TUGAS AKHIR

EVALUASI STRUKTUR ATAS GEDUNG RUMAH SAKIT UII BERDASARKAN SNI 1726:2019 (EVALUATION OF UPPER STRUCTURE OF UII HOSPITAL BUILDING BASED ON SNI 1726:2019)

Diajukan Kepada Universitas Islam Indonesia Yogyakarta Untuk Memenuhi Persyaratan Memperoleh Derajat Sarjana Teknik Sipil

PROGRAM STUDI TEKNIK SIPIL FAKULTAS TEKNIK SIPIL DAN PERENCANAAN UNIVERSITAS ISLAM INDONESIA 2022

TUGAS AKHIR

EVALUASI STRUKTUR ATAS GEDUNG RUMAH SAKIT UII BERDASARKAN SNI 1726:2019 (EVALUATION OF UPPER STRUCTURE OF UII HOSPITAL BUILDING BASED ON SNI 1726:2019)

Disusun oleh SLAN Aditya Arrofi 17511216 Telah diterima sebagai salah satu persyaratan untuk memperoleh derajat Sarjana Teknik Sipil Diuji pada tanggal 2 September 2022 Oleh Dewan Penguji nguji I Pearbimbing nguii II ardawati, S.T., M.Eng. Novi Rahmayanti, S.T., M.Eng. Astriana I Hariadi Yulianto, M.Eng NIK: 1651 M301 NIK: 155111305 NIK: 155111306 Mengesahkan, Ketua Program Studi Teknik Sipil AKULTAS TEKNIK SIPIL M.T., Ph.D. Eng nalia Munta K: 095110101

PERNYATAAN BEBAS PLAGIASI

Saya menyatakan dengan sesungguhnya bahwa Tugas Akhir yang saya susun sebagai syarat untuk penyelesaian program Sarjana di Program Studi Teknik Sipil, Fakultas Teknik Sipil dan Perencanaan, Universitas Islam Indonesia merupakan hasil karya saya sendiri. Adapun bagian-bagian tertentu dalam penulisan Tugas Akhir yang saya kutip dari hasil karya orang lain telah dituliskan dalam sumbernya secara jelas sesuai dengan norma, kaidah, dan etika penulisan karya ilmiah. Apabila di kemudian hari ditemukan seluruh atau sebagian Tugas Akhir ini bukan hasil karya saya sendiri atau adanya plagiasi dalam bagian-bagian tertentu, saya bersedia menerima sanksi, termasuk pencabutan gelar akademik yang saya sandang sesuai dengan perundang-undangan yang berlaku.

Yogyakarta, September 2022

NIM: 17511216

LEMBAR DEDIKASI

Bismillahirrahmanirrahim

Tugas Akhir ini saya dedikasikan kepada kedua orangtua dan adik-adik saya yang senantiasa mendoakan, memberikan motivasi dan dukungan secara penuh untuk menyelesaikan tugas akhir ini. Serta tidak lupa juga dengan teman-teman yang selalu memberikan semangat dan motivasi dalam penyelesaian tugas akhir ini. Semoga dengan selesainya tugas akhir ini dapat memberikan manfaat kepada banyak orang, *Aamiin*.

KATA PENGANTAR

Puji syukur penulis panjatkan kepada Allah SWT, sehingga penulis dapat menyelesaikan Tugas Akhir yang berjudul *Evaluasi Struktur Atas Gedung Rumah Sakit UII Berdasarkan SNI 1726:2019*. Tugas Akhir ini merupakan salah satu syarat akademik dalam menyelesaikan studi tingkat sarjana di Program Studi Teknik Sipil, Fakultas Teknik Sipil dan Perencanaan, Universitas Islam Indonesia, Yogyakarta.

Dalam penyusunan Tugas Akhir ini banyak hambatan yang dihadapi penulis, namun berkat saran, kritik, serta dorongan semangat dari berbagai pihak, Alhamdulillah Tugas Akhir ini dapat diselesaikan. Berkaitan dengan ini, penulis ingin mengucapkan terimakasih yang sedalam-dalamnya kepada:

- 1. Ibu Yunalia Muntafi, S.T., M.T., Ph.D. Eng., selaku Ketua Program Studi Teknik Sipil Fakultas Teknik Sipil dan Perencanaan, Universitas Islam Indonesia,
- 2. Ibu Novi Rahmayanti, S.T., M.Eng. selaku Dosen Pembimbing yang telah membimbing dan memberi arahan kepada penulis selama penyusunan penelitian tugas akhir ini,
- 3. Bapak Hariadi Yulianto, S.T., M.Eng. selaku Dosen Penguji I yang telah memberi masukan dan saran dalam penelitian tugas akhir ini,
- 4. Ibu Astriana Hardawati, S.T., M.Eng. selaku Dosen Penguji II yang telah memberi masukan dan saran dalam penelitian tugas akhir ini,
- 5. Bapak, Ibu, Adik-adik yang telah mendukung selalu mendoakan, memberikan motivasi dan dukungan secara penuh untuk menyelesaikan tugas akhir ini,
- Teman-teman Akadskuy, Wahyu, Ridwan, Lutfi, Abidzar, Fikri, Alfandy, Harris, Annas, Rama, Adit, Dana, Waya, Faiq, Evan, Habib, Wahid, dan Yoda yang menemani dari semester awal hingga akhir ini,

7. Teman-teman Teknik Sipil UII angkatan 2017 yang sudah menjadi menemani dan menjadi keluarga baru di Jogjakarta sejak awal semester hingga akhir semester.

Tugas Akhir ini masih sangat jauh dari kata sempurna, karena keterbatasan pengetahuan dan pengalaman. Penulis berharap agar Tugas Akhir ini dapat bermanfaat bagi semua pihak yang membaca dan mencari referensi dalam penelitian ini.

DAFTAR ISI

HALAMAN JUDUL	i
LEMBAR PENGESAHAN	ii
PERNYATAAN BEBAS PLAGIASI	iii
LEMBAR DEDIKASI	iv
KATA PENGANTAR	V
DAFTAR ISI	vii
DAFTAR TABEL	xi
DAFTAR GAMBAR	xvi
DAFTAR LAMPIRAN	xviii
DAFTAR NOTASI DAN SINGKATAN	xix
ABSTRAK	xxi
ABSTRACT	xxii
BAB I PENDAHULUAN	1
1.1 Latar Belakang	1
1.2 Rumusan Masalah	2
1.3 Tujuan Penelitian	3
1.4 Manfaat Penelitian	3
1.5 Batasan Penelitian	3
BAB II TINJAUAN PUSTAKA	5
2.1 Penelitian Terdahulu	5
2.2 Perbedaan Penelitian	7
2.3 Keaslian Penelitian	10
BAB III LANDASAN TEORI	11
3.1 Umum	11
3.2 Pembebanan Struktur	12

	3.2.1	Beban Gravitasi	12
	3.2.2	Beban Lateral	12
3.3	Analis	is Beban Gempa	13
	3.3.1	Kategori Risiko Bangunan	13
	3.3.2	Faktor Keutamaan Gempa	15
	3.3.3	Kombinasi Pembebanan	16
	3.3.4	Klasifikasi Situs	18
	3.3.5	Koefisien Situs	19
	3.3.6	Parameter Percepatan Respons Spektral	20
	3.3.7	Parameter Percepatan Spektral Desain	23
	3.3.8	Spektrum Respons Desain	23
	3.3.9	Kategori Desain Seismik	25
	3.3.10	Koefisien Modifikasi Respon	26
	3.3.11	Penentuan Periode	27
	3.3.12	Periode Fundamental Pendekatan	27
	3.3.13	Koefisien Respons Seismik	28
	3.3.14	Gaya Geser Dasar Seismik	29
	3.3.15	Penskalaan Gaya	30
	3.3.16	Prosedur Analisis Beban Gempa	30
	3.3.17	Arah Ortogonal	31
	3.3.18	Pemodelan Struktur dan Penampang Retak	31
	3.3.19	Partisipasi Massa Ragam	31
	3.3.20	Parameter Respons Terkombinasi	32
	3.3.21	Redundansi	32
	3.3.22	Penskalaan Simpangan	33
3.4	Ketida	kberaturan Struktur	33
	3.4.1	Ketidakberaturan Horizontal	34
	3.4.2	Ketidakberaturan Vertikal	37
	3.4.3	Konsekuensi Ketidakberaturan Struktur	41

3.5 Sistem Ganda	43
3.6 Fleksibilitas Diafragma	43
3.6.1 Kondisi Diafragma Kaku	44
3.6.2 Kondisi Diafragma Fleksibel	44
3.6.3 Kondisi Diafragma Fleksibel yang Dihitung	45
3.7 Gaya Desain Diafragma	45
3.8 Torsi Tak Terduga	45
3.9 Simpangan Antar Tingkat	46
3.10 Pengaruh P-Delta	48
BAB IV METODOLOGI PENELITIAN	49
4.1 Umum	49
4.2 Lokasi Penelitian	49
4.3 Data Bangunan	50
4.4 Tahapan Penelitian	52
BAB V ANALISIS DAN PEMBAHASAN	57
5.1 Pendahuluan	57
5.2 Pembebanan Struktur	57
5.2.1 Beban Mati	57
5.2.2 Beban Hidup	58
5.3 Beban Gempa	59
5.4 Kombinasi Beban Gempa	67
5.5 Pemeriksaan Hasil Analisis Program	69
5.6 Ketidakberaturan Struktur	74
5.6.1 Ketidakberaturan Horizontal	75
5.6.2 Ketidakberaturan Vertikal	90
5.7 Sistem Ganda	102
5.8 Faktor Redundansi	104
5.9 Fleksibilitas Diafragma	108
5.10 Gaya Desain Diafragma	110

DAFTAR TABEL

Tabel 2.1 Perbedaan Penelitian Terdahulu dengan Penelitian Sekarang	8
Tabel 3.1 Kategori Risiko Bangunan Gedung dan Non Gedung untuk Gempa	13
Tabel 3.2 Faktor Keutamaan Gempa	16
Tabel 3.3 Koefisien Situs, Fa Berdasarkan SNI 1726:2012	19
Tabel 3.4 Koefisien Situs, Fv Berdasarkan SNI 1726:2012	19
Tabel 3.5 Koefisien Situs, Fa Berdasarkan SNI 1726:2019	20
Tabel 3.6 Koefisien Situs, Fv Berdasarkan SNI 1726:2019	20
Tabel 3.7 Kategori Desain Seismik Berdasarkan Parameter Respons Percepatan p	ada
Periode Pendek	25
Tabel 3.8 Kategori Desain Seismik Berdasarkan Parameter Respons Percepatan p	ada
Periode 1 detik	26
Tabel 3.9 Koefisien Modifikasi Respon	26
Tabel 3.10 Koefisien Untuk Batas Atas pada Periode yang Dihitung	27
Tabel 3.11 Nilai Parameter Periode Pendekatan Ct dan x	28
Tabel 3.12 Prosedur Analisis Beban Gempa	30
Tabel 3.13 Penampang Retak Elemen Struktur	31
Tabel 3.14 Pasal Referensi untuk Ketidakberaturan Horizontal	41
Tabel 3.15 Pasal Referensi untuk Ketidakberaturan Vertikal	42
Tabel 3.16 Simpangan Antar Tingkat Izin	48
Tabel 5.1 Beban Hidup	58
Tabel 5.2 Pemeriksaan Ketidakberaturan Torsi Arah X pada SNI 1726:2012 deng	<u></u> an
Arah Ortogonal +100%X +30%Y	77
Tabel 5.3 Pemeriksaan Ketidakberaturan Torsi Arah X pada SNI 1726:2012 deng	<u></u> an
Arah Ortogonal +100%X -30%Y	77
Tabel 5.4 Pemeriksaan Ketidakberaturan Torsi Arah X pada SNI 1726:2012 deng	,an
Arah Ortogonal -100%X +30%Y	78

Tabel 5.5 Pemeriksaan Ketidakberaturan Torsi Arah X pada SNI 1726:2012 denga	an
Arah Ortogonal -100%X -30%Y	78
Tabel 5.6 Pemeriksaan Ketidakberaturan Torsi Arah Y pada SNI 1726:2012 denga	an
Arah Ortogonal +30%X +100%Y	79
Tabel 5.7 Pemeriksaan Ketidakberaturan Torsi Arah Y pada SNI 1726:2012 denga	an
Arah Ortogonal -30%X +100%Y	80
Tabel 5.8 Pemeriksaan Ketidakberaturan Torsi Arah Y pada SNI 1726:2012 denga	an
Arah Ortogonal +30%X -100%Y	80
Tabel 5.9 Pemeriksaan Ketidakberaturan Torsi Arah Y pada SNI 1726:2012 denga	an
Arah Ortogonal -30%X -100%Y	81
Tabel 5.10 Pemeriksaan Ketidakberaturan Torsi Arah X pada SNI 1726:2019 den	gan
Arah Ortogonal +100%X +30%Y	81
Tabel 5.11 Pemeriksaan Ketidakberaturan Torsi Arah X pada SNI 1726:2019 den	gan
Arah Ortogonal +100%X -30%Y	82
Tabel 5.12 Pemeriksaan Ketidakberaturan Torsi Arah X pada SNI 1726:2019 den	gan
Arah Ortogonal -100%X +30%Y	82
Tabel 5.13 Pemeriksaan Ketidakberaturan Torsi Arah X pada SNI 1726:2019 den	gan
Arah Ortogonal -100%X -30%Y	83
Tabel 5.14 Pemeriksaan Ketidakberaturan Torsi Arah Y pada SNI 1726:2019 den	gan
Arah Ortogonal +30%X +100%Y	83
Tabel 5.15 Pemeriksaan Ketidakberaturan Torsi Arah Y pada SNI 1726:2019 den	gan
Arah Ortogonal -30%X +100%Y	84
Tabel 5.16 Pemeriksaan Ketidakberaturan Torsi Arah Y pada SNI 1726:2019 den	gan
Arah Ortogonal +30%X -100%Y	84
Tabel 5.17 Pemeriksaan Ketidakberaturan Torsi Arah Y pada SNI 1726:2019 den	gan
Arah Ortogonal -30%X -100%Y	85
Tabel 5.18 Pemeriksaan Ketidakberaturan Sudut Dalam	86
Tabel 5.19 Pemeriksaan Ketidakberaturan Diskontinuitas Diafragma	88

Tabel 5.20 Pemeriksaan Ketidakberaturan Kekakuan Tingkat Lunak untuk Arah X	
Pada SNI 1726:2012 9	1
Tabel 5.21 Pemeriksaan Ketidakberaturan Kekakuan Tingkat Lunak untuk Arah Y	
Pada SNI 1726:2012 9	1
Tabel 5.22 Pemeriksaan Ketidakberaturan Kekakuan Tingkat Lunak untuk Arah X	
Pada SNI 1726:2019 92	2
Tabel 5.23 Pemeriksaan Ketidakberaturan Kekakuan Tingkat Lunak untuk Arah Y	
Pada SNI 1726:2019 92	2
Tabel 5.24 Pemeriksaan Ketidakberaturan Kekakuan Tingkat Lunak Berlebihan untu	k
Arah X Pada SNI 1726:2012 92	3
Tabel 5.25 Pemeriksaan Ketidakberaturan Kekakuan Tingkat Lunak Berlebihan untu	k
Arah Y Pada SNI 1726:2012 92	3
Tabel 5.26 Pemeriksaan Ketidakberaturan Kekakuan Tingkat Lunak Berlebihan untu	k
Arah X Pada SNI 1726:2019 94	4
Tabel 5.27 Pemeriksaan Ketidakberaturan Kekakuan Tingkat Lunak Berlebihan untu	k
Arah Y Pada SNI 1726:2019 94	4
Tabel 5.28 Pemeriksaan Ketidakberaturan Berat9.	5
Tabel 5.29 Pemeriksaan Ketidakberaturan Geometri Vertikal Arah X 9	6
Tabel 5.30 Pemeriksaan Ketidakberaturan Geometri Vertikal Arah Y94	7
Tabel 5.31 Pemeriksaan Ketidakberaturan Tingkat Lemah Arah X Berdasarkan SNI	
1726:2012 94	8
Tabel 5.32 Pemeriksaan Ketidakberaturan Tingkat Lemah Arah Y Berdasarkan SNI	
1726:2012	8
Tabel 5.33 Pemeriksaan Ketidakberaturan Tingkat Lemah Arah X Berdasarkan SNI	
1726:2019 99	9
Tabel 5.34 Pemeriksaan Ketidakberaturan Tingkat Lemah Arah Y Berdasarkan SNI	
1726:2019 99	9
Tabel 5.35 Pemeriksaan Ketidakberaturan Tingkat Lemah Berlebihan Arah X	
Berdasarkan SNI 1726:2012 10	0

Tabel 5.36 P	emeriksaan Ketidakberaturan Tingkat Lemah Berlebihan Arah Y	
Η	Berdasarkan SNI 1726:2012	101
Tabel 5.37 P	emeriksaan Ketidakberaturan Tingkat Lemah Berlebihan Arah X	
H	Berdasarkan SNI 1726:2019	101
Tabel 5.38 P	emeriksaan Ketidakberaturan Tingkat Lemah Berlebihan Arah Y	
H	Berdasarkan SNI 1726:2019	102
Tabel 5.39 P	Pemeriksaan Sistem Ganda	103
Tabel 5.40 F	Faktor Redundansi Arah X Berdasarkan SNI 1726:2012	104
Tabel 5.41 F	Faktor Redundansi Arah Y Berdasarkan SNI 1726:2012	105
Tabel 5.42 F	Faktor Redundansi Arah X Berdasarkan SNI 1726:2019	105
Tabel 5.43 F	Faktor Redundansi Arah Y Berdasarkan SNI 1726:2019	106
Tabel 5.44 K	Kehilangan Tahanan Momen Maksimum pada Balok Arah X Berdasar	kan
S	SNI 1726:2012	106
Tabel 5.45 K	Kehilangan Tahanan Momen Maksimum pada Balok Arah Y Berdasar	kan
S	SNI 1726:2012	107
Tabel 5.46 K	Kehilangan Tahanan Momen Maksimum pada Balok Arah X Berdasar	kan
S	SNI 1726:2019	107
Tabel 5.47 K	Kehilangan Tahanan Momen Maksimum pada Balok Arah Y Berdasar	kan
S	SNI 1726:2019	108
Tabel 5.48 P	emeriksaan S/D _e Diafragma Arah X	109
Tabel 5.49 P	Pemeriksaan S/D _e Diafragma Arah Y	110
Tabel 5.50 C	Gaya Desain Diafragma Arah X Berdasarkan SNI 1726:2012	111
Tabel 5.51 C	Gaya Desain Diafragma Arah Y Berdasarkan SNI 1726:2012	112
Tabel 5.52 C	Gaya Desain Diafragma Arah X Berdasarkan SNI 1726:2019	112
Tabel 5.53 C	Gaya Desain Diafragma Arah Y Berdasarkan SNI 1726:2019	112
Tabel 5.54 P	enerapan Gaya Desain Diafragma Berdasarkan SNI 1726:2012	113
Tabel 5.55 P	enerapan Gaya Desain Diafragma Berdasarkan SNI 1726:2019	113
Tabel 5.56 P	emeriksaan Diafragma Arah X Berdasarkan SNI 1726:2012	115
Tabel 5.57 P	emeriksaan Diafragma Arah Y Berdasarkan SNI 1726:2012	116

Tabel 5.58 Pemeriksaan Diafragma Arah X Berdasarkan SNI 1726:2019	116
Tabel 5.59 Pemeriksaan Diafragma Arah Y Berdasarkan SNI 1726:2019	116
Tabel 5.60 Simpangan Antar Tingkat pada Arah X Berdasarkan SNI 1726:2012	118
Tabel 5.61 Simpangan Antar Tingkat pada Arah Y Berdasarkan SNI 1726:2012	118
Tabel 5.62 Simpangan Antar Tingkat pada Arah X Berdasarkan SNI 1726:2019	119
Tabel 5.63 Simpangan Antar Tingkat pada Arah Y Berdasarkan SNI 1726:2019	120
Tabel 5.64 Pengaruh P-Delta pada Arah X Berdasarkan SNI 1726:2012	122
Tabel 5.65 Pengaruh P-Delta pada Arah Y Berdasarkan SNI 1726:2012	122
Tabel 5.66 Pengaruh P-Delta pada Arah X Berdasarkan SNI 1726:2019	123
Tabel 5.67 Pengaruh P-Delta pada Arah Y Berdasarkan SNI 1726:2019	123
Tabel 5.68 Rekapitulasi Ketidakberaturan Struktur	125

DAFTAR GAMBAR

Gambar 3.1 Parameter Percepatan Respons Spektral pada Periode Pendek	
Berdasarkan SNI 1726:2012	21
Gambar 3.2 Parameter Percepatan Respons Spektral pada Periode 1 Detik	
Berdasarkan SNI 1726:2012	21
Gambar 3.3 Parameter Percepatan Respons Spektral pada Periode Pendek	
Berdasarkan SNI 1726:2019	22
Gambar 3.4 Parameter Percepatan Respons Spektral pada Periode 1 Detik	
Berdasarkan SNI 1726:2019	22
Gambar 3.5 Peta Transisi Periode Panjang Berdasarkan SNI 1726:2019	23
Gambar 3.6 Spektrum Respons Desain Berdasarkan SNI 1726:2012	24
Gambar 3.7 Spektrum Respons Desain Berdasarkan SNI 1726:2019	25
Gambar 3.8 Ketidakberaturan 1a dan 1b	35
Gambar 3.9 Ketidakberaturan Sudut Dalam	35
Gambar 3.10 Ketidakberaturan Diskontinuitas Diafragma	36
Gambar 3.11 Ketidakberaturan Pergeseran Tegak Lurus terhadap Bidang	36
Gambar 3.12 Ketidakberaturan Sistem Non Paralel	37
Gambar 3.13 Ketidakberaturan Kekakuan Tingkat Lunak (1a dan 1b)	38
Gambar 3.14 Ketidakberaturan Berat (Massa)	38
Gambar 3.15 Ketidakberaturan Geometri Vertikal	39
Gambar 3.16 Ketidakberaturan Akibat Diskontinuitas Bidang pada Elemen Vertik	cal
Pemikul Gaya Lateral	40
Gambar 3.17 Ketidakberaturan Tingkat Lemah Akibat Diskontinuitas Pada Kekal	cuan
Lateral Tingkat	40
Gambar 3.18 Diafragma Fleksibel	44
Gambar 3.19 Faktor Pembesaran Torsi, A _x	46
Gambar 3.20 Penentuan Simpangan Antar Tingkat	47

Gambar 4.1 Lokasi Gedung Rumah Sakit UII	50
Gambar 4.2 Denah Gedung Rumah Sakit UII	51
Gambar 4.3 Potongan Gedung Rumah Sakit UII	51
Gambar 4.4 Bagan Alir Tahapan Penelitian	54
Gambar 5.1 Grafik Respon Spektrum Desain63	
Gambar 5.2 Periode Hasil Analisis Struktur Program ETABS v18	64
Gambar 5.3 Partisipasi Massa Ragam Pada Desain SNI 1726:2012	69
Gambar 5.4 Partisipasi Massa Ragam Pada Desain SNI 1726:2019	70
Gambar 5.5 Gaya Geser Dasar Sebelum Skala Gaya pada SNI 1726:2012	71
Gambar 5.6 Gaya Geser Dasar Setelah Skala Gaya pada SNI 1726:2012	72
Gambar 5.7 Gaya Geser Dasar Sebelum Skala Gaya pada SNI 1726:2019	73
Gambar 5.8 Gaya Geser Dasar Setelah Skala Gaya pada SNI 1726:2019	74
Gambar 5.9 Titik Acuan Arah X Pemeriksaan Ketidakberaturan Torsi	75
Gambar 5.10 Titik Acuan Arah Y Pemeriksaan Ketidakberaturan Torsi	79
Gambar 5.11 Titik Tinjau Ketidakberaturan Sudut Dalam	86
Gambar 5.12 Titik Tinjau Ketidakberaturan Diskontinuitas Diafragma	87
Gambar 5.13 Peninjauan Ketidakberaturan Akibat Pergeseran Tegak Lurus Te	rhadap
Bidang	89
Gambar 5.14 Peninjauan Ketidakberaturan Sistem Non Paralel	89
Gambar 5.15 Peninjauan Ketidakberaturan Geometri Vertikal	96
Gambar 5.16 Pemeriksaan Sistem Ganda	102
Gambar 5.17 Pemeriksaan Fleksibilitas Diafragma	109
Gambar 5.18 Tinjauan Diafragma Fleksibel Arah X	114
Gambar 5.19 Tinjauan Diafragma Fleksibel Arah Y	114
Gambar 5.20 Grafik Simpangan Antar Tingkat Berdasarkan SNI 1726:2012	119
Gambar 5.21 Grafik Simpangan Antar Tingkat Berdasarkan SNI 1726:2019	120

DAFTAR LAMPIRAN

DAFTAR NOTASI DAN SINGKATAN

A_x	: Faktor amplifikasi torsi
C_d	: Faktor pembesaran simpangan lateral
C_{RS}	: Nilai terpeta koefisien risiko spesifik situs pada periode pendek
C_{R1}	: Nilai terpeta koefisien risiko spesifik situs pada periode 1 detik
C_u	: Koefisien untuk batasan atas pada periode yang dihitung
C_{Vx}	: Faktor distribusi vertikal
D	: Pengaruh dari beban mati (kN/m ²)
е	: Eksentrisitas yang terjadi pada pusat massa dan pusat kekakuan (mm)
Ε	: Pengaruh beban seismik horizontal dan vertikal
E_h	: Pengaruh gaya seismik horizontal
E_{v}	: Pengaruh gaya seismik vertikal
F_a	: Koefisien situs untuk periode pendek
F_p	: Gaya seismik yang bekerja pada elemen atau komponen dari struktur (kN)
F_v	: Koefisien situs untuk periode panjang
F_x	: Gaya seismik lateral (kN)
g	: Percepatan gravitasi (m/detik ²)
h	: Tinggi struktur (m)
I_e	: Faktor keutamaan gempa
k	: Eksponen terkait periode struktur
L	: Pengaruh beban hidup (kN/m ²)
Q_E	: Pengaruh gaya seismik horizontal
R	: Koefisien modifikasi respons
S_{DS}	: Parameter percepatan respons spektral pada periode pendek

S_{D1}	: Parameter percepatan respons spektral pada periode 1 detik
S_{M1}	: Percepatan respons spektral pada periode 1 detik
S_S	: Parameter percepatan respons spektral dari peta gempa pada periode pendek
S_1	: Parameter percepatan respons spektral dari peta gempa pada periode 1 detik
Т	: Periode fundamental bangunan (detik)
T_a	: Periode fundamental pendekatan (detik)
T_L	: Peta transisi periode panjang (detik)
V	: Gaya desain total di dasar struktur pada arah yang ditinjau (kN)
V_{EX}	: Nilai maksimum dari analisis gaya geser dasar elastik pada arah X (kN)
V_{EY}	: Nilai maksimum dari analisis gaya geser dasar elastik pada arah Y (kN)
V_t	: Nilai gaya geser dasar akibat seismik (kN)
V_x	: Gaya geser desain di tingkat x (kN)
W_i	: Berat tributari di tingkat-i (kN)
W_x	: Bagian dari berat seismik efektif struktur di tingkat x (kN)
W	: Berat seismik efektif bangunan (kN)
Δ	: Simpangan antar tingkat desain (mm)
Δ_a	: Simpangan antar tingkat yang diizinkan (mm)
δ_{max}	: Perpindahan maksimum di tingkat x (mm)
δ_{avg}	: Rata-rata perpindahan di titik-titik terjauh di tingkat x (mm)
δ_x	: Defleksi pusat massa di tingkat x (mm)
θ	: Koefisien stabilitas untuk pengaruh P-Delta
ρ	: Faktor redundansi struktur
Ω_0	: Faktor kuat lebih

ABSTRAK

Indonesia terletak pada jalur cincin api pasifik yang merupakan wilayah dengan tingkat potensi bencana gempa bumi yang tinggi. Pada tanggal 27 Mei 2006 di Yogyakarta telah terjadi gempa bumi dahsyat yang menyebabkan banyaknya bangunan mengalami kerusakan dan memakan korban jiwa. Dengan kejadian tersebut perencanaan bangunan tahan gempa menjadi syarat penting agar mengurangi risiko kerusakan pada bangunan. Tata cara perencanaan bangunan tahan gempa tertera pada SNI 1726:2019 yang merupakan pembaharuan dari SNI 1726:2012. Maka dari itu diperlukan evaluasi kinerja struktur bangunan pada daerah rawan gempa untuk mengetahui bangunan tersebut memenuhi syarat ketahanan gempa atau tidak agar menghindari pada kerusakan bangunan.

Maksud dari penelitian ini yaitu mengevaluasi kinerja struktur atas gedung Rumah Sakit UII yang berada di Kabupaten Bantul. Evaluasi struktur menggunakan metode analisis respon spektrum berdasarkan SNI 1726:2012 dan SNI 1726:2019. Evaluasi ini berupa ketidakberaturan struktur yang terjadi, perbandingan gaya geser dasar, simpangan antar tingkat, dan gaya diafragma yang terjadi.

Hasil penelitian menunjukkan bahwa gedung rumah sakit UII memiliki ketidakberaturan struktur horizontal tipe 1a, 1b, 2, dan 3 serta ketidakberaturan vertikal tipe 2. Terjadi peningkatan nilai gaya geser dasar pada SNI 1726:2019 sebesar 50,503 % terhadap SNI 1726:2012. Terjadi peningkatan nilai simpangan antar tingkat pada SNI 1726:2019 pada arah X sebesar 40,926 % dan arah Y sebesar 37,511 % terhadap SNI 1726:2012. Terjadi peningkatan nilai gaya desain diafragma pada SNI 1726:2019 sebesar 10,328 % pada arah X dan 11,153 % pada arah Y terhadap SNI 1726:2012.

Kata kunci: Gempa Bumi, Evaluasi, Respon Spektrum, SNI 1726:2012, SNI 1726:2019

ABSTRACT

Indonesia is located in the Pacific Ring Of Fire, which is an area with high potential for earthquake disasters. On May 27, 2006, in Yogyakarta, there was a terrible earthquake that caused damage to many buildings and claimed lives. Because of these incident, earthquake-resistant building planning becomes an important requirement to minimize from risk of damage to the building. The method for planning earthquake-resistant buildings is stated in SNI 1726:2019 which is an update of SNI 1726:2012. Therefore, it is necessary to evaluate the performance of building structures in earthquake-prone areas to find out whether from the building meets with requirements for earthquake resistance or not to avoid damage to the building.

The purpose of this research is evaluate the performance of the upper structure of the UII Hospital building in Bantul Regency. Evaluation of the structure using the response spectrum analysis method based on SNI 1726:2012 and SNI 1726:2019. This evaluation is form of structural irregularities that occured, rasio of the basic shear force, story drift, and the diaphragm design force that occured.

The results showed that the UII Hospital building had horizontal structural irregularities of types are 1a, 1b, 2, and 3 as well as vertical irregularities of type 2. There was an increased from value of the basic shear force in SNI 1726:2019 by 50,503 % against SNI 1726:2012. There was an increased on the value of story drift in SNI 1726:2019 by 40,926 % in the X direction and 37,511 % in the Y direction against SNI 1726:2012. There was an increased on the value of the diaphragm design force in SNI 1726:2019 by 10,328 % in the X direction and 11,153 % in the Y direction against SNI 1726:2012.

Keywords: Earthquake, Evaluation, Spectrum Response, SNI 1726:2012, SNI 1726:2019

BAB I

PENDAHULUAN

1.1 Latar Belakang

Indonesia termasuk ke dalam wilayah Cincin Api Pasifik (*Ring of Fire*) yang merupakan wilayah yang sering mengalami bencana gempa bumi dan letusan gunung berapi. Pawirodikromo (2012) menyatakan bahwa gempa bumi merupakan bergetarnya permukaan tanah karena pelepasan energi secara tiba-tiba akibat dari pecah/slipnya massa batuan di lapisan kerak bumi. Indonesia juga terletak di antara 3 lempeng tektonik yang bergerak aktif yaitu lempeng Indo-Australia berada di sisi selatan, lempeng Pasifik berada di sisi timur, dan lempeng Eurasia berada di sisi utara sehingga membuat Indonesia termasuk negara dengan tingkat potensi gempa bumi yang cukup tinggi.

Adanya interaksi antar lempeng-lempeng ini menjadikan Indonesia sebagai wilayah yang rawan terjadinya gempa bumi. Tingginya potensi gempa bumi di Indonesia dapat menimbulkan kerusakan pada bangunan dan memakan korban jiwa. Oleh karena itu, perencanaan bangunan tahan gempa menjadi syarat yang harus diterapkan agar mengurangi korban jiwa. Pedoman dalam merencanakan bangunan tahan gempa terdapat pada SNI 1726:2019 yang merupakan pembaharuan dari SNI 1726:2012. Pembaharuan tersebut meliputi penggunaan peta gempa terbaru yaitu Peta Sumber dan Bahaya Gempa Indonesia tahun 2017 menggantikan Peta *Hazard* Gempa Indonesia tahun 2010.

Dengan adanya pembaharuan peta gempa tersebut, perlu dilakukan evaluasi struktur bangunan yang berada pada wilayah yang sering terjadinya gempa bumi dengan melakukan pemeriksaan gaya geser dasar seismik yang terjadi pada dasar bangunan. Gaya geser dasar pada setiap lantai bangunan digunakan sebagai pemeriksaan gaya diafragma yang terjadi.

Kejadian gempa bumi pada 27 Mei 2006 menjadikan Kabupaten Bantul sebagai wilayah yang termasuk dalam kategori wilayah rawan gempa bumi. Salah satu bangunan gedung yang berada di Kabupaten Bantul yaitu Rumah Sakit Universitas Islam Indonesia yang merupakan fasilitas pelayanan kesehatan masyarakat. Berdasarkan fungsi bangunannya sebagai fasilitas publik mengharuskannya memiliki kekuatan struktur yang kuat dalam menghadapi segala bencana sehingga memberikan keamanan kepada setiap orang yang berada di dalamnya. Rumah Sakit Universitas Islam Indonesia memiliki denah bangunan yang tidak simetris sehingga perlu dilakukan pemeriksaan apakah struktur bangunan memiliki ketidakberaturan atau tidak. Purba (2014) menyatakan bahwa simpangan antar tingkat yang dihasilkan dari bangunan yang memiliki ketidakberaturan akan lebih besar dibanding yang tidak memiliki ketidakberaturan walaupun dengan intensitas gempa yang sama.

Oleh karena itu, penelitian yang akan dilakukan yaitu melakukan evaluasi struktur atas gedung Rumah Sakit Universitas Islam Indonesia untuk mengetahui terjadinya ketidakberaturan struktur, gaya geser dasar (*base shear*), simpangan antar tingkat (*story drift*), dan gaya desain diafragma berdasarkan SNI 1726:2012 dan SNI 1726:2019.

1.2 Rumusan Masalah

Berdasarkan latar belakang penelitian, maka permasalahan dapat dirumuskan sebagai berikut.

- 1. Apakah terdapat ketidakberaturan struktur pada gedung Rumah Sakit UII?
- 2. Bagaimana perbandingan nilai gaya geser dasar yang terjadi pada gedung Rumah Sakit UII berdasarkan SNI 1726:2012 dan SNI 1726:2019?
- Bagaimana perbandingan nilai simpangan antar tingkat yang terjadi pada gedung Rumah Sakit UII berdasarkan SNI 1726:2012 dan SNI 1726:2019?
- 4. Bagaimana perbandingan nilai gaya desain diafragma yang terjadi pada gedung Rumah Sakit UII berdasarkan SNI 1726:2012 dan SNI 1726:2019?

1.3 Tujuan Penelitian

Berdasarkan masalah yang dirumuskan, maka tujuan dari penelitian ini adalah sebagai berikut.

- 1. Mengetahui apakah terdapat ketidakberaturan struktur pada Rumah Sakit UII.
- Mengetahui perbedaan nilai gaya geser dasar yang terjadi pada gedung Rumah Sakit UII berdasarkan SNI 1726:2019 terhadap SNI 1726:2012.
- 3. Mengetahui perbedaan nilai simpangan antar tingkat yang terjadi pada gedung Rumah Sakit UII berdasarkan SNI 1726:2019 terhadap SNI 1726:2012.
- 4. Mengetahui nilai gaya desain diafragma yang terjadi pada gedung Rumah Sakit UII berdasarkan SNI 1726:2012 dan SNI 1726:2019.

1.4 Manfaat Penelitian

Manfaat dari penelitian ini adalah sebagai berikut.

- 1. Mengetahui tahapan analisis pemeriksaan ketidakberaturan struktur yang terjadi pada Rumah Sakit UII serta mengetahui konsekuensi yang dilakukan akibat adanya ketidakberaturan struktur pada bangunan.
- 2. Mengetahui analisis gaya geser dasar pada bangunan yang berpengaruh terhadap nilai simpangan antar tingkat dan gaya desain diafragma.
- 3. Menambah pengetahuan tentang penggunaan SNI 1726:2019 dalam tata cara perencanaan ketahanan gempa untuk struktur bangunan gedung.

1.5 Batasan Penelitian

Batasan penelitian dimaksudkan untuk tidak menyimpang dari tujuan penelitian, maka dari itu batasan dalam penelitian ini yaitu sebagai berikut.

~ UJ

- 1. Bangunan yang akan digunakan dalam penelitian yaitu gedung Rumah Sakit UII.
- 2. Struktur yang ditinjau adalah struktur bagian atas (*upper structure*) sehingga tidak dilakukan tinjauan pada bagian struktur bawah yaitu pondasi (*lower structure*).

- 3. Pemodelan bangunan menggunakan bantuan program ETABS v.18.
- 4. Sistem struktur menggunakan Sistem Ganda yaitu Sistem Rangka Pemikul Momen Khusus (SRPMK) dan Dinding Geser.
- 5. Analisis gempa menggunakan analisis respon spektrum.
- 6. Jenis beban yang digunakan yaitu meliputi beban mati, beban mati tambahan, beban hidup, dan beban gempa.
- 7. Untuk pengaruh beban angin dan beban hujan tidak dibahas dalam penelitian ini.
- 8. Tidak menghitung kebutuhan tulangan pada elemen struktur.
- 9. Tidak memodelkan struktur tangga dan lift.
- 10. Semua tumpuan diasumsikan dengan jepit.
- 11. Kondisi tanah pada gedung Rumah Sakit UII termasuk klasifikasi tanah D.
- 12. Peraturan yang digunakan yaitu:
 - a. SNI 1726:2019 tentang Tata Cara Perencanaan Ketahanan Gempa Untuk Struktur Bangunan Gedung dan Non Gedung.
 - b. SNI 1726:2012 tentang Tata Cara Perencanaan Ketahanan Gempa Untuk Struktur Bangunan Gedung dan Non Gedung.

BAB II

TINJAUAN PUSTAKA

2.1 Penelitian Terdahulu

Penelitian terkait dengan analisis struktur gedung beton bertulang menggunakan analisis respon spektrum telah banyak dilakukan. Adapun beberapa penelitian yang dapat menjadi tinjauan pustaka pada penelitian ini adalah sebagai berikut.

 Perbandingan Kebutuhan Tulangan Gedung FIAI UII Berdasarkan SNI 1726:2012 Dengan Peta Gempa 2010 dan 2017

Purbiantoro (2020) melakukan penelitian tentang perbandingan respon struktur terhadap gempa berdasarkan peta gempa nasional tahun 2010 dan 2017 dengan mengacu pada SNI 1726:2012 menggunakan metode respon spektrum. Tujuan dari penelitian ini yaitu mengetahui respon struktur dari hasil analisis gaya geser dasar, simpangan antar tingkat, hingga perbandingan kebutuhan tulangan pada elemen balok dan kolom. Struktur bangunan yang ditinjau yaitu Gedung Fakultas Ilmu Agama Islam Universitas Islam Indonesia. Analisis menggunakan program SAP2000. Dari hasil analisis didapatkan peningkatan gaya geser dasar pada struktur akibat pengembangan peta gempa 2017, sumbu X mengalami peningkatan sekitar 16,35 % sedangkan sumbu Y terjadi peningkatan sekitar 16,32 %. Nilai simpangan antar tingkat maksimum pada peta gempa 2017 meningkat sebesar 17,17 % untuk arah X dan 17,89 % untuk arah Y. Untuk nilai simpangan antar tingkat pada peta 2010 maupun 2017 telah memenuhi syarat. Kebutuhan luas tulangan balok pada peta gempa 2017 meningkat yaitu sebesar 7,44 % untuk tulangan lentur dan 3,65 % untuk tulangan geser, sedangkan kebutuhan luas tulangan utama kolom pada peta gempa 2017 meningkat sebesar 1,32 % dibandingkan peta gempa 2010.

 Analisis Perilaku Struktur Bangunan Baja Terhadap SNI 1726:2012 dan SNI 1726:2019

Widhiatmoko (2020) melakukan penelitian tentang perbandingan perilaku struktur bangunan baja antara SNI 1726:2012 dengan SNI 1726:2019. Tujuan penelitian ini yaitu mengetahui nilai gaya geser dasar, simpangan antar tingkat, dan rasio simpangan antar tingkat. Analisis struktur menggunakan program SAP2000 dengan metode analisis respon spektrum. Struktur bangunan yang ditinjau yaitu Gedung AMIKOM Purwokerto dengan 6 lantai dan 1 *basement*. Sistem struktur yang digunakan yaitu Sistem Rangka Pemikul Momen Khusus (SRPMK). Hasil dari penelitian ini yaitu terjadinya peningkatan hasil dari respon struktur bangunan pada SNI 1726:2019. Peningkatan terjadi pada gaya geser dasar sebesar 27,12 % lebih besar dari SNI 1726:2012. Hasil simpangan antar tingkat pada arah X mengalami peningkatan sebesar 28,289 % dan arah Y sebesar 22,06 %.

 Perbandingan Perancangan Bangunan Tahan Gempa Menggunakan SNI 1726:2012 dan SNI 1726:2019

Wicaksana dan Rosyidah (2021) melakukan penelitian tentang perbandingan spektrum respons desain dan perilaku struktur antara perancangan bangunan tahan gempa menggunakan SNI 1726:2012 dengan SNI 1726:2019. Tujuan penelitian ini yaitu mengetahui perilaku struktur yang ditinjau adalah gaya geser dasar (V), simpangan (δ max), dan simpangan antar tingkat (Δ). Penelitian ini menggunakan pemodelan bangunan 10 lantai yang difungsikan sebagai bangunan apartemen yang berlokasi di kota Banda Aceh. Analisis gempa menggunakan analisis respon spektrum dengan sistem struktur Sistem Rangka Pemikul Momen Khusus (SRPMK). Dari hasil analisis didapatkan nilai gaya geser dasar pada SNI 1726:2019 mengalami peningkatan sebesar 19,75 % untuk arah X dan 19,97 % untuk arah Y. Peningkatan pada gaya geser dasar berbanding lurus terhadap peningkatan pada simpangan antar tingkat.

2.2 Perbedaan Penelitian

Berdasarkan tinjauan pustaka dari beberapa penelitian terdahulu. Adapun perbedaan dengan penelitian yang akan dilakukan dapat dilihat pada Tabel 2.1 berikut.

No.	Parameter	Penelitian			
1	Peneliti	Purbiantoro (2020)	Widhiatmoko (2020)	Wicaksana dan Rosyidah (2021)	Arrofi (2022)
2	Judul	Perbandingan Kebutuhan Tulangan Gedung FIAI UII Berdasarkan SNI 1726:2012 Dengan Peta Gempa 2010 dan 2017	Analisis Perilaku Struktur Bangunan Baja Terhadap SNI 1726:2012 dan SNI 1726:2019	Perbandingan Perancangan Bangunan Tahan Gempa Menggunakan SNI 1726:2012 dan SNI 1726:2019	Evaluasi Struktur Atas Gedung Rumah Sakit UII Berdasarkan SNI 1726:2019
3	Rumusan Masalah	Bagaimana perbandingan nilai gaya geser, simpangan antar tingkat, serta kebutuhan tulangan pada balok dan kolom berdasarkan peta gempa 2010 dan 2017?	Bagaimana perbandingan gaya geser dasar, simpangan antar tingkat, dan rasio simpangan antar tingkat berdasarkan SNI 1726:2019?	Bagaimana perbandingan nilai gaya geser, simpangan, dan simpangan antar tingkat menggunakan SNI 1726:2012 dan SNI 1726:2019?	Bagaimana perbandingan gaya geser dasar, simpangan antar tingkat, dan apakah terdapat ketidakberaturan berdasarkan SNI 1726:2019?
4	Objek Penelitian	Gedung FIAI UII Yogyakarta	Gedung AMIKOM Purwokerto	Gedung Apartemen 10 Lantai di Aceh	Gedung Rumah Sakit UII Bantul

Tabel 2.1 Perbedaan Penelitian Terdahulu dengan Penelitian Sekarang

No.	Parameter	Penelitian			
5	Peraturan yang Digunakan	SNI 1726:2012, Peta Gempa 2010, Peta Gempa 2017	SNI 1726:2012, SNI 1726: 2019	SNI 1726:2012, SNI 1726: 2019	SNI 1726:2012, SNI 1726: 2019
6	Hasil dan Pembahasan	Terjadi peningkatan pada peta gempa 2017 berupa nilai gaya geser, simpangan antar tingkat, dan kebutuhan tulangan pada elemen struktur.	Peningkatan terjadi pada gaya geser dasar sebesar 27,12 % lebih besar dari SNI 1726:2012. Hasil simpangan antar tingkat pada arah X mengalami peningkatan sebesar 28,289 % dan arah Y sebesar 22,06 %.	Terjadi peningkatan gaya geser sebesar 19,75% untuk arah X dan 19,97% untuk arah Y. Dengan peningkatan gaya geser maka mengakibatkan peningkatan pada simpangan antar tingkat.	Peningkatan gaya geser dasar pada SNI 1726:2019 sebesar 50,503 % terhadap SNI 1726:2012.Peningkatan nilai simpangan antar tingkat pada SNI 1726:2019 terhadap SNI 1726:2012. Peningkatan pada gaya desain diafragma. Terdapat ketidakberaturan struktur horizontal dan vertikal.

Lanjutan Tabel 2.2 Perbedaan Penelitian Terdahulu dengan Penelitian Sekarang

2.3 Keaslian Penelitian

Bersumber dari penelitian-penelitian terdahulu yang terdapat pada Tabel 2.1, penelitian yang akan dilakukan yaitu evaluasi struktur atas pada gedung Rumah Sakit Universitas Islam Indonesia berdasarkan SNI 1726:2019 yang akan dibandingkan dengan desain berdasarkan SNI 1726:2012 dengan tujuan untuk mengetahui adanya ketidakberaturan struktur, perbandingan gaya geser dasar yang terjadi, perbandingan nilai simpangan antar tingkat, dan gaya desain diafragma.

BAB III

LANDASAN TEORI

3.1 Umum

Pawirodikromo (2012) menyatakan bahwa gempa bumi merupakan bergetarnya permukaan tanah karena pelepasan energi secara tiba-tiba akibat dari pecah/slipnya massa batuan di lapisan kerak bumi. Permukaan tanah menjadi bergetar akibat energi gempa yang merambat dari pusat gempa ke segala arah. Sebagaimana diketahui bahwa suatu kekuatan akan terkandung dalam suatu energi. Sejumlah energi dilepaskan dari pusat gempa karena terjadi akumulasi energi di daerah atau ditempat tersebut, dan karena tegangan maksimum sudah terlampaui maka pecahlah massa batuan, sehingga sebagian energi yang sudah terakumulasi tersebut di lepaskan. Akumulasi energi tersebut terjadi karena adanya gerakan massa batuan atau gerakan lempeng tektonik yang menyebabkan regangan/tegangan.

Pada saat terjadi gempa atau saat patahnya massa batuan, akan terjadi pelepasan energi (*released energy*) yang sangat besar yang disebut dengan gelombang gempa. Energi gelombang gempa menyebar dari fokus dan menuju ke segala arah. Gelombang gempa merambat ke segala arah dan melewati bermacam-macam kondisi lapisan tanah. Gelombang ini merambat sangat kuat dan ke segala arah yang dapat menyebabkan kerusakan infrastruktur dan memakan korban jiwa. Dampak dari gempa bumi ini dapat menimbulkan bencana alam lain seperti longsor dan gelombang tsunami.

Bangunan tahan gempa (*earthquake resistant building*) merupakan bangunan yang dirancang untuk tahan terhadap bencana gempa bumi yang bertujuan untuk melindungi penghuni yang ada di dalamnya, menghindari adanya kerusakan pada struktur bangunan, serta meminimalisir risiko adanya korban jiwa. Perencanaan bangunan tahan gempa menjadi syarat yang harus diterapkan agar mengurangi korban jiwa serta kerusakan pada struktur bangunan.

3.2 Pembebanan Struktur

Pada struktur bangunan terdapat berbagai macam jenis pembebanan yang bekerja. Persyaratan desain ditentukan berdasarkan kekuatan suatu struktur untuk menahan beban maksimum yang bekerja pada bangunan tersebut. Adapun jenis pembebanan dalam suatu struktur adalah sebagai berikut.

3.2.1 Beban Gravitasi

Beban gravitasi bekerja searah vertikal terdiri dari beban mati dan beban hidup. Menurut SNI 1727:2020, beban mati adalah berat seluruh bahan konstruksi bangunan yang terpasang, termasuk dinding, lantai, atap, plafon, tangga, dinding partisi tetap, *finishing*, klading gedung, dan komponen arsitektural dan struktural lainnya serta peralatan layan terpasang lain termasuk berat derek dan sistem pengangkut material. Beban hidup adalah beban yang diakibatkan oleh pengguna dan penghuni bangunan gedung atau struktur lain yang tidak termasuk beban konstruksi.

3.2.2 Beban Lateral

Beban lateral atau beban horizontal umumnya terdiri atas beban angin dan beban gempa, beban akibat ledakan dan getaran mesin dapat dikategorikan menjadi beban lateral. Beban angin adalah beban yang bekerja pada bangunan karena adanya selisih tekanan udara (hembusan angin kencang). Sedangkan beban gempa adalah semua beban statik ekuivalen yang bekerja pada gedung atau bagian gedung yang menirukan pengaruh dari gerakan tanah akibat gempa itu. Untuk selanjutnya, yang akan dibahas lebih lanjut dalam penelitian ini adalah beban gempa, sedangkan beban angin tidak dibahas lebih lanjut. Beban gempa adalah beban yang bekerja pada suatu struktur akibat dari pergerakan tanah yang disebabkan karena adanya getaran gempa. Secara umum terdapat dua metode dalam menganalisis beban gempa yaitu analisis statik ekuivalen dan analisis dinamik.

3.3 Analisis Beban Gempa

Analisis beban gempa menggunakan respon spektrum yang merupakan suatu spektrum yang disajikan berupa grafik antara periode getar struktur (T) dengan responrespon maksimum berdasarkan rasio redaman dan gempa tertentu. Analisis dinamik respon spektrum memberikan pembagian gaya geser tingkat yang lebih teliti disepanjang tinggi gedung dibandingkan dengan analisis statik ekuivalen.

3.3.1 Kategori Risiko Bangunan

Kategori risiko struktur merupakan suatu pengelompokan jenis pemanfaatan bangunan untuk menentukan besaran beban-beban gempa berdasarkan risiko terjadinya kinerja yang tidak dapat diterima. Bangunan struktur memiliki fungsi yang berbeda-beda tergantung pemakaian dan operasional nya. Dari fungsi pemakaian tersebut, dikelompokkan dalam kategori risiko struktur bangunan agar mampu memikul beban sesuai penggunanya. Hal ini bertujuan untuk mengelompokkan jenis pemanfaatannya dengan kemampuan minimum suatu bangunan. Adapun kategori risiko bangunan dapat dilihat pada Tabel 3.1 berikut.

Jenis Pemanfaatan	Kategori risiko
Gedung dan non gedung yang memiliki risiko rendah terhadap jiwa manusia pada saat terjadi kegagalan, termasuk, tapi tidak dibatasi untuk, antara lain: - Fasilitas pertanian, perkebunan, peternakan, dan perikanan - Fasilitas sementara - Gudang penyimpanan - Rumah jaga dan struktur kecil lainnya	Ι

Tabel 3.1 Kategori Risik	o Bangunan	Gedung dan	Non Gedung	untuk Gempa
8	8	0	0	

Lanjutan Tabel 3.1 Kategori Risiko Bangunan Gedung dan Non Gedung untuk Gempa

Jenis Pemanfaatan	Kategori risiko
Semua gedung dan struktur lain, kecuali yang termasuk dalam kategori risiko I, III, IV, termasuk, tapi tidak dibatasi untuk: - Perumahan - Rumah toko dan rumah kantor - Pasar - Gedung perkantoran - Gedung apartemen / rumah susun - Pusat perbelanjaan / mall - Bangunan industri - Fasilitas manufaktur - Pabrik	Π
Gedung dan non gedung yang memiliki risiko tinggi terhadap jiwa manusia pada saat terjadi kegagalan, termasuk, tapi tidak dibatasi untuk: - Bioskop - Gedung pertemuan - Stadion - Fasilitas kesehatan yang tidak memiliki unit bedah dan unit gawat darurat - Fasilitas penitipan anak - Penjara - Bangunan untuk orang jompo Gedung dan non gedung, tidak termasuk ke dalam kategori risiko IV, yang memiliki potensi untuk menyebabkan dampak ekonomi yang besar dan/atau gangguan massal terhadap kehidupan masyarakat sehari- hari bila terjadi kegagalan, termasuk, tapi tidak dibatasi untuk: - Pusat pembangkit listrik biasa - Fasilitas penanganan air - Fasilitas penanganan limbah - Pusat telekomunikasi	III
Lanjutan Tabel 3.1 Kategori Risiko Bangunan Gedung dan Non Gedung untuk Gempa

Jenis Pemanfaatan	Kategor i risiko
Jenis Pemanfaatan Gedung dan non gedung yang dikategorikan sebagai fasilitas yang penting, termasuk, tetapi tidak dibatasi untuk: Bangunan-bangunan monumental - Gedung sekolah dan fasilitas pendidikan - Rumah ibadah - Rumah sakit dan fasilitas kesehatan lainnya yang memiliki fasilitas bedah dan unit gawat darurat - Fasilitas pemadam kebakaran, ambulans, dan kantor polisi, serta garasi kendaraan darurat - Tempat perlindungan terhadap gempa bumi, tsunami, angin badai, dan tempat perlindungan darurat lainnya - Fasilitas kesiapan darurat, komunikasi, pusat operasi dan fasilitas lainnya untuk tanggap darurat - Struktur tambahan (termasuk menara telekomunikasi, tangki penyimpanan bahan bakar, menara pendingin, struktur stasiun listrik, tangki air pemadam kebakaran atau struktur rumah atau struktur pendukung air atau material atau peralatan pemadam kebakaran) yang disyaratkan untuk beroperasi pada saat keadaan darurat Gedung dan non gedung yang dibutuhkan untuk mempertahankan funcei struktur hengungan lain yang dibutuhkan untuk mempertahankan funcei stru	i risiko IV
IV.	

Sumber: SNI 1726:2012 Tabel 1, SNI 1726:2019 Tabel 3

3.3.2 Faktor Keutamaan Gempa

Faktor keutamaan gempa merupakan suatu nilai yang digunakan untuk memperbesar gempa rencana agar bangunan dapat memikul beban gempa dengan periode ulang panjang dan tingkat kerusakan yang lebih kecil. Pawirodikromo (2012) menyatakan bahwa faktor keutamaan gempa berkaitan dengan tingkat risiko yang diperbolehkan pada bangunan. Tingkat risiko akan dipengaruhi oleh peruntukan bangunan, bangunan yang lebih penting harus mempunyai risiko yang lebih kecil daripada bangunan biasa. Oleh karena itu, faktor keutamaan gempa pada bangunan yang lebih penting akan memiliki nilai faktor yang lebih besar. Faktor keutamaan gempa disesuaikan dengan kategori risiko bangunan pada Tabel 3.1. Adapun nilai faktor keutamaan gempa dapat dilihat pada Tabel 3.2 berikut.

Kategori risiko Faktor Keutamaan Gem					
I atau II	1,0				
III	1,25				
IV	1,50				

Tabel 3.2 Faktor Keutamaan Gempa

Sumber: Tabel 2 SNI 1726:2012, Tabel 4 SNI 1726:2019

3.3.3 Kombinasi Pembebanan

Struktur bangunan memiliki komponen-komponen elemen struktur atas dan elemen struktur bawah yang harus di desain sedemikian rupa hingga kuat rencananya sama atau melebihi pengaruh-pengaruh beban terfaktor dengan kombinasi berikut. Kombinasi pembebanan merujuk pada SNI 1726:2012 dan SNI 1726:2019. Adapun kombinasi pembebanan yang digunakan yaitu sebagai berikut.

1. $U = 1,4D$	(3.1)
2. $U = 1,2D + 1,6L + 0,5(L_r \operatorname{atau} R)$	(3.2)
3. U = $1,2D + 1,6(L_r \operatorname{atau} R) + (1,0L \operatorname{atau} 0,5W)$	(3.3)
4. $U = 1,2D + 1,0W + 1,0L + 0,5(L_r \operatorname{atau} R)$	(3.4)
5. $U = 1,2D + 1,0E + 1,0L$	(3.5)
6. $U = 0.9D + 1.0W$	(3.6)

7. U = 0.9D + 1.0E (3.7)

Pengaruh beban seismik, E, harus ditentukan sesuai dengan berikut ini.

1. Untuk penggunaan dalam kombinasi 5, *E*, harus ditentukan sesuai dengan persamaan berikut.

$$E = E_h + E_v \tag{3.8}$$

2. Untuk penggunaan dalam kombinasi 7, *E*, harus ditentukan sesuai dengan persamaan berikut.

$$E = E_h - E_v \tag{3.9}$$

Keterangan:

E = pengaruh beban seismik

 $E_h = pengaruh beban seismik horizontal$

 E_v = pengaruh beban seismik vertikal

3. Pengaruh beban seismik horizontal, E_h , harus ditentukan sesuai dengan persamaan berikut.

 $E_h = \rho Q_E$

Keterangan:

 ρ = faktor redundansi

 Q_E = pengaruh gaya seismik horizontal dari V atau F_p

4. Pengaruh beban gempa vertikal, E_{ν} , harus ditentukan sesuai dengan persamaan berikut.

$$E_v = 0,2S_{DS}D \tag{3.11}$$

Keterangan:

 S_{DS} = parameter percepatan respons spektral desain pada periode pendek

D =pengaruh beban mati

Beban yang diterima struktur harus diperhitungkan agar bangunan kuat menerima kombinasi pembebanan yang ada. Dalam perencanaan dicari kombinasi pembebanan yang paling kritis untuk menentukan kuat perlu. Berikut penjabaran dari kombinasi pembebanan tersebut.

1.
$$U = 1,4D$$
 (3.12)

2.
$$U = 1,2D + 1,6L + 0.5Lr$$
 (3.13)

(3.10)

3. $U = 1,2D + 1,6L + 0.5R$	(3.14)
4. $U = 1.2D + 1.6Lr + 1L$	(3.15)
5. U = $(1, 2 + 0, 2S_{DS})D + \rho Ex + 0, 3\rho Ey + L$	(3.16)
6. U = $(1, 2 + 0, 2S_{DS})D + \rho Ex - 0, 3\rho Ey + L$	(3.17)
7. U = $(1, 2 + 0, 2S_{DS})D - \rho Ex + 0, 3\rho Ey + L$	(3.18)
8. U = $(1, 2 + 0, 2S_{DS})D - \rho Ex - 0, 3\rho Ey + L$	(3.19)
9. U = $(1, 2 + 0, 2S_{DS})D + 0, 3\rho Ex + \rho Ey + L$	(3.20)
10. $U = (1, 2 + 0, 2S_{DS})D - 0, 3\rho Ex + \rho Ey + L$	(3.21)
11. U = $(1, 2 + 0, 2S_{DS})D + 0, 3 \rho Ex - \rho Ey + L$	(3.22)
12. U = $(1, 2 + 0, 2S_{DS})D - 0, 3\rho Ex - \rho Ey + L$	(3.23)
13. U = $(0,9 - 0,2S_{DS})D + \rho Ex + 0,3 \rho Ey$	(3.24)
14. U = $(0,9 - 0,2S_{DS})D + \rho Ex - 0,3 \rho Ey$	(3.25)
15. $U = (0,9 - 0,2S_{DS})D - \rho Ex + 0,3 \rho Ey$	(3.26)
16. $U = (0,9 - 0,2S_{DS})D - \rho Ex - 0,3 \rho Ey$	(3.27)
17. U = $(0,9 - 0,2S_{DS})D + 0,3 \rho Ex + \rho Ey$	(3.28)
18. U = $(0,9 - 0,2S_{DS})D - 0,3 \rho Ex + \rho Ey$	(3.29)
19. U = $(0,9 - 0,2S_{DS})D + 0,3 \rho Ex - \rho Ey$	(3.30)
20. U = $(0,9 - 0,2S_{DS})D - 0,3 \rho Ex - \rho Ey$	(3.31)

3.3.4 Klasifikasi Situs

Klasifikasi situs bertujuan untuk memberikan kriteria desain seismik berupa faktor amplifikasi pada bangunan. Dalam perumusan kriteria desain seismik suatu bangunan di permukaan tanah atau penentuan amplifikasi besaran percepatan gempa puncak dari batuan dasar ke permukaan tanah untuk suatu situs, maka situs tersebut harus diklasifikasikan terlebih dahulu. Pengaruh gempa di permukaan tanah harus ditentukan dari hasil analisis perambatan gelombang gempa dari kedalaman batuan dasar. Pengelompokan kelas situs berdasarkan jenis tanah yaitu *SA* (batuan keras), *SB* (batuan), *SC* (tanah keras), *SD* (tanah sedang), *SE* (tanah lunak), dan *SF* (tanah khusus).

3.3.5 Koefisien Situs

Faktor amplifikasi meliputi faktor amplifikasi getaran terkait percepatan pada getaran periode pendek (F_a) dan faktor amplifikasi terkait percepatan yang mewakili getaran periode 1 detik (F_v). Parameter respons spektral percepatan pada periode pendek (S_{MS}) dan periode 1 detik (S_{MI}) yang disesuaikan dengan pengaruh klasifikasi situs, harus ditentukan dengan perumusan berikut.

$$S_{MS} = F_a S_S$$

$$S_{MI} = F_V S_I$$

$$(3.32)$$

$$(3.33)$$

Keterangan:

Ss = parameter respons spektral percepatan gempa terpetakan untuk periode pendek S_{I} = parameter respons spektral percepatan gempa terpetakan untuk periode 1 detik

Kelas situs	Parameter respons spektral percepatan gempa (MCE _R) terpetakan pada perioda pendek, T=0,2 detik, S _s									
	$S_{s} \leq 0,25$	$S_s \le 0.25$ $S_s = 0.5$ $S_s = 0.75$ $S_s = 1.0$ $S_s \ge 1.25$								
SA	0,8	0,8	0,8	0,8	0,8					
SB	1,0	1,0	1,0	1,0	1,0					
SC	1,2	1,2	1,1	1,0	1,0					
SD	1,6	1,4	1,2	1,1	1,0					
SE	2,5	1,7	1,2	0,9	0,9					
SF			SS⁵							

Tabel 3.3 Koefisien Situs, Fa Berdasarkan SNI 1726:2012

Sumber: Tabel 4, SNI 1726:2012

Tabel 3.4 Koefisien Situs, Fv Berdasarkan SNI 1726:2012

Kelas situs	Parameter respons spektral percepatan gempa MCE_R terpetakan pada perioda 1 detik, S_1										
	<i>S</i> ₁ ≤ 0,1	$S_1 \le 0,1$ $S_1 = 0,2$ $S_1 = 0,3$ $S_1 = 0,4$ $S_1 \ge 0,5$									
SA	0,8	0,8	0,8	0,8	0,8						
SB	1,0	1,0	1,0	1,0	1,0						
SC	1,7	1,6	1,5	1,4	1,3						
SD	2,4	2	1,8	1,6	1,5						
SE	3,5	3,2	2,8	2,4	2,4						
SF			SSb								

Sumber: Tabel 5, SNI 1726:2012

Kelas situs	Parameter respons spektral percepatan gempa maksimum yang dipertimbangkan risiko-tertarget (MCE _R) terpetakan pada periode pendek, T = 0,2 detik, <i>S</i> s										
	$S_s \le 0,25$	$S_s \le 0.25$ $S_s = 0.5$ $S_s = 0.75$ $S_s = 1.0$ $S_s = 1.25$ $S_s \ge 1.5$									
SA	0,8	0,8	0,8	0,8	0,8	0,8					
SB	0,9	0,9	0,9	0,9	0,9	0,9					
SC	1,3	1,3	1,2	1,2	1,2	1,2					
SD	1,6	1,4	1,2	1,1	1,0	1,0					
SE	2,4	2,4 1,7 1,3 1,1 0,9 0,8									
SE			SS ^(a)								

Tabel 3.5 Koefisien Situs, Fa Berdasarkan SNI 1726:2019

Sumber: Tabel 6, SNI 1726:2019

Tabel 3.6 Koefisien Situs, Fv Berdasarkan SNI 1726:2019

Kelas situs	Parameter respons spektral percepatan gempa maksimum yang dipertimbangkan risiko-tertarget (MCE _R) terpetakan pada periode 1 detik, S ₁								
	$S_{I} \leq 0,1$	$S_I \le 0,1$ $S_I = 0,2$ $S_I = 0,3$ $S_I = 0,4$ $S_I = 0,5$ $S_I \ge 0,6$							
SA	0,8	0,8	0,8	0,8	0,8	0,8			
SB	0,8	0,8	0,8	0,8	0,8	0,8			
SC	1,5	1,5	1,5	1,5	1,5	1,4			
SD	2,4	2,2	2,0	1,9	1,8	1,7			
SE	4,2	4,2 3,3 2,8 2,4 2,2 2,0							
SF		SS ^(a)							

Sumber: Tabel 7, SNI 1726:2019

3.3.6 Parameter Percepatan Respons Spektral

Parameter percepatan respons spektral periode pendek, S_s , dan percepatan respons spektral periode 1 detik, S_1 , harus ditetapkan masing-masing dari respon spektral percepatan 0,2 detik dan 1 detik dalam peta gerak tanah seismik dengan kemungkinan 2 % terlampaui dalam 50 tahun (MCE_R 2 % dalam 50 tahun). Adapun peta gempa dalam menentukan percepatan respons spektral sebagai berikut.

Gambar 3.1 Parameter Percepatan Respons Spektral pada Periode Pendek Berdasarkan SNI 1726:2012

Gambar 3.2 Parameter Percepatan Respons Spektral pada Periode 1 Detik Berdasarkan SNI 1726:2012

(Sumber: Gambar 10, SNI 1726:2012)

b. SNI 1726:2019

Gambar 3.3 Parameter Percepatan Respons Spektral pada Periode Pendek Berdasarkan SNI 1726:2019

(Sumber: Gambar 15, SNI 1726:2019)

Gambar 3.4 Parameter Percepatan Respons Spektral pada Periode 1 Detik Berdasarkan SNI 1726:2019

(Sumber: Gambar 16, SNI 1726:2019)

Gambar 3.5 Peta Transisi Periode Panjang Berdasarkan SNI 1726:2019

(Sumber: Gambar 20, SNI 1726:2019)

3.3.7 Parameter Percepatan Spektral Desain

Parameter percepatan spektral desain untuk periode pendek, S_{DS} dan pada periode 1 detik, S_{D1} , harus ditentukan melalui perumusan berikut ini:

$$S_{DS} = \frac{2}{3} S_{MS}$$
(3.34)
$$S_{DI} = \frac{2}{3} S_{MI}$$
(3.35)

3.3.8 Spektrum Respons Desain

Bila spektrum respons desain diperlukan oleh tata cara ini dan prosedur gerak tanah dari spesifik situs tidak digunakan, maka kurva spektrum respons desain harus dikembangkan dan mengikuti ketentuan di bawah ini:

1. Untuk periode yang lebih kecil dari T_0 , spektrum respons percepatan desain, S_a , harus diambil dari persamaan;

$$S_a = S_{DS} \left(0.4 + 0.6 \frac{T}{TO} \right) \tag{3.36}$$

2. Untuk periode lebih besar dari atau sama dengan T_0 dan lebih kecil dari atau sama dengan T_s , spektrum respons percepatan desain, Sa, sama dengan S_{DS} ;

3. Untuk periode lebih besar dari Ts tetapi lebih kecil dari atau sama dengan T_L , respons spektral percepatan desain, Sa, diambil berdasarkan persamaan:

$$S_a = \frac{SD1}{T} \tag{3.37}$$

4. Untuk periode lebih besar dari T_L , respons spektral percepatan desain, Sa, diambil berdasarkan persamaan:

Gambar 3.6 Spektrum Respons Desain Berdasarkan SNI 1726:2012 (Sumber: Gambar 1, SNI 1726:2012)

Gambar 3.7 Spektrum Respons Desain Berdasarkan SNI 1726:2019

(Sumber: Gambar 3, SNI 1726:2019)

3.3.9 Kategori Desain Seismik

Kategori desain seismik merupakan penggambaran dari tingkat risiko kegempaan yang digunakan sebagai dasar untuk memilih struktur rangka pemikul momen yang akan digunakan dalam mendesain suatu bangunan struktur.

Tabel 3.7 K	ategori Desain	Seismik	Berdasarkan	Parameter	Respons	Percepatan
		pada	Periode Pend	ek	_	

Nilai Sos	Kategori risiko				
Nilai SDS	I atau II atau III	IV			
<i>S</i> _{DS} < 0,167	A	Α			
$0,167 \le S_{DS} < 0,33$	В	С			
$0,33 \le S_{DS} < 0,50$	С	D			
$0,50 \leq S_{DS}$	D	D			

Sumber: Tabel 6 SNI 1726:2012, Tabel 8 SNI 1726:2019

Nilai S.	Kategori risiko				
Nilai S _{DI}	I atau II atau III	IV			
$S_{D1} < 0,067$	A	A			
$0,067 \le S_{D1} < 0,133$	В	С			
$0,133 \le S_{D1} < 0,20$	С	D			
$0,20 \le S_{D1}$	D	D			

Tabel 3.8 Kategori Desain Seismik Berdasarkan Parameter Respons Percepatan pada Periode 1 detik

Sumber: Tabel 7 SNI 1726:2012, Tabel 9 SNI 1726:2019

3.3.10 Koefisien Modifikasi Respon

Koefisien modifikasi respon berpengaruh terhadap perilaku dinamis struktur bangunan ketika menerima beban gempa. Nilai koefisien modifikasi respon diketahui dari sistem penahan gaya seismik pada struktur yang direncakanan. Adapun nilai koefisien modifikasi respon dapat dilihat pada Tabel 3.9 berikut.

Tabel 3.9 Koefisien Modifikasi Respon

	Koefisien modifikasi	Faktor kuat	Faktor pembesaran	Batasan sistem struktur dan batasan tinggi struktur, h_n (m) ^d				
Sistem pemikul gaya seismik	respons,	sistom	defleksi,	ŀ	Kategori desain seismik			
	Ra	Ω_0^{b}	C _d c	в	С	De	Ee	F
D. Sistem ganda dengan rangka pemikul momen khusus yang mampu menahan paling sedikit 25 % gaya seismik yang ditetapkan								
1. Rangka baja dengan bresing eksentris	8	21/2	4	TB	TB	TB	тв	TB
2. Rangka baja dengan bresing konsentris khusus	7	21/2	51/2	TB	TB	TB	TB	TB
3. Dinding geser beton bertulang khusus ^{g,h}	7	21/2	51/2	TB	TB	TB	TB	TB
4. Dinding geser beton bertulang biasa ^g	6	21/2	5	TB	TB	TI	TI	TI
5. Rangka baja dan beton komposit dengan bresing eksentris	8	21/2	4	тв	ТВ	тв	тв	ТВ
 Rangka baja dan beton komposit dengan bresing konsentris khusus 	6	21/2	5	тв	тв	ТВ	ТВ	ТВ
7. Dinding geser pelat baja dan beton komposit	71/2	21/2	6	TB	TB	TB	TB	TB
8. Dinding geser baja dan beton komposit khusus	7	21/2	6	TB	TB	TB	TB	TB
9. Dinding geser baja dan beton komposit biasa	6	21/2	5	TB	TB	TI	TI	TI
10.Dinding geser batu bata bertulang khusus	51/2	3	5	TB	TB	TB	TB	TB
11.Dinding geser batu bata bertulang menengah	4	3	31/2	TB	TB	TI	TI	TI
12.Rangka baja dengan bresing terkekang terhadap tekuk	8	21⁄2	5	ТВ	ТВ	ТВ	ТВ	TB
13.Dinding geser pelat baja khusus	8	21/2	61/2	TB	TB	TB	ТВ	TB

Sumber: Tabel 9 SNI 1726:2012, Tabel 12 SNI 1726:2019

3.3.11 Penentuan Periode

Penentuan periode pada pasal 7.8.2 dalam SNI 1726:2012 dan SNI 1726:2019 yaitu periode fundamental struktur (T) dalam arah yang ditinjau harus diperoleh menggunakan sifat struktur dan karakteristik deformasi elemen pemikul dalam analisis yang teruji. Periode fundamental struktur (T) tidak boleh melebihi hasil perkalian koefisien untuk batasan atas pada periode yang dihitung (C_u) dari periode fundamental pendekatan (Ta). Sebagai alternatif dalam melakukan analisis untuk menentukan periode fundamental struktur (T) diizinkan secara langsung menggunakan periode bangunan pendekatan (T_a).

Parameter percepatan respons spektral desain pada 1 detik, S _{D1}	Koefisien C.
≥ 0,4	1,4
0,3	1,4
0,2	1,5
0,15	1,6
≤ 0,1	1,7

Tabel 3.10 Koefisien Untuk Batas Atas pada Periode yang Dihitung

Sumber: Tabel 14 SNI 1726:2012, Tabel 17 SNI 1726:2019

Berdasarkan SNI 1726:2019 pada pasal 7.8.6.2 tentang nilai periode untuk menghitung simpangan antar tingkat diizinkan untuk menentukan simpangan antar tingkat menggunakan gaya desain seismik pada periode fundamental struktur tanpa batasan atas (C_uT_a).

3.3.12 Periode Fundamental Pendekatan

Periode fundamental pendekatan (T_a) , dalam detik, harus ditentukan dari persamaan berikut.

$$T_a = C_t h_n^{x} \tag{3.41}$$

Keterangan:

 h_n = ketinggian struktur (m), diatas dasar sampai tingkat tertinggi struktur, dan koefisien C_t dan *x* ditentukan dari Tabel 3.11 berikut.

Tipe struktur	C_t	x
Sistem rangka pemikul momen di mana rangka memikul 100 % gaya seismik yang disyaratkan dan tidak dilingkupi atau dihubungkan dengan komponen yang lebih kaku dan akan mencegah rangka dari defleksi jika dikenai gaya seismik:		
 Rangka baja pemikul momen 	0,0724	0,8
Rangka beton pemikul momen	0,0466	0,9
Rangka baja dengan bresing eksentris	0,0731	0,75
Rangka baja dengan bresing terkekang terhadap tekuk	0,0731	0,75
Semua sistem struktur lainnya	0,0488	0,75

Tabel 3.11 Nilai Parameter Periode Pendekatan Ct dan x

Sumber: Tabel 15 SNI 1726:2012, Tabel 18 SNI 1726:2019

3.3.13 Koefisien Respons Seismik

Adapun persamaan untuk koefisien respons seismik (Cs) adalah sebagai berikut.

$$C_s = \frac{S_{DS}}{\frac{R}{I_e}}$$

(3.42)

Keterangan:

 S_{DS} = parameter perceptaan respons spektral desain dalam rentang periode pendek

R = koefisien modifikasi respons

 I_e = faktor keutamaan gempa

Nilai C_S yang dihitung tidak perlu melebihi dari:

Untuk $T \leq T_L$

$$C_s = \frac{S_{D1}}{T(\frac{R}{I_e})} \tag{3.43}$$

Untuk $T > T_L$

$$C_s = \frac{S_{D1}T_L}{T^2(\frac{R}{I_e})} \tag{3.44}$$

 C_s harus tidak kurang dari:

$$C_s = 0.044 \ S_{DS} I_e \ge 0.01 \tag{3.45}$$

Sebagai tambahan, untuk struktur yang berlokasi di daerah di mana S_1 sama dengan atau lebih besar dari 0,6g, maka C_s harus tidak kurang dari:

$$C_s = \frac{0.5S_1}{\frac{R}{I_e}} \tag{3.46}$$

Keterangan:

 S_{D1} = parameter perceptaan respons spektral desain pada periode sebesar 1,0 detik

T = periode fundamental struktur (detik)

 S_1 = parameter perceptaan respons spektral maksimum yang dipetakan

3.3.14 Gaya Geser Dasar Seismik

Gaya geser dasar seismik (*V*) dalam arah yang ditetapkan harus ditentukan sesuai dengan persamaan berikut.

$$V = C_{s} W$$

Keterangan:

V = gaya geser dasar seismik (kN)

C_s = koefisien respons seismik

$$W = berat seismik efektif (kN)$$

Gaya geser dasar (*base shear*) merupakan penyederhanaan dari getaran gempa bumi yang bekerja di dasar bangunan yang selanjutnya digunakan dalam desain bangunan sebagai gaya gempa rencana yang harus ditinjau dan di evaluasi.

3.3.15 Penskalaan Gaya

Penskalaan gaya menurut SNI 1726:2012 pasal 7.9.4.1, kombinasi respons untuk gaya geser dasar ragam (V_t) lebih besar sama dengan 85 % dari gaya geser dasar yang dihitung (V) menggunakan prosedur gaya lateral ekivalen, maka gaya harus dikalikan dengan 0.85 V/V_t . Penskalaan gaya menurut SNI 1726:2019 pasal 7.9.1.4.1, kombinasi respons untuk gaya geser dasar hasil analisis ragam (V_t) lebih besar sama dengan 100 % dari gaya geser (V) yang dihitung melalui metode statik ekivalen, maka gaya tersebut harus dikalikan dengan V/V_t , dimana V adalah gaya geser dasar statik ekivalen, dan V_t adalah gaya geser dasar yang didapatkan dari hasil analisis kombinasi ragam.

3.3.16 Prosedur Analisis Beban Gempa

Prosedur analisis beban gempa tertera pada SNI 1726:2012 dan SNI 1726:2019 berdasarkan pada kategori desain seismik bangunan, karakteristik struktur bangunan, sistem struktur, tinggi bangunan, dan ketidakberaturan struktur. Untuk lebih jelasnya dapat dilihat pada Tabel 3.12 berikut.

Kategori desain seismik	Karakteristik struktur	Analisis gaya lateral ekivalen pasal 0	Analisis spektrum respons ragam pasal 0	Prosedur respons riwayat waktu seismik pasal 0
В, С	Semua struktur	I	I	I
D, E, F	Bangunan dengan kategori risiko I atau II yang tidak melebih 2 tingkat diatas dasar	I	I	I
	Struktur tanpa ketidakberaturan struktural dan ketinggiannya tidak melebihi 48,8 m	I	I	I
	Struktur tanpa ketidak beraturan strukturan dengan ketinggian melebihi 48,8 m da n T < 3,5 $T_{\rm s}$	I	I	I
	Struktur dengan ketinggian tidak melebihi 48,8 m dan hanya memiliki ketidakberaturan horizontal tipe 2,3,4 atau 5 atau ketidaberaturan vertikal tipe 4, 5a atau 5b	I	I	I
	Semua struktur lainnya	TI	- I	I

Tabel 3.12 Prosedur Analisis Beban Gempa

Sumber: Tabel 13 SNI 1726:2012, Tabel 16 SNI 1726:2019

Keterangan:

- I : Diizinkan
- TI : Tidak Diizinkan

3.3.17 Arah Ortogonal

Bangunan yang dianalisis menggunakan prosedur analisis gaya lateral ekivalen, analisis ragam respons spektral, atau prosedur riwayat respons waktu linier, dengan pembebanan yang diterapkan secara terpisah dalam sebarang dua arah ortogonal. Penerapan arah ortogonal yaitu dengan 100 % gaya untuk satu arah yang ditinjau ditambah 30 % gaya untuk arah tegak lurus.

3.3.18 Pemodelan Struktur dan Penampang Retak

Berdasarkan SNI 1726:2012 dan SNI 1726:2019 pada pasal 7.7.3 menyebutkan bahwa struktur yang mempunyai ketidakberaturan struktur horizontal tipe 1a, 1b, 4, atau 5 harus di analisis menggunakan pemodelan 3 dimensi untuk menggambarkan translasi dalam dua arah ortogonal dan rotasi torsi terhadap sumbu vertikal harus ditinjau dalam masing-masing tingkat. Pemodelan harus menyertakan kekakuan dan kekuatan elemen terhadap distribusi gaya dan deformasi pada struktur. Pemodelan harus memperhitungkan pengaruh penampang retak pada tiap elemen struktur. Penampang retak terdapat pada SNI 2847:2019 dituangkan pada tabel berikut.

Ζ	Elemen Struktur	Momen Inersia	1
	Kolom	0,7 <i>I</i> g	\triangleright
	Balok	0,35 <i>I</i> g	
w	Dinding Geser	0,7 Ig	
6	Plat Lantai	0,25 Ig	r

Tabel 3.13 Penampang Retak Elemen Struktur

Sumber: Tabel 6.6.3.1.1(a) SNI 2847:2019

3.3.19 Partisipasi Massa Ragam

Berdasarkan SNI 1726:2012 pasal 7.9.1, analisis harus dilakukan untuk menentukan ragam getar alami untuk struktur. Analisis harus menyertakan jumlah ragam sebesar paling sedikit 90 % dari massa aktual dalam masing-masing arah horizontal ortogonal dari respons yang ditinjau. Berdasarkan SNI 1726:2019 pasal

7.9.1.1, analisis harus menyertakan jumlah ragam yang cukup untuk mendapatkan partisipasi massa ragam terkombinasi sebesar 100 % dari massa struktur. Untuk mencapai ketentuan ini, untuk ragam satu badan kaku (*single rigid body*) dengan periode 0,05 detik, diizinkan untuk mengambil semua ragam dengan periode di bawah 0,05 detik. Sebagai alternatif, analisis diizinkan memasukkan jumlah ragam minimum untuk mencapai massa ragam terkombinasi yaitu 90 % dari massa aktual masing-masing arah horizontal ortogonal.

3.3.20 Parameter Respons Terkombinasi

Parameter respons terkombinasi terdapat pada SNI 1726:2012 dan SNI 1726:2019 menyebutkan nilai untuk parameter yang akan ditinjau dihitung untuk berbagai ragam harus dikombinasikan menggunakan metode *Square Root of the Sum Squares* (SRSS) atau *Complete Quadratic Combination* (CQC). Metode CQC digunakan untuk struktur dengan waktu getar alami yang berdekatan (\leq 15 %) sedangkan metode SRSS untuk waktu getar yang berjauhan (>15 %).

3.3.21 Redundansi

Faktor redundansi merupakan suatu sistem untuk meningkatkan keandalan sistem struktur. Struktur yang dirancang dengan peningkatan nilai redundansi untuk mencegah terjadi kegagalan struktur dan memastikan faktor keamanan bangunan. Merujuk pada SNI 1726:2012 dan SNI 1726:2019, faktor redundansi, ρ , harus diaplikasikan pada masing-masing kedua arah ortogonal untuk semua sistem struktur pemikul gaya seismik. Untuk kondisi dimana nilai ρ adalah 1,0 yaitu sebagai berikut.

- 1. Desain struktur untuk kategori desain seismik B atau C
- 2. Perhitungan simpangan antar tingkat dan pengaruh P-delta
- 3. Desain komponen non struktural
- 4. Desain struktur non gedung yang tidak mirip dengan bangunan gedung
- 5. Desain elemen kolektor, sambungan lanjutan, dan sambungan
- 6. Desain struktur dengan sistem peredam

Untuk kondisi dimana nilai ρ adalah 1,3 yaitu bangunan struktur yang kategori desain seismik D, E, dan F maka ρ harus sama dengan 1,3, kecuali jika satu dari dua kondisi berikut terpenuhi, dimana ρ diizinkan diambil sebesar 1,0:

- Masing-masing tingkat yang menahan lebih dari 35 % geser dasar dalam arah yang ditinjau;
- 2. Struktur dengan denah beraturan di semua tingkat dengan sistem pemikul gaya seismik terdiri dari paling sedikit dua bentang perimeter pemikul gaya seismik yang merangka pada masing-masing sisi struktur dalam masing-masing arah ortogonal di setiap tingkat yang menahan lebih dari 35 % geser dasar. Jumlah bentang untuk dinding geser harus dihitung sebagai panjang dinding geser dibagi dengan tinggi tingkat atau dua kali panjang dinding geser dibagi dengan tinggi tingkat rangka ringan.

3.3.22 Penskalaan Simpangan

Penskalaan simpangan menurut SNI 1726:2012 pasal 7.9.4.2 jika nilai dari gaya geser dasar ragam (*Vt*) kurang dari 85 % gaya geser dasar yang dihitung maka nilai simpangan antar tingkat harus dikalikan dengan $0,85C_sW/V_t$. Penskalaan simpangan menurut SNI 1726:2019 pasal 7.9.1.4.2 jika nilai dari gaya geser dasar ragam (*Vt*) kurang dari gaya geser dasar yang dihitung maka nilai simpangan antar tingkat harus dikalikan dengan C_sW/V_t .

3.4 Ketidakberaturan Struktur

Struktur bangunan diklasifikasikan dalam bentuk beraturan atau tidak beraturan berdasarkan SNI 1726:2012 dan SNI 1726:2019. Ketidakberaturan struktur dapat dibagi menjadi dua jenis yaitu ketidakberaturan horizontal dan ketidakberaturan vertikal. Klasifikasi tersebut harus didasarkan pada konfigurasi horizontal dan vertikal dari struktur.

14000

3.4.1 Ketidakberaturan Horizontal

Struktur yang mempunyai satu atau lebih tipe ketidakberaturan dinyatakan mempunyai ketidakberaturan struktur horizontal yaitu sebagai berikut.

1. Ketidakberaturan torsi (1a dan 1b)

Ketidakberaturan torsi (1a) yaitu jika simpangan antar tingkat maksimum, yang dihitung termasuk torsi tak terduga dengan $A_x = 1,0$, di salah satu ujung struktur melintang terhadap suatu sumbu adalah lebih dari 1,2 kali simpangan antar tingkat rata-rata di kedua ujung struktur. Persyaratan ketidakberaturan torsi berlaku hanya untuk struktur diafragma kaku atau setengah kaku. Ketidakberaturan torsi (1a) dirumuskan sebagai berikut.

$$1,2 \,\delta_{avg} \le \delta_{max} \le 1,4 \,\delta_{avg} \tag{3.48}$$

Ketidakberaturan torsi berlebihan (1b) yaitu jika simpangan antar tingkat maksimum yang dihitung termasuk akibat torsi tak terduga dengan Ax = 1,0, di salah satu ujung struktur melintang terhadap suatu sumbu adalah lebih dari 1,4 kali simpangan antar tingkat rata-rata di kedua ujung struktur. Persyaratan ketidakberaturan torsi berlaku hanya untuk struktur diafragma kaku atau setengah kaku. Ketidakberaturan torsi berlebihan (1b) dirumuskan sebagai berikut.

$$\delta_{max} > 1,4 \ \delta_{avg}$$

(3.49)

Untuk kategori tanpa ketidakberaturan torsi dirumuskan sebagai berikut.

$$\delta_{max} < 1,2 \delta_{avg}$$
 (3.50)

Keterangan:

- δ_{max} = perpindahan maksimum di tingkat x dengan asumsi $A_x = 1$ (mm)
- δ_{avg} = rata-rata perpindahan di titik-titik terjauh struktur di tingkat x dengan asumsi $A_x = 1 \, (mm)$

2. Ketidakberaturan sudut dalam

Ketidakberaturan sudut dalam yaitu jika kedua dimensi proyeksi denah struktur dari lokasi sudut dalam lebih besar dari 15 % dimensi denah struktur dalam arah yang ditinjau. Ketidakberaturan sudut dalam dirumuskan sebagai berikut.

(Sumber: Gambar 5, SNI 1726:2019)

3. Ketidakberaturan diskontinuitas diafragma

Ketidakberaturan diskontinuitas diafragma yaitu jika terdapat suatu diafragma yang memiliki diskontinuitas atau variasi kekakuan mendadak, termasuk yang mempunyai daerah terpotong atau terbuka lebih besar dari 50 % daerah diafragma bruto yang tertutup, atau perubahan kekakuan diafragma efektif lebih dari 50 % dari suatu tingkat ke tingkat selanjutnya. Ketidakberaturan diskontinuitas diafragma dapat dilihat pada Gambar 3.10 berikut.

Gambar 3.10 Ketidakberaturan Diskontinuitas Diafragma

(Sumber: Gambar 5, SNI 1726:2019)

4. Ketidakberaturan pergeseran tegak lurus terhadap bidang

Ketidakberaturan akibat pergeseran tegak lurus terhadap bidang yaitu jika terdapat diskontinuitas dalam lintasan tahanan gaya lateral, seperti pergeseran tegak lurus terhadap bidang pada setidaknya satu elemen vertikal pemikul gaya lateral.

Gambar 3.11 Ketidakberaturan Pergeseran Tegak Lurus terhadap Bidang (Sumber: Gambar 5, SNI 1726:2019)

5. Ketidakberaturan sistem non paralel

Ketidakberaturan sistem non paralel yaitu jika elemen vertikal pemikul gaya lateral tidak paralel terhadap sumbu-sumbu ortogonal utama sistem pemikul gaya seismik. Ketidakberaturan sistem non paralel dapat dilihat pada Gambar 3.12 berikut.

Gambar 3.12 Ketidakberaturan Sistem Non Paralel (Sumber: Gambar 5, SNI 1726:2019)

3.4.2 Ketidakberaturan Vertikal

Struktur yang mempunyai satu atau lebih tipe ketidakberaturan vertikal harus dinyatakan mempunyai ketidakberaturan struktur vertikal yaitu sebagai berikut.

1. Ketidakberaturan kekakuan tingkat lunak (1a dan 1b)

Ketidakberaturan kekakuan tingkat lunak (1a) yaitu jika terdapat suatu tingkat yang kekakuan lateralnya kurang dari 70 % kekakuan lateral tingkat di atasnya atau kurang dari 80 % kekakuan rata-rata tingkat di atasnya. Ketidakberaturan kekakuan tingkat lunak berlebihan (1b)

Gambar 3.13 Ketidakberaturan Kekakuan Tingkat Lunak (1a dan 1b)

(Sumber: Gambar 6, SNI 1726:2019)

2. Ketidakberaturan berat (massa)

Ketidakberaturan berat yaitu jika massa efektif di sebarang tingkat lebih dari 150 % massa efektif tingkat di dekatnya. Atap yang lebih ringan dari lantai di bawahnya tidak perlu ditinjau.

Gambar 3.14 Ketidakberaturan Berat (Massa)

(Sumber: Gambar 6, SNI 1726:2019)

3. Ketidakberaturan geometri vertikal

Ketidakberaturan geometri vertikal yaitu jika dimensi horizontal sistem pemikul gaya seismik di sebarang tingkat lebih dari 130 % dimensi horizontal sistem pemikul gaya seismik tingkat didekatnya.

Gambar 3.15 Ketidakberaturan Geometri Vertikal

(Sumber: Gambar 6, SNI 1726:2019)

4. Ketidakberaturan akibat diskontinuitas bidang pada elemen vertikal pemikul gaya lateral

Ketidakberaturan ini terjadi jika pergeseran arah bidang elemen pemikul gaya lateral lebih besar dari panjang elemen itu atau terdapat reduksi kekakuan elemen pemikul di tingkat di bawahnya.

Gambar 3.16 Ketidakberaturan Akibat Diskontinuitas Bidang pada Elemen Vertikal Pemikul Gaya Lateral

(Sumber: Gambar 6, SNI 1726:2019)

5. Ketidakberaturan tingkat lemah akibat diskontinuitas pada kekakuan lateral tingkat Ketidakberaturan tingkat lemah (5a) ini terjadi jika kekuatan lateral suatu tingkat kurang dari 80 % kekuatan lateral tingkat di atasnya. Kekuatan lateral tingkat adalah kekuatan total semua elemen pemikul seismik yang berbagi geser tingkat pada arah yang ditinjau. Sedangkan ketidakberaturan tingkat lemah berlebihan (5b) ini terjadi jika kekuatan lateral suatu tingkat kurang dari 65 % kekuatan lateral tingkat diatas.

Gambar 3.17 Ketidakberaturan Tingkat Lemah Akibat Diskontinuitas Pada Kekakuan Lateral Tingkat

(Sumber: Gambar 6, SNI 1726:2019)

3.4.3 Konsekuensi Ketidakberaturan Struktur

Struktur bangunan yang mempunyai satu atau lebih tipe ketidakberaturan harus mengikuti pasal-pasal referensi yang ada di SNI 1726 sebagai konsekuensi ketidakberaturan. Adapun tabel mengenai pasal-pasal referensi sebagai berikut.

Ketidakberaturan Horizontal				
Tipe	Pasal Keterangan			
10	7.3.3.4	Peningkatan gaya desain diafragma sebesar 25 % untuk elemen-elemen sistem pemikul gaya seismik		
Ketidakberaturan	7.7.3	Pemodelan menggunakan 3 dimensi dan memperhitungkan penampang retak pada elemen struktur		
Torsi (tipe 1a)	7.8.4.3	Pembesaran momen torsi tak terduga		
	7.12.1	Batasan simpangan antar tingkat		
	Tabel 16	Prosedur analisis yang diizinkan		
	11.3.4	Eksentrisitas tak terduga diasumsikan sebesar 5 % dimensi diafragma		
	7.3.3.4	Peningkatan gaya desain diafragma sebesar 25 % untuk elemen-elemen sistem pemikul gaya seismi		
1 AZ	7.7.3	Pemodelan menggunakan 3 dimensi dan memperhitungkan penampang retak pada elemen struktur		
Ketidakberaturan	7.8.4.3	Pembesaran momen torsi tak terduga		
Torsi Berlebihan	7.12.1	Batasan simpangan antar tingkat		
(tipe 1b)	Tabel 16	Prosedur analisis yang diizinkan		
	11.3.4	Eksentrisitas tak terduga diasumsikan sebesar 5 % dimensi diafragma		
	7.3.3.1	Ketidakberaturan horizontal dan vertikal struktur yang terlarang untuk KDS D, E, dan F		
	7.3.4.2	Faktor redundansi untuk KDS D, E, dan F		
Ketidakberaturan sudut dalam	7.3.3.4	Peningkatan gaya desain diafragma sebesar 25 % untuk elemen-elemen sistem pemikul gaya seismik		
(tipe 2)	Tabel 16	Prosedur analisis yang diizinkan		

Tabel 3.14 Pasal Referensi untuk Ketidakberaturan Horizontal

Ketidakberaturan	7.3.3.4	Peningkatan gaya desain diafragma sebesar 25 %		
diskontinuitas		untuk elemen-elemen sistem pemikul gaya seismik		
diafragma (tipe 3)	Tabel 16	Prosedur analisis yang diizinkan		
	7331	Peningkatan gaya desain diafragma sebesar 25 %		
	7.5.5.4	untuk elemen-elemen sistem pemikul gaya seismik		
	Tabel 16	Prosedur analisis yang diizinkan		
Ketidakberaturan	1134	Eksentrisitas tak terduga diasumsikan sebesar 5 %		
pergeseran melintang	11.3.4	dimensi diafragma		
terhadap bidang	7.7.3	Pemodelan menggunakan 3 dimensi dan		
(tipe 4)		memperhitungkan penampang retak pada elemen		
		struktur		
	7.3.3.3	Elemen yang mendukung dinding tak menerus atau		
		rangka tak menerus		
	7.5.3	Penerapan kombinasi arah ortogonal untuk		
		pengecekan ketidakberaturan struktur		
Ketidakberaturan	Tabel 16	Prosedur analisis yang diizinkan		
sistem non paralel	1134	Eksentrisitas tak terduga diasumsikan sebesar 5 %		
(tine 5)	11.3.4	dimensi diafragma		
(1100)		Pemodelan menggunakan 3 dimensi dan		
	7.7.3	memperhitungkan penampang retak pada elemen		
		struktur		

Lanjutan Tabel 3.14 Pasal Referensi untuk Ketidakberaturan Horizontal

Sumber: Tabel 10 SNI 1726:2012, Tabel 13 SNI 1726:2019

Tabel 3.15	Pasal Refe	ensi untul	x Ketidakbe	eraturan V	'ertikal

Ketidakberaturan Vertikal				
Tipe	Pasal	Keterangan		
Ketidakberaturan kekakuan tingkat lunak (tipe 1a)	Tabel 16	Prosedur analisis yang diizinkan		
Ketidakberaturan kekakuan tingkat	7.3.3.1	Ketidakberaturan horizontal dan vertikal struktur yang terlarang untuk KDS D, E, dan F		
lunak berlebihan (tipe 1b)	Tabel 16	Prosedur analisis yang diizinkan		
Ketidakberaturan berat (tipe 2)	Tabel 16	Prosedur analisis yang diizinkan		

Ketidakberaturan geometri vertikal (tipe 3)	Tabel 16	Prosedur analisis yang diizinkan
Ketidakberaturan	Tabel 16	Prosedur analisis yang diizinkan
arah bidang dalam ketidakberaturan	7.3.3.3	Elemen yang mendukung dinding tak menerus atau rangka tak menerus
elemen penahan gaya lateral vertikal (tipe 4)	7.3.3.4	Peningkatan gaya desain diafragma sebesar 25 % untuk elemen-elemen sistem pemikul gaya seismik
Diskontinuitas dalam ketidakberaturan	7.3.3.1	Ketidakberaturan horizontal dan vertikal struktur yang terlarang untuk KDS D, E, dan F
kuat lateral tingkat (tipe 5a)	Tabel 16	Prosedur analisis yang diizinkan
Diskontinuitas dalam ketidakberaturan	7.3.3.1	Ketidakberaturan horizontal dan vertikal struktur yang terlarang untuk KDS D, E, dan F
kuat lateral tingkat	7.3.3.2	Tingkat lemah berlebihan
berlebihan (tipe 5b)	Tabel 16	Prosedur analisis yang diizinkan

Tabel 3.15 Pasal Referensi untuk Ketidakberaturan Vertikal

Sumber: Tabel 11 SNI 1726:2012, Tabel 14 SNI 1726:2019

3.5 Sistem Ganda

Sistem struktur yang menggunakan Sistem Rangka Pemikul Momen Khusus dan Dinding Geser disebut dengan Sistem Ganda. Pada pasal 7.2.5.1 dalam SNI 1726:2012 dan SNI 1726:2019 disyaratkan bahwa rangka pemikul momen harus mampu menahan gaya geser dasar paling sedikit 25 % dari gaya gempa desain. Tahanan gaya seismik total harus disediakan oleh kombinasi rangka pemikul momen dan dinding geser dengan distribusi yang proporsional terhadap kekakuannya.

3.6 Fleksibilitas Diafragma

Analisis struktur harus memperhitungkan kekakuan relatif diafragma dan kekakuan relatif elemen vertikal sistem pemikul gaya seismik. Analisis struktur harus secara eksplisit menyertakan perhitungan kekakuan diafragma yaitu dengan asumsi pemodelan semi kaku. Adapun fleksibilitas diafragma terbagi menjadi 3 jenis yaitu sebagai berikut.

3.6.1 Kondisi Diafragma Kaku

Diafragma pelat beton atau dek metal yang diberi penutup beton dengan perbandingan S/D_e sebesar 3 atau kurang pada struktur tanpa ketidakberaturan horizontal dapat diidealisasikan sebagai diafragma kaku dapat dilihat pada Gambar 3.17 untuk definisi S dan D_e .

3.6.2 Kondisi Diafragma Fleksibel

Diafragma yang terbuat dari dek baja tanpa penutup atau panel struktur kayu dapat diidealisasikan sebagai diafragma fleksibel jika memenuhi satu atau lebih kondisi berikut.

- Struktur dengan elemen vertikal berupa rangka baja dengan bresing, rangka baja dan beton komposit dengan bresing, atau beton, dinding bata, baja, atau dinding geser komposit baja dan beton.
- 2. Bangunan hunian satu atau dua tingkat
- 3. Struktur rangka ringan yang memenuhi kondisi berikut:
 - a. Penutup beton atau material serupa tidak ditempatkan di atas panel diafragma kayu kecuali untuk penutup non struktural dengan tebal tidak melebihi 38 mm.
 - b. Setiap barus elemen vertikal sistem pemikul gaya seismik memenuhi simpangan antar tingkat izin.

Gambar 3.18 Diafragma Fleksibel

(Sumber: Gambar 4, SNI 1726:2019)

Diafragma yang tidak memenuhi kondisi diafragma kaku dan diafragma fleksibel maka boleh diidealisasikan sebagai diafragma fleksibel apabila:

$$\frac{\delta_{MDD}}{\Delta_{ADVE}} > 2 \tag{3.53}$$

Keterangan:

 δ_{MDD} = defleksi maksimum (mm)

 Δ_{ADVE} = simpangan rata-rata antara titik-titik terjauh pada tingkat x (mm)

3.7 Gaya Desain Diafragma

Diafragma lantai dan atap harus di desain untuk menahan gaya seismik desain dari analisis struktur, tetapi tidak boleh kurang dari yang ditentukan sesuai dengan persamaan berikut.

$$F_{px} = \frac{\sum_{i=x}^{n} F_i}{\sum_{i=x}^{n} w_i} w_{px}$$
(3.54)
Keterangan:

$$F_{px} = \text{gaya desain diafragma di tingkat-x}$$

$$F_i = \text{gaya geser statik yang diterapkan di tingkat-i}$$

$$w_i = \text{tributari berat sampai tingkat-i}$$
Gaya desain diafragma tidak boleh kurang dari:

$$F_{px} = 0.2S_{DS}I_e w_{px}$$
(3.55)
Gaya desain diafragma tidak boleh melebihi dari:

$$F_{px} = 0.4S_{DS}I_e w_{px}$$
(3.56)

3.8 Torsi Tak Terduga

Struktur yang di desain untuk kategori desain seismik C, D, E, atau F, dimana ketidakberaturan torsi tipe 1a atau 1b yang terjadi harus mempunyai pengaruh yang diperhitungkan pada masing-masing tingkat dengan faktor pembesaran torsi (A_x) .

Faktor pembesaran torsi (A_x) tidak boleh kurang dari 1 dan tidak perlu melebihi 3. Berikut persamaan untuk menghitung faktor pembesaran torsi.

$$A_{\chi} = \left(\frac{\delta_{max}}{1.2\,\delta_{avg}}\right)^2 \tag{3.57}$$

$$\delta_{max} = \frac{\delta_A + \delta_B}{2}$$

(3.58)

Keterangan:

 A_x = faktor pembesaran torsi

 δ_{max} = perpindahan maksimum di tingkat x dengan asumsi A_x = 1 (mm)

 δ_{avg} = rata-rata perpindahan di titik terjauh di tingkat x dengan asumsi $A_x = 1 \text{ (mm)}$

Gambar 3.19 Faktor Pembesaran Torsi, *A_x* (Sumber: Gambar 4 SNI 1726:2012, Gambar 9 SNI 1726:2019)

3.9 Simpangan Antar Tingkat

Penentuan simpangan antar tingkat desain (Δ) harus dihitung sebagai perbedaan simpangan pada pusat massa di atas dan di bawah tingkat yang ditinjau (lihat Gambar 3.18). Apabila pusat massa tidak segaris dalam arah vertikal, diizinkan untuk menghitung simpangan di dasar tingkat berdasarkan proyeksi vertikal dari pusat massa

tingkat di atasnya. Jika desain tegangan izin digunakan, ⊿ harus dihitung menggunakan gaya seismik desain yang ditetapkan tanpa reduksi untuk desain tegangan izin.

Gambar 3.20 Penentuan Simpangan Antar Tingkat (Sumber: Gambar 5 SNI 1726:2012, Gambar 10 SNI 1726:2019)

Simpangan antar tingkat ditentukan oleh defleksi yang terjadi pada setiap tingkat nya, berikut rumus persamaan defleksi.

$$\delta_{x} = \frac{C_d \delta_e}{I_e}$$

(3.59)

Keterangan:

 δ_x = defleksi yang terjadi pada tingkat *x* (mm)

 C_d = faktor amplifikasi defleksi

 δ_x = defleksi disyaratkan pada lokasi ditentukan dari analisis elastis

 $I_e = faktor keutamaan gempa$

Terdapat batasan dalam simpangan antar tingkat yang tidak boleh melebihi batas izin seperti pada Tabel 3.16 berikut.

Struktur	Kategori risiko			
Struktur	l atau II	III	IV	
Struktur, selain dari struktur dinding geser batu bata, 4 tingkat atau kurang dengan dinding interior, partisi, langit-langit dan sistem dinding eksterior yang telah didesain untuk mengekemedesi simperangan antar tingkot	0,025 <i>h</i> _{sx} ^c	0,020 <i>h</i> _{sx}	0,015 <i>h</i> _{sx}	
Struktur dinding geser kaptilever batu batad	0.0407	0.0407	0.0407	
	$0,010h_{sx}$	$0,010h_{sx}$	$0,010h_{sx}$	
Struktur dinding geser batu bata lainnya	$0,007h_{sx}$	$0,007h_{sx}$	0,007 <i>h</i> _{sx}	
Semua struktur lainnya	0,020 <i>h</i> _{sx}	0,015 <i>h</i> _{sx}	0,010h _{sx}	

Tabel 3.16 Simpangan Antar Tingkat Izin

Sumber: Tabel 16 SNI 1726:2012, Tabel 20 SNI 1726:2019

3.10 Pengaruh P-Delta

Pengaruh P-delta pada geser tingkat dan momen, gaya dan momen elemen struktur yang dihasilkan, dan simpangan antar tingkat yang diakibatkannya tidak perlu diperhitungkan bila koefisien stabilitas (θ) seperti ditentukan oleh persamaan berikut sama dengan atau kurang dari 0,10:

$$\theta = \frac{P_X \Delta I_e}{V_x h_{sx} C_d} \tag{3.60}$$

Koefisien stabilitas (θ) tidak boleh melebihi θ_{max} yang ditentukan sebagai berikut:

$$\theta_{max} = \frac{0.5}{\beta C_d} \le 0.25 \tag{3.61}$$

Keterangan:

 P_x = beban desain vertikal total pada dan di atas tingkat-x

 Δ = simplify an antar tingkat desain

 I_e = faktor keutamaan gempa

 V_x = gaya geser seismik yang bekerja antara tingkat x dan x-1

 H_{sx} = tinggi tingkat di bawah tingkat x

 C_d = faktor pembesaran defleksi

BAB IV

METODOLOGI PENELITIAN

4.1 Umum

Metodologi penelitian merupakan langkah-langkah urutan kegiatan yang disusun secara sistematis untuk mencapai tujuan penyelesaian tugas akhir. Metode penelitian juga memberikan gambaran rancangan penelitian serta langkah-langkah yang ditempuh untuk menyelesaikan tugas akhir mulai dari pengumpulan data hingga analisis, pembahasan serta kesimpulan.

Penelitian yang dilakukan merupakan jenis penelitian komparatif, yaitu penelitian yang bersifat membandingkan. Penelitian yang akan dilakukan yaitu mengevaluasi struktur atas gedung Rumah Sakit UII menggunakan SNI 1726:2019 yang akan dibandingkan dengan SNI 1726:2012. Hasil akhir dari penelitian ini adalah mengetahui perbandingan nilai gaya geser dasar, simpangan antar tingkat, dan ada tidaknya ketidakberaturan pada gedung Rumah Sakit UII.

4.2 Lokasi Penelitian

Lokasi gedung Rumah Sakit UII yang berlokasi di Jalan Srandakan Km. 5,5, Kecamatan Pandak, Bantul, Daerah Istimewa Yogyakarta. Gedung tersebut memiliki tingkat sebanyak 7 lantai dengan total tinggi bangunan yaitu 27,12 m. Adapun lokasi penelitian dapat dilihat pada Gambar 4.1 berikut.

Gambar 4.1 Lokasi Gedung Rumah Sakit UII

(Sumber: Google Maps)

4.3 Data Bangunan

Data penelitian merupakan suatu informasi atau bahan yang digunakan dalam penelitian. Data penelitian yang diperoleh yaitu *As-Built Drawing* (gambar kerja), spesifikasi material dan data umum bangunan. Data yang telah diperoleh disesuaikan dengan data eksisting dan di *input* ke dalam program ETABS v.18. Adapun data penelitian yang diperoleh yakni sebagai berikut.

- 1. Data Umum Bangunan
 - a. Nama: Rumah Sakit Universitas Islam Indonesia
 - b. Lokasi: Jalan Srandakan Km. 5,5, Kecamatan Pandak, Bantul, Daerah Istimewa Yogyakarta
 - c. Fungsi bangunan: Rumah Sakit
 - d. Jumlah tingkat: 7 tingkat
- 2. Gambar Struktur Bangunan

Pengumpulan gambar struktur bangunan bertujuan untuk menggambarkan tampak dari bangunan, dimensi struktur bangunan, hingga potongan dari gambar bangunan dapat dilihat pada Gambar 4.2 dan Gambar 4.3 berikut.

Gambar 4.2 Denah Gedung Rumah Sakit UII

(Sumber: As-Built Drawing Perencanaan Gedung Rumah Sakit UII)

Gambar 4.3 Potongan Gedung Rumah Sakit UII

(Sumber: As-Built Drawing Perencanaan Gedung Rumah Sakit UII)

3. Spesifikasi Material

Pengumpulan informasi berkaitan dengan spesifikasi material bertujuan untuk mengetahui mutu yang digunakan sebagai perancangan struktur bangunan meliputi mutu beton dan mutu tulangan baja.

a. Mutu beton

b.

1) <i>f</i> 'c	= 30 MPa
2) Berat jenis beton	$= 2400 \text{ kg/m}^3$
3) Modulus elastisitas	$=4700\sqrt{f'c}$ = 25742,960 MPa
Mutu tulangan baja	
1) Baja ulir, <i>fy</i>	= 400 MPa
2) Baja polos, <i>fy</i>	= 240 MPa
3) Berat jenis tulangan baja	$= 7850 \text{ kg/m}^3$

4.4 Tahapan Penelitian

Adapun tahapan penelitian yang akan dilakukan yaitu sebagai berikut.

1. Studi Literatur

Mengidentifikasi permasalahan guna menentukan masalah yang akan diteliti dan selanjutnya melakukan studi literatur yaitu mencari referensi teori yang sesuai dengan permasalahan. Setelah itu, merumuskan masalah sebagai pertanyaan permasalahan yang akan diselesaikan. Studi literatur terkait dengan perbandingan kinerja struktur gedung berdasarkan peraturan SNI 1726:2012 dan SNI 1726:2019.

2. Pengumpulan Data

Mengumpulkan data sebagai bahan atau informasi untuk mencapai tujuan dari penelitian yang dilakukan sesuai dengan data di lapangan. Data yang diperlukan meliputi data umum bangunan, *As Built Drawing* (gambar kerja), dan spesifikasi material. Data diperoleh dari pihak Yayasan Badan Wakaf UII selaku pemilik proyek.

3. Pemodelan Bangunan

Memodelkan bangunan menggunakan *software* ETABS v.18 sesuai dengan gambar *As Built Drawing* yang sudah diperoleh. Pemodelan elemen struktur bangunan mengikuti pemodelan yang ada di dokumen perencanaan proyek Rumah Sakit UII yaitu pelat, balok, kolom, dan dinding geser.

4. Perhitungan Pembebanan

Mengolah data meliputi perhitungan pembebanan pada elemen struktur yaitu beban mati (*dead load*), beban mati tambahan (*additional dead load*), beban hidup (*live load*), dan beban gempa (*earthquake load*). Setelah itu, memasukkan kombinasi pembebanan sesuai dengan peraturan SNI 1726.

5. Analisis Beban Seismik

Memasukkan pembebanan dan analisis beban seismik respon spektrum ke *software* ETABS v.18 sesuai dengan pengolahan data. Menganalisis respon spektrum gedung Rumah Sakit UII pada *software* ETABS v.18 disesuaikan dengan SNI 1726:2012 dan SNI 1726:2019.

6. Analisis Ketidakberaturan Struktur

Melakukan peninjauan ketidakberaturan struktur apakah memiliki ketidakberaturan atau tidak, jika memiliki ketidakberaturan maka harus disesuaikan dengan konsekuensi ketidakberaturan berdasarkan SNI 1726.

7. Analisis Gaya Desain Diafragma

Setelah analisis ketidakberaturan struktur, selanjutnya meninjau gaya desain diafragma yang terjadi antara desain menurut SNI 1726:2012 dan SNI 1726:2019.

- Analisis Simpangan Antar Tingkat dan Pengaruh P-Delta Melakukan peninjauan simpangan antar tingkat dan pengaruh P-delta, apakah memenuhi syarat atau tidak menurut SNI 1726:2012 dan SNI 1726:2019.
- 9. Pembahasan

Membandingkan hasil desain berdasarkan SNI 1726:2012 dan SNI 1726:2019.

10. Kesimpulan

Menyimpulkan hasil penelitian dan saran untuk penelitian selanjutnya.

Dari penjelasan diatas dapat dibuat bagan alir untuk memudahkan pembacaan tahapan penelitian. Untuk melihat bagan alir dari tahapan penelitian terdapat pada Gambar 4.4.

Gambar 4.4 Bagan Alir Tahapan Penelitian

Lanjutan Gambar 4.4 Bagan Alir Tahapan Penelitian

Lanjutan Gambar 4.4 Bagan Alir Tahapan Penelitian

BAB V

ANALISIS DAN PEMBAHASAN

5.1 Pendahuluan

Pada bab ini akan membahas mengenai proses analisis dan pembahasan. Proses analisis ini meliputi perhitungan pembebanan, peninjauan hasil analisis program, ketidakberaturan struktur, gaya geser dasar, sistem ganda, fleksibilitas diafragma, gaya desain diafragma, simpangan antar tingkat, dan pengaruh p-delta berdasarkan desain menggunakan SNI 1726:2012 dan SNI 1726:2019.

5.2 Pembebanan Struktur

Pada struktur bangunan terdapat berbagai macam jenis pembebanan yang bekerja. Adapun jenis pembebanan dalam suatu struktur adalah sebagai berikut.

5.2.1 Beban Mati

Beban mati merupakan berat dari material bangunan yang digunakan pada elemen struktural. Adapun beban mati pada elemen struktur yaitu sebagai berikut.

1. Beban mati pada pelat lantai

Spesi	$= 1 \text{ cm } x 21 \text{ kg/m}^2/\text{cm} = 21 \text{ kg/m}^2$
Pasir	$= 0,05 \text{ m} x 1800 \text{ kg/m}^3 = 90 \text{ kg/m}^2$
Keramik	$= 24 \text{ kg/m}^2$
Plafon + Penggantung	$= 18 \text{ kg/m}^2$
Instalasi Listrik	$= 20 \text{ kg/m}^2$
Total	$= 173 \text{ kg/m}^2$
	$= 1,679 \text{ kN/m}^2$
	$= 2 \text{ kN/m}^2$

2. Beban mati pada pelat rooftop

	Spesi	$= 1 \text{ cm } x 21 \text{ kg/m}^2/\text{cm} = 21 \text{ kg/m}^2$				
	Plafon + Penggantung	$= 18 \text{ kg/m}^2$				
	Waterproof	$= 5 \text{ kg/m}^2$				
	Instalasi Listrik	$= 20 \text{ kg/m}^2$				
	Total	$= 64 \text{ kg/m}^2 = 0,628 \text{ kN/m}^2$				
3.	Beban dinding					
	Dinding tanpa lubang	$= 250 \text{ kg/m}^2 x 3,2 \text{ m x } 1$				
		= 800 kg/m = 7,848 kN/m				
	Dinding dengan lubang	$= 250 \text{ kg/m}^2 x 3,2 \text{ m x } 0.5$				
	JE A	= 400 kg/m = 3,924 kN/m				

5.2.2 Beban Hidup

Beban hidup yang digunakan disesuaikan dengan data eksisting gedung Rumah Sakit UII. Adapun beban hidup yang digunakan yaitu sebagai berikut.

No.	Ruangan	Beban Hidup (kg/m ²)
1	Ruang Operasi	300
2	Laboratorium	300
3	Ruang Pasien	300
4	Koridor lt.1	450
5	Koridor diatas lt.1	450
6	Dak Beton	300
7	Lobi	450
8	Ruang Meeting	300
9	Taman	300

Tabel 5.1 Beban Hidup

Sumber: Dokumen Perencanaan Rumah Sakit UII (Eksisting)

5.3 Beban Gempa

Adapun prosedur perhitungan beban gempa menggunakan respon spektrum sebagai berikut.

1. Penentuan kategori risiko struktur dan faktor keutamaan gempa

	Fungsi bangunan	: Rumah sakit
	Kategori risiko	: IV
	Faktor keutamaan gempa	: 1,5
	Kelas situs	: Tanah sedang (SD)
2.	Penentuan nilai S_s dan S_1	
	a. SNI 1726:2012	
	$S_s = 1,2 \text{ g}$	
	$S_1 = 0,4 \text{ g}$	
	b. SNI 1726:2019	
	$S_s = 1,259 \text{ g}$	
	$S_1 = 0,551 \text{ g}$	
3.	Penentuan nilai F_a dan F_v	
	a. SNI 1726:2012	
	$F_a = 1,02$	
	$F_{v} = 1,60$	
	b. SNI 1726:2019	1110000011111000
	$F_a = 1,0$	Kin Non
	$F_{v} = 1,749$	
4.	Penentuan nilai S_{MS} dan S_M	1
	a. SNI 1726:2012	

 $S_{MS} = F_a x S_s$ = 1,02 x 1,2 = 1,224 g

- 6. Spektrum respons desain
 - a. SNI 1726:2012

Langkah-langkah pengerjaan spektrum respon desain sesuai SNI 1726:2012 pasal 6.4 sebagai berikut.

1) Nilai periode T_0 dan T_s

$$T_{0} = 0.2 x \frac{S_{D1}}{S_{DS}}$$

$$= 0.2 x \frac{0.427}{0.816}$$

$$= 0.105 \text{ detik}$$

$$T_{S} = \frac{S_{D1}}{S_{DS}}$$

$$= \frac{0.427}{0.816}$$

$$= 0.523 \text{ detik}$$
2) $T < T_{0}$, nilai S_{a} harus diambil dari persamaan:

$$S_{a} = S_{DS} \left(0.4 + 0.6 \frac{T}{T_{0}} \right)$$
Contoh perhitungan:

$$S_{a} = 0.816 \left(0.4 + 0.6 \frac{0}{0.11} \right)$$

3) $T_0 < T < T_s$, nilai Sa diambil nilai S_{DS} yaitu sebesar 0,816 g.

4) $T > T_S$, nilai S_a , diambil dari persamaan:

$$S_a = \frac{S_{D1}}{T}$$

Contoh perhitungan:
$$S_a = \frac{0.427}{0.6}$$
$$= 0.712 \text{ g}$$

= 0,326 g

Berdasarkan dari persamaan diatas diplotkan menjadi sebuah grafik yang dapat dilihat pada Gambar 5.1 berikut.

b. SNI 1726:2019

Langkah-langkah pengerjaan spektrum respons desain sesuai SNI 1726:2019 pasal 6.4 sebagai berikut.

1) Nilai periode T_0 dan T_s

$$T_{0} = 0.2 x \frac{S_{D1}}{S_{DS}}$$

= 0.2 x $\frac{0.642}{0.839}$
= 0.153 detik
$$T_{S} = \frac{S_{D1}}{S_{DS}}$$

= $\frac{0.642}{0.839}$
= 0.765 detik

2) $T < T_0$, nilai S_a harus diambil dari persamaan:

$$S_a = S_{DS} \left(0,4 + 0,6 \frac{T}{T_0} \right)$$

Contoh perhitungan:

$$S_a = 0,839 (0,4 + 0,6 \frac{0}{0,153})$$
$$= 0,336 \text{ g}$$

3) $T_0 < T < T_s$, nilai S_a diambil nilai S_{DS} yaitu sebesar 0,839 g.

4) $T > T_S$, nilai S_a , diambil dari persamaan:

 $S_{a} = \frac{S_{D1}}{T}$ Contoh perhitungan: $S_{a} = \frac{0.642}{1}$ = 0.642 g

5) $T > T_L$, nilai S_a , diambil dari persamaan:

$$S_a = \frac{S_{D1} T_L}{T^2}$$

Contoh perhitungan:

$$S_a = \frac{0,642.20}{20^2} = 0,032 \text{ g}$$

Berdasarkan dari persamaan diatas diplotkan menjadi sebuah grafik yang dapat dilihat pada Gambar 5.1 berikut.

Gambar 5.1 Grafik Respon Spektrum Desain

7. Kategori desain seismik

Kategori desain seismik dapat dilihat pada SNI 1726:2012 pada tabel 6 dan 7, sedangkan pada SNI 1726:2019 pada tabel 8 dan 9. Penentuan kategori desain seismik didasarkan oleh nilai S_{DS} , S_{DI} , dan kategori risiko bangunan.

- a. SNI 1726:2012
 - $S_{DS} = 0,816 \text{ g}$

$$S_{D1} = 0,427 \text{ g}$$

Maka kategori desain seismik termasuk kategori D.

- b. SNI 1726:2019
 - $S_{DS} = 0,839 \text{ g}$

$$S_{D1} = 0,642 \text{ g}$$

Maka kategori desain seismik termasuk kategori D.

8. Nilai R, Ω_0 , dan C_d

Bangunan ini memiliki sistem penahan gaya seismik berupa rangka beton bertulang pemikul momen khusus (SRPMK) dan dinding geser beton bertulang, sehingga diambil kategori dinding geser beton bertulang khusus dengan nilai:

- R = 7
- $\Omega_0 = 2,5$
- $C_d = 5,5$

Nilai ini memiliki kesamaan antara SNI 1726:2012 dan SNI 1726:2019.

9. Periode fundamental struktur (T)

Periode bangunan didapatkan dengan membandingkan periode dari analisis program dan periode dari peraturan SNI 1726. Periode dari analisis program (T_c) sebesar 1,161 detik dapat dilihat pada Gambar 5.2 berikut.

-					
File	Edit Format-	Filter-Sort Se	lect Options		
Units: A	As Noted H	lidden Columns: N	lo Sort: Nor	ie	
Filter: 1	lone				
	Case	Mode	Period sec	UX	U
•	Modal	1	1.161	0.552	
	Modal	2	0.99	0.0077	
	Modal	3	0.852	0.0022	
	Modal	4	0.647	0.0339	
	Modal	5	0.616	0.0164	
	Modal	6	0.476	0.165	
	Modal	7	0.453	0.0218	
	Modal	8	0.379	0.0003	
	Modal	9	0.339	0.0034	
	Modal	10	0.303	0.0014	
	Modal	11	0.28	0.0019	
	Modal	12	0.263	0.0653	1.
	Modal	13	0.256	0.0045	

Gambar 5.2 Periode Hasil Analisis Struktur Program ETABS v18

Periode minimum (T_a) ditentukan dari tinggi bangunan, nilai C_t dan x. Bangunan ini memiliki tipe struktur SRMPK dan dinding geser yang termasuk ke dalam kategori

sistem struktur lainnya yang memiliki nilai $C_t = 0,0488$ dan x = 0,75. Berikut persamaan untuk menentukan periode minimum (T_a).

Periode minimum (T_a)

$$= 0,0488 \ x \ 27,12^{0,75}$$

$$= 0,58$$
 detik

 $= C_t x h_n^x$

Periode maksimum ditentukan dari nilai C_u dan T_a . Untuk nilai $S_{D1} = 0,427$ untuk SNI 1726:2012 dan $S_{D1} = 0,642$ untuk SNI 1726:2019, maka diambil nilai C_u sebesar 1,4.

Periode maksimum $(T_{maks}) = C_u x T_a$

= 1,4 x 0,58 detik

```
= 0,812 detik
```

Didapatkan nilai $T_c > T_{maks}$ maka periode yang digunakan yaitu 0,812 detik. Nilai periode yang digunakan ini memiliki kesamaan antara SNI 1726:2012 dan SNI 1726:2019.

- 10. Nilai koefisien respon seismik (Cs)
 - a. SNI 1726:2012

2)

Nilai koefisien respon seismik (C_s) dapat dihitung dengan persamaan berikut.

1) Nilai Cs diambil dari persamaan berikut.

$$C_{S} = \frac{S_{DS}}{\frac{R}{I}}$$

$$= \frac{0.816}{\frac{7}{1.5}}$$

$$= 0,1749$$
Nilai C_{S} tidak boleh kurang dari nilai C_{S} min.

$$C_{S} min = 0,044 \ x \ S_{DS} \ x \ Ie \ge 0,01$$
$$= 0,044 \ x \ 0,816 \ x \ 1,5 \ge 0,01$$
$$= 0,0539 \ge 0,01$$
$$= 0,0539$$

3) Nilai C_S tidak perlu melebihi nilai C_S max.

$$C_{S} max = \frac{S_{D1}}{T(\frac{R}{T})} = \frac{0,427}{0,812(\frac{7}{1,5})} = 0.1126$$

- 4) Nilai Cs yang melebihi dari Cs max maka nilai Cs yang dipakai yaitu 0,1126.
- b. SNI 1726:2019

Nilai koefisien respon seismik (C_S) dapat dihitung dengan persamaan berikut.

1) Nilai Cs diambil dari persamaan berikut.

2) Nilai C_S tidak boleh kurang dari nilai C_S min.

 $C_{S} min = 0,044 \ x \ S_{DS} \ x \ Ie \ge 0,01$ $= 0,044 \ x \ 0,839 \ x \ 1,5 \ge 0,01$ $= 0,0554 \ge 0,01$ = 0,0554

3) Nilai C_S tidak perlu melebihi nilai C_S max.

4) Nilai C_s yang melebihi dari C_s max maka nilai C_s yang dipakai yaitu 0,1695. Nilai koefisien respon seismik mengalami peningkatan pada SNI 1726:2019 terhadap SNI 1726:2012 sebesar 50,532 %.

11. Berat bangunan (W)

Berat bangunan yang dihitung pada program *excel* didapatkan sebesar 29178,09 ton. Berat bangunan yang didapat dari program ETABS v.18 yaitu sebesar 28995,143 ton. Persentase perbandingan kedua perhitungan 0,631 % < 5 % sehingga dapat dikatakan masih dapat di toleransi.

5.4 Kombinasi Beban Gempa

Kombinasi beban gempa telah diatur pada SNI 1726:2012 dan SNI 1726:2019. Bangunan Rumah Sakit UII termasuk ke dalam kategori risiko D, sehingga faktor redundansi (ρ) yang digunakan sebesar 1,3. Adapun kombinasi beban gempa yang digunakan dalam perhitungan penelitian ini yaitu sebagai berikut.

1. SNI 1726:2012

Nilai *S*_{DS} untuk SNI 1726:2012 sebesar 0,816. Berikut penjabaran kombinasi beban yang akan digunakan.

a. U = 1,4Db. U = 1,2D + 1,6Lc. U = 1,2D + 1Ld. $U = 1,363D + 1L + 1E_x + 0,3E_y$ e. $U = 1,363D + 1L + 1E_x - 0,3E_y$ f. $U = 1,363D + 1L - 1E_x + 0,3E_y$ g. $U = 1,363D + 1L - 0,3E_x + 1E_y$ i. $U = 1,363D + 1L - 0,3E_x + 1E_y$ j. $U = 1,363D + 1L - 0,3E_x - 1E_y$ k. $U = 1,363D + 1L - 0,3E_x - 1E_y$ l. $U = 0,737D + 1E_x + 0,3E_y$ m. $U = 0,737D + 1E_x - 0,3E_y$ n. $U = 0,737D - 1E_x + 0,3E_y$

- p. U = $0,737D + 0,3E_x + 1E_y$
- q. U = 0,737D 0,3 E_x + 1 E_y
- r. $U = 0,737D + 0,3E_x 1E_y$
- s. $U = 0,737D 0,3E_x 1E_y$
- 2. SNI 1726:2019

Nilai S_{DS} untuk SNI 1726:2019 sebesar 0,839. Berikut penjabaran kombinasi beban

5.5 Pemeriksaan Hasil Analisis Program

Bangunan yang dianalisis perlu diperiksa agar memenuhi ketentuan dan syarat yang berlaku pada SNI 1726. Berikut pembahasan mengenai hasil analisis dari program ETABS v18.

1. Partisipasi massa ragam

a. SNI 1726:2012

Analisis harus menyertakan jumlah ragam yang cukup untuk mendapatkan partisipasi massa ragam terkombinasi paling sedikit sebesar 90 % dari massa aktual masing-masing arah horizontal.

🗊 Mod	al Participating	Mass Ratios						
<u>F</u> ile	<u>E</u> dit For <u>m</u> at-	Filter-Sort Sel	ect Options					
Units: As	s Noted H	lidden Columns: N	o Sort: No	one		Modal Partic	cipating Mass Ratio	os
Filter: No	one							
	Case	Mode	Period sec	UX	UY	UZ	SumUX	SumUY
	Modal	18	0.204	0.0011	0.0118	0	0.8876	0.847
	Modal	19	0.199	0.0041	0.0119	0	0.8916	0.859
	Modal	20	0.194	0.0006	0.0137	0	0.8923	0.872
	Modal	21	0.183	0.0003	0.0002	0	0.8926	0.873
	Modal	22	0.181	0.0245	0.0007	0	0.9171	0.873
	Modal	23	0.18	0.0043	4.293E-06	0	0.9214	0.873
	Modal	24	0.179	0.0002	0.0063	0	0.9215	0.880
	Modal	25	0.174	0.0029	0.0008	0	0.9244	0.880
	Modal	26	0.173	1.035E-05	0.0018	0	0.9244	0.882
	Modal	27	0.167	0.0008	0.0081	0	0.9252	0.890
	Modal	28	0.165	0.0069	0.0004	0	0.9321	0.891
	Modal	29	0.163	3.895E-06	0.0053	0	0.9321	0.896
	Modal	30	0.161	0.0045	0.0031	0	0.9366	0.899
	Modal	31	0.156	0.0097	0.0007	0	0.9463	0.900

Gambar 5.3 Partisipasi Massa Ragam Pada Desain SNI 1726:2012

Partisipasi massa ragam arah X dan Y dapat diliat pada kolom SumUX dan SumUY. Jumlah *mode* yang mencapai lebih dari 90 % yaitu pada *mode* 31, sehingga telah memenuhi ketentuan SNI 1726:2012. Untuk metode yang digunakan yaitu *Complete Quadratic Combination* (CQC) karena selisih periode kurang dari 15 % sehingga dapat dikatakan periode berdekatan.

b. SNI 1726:2019

Analisis harus menyertakan jumlah ragam yang cukup untuk mendapatkan partisipasi massa ragam terkombinasi sebesar 100 % dari massa aktual masingmasing arah horizontal. Sebagai alternatif, analisis diizinkan untuk memasukkan jumlah ragam minimum untuk mencapai massa ragam terkombinasi paling sedikit 90 % dari massa aktual dalam masing-masing arah ortogonal dari respons yang ditinjau oleh model.

	at-Filter-Soft Sei	ect Options					
As Noted	Hidden Columns: N	o Sort: Non	e		Modal Particip	pating Mass Ratios	i i
None							
Case	Mode	Period sec	UX	UY	UZ	SumUX	SumU
Modal	18	0.204	0.0011	0.0118	0	0.8876	0
Modal	19	0.199	0.0041	0.0119	0	0.8916	0
Modal	20	0.194	0.0006	0.0137	0	0.8923	0
Modal	21	0.183	0.0003	0.0002	0	0.8926	0
Modal	22	0.181	0.0245	0.0007	0	0.9171	0
Modal	23	0.18	0.0043	4.293E-06	0	0.9214	0
Modal	24	0.179	0.0002	0.0063	0	0.9215	0
Modal	25	0.174	0.0029	0.0008	0	0.9244	0
Modal	26	0.173	1.035E-05	0.0018	0	0.9244	0
Modal	27	0.167	0.0008	0.0081	0	0.9252	0
Modal	28	0.165	0.0069	0.0004	0	0.9321	0
Modal	29	0.163	3.895E-06	0.0053	0	0.9321	0
Modal	30	0.161	0.0045	0.0031	0	0.9366	0.
Modal	31	0.156	0.0097	0.0007	0	0.9463	0

Gambar 5.4 Partisipasi Massa Ragam Pada Desain SNI 1726:2019

Partisipasi massa ragam arah X dan Y dapat diliat pada kolom SumUX dan SumUY. Jumlah *mode* yang mencapai lebih dari 90 % yaitu pada *mode* 31, sehingga telah memenuhi ketentuan SNI 1726:2019. Untuk metode yang digunakan yaitu *Complete Quadratic Combination* (CQC) karena selisih periode kurang dari 15 % sehingga dapat dikatakan periode berdekatan.

2. Penskalaan gaya

a. SNI 1726:2012

Nilai gaya geser dinamik (V_D) yang didapat dari program tidak langsung digunakan untuk analisis struktur, harus disetarakan dengan gaya geser statik (Vs) sesuai dengan SNI 1726:2012 pasal 7.9.4.1 tentang skala gaya.

町 Ba	se Reactions						
File	Edit Format-	Filter-Sort Sel	lect Options				
Units:	As Noted H	lidden Columns: N	lo Sort: N	one		Base React	ions
Filter:	([Output Case] = 'S	pec X (Unscaled)	OR [Output Case] = 'Spec Y (Unsc	aled)' OR [Output	Case] = 'Static Ex'	OR [Output Case]
	Output Case	Case Type	Step Type	Step Number	Step Label	FX kN	FY kN
•	Static Ex	LinStatic	Step By Step	1		-28333.2574	0
	Static Ex	LinStatic	Step By Step	2		-28333.2574	0
	Static Ex	LinStatic	Step By Step	3		-28333.2574	0
	Static Ey	LinStatic	Step By Step	1		0	-28333.2574
	Static Ey	LinStatic	Step By Step	2		0	-28333.2574
	Static Ey	LinStatic	Step By Step	3		0	-28333.2574
	Spec X (Unsc	LinRespSpec	Max			14716.1685	2410.3918
	Spec Y (Unsc	LinRespSpec	Max			2410.3922	14983.9452

Gambar 5.5 Gaya Geser Dasar Sebelum Skala Gaya pada SNI 1726:2012

Didapatkan hasil gaya geser dasar sebelum skala gaya yaitu sebagai berikut.

1) Arah X	-	
Vsx	= 28333,257 kN	- 1
0,85 Vsx	= 0,85 <i>x</i> 28333,257 kN	
·· W //	= 24083,269 kN	10.
V _{DX}	= 14716,168 kN < 0,85 <i>Vsx</i>	13

Karena $V_D < 0.85$ Vs, maka gaya gempa dinamik harus di skala ulang sebesar:

 $\frac{0,85 \, V_S}{V_D} = \frac{24083,269}{14716,168} = 1,637$

2) Arah Y

 $V_{SY} = 28333,257 \text{ kN}$

 $0,85 V_{SY} = 0,85 x 28333,257 \text{ kN}$

= 24083,269 kN $= 14983,945 \text{ kN} < 0.85 V_{SY}$

Karena $V_D < 0.85$ Vs, maka gaya gempa dinamik harus di skala ulang sebesar:

 $\frac{0,85 V_S}{V_D}$ $= \frac{24083,269}{14983,945} = 1,608$ Base Reactions File Edit Format-Filter-Sort Select Options Units: As Noted Hidden Columns: No Sort: None Base Reactions Filter: ([Output Case] = 'Spec X' OR [Output Case] = 'Spec Y' OR [Output Case] = 'Static Ex' OR [Output Case] = 'Static Ey') Output Case Case Type Step Type Step Number Step Label FX FY kΝ kΝ -28333.2574 Static Ex LinStatic Step By Step 1 0 Static Ex LinStatic 2 -28333.2574 0 Step By Step Static Ex LinStatic Step By Step 3 -28333.2574 0 LinStatic 1 -28333.2574 Static Ev Step By Step 0 LinStatic 2 -28333.2574 Static Ey Step By Step 3 Static Ey LinStatic Step By Step -28333.2574 0 Spec X LinRespSpec Max 24097.7259 3947.0165 24098.6791 LinRespSpec Max 3876.6337 Spec Y

Gambar 5.6 Gaya Geser Dasar Setelah Skala Gaya pada SNI 1726:2012

Nilai skala gaya tersebut dikalikan dengan gaya geser dasar dinamik sebelum penskalaan gaya, maka didapatkan nilai gaya geser dasar baru yang dapat dilihat pada Gambar 5.6.

1) Arah X

 $V_{SX} = 28333,257 \text{ kN}$ $0,85 V_{SX} = 0,85 x 28333,257 \text{ kN}$ = 24083,269 kN $V_{DX} = 24097,725 \text{ kN} > 0,85 V_{SX}$

Karena $V_D > 0.85$ Vs, maka gaya gempa dinamik telah memenuhi syarat.

2) Arah Y

 V_{SY} = 28333,257 kN 0,85 V_{SY} = 0,85 x 28333,257 kN = 24083,269 kN

$$V_{DY} = 24098,679 \text{ kN} > 0,85 \text{ Vsx}$$

Karena $V_D > 0.85$ Vs, maka gaya gempa dinamik telah memenuhi syarat.

b. SNI 1726:2019

Nilai gaya geser dinamik (V_D) yang didapat dari program tidak langsung digunakan untuk analisis struktur, harus disetarakan dengan gaya geser statik (V_s) sesuai dengan SNI 1726:2019 pasal 7.9.1.4.1 tentang skala gaya.

町 Ba	se Reactions						
File	Edit Format-Filte	r-Sort Select	Options				
Units:	As Noted Hidde	n Columns: No	Sort: None			Base Reactions	
Filter:	([Output Case] = 'Spec)	X (Unscaled)' OR	[Output Case] = 'S	Spec Y (Unscaled)	OR [Output Case	e] = 'Static Ex' OR [Output Case] = 'Si
	Output Case	Case Type	Step Type	Step Number	Step Label	FX kN	FY kN
•	Static Ex	LinStatic	Step By Step	1		-42642.4219	0
	Static Ex	LinStatic	Step By Step	2		-42642.4219	0
	Static Ex	LinStatic	Step By Step	3		-42642.4219	0
	Static Ey	LinStatic	Step By Step	1		0	-42642.4219
	Static Ey	LinStatic	Step By Step	2		-6.227E-07	-42642.4219
	Static Ey	LinStatic	Step By Step	3		0	-42642.4219
	Spec X (Unscaled)	LinRespSpec	Max			19507.7323	2893.361
	Spec Y (Unscaled)	LinRespSpec	Max			2893.3614	20365.5896

Gambar 5.7 Gaya Geser Dasar Sebelum Skala Gaya pada SNI 1726:2019

Didapatkan hasil gaya geser dasar sebelum skala gaya yaitu sebagai berikut.

1) Arah X

Vsx = 42642,422 kN

 $V_{DX} = 19507,732 \text{ kN} < V_{SX}$

Karena $V_D < V_s$, maka gaya gempa dinamik harus di skala ulang sebesar:

$$\frac{V_S}{V_D} = \frac{42642,422}{19507,732} = 2,207$$

2) Arah Y

 $V_{SY} = 42642,422 \text{ kN}$

$$V_{DY} = 20365,589 \text{ kN} < V_{SY}$$

Karena $V_D < V_s$, maka gaya gempa dinamik harus di skala ulang sebesar:

$$\frac{V_S}{V_D} = \frac{42642,422}{20365,589} = 2,136$$

町 Ba	ase Reactions						
File	Edit Format-Filte	r-Sort Select	Options				
Units:	As Noted Hidde	n Columns: No	Sort: None			Base Reactions	
Filter:	([Output Case] = 'Spec	X' OR [Output Cas	e] = 'Spec Y' OR	[Output Case] = 'St	atic Ex' OR [Outp	ut Case] = 'Static E	(y')
	Output Case	Case Type	Step Type	Step Number	Step Label	FX kN	FY kN
•	Static Ex	LinStatic	Step By Step	1		-42642.4219	0
	Static Ex	LinStatic	Step By Step	2		-42642.4219	0
	Static Ex	LinStatic	Step By Step	3		-42642.4219	0
	Static Ey	LinStatic	Step By Step	1		0	-42642.4219
	Static Ey	LinStatic	Step By Step	2		-6.227E-07	-42642.4219
	Static Ey	LinStatic	Step By Step	3		0	-42642.4219
	Spec X	LinRespSpec	Max			43069.1714	6387.9625
	Spec Y	LinRespSpec	Max			6179.6412	43496.8263

Gambar 5.8 Gaya Geser Dasar Setelah Skala Gaya pada SNI 1726:2019

Nilai skala gaya tersebut dikalikan dengan gaya geser dasar dinamik sebelum penskalaan gaya, maka didapatkan nilai gaya geser dasar baru yang dapat dilihat pada Gambar 5.8.

1) Arah X

Vsx = 42642,422 kN

 $V_{DX} = 43069,171 \text{ kN} > Vsx$

Karena $V_D > V_s$, maka gaya gempa dinamik sudah memenuhi syarat.

2) Arah Y

 $V_{SY} = 42642,422 \text{ kN}$

 V_{DY} = 43496,826 kN > V_{SY}

Karena $V_D > V_s$, maka gaya gempa dinamik sudah memenuhi syarat.

5.6 Ketidakberaturan Struktur

Ketidakberaturan struktur terbagi menjadi 2 tipe yaitu ketidakberaturan horizontal dan ketidakberaturan vertikal. Adapun pemeriksaan ketidakberaturan dari hasil analisis sebagai berikut.

5.6.1 Ketidakberaturan Horizontal

Pemeriksaan ketidakberaturan horizontal terbagi menjadi 6 tipe yaitu tipe 1a, 1b,

- 2, 3, 4, dan 5. Adapun pemeriksaan ketidakberaturan horizontal sebagai berikut.
- 1. Ketidakberaturan torsi

Nilai perpindahan maksimum antar tingkat digunakan untuk menentukan pengaruh torsi yang terjadi pada struktur. Titik-titik yang menjadi tinjauan dalam pemeriksaan ketidakberaturan torsi yaitu ujung-ujung kolom yang menerus dari lantai dasar ke lantai 7. Adapun titik-titik pemeriksaan ketidakberaturan torsi (1a dan 1b) dapat dilihat pada Gambar 5.9 berikut.

Gambar 5.9 Titik Acuan Arah X Pemeriksaan Ketidakberaturan Torsi

Contoh perhitungan untuk ketidakberaturan torsi sebagai berikut.

Diketahui:

Lantai 5

 δ_{eA} : Defleksi titik A = 48,840 mm

 δ_{eB} : Defleksi titik B = 79,584 mm

Lantai 6

 δ_{eA} : Defleksi titik A = 61,087 mm

 δ_{eB} : Defleksi titik B = 98,963 mm

Dari data diatas, ketidakberaturan torsi lantai 6 dapat diselesaikan sebagai berikut.

Dari hasil perhitungan didapatkan $1,2\delta_{rata-rata} < \delta_{max} < 1,4\delta_{rata-rata}$, maka lantai 6 memiliki ketidakberaturan torsi 1a. Untuk rekapitulasi hasil pemeriksaan ketidakberaturan torsi arah X dapat dilihat pada tabel dibawah berikut.

	EQx 1 (+100%X +30%Y)											
Lantai	δ_{a}	δ_{ai}	$\delta_{\rm b}$	$\delta_{\rm bi}$	δ_{max}	$\delta_{average}$	$\delta_{max}\!/\delta_{average}$	Cek				
	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	Ketidakberaturan				
7	72.199	11.112	113.233	14.27	14.27	12.691	1.124	OK				
6	61.087	12.247	98.963	19.379	19.379	15.813	1.226	Tipe H.1a				
5	48.84	12.111	79.584	23.201	23.201	17.656	1.314	Tipe H.1a				
4	36.729	11.739	56.383	21.018	21.018	16.3785	1.283	Tipe H.1a				
3	24.99	11.421	35.365	16.459	16.459	13.94	1.181	OK				
2	13.569	9.536	18.906	13.693	13.693	11.6145	1.179	OK				
1	4.033	4.033	5.213	5.213	5.213	4.623	1.128	OK				
Basement	0	0	0	0	0	0	0	-				

Tabel 5.2 Pemeriksaan Ketidakberaturan Torsi Arah X pada SNI 1726:2012 dengan Arah Ortogonal +100%X +30%Y

Tabel 5.3 Pemeriksaan Ketidakberaturan Torsi Arah X pada SNI 1726:2012 dengan Arah Ortogonal +100%X -30%Y

	EQx 2 (+100%X -30%Y)											
Landal	δa	δ _{ai}	$\delta_{\rm b}$	δ _{bi}	δ _{max}	δ _{average}	$\delta_{max}/\delta_{average}$	Cek				
Lantai	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	Ketidakberaturan				
7	75.817	11.929	108.31	13.01	13.01	12.4695	1.043	OK				
6	63.888	13.342	95.3	17.742	17.742	15.542	1.142	OK				
5	50.546	13.151	77.558	20.881	20.881	17.016	1.227	Tipe H.1a				
4	37.395	12.537	56.677	19.69	19.69	16.1135	1.222	Tipe H.1a				
3	24.858	11.653	36.987	17.002	17.002	14.3275	1.187	OK				
2	13.205	9.344	19.985	14.46	14.46	11.902	1.215	Tipe H.1a				
1	3.861	3.861	5.525	5.525	5.525	4.693	1.177	OK				
Basement	0	0	0	0	0	0	0	-				

	EQx 3 (-100%X +30%Y)											
Lontoi	δ_a	δ_{ai}	$\delta_{\rm b}$	δ_{bi}	δ_{max}	$\delta_{average}$	$\delta_{max}\!/\delta_{average}$	Cek				
L'aiitai	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	Ketidakberaturan				
7	-75.82	11.929	-108.31	13.01	13.01	12.4695	1.043	OK				
6	-63.89	13.342	-95.3	17.742	17.742	15.542	1.142	OK				
5	-50.55	13.151	-77.558	20.881	20.881	17.016	1.227	Tipe H.1a				
4	-37.4	12.537	-56.677	19.69	19.69	16.1135	1.222	Tipe H.1a				
3	-24.86	11.653	-36.987	17.002	17.002	14.3275	1.187	OK				
2	-13.21	9.344	-19.985	14.46	14.46	11.902	1.215	Tipe H.1a				
1	-3.861	3.861	-5.525	5.525	5.525	4.693	1.177	OK				
Basement	0	0	0	0	0	0	0	-				

Tabel 5.4 Pemeriksaan Ketidakberaturan Torsi Arah X pada SNI 1726:2012 dengan Arah Ortogonal -100%X +30%Y

Tabel 5.5 Pemeriksaan Ketidakberaturan Torsi Arah X pada SNI 1726:2012 dengan Arah Ortogonal -100%X -30%Y

	EQx 4 (-100%X -30%Y)											
T and all	δ_{a}	δ _{ai}	$\delta_{\rm b}$	δ _{bi}	δ_{max}	δ _{average}	$\delta_{max}/\delta_{average}$	Cek				
Lantai	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	Ketidakberaturan				
7	-72.2	11.112	-113.23	14.27	14.27	12.691	1.124	OK				
6	-61.09	12.247	-98.963	19.379	19.379	15.813	1.226	Tipe H.1a				
5	-48.84	12.111	-79.584	23.201	23.201	17.656	1.314	Tipe H.1a				
4	-36.73	11.739	-56.383	21.018	21.018	16.3785	1.283	Tipe H.1a				
3	-24.99	11.421	-35.365	16.459	16.459	13.94	1.181	ОК				
2	-13.57	9.536	-18.906	13.693	13.693	11.6145	1.179	ОК				
1	-4.033	4.033	-5.213	5.213	5.213	4.623	1.128	ОК				
Basement	0	0	0	0	0	0	0	-				

Berdasarkan pemeriksaan ketidakberaturan torsi arah X terdapat beberapa lantai mengalami ketidakberaturan torsi tipe 1a yaitu lantai 2, 4, 5, dan 6. Adapun titiktitik tinjauan pada pemeriksaan ketidakberaturan torsi arah y dapat dilihat pada Gambar 5.10 berikut.

Gambar 5.10 Titik Acuan Arah Y Pemeriksaan Ketidakberaturan Torsi

Untuk perhitungan ketidakberaturan torsi arah y memiliki kesamaan dengan ketidakberaturan torsi arah x. Adapun rekapitulasi hasil pemeriksaan ketidakberaturan torsi arah y dapat dilihat pada tabel dibawah berikut.

_	_										
	EQy 1 (+30%X +100%Y)										
Lantai	δ_a	δ _{ai}	δ_{b}	δ _{bi}	δ_{max}	δ _{average}	$\delta_{max}/\delta_{average}$	Cek			
Lantai	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	Ketidakberaturan			
7	49.333	7.743	92.179	14.468	14.468	11.1055	1.303	Tipe H.1a			
6	41.59	8.198	77.711	17.239	17.239	12.7185	1.355	Tipe H.1a			
5	33.392	7.821	60.472	19.03	19.03	13.4255	1.417	Tipe H.1b			
4	25.571	7.585	41.442	17.713	17.713	12.649	1.400	Tipe H.1b			
3	17.986	8.126	23.729	12.599	12.599	10.3625	1.216	Tipe H.1a			
2	9.86	6.927	11.13	8.347	8.347	7.637	1.093	OK			
1	2.933	2.933	2.783	2.783	2.933	2.858	1.026	OK			
Basement	0	0	0	0	0	0	0	-			

Tabel 5.6 Pemeriksaan Ketidakberaturan Torsi Arah Y pada SNI 1726:2012 dengan Arah Ortogonal +30%X +100%Y

	EQy 2 (-30%X +100%Y)											
Lontoi	δ_{a}	δ_{ai}	δ_{b}	δ_{bi}	δ_{max}	$\delta_{average}$	$\delta_{max}/\delta_{average}$	Cek				
Lantai	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	Ketidakberaturan				
7	57.878	8.593	86.771	13.816	13.816	11.2045	1.233	Tipe H.1a				
6	49.285	9.747	72.955	16.16	16.16	12.9535	1.248	Tipe H.1a				
5	39.538	9.492	56.795	17.643	17.643	13.5675	1.300	Tipe H.1a				
4	30.046	9.062	39.152	16.475	16.475	12.7685	1.290	Tipe H.1a				
3	20.984	9.509	22.677	11.914	11.914	10.7115	1.112	OK				
2	11.475	8.188	10.763	8.029	8.188	8.1085	1.010	OK				
1	3.287	3.287	2.734	2.734	3.287	3.0105	1.092	ОК				
Basement	0	0	0	0	0	0	0	-				

Tabel 5.7 Pemeriksaan Ketidakberaturan Torsi Arah Y pada SNI 1726:2012 dengan Arah Ortogonal -30%X +100%Y

Tabel 5.8 Pemeriksaan Ketidakberaturan Torsi Arah Y pada SNI 1726:2012 dengan Arah Ortogonal +30%X -100%Y

	EQy 3 (+30%X -100%Y)												
Lantai	δa	δ _{ai}	δ_{b}	δ _{bi}	δ_{max}	δ _{average}	$\delta_{max}/\delta_{average}$	Cek					
Lailtai	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	Ketidakberaturan					
7	-57.88	8.593	-86.771	13.816	13.816	11.2045	1.233	Tipe H.1a					
6	-49.29	9.747	-72.955	16.16	16.16	12.9535	1.248	Tipe H.1a					
5	-39.54	9.492	-56.795	17.643	17.643	13.5675	1.300	Tipe H.1a					
4	-30.05	9.062	-39.152	16.475	16.475	12.7685	1.290	Tipe H.1a					
3	-20.98	9.509	-22.677	11.914	11.914	10.7115	1.112	OK					
2	-11.48	8.188	-10.763	8.029	8.188	8.1085	1.010	OK					
1	-3.287	3.287	-2.734	2.734	3.287	3.0105	1.092	OK					
Basement	0	0	0	0	0	0	0	-					

. . . .

	EQy 4 (-30%X -100%Y)											
Lontoi	δ_{a}	δ _{ai}	δ_b	δ_{bi}	δ _{max}	δ _{average}	$\delta_{max}/\delta_{average}$	Cek				
Lantai	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	Ketidakberaturan				
7	-49.33	7.743	-92.179	14.468	14.468	11.1055	1.303	Tipe H.1a				
6	-41.59	8.198	-77.711	17.239	17.239	12.7185	1.355	Tipe H.1a				
5	-33.39	7.821	-60.472	19.03	19.03	13.4255	1.417	Tipe H.1b				
4	-25.57	7.585	-41.442	17.713	17.713	12.649	1.400	Tipe H.1b				
3	-17.99	8.126	-23.729	12.599	12.599	10.3625	1.216	Tipe H.1a				
2	-9.86	6.927	-11.13	8.347	8.347	7.637	1.093	ОК				
1	-2.933	2.933	-2.783	2.783	2.933	2.858	1.026	ОК				
Basement	0	0	0	0	0	0	0	-				

Tabel 5.9 Pemeriksaan Ketidakberaturan Torsi Arah Y pada SNI 1726:2012 dengan Arah Ortogonal -30%X -100%Y

Berdasarkan pemeriksaan ketidakberaturan torsi arah Y terdapat beberapa lantai mengalami ketidakberaturan torsi tipe 1a yaitu lantai 3, 4, 5, 6, dan 7. Terdapat ketidakberaturan torsi tipe 1b yaitu lantai 4 dan 5.

b. SNI 1726:2019

Pemeriksaan ketidakberaturan torsi pada SNI 1726:2019 memiliki titik tinjau dan perhitungan yang sama pada SNI 1726:2012. Hasil pemeriksaan ketidakberaturan torsi pada SNI 1726:2019 dapat dilihat pada tabel berikut.

Tabel 5.10 Pemeriksaan Ketidakberaturan Torsi Arah X pada SNI 1726:2019 dengan Arah Ortogonal +100%X +30%Y

	EQx 1 (+100%X +30%Y)											
Lantai	δ _a	δ _{ai}	δ _b	δ_{bi}	δ _{max}	δ _{average}	$\delta_{max}/\delta_{average}$	Cek				
	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	Ketidakberaturan				
7	108.661	16.723	170.419	21.477	21.477	19.1	1.124	OK				
6	91.938	18.433	148.942	29.165	29.165	23.799	1.225	Tipe H.1a				
5	73.505	18.226	119.777	34.919	34.919	26.5725	1.314	Tipe H.1a				
4	55.279	17.668	84.858	31.633	31.633	24.6505	1.283	Tipe H.1a				
3	37.611	17.189	53.225	24.77	24.77	20.9795	1.181	OK				
2	20.422	14.352	28.455	20.609	20.609	17.4805	1.179	OK				
1	6.07	6.07	7.846	7.846	7.846	6.958	1.128	OK				
Basement	0	0	0	0	0	0	0	-				

EQx 2 (+100%X -30%Y)											
Lontoi	δ _a	δ_{ai}	δ_{b}	δ_{bi}	δ_{max}	$\delta_{average}$	$\delta_{max}/\delta_{average}$	Cek			
Lantai	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	Ketidakberaturan			
7	114.107	17.953	163.01	19.58	19.58	18.7665	1.043	OK			
6	96.154	20.081	143.43	26.703	26.703	23.392	1.142	OK			
5	76.073	19.793	116.727	31.427	31.427	25.61	1.227	Tipe H.1a			
4	56.28	18.868	85.3	29.633	29.633	24.2505	1.222	Tipe H.1a			
3	37.412	17.539	55.667	25.588	25.588	21.5635	1.187	OK			
2	19.873	14.062	30.079	21.764	21.764	17.913	1.215	Tipe H.1a			
1	5.811	5.811	8.315	8.315	8.315	7.063	1.177	OK			
Basement	0	0	0	0	0	0	0	-			

Tabel 5.11 Pemeriksaan Ketidakberaturan Torsi Arah X pada SNI 1726:2019 dengan Arah Ortogonal +100%X -30%Y

Tabel 5.12 Pemeriksaan Ketidakberaturan Torsi Arah X pada SNI 1726:2019 dengan Arah Ortogonal -100%X +30%Y

	EQx 3 (-100%X +30%Y)											
T	δ_{a}	δ_{ai}	δ _b	δ_{bi}	δ _{max}	δ _{average}	$\delta_{max}/\delta_{average}$	Cek				
Lantai	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	Ketidakberaturan				
7	-114.107	17.953	-163.01	19.58	19.58	18.7665	1.043	OK				
6	-96.154	20.081	-143.43	26.703	26.703	23.392	1.142	OK				
5	-76.073	19.793	-116.727	31.427	31.427	25.61	1.227	Tipe H.1a				
4	-56.28	18.868	-85.3	29.633	29.633	24.2505	1.222	Tipe H.1a				
3	-37.412	17.539	-55.667	25.588	25.588	21.5635	1.187	ОК				
2	-19.873	14.062	-30.079	21.764	21.764	17.913	1.215	Tipe H.1a				
1 ++ (-5.811	5.811	-8.315	8.315	8.315	7.063	1.177	ОК				
Basement	0	0	0	0	0	0	0	-				
1 **	يرفز	;,))	肌	•• []		E II	2					

	EQx 4 (-100%X -30%Y)												
Lontoi	δ_{a}	δ_{ai}	δ _b	δ_{bi}	δ _{max}	δaverage	$\delta_{max}/\delta_{average}$	Cek					
Lantai	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	Ketidakberaturan					
7	-108.661	16.723	-170.419	21.477	21.477	19.1	1.124	OK					
6	-91.938	18.433	-148.942	29.165	29.165	23.799	1.225	Tipe H.1a					
5	-73.505	18.226	-119.777	34.919	34.919	26.5725	1.314	Tipe H.1a					
4	-55.279	17.668	-84.858	31.633	31.633	24.6505	1.283	Tipe H.1a					
3	-37.611	17.189	-53.225	24.77	24.77	20.9795	1.181	OK					
2	-20.422	14.352	-28.455	20.609	20.609	17.4805	1.179	OK					
1	-6.07	6.07	-7.846	7.846	7.846	6.958	1.128	OK					
Basement	0	0	0	0	0	0	0	-					

Tabel 5.13 Pemeriksaan Ketidakberaturan Torsi Arah X pada SNI 1726:2019 dengan Arah Ortogonal -100%X -30%Y

Berdasarkan pemeriksaan ketidakberaturan torsi arah X terdapat beberapa lantai mengalami ketidakberaturan torsi tipe 1a yaitu lantai 2, 4, 5, dan 6. Adapun rekapitulasi hasil pemeriksaan ketidakberaturan torsi arah y dapat dilihat pada tabel dibawah berikut.

Tabel 5.14 Pemeriksaan Ketidakberaturan Torsi Arah Y pada SNI 1726:2019 dengan Arah Ortogonal +30%X +100%Y

EQy 1 (+30%X +100%Y)										
Lontoi	δa	δ _{ai}	δ_{b}	δ_{bi}	δ_{max}	$\delta_{average}$	$\delta_{max}/\delta_{average}$	Cek		
Lana	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	Ketidakberaturan		
7	74.248	11.654	138.732	21.774	21.774	16.714	1.303	Tipe H.1a		
6	62.594	12.338	116.958	25.946	25.946	19.142	1.355	Tipe H.1a		
5	50.256	11.771	91.012	28.64	28.64	20.2055	1.417	Tipe H.1b		
4	38.485	11.416	62.372	26.658	26.658	19.037	1.400	Tipe H.1b		
3	27.069	12.229	35.714	18.963	18.963	15.596	1.216	Tipe H.1a		
2	14.84	10.426	16.751	12.562	12.562	11.494	1.093	OK		
1	4.414	4.414	4.189	4.189	4.414	4.3015	1.026	ОК		
Basement	0	0	0	0	0	0	0	-		

EQy 2 (-30%X +100%Y)										
Tanta	δ_{a}	δ_{ai}	δ_{b}	$\delta_{\rm bi}$	δ_{max}	$\delta_{average}$	$\delta_{max}/\delta_{average}$	Cek		
Lantai	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	Ketidakberaturan		
7	87.108	12.933	130.592	20.793	20.793	16.863	1.233	Tipe H.1a		
6	74.175	14.67	109.799	24.321	24.321	19.4955	1.248	Tipe H.1a		
5	59.505	14.285	85.478	26.552	26.552	20.4185	1.300	Tipe H.1a		
4	45.22	13.638	58.926	24.797	24.797	19.2175	1.290	Tipe H.1a		
3	31.582	14.311	34.129	17.93	17.93	16.1205	1.112	OK		
2	17.271	12.324	16.199	12.085	12.324	12.2045	1.010	OK		
1	4.947	4.947	4.114	4.114	4.947	4.5305	1.092	OK		
Basement	0	0	0	0	0	0	0	-		

Tabel 5.15 Pemeriksaan Ketidakberaturan Torsi Arah Y pada SNI 1726:2019 dengan Arah Ortogonal -30%X +100%Y

Tabel 5.16 Pemeriksaan Ketidakberaturan Torsi Arah Y pada SNI 1726:2019 dengan Arah Ortogonal +30%X -100%Y

EQy 3 (+30%X -100%Y)											
Lantai	δa	δ _{ai}	δ _b	δ_{bi}	δ _{max}	δ _{average}	$\delta_{max}/\delta_{average}$	Cek			
Lantai	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	Ketidakberaturan			
7	-87.108	12.933	-130.592	20.793	20.793	16.863	1.233	Tipe H.1a			
6	-74.175	14.67	-109.799	24.321	24.321	19.4955	1.248	Tipe H.1a			
5	-59.505	14.285	-85.478	26.552	26.552	20.4185	1.300	Tipe H.1a			
4	-45.22	13.638	-58.926	24.797	24.797	19.2175	1.290	Tipe H.1a			
3	-31.582	14.311	-34.129	17.93	17.93	16.1205	1.112	ОК			
2	-17.271	12.324	-16.199	12.085	12.324	12.2045	1.010	ОК			
1	-4.947	4.947	-4.114	4.114	4.947	4.5305	1.092	ОК			
Basement	0	0	0	0	0	0	0	-			

	EQy 4 (-30%X -100%Y)											
T and al	δ_{a}	δ _{ai}	δ_{b}	δ_{bi}	δ_{max}	$\delta_{average}$	$\delta_{max}/\delta_{average}$	Cek				
Lantai	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	Ketidakberaturan				
7	-74.248	11.654	-138.732	21.774	21.774	16.714	1.303	Tipe H.1a				
6	-62.594	12.338	-116.958	25.946	25.946	19.142	1.355	Tipe H.1a				
5	-50.256	11.771	-91.012	28.64	28.64	20.2055	1.417	Tipe H.1b				
4	-38.485	11.416	-62.372	26.658	26.658	19.037	1.400	Tipe H.1b				
3	-27.069	12.229	-35.714	18.963	18.963	15.596	1.216	Tipe H.1a				
2	-14.84	10.426	-16.751	12.562	12.562	11.494	1.093	ОК				
1	-4.414	4.414	-4.189	4.189	4.414	4.3015	1.026	ОК				
Basement	0	0	0	0	0	0	0	-				

Tabel 5.17 Pemeriksaan Ketidakberaturan Torsi Arah Y pada SNI 1726:2019 dengan Arah Ortogonal -30%X -100%Y

Berdasarkan pemeriksaan ketidakberaturan torsi arah Y terdapat beberapa lantai mengalami ketidakberaturan torsi tipe 1a yaitu lantai 3, 4, 5, 6, dan 7. Terdapat ketidakberaturan torsi tipe 1b yaitu lantai 4 dan 5.

2. Ketidakberaturan sudut dalam

Ketidakberaturan tipe ini terjadi jika kedua dimensi proyeksi denah struktur dari lokasi sudut dalam lebih besar dari 15% dimensi denah struktur dalam arah yang ditinjau. Berikut contoh perhitungan ketidakberaturan sudut dalam.

Diketahui:

Lantai 5

$$L_x = 64.8 \text{ m}$$

$$P_x = 36 \text{ m}$$

$$L_y = 54.8 \text{ m}$$

$$P_y = 36 \text{ m}$$

Dari data diatas dapat dihitung ketidakberaturan sudut dalam sebagai berikut.

 $0.15 \cdot L_x = 0,15 \times 64,8 \text{ m}$ = 9,72 m < P_x $0.15 \cdot L_y = 0.15 \times 54.8 \text{ m}$ = 8.19 m < P_y

Gambar 5.11 Titik Tinjau Ketidakberaturan Sudut Dalam

Dari perhitungan diatas dapat disimpulkan bahwa $P_x > 0.15$. L_x dan $P_y > 0.15$. L_y sehingga lantai 5 mengalami ketidakberaturan sudut dalam. Untuk hasil perhitungan dapat dilihat pada Tabel 5.18 berikut.

Lantai	Lx	Px	0.15Lx	Ly	Py	0.15Ly	Cale
	(m)	(m)	(m)	(m)	(m)	(m)	Сек
7	64.8	36	9.7200	54.6	36	8.1900	Tipe H.2
6	64.8	36	9.7200	54.6	36	8.1900	Tipe H.2
5	64.8	36	9.7200	54.6	36	8.1900	Tipe H.2
4	93.6	36	14.0400	54.6	36	8.1900	Tipe H.2
3	93.6	36	14.0400	61.8	36	9.2700	Tipe H.2
2	101.99	36	15.2985	61.8	36	9.2700	Tipe H.2
1	145.19	79.2	21.7785	61.8	36	9.2700	Tipe H.2

Tabel 5.18 Pemeriksaan Ketidakberaturan Sudut Dalam
Berdasarkan pemeriksaan ketidakberaturan sudut dalam, seluruh lantai mengalami ketidakberaturan tipe ini karena sudut dalam lebih besar dari 15% dimensi denah struktur dalam arah yang ditinjau. Hasil perhitungan pemeriksaan ketidakberaturan tipe ini memiliki kesamaan hasil antara desain menggunakan SNI 1726:2012 dan SNI 1726:2019.

3. Ketidakberaturan diskontinuitas diafragma

Ketidakberaturan tipe ini terjadi jika daerah terbuka lebih besar dari 50% daerah diafragma bruto yang tertutup. Berikut contoh perhitungan untuk ketidakberaturan diskontinuitas diafragma.

Gambar 5.12 Titik Tinjau Ketidakberaturan Diskontinuitas Diafragma

Diketahui:

Lantai 1

Luas total = $5707,83 \text{ m}^2$

Luas bukaan = $124, 14 \text{ m}^2$

Sehingga dapat dihitung ketidakberaturan diskontinuitas diafragma sebagai berikut.

Luas bukaan = 50% luas total 124,14 m² = 50% x 5707,83 m² 124,14 m² < 2835,915 m² Dari perhitungan diatas dapat disimpulkan bahwa lantai 1 memiliki bukaan yang kurang dari 50% luas total sehingga tidak memiliki ketidakberaturan diskontinuitas diafragma. Untuk hasil perhitungan dapat dilihat pada Tabel 5.19 berikut.

Lantai	Bukaan	Luas Total	Cek
7	1072.52	934.14	NOT OK
6	1843.34	85.53	OK
5	1843.34	85.53	OK
4	2584	802.1	OK
3	4561.77	406.1	ОК
2	4850.27	487.02	OK
1	5707.83	124.14	ОК

Tabel 5.19 Pemeriksaan Ketidakberaturan Diskontinuitas Diafragma

Berdasarkan pemeriksaan ketidakberaturan diskontinuitas diafragma terdapat pada lantai 7 yang memiliki luas bukaan melebihi 50 % luas total. Hasil perhitungan pemeriksaan ketidakberaturan diskontinuitas diafragma memiliki kesamaan hasil antara desain menggunakan SNI 1726:2012 dan SNI 1726:2019.

4. Ketidakberaturan akibat pergeseran tegak lurus terhadap bidang

Ketidakberaturan tipe ini terjadi jika terdapat diskontinuitas dalam lintasan tahanan gaya lateral, seperti pergeseran tegak lurus terhadap bidang pada satu elemen vertikal pemikul gaya lateral. Dari hasil tinjauan, bangunan rumah sakit UII ini memiliki dinding geser yang menerus dari bawah hingga atas, sehingga tidak terjadi ketidakberaturan tipe ini. Untuk lebih jelasnya dapat dilihat pada Gambar 5.13 berikut.

Gambar 5.13 Peninjauan Ketidakberaturan Akibat Pergeseran Tegak Lurus Terhadap Bidang

5. Ketidakberaturan sistem non paralel

Ketidakberaturan tipe ini terjadi jika elemen vertikal pemikul gaya lateral tidak paralel terhadap sumbu-sumbu ortogonal utama sistem pemikul gaya seismik. Dari hasil tinjauan, bangunan rumah sakit UII ini memiliki peletakan dinding geser yang simetris atau sesuai dengan sumbu ortogonal, sehingga tidak terjadi ketidakberaturan tipe ini. Untuk lebih jelasnya dapat dilihat pada Gambar 5.14 berikut.

Gambar 5.14 Peninjauan Ketidakberaturan Sistem Non Paralel

5.6.2 Ketidakberaturan Vertikal

Pemeriksaan ketidakberaturan vertikal terbagi menjadi 7 tipe yaitu tipe 1a, 1b, 2,

- 3, 4, 5a dan 5b. Adapun pemeriksaan ketidakberaturan vertikal sebagai berikut.
- 1. Ketidakberaturan kekakuan tingkat lunak (1a)

Ketidakberaturan tipe 1a terjadi jika terdapat suatu tingkat yang kekakuan lateralnya kurang dari 70 % kekakuan lateral tingkat di atasnya atau kurang dari 80 % kekakuan rata-rata tiga tingkat di atasnya. Berikut contoh perhitungan untuk ketidakberaturan tipe ini.

Contoh perhitungan

Diketahui:

V_{x1}	= Gaya geser (<i>story forces</i>) lantai 1 arah x	= 14761,168 kN
δ_{x1}	= Defleksi lantai 1 arah x	= 2,582 mm = 0,002582 m
V_{x2}	= Gaya geser (<i>story forces</i>) lantai 2 arah x	= 12946,579 kN
δ_{x2}	= Defleksi lantai 2 arah x	= 8,631 mm = 0,008631 m

Dari data diatas maka dapat dihitung ketidakberaturan tipe ini sebagai berikut.

$$K_{I} = \frac{V_{x1}}{\delta_{x1}}$$

$$= \frac{14761,168}{0,002582}$$

$$= 5699523,044 \text{ kN/m}$$

$$K_{2} = \frac{V_{x2}}{\delta_{x2}}$$

$$= \frac{12946,579}{0,008631}$$

$$= 1500009,141 \text{ kN/m}$$
Check = 70 % x K₂

$$= 70 \% x 1500009,141 \text{ kN/m}$$

$$= 1050006,399 \text{ kN/m} < K_{1}$$
Check = 80 % x $\frac{K_{2} + K_{3} + K_{4}}{3}$

$$= 80 \% x \frac{150009,141 + 651079,861 + 340069,001}{3}$$

$= 664308,801 \text{ kN/m} < K_1$

Dari hasil perhitungan didapatkan kekakuan lantai 1 melebihi 70 % kekakuan lantai di atasnya dan melebihi 80 % kekakuan rata-rata 3 lantai di atasnya sehingga lantai 1 tidak memiliki ketidakberaturan kekakuan tingkat lunak. Berikut rekapitulasi hasil pemeriksaan ketidakberaturan tipe ini.

a. SNI 1726:2012

	δ	δ	Vx	Kekakuan	Cek	St. 1	Cek	6 44
Lantai	(mm)	m	kN	kN/m	70% _{Ki+1}	Status	80% average Ki+3	Status
7	45.972	0.045972	1988.960	43264.585		-	-	-
6	37.96	0.03796	4830.350	127248.419	30285.209	ОК	34611.668	OK
5	30.402	0.030402	6519.077	214429.199	89073.894	OK	68205.202	OK
4	23.091	0.023091	7852.533	340069.001	150100.439	ОК	102651.254	OK
3	15.522	0.015522	10106.062	651079.861	238048.301	ОК	181799.098	OK
2	8.631	0.008631	12946.579	1500009.141	455755.903	ОК	321487.483	OK
1	2.582	0.002582	14716.169	5699523.044	1050006.399	OK	664308.801	OK

Tabel 5.20 Pemeriksaan Ketidakberaturan Kekakuan Tingkat Lunak untuk Arah X Pada SNI 1726:2012

Tabel 5.21 Peme	riksaan Ketidakbe	raturan Kekakuan	Tingkat Lunak
4 -Z	untuk Arah Y Pad	la SNI 1726:2012	

T and al	δ	δ	Vy	Kekakuan	Cek	C4-4-1	Cek	64-4
Lantai	(mm)	m	kN	kN/m	70% Ki+1	Status	80% average Ki+3	Status
7	38.459	0.038459	2107.025	54786.258	-	-		-
6	33.2	0.0332	5097.300	153533.142	38350.381	OK	43829.006	OK
5	26.064	0.026064	6899.012	264695.054	107473.199	ОК	83327.760	ОК
4	18.404	0.018404	8575.055	465934.308	185286.538	OK	126137.188	ОК
3	11.257	0.011257	11062.728	982742.143	326154.015	ОК	235776.668	ОК
2	5.754	0.005754	13643.134	2371069.517	687919.500	OK	456899.068	OK
1	1.616	0.001616	14983.945	9272243.317	1659748.662	OK	1018598.925	OK

b. SNI 1726:2019

	δ	δ	Vx	Kekakuan	Cek	G ()	Cek	G 4 4
Lantai	(mm)	m	kN	kN/m	70% Ki+1	Status	80% average Ki+3	Status
7	66.532	0.066532	2440.086	36675.367	-	1	-	-
6	55.986	0.055986	6335.655	113164.989	25672.757	OK	29340.293	OK
5	45.042	0.045042	9045.437	200822.266	79215.493	ОК	59936.142	ОК
4	33.558	0.033558	11475.242	341952.497	140575.586	ОК	93510.033	ОК
3	22.224	0.022224	14737.592	663138.598	239366.748	ОК	174917.267	ОК
2	12.02	0.01202	17832.697	1483585.466	464197.019	ОК	321576.896	ОК
1	3.449	0.003449	19507.732	5656054.596	1038509.826	ОК	663647.083	ОК

Tabel 5.22 Pemeriksaan Ketidakberaturan Kekakuan Tingkat Lunak untuk Arah X Pada SNI 1726:2019

Tabel 5.23 Pemeriksaan Ketidakberaturan Kekakuan Tingkat Lunak untuk Arah Y Pada SNI 1726:2019

	δ	δ	Vy	Kekakuan	Cek		Cek	G ()
Lantai	(mm)	m	kN	kN/m	70% Ki+1	Status	80% average Ki+3	Status
7	56.556	0.056556	2670.142	47212.351	-	-	-	-
6	48.23	0.04823	6988.000	144889.073	33048.645	OK	37769.880	OK
5	38.144	0.038144	10022.449	262752.965	101422.351	OK	76840.570	OK
4	26.797	0.026797	12804.444	477831.239	183927.076	ОК	121294.504	OK
3	16.398	0.016398	16208.949	988471.100	334481.867	OK	236126.207	OK
2	8.149	0.008149	19056.694	2338531.624	691929.770	ОК	461081.414	ОК
1	2.2	0.0022	20365.590	9257086.182	1636972.136	ОК	1014622.390	OK

2. Ketidakberaturan kekakuan tingkat lunak berlebihan (1b)

Ketidakberaturan tipe 1b terjadi jika terdapat suatu tingkat yang kekakuan lateralnya kurang dari 60 % kekakuan lateral tingkat di atasnya atau kurang dari 70 % kekakuan rata-rata tiga tingkat diatasnya. Perhitungan kekakuan tingkat lunak berlebihan (1b) ini sama seperti perhitungan kekakuan tingkat lunak (1a). Adapun rekapitulasi hasil pemeriksaan ketidakberaturan tipe ini sebagai berikut.

a. SNI 1726:2012

T	δ	δ	Vx	Kekakuan	Cek	G 44	Cek	6 44
Lantai	(mm)	m	kN	kN/m	60% _{Ki+1}	Status	70% average Ki+3	Status
7	45.972	0.045972	1988.960	43264.585	-	-	-	-
6	37.96	0.03796	4830.350	127248.419	25958.751	OK	30285.209	OK
5	30.402	0.030402	6519.077	214429.199	76349.052	ОК	59679.552	OK
4	23.091	0.023091	7852.533	340069.001	128657.519	OK	89819.847	OK
3	15.522	0.015522	10106.062	651079.861	204041.401	ОК	159074.211	OK
2	8.631	0.008631	12946.579	1500009.141	390647.917	ОК	281301.547	OK
1	2.582	0.002582	14716.169	5699523.044	900005.485	ОК	581270.201	ОК

Tabel 5.24 Pemeriksaan Ketidakberaturan Kekakuan Tingkat Lunak Berlebihan untuk Arah X Pada SNI 1726:2012

Tabel 5.25 Pemeriksaan Ketidakberaturan Kekakuan Tingkat Lunak Berlebihan untuk Arah Y Pada SNI 1726:2012

Lontoi	δ	δ	Vy Kekakuan	Kekakuan	Cek	Status	Cek	Status
Lantai	(mm)	m	kN	kN/m	60% _{Ki+1}	Status	70% _{average Ki+3}	Status
7	38.459	0.038459	2107.025	54786.258	-	-		-
6	33.2	0.0332	5097.300	153533.142	32871.755	ОК	38350.381	OK
5	26.064	0.026064	6899.012	264695.054	92119.885	ОК	72911.790	OK
4	18.404	0.018404	8575.055	465934.308	158817.033	ОК	110370.039	OK
3	11.257	0.011257	11062.728	982742.143	279560.585	OK	206304.584	OK
2	5.754	0.005754	13643.134	2371069.517	589645.286	ОК	399786.684	OK
1	1.616	0.001616	14983.945	9272243.317	1422641.710	ОК	891274.059	OK

b. SNI 1726:2019

T	δ	δ	Vx	Kekakuan	Cek	G ()	Cek	G 4 4
Lantai	(mm)	m	kN	kN/m	60% Ki+1	Status	70% average Ki+3	Status
7	66.532	0.066532	2440.086	36675.367	-	-	-	-
6	55.986	0.055986	6335.655	113164.989	22005.220	OK	25672.757	ОК
5	45.042	0.045042	9045.437	200822.266	67898.994	ОК	52444.125	ОК
4	33.558	0.033558	11475.242	341952.497	120493.360	OK	81821.278	ОК
3	22.224	0.022224	14737.592	663138.598	205171.498	ОК	153052.609	OK
2	12.02	0.01202	17832.697	1483585.466	397883.159	ОК	281379.784	OK
1	3.449	0.003449	19507.732	5656054.596	890151.280	ОК	580691.198	OK

Tabel 5.26 Pemeriksaan Ketidakberaturan Kekakuan Tingkat Lunak Berlebihan untuk Arah X Pada SNI 1726:2019

Tabel 5.27 Pemeriksaan Ketidakberaturan Kekakuan Tingkat Lunak Berlebihan untuk Arah Y Pada SNI 1726:2019

	δ	δ	Vy	Kekakuan	Cek	Status	Cek	
Lantai	(mm)	m	kN	kN/m	60% Ki+1	Status	70% average Ki+3	Status
7	56.556	0.056556	2670.142	47212.351	-	-	-	-
6	48.23	0.04823	6988.000	144889.073	28327.410	OK	33048.645	OK
5	38.144	0.038144	10022.449	262752.965	86933.444	OK	67235.498	OK
4	26.797	0.026797	12804.444	477831.239	157651.779	ОК	106132.691	OK
3	16.398	0.016398	16208.949	988471.100	286698.743	OK	206610.431	OK
2	8.149	0.008149	19056.694	2338531.624	593082.660	ОК	403446.238	OK
1	2.2	0.0022	20365.590	9257086.182	1403118.974	OK	887794.591	OK

3. Ketidakberaturan berat (massa)

Ketidakberaturan tipe ini terjadi jika massa efektif di sebarang tingkat lebih dari 150% massa efektif tingkat di dekatnya. Atap yang lebih ringan dari lantai di bawahnya tidak perlu ditinjau. Berikut contoh perhitungan ketidakberaturan berat untuk lantai 4.

1.000

Diketahui:

Massa lantai 3 = 4981,566 ton

Massa lantai 4 = 2941,838 ton

Massa lantai 5 = 2243,412 ton

Dari data diatas dapat dihitung ketidakberaturan tipe ini sebagai berikut.

Rasio lantai 4 dengan lantai di atasnya	= 150 % x massa lantai 5
	= 150 % <i>x</i> 2243,412 ton
	= 3365,118 ton > massa lantai 4
Rasio lantai 4 dengan lantai di bawahnya	= 150 % x massa lantai 3
	= 150 % <i>x</i> 4981,566 ton
	= 7472,349 ton > massa lantai 4

Dari perhitungan diatas dapat disimpulkan pada lantai 4 tidak memiliki ketidakberaturan berat karena rasio massa lantai kurang dari 150% massa lantai di atasnya maupun dibawahnya. Untuk hasil perhitungan ketidakberaturan berat dapat dilihat pada Tabel 5.28 berikut.

Landai	Massa	Massa	1500/	Cub	1500/	Cala
Lantai	kg	ton	150% Wi+1	Сек	150% Wi-1	Сек
7	950309.24	950.30924	-		3304.74516	OK
6	2203163.4	2203.1634	1425.46386	NOT OK	3365.11881	OK
5	2243412.5	2243.4125	3304.74516	OK	4412.758245	OK
4	2941838.8	2941.8388	3365.11881	OK	7472.349285	OK
3	4981566.2	4981.5662	4412.758245	NOT OK	8734.440525	OK
2	5822960.4	5822.9604	7472.349285	OK	9774.52734	OK
1	6516351.6	6516.3516	8734.440525	OK	11	-

Tabel 5.28 Pemeriksaan Ketidakberaturan Berat

Berdasarkan pemeriksaan ketidakberaturan berat terdapat ketidakberaturan tipe ini pada lantai 3 dan 6. Pemeriksaan ketidakberaturan ini memiliki kesamaan nilai antara SNI 1726:2012 dan SNI 1726:2019.

4. Ketidakberaturan geometri vertikal

Ketidakberaturan geometri vertikal terjadi jika dimensi horizontal sistem pemikul gaya seismik di sebarang tingkat lebih dari 130% dimensi horizontal sistem pemikul gaya seismik tingkat didekatnya.

Gambar 5.15 Peninjauan Ketidakberaturan Geometri Vertikal

Dari peninjauan diatas, dinding geser sebagai sistem pemikul gaya seismik tidak lebih dari 130 % dimensi dinding geser di atasnya sehingga bangunan rumah sakit UII ini tidak memiliki ketidakberaturan tipe ini. Untuk lebih jelasnya dapat dilihat pada tabel berikut.

.w31	2.	Lx	130% di	Charle	
Ell	(m)		(m)	Спеск	
	Lantai 7	7.2	122	OK	
	Lantai 6	7.2	9.36	OK	
	Lantai 5	7.2	9.36	OK	
	Lantai 4	7.2	9.36	OK	
	Lantai 3	7.2	9.36	OK	
	Lantai 2	7.2	9.36	OK	
	Lantai 1	7.2	9.36	OK	

Tabel 5.29 Pemeriksaan Ketidakberaturan Geometri Vertikal Arah X

Lontoi	Ly	130% _{di}	Chook
Lailtai	(m)	(m)	Check
Lantai 7	7.2	-	OK
Lantai 6	7.2	9.36	OK
Lantai 5	7.2	9.36	OK
Lantai 4	7.2	9.36	OK
Lantai 3	7.2	9.36	OK
Lantai 2	7.2	9.36	OK
Lantai 1	7.2	9.36	OK

 Tabel 5.30 Pemeriksaan Ketidakberaturan Geometri Vertikal Arah Y

- 5. Ketidakberaturan akibat diskontinuitas bidang pada elemen vertikal gaya lateral Ketidakberaturan tipe ini terjadi jika pergeseran arah bidang elemen pemikul gaya lateral lebih besar dari panjang elemen itu atau terdapat reduksi kekakuan elemen pemikul di tingkat di bawahnya. Dari hasil tinjauan, bangunan rumah sakit UII memiliki dinding geser menerus tanpa ada perpindahan di sepanjang tinggi bangunan, sehingga tidak memiliki ketidakberaturan tipe ini. Untuk lebih jelasnya dapat dilihat pada Gambar 5.15.
- 6. Ketidakberaturan tingkat lemah akibat diskontinuitas kekuatan lateral tingkat Ketidakberaturan tingkat lemah (5a) ini terjadi jika kekuatan lateral suatu tingkat kurang dari 80% kekuatan lateral tingkat di atasnya. Contoh perhitungan untuk ketidakberaturan tipe ini sebagai berikut.

Diketahui:

= Gaya geser (*story forces*) lantai 1 arah x = 14716,168 kN V_{x1} V_{x2}

= Gaya geser seismik lantai 2 arah x = 12946,579 kN

Dari data diatas dapat dihitung ketidakberaturan tipe 5a dan 5b sebagai berikut. 80% $V_{x2} = 80\% x 12946,579 \text{ kN}$

$$= 10357,263 \text{ kN} < V_{xl}$$

Dari perhitungan diatas dapat disimpulkan bahwa lantai 1 memiliki gaya geser seismik lebih besar dari 80% gaya geser seismik lantai 2, sehingga tidak memiliki ketidakberaturan tipe 5a. Untuk hasil perhitungan dapat dilihat pada tabel berikut.

a. SNI 1726:2012

T	Vx	0.8 Vx	C.I
Lantai	kN	kN	Сек
7	1988.959	1591.167	-
6	4830.35	3864.28	OK
5	6519.076	5215.261	OK
4	7852.533	6282.026	OK
3	10106.062	8084.849	OK
2	12946.579	10357.263	OK
1	14716.169	11772.934	OK

Tabel 5.31 Pemeriksaan Ketidakberaturan Tingkat Lemah Arah X Bordosorkon SNI 1726-2012

Tabel 5.32 Pemeriksaan Ketidakberaturan Tingkat Lemah Arah Y Bordosorkon SNI 1726:2012

Lontoi	Vy	0.8Vy	Calt
	kN	kN	Сек
7	2107.025	1685.619	
6	5097.300	4077.840	OK
5	6899.012	5519.209	OK
4	8575.055	6860.044	OK
3	11062.728	8850.182	OK
2	13643.134	10914.507	OK
1	14983.945	11987.156	OK

Berdasarkan pemeriksaan ketidakberaturan tingkat lemah (5a) berdasarkan SNI 1726:2012 tidak terdapat ketidakberaturan tipe ini pada tiap lantai sehingga masih aman.

.	Vx	0.8 Vx	
Lantai	kN	kN	Cek
7	2440.085	1952.068	-
6	6335.655	5068.524	ОК
5	9045.436	7236.349	OK
4	11475.241	9180.193	ОК
3	14737.592	11790.073	OK
2	17832.697	14266.157	OK
1	19507.732	15606.185	OK

Tabel 5.33 Pemeriksaan Ketidakberaturan Tingkat Lemah Arah X Berdasarkan SNI 1726:2019

Tabel 5.34 Pemeriksaan Ketidakberaturan Tingkat Lemah Arah Y

	Vy	0.8Vy	C.I.
Lantai	kN	kN	Сек
7	2670.141	2136.113	
6	6988	5590.4	OK
5	10022.449	8017.959	OK
4	12804.443	10243.554	OK
3	16208.949	12967.159	OK
2	19056.694	15245.355	OK
1	20365.589	16292.471	OK

Berdasarkan SNI 1726:2019

Berdasarkan pemeriksaan ketidakberaturan tingkat lemah (5a) berdasarkan SNI 1726:2019 tidak terdapat ketidakberaturan tipe ini pada tiap lantai sehingga masih aman.

7. Ketidakberaturan tingkat lemah berlebihan akibat diskontinuitas kekuatan lateral tingkat

Ketidakberaturan tingkat lemah berlebihan (5b) ini terjadi jika kekuatan lateral suatu tingkat kurang dari 65% kekuatan lateral tingkat diatas. Contoh perhitungan untuk ketidakberaturan tipe ini sebagai berikut.

Diketahui:

$$V_{xI}$$
 = Gaya geser seismik lantai 1 arah x = 14716,168 kN

$$V_{x2}$$
 = Gaya geser seismik lantai 2 arah x = 12946,579 kN

Dari data diatas dapat dihitung ketidakberaturan tipe 5a dan 5b sebagai berikut.

$$65\% V_{x2} = 65\% x 12946,579 \text{ kN}$$
$$= 8415 276 \text{ kN} < V_{x2}$$

Dari perhitungan diatas dapat disimpulkan bahwa lantai 1 memiliki gaya geser seismik lebih besar dari 65% gaya geser seismik lantai 2, sehingga tidak memiliki ketidakberaturan tipe 5b. Untuk hasil perhitungan dapat dilihat pada tabel berikut.

a. SNI 1726:2012

Tabel 5.35 Pemeriksaan Ketidakberaturan Tingkat Lemah Berlebihan Arah X Berdasarkan SNI 1726:2012

Lantai	Vx	0.65 Vx	
	kN	kN	Сек
7	1988.959	1292.824	
6	4830.35	3139.728	OK
5	6519.076	4237.400	OK
4	7852.533	5104.147	OK
3	10106.062	6568.940	OK
2	12946.579	8415.276	OK
1	14716.169	9565.510	OK

	T am 4a	Vy	0.65 Vy	Cala
	Lantai	kN	kN	Сек
	7	2107.025	1369.566	-
	6	5097.300	3313.245	OK
	5	6899.012	4484.358	OK
	4	8575.055	5573.786	OK
	3	11062.728	7190.773	OK
1	2	13643.134	8868.037	OK
Y	1	14983.945	9739.564	OK

Tabel 5.36 Pemeriksaan Ketidakberaturan Tingkat Lemah Berlebihan

Arah Y Berdasarkan SNI 1726:2012

Berdasarkan pemeriksaan ketidakberaturan tingkat lemah berlebihan (5b) berdasarkan SNI 1726:2012 tidak terdapat ketidakberaturan tipe ini pada tiap lantai sehingga masih aman.

b. SNI 1726:2019

- 74 -					
	Lantai	Vx	0.65 Vx		
		kN	kN	Cek	
T -	7	2440.085	1586.056	-	
	6	6335.655	4118.176	OK	
·· W.,.	5 2	9045.436	5879.534	OK	
1.74	4.1.1	11475.241	7458.907	OK	
**	3	14737.592	9579.435	OK	
	2	17832.697	11591.253	OK	
	1	19507.732	12680.026	OK	

Tabel 5.37 Pemeriksaan Ketidakberaturan Tingkat Lemah BerlebihanArah X Berdasarkan SNI 1726:2019

	Tantat	Vy	0.65 Vy	Cala
	Lantai	kN	kN	Сек
	7	2670.141	1735.592	-
	6	6988	4542.200	OK
	5	10022.449	6514.592	OK
	4	12804.443	8322.888	OK
	3	16208.949	10535.817	OK
1	2	19056.694	12386.851	OK
U I	1	20365.589	13237.633	OK

Tabel 5.38 Pemeriksaan Ketidakberaturan Tingkat Lemah Berlebihan

Arah Y Berdasarkan SNI 1726:2019

Berdasarkan pemeriksaan ketidakberaturan tingkat lemah berlebihan (5b) berdasarkan SNI 1726:2019 tidak terdapat ketidakberaturan tipe ini pada tiap lantai sehingga masih aman.

5.7 Sistem Ganda

Sistem struktur yang menggunakan Sistem Rangka Pemikul Momen Khusus dan Dinding Geser disebut dengan Sistem Ganda. Rangka pemikul momen harus mampu menahan gaya geser dasar paling sedikit 25 % dari gaya gempa desain. Berikut perhitungan untuk pemeriksaan sistem ganda.

Gambar 5.16 Pemeriksaan Sistem Ganda

Pemeriksaan sistem ganda pada dasar bangunan dengan cara mengambil semua titik *joint* kecuali dinding geser dengan maksud bahwa titik *joint* tersebut adalah SRPMK. Berikut contoh perhitungan pemeriksaan sistem ganda.

Diketahui:

ΣVx SRPMK	= Gaya geser dasar pada sistem rangka pemikul = 12857,93 kN
ΣVy SRPMK	= Gaya geser dasar pada sistem rangka pemikul = 10504,50 kN
$\Sigma V x$	= Gaya geser dasar total = 24097,726 kN
$\Sigma V y$	= Gaya geser dasar total = 24098,679 kN
Persentase	$=\frac{24097,726}{12857,93} \times 100 \%$
	= 53,357 % > 25 %

Berdasarkan perhitungan diatas, sistem rangka pemikul momen khusus menahan gaya geser desain > 25 % sehingga memenuhi syarat. Berikut rekapitulasi pemeriksaan sistem ganda.

SNI 1726:2012					
ΣVx	Σνy	ΣVx SRPMK	ΣVy SRPMK	Persentase arah X	Persentase arah Y
kN	kN	kN	kN	%	%
24097.726	24098.679	12857.934	10504.504	53.357	43.590
		SNI 172	6:2019		
ΣVx	Σνγ	ΣVx SRPMK	ΣVy SRPMK	Persentase arah X	Persentase arah Y
kN	kN	kN	kN	%	%
43069.171	43496.826	22406.627	18593.179	52.025	42.746

Tabel 5.39 Pemeriksaan Sistem Ganda

Berdasarkan pemeriksaan sistem ganda berdasarkan SNI 1726:2012 dan SNI 1726:2019 tidak terdapat sistem rangka pemikul momen yang kurang dari 25 % sehingga memenuhi syarat sistem ganda.

5.8 Faktor Redundansi

Faktor redundansi (ρ) diaplikasikan pada masing-masing kedua arah ortogonal untuk semua sistem struktur pemikul gaya seismik. Faktor redundansi akan digunakan pada pemeriksaan batas izin simpangan antar tingkat dan kombinasi pembebanan. Bangunan Rumah Sakit UII termasuk kategori desain seismik D sehingga ρ harus diambil 1,3. Faktor redundansi diizinkan diambil $\rho = 1$ jika masing-masing tingkat menahan lebih dari 35 % gaya geser dasar (V) dalam arah yang ditinjau. Berikut pemeriksaan faktor redundansi.

Vx lantai 1 = 14716,168 kN35 % Vx lantai 1 = 35 % x 14716,168 kN = 5150,659 kN < Vx lantai 1

Berdasarkan perhitungan diatas, gaya geser lantai 1 mampu menahan lebih dari 35 % gaya geser dasar yang terjadi.

1. SNI 1726:2012

47	V _{base} X	35% V _{base}	Charl	
Lantai	kN	kN	Uneck	
Lantai 7	1988.959		Check Pembuktian	
Lantai 6	4830.350		Check Pembuktian	
Lantai 5	6519.076	6-W 2	OK	
Lantai 4	7852.533	5150.659	OK	
Lantai 3	10106.061		OK	
Lantai 2	12946.579		OK	
Lantai 1	14716.168		OK	

Tabel 5.40 Faktor Redundansi Arah X Berdasarkan SNI 1726:2012

Lontoi	Vbase Y	35% Vbase	Cheels
Lantai	kN kN		Спеск
Lantai 7	2107.024		Check Pembuktian
Lantai 6	5097.300		Check Pembuktian
Lantai 5	6899.012		OK
Lantai 4	8575.055	5244.381	ОК
Lantai 3	11062.728	$-\Delta$	ОК
Lantai 2	13643.134		OK
Lantai 1	14983.945		OK

Tabel 5.41 Faktor Redundansi Arah Y Berdasarkan SNI 1726:2012

2. SNI 1726:2019

Tabel 5.42 Faktor Redundansi Arah X Berdasarkan SNI 1726:2019

and the second sec			
Lontai	Vbase X	35% Vbase	Cheek
Lantai	kN	kN	Спеск
Lantai 7	2440.085		Check Pembuktian
Lantai 6	6335.655		Check Pembuktian
Lantai 5	9045.436		OK
Lantai 4	11475.242	6827,706	OK
Lantai 3	14737.592		OK
Lantai 2	17832.697		OK
Lantai 1	19507.732	WWW DOL	ОК

· · · · / /

11 2

Lontoi	V _{base} Y	35% Vbase	Cheels
Lantai	kN	kN	Check
Lantai 7	2670.142		Check Pembuktian
Lantai 6	6988		Check Pembuktian
Lantai 5	10022.449		ОК
Lantai 4	12804.444	7127,956	ОК
Lantai 3	16208.949	$\square A /$	ОК
Lantai 2	19056.694		ОК
Lantai 1	20365.589		ОК
H-C			

Tabel 5.43 Faktor Redundansi Arah Y Berdasarkan SNI 1726:2019

Berdasarkan pemeriksaan masing-masing tingkat menahan lebih dari 35 % gaya geser dasar (*V*) dalam arah yang ditinjau terdapat beberapa lantai yang tidak menahan 35 % gaya geser dasar yaitu lantai 6 dan 7 maka dari itu persyaratan tidak terpenuhi. Selanjutnya dilakukan pengecekan sesuai Tabel 15 pada SNI1726:2019 yaitu menghilangkan balok dengan momen maksimum tidak akan mengakibatkan reduksi kekuatan tingkat lebih dari 33 %.

1. SNI 1726:2012

Tabel 5.44 Kehilangan Tahanan Momen Maksimum pada Balok Arah X Berdasarkan SNI 1726:2012

Lantai	Case	Unique	Output	F1	F1 Release	Check
	Туре	Name	Case	kN	kN	%
Lantai 7	Spec X	1240	COMB 5-1	1988.960	1984.328	0.233
Lantai 6	Spec X	1467	COMB 5-1	4830.350	4802.264	0.581
Lantai 5	Spec X	1277	COMB 5-1	6519.077	6469.948	0.754
Lantai 4	Spec X	1091	COMB 5-1	7852.533	7784.319	0.869
Lantai 3	Spec X	788	COMB 5-1	10106.062	10026.292	0.789
Lantai 2	Spec X	503	COMB 5-1	12946.579	12861.019	0.661
Lantai 1	Spec X	1876	COMB 5-1	14716.169	14634.337	0.556

Lantai	Case	Unique	Output	F2	F2 Release	Check
Luntui	Туре	Name	Case	kN	kN	%
Lantai 7	Spec Y	1688	COMB 5-5	2107.025	2104.114	0.138
Lantai 6	Spec Y	1496	COMB 5-5	5097.300	5072.160	0.493
Lantai 5	Spec Y	1329	COMB 5-5	6899.012	6849.832	0.713
Lantai 4	Spec Y	1142	COMB 5-5	8575.055	8512.994	0.724
Lantai 3	Spec Y	843	COMB 5-5	11062.728	11002.279	0.546
Lantai 2	Spec Y	555	COMB 5-5	13643.134	13596.634	0.341
Lantai 1	Spec Y	1827	COMB 5-5	14983.945	14936.750	0.315

Tabel 5.45 Kehilangan Tahanan Momen Maksimum pada Balok Arah Y Berdasarkan SNI 1726:2012

Berdasarkan pemeriksaan menghilangkan tahanan momen maksimum pada balok tidak mengakibatkan reduksi kekuatan tingkat sebesar 33 % sehingga nilai faktor redundansi dapat diambil $\rho = 1$ telah memenuhi syarat.

2. SNI 1726:2019

I antai	Case Ur	Unique	Unique Output	F1	F1 Release	Check
Luntui	Туре	Name	Case	kN	kN	%
Lantai 7	Spec X	1659	COMB 5-1	2440.086	2429.787	0.422
Lantai 6	Spec X	1467	COMB 5-1	6335.655	6290.603	0.711
Lantai 5	Spec X	1277	COMB 5-1	9045.437	8968.825	0.847
Lantai 4	Spec X	1091	COMB 5-1	11475.242	11368.123	0.933
Lantai 3	Spec X	788	COMB 5-1	14737.592	14603.456	0.910
Lantai 2	Spec X	502	COMB 5-1	17832.697	17690.654	0.797
Lantai 1	Spec X	1816	COMB 5-1	19507.732	19366.781	0.723

Tabel 5.46 Kehilangan Tahanan Momen Maksimum pada Balok Arah XBerdasarkan SNI 1726:2019

Lantai	Case	Unique	Output	F2	F2 Release	Check
Luntui	Туре	Name	Case	kN	kN	%
Lantai 7	Spec Y	1692	COMB 5-5	2670.142	2638.395	1.189
Lantai 6	Spec Y	1500	COMB 5-5	6988.000	6840.424	2.112
Lantai 5	Spec Y	1333	COMB 5-5	10022.449	9759.230	2.626
Lantai 4	Spec Y	1146	COMB 5-5	12804.444	12419.246	3.008
Lantai 3	Spec Y	843	COMB 5-5	16208.949	15697.077	3.158
Lantai 2	Spec Y	555	COMB 5-5	19056.694	18495.142	2.947
Lantai 1	Spec Y	1827	COMB 5-5	20365.590	19785.776	2.847

Tabel 5.47 Kehilangan Tahanan Momen Maksimum pada Balok Arah Y Berdasarkan SNI 1726:2019

Berdasarkan pemeriksaan menghilangkan tahanan momen maksimum pada balok tidak mengakibatkan reduksi kekuatan tingkat sebesar 33 % sehingga nilai faktor redundansi dapat diambil $\rho = 1$ telah memenuhi syarat.

5.9 Fleksibilitas Diafragma

Analisis struktur harus memperhitungkan kekakuan relatif diafragma. Penentuan fleksibilitas diafragma dengan perbandingan $S/D_e < 3$ dan tidak mengalami ketidakberaturan horizontal dapat digolongkan sebagai diafragma kaku. Adapun contoh perhitungan pemeriksaan S/D_e pada diafragma sebagai berikut.

Diketahui:

Lantai 5 arah Y

$$S = 57,6 \,\mathrm{m}$$

$$D_e = 18,6 \,\mathrm{m}$$

$$S/D_e = \frac{57,6}{18.6}$$

= 3,096 > 3 (diafragma semi kaku)

Dari perhitungan diatas dapat diambil kesimpulan bahwa lantai 5 arah Y memiliki perbandingan $S/D_e > 3$ sehingga tergolong diafragma semi kaku.

Gambar 5.17 Pemeriksaan Fleksibilitas Diafragma

Adapun rekapitulasi hasil perhitungan pemeriksaan fleksibilitas diafragma sebagai berikut.

Lantai	S	De	Cek
Lantai 7	54.6	21.6	Kaku
Lantai 6	54.6	21.6	Kaku
Lantai 5	54.6	21.6	Kaku
Lantai 4	54.6	21.6	Kaku
Lantai 3	61.8	21.6	Kaku
Lantai 2	61.8	21.6	Kaku
Lantai 1	61.8	21.6	Kaku

Tabel 5.48 Pemeriksaan S/D_e Diafragma Arah X

Lantai	S	De	Cek
Lantai 7	57.6	18.6	Semi Kaku
Lantai 6	57.6	18.6	Semi Kaku
Lantai 5	57.6	18.6	Semi Kaku
Lantai 4	93.6	18.6	Semi Kaku
Lantai 3	93.6	18.6	Semi Kaku
Lantai 2	93.6	18.6	Semi Kaku
Lantai 1	136.8	33	Semi Kaku

Tabel 5.49 Pemeriksaan S/D_e Diafragma Arah Y

Berdasarkan pemeriksaan S/D_e pada diafragma pada arah X tergolong diafragma kaku, namun pada arah Y tergolong diafragma semi kaku. Berdasarkan pemeriksaan ketidakberaturan horizontal, bangunan Rumah Sakit UII juga mengalami ketidakberaturan torsi berlebihan sehingga tidak dapat digolongkan sebagai diafragma kaku melainkan diafragma semi kaku.

5.10 Gaya Desain Diafragma

Diafragma lantai dan atap harus di desain untuk menahan gaya seismik desain dari analisis struktur. Berdasarkan pemeriksaan ketidakberaturan, bangunan Rumah Sakit UII mengalami ketidakberaturan horizontal tipe 1a, 1b, 2, dan 3 serta ketidakberaturan vertikal tipe 2. Merujuk SNI 1726:2012 dan SNI 1726:2019 pada pasal 7.3.3.4 maka harus dilakukan peningkatan gaya sebesar 25 % pada diafragma. Berikut contoh perhitungan gaya desain diafragma.

Diketahui:

Lantai 1

W_{px}	= 31769,136 kN
F_x	= 14716,168 kN
$\Sigma F_i(x)$	= 33330,266 kN
ΣW_i	= 63903,579 kN

$$F_{px}(x) = \frac{\Sigma F_i}{\Sigma W_i} x W_{px}$$

= $\frac{33330,266}{63903,579} x 31769,136$
= 16569,866 kN
1,25 $F_{px}(x) = 1,25 x 16569,866$ kN
= 20712,333 kN
 $F_{px} min = 0,2 S_{DS} I_e W_{px}$
= $0,2 x 0,816 x 1,5 x 31769,136$ kN
= 7777,084 kN
 $F_{px} max = 0,4 S_{DS} I_e W_{px}$
= $0,4 x 0,816 x 1,5 x 31769,136$ kN
= 15554,169 kN

Berdasarkan perhitungan diatas, nilai peningkatan gaya desain diafragma melebihi batas maksimal sehingga nilai gaya desain diafragma yang dipakai 15554,169 kN dimana F_{px} min < 1,25 $F_{px} > F_{px}$ max. Untuk rekapitulasi hasil gaya desain diafragma dapat dilihat pada tabel berikut.

1. SNI 1726:2012

Tabel 5.50 Gaya Desain Diafragma Arah X Berdasarkan SNI 1726:2012

Lantai	Wpx	Fx	Fi (x)	ΣFi (x)	ΣWi	Fpx (x)	1,25 Fpx (x)	Fpx min	Fpx max	Fpx pakai
Lantai	kN	kN	kN	kN	kN	kN	kN	kN	kN	kN
7	7216.85	1988.96	1988.96	1988.96	9319.35	1540.24	1925.30	1766.69	3533.37	1925.30
6	10478.68	4830.35	2841.39	4830.35	21605.65	2342.71	2928.38	2565.18	5130.36	2928.38
5	10478.68	6519.08	3677.69	8508.04	22000.36	4052.34	5065.43	2565.18	5130.36	5065.43
4	14978.18	7852.53	4174.85	12682.88	28849.58	6584.72	8230.91	3666.66	7333.32	7333.32
3	24593.37	10106.06	5931.21	18614.10	48852.48	9370.73	11713.41	6020.46	12040.91	11713.41
2	27614.77	12946.58	7015.36	25629.46	57103.73	12394.14	15492.67	6760.10	13520.19	13520.19
1	31769.14	14716.17	7700.80	33330.27	63903.58	16569.87	20712.33	7777.08	15554.17	15554.17

Lantai	Wpx	Fx	Fi (y)	ΣFi (y)	ΣWi	Fpx (y)	1,25 Fpx (y)	Fpx min	Fpx max	Fpx pakai
Lantai	kN	kN	kN	kN	kN	kN	kN	kN	kN	kN
7	7216.85	2107.02	2107.02	2107.02	9319.35	1631.67	2039.59	1766.69	3533.37	2039.59
6	10478.68	5097.30	2990.28	5097.30	21605.65	2472.18	3090.22	2565.18	5130.36	3090.22
5	10478.68	6899.01	3908.74	9006.04	22000.36	4289.54	5361.92	2565.18	5130.36	5130.36
4	14978.18	8575.06	4666.32	13672.36	28849.58	7098.44	8873.05	3666.66	7333.32	7333.32
3	24593.37	11062.73	6396.41	20068.76	48852.48	10103.04	12628.80	6020.46	12040.91	12040.91
2	27614.77	13643.13	7246.72	27315.49	57103.73	13209.49	16511.86	6760.10	13520.19	13520.19
1	31769.14	14983.95	7737.22	35052.71	63903.58	17426.17	21782.71	7777.08	15554.17	15554.17

Tabel 5.51 Gaya Desain Diafragma Arah Y Berdasarkan SNI 1726:2012

2. SNI 1726:2019

Tabel 5.52 Gaya Desain Diafragma Arah X Berdasarkan SNI 1726:2019 14/----

1.1

Lantai	Wpx	Fx	Fi (x)	ΣFi (x)	ΣWi	Fpx (x)	1,25 Fpx (x)	Fpx min	Fpx max	Fpx pakai
Lantai	kN	kN	kN	kN						
7	7216.85	2440.09	2440.09	2440.09	9319.35	1889.59	2361.99	1817.06	3634.12	2361.99
6	10478.68	6335.66	3895.57	6335.66	21605.65	3072.77	3840.97	2638.32	5276.64	3840.97
5	10478.68	9045.44	5149.87	11485.52	22000.36	5470.50	6838.13	2638.32	5276.64	5276.64
4	14978.18	11475.24	6325.38	17810.90	28849.58	9247.10	11558.87	3771.21	7542.41	7542.41
3	24593.37	14737.59	8412.22	26223.11	48852.48	13201.27	16501.59	6192.12	12384.24	12384.24
2	27614.77	17832.70	9420.48	35643.59	57103.73	17236.87	21546.09	6952.85	13905.69	13905.69
1	31769.14	19507.73	10087.25	45730.85	63903.58	22734.71	28418.39	7998.83	15997.67	15997.67

Tabel 5.53 Gaya Desain Diafragma Arah Y Berdasarkan SNI 1726:2019

Lantai –	Wpx	Fx	Fi (y)	ΣFi (y)	ΣWi	Fpx (y)	1,25 Fpx	Fpx min	Fpx max	Fpx pakai
Lantai	kN	kN	kN							
7	7216.85	2670.14	2670.14	2670.14	9319.35	2067.74	2584.68	1817.06	3634.12	2584.68
6	10478.68	6988.00	4317.86	6988.00	21605.65	3389.16	4236.45	2638.32	5276.64	4236.45
5	10478.68	10022.45	5704.59	12692.59	22000.36	6045.43	7556.78	2638.32	5276.64	5276.64
4	14978.18	12804.44	7099.85	19792.44	28849.58	10275.88	12844.85	3771.21	7542.41	7542.41
3	24593.37	16208.95	9109.10	28901.54	48852.48	14549.65	18187.06	6192.12	12384.24	12384.24
2	27614.77	19056.69	9947.60	38849.14	57103.73	18787.04	23483.80	6952.85	13905.69	13905.69
1	31769.14	20365.59	10417.99	49267.13	63903.58	24492.75	30615.93	7998.83	15997.67	15997.67

Berdasarkan perhitungan gaya desain diafragma, maka hasil tersebut diterapkan pada elemen struktur yaitu pelat lantai. Gaya desain diafragma diterapkan dalam satuan kN/m^2 maka dari itu nilai gaya diafragma (F_{px}) harus dibagi dengan total luas terpakai (A_t) pada pelat lantai.

Lantai	Fpx (x) pakai	Fpx (y) pakai	At	Qpx (x)	Qpx (y)
	kN	kN	m ²	kN/m ²	kN/m ²
Lantai 7	1925.299	2039.585	1072.520	1.795	1.902
Lantai 6	2928.382	3090.219	1843.340	1.589	1.676
Lantai 5	5065.426	5130.360	1843.340	2.748	2.783
Lantai 4	7333.319	7333.319	2584.000	2.838	2.838
Lantai 3	11713.412	12040.913	4561.770	2.568	2.640
Lantai 2	13520.191	13520.191	4850.270	2.788	2.788
Lantai 1	15554.169	15554.169	5707.830	2.725	2.725

Tabel 5.54 Penerapan Gaya Desain Diafragma Berdasarkan SNI 1726:2012

Tabel 5.55 Penerapan Gaya Desain Diafragma Berdasarkan SNI 1726:2019

	Lantai	Fpx (x) pakai	Fpx (y) pakai	At	Qpx (x)	Qpx (y)
		kN	kN	m ²	kN/m ²	kN/m ²
	Lantai 7	2361.986	2584.679	1072.520	2.202	2.410
	Lantai 6	3840.967	4236.449	1843.340	2.084	2.298
• •	Lantai 5	5276.643	5276.643	1843.340	2.863	2.863
٦	Lantai 4	7542.415	7542.415	2584.000	2.919	2.919
I	Lantai 3	12384.236	12384.236	4561.770	2.715	2.715
	Lantai 2	13905.693	13905.693	4850.270	2.867	2.867
Ī	Lantai 1	15997.666	15997.666	5707.830	2.803	2.803

Setelah penerapan gaya desain diafragma pada pelat lantai, maka dilakukan pemeriksaan diafragma apakah termasuk ke dalam diafragma fleksibel atau tidak. Adapun tinjauan diafragma fleksibel pada Gambar 5.18 dan Gambar 5.19 berikut.

Gambar 5.19 Tinjauan Diafragma Fleksibel Arah Y

Adapun contoh perhitungan untuk pemeriksaan diafragma fleksibel yaitu sebagai berikut.

Lantai 5

$$\begin{split} & \Delta_1 &= 59,571 \text{ mm} \\ & \Delta_2 &= 78,806 \text{ mm} \\ & \Delta_{MAX} &= 78,806 \text{ mm} \\ & \Delta_{ADVE} &= \frac{59,571 + 78,806}{2} = 69,188 \text{ mm} \\ & \delta_{MMD} &= \Delta_{MAX} - \Delta_{ADVE} \\ &= 78,806 \text{ mm} - 69,188 \text{ mm} \\ &= 9,617 \text{ mm} \\ & \frac{\delta_{MMD}}{\Delta_{ADVE}} &= \frac{9,617}{69,188} = 0,139 < 2 \end{split}$$

Dari perhitungan diatas, diafragma pada lantai 5 tidak terjadi diafragma fleksibel karena rasio lebih kecil dari 2. Adapun rekapitulasi hasil pemeriksaan diafragma fleksibel sebagai berikut.

1. SNI 1726:2012

Tabel 5.56 Pemeriksaan Diafragma Arah X Berdasarkan SNI 1726:2012

Lantai					Fpx (x)				
Lainai	Δ1	Δ_2	Δmax	AADVE	бммд	Rasio	Cek		
7	83.162	102.979	102.979	93.071	9.908	0.106	Tidak terjadi diafragma fleksibel		
6	73.150	91.894	91.894	82.522	9.372	0.114	Tidak terjadi diafragma fleksibel		
5	59.571	78.806	78.806	69.189	9.617	0.139	Tidak terjadi diafragma fleksibel		
4	45.722	62.888	62.888	54.305	8.583	0.158	Tidak terjadi diafragma fleksibel		
3	32.250	47.418	47.418	39.834	7.584	0.190	Tidak terjadi diafragma fleksibel		
2	18.463	28.154	28.154	23.309	4.846	0.208	Tidak terjadi diafragma fleksibel		
1	5.871	9.096	9.096	7.484	1.613	0.215	Tidak terjadi diafragma fleksibel		

Lontoi		Fpx (y)											
Lantai	Δ_1	Δ_2	Amax	Aadve	бммд	Rasio	Cek						
7	68.599	85.978	85.978	77.289	8.690	0.112	Aman, bukan diafragma fleksibel						
6	60.066	74.903	74.903	67.485	7.419	0.110	Aman, bukan diafragma fleksibel						
5	49.222	61.723	61.723	55.473	6.251	0.113	Aman, bukan diafragma fleksibel						
4	38.494	19.114	46.376	28.804	17.572	0.610	Aman, bukan diafragma fleksibel						
3	27.884	20.742	31.008	24.313	6.695	0.275	Aman, bukan diafragma fleksibel						
2	15.957	11.967	17.588	13.962	3.626	0.260	Aman, bukan diafragma fleksibel						
1	10.178	3.134	10.178	6.656	3.522	0.529	Aman, bukan diafragma fleksibel						

Tabel 5.57 Pemeriksaan Diafragma Arah Y Berdasarkan SNI 1726:2012

2. SNI 1726:2019

Tabel 5.58 Pemeriksaan Diafragma Arah X Berdasarkan SNI 1726:2019

Tantai		()			Fpx (x)	
Lantai	Δ1	Δ2	Δmax	AADVE	бммд	Rasio	Cek
7	91.803	114.562	114.562	103.183	11.380	0.110	Tidak terjadi diafragma fleksibel
6	80.356	101.682	101.682	91.019	10.663	0.117	Tidak terjadi diafragma fleksibel
5	65.262	86.464	86.464	75.863	10.601	0.140	Tidak terjadi diafragma fleksibel
4	49.939	68.398	68.398	59.169	9.230	0.156	Tidak terjadi diafragma fleksibel
3	35.057	51.172	51.172	43.115	8.058	0.187	Tidak terjadi diafragma fleksibel
2	19.957	30.153	30.153	25.055	5.098	0.203	Tidak terjadi diafragma fleksibel
1	6.309	9.664	9.664	7.987	1.678	0.210	Tidak terjadi diafragma fleksibel

Tabel 5.59 Pemeriksaan Diafragma Arah Y Berdasarkan SNI 1726:2019

Lontoi		ا ح	·	\mathbf{L}	Fpx (y)	(D)
Lantai	Δ1	Δ2	Δ _{max}	AADVE	бммд	Rasio	Cek
7	76.572	97.954	97.954	87.263	10.691	0.123	Aman, bukan diafragma fleksibel
6	66.573	84.737	84.737	75.655	9.082	0.120	Aman, bukan diafragma fleksibel
5	54.335	69.040	69.040	61.688	7.353	0.119	Aman, bukan diafragma fleksibel
4	42.284	20.651	51.151	31.468	19.684	0.626	Aman, bukan diafragma fleksibel
3	30.467	22.482	33.752	26.475	7.278	0.275	Aman, bukan diafragma fleksibel
2	17.304	12.853	18.959	15.079	3.881	0.257	Aman, bukan diafragma fleksibel
1	10.553	3.363	10.553	6.958	3.595	0.517	Aman, bukan diafragma fleksibel

5.11 Simpangan Antar Tingkat

Simpangan antar tingkat desain tidak boleh melebihi simpangan antar tingkat izin (Δ_a). Fungsi bangunan pada penelitian ini yaitu rumah sakit, maka batas izin untuk simpangan antar tingkat yaitu 0,010 h_{sx} . Berdasarkan pemeriksaan faktor redundansi, bangunan ini diizinkan untuk mengambil $\rho = 1$. Adapun contoh perhitungan simpangan antar tingkat sebagai berikut.

Diketahui: $h_{sx} = 4000 \text{ mm}$ $C_d = 5,5$ $I_e = 1.5$ δ_3 = 13,711 mm δ_4 = 20,125 mm Dari data diatas dapat dihitung simpangan antar tingkat pada lantai 4 arah X. $\delta_{e4} = \delta_4 - \delta_3$ = 20,125 mm - 13,711 mm= 6,414 mm $\Delta_{izin} = 0,010h_{sx}$ = 0,010 x 4000 mm=40 mm $\Delta_{x4} = \frac{\delta_{e4.C_d}}{I_e}$ $=\frac{6,414.5,5}{1,5}$ $= 23,518 \text{ mm} < \Delta_{izin}$

Dari hasil perhitungan simpangan antar tingkat pada lantai 4 arah X memenuhi syarat karena nilai simpangan antar tingkat lebih kecil dibandingkan nilai simpangan antar tingkat izin. Untuk rekapitulasi hasil perhitungan dapat dilihat pada tabel berikut.

1. SNI 1726:2012

4

Lantai	δ	δe	Cd	Io	Δx	Tinggi Lantai	Δizin	Cak
Lantai	mm	mm			mm	mm	mm	Сек
7	40.043	6.837			25.069	3920	39.2	OK
6	33.206	6.642		-	24.354	4000	40	OK
5	26.564	6.439	S		23.610	4000	40	OK
4	20.125	6.414	5.5	1.5	23.518	4000	40	ОК
3	13.711	6.041			22.150	4000	40	ОК
2	7.67	5.35			19.617	4000	40	ОК
1	2.32	2.32			8.507	3200	32	OK

Tabel 5.60 Simpangan Antar Tingkat pada Arah X Berdasarkan SNI 1726:2012

Tabel 5.61 Simpangan Antar Tingkat pada Arah Y Berdasarkan SNI 1726:2012

	s	Se			Av	Tinggi Lontoi	Aizin	
Lantai	0	oe	Cd	Ie	ΔΧ	Tinggi Lantai		Cek
Lantai	mm	mm	Cu	I.	mm	mm	mm	CCK
7	34.848	4.87			17.857	3920	39.2	OK
6	29.978	6.39			23.430	4000	40	OK
5	23.588	6.728			24.669	4000	40	OK
4	16.86	6.544	5.5	1.5	23.995	4000	40	ОК
3	10.316	5.068			18.583	4000	40	OK
2	5.248	3.766			13.809	4000	40	OK
1	1.482	1.482	111	6964	5.434	3200	32	ОК

2 2

Gambar 5.20 Grafik Simpangan Antar Tingkat Berdasarkan SNI 1726:2012

Berdasarkan perhitungan simpangan antar tingkat berdasarkan SNI 1726:2012 tidak terdapat nilai simpangan antar tingkat yang melebihi izin pada setiap lantai nya, sehingga pemeriksaan simpangan antar tingkat memenuhi syarat SNI 1726:2012.

2. SNI 1726:2019

Lantai	ωδw	ωδω δε		(- <u>-</u>	Δx	Tinggi Lantai	Δizin	Calt
	mm	mm	Cu	Ie	mm	mm	mm	UCK
7	56.966	9.721		*	35.644	3920	39.2	OK
6	47.245	9.275			34.008	4000	40	OK
5	37.97	9.066			33.242	4000	40	ОК
4	28.904	9.757	5.5	1.5	35.776	4000	40	ОК
3	19.147	8.804			32.281	4000	40	OK
2	10.343	7.366			27.009	4000	40	ОК
1	2.977	2.977			10.916	3200	32	OK

Tabel 5.62 Simpangan Antar Tingkat pada Arah X Berdasarkan SNI 1726:2019

Lantai	δ	δe	Cd	Io	Δx	Tinggi Lantai	Δizin	Cek	
	mm	mm	Cu	Ie	mm	mm	mm		
7	48.48	6.55			24.017	3920	39.2	OK	
6	41.93	8.964			32.868	4000	40	OK	
5	32.966	9.513			34.881	4000	40	OK	
4	23.453	9.458	5.5	1.5	34.679	4000	40	OK	
3	13.995	7.058	S		25.879	4000	40	OK	
2	6.937	5.021			18.410	4000	40	OK	
1	1.916	1.916			7.025	3200	32	OK	

Tabel 5.63 Simpangan Antar Tingkat pada Arah Y Berdasarkan SNI 1726:2019

Gambar 5.21 Grafik Simpangan Antar Tingkat Berdasarkan SNI 1726:2019

Berdasarkan perhitungan simpangan antar tingkat pada SNI 1726:2019 tidak terdapat nilai simpangan antar tingkat yang melebihi izin pada setiap lantai nya, sehingga pemeriksaan simpangan antar tingkat memenuhi syarat SNI 1726:2019.

5.12 Pengaruh P-Delta

Berdasarkan SNI 1726:2012 dan SNI 1726:2019 pada pasal 7.8.7, koefisien stabilitas, θ , tidak boleh lebih besar dari θ_{max} yang akan berpotensi tidak stabil. Berikut contoh perhitungan pengaruh p-delta.

Lantai 1

$$P_{x} = 209124,198 \text{ kN}$$

$$\Delta_{x} = 8,507 \text{ mm}$$

$$I_{e} = 1,5$$

$$V_{x} = 24097,726 \text{ kN}$$

$$h_{sx} = 3200 \text{ mm}$$

$$C_{d} = 5,5$$

$$\theta = \frac{209124,198 \times 8,507 \times 1,5}{24097,726 \times 3200 \times 5,5}$$

$$= 0,0063$$

$$\theta_{max} = \frac{0,5}{1 \times 5,5}$$

$$= 0,0909$$

Berdasarkan perhitungan pengaruh p-delta pada lantai 1 didapatkan $\theta < \theta_{max}$ sehingga lantai 1 tergolong stabil. Adapun rekapitulasi hasil perhitungan dapat dilihat pada tabel berikut.

.....

1. SNI 1726:2012

Lantai	Px	Δx	La	Vx	hsx	CJ	0	O max	Cek
	kN	mm	Ie	kN	mm	Cu	9		
7	8251.584	25.069		3256.921	3920		0.0044	0.0909	STABIL
6	26316.758	24.354		7909.698	4000		0.0055	0.0909	STABIL
5	45171.350	23.610		10674.988	4000		0.0068	0.0909	STABIL
4	69208.408	23.518	1.50	12858.523	4000	5.5	0.0086	0.0909	STABIL
3	108512.485	22.150		16548.676	4000	1	0.0099	0.0909	STABIL
2	154500.958	19.617		21200.023	4000		0.0097	0.0909	STABIL
1	209124.198	8.507		24097.726	3200		0.0063	0.0909	STABIL

Tabel 5.64 Pengaruh P-Delta pada Arah X Berdasarkan SNI 1726:2012

Tabel 5.65 Pengaruh P-Delta pada Arah Y Berdasarkan SNI 1726:2012

Lantai	Px	Δx	Ie	Vy	hsx	Cd	Α	Omer	Colt
	kN	mm		kN	mm			Omax	Cek
7	8251.584	17.857		3388.728	3920	5.5	0.0030	0.0909	STABIL
6	26316.758	23.430		8197.988	4000		0.0051	0.0909	STABIL
5	45171.350	24.669	1.50	11095.681	4000		0.0068	0.0909	STABIL
4	69208.408	23.995		13791.261	4000		0.0082	0.0909	STABIL
3	108512.485	18.583		17792.186	4000		0.0077	0.0909	STABIL
2	154500.958	13.809		21942.253	4000		0.0066	0.0909	STABIL
1	209124.198	5.434		24098.679	3200		0.0040	0.0909	STABIL
	الصيبي الم	2.(]		1. W 7			1.0		

Berdasarkan perhitungan koefisien stabilitas berdasarkan SNI 1726:2012 tidak terdapat koefisien stabilitas yang melebihi batas maksimum pada tiap lantai nya, sehingga pemeriksaan koefisien stabilitas memenuhi syarat SNI 1726:2012.
2. SNI 1726:2019

. . .

Lantai	Px	Δx	T.	Vx	hsx	CJ	0	0	Cali
Lantai	kN	mm	Ie	kN	mm	Ca	9	Umax	Сек
7	8251.584	50.963		5387.221	3920		0.0054	0.0909	STABIL
6	26316.758	48.583		13987.859	4000		0.0062	0.0909	STABIL
5	45171.350	47.564		19970.515	4000		0.0073	0.0909	STABIL
4	69208.408	51.300	1.50	25335.039	4000	5.5	0.0096	0.0909	STABIL
3	108512.485	46.244		32537.656	4000	1	0.0105	0.0909	STABIL
2	154500.958	38.720		39371.029	4000		0.0104	0.0909	STABIL
1	209124.198	15.657		43069.171	3200		0.0065	0.0909	STABIL

Tabel 5.66 Pengaruh P-Delta pada Arah X Berdasarkan SNI 1726:2019

Tabel 5.67 Pengaruh P-Delta pada Arah Y Berdasarkan SNI 1726:2019

Der								
L ontoi	Δx	In	Vy	hsx	Cd	•	Omay	Cale
kN	mn	1 Ie	kN	mm	Cu	0	Omax	Cek
7 8251.	584 34.4	08	5702.889	3920		0.0035	0.0909	STABIL
6 26316.	758 46.6	59	14924.970	4000		0.0056	0.0909	STABIL
5 45171.	350 49.54	48	21405.947	4000		0.0071	0.0909	STABIL
4 69208.	408 49.1	74 1.50	27347.731	4000	5.5	0.0085	0.0909	STABIL
3 108512	.485 36.64	45	34619.074	4000		0.0078	0.0909	STABIL
2 154500	.958 26.1	29	40701.288	4000		0.0068	0.0909	STABIL
1 209124	.198 9.98	8	43496.826	3200	4.	0.0041	0.0909	STABIL

Berdasarkan perhitungan koefisien stabilitas berdasarkan SNI 1726:2019 tidak terdapat koefisien stabilitas yang melebihi batas maksimum pada tiap lantai nya, sehingga pemeriksaan koefisien stabilitas memenuhi syarat SNI 1726:2019.

5.13 Pembahasan

Berdasarkan hasil analisis dan perhitungan menggunakan desain SNI 1726:2012 dan SNI 1726:2019 terdapat beberapa pembaharuan serta perbedaan syarat. Adapun pembahasan mengenai hal tersebut dijabarkan pada poin-poin berikut.

- 1. Nilai parameter percepatan respons spektral periode pendek pada SNI 1726:2019 mengalami peningkatan yaitu $S_s = 1,259$ g dari $S_s = 1,2$ g. Untuk nilai parameter percepatan respons spektral periode 1 detik pada SNI 1726:2019 juga mengalami peningkatan yaitu $S_I = 0,551$ g dari $S_I = 0,4$ g. Hal ini berpengaruh terhadap nilai koefisien respons seismik.
- 2. Penskalaan gaya pada SNI 1726:2012 untuk gaya geser dasar ragam (V_t) harus lebih besar sama dengan 85 % dari gaya geser dasar yang dihitung (V) sedangkan SNI 1726:2019 untuk gaya geser dasar hasil analisis ragam (V_t) sudah harus lebih besar sama dengan 100 % dari gaya geser (V). Terjadi pembesaran faktor penskalaan gaya pada SNI 1726:2019. Didapatkan hasil gaya geser dasar pada SNI 1726:2012 sebesar 28333,257 kN sedangkan SNI 1726:2019 sebesar 42642,422 kN. Persentase kenaikan gaya geser dasar pada SNI 1726:2019 sebesar 50,503 % terhadap SNI 1726:2012.
- 3. Jumlah ragam pada SNI 1726:2019 mengalami peningkatan yaitu menyertakan partisipasi massa ragam terkombinasi sebesar 100 % dari massa struktur dari yang sebelumnya pada SNI 1726:2012 hanya 90 %. Sebagai alternatif, SNI 1726:2019 masih mengizinkan untuk memasukkan jumlah ragam minimum untuk mencapai massa ragam terkombinasi yaitu 90 % dari massa aktual masing-masing arah horizontal ortogonal.
- 4. Nilai periode untuk menghitung simpangan antar tingkat pada SNI 1726:2019 diizinkan untuk menentukan simpangan antar tingkat menggunakan gaya desain seismik pada periode fundamental struktur tanpa batasan atas (C_uT_a). Dari yang sebelumnya, SNI 1726:2012 masih menggunakan batasan atas (C_uT_a). Ini berpengaruh terhadap nilai simpangan antar tingkat.

5. Pemeriksaan ketidakberaturan struktur antara SNI 1726:2012 dan SNI 1726:2019 memiliki kesamaan tipe ketidakberaturan namun memiliki perbedaan *output* gaya yang dihasilkan. Adapun rekapitulasi hasil pemeriksaan ketidakberaturan struktur sebagai berikut.

	Ketidakberatu	ıran Horizont	al
Tipe	Tipe dan Penjelasan Ketidakberaturan	Status	Keterangan
1.	Katidalihanatanan Tanai		Arah X pada lantai 2,4,5, dan 6
1a	Kendakberaturan Torsi	Ada	Arah Y pada lantai 3,4,5,6, dan 7
1b	Ketidakberaturan Torsi Berlebihan	Ada	Arah Y pada lantai 4 dan 5
2	Ketidakberaturan Sudut Dalam	Ada	Seluruh lantai
3	Ketidakberaturan Diskontinuitas Diafragma	Ada	Lantai 7
4	Ketidakberaturan Pergeseran Melintang terhadap Bidang	Tidak Ada	4
5	Ketidakberaturan Sistem Non Paralel	Tidak Ada	4
	Ketidakberat	turan Vertikal	
No.	Tipe dan Penjelasan Ketidakberaturan	Status	Keterangan
1a	Ketidakberaturan Kekakuan Tingkat Lunak	Tidak Ada	
1b	Ketidakberaturan Kekakuan Tingkat Lunak Berlebihan	Tidak Ada	D -
2	Ketidakberaturan Berat (Massa)	Ada	Lantai 3 dan 6
3	Ketidakberaturan Geometri Vertikal	Tidak Ada	- 11 -
4	Diskontinuitas Arah Bidang dalam Ketidakberaturan Elemen Penahan Gaya Lateral Vertikal	Tidak Ada	
5a	Diskontinuitas dalam Ketidakberaturan Kuat Lateral Tingkat	Tidak Ada	-
5b	Diskontinuitas dalam Ketidakberaturan Kuat Lateral Tingkat yang Berlebihan	Tidak Ada	-

Tabel 5.68 Rekapitulasi Ketidakberaturan Struktur

- Pemeriksaan sistem ganda pada SNI 1726:2012 dan SNI 1726:2019 telah memenuhi persyaratan karena sistem rangka pemikul momen mampu memikul gaya seismik desain lebih dari 25 %.
- 7. Pemeriksaan fleksibilitas diafragma dengan perbandingan S/D_e pada diafragma pada arah X tergolong diafragma kaku, namun pada arah Y tergolong diafragma semi kaku. Namun pada pemeriksaan ketidakberaturan horizontal, gedung rumah sakit UII ini mengalami ketidakberaturan torsi berlebihan sehingga tidak dapat digolongkan sebagai diafragma kaku melainkan diafragma semi kaku.
- 8. Pemeriksaan gaya desain diafragma pada gedung rumah sakit UII terjadi peningkatan pada desain menggunakan SNI 1726:2019. Persentase peningkatan gaya desain diafragma yang terjadi pada SNI 1726:2019 terhadap SNI 1726:2012 dengan nilai rata-rata sebesar 10,328 % untuk arah X dan 11,153 % untuk arah Y.
- 9. Nilai simpangan antar tingkat yang terjadi pada rumah sakit UII berdasarkan desain menggunakan SNI 1726:2012 dan SNI 1726:2019 telah memenuhi persyaratan. Namun terjadi peningkatan nilai simpangan antar tingkat pada SNI 1726:2019 terhadap SNI 1726:2012. Persentase peningkatan tersebut dengan rata-rata nilai untuk arah X yaitu 40,926 % sedangkan arah Y yaitu 37,511 %.
- Pemeriksaan pengaruh P-delta berdasarkan SNI 1726:2012 dan SNI 1726:2019 tidak terdapat koefisien stabilitas yang melebihi batas maksimum pada tiap lantai nya, sehingga pemeriksaan koefisien stabilitas memenuhi syarat SNI 1726:2012 dan SNI 1726:2019.

BAB VI

KESIMPULAN DAN SARAN

6.1 Kesimpulan

Berdasarkan analisis dan pembahasan yang telah dilakukan pada penelitian ini, kesimpulan yang dapat diambil yaitu sebagai berikut.

- Ketidakberaturan struktur yang terjadi berdasarkan desain menggunakan SNI 1726:2012 yaitu ketidakberaturan horizontal tipe 1a, 1b, 2, dan 3 serta ketidakberaturan vertikal tipe 2. Ketidakberaturan struktur yang terjadi berdasarkan desain menggunakan SNI 1726:2019 yaitu ketidakberaturan horizontal tipe 1a, 1b, 2, dan 3 serta ketidakberaturan vertikal tipe 2. Ketidakberaturan struktur yang terjadi pada rumah sakit UII berdasarkan SNI 1726:2012 dan SNI 1726:2019 memiliki kesamaan namun terjadi peningkatan gaya-gaya dalam pada SNI 1726:2019.
- 2. Hasil gaya geser dasar yang terjadi pada gedung rumah sakit UII terjadi peningkatan yang signifikan pada desain menggunakan SNI 1726:2019 sebesar 50,503 % terhadap SNI 1726:2012. Peningkatan tersebut dipengaruhi oleh parameter percepatan respons spektral yang meningkat pada SNI 1726:2019 yang diikuti oleh koefisien respons seismik yang digunakan.
- 3. Nilai simpangan antar tingkat yang terjadi pada rumah sakit UII berdasarkan desain menggunakan SNI 1726:2019 mengalami peningkatan yang signifikan terhadap desain menggunakan SNI 1726:2012. Persentase peningkatan dengan rata-rata nilai simpangan antar tingkat arah X yaitu 40,926 % sedangkan arah Y yaitu 37,511 %.
- 4. Hasil gaya desain diafragma pada gedung rumah sakit UII terjadi peningkatan pada desain menggunakan SNI 1726:2019. Persentase peningkatan gaya desain diafragma yang terjadi pada SNI 1726:2019 terhadap SNI 1726:2012 dengan nilai rata-rata sebesar 10,328 % untuk arah X dan 11,153 % untuk arah Y.

6.2 Saran

Berdasarkan kesimpulan di atas, saran yang dapat disampaikan dalam penelitian ini yaitu sebagai berikut.

- 1. Perlu dilakukan penelitian lebih lanjut terkait desain kord dan kolektor akibat peningkatan gaya diafragma sebesar 25 % dikarenakan bangunan mengalami ketidakberaturan horizontal torsi berlebihan berdasarkan SNI 1726:2019.
- 2. Perlu dilakukan penelitian lebih lanjut terkait perkuatan struktur yang dapat digunakan pada bangunan eksisting akibat simpangan antar tingkat yang melebihi batas izin.
- Perlu dilakukan penelitian lebih lanjut terkait kebutuhan tulangan setiap elemen struktur untuk mengakomodir peningkatan gaya-gaya yang terjadi pada desain menggunakan SNI 1726:2019 terhadap SNI 1726:2012.

DAFTAR PUSTAKA

- Budiono, B, dkk. 2017. Contoh Desain Bangunan Tahan Gempa dengan Sistem Rangka Pemikul Momen Khusus dan Sistem Dinding Struktur Khusus di Jakarta. Institut Teknologi Bandung. Bandung.
- Pawirodikromo, W. 2012. Seismologi Teknik dan Rekayasa Kegempaan. Pustaka Pelajar. Yogyakarta.
- Pawirodikromo, W. 2016. Analisis Dinamika Struktur. Pustaka Pelajar. Yogyakarta
- Purba, L. H. 2014. Analisis Kinerja Struktur Pada Bangunan Bertingkat Beraturan Dan Ketidakberaturan Horizontal Sesuai SNI 03-1726-2012. Jurnal Teknik Sipil dan Lingkungan. Vol. 2 No. 4 Desember 2014. Universitas Sriwijaya. Palembang.
- Purbiantoro, F.H. 2020. Perbandingan Kebutuhan Tulangan Gedung FIAI UII Berdasarkan SNI 1726:2012 Dengan Peta Gempa 2010 dan 2017. *Tugas Akhir*. Universitas Islam Indonesia. Yogyakarta.
- Standar Nasional Indonesia. 2012. *Tata Cara Perencanaan Ketahanan Gempa untuk Struktur Bangunan Gedung dan Non Gedung*. SNI 1726. Badan Standarisasi Nasional. Jakarta.
- Standar Nasional Indonesia. 2019. *Tata Cara Perencanaan Ketahanan Gempa untuk Struktur Bangunan Gedung dan Non Gedung*. SNI 1726. Badan Standarisasi Nasional. Jakarta.
- Standar Nasional Indonesia. 2019. Persyaratan Beton Struktural untuk Bangunan Gedung dan Penjelasan. SNI 2847. Badan Standarisasi Nasional. Jakarta.
- Standar Nasional Indonesia. 2020. Persyaratan Beton Struktural untuk Bangunan Gedung dan Penjelasan. SNI 1727. Badan Standarisasi Nasional. Jakarta.

- Sunarjo, Gunawan, M.T., & Pribadi, S. 2012. *Gempa bumi Edisi Populer*. Badan Meteorologi Klimatologi dan Geofisika. Jakarta.
- Wang, Chu-Kia., & Salmon, C, G. 1986. *Disain Beton Bertulang Edisi Keempat*. Terjemahan oleh Binsar Hariandja. Penerbit Erlangga. Jakarta.
- Wicaksana, A. dan Rosyidah, A. 2021. Perbandingan Perancangan Bangunan Tahan Gempa Menggunakan SNI 1726:2012 dan SNI 1726:2019. Jurnal Ilmiah Rekayasa Sipil. Vol. 18 No. 1 Edisi April 2021. Politeknik Negeri Jakarta. Depok.
- Widhiatmoko, G. 2020. Analisis Perilaku Struktur Bangunan Baja Terhadap SNI 1726:2012 dan SNI 1726:2019. *Tugas Akhir*. Universitas Islam Indonesia. Yogyakarta.

Area Lovatory Plat Lonta Plat Lonta PERBEDAAN ELEVASI AREA LAVATORY

PLAT A1 T = 120 mm PLAT A2 T = 160 mm PLAT A3 T = 120 mm PLAT A4 T = 150 mm PLAT A4 T = 150 mm PLAT A5 T = 120 mm PLAT A6 T = 150 mm PLAT A8 T = 100 mm PEMILIK PROYER Contract Strengton TIM PER NO LUMANA HOOK. mutu beton f 'c = 30 MPa TENAGA AHLI PNINF UII-REA 34 mutu beton f 'c = 25 MPa (untuk bor pile) S \$ 04-04 RENCANA PLAT LANTAI 2ELEVASI +7.92 RUMAH SAKIT AKADEMIK UII First, M. WICCOD, MICH. P. baja polos (Ø) fy = 240 MPa Мķ Ø 10.GT. BKALA baja ulir (D) fy = 400 MPa L-Chical A3 R. P. WITCHWARL K 1:500 AND ADDRESS OF TAXABLE Joien Grandakan. Km 6.5 Bankul, Yinguskanta

RENCANA PLAT LANTAI 2 ELEV.+7.92

RENCANA PLAT LANTAL 4 ELEV.+15.92

Area Lavatory Plat Lantai Plat Lantai PERBEDAAN ELEVASI AREA LAVATORY

Area Area Lowdory Plat Lantai Plat Lantai PERBEDAAN ELEVASI AREA LAVATORY

PLAT A1 T = 120 mm PLAT A2 T = 160 mm PLAT A3 T = 120 mm PLAT A4 T = 150 mm PLAT A4 T = 150 mm PLAT A5 T = 120 mm PLAT A6 T = 150 mm PLAT A8 T = 100 mm PEMILIK PROYEK Particular Strendson TIM PERE DOE NO LINGA STRUCTURE AND mutu beton f 'c = 30 MPa TENAGA AHLI PHONE UII-REA -24 mutu beton f 'c = 25 MPa (untuk bor pile) S \$ 04-08 **RENCANA PLAT** RUMAH SAKIT AKADEMIK UII Part II. WIGSON, MICH. PLO baja polos (Ø) fy = 240 MPa Mk ATAP ELEVASI +24.00 Ø 040. OT. BKALA baja ulir (D) fy = 400 MPa 1 Charles A3 k 1:500 AND ADDRESS OF Jolen Grandshan. Kin 6,5 Baniul, Yagyakana

TYPE		341.0K B1 (450 v 80	0)	R	ALOK B2 (450 × 80	0)		ALOK B3 (450 × 60	າງ		ALOK B4 (400 v 60	0)	F	ALOK 85 (300 × 60	0)
BOSICI				ופש פאווד			ופוש סאוות			יפוע פעון ד			ומש פעווד		
POTONGAN															
TUL. ATAS	10 D25	4 D25	10 D25	11 D25	4 D25	11 D25	6 D25	3 D25	6 D25	9 D19	3 D19	9 D19	4 D19	3 D19	4 D19
SENGKANG	2D10 - 100	D10 - 100	2D10 - 100	2D10 - 100	D10 - 100	2D10 - 100	1.5D10 - 100	D10 - 150	1.5010 - 100	1.5010 - 100	D10 - 150	1.5D10 - 100	D10 - 100	D10 - 150	D10 - 100
TUL. PINGGANG		2 D10			2 D10			2 D10			2 D10	•		2 D10	
					N					4					
TYPE	E	BALOK B6 (450 x 60	0)	B	ALOK B7 (400 x 60	0)	E	BALOK B8 (450 x 500))	E	BALOK B9 (400 x 50	0)	В	ALOK B10 (450 x 70	00)
POSISI	tump. Kiri	LAPANGAN	TUMP. KANAN	tump. Kiri	LAPANGAN	TUMP. KANAN	TUMP. KIRI	LAPANGAN	TUMP. KANAN	TUMP. KIRI	LAPANGAN	TUMP. KANAN	tump. Kiri	LAPANGAN	TUMP. KANAN
POTONGAN] <u>. </u>										
TUL. ATAS	7 D25	3 D25	7 D25	8 D19	3 D19	8 D19	6 D25	3 D25	6 D25	5 D19	3 D19	5 D19	10 D25	3 D25	10 D25
TUL. BAWAH	4 D25	5 D25	4 D25	4 D19	5 D19	4 D19	3 D25	6 D25	3 D25	3 D19	5 D19	3 D19	4 D25	9 D25	4 D25
TUL. PINGGANG	1.3010 - 100	2 D10	1.3010 - 100	1.3010 - 100	2 D10	1.3010 - 100	1.3010 - 100	2 D10	1.3010 - 100	010 - 100	2 D10	bic - 100	2010 - 100	2 D10	2010 - 100
					\geq					6					
TYPE	E	ALOK B11 (450 x 70	0)	B	ALOK B12 (300 x 70	10)	B	ALOK B13 (450 x 70	0)	B	ALOK B14 (400 x 60	00)	В	ALOK B15 (300 x 60	00)
POSISI	TUMP. KIRI	LAPANGAN	TUMP. KANAN	tump. Kiri	LAPANGAN	TUMP. KANAN	TUMP. KIRI	LAPANGAN	TUMP. KANAN	TUMP. KIRI	LAPANGAN	TUMP. KANAN	tump. Kiri	LAPANGAN	TUMP. KANAN
POTONGAN															
TUL. ATAS	6 D25	3 D25	6 D25	5 D19	3 D19	5 D19	3 D25	3 D25	3 D25	6 D19	3 D19	6 D19	5 D19	3 D19	5 D19
TUL. BAWAH	3 D25 1.5D10 - 100	6 D25 D10 - 100	3 D25	3 D19 D10 - 100	10 D19 D10 - 150	3 D19 D10 - 100	3 D25 D10 - 100	3 D25 D10 - 150	3 D25 D10 - 100	3 D19 D10 - 100	6 D19 D10 - 150	3 D19 D10 - 100	3 D19 D10 - 100	5 D19 D10 - 150	3 D19 D10 - 100
TUL. PINGGANG	10010 - 100	2 D10	10010 - 100	510 100	4 D10		010 - 100	4 D10	510 100	510 - 100	2 D10		510 100	2 D10	0.0 100
					2	نŲ	灰	Ĺ			X 1900 TEX			BALOK B1-	B15 1:30

PEKERLAAN	PEMILIK PRÖYEK	CONTRACTOR OF	PENDAMPING PERENDANA	TIM PERENDANA		JUCUL GAMBAR	NOCE	NOL	MINK
	_			TENAGA AHLI	PHONE			1.00.0	
RUMAH SAKIT AKADEMIK Uli		N11-			8		S	03-0	2-01
		Mg	1.	NO BA BYANGO BT.	H	DETAIL PENULANGAN RALOK B1-B15		ALA	
LÖKVAR					- č				
Jalan Grandskan. Km 4,5 Bansi, Yigyakana		Read Program Manager	ANTO SALES AND STAR	RANGE MAN AND	R		1:1	X0	A3

4 D19	4 D19	4 D19	3 D19	3 D19	3 D19	3 D19	3 D19	3 D19	6 D25	6 D25	6 D25	4 D25	4 025	4 025
4 D19	4 D19	4 D19	3 D19	3 D19	3 D19	3 D19	3 D19	3 D19	3 D25	3 D25	3 D25	3 D25	3 D25	3 D25
D10 - 100	D10 - 100	D10 - 100	D10 - 100	D10 - 150	D10 - 100	D10 - 100	D10 - 150	D10 - 100	D10 - 100	D10 - 100	D10 - 100	D10 - 100	D10 - 100	D10 - 100
	2 D10			2 D10			2 D10			2 D10			2 D10	
				P					\leq					
E	ALOK B21 (300 x 80	0)	В	ALOK B22 (400 x 60	00)	В	ALOK B23 (300 x 5	00)	BAL	ОК B24 (200 x 500)		BALOK	B25 (150 x 500)	
TUMP. KIRI	LAPANGAN	TUMP, KANAN	TUMP. KIRI	LAPANGAN	TUMP, KANAN	Tump, Kiri	LAPANGAN	TUMP, KANAN	TUMP. KIRI	LAPANGAN	TUMP, KANAN	Tump, Kiri	LAPANGAN	TUMP, KANAN
UNE- KNA		6 025 6 025 2010 - 100	6 D25 6 D25 1.5010 - 100	6 025 6 025 6 025 010 - 150 2 010	6 025 6 025 6 025 1.5010 - 100	3 DI9 3 DI9 010-100	3 D19 3 D19 3 D19 2 D10	3 D10 3 D10 3 D10 010-100	3 D19 3 D19 3 D19 010-100	3 D19 3 D19 2 D10	3 D19 3 D19 010-100	2 D16 2 D16 2 D16 D10-100	2 D16 2 D16 2 D16 2 D16 D10-150 2 D10	2 D16 2 D16 2 D16 D10-100
8	ALOK B26 (400 x 70	0)	В	ALOK B27 (300 x 70	00)		BALOK B28 (300 x	600)		BALOK B29 (300 x	500)		BALOK B30 (300 x	800)
TUMP. KIRI	LAPANGAN	TUMP. KANAN	TUMP. KIRI	LAPANGAN	TUMP. KANAN	tump. Kiri	LAPANGAN	TUMP. KANAN	tump. Kiri	LAPANGAN	TUMP. KANAN	tump. Kiri	LAPANGAN	TUMP. KANAN
]						

BALOK B18 (250 x 400)

LAPANGAN

TUMP. KANAN

tump. Kiri

BALOK B16 (300 x 600)

LAPANGAN

TUMP. KANAN

TYPE POSISI

POTONGAN

TUL. ATAS

TUL. BAWAH

SENGKANG TUL. PINGGANG

> TYPE POSISI

> > POTONGAN

TUL. ATAS TUL. BAWAH

SENGKANG

TUL, PINGGANG

TYPE POSISI

POTONGAN

TUL, ATAS

TUL BAWAH

SENGKANG

TUL. PINGGANG

tump. Kiri

7 D25

4 D25

2D10 - 100

7 D25

D10 - 100

2 D10

4 D25

2D10 - 100

3 D25

1.5D10 - 100

4 D25

D10 - 150

2 D10

3 D25

1.5D10 - 100

3 D19

D10 - 100

5 D19

2 D10

D10 - 150

3 D19

D10 - 100

3 D25

D10 - 100

3 D25

D10 - 100

2 D10

BALOK B17 (300 x 500)

LAPANGAN

TUMP. KANAN

tump. Kiri

DETAIL PENULANGAN BALOK B16-B30

6 D25

D10 - 100

4 D10

3 D25

1.5D10 - 100

3 D25

1.5D10 - 100

BALOK B20 (400 x 500)

LAPANGAN

tump. Kanan

tump. Kiri

ſ	PEKERIAAN	PEMILIK PRÖYEK		PENGAMPING PERENDANA	TIM PERENDANA		JUDUL GAMMAR	HODE	NQL	MINR
		-			TENAGA AHLI	PHRAF				
	RUMAH SAKIT AKADEMIK UII		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		LING STRONG LINE	-2-		S	03-0	-02
	. An and		Nup		NOSLISYAMOD.ST.	Ø	BALOK B16-B30	80	44	
			GLILLUTTI NORMALINE.	and a state of the state		h		4.4		A3
	Benul, Yegelete		Read Vision Vision	All Mail	AND CONTRACTOR	8		1.0		

3 D25

D10 - 100

BALOK B19 (400 x 600)

LAPANGAN

tump. Kanan

tump. Kiri

6 D19	3 D19	6 D19	2 D16	2 D16	2 D16	7 D25	4 D25	7 D25	10 D19	4 D19	10 D19
3 D19	6 D19	3 D19	2 D16	2 D16	2 D16	4 D25	7 D25	4 D25	4 D19	7 D19	4 D19
D10 - 100	D10 - 150	D10 - 100	D10-100	D10-150	D10-100	1.5D10 - 150	D10 - 100	1.5010 - 150	1.5010 - 150	D10 - 100	1.5D10 - 150
	2 D10	•		4 D10							

tump. Kiri

BALOK B33 (600 x 500)

LAPANGAN

TUMP. KANAN

BALOK B34 (600 x 500)

LAPANGAN

TUMP. KANAN

tump. Kiri

TYPE	В	ALOK B35 (500 x 50	00)	В	ALOK B36 (100 x 7	700)		BALOK B37 (750 x 600)		B	ALOK B38 (300 x 10	00)
POSISI	tump. Kiri	LAPANGAN	tump. Kanan	tump. Kiri	LAPANGAN	TUMP. KANAN	tump. Kirki	LAPANGAN	TUMP. KANAN	tump. Kiri	LAPANGAN	TUMP. KANAN
POTONGAN												
TUL. ATAS	6 D19	3 D19	6 D19	2 D13	2 D13	2 D13	7 D25	7 D25	7 D25	7 D25	4 D25	7 D25
TUL. BAWAH	3 D19	6 D19	3 D19	2 D13	2 D13	2 D13	7 D25	7 D25	7 D25	4 D25	7 D25	4 D25
SENGKANG	D10 - 150	D10 - 100	D10 - 150	D10-100	D10-150	D10-100	D13 - 100	D13 - 100	D13 - 100	2D10 - 100	D10 - 100	2D10 - 100
TUL. PINGGANG					4 D10			2 D10			4 D10	
					\leq				10			

BALOK B32 (150 x 700)

LAPANGAN

tump. Kanan

BALOK B31 (300 x 700)

LAPANGAN

TUMP. KANAN

tump. Kiri

TYPE

POTONGAN

TUL. ATAS TUL. BAWAH SENGKANG TUL. PINGGANG tump. Kiri

TYPE		SLOOF S1 (400 x 80	0)	:	SLOOF S2 (400 x 70	00)		SLOOF S3 (400 x 60	0)		SLOOF S4 (250 x 4	00)		SLOOF S5 (300 x 50	00)
POSISI	tump. Kiri	LAPANGAN	TUMP. KANAN	tump. Kiri	LAPANGAN	TUMP. KANAN	tump. Kiri	LAPANGAN	TUMP. KANAN	tump. Kiri	LAPANGAN	TUMP. KANAN	tump. Kiri	LAPANGAN	TUMP. KANAN
POTONGAN															
TUL. ATAS	6 D25	6 D25	6 D25	6 D25	6 D25	6 D25	4 D19	4 D19	4 D19	3 D19	3 D19	3 D19	4 D19	4 D19	4 D19
TUL. BAWAH	6 D25	6 D25	6 D25	6 D25	6 D25	6 D25	4 D19	4 D19	4 D19	3 D19	3 D19	3 D19	4 D19	4 D19	4 D19
SENGKANG	D10 - 100	D10 - 150	D10 - 100	D10 - 100	D10 - 150	D10 - 100	D10 - 100	D10 - 150	D10 - 100	D10 - 100	D10 - 150	D10 - 100	D10 - 100	D10 - 150	D10 - 100
TUL. PINGGANG		2 D10			2 D10	7.9		2 D10						2 D10	

PEKERJAAN	PEMILIK PROYEK		PENGANIPING PERENDANA	TIM PERENDANA		JUDUL GAMBAR	HODE	NQLI	MINA
	_			TENAGA AHLI	PHONE				-
Rumah Sakit Akademik Uli		~~~~		1.10007-07010-100.	-8-		S	03-0)-03
		Nup		NO BALETYATMOND. ST.	Ø	BALOK B31-B36		uA I	
LOIVE		the second second second second	I V~		1	8 BI 00E			40
Joien Grandskan. Kin 4,6 Bankd, Yogyakanta		Read Voter Voter	AND DE LET AND DE LET AND	R. ARAB PROF. Man.			1:	0	мJ

DETAIL PENULANGAN BALOK B31-B36 DAN SLOOF

KOLOM	KOLOM K1 Tumpuan lapangan	KOLOM K2 Tumpuan lapangan	KOLOM K3 Tumpuan lapangan	KOLOM K4 Tumpuan lapangan	KOLOM K5 Tunpuan lapangan	KOLOM K6 Tumpuan lapangan
LANTAI DASAR						
TUL. UTAMA SENGKANG	16 D19 16 D19 2010 - 100 1.5010 - 150	16 D19 16 D19 2D10 - 100 1.5D10 - 150	12 D19 12 D19 1.5D10 - 100 D10 - 150	16 D19 16 D19 2010 - 100 1.5010 - 150	20 D19 20 D19 2010 - 100 1.5010 - 150	20 D19 20 D19 2010 - 100 1.5010 - 150
KOLOM	KOLOM K7	KOLOM KB	KOLOM K9	KOLOM K10	KOLOM K11	KOLOM K12
LANTA	TUMPUAN LAPANGAN	TUMPUAN LAPANGAN	TUMPUAN LAPANGAN	TUMPUAN LAPANGAN	TUNPUAN LAPANGAN	TUMPUAN LAPANGAN
LANTAI DASAR						
TUL. UTAMA SENGKANG DIMENSI	24 D19 24 D19 2.5D10 - 100 1.5D10 - 150 600 X 800	20 D19 20 D19 2D10 - 100 1.5D10 - 150 600 x 800	16 D25 16 D25 2.5D10 - 100 1.5D10 - 150 600 X 800 500	16 D19 16 D19 2010 - 100 1.5010 - 150 500 x 700	24 D19 24 D19 2D10 - 100 1.5D10 - 150 600 X 600 600	18 D25 18 D25 2D10 - 100 2D10 - 100 500 x 700
KOLOM	KOLOM K13	KOLOM K14	KOLOM K15	KOLOM K16	KOLOM K17	KOLOM K18
	TUMPUAN LAPANGAN	TUMPUAN LAPANGAN	TUMPUAN LAPANGAN	TUMPUAN LAPANGAN	TUNPUAN LAPANGAN	TUMPUAN LAPANGAN
LANTAI DASAR						
TUL. UTAMA SENGKANG	18 D25 18 D25 2D10 - 100 2D10 - 100	20 D25 20 D25 2D10 - 100 2D10 - 100	16 D19 16 D19 2D10 - 100 2D10 - 100	20 D19 20 D19 2D10 - 100 1.5010 - 150	20 D19 20 D19 2D10 - 100 1.5010 - 150	8 D19 8 D19 D10 - 100 D10 - 100
	500 X 700	300 X 700				
LANTA	KULUM KI9 TUMPUAN LAPANGAN	TUMPUAN LAPANGAN	TUMPUAN LAPANGAN	TUMPUAN LAPANGAN	TUMPUAN LAPANGAN	TUNPUAN LAPANGAN
LANTAI DASAR						
TUL. UTAMA SENGKANG	8 D19 8 D19 D10 - 100 D10 - 100	10 D19 10 D19 D10 - 100 D10 - 100	8 D25 8 D25 1.5 D10-100 1.5 D10-150	16 D19 16 D19 1.5D10 - 100 D10 - 150	16 D19 16 D19 1.5010 - 100 D10 - 150	16 D19 16 D19 1.5010 - 100 D10 - 150
DIMENSI	L500 X 500 X 200	1500 X 500 X 250	300 x 700	600 X 600	DETAIL PENULANGAN	500 X 500 KOLOM LANTAI DASAR SKALA 1:30
			mutu beton f'c = 30 MPa mutu beton f'c = 25 MPa (untul baja polos (Ø) fy = 240 MPa baja ulir (D) fy = 400 MPa	k bor pile) RUMAH SAKT AKADEMIK UII Pase Libration		BOWA AGA GAMMA KODE KODE HOLEMAN J MANY MOLEMAN KODE KOLEMAN ABL M DETAIL S UII-RBA ABL Ø DETAIL S UII-RBA ABL Ø LANTAI DABAR BOULA BOULA ABL Ø LANTAI DABAR 1:30 A3

KOLOM LANTAJ	KOLOM K1 TUMPUAN LAPANGAN	KOLOM K2 Tumpuan lapangan	KOLOM K4 TUMPUAN LAPANGAN	KOLOM K5 Tumpuan lapangan	KOLOM K6 Tumpuan Lapangan	
LANTAI 2						
TUL. UTAMA SENGKANG DIMENSI	24 D19 24 D19 2D10 - 100 1.5D10 - 150 500 X 700	16 D19 16 D19 2010 - 100 1.5010 - 150 500 X 700	16 D19 16 D19 2D10 - 100 1.5D10 - 150 500 X 700	16 D19 16 D19 2D10 - 100 1.5D10 - 150 500 X 800 500 X 800	16 D19 16 D19 2010 - 100 1.5010 - 150 500 X 800	
KOLOM	KOLOM K7	KOLOM K8	KOLOM K9	KOLOM K10	KOLOM K12	l
LANTAI	TUMPUAN LAPANGAN	TUMPUAN LAPANGAN	TUMPUAN LAPANGAN	TUMPUAN	TUMPUAN LAPANGAN	
LANTAI 2						
TUL. UTAMA SENGKANG	16 D19 16 D19 2D10 - 100 1.5D10 - 150	20 D19 20 D19 2D10 - 100 1.5D10 - 150	16 D25 16 D25 2.5010 - 100 1.5010 - 150	16 D19 16 D19 2D10 - 100 1.5D10 - 150	14 D25 14 D25 2010 - 100 2010 - 100	
DIMENSI	500 X 800	500 X 800	500 X 800	500 x /00	500 x 700	
LANTAI	KOLOM K13 TUMPUAN LAPANGAN	KOLOM K14 TUMPUAN LAPANGAN	KOLOM K15 TUMPUAN LAPANGAN	KOLOM K16 TUMPUAN LAPANGAN	KOLOM K17 Tumpuan Lapangan	
LANTAI 2						
TUL. UTAMA SENGKANG DIMENSI	14 D25 14 D25 2010 - 100 2010 - 100 500 X 700	20 D25 20 D25 2D10 - 100 2D10 - 100 500 X 700	16 D19 16 D19 2D10 - 100 2D10 - 100 500 X 700	16 D19 16 D19 2D10 - 100 1.5D10 - 150 500 X 800	20 D19 20 D19 2010 - 100 1.5010 - 150 500 X 800	
KOLOW					1	
LANTAI	TUNPUAN LAPANGAN	KULUM KI9 TUMPUAN LAPANGAN	TUMPUAN LAPANGAN	TUMPUAN LAPANGAN		
LANTAI 2						
TUL. UTAMA SENGKANG	8 D19 8 D19 D10 - 100 D10 - 100	8 D19 8 D19 D10 - 100 D10 - 100	10 D19 10 D19 D10 - 100 D10 - 100	8 D25 8 D25 1.5 D10-100 1.5 D10-150	DETAIL PENULANGAN KOLO	DM LANTAL 2 👝
DIMENSI	L500 X 500 X 250	L500 X 500 X 200	1 T500 X 500 X 250	300 X 700 PEKELIK PROYEK *20 01		SKALA 1:30 U
			mutu beton f 'c = 30 MPa mutu beton f 'c = 25 MPa (untuk bor pile) baja polos (\emptyset) fy = 240 MPa baja ulir (D) fy = 400 MPa			DETAIL ULANGAN KOLOM LANTAI 2 1:20 A

A3

KOLOM	KOLC	M K4	KOLO	M K5	KOLO	М К6	KOLO	М К7	KOLO	М К8
LANTA	TUMPUAN	LAPANGAN								
LANTAI 3										
TUL. UTAMA	16 D19	16 D19	20 D19	20 D19						
SENGKANG	2D10 - 100	1.5D10 - 150	2010 - 100	1.5D10 - 150	2D10 - 100	1.5D10 - 150	2010 - 100	1.5D10 - 150	2D10 - 100	1.5D10 - 150
DIMENSI	500	X 700	500 X	(800	500	X 800	500	X 800	500	X 800

KOLOM	KOLC	М К9	KOLO	M K10	KOL	OM K12	KOLO	и к13	KOLO	M K14
LANTA	TUMPUAN	LAPANGAN	TUMPUAN	LAPANGAN	TUMPUAN	LAPANGAN	TUMPUAN	LAPANGAN	TUMPUAN	LAPANGAN
LANTAI 3										
TUL. UTAMA	16 D25	16 D25	16 D19	16 D19	14 D25					
SENGKANG	2.5010 - 100	1.5D10 - 150	2010 - 100	1.5010 - 150	2D10 - 100	2010 - 100	2D10 - 100	2D10 - 100	2D10 - 100	2010 - 100
DIMENSI	500	X 800	500	X 700	500	D X 700	500	X 700	500	X 700

KOLOM	KOLO	W K18	KOLON	/ K19	KOLO	M K20	KOLO	M K21	KOLO	Ж К25
LANTA	TUMPUAN	LAPANGAN	TUMPUAN	LAPANGAN	TUMPUAN	LAPANGAN	TUMPUAN	LAPANGAN	TUMPUAN	LAPANGAN
LANTAI 3										
TUL. UTAMA	8 D19	8 D19	8 D19	8 D19	10 D19	10 D19	8 D25	8 D25	6 D16	6 D16
SENGKANG	D10 - 100	1.5 D10-100	1.5 D10-150	D10-100	D10-150					
DIMENSI	L500 X 5	00 X 250	L500 X 5	00 X 200	T500 X 5	500 X 250	300 >	(700	150	x 400

DETAIL PENULANGAN KOLOM LANTAI 3 SKALA 1:30

PEMILIK PROYEK "Think state NOLINAM PEKERNAAN TIM PERE JUDUL GALGA HOOE mutu beton f 'c = 30 MPa TENAGA AHLI PNINF S UII-R8A 02-D-05 mutu beton f 'c = 25 MPa (untuk bor pile) baja polos (\emptyset) fy = 240 MPa baja ulir (D) fy = 400 MPa -8-DETAIL PENULANGAN KOLON LANTAI 3 RUMAH SAKIT AKADEMIK UII 10Ufr Ø MOJO.GT. OKALA LOVA A3 1:30 REAL PROPERTY AND ADDRESS OF THE PARTY OF TH k Jalan Grandskan, Kim 6,5 Banud, Yingyakana NAL AND A DESCRIPTION OF

KOLOM	KOLC	M K4	KOLON	M K5	KOLO	м к6	KOLO	M K7	KOLC	м кв
LANTA	TUMPUAN	LAPANGAN								
LANTAI 4										
TUL. UTAMA	16 D19	16 D19								
SENGKANG	2010 - 100	1.5D10 - 150	2010 - 100	1.5010 - 150	2D10 - 100	1.5D10 - 150	2D10 - 100	1.5010 - 150	2D10 - 100	1.5D10 - 150
DIMENSI	500	X 700	500 X	800	500 3	K 800	500	K 800	500	X 800

KOLOM	KOLC	М К9	KOLO	M K10	KOLO	DM K12	KOLON	1 K13	KOLO	M K14
LANTAI	TUMPUAN	LAPANGAN	TUMPUAN	LAPANGAN	TUMPUAN	LAPANGAN	TUMPUAN	LAPANGAN	TUMPUAN	LAPANGAN
LANTAI 4										
TUL. UTAMA	12 D25	12 D25	16 D19	16 D19	14 D25					
SENGKANG	2D10 - 100	1.5D10 - 150	2010 - 100	1.5010 - 150	2D10 - 100	2D10 - 100	2010 - 100	2D10 - 100	2D10 - 100	2D10 - 100
DIMENSI	500	X 800	500	X 700	500	X 700	500 2	(700	500	X 700

KOLOM	KOLO	M K18	KOLO	/ K19	KOLO	м к20	KOLO	M K21	KOLO	M K25
LANTA	TUMPUAN	LAPANGAN	TUMPUAN	LAPANGAN	TUMPUAN	LAPANGAN	TUMPUAN	LAPANGAN	TUMPUAN	LAPANGAN
LANTAI 4										
TUL. UTAMA	8 D19	8 D19	8 D19	8 D19	10 D19	10 D19	8 025	8 D25	6 D16	6 D16
SENGKANG	D10 - 100	1.5 D10-100	1.5 D10-150	D10-100	D10-150					
DIMENSI	L500 X 5	00 X 250	L500 X 5	00 X 200	T500 X 5	500 X 250	300	K 700	150	K 400

DETAIL PENULANGAN KOLOM LANTAI 4

	ſ	PEKERJAAN	PEMILIK PROYEK		PENGAMPING PERENGANA	TIM PERENDANA		JUDUL GAMMAR	HODE	NO LEN	MAR
mutu beton f´c = 30 MPa	- [-			TENAGA AHLI	PNRM			1.00.00	
mutu boton f 'o - 25 MPa (untuk bor pilo)			(Ā)			IT. HANDONDY DOLD, MEA			e		
mutu beton i c - 25 mru (untuk boi pile)		RUMAH SAKIT AKADEMIK UII	T	~	- Part IL WIDDOOL MIDDL PLO	REPAIRS FOR STATES	A	DETAIL	9	02-D	-95
baja polos (Ø) fy = 240 MPa				CAUKE -	All Bally		~	BENILI ANGAN KOLOM			
bain ulir (D) fy $= 400 \text{ MPa}$	L		822	P		Aller Aller Anno Aller	1 17		80	LA I	
	- [LÖKVAN					Ť	LANIAI4			
	[Jalen Grandelan. Kin 8,5	Pandastadi versidasi dedeka taken	TALL DUCTOR OF TALLET	PRIME TO BUILD REAL	R. ARABITATING MILLINGS.	l kr		- 1:1	10	A3
		Bankd, Yagyakanta	CONVERSION BLAND STORES	iliaian Vistal'ili			A				

KOLOM	KOLO	M K4	KOLC	M K6	KOLO	ЭМ К7	KOLC	М КВ	KOLO	М К9
LANTA	TUMPUAN	LAPANGAN								
LANTAI 5										
TUL. UTAMA	16 D19	16 D19	12 D25	12 D25						
SENGKANG	2D10 - 100	1.5D10 - 150	2010 - 100	1.5D10 - 150	2D10 - 100	1.5010 - 150	2D10 - 100	1.5D10 - 150	2D10 - 100	1.5D10 - 150
DIMENSI	500	X 700								

-										
KOLOM	KOLO	M K12	KOLON	1 K14	KOLC	M K18	KOLO	/ K19	KOLO	W K20
LANTAI	TUMPUAN	LAPANGAN	TUMPUAN	LAPANGAN	TUMPUAN	LAPANGAN	TUMPUAN	LAPANGAN	TUMPUAN	LAPANGAN
LANTAI 5										
TUL. UTAMA	14 D25	14 D25	14 D25	14 D25	8 D19	8 D19	8 D19	8 D19	10 D19	10 D19
SENGKANG	2D10 - 100	2D10 - 100	2010 - 100	2D10 - 100	D10 - 100					
DIMENSI	500	X 700	500 >	(700	L500 X	500 X 250	L500 X 5	00 X 200	T500 X 5	00 X 250

KOLOM	KOLO	4 K21	KOLO	N K25
	TUMPUAN	LAPANGAN	TUMPUAN	LAPANGAN
LANTAI 5				
TUL. UTAMA	8 D25	8 D25	6 D16	6 D16
ENGKANG	1.5 D10-100	1.5 D10-150	D10-100	D10-150
DIMENSI	300 X	700	150 X	400

DETAIL PENULANGAN KOLOM LANTAI 5

	[PEKERIAAN	PEMLIK PROYEK		PENGAMPING PERENDANA	TIM PERENGANA		JUDUL GAMMAR	HODE	NOLE	ANNR.
mutu beton f c = 30 MPa			-			TEXAGA AHLI	PHONE			1 101 15	
mutu boton f'o - 25 MPa (untuk bor pilo)			(Ā)			IN HANDONEYGARD, MEA		1	e		
inutu beton i c - 25 mru (untuk boi pile)		RUMAH SAKIT AKADEMIK UII	T	~···	- MILL & WICCOOL MICH. PLD.	NUMBER PROFILE (7000) Vana	×	DETAIL	9	02-0	HQ7
baja polos (Ø) fy = 240 MPa 🛛 🛛				NAUKE -	ANTINA		0	BENUL ANGAN KOLON			
hain ulir (D) fy $= 400 \text{ MBa}$			8827	P	1.	All States	171		BICAL:	ALA	
		LOID			l Va		Ť	LANIAIO			40
		Jalen Grandsken. Km 8,5	Pandastadi versidasi dedeka taken		CANFID GUILAR MAN. BT.M.B.	N. AGARD JOSHIL, M. ROM.	l kr		1:	30	A3
		Bankd, Yagyakanta	CONVERSION BLAND STORES	illadan Viskal'uli			A				

							JKALA 1:30	Ψ		
	PEKERAAN	PEMILIK PROYEK		PENGAMPING PERENGANA	TIM PERENDANA		JUDUL GAMBAR	HODE	NOLIN	ANNR.
mutu beton f´c = 30 MPa		-			TENAGA AHLI	PHONE			110.0	-
mutu beton f 'c = 25 MPa (untuk bor pile)	RUMAH SAKIT AKADEMIK UII		NIK		ALTERNATION AND AND A	***	DETAIL	S	02-D	-06
baja ulir (D) fy = 400 MPa	Läiväi		Cup.	l v	NOSLIGYANGID.GT.	Ø	PENULANGAN KOLOM ATAP	84	44	
[]	Jaion Grandsten, Kim 4,6 Bantul, Yagustanta		Read Property Victoria	All Martine	AND INC. NO.	R		1:1	. 00	A3

ETAIL	PENULANGAN	KOLOM	ATAP	ሐ
		9	(ALA 1:30	

KOLOM	KOLOM K18		KOLOM K19		KOL	OM K25	KOLOM K26		
LANTAI	TUMPUAN	LAPANGAN	TUMPUAN	LAPANGAN	TUMPUAN	LAPANGAN	TUMPUAN	LAPANGAN	
LANTAI ATAP									
TUL, UTAMA	8 D19	8 D19	8 D19	8 D19	6 D16	6 D16	8 D19	8 D19	
SENGKANG	D10 - 100	D10 - 100	D10 - 100	D10 - 100	D10-100	D10-150	D10 - 100	D10 - 150	
DIMENSI	AENSI L500 X 500 X 250		L500 X 500 X 200		150	0 X 400	350 X 350		