learning basic programming language such as pascal

improves Algorithmic Thinking Ability of a person significantly.

Keywords : Computational Thinking, Algorithmic Thinking, Game, Education,

Programming.

CHAPTER 1. INTRODUCTION

1.1 Background of The Study

 Gaming is a term for an activity which the user run a specialized applications

known as electronic games or video games on game consoles like X-Box, Playstation

and Nintendo or on Personal Computers (in which case the activity is known as online

gaming). The term “gaming” comes from a synonym for “gambling” although most

electronic games today do not involve gambling in the traditional sense. Nowadays,

gaming is a term that people uses regularly to suggest regular gameplay or possibly as a

hobby. A person who is into gaming is often called a gamer or hardcore gamer.

 On the other hand of the spectrum, we have education. Education is the process

of which someone learns something; an acquisition of knowledge, skills, values, morals,

beliefs, habits, and personal development.

 Many research shows that video games have a negative impact on student

grades. Because of the addiction that usually occurs when people play video games.

Studies show that some children as young as 4 years old have become addicted. Video

game addiction in children does not happen undetected. The negative effects of video

game addiction are always apparent to the naked eyes of other people to see. Both

parents and teachers may notice decreased performance at school coupled with lower

grades and failing classes.

 With that said, as with everything there is in the world, there are two sides to the

object in question, video game apparently also have a positive impact. People that play

games daily usually excels at problem solving and IQ test in general, although, it is still

difficult to prove that video games are the one that cause the improvement, because

there may be a bias that people who excels at problem solving and higher IQ are

interested in playing video games because it makes their brain think more often and fast

paced rather than learning school subjects.

 I propose a solution which then we can monopolize on gaming addiction and use

it as a tool to improve education. The solution is a game where the participants will

learn how to think algorithmically, in hope that it will helps with students studying

instead of having negative effects.

 Algorithmic thinking is a way of thinking that every problem can be solved

through the clear definition of the steps needed, rather than coming up with a single

answer to a problem, we develop a set of instructions or rules that if followed precisely

leads to answers to the original and similar problems. This way of thinking if applied

correctly can improve on students ability to solve general problems.

 This game is intended for students that are aware that they like to play games but

want to improve their ability in academics.

1.2 Problem Statement

 Based on the background, the author can identify the problem that needs to be

solved by this application, those are:

a. How can a game counteracts it’s negative effects?

b. How to design a game that can helps in students studies without making it a

boring game?

c. How to integrate a command-line like interface into a game?

1.3 Purpose of the Study

 The purposes of this application are:

a. This application is a game that teaches students how to think algorithmically

in hope that it helps with their studies.

b. This application help people use their addiction energy to gaming towards

something more productive.

1.4 Limitation of Study

 Some limitations of this study are as follows:

1. The application is only targeted at people who already like gaming.

2. The application can only be run on windows operating system.

3. The application will only be available in English.

1.5 Benefit of The Study

 The benefits of the application are:

1. The application teaches participants how to think algorithmically and

hopefully apply them in real life situations.

2. The application is designed with minimal graphics so participants can focus

on the problem solving aspect of the game.

3. The application is lightweight so any computer with windows can run it.

1.6 Writing Structure

 The thesis will be written with a this structure, divided into five chapters,

description for each chapter are as follows:

 CHAPTER 1. INTRODUCTION

 In this chapter, the author discuses the background of the study, problem

statement, limitation of the study, benefits of the study, writing structure and schedules.

` CHAPTER 2. REVIEW OF LITERATURE

 This chapter discusses existing literature that supports the arguments of this

paper, and used to elaborate the technology used in creating this paper

 CHAPTER 3. ANALYSYS AND DESIGN

 This chapter discusses the research methodology that is used to create this paper.

The software development method used, the application wireframe, system needs, and

system design.

 CHAPTER 4. IMPLEMENTATION AND TESTING

 This chapter discusses the results of the analysis and design of the chapter

before. This chapter will explain the process of coding the application until it can be

used by the users. It also illustrates the graphic of the system, and conducts limited

testing of the application to see if it is already qualified or still in need of redesign or

improvements.

 CHAPTER 5. SUMMARY AND CONCLUSION

 This chapter contains the conclusion to the paper, it talks about how theoretically

the system achieve it goals, and talks about recommendations that can improve that for

future developments.

1.7 Schedule

 Scheduling for creating this thesis are as follows:

Table 1.1: Schedule

No Activities

Weeks

1 2 3 4 5 6 7 8 9

1 Analysis of Needs

2 Design

3 Wireframe

4 Coding

5 Testing

6 Documentation

 It takes approximately 9 weeks for the writer to finish this paper, starting on

February 22th, 2022 until April 30th, 2022.

CHAPTER 2. REVIEW OF LITERATURE

 This review of literature will discuss about topics, theories and technologies that

are used by the author during the development of the game:

2.1 Fundamental Theory

2.1.1 Algorithmic and Computational Thinking

 Mind or machine, which trumps which? Debates about reasoning and self

perfection, automation and political order did not begin with Big Data. Early modern

natural philosophers, who developed mechanical calculating machines, embraced

mathematical practice for the bettering of moral character (Ksenia Tatarchenko, 2019).

Computational Thinking (CT) was first introduced by Papert (1990). Wing (2006)

emphasized that CT is one of the daily life skills that everyone needs, rather than just

being a programming skill used only by computer scientists. Wing (2010) further

defined operational thinking as the process of problem-solving, so that the message

processing agent can be effectively executed and the problem solved. Computers can

help us solve problems via the following two steps: First, consider the steps to solve the

problem, then use technical skills to control the computer to help solve the problem. For

example, one must understand the mathematical formula and explain the problem, and

use simple methods or formulas to solve the problem via the computer’s computation.

Besides , creating animation, the designer need to plan the way for the animation to be

completed and have a good understanding of how the animation will flow before

completing the task using compuer softwares. In these two examples, CT is the thinking

process one needs to engage in before beginning the computer and machine operation

[2][6][7][8][18][19].

 CT is the fundamental skill for everyone, not just programmers. To reading,

writing, and arithmetic, we should add computational thinking to every child’s

analytical ability. Just as the printing press facilitated the spread of the three Rs, what is

appropriately incestuous about this vision is that computing and computers facilitate the

spread of computational thinking (Wing 2008). Wing (2008) stated that thinking like a

computer scientist means more than being able to program a computer. It requires

thinking at multiple levels of abstraction.

 Computer science is the study of computation— what can be computed and how

to compute it. CT thus has the following characteristics:

1. Conceptualizing, not programming.

2. Fundamental, not rote skill.

3. A way that humans, not computers, think.

4. Complements and combines mathematical and engineering thinking.

5. Ideas, not artifacts.

6. For everyone, everywhere (Wing 2008).

 Heather Skinner Robin Croft (2009) found that Neurolistic Programming; a form

of computational thinking, offers a more detailed approach to goal setting than other

frameworks with which business and management students may already be familiar.

Within this framework students are able to identify both motivation and means, and are

then encouraged to take up the opportunity of making the first step towards successfully

undertaking the dissertation project.

 While Doleck, et al (2017) findings suggest a lack of association between

computational thinking skills and academic performance (except for a link between

cooperativity and academic performance). This is noteworthy given the importance that

has been placed on teaching and learning twenty-first-century skills in various curricular

reforms implemented since the turn of the millennium. If there is no relationship

between computational thinking skills and academic performance, we must ask whether

these curriculum-mandated skills are being explicitly taught at all. More distressingly,

we must wonder at measures of academic performance that are negatively associated

with cooperativity.

 Other authors such as Tissenbaum, et al (2019) stated that a new way to look at

CT is by converting it to Computational Action, they conclude that with rapid changes

happening in both computing and computing education landscapes, we have an

opportunity to reconsider how students learn computing. Young learners have the

capacity to develop computational products that have authentic impact in their lives

from the moment they begin to code. They simply need contexts that allow them to have

such impact. Computational action starts to define what these contexts should look like.

With more computing instructors coming online, we have a unique opportunity to work

with them as they develop skills and practices necessary to engage in computational

action with their students. We are excited about a world in which young learners see the

world as full of opportunities for them to digitally create the future they (and we) want

to inhabit.

 There are also other forms of computational thinking suggested by Ross D.

Arnold and Jon P. Wade (2105) called Systems Thinking. They described it as with

most systems, systems thinking consists of three kinds of things: elements (in this case,

characteristics), interconnections (the way these characteristics relate to and/or feed

back into each other), and a function or purpose5 (Meadows 2008). Notably, the least

obvious part of the system, its function or purpose, is often the most crucial determinant

of the system’s behavior5 (Meadows, 2008). Though not all systems have an obvious

goal or objective, systems thinking does. In order to convey its definition, especially to

those unfamiliar with the concept, it is critically important to communicate this goal.

2.1.2 Games on Improving Algorithmic and Computational Thinking

 Although puzzle-based learning can be used as a fundamental strategy when

developing an online learning system, it remains essential to have a proper strategy or

mechanism that can further increase students’ motivation and engagement when they are

solving and practicing puzzles. Engaging students in repeatedly solving a puzzle not

only ensures that they truly understand how to solve that puzzle but also helps students

practice the essential skills of puzzle solving. Integrating game-based learning with

puzzle-based learning to create a puzzle-based game learning system that could make

puzzle solving identical to game playing may help to fulfill the above requirements of

repetition and practice (Chih-Chao Hsu and Tzone-I. Wang 2017-2018) .

 With the wide application of technology in education, digital games holding the

inherent characteristics of goals, interaction, feedback, and entertainment have been

given distinct educational purpose and developed to promote students’ cognitive and

intelligent abilities. However, it is not sufficient to simply transform puzzle-solving into

the form of a puzzle-solving game that only possesses the inherent characteristics of

digital games (Chih-Chao Hsu and Tzone-I. Wang 2017-2018).

 Chih-Chao Hsu and Tzone-I. Wang (2017-2018) found that in all four puzzle-

solving performances, the results of algorithmic thinking skills and the review of the

pseudocodes were both reasonable. Using game mechanics, this study encouraged

members of the PGM and PGS groups not only to try and solve a puzzle more times but

also to try and solve more puzzles.

 Other autors such as Kazigmolu, et al (2012) conduct experiments such as

making their own game, they found that twenty five students participated in an exercise

to evaluate program your robot and it was found that participants enjoyed playing the

game. Furthermore, participants reported that this type of approach can enhance the

problem solving abilities of students who are learning introductory computer

programming.

 Other orthodox way of this is what Topalli and Cagiltay (2018) do , instead of

teaching CT using games , they conduct an experiment that teach CT by making games

using scratch. They found that by slightly improving the course content through real-life

game development in the Scratch environment, students’ performance in the Senior-

projects improved significantly which may be an indicator that the game projects

improve students’ motivation towards the introduction to programming concepts.

Additionally, as they were able to see the big picture of the software development cycle

and the place of coding in that cycle their understanding of programming concepts was

most probably better conceptualized enabling them to better integrate the other concepts

in their program within this big picture. The Scratch visual programming environment

also most probably helped them not just concentrate on the syntax problems but on the

design and development of the general system and algorithms. By solving a real-life

problem and getting feedback from domain experts, they most likely are better

motivated and work harder to solve the problem that is defined by the domain experts, in

turn, improving their problem-solving skills.

2.1.3 Games Addiction

 For the past few years , Online Games are really popular. Everyone plays it,

child and adult alike. Game Addiction can be used as an advantage for this method of

learning. However, making an education game addicting can be hard. Here are some of

the findings with game addiction.

 Dal Yong Jin and Florence Chee (2008) said that with the ever-increasing

presence of online games in Korean mainstream culture, the corresponding

consequences of games eclipsing other activities have also garnered much attention in

recent years to become a very pertinent issue. Gamers in Korea have repeatedly made

world headlines with reports on their perceived level of pathological use of games. The

controversies have largely revolved around the compromise of “real-life” social

activities because of their addictions to all things having to do with games, at home, and

especially at PC bang. This acceptance into mainstream popular culture is evident in

many ways, such as the success of games such as StarCraft and Lineage, the existence

of celebrity professional gamers, and organized league play of online games, which are

often broadcast on cable television (Kline et al., 2003). As D. Lee (2006) noted, the

broader populace is however only starting to realize that gaming itself is not just for

trivial fun but has become another channel of human relationships, in other words, part

of people’s actual lives.

 The section “part of people’s actual lives” is the critical part, games nowadays

have taken over some people life, because it is where most people can use their

knowledge in a niche community. Being good at a specific something have a really deep

impact on psychology, usually we will feel proud that we can do something that not

everybody can (Chappel et al ,2006).

2.2 Theoretical Basis

2.2.1 Windows Operating System

 Microsoft Windows, usually called Windows, is an operating system made by

Microsoft. It is a graphical operating system shell for MS-DOS in response to the

growing interest in graphical user interfaces. Microsoft Windows allows users to view

and store files, run the software, play games, watch videos, and provides a way to

connect to the internet.

2.2.2 Unity 3D

 Unity Technologies is a company that is created on 2004 by David Helgason,

Nicholas Francis and Joachim Ante. This game engine is made because three of them

care about indie game developers that can’t afford to buy an expensive game engine.

The mission of this company is to make a game engine that can be used by everyone.

 Unity 3D is a great cross-platform 3D game engine and a user friendly

development environment. It uses C# to handle code and scripts, in hand with a number

of classes and APIs. Just like other game engine, Unity is capable of providing many of

the most important features to make a game work. It already includes physics, 3D

rendering, and collision detection. From a developer’s eye, this means that they do not

need to code all of that anymore. Rather than starting a new project just to create

physics, Unity 3D already provide it.

CHAPTER 3. ANALSYIS AND DESIGN

3.1 Research Methodology

3.1.1 Introduction

 The aim of this game is to educate people on how to think algorithmically using

a serious game that can teach people how to think ahead of time and how well that type

of thinking can aid in problem solving every aspect of life.

 As teaching algorithmic thinking have a direct effect on improving someone

problem solving skills, it would possibly improve their grades in school and therefore

decrease the problem that games usually brought; scoring low in academic tests.

3.1.2 Software Development Method

 The development process used in this project is something that every game

studio follows to create a good game. The process is iterative, meaning that features can

be prototyped over and over.

 However because limitation of time, the author of this paper decided to

implement Rapid Application Development (RAD) mindset to this development

method.

 The development method is divided into 5 phases:

1. Game Design: Here is where most of the prototyping or designing of the game

takes place, the developer creates a game by writing a document called Game

Design Document (GDD) which is a document that every developers in the team

need to follow for the rest of the project so that the game created will be what the

game designers want exactly. The result of this step is usually some drawings of

the game or maybe a prototype.

2. Implementation: This step is also called production, and is the main stage of the

development process. The game assets and source code are created. In this part

we can divide the team into three major groups, the first are the programmers,

they will create the mechanic of the game without graphics for rapid testing, the

second are graphic designers, they usually create the 3D assets of the game, the

last are sound engineers, they are obliged to create and search for sound effects

that are suitable for the game. The product of this stage is called an alpha version

of the game. It contains all the major feature of the game, only some minor

feature will be added or removed later.

3. Beta phase: This version is where the game is already complete, the only part

left to do is bug-fixing by getting feedback from users or beta testers. No new

feature is added, only bug-fixing.

4. Post production: In the post production the game is released to public.

5. Maintenance: As all software that are created in this world, game also needs a

maintenance phase after it’s released, in order to keep up with new devices or

fixing bugs that are not discovered on the beta phase of the development.

 In this paper, the author only work alone, he will take all the roles, because of

this limitation, the game will only be made until the beta phase, it will not be released

nor get maintenance.

3.2 Project Planning

 The project plan will discuss about the main objectives of the project,

specifications and/or responsibilities. As mentioned, this plan will include everything

involving the development of the game, but it can still be altered in the future with

reviews, evaluations and feedbacks.

 These are the project plans:

3.2.1 Requirements

 The main project requirements for the author is to learn how to design and

develops a video game. All the phases inside it like preproduction, production and post

production. The author also need to learn how to make 3D assets, compose simple music

for the game, scripting, level creation and user interface.

3.2.2 Specifications

 Because the project will be tested on the author computer, the specifications will

be focused on minimum specifications to run the software needed to create this projects.

The software are:

1. Unity 3D

2. Blender

3. Visual Studio 2019

4. Audacity

 All these software run smoothly on the author laptop , Acer swift sf314-54g ,

with the technical specs:

Table 2: Specifications

1.8 GHz Intel Core I5-8250U

8 GB 2666 MHz DDR4

Nvidia MX150

15,4” monitor with 1920*1080 resolution

NVME SSD 256GB Storage

Windows 11 Home Single Language 64 bit

3.2.3 Project Scope

 The project will be based on creating a sokoban-like 3D game with instructions

as a mean of controlling the player rather than direct inputs, the in-scope features are:

• Single Player

• Windows

• 3D Low Poly Art

• Multi Level

• 3D sokoban-like game with instruction as a way to control the player

• Minimalist GUI

• Unity3D using C# as programming language

3.3 Game Design Document

 The game design document (GDD) is the core of the game. The designer create

this in extreme details to explain how the game play mechanics play and what the game

world based on. This document is a reference for all the people in the team to work with

and to create the game. In this instance, since the author work on the game alone, this

serves purpose as a guideline so the time spent developing is more efficient.

3.3.1 Introduction

 Escape from Area 51 is a sokoban-like puzzle game for windows developed in

Unity3D with 3D low-poly art. The player will control the character through a lot of

levels avoiding spikes and holes by giving it a set of instructions that it will follows, just

like programming!

 Beat every level and set the character free from the area 51

3.3.2 Background

 Escape from Area 51 is inspired by two existing game that are already available.

These games are called sokoban and baba is you, both are the same genre with that of

Escape from Area 51.

 This game is inspired by these titles because they are essentially a grid-based

movement style of game, by restricting the movement of characters to a grid, the

instructions to move the character will be more understandable and fluid. Baba is You is

also inspiring this game but in a different way, in that title, the game teaches player how

to use logic equation to solve the puzzle, by teaching logical thinking to player, that

game can make someone better at problem solving too, this game is inspired by that but

took another approach, by teaching algorithmic thinking.

3.3.3 Character

 In this game there will only be 1 character , the main character, which is:

• Robot : This robot is a very strong robot, it can push blocks, how much?

Infinite, but it’s not very smart, you need to give it instructions, detailed

instructions, to help him get out of the maze!

3.3.4 Gameplay

 The gameplay is sokoban-like puzzle with 3D style, the player controls the main

character from the start of the level until the exit. You need to push boxes, avoid spikes,

block lasers and navigate through rotating platforms to get to the exit. The player control

the character by giving it movement instructions that the character will follow.

 The player mechanic will be a very specific instruction as follows :

1. Turn Left

The Robot will rotate 90 degree counter-clockwise.

2. Turn Right

The Robot will rotate 90 degree clockwise.

3. Move Forward

The Robot will move to the block in front of it.

 The game is composed of 3 main stages where the mechanics will be introduced

one by one:

• Stage 1 : Here the player will be introduced to the basic mechanics of the

game , controlling the player , learning to navigate through the level and

pushing boxes.

• Stage 2 : The player will be introduced to lasers , they will learn that the

character will die if the lasers touches them , they will learn that they can

push blocks to interrupt the lasers so that they can make it until the exit

without touching the lasers.

• Stage 3 : Rotating platform will be introduced in this stage , if the

character touches the yellow square on the middle of the platform , the

platform will rotates , so the player need to think more of the sequences

of their instructions.

CHAPTER 4. IMPLEMENTATION & TESTING

 The implementation phase is where the author try to develop the game according

to the GDD previously made and the conception of the game in the author mind. After

reading and watching courses about the tools that are needed for the development of the

games. The first step is to create some 3D models and then start programming with

them. The graphic section is not taking up too much time, so the author think he should

start with it.

 Then the author will create the basic mechanics of the game such as movement,

death, respawn, etcetera. After the mechanics are created in a test level, the author will

start designing the levels and create a fully playable game.

4.1 Graphics and Animations

 The graphic in this game is made by using Blender, a 3D modelling app, the

models that are created as follows:

1. The Robot

Figure 1: The Robot

 This is the 3D model of the robot, the character which the player will give

instructions to, the model is inspired by a game called portal. There is a camera like

robot that will shoot the player in that game, the design of this game robot is mimicking

that of the portal game. The robot doesn’t have a strafing function, instead it can only

turn right or left in place and move forward. The design of the robot also implies that it

can only turn in place and move forward. This way the control is a bit different from

other sokoban-like games.

2. The Spikes

 This is the spike 3D model , the robot will die and respawn if it touches the

spike. It is made with a simple square at the bottom and 5 protruding pyramids at the top

Figure 2: The Spike

of it to mimic a characteristic of a spike, the square bottom allows the author to easily fit

it in the sokoban-like grid system in the game.

 The spike also have a Collider detection, it is a Unity3D built-in feature that

allows developer to assign a detector on any 3D model, if another 3D model enters the

area it will give away a Boolean signal, this signal then can be used to execute certain

functions, developer can also assign specific 3D model that will trigger the function, in

this case the author make it so that the Collider only detects the robot, if the robot enters

the collider it will send a true signal to the robot that it touches the spike, this will make

the robot send another signal to the game to activate the respawn function that will reset

the entire level to its original state.

3. The box

The box doesn’t have a 3D model that is made with blender, instead I use Unity

Built-in feature of wrapping a 3D box with 2D texture. The way unity does it is that we

provide the unity with a 2D picture that

have 6 faces. Here’s what it looks like,

the box can be pushed by player,

dropped to the spike and block laser

beam.

Figure 3: The Box

4. The Rotating Platform

 This is the rotating platform, It will rotate

by 90 degree if the robot touches the yellow button

in the middle of the platform. If the robot wants to

turn it again, it must leave the button and click it

again. How it works is that there is a Collider in the

center of the button, it detects if there are another

3D Rigid Body that enter its area, it will send a true

or false signal, that then can be used by a script to

determine whether or not the platform rotates.

5. The Laser

 This is the laser, the black part of the laser is the only 3D model that is used in

the laser, the white part is for demonstration purposes, the actual laser in the game later

will be made using Unity3D Particle System, the black part of the 3D model will be

Figure 4: The Rotating Platform

Figure 5: The Laser

assigned with the Particle System, this then will shoot a particle constantly that it will

look like a laser, it also contains a Collider much like the spike, so if the robot touches it

the entire level will be reset to its original state.

 All this 3D models will later look a bit different in game because of texture and

lighting applied on it.

4.2 Programming

 The programming part have been done using Unity3D and Visual Studio

Community 2019. Unity have a large community filled with forums, hence the project

was done with helps from various of people online. Another advantage of using Unity is

that it is an environment with useful tools and libraries that make it easier to start into

the game, for example, developer doesn’t need to create basic functions like gravity,

movement, lighting etc. The game engine already does it for the developer.

 The programming of the game was divided into several sections:

1. Character Movements

 This part is to create and control the behavior of The Robot. The actions are

Moving Forward and Turning in Place.

• Move Forward: This mechanic is made by taking the position of the robot and

adding movement speed to it, transform() is a Unity3D basic function, basically

it will change the position of the robot every 2 frame of the game moving it

according to how much movement speed is assigned on it , then checking if it’s

already in its destination position yet, if it’s already in its destination , the

movement will be stopped.

Figure 6: Character Movement Code

• Turning in place: In here, there are two functions, turn left and turn right, it

works the same way as move forward, also using the same transform() function

but instead of changing the X and Y position of the robot, this change the

rotation of the robot, every time TurnRight() or TurnLeft() is called, the robot

will turn 90 degree clockwise or counter-clockwise.

Figure 7: Character Movement Code 2

2. Character Control

 This part is where the player controls the movements of the character, the GDD

says that it will be an instruction-based movements, the way the author programmed this

is, by having a set of instructions stored in an array, with minimum of 5 instructions and

14 maximums, then a function will read the arraylist and then deleting it one by one as it

calls the movement functions

Figure 8: Character Control Code

3. Laser

The laser is not coded at all, because there is a built-in feature called Particle

System in Unity, Developer can use this feature to create laser, then by tagging the laser

as a “Deadzone”, when the robot collide with it, we can run the respawn function, the

particle system also have the added benefit of being blockable by 3D objects without

coding , so when the player pushes the block into the laser, it will automatically be

blocked.

Figure 9: The Laser Particle System

4. Rotating Platform

The rotating platform mechanic is the same mechanic as the one that turn the

robot, the difference is the trigger mechanism, it will rotates every time the robot enters

the yellow button collision zone in the middle of the rotating platform. This uses

Unity3D built-in function transform(), using this we just insert a new vector angle that

we want, and then executing transform every 2 frame to get the desired rotation which is

90 degree clockwise rotation.

5. Trigger Collision

Trigger Collision is the most important aspect in any game programming, it

controls and decide what happens when objects touch another object. In this case the

only collision trigger needed is on the Robot, when the robot touches certain objects that

are tagged in certain ways, it reacts differently, such as:

A. Deadzone

The player will trigger the respawn function, this will reset the whole

level to its original state.

B. Checkpoint

The player will trigger the update checkpoint function, this will

change the original state of the level into the current state of the level,

so when the robot touches the “Deadzone” the whole level will not

reset.

Figure 10: Rotate Platform Code

We can see there collision.gameObject.transform.position it update

the checkpoint position to where the collision is happening, we can

also see that it then disable the checkpoint using

collision.gameObject.SetActive(false) so that if the robot somehow

touches the checkpoint again we avoid any error that might happens.

C. PlatformButton

Here when the robot collides with the orange button on the middle of

the rotating platform, it will call the Rotate Platform function

Figure 11: Trigger Collision Code

6. General User Interface

Last but not least was the programming of the GUI. There is a HUD that shows

the controls of the player and the instructions button, All these elements are

inside a Canvas and controller. There is also a Pause Menu that allows the player

to reset, restart the level, quit the game or go back to the main menu. Unity3D

implemented a UI system since 4.6 that makes really easy and fast to create

those menus. The function onClick() allows the button to execute any function of

a script attached to an object.

4.3 Testing

 Testing is the most important part of the game development process. By testing

the game developers can discover certain unknown bugs or if one of the feature is not as

good as the player expected.

 These are the picture of the tested mechanics or functions in the game:

1. Main Menu

Main Menu is a landing interface that the user will encounter at the start of the

game, It consists of 3 buttons: Play, Credit and Exit. When the player clicked on the

Play button they will be redirected to the 1st stage of the game where they will play the

Figure 12: Main Menu

game, Credit will take them to credit for the game, and Exit button will make them quit

the game. The background of this Main Menu is not an image either , rather a live 3D

model that is created for the Main Menu. There are no bugs found here.

2. Stage 1-1

This is stage 1-1; this is included in the test part to see whether the user can enter

a stage successfully or will there be errors. The result is that the player can enter the

stage without any problem. We can also see that the instruction button is showing up

perfectly.

3. Creating the instructions

 `In here we can see the player already made a set of instructions for the robot to

follow. All the buttons work perfectly and the inputs are recorded without a problem.

Figure 13: Stage 1-1

Figure 14: Instruction Demo

4. Executing the Instructions

 Here we can see that the robot followed the player instruction perfectly as

inputted , move forward , turn left , move forward , turn right , move forward and so on.

It will then stop after it does all the instructions.

5. Pause menu

 When the player click the pause button on the top left side of the screen , this

pause menu will show up , player can then resume to exit the pause menu , restart to

Figure 15: Executed Instructions

Figure 16: Pause Menu

reset the stage to the original state , or go to main menu if the player decided to stop

playing the game.

6. The laser

 We can see that the laser particle work as intended, it fires out of the device until

it hit a wall, in this case it hit an invisible wall.

7. The Laser (Blocked)

Figure 17: The Laser

Figure 18: Blocked Laser

The laser should stop if it hit other object or rigidbody beside the wall because it is

a particle system, in this case the object is the box , we can see that the laser doesn’t go

through the box that have been pushed into position by the robot.

8. The Robot dies from Touching the Laser

 In this particular screenshot, the robot is purposely given instruction so that we

can test the laser , as seen in the picture there are particles comping out from the laser,

that is the robot death animation particle effect, the respawn also happened, so we see

the robot is already on it’s original state but we still see the death effect on the laser.

Figure 19: Robot Dies Demo

9. Rotating platform

In here , we test the mechanic of the rotating platform , the rotating platform

should rotate 90 degree clockwise if the robot trigger the collider in the middle

of the platform

10. Rotating Platform (Rotated)

After the robot touches the middle of the platform or trigger the collider, the

platform rotates 90 degree clockwise as expected.

Those are the major functions, that are already tested. The testing went well without any

bugs discovered.

Figure 20: Platform

Figure 21: Rotated Platform

4.4 Stage Testing

 In this section, the author will explain important stages and how does each stages

teach the player to think algorithmically and the challenges that comes with it. What the

designer of the level intended the level to be.

4.4.1 Introducing Movement

 First, we need to make sure the player understand the control of the game, so we

give the player a basic maneuvering challenge like in the stage 1-2 , this will give the

player time to train the controls without thinking that they are being told. Player will

likely make mistakes at first and then learn that falling into the spikes kill the robot.

 Then, after we make sure that the

player learned about the basic maneuver of

the robot , we can introduce them to the

boxes.

 Boxes is just a 3D square with

rigidbody, meaning that it can be pushed

around by another rigidbody; another box

or the robot itself. It can also fall and cover

spikes on the ground, that way the player

can walk above the boxes itself.

 In sokoban like game usually there is an

unspoken-rule that , boxes that are already

pushed onto a wall , cannot be recovered

anymore because the main character or in our

case the robot can’t pull boxes. This can be an

addition to the level designing as well. Like in

level 1-4 the level is designed in a way that the

player need to think creatively if they don’t

want to be blocked by their own boxes.

 The player is expected to be competent at the basic mechanic of the game now.

We can introduce the player to more advanced mechanic after this.

Figure 22: Stage 1-2

Figure 23: Stage 1-4

4.4.2 Introducing Lasers

 In here we will start introducing lasers to the player, we need to make sure that

the player knows what a laser does, so the 1st level of this stage, level 2-1 will only

consist of a box, and a laser, to teach the player

that they need to block the laser with a box to

progress through the level. This will be

implemented more like in level 2-3, it’s still the

same idea of blocking lasers with boxes but

with more lasers, boxes and spikes.

 In that level the player needs to

construct some sort of blocking stair out of

the boxes to navigate through the lasers

safely, in this instance the player will then

need to think in advance on how do they

position the cubes.

 After the player complete this stage, we expect that the player already

understands the mechanic of using the boxes for blocking lasers.

4.4.3 Rotating Platforms

 Basically, the same principle as we did

before, we introduce a single platform on the first

level of the stage, the unique thing about the

platform is that when it rotates, the robot won’t

rotate with it, so the player needs to take that into

consideration before making instructions for the

robot. We also introduce a new mechanic called a

checkpoint block here, the function is that if the

robot dies after it already touches the checkpoint block, it will respawn on the

checkpoint block instead of restarting the whole level again.

Figure 24: Stage 2-1

Figure 25: Stage 2-3

Figure 26: Stage 3-3

CHAPTER 5. CONCLUSION

5.1 Conclusion

 Developing a game is not an easy task, as mentioned it is an iterative process

where when making the game it is not constantly like that, sometimes there are some

mechanics that are unrealistic to make without helps from other, features that are not as

good as theorized when made. Being a team of one person also means that the author

had to do all the roles in a normal game development settings.

 Planning on how to make the game is a hard part for the author because he need

to define milestones and tasks without knowing much if certain task consumes more

time than another certain tasks. Thus, some aspects of the GDD is not very realistic for

the time needed to do all the things planned. Clearly the time was worst when doing the

project due to lack of experience as a student, also the mental state of the author at the

time of making. Such as no repetitive function to teach recursion, no logical function to

teach If…else , etc.

 The application is completed now and hopefully satisfy the purpose of it.

Teaching how to do algorithmic thinking, with this game the players need to think ahead

of time before acting, and set out certain instructions to the robot.

5.2 Recommendations

 Like said in the conclusion, the author can’t make some feature that are pretty

crucial for teaching algorithmic thinking. And there are no tests done to see if real

people actually learn how to do algorithmic thinking by playing this game. Some

recommendation from the author in order to make this game better can be seen:

1. Logical and Recursion function can be added to further improve how to think

algorithmically.

2. Simulating sensors like in a real robot can also be done so that the player can

create his own AI.

3. The plan for the game originally was to create a compiler so that the player can

create his own code for the robot, however the author haven’t finished this part

yet, so he did the instructions approach instead.

4. Testing can be done to see if game actually improve algorithmic thinking on

students.

REFERENCES

1. Topalli D. & Cagiltay N.E., Improving programming skills in engineering

education through problem-based game projects with Scratch, Computers &

Education (2018), doi: 10.1016/j.compedu.2018.01.011.

2. Hsu T.-C., Chang S.-C. & Hung Y.-T., How to learn and how to teach

computational thinking: Suggestions based on a review of the literature,

Computers & Education (2018), doi: 10.1016/j.compedu.2018.07.004.

3. Michael Hemmingsen (2020): Code is Law: Subversion and Collective

Knowledge in the Ethos of Video Game Speedrunning, Sport, Ethics and

Philosophy, DOI: 10.1080/17511321.2020.1796773.

4. Heather Skinner Robin Croft, (2009),"Neuro-linguistic programming techniques

to improve the self-efficacy of undergraduate dissertation students", Journal of

Applied Research in Higher Education, Vol. 1 Iss 1 pp. 30 – 38.

5. Hsu C.-C. & Wang T.-I., Applying game mechanics and student-generated

questions to an online puzzle-based game learning system to promote

algorithmic thinking skills, Computers & Education (2018), doi:

10.1016/j.compedu.2018.02.002.

6. Louise Amoore (2019) Introduction: Thinking with Algorithms: Cognition and

Computation in the Work of N. Katherine Hayles, DOI:

10.1177/0263276418818884

7. Ksenia Tatarchenko (2019) : Thinking Algorithmically: From Cold War

Computer Science to the Socialist Information Culture. Historical Studies in the

Natural Sciences, Vol. 49, Number 2, pps. 194–225. ISSN 1939-1811, electronic

ISSN 1939-182X. © 2019 by the Regents of the University of California.

8. Doleck, T., Bazelais, P., Lemay, D. J., Sazena, A. & Basnet, R. B. (2017) :

Algorithmic thinking, cooperativity, creativity, critical thinking, and problem

solving: exploring the relationship between computational thinking skills and

academic performance.

9. Kazimoglu, C., Kiernan, M., Bacon, L. & Mackinnon, L. (2012) : A serious

game for developing computational thinking and learning introductory computer

programming.

10. Fokker, J.D., Egges, A. & Toll , W.V. (2019) : Learning C# by Programming

Games.

11. Patrick Jagoda (2018) : On Difficulty in Video Games: Mechanics,

Interpretation, Affect.

12. Dal Yong Jin & Florence Chee (2008) : A Critical Interpretation of the Korean

Online Game Industry

13. Chappell, D., Eatough, V., Davie, M. N. O. & Griffiths, M. (2006) :

EverQuest—It_s Just a Computer Game Right? An Interpretative

Phenomenological Analysis of Online Gaming Addiction

14. Carley et al. (2018) : Digital Education to Limit Salt in the Home (DELISH)

Program Improves Knowledge, Self-Efficacy, and Behaviors Among Children.

Journal of Nutrition Education and Behavior, Volume 50, Number 6, 2018.

15. Catherine So-Kum Tang, Yee Woen Koh, & YiQun Gan. (2017) : Addiction to

Internet Use, Online Gaming, and Online Social Networking Among Young

Adults in China, Singapore, and the United States. Asia Pacific Journal of Public

Health 1-10.

16. Eijnden, R. V. D., Koning, I., Doornwaard, S., Gurp, V. P. & Bogt, T. T.

(2018) : The impact of heavy and disordered use of games and social media on

adolescents’ psychological, social, and school functioning. Journal of

Behavioral Addictions 7(3), pp. 697–706 (2018) DOI: 10.1556/2006.7.2018.65

17. Isabella Kotini and Sofi a Tzelepi (2015) : A Gamification-Based Framework for

Developing Learning Activities of Computational Thinking. T. Reiners, L.C.

Wood (eds.), Gamifi cation in Education and Business, DOI 10.1007/978-3-319-

10208-5_12.

18. Jeannette M. Wing (2006) : Computational Thinking. Communications of The

ACM, March 2006/Vol. 49, No. 3.

19. Mike Tissenbaum, Josh Sheldon, & Hal Abelson (2019) : From Computational

Thinking to Computational Action. Communications of The ACM, March 2019,

Vol. 62, No. 3

20. Ross D. Arnold & Jon P. Wade (2015) : A Definition of Systems Thinking: A

Systems Approach. Procedia Computer Science 44 (2015) 669 – 678

21. Rizvi, M., Humphries, T., Major, D., Jones, M., & Lauzun, H. (2011). A CS0

course using scratch. Journal of Computing Sciences in Colleges, 26(3), 19-27.

