
# ANALISIS PENGENDALIAN KUALITAS MENGGUNAKAN INTEGRASI STATISTICAL PROCESS CONTROL (SPC) DAN TRIZ PADA PROSES SPRAY PAINTING

(Studi Kasus: PT.Tritek Indonesia)

Diajukan Sebagai Salah Satu Syarat Untuk Memperoleh Gelar Sarjana Strata-1 Pada Jurusan Teknik Industri Fakultas Teknologi Industri



Disusun Oleh:

Nama: Muhammad Ridwan

NIM : 17522128

PROGRAM STUDI TEKNIK INDUSTRI FAKULTAS TEKNOLOGI INDUSTRI UNIVERSITAS ISLAM INDONESIA YOGYAKARTA 2021

## SURAT PERNYATAAN KEASLIAN

### PERNYATAAN KEASLIAN

Dengan ini saya menyatakan bahwa tugas akhir ini merupakan hasil kerja saya sendiri kecuali dibeberapa bagian terdapat kutipan, yang mana setiap kutipan sudah saya cantumkan sumbernya. Jika dikemudian hari terbukti pengakuan saya ini tidak benar dan melanggar peraturan, maka saya bersedia menerima sanksi atau hukuman apapun sesuai peraturan yang berlaku.

Cikarang, 03 Juni 2021



Muhammad Ridwan

### SURAT KETERANGAN SELESAI PENELITIAN



# PT. TRITEK INDONESIA

Stamping, Machining, Anodizing, Painting
Kampung Bugel Balam No. 37, Rt.02/Rw.01, Kel Hegarmanah, Cikarang Timur
Telp.: 08111444070; 08111555069 Fex.: 021-49770002

### SURAT KETERANGAN SELESAI PENELITIAN

### Yang bertanda tangan di bawah ini :

Nama Lengkap

: RICKY YULIANTO SP S

**JABATAN** 

: MANAGER HRD

### Menerangkan bahwa:

Nama

: MUHAMMAD RIDWAN

Alamat

: Jl. Menjangan VI P4 no. 1 Rt. 06/ RW. 09 Cikarang Baru

NIM

: 17522128

Semester

:8 ( Delapan )

Jurusan

: Program Studi Teknik Industri, Fakultas Teknologi Industri

Nama Universitas

: UNIVERSITAS ISLAM INDONESIA ( UII )

telah selesai melakukan Penelitian di PTTRITEK INDONESIA yang beralamat di Kp. Bugel Salam no. 37, Rt.02/RW.01, Kel. Hegarmanah, Cikarang Timur, terhitung mulai dari tanggal 1 Maret 2021 s/d 01 Juni 2021, untuk memperoleh data dalam rangka penyusunan Tugas Akhir yang berjudul " ANALISIS PENGENDALIAN KUALITAS UNTUK MENGURANGI JUMLAH PRODUK DEFECT DARI HASIL PROSES SPRAY PAINTING MENGGUNAKAN METODE FMEA DAN ROOT CAUSE ANALYSIS". Demikian Surat Keterangan ini disampaikan untuk dipergunakan sebagaimana fungsinya.

Cikarang, 03 Juni 2021



### LEMBAR PENGESAHAN DOSEN PEMBIMBING

### LEMBAR PENGESAHAN DOSEN PEMBIMBING

### ANALISIS PENGENDALIAN KUALITAS MENGGUNAKAN INTEGRASI STATISTICAL PROCESS CONTROL (SPC) DAN TRIZ PADA PROSES SPRAY PAINTING

(Studi Kasus: PT.Tritek Indonesia)

### TUGAS AKHIR

# Disusun Oleh: Nama : Muhammad Ridwan No. Mahasiswa :17522128 Fakultas/Jurusan :FTI/Teknik Industri Cikarang, 30 November 2021 Menyetujui, Dosen Pembimbing Tugas Akhir

### LEMBAR PENGESAHAN PENGUJI

### LEMBAR PENGESAHAN DOSEN PENGUJI

ANALISIS PENGENDALIAN KUALITAS MENGGUNAKAN INTEGRASI STATISTICAL PROCESS CONTROL (SPC) DAN TRIZ PADA PROSES SPRAY PAINTING

(Studi Kasus: PT.Tritek Indonesia)

### Disusun Oleh:

Nama : Muhammad Ridwan

No. Mahasiswa :17522128

Fakultas/Jurusan :FTI/Teknik Industri

Telah di pertahankan di depan sidang penguji sebagai salah satu syarat untuk memperoleh gelar Sarjana Strata-1 Teknik Industri Fakultas Teknologi Industri

Universitas Islam Indonesia

Cikarang, 30 November 2021

Tim Penguji

Sri Indrawati, S.T., M.Eng.

Ketua

Vembri Noor Helia, ST., MT.

Anggota 1

Suci Miranda, S.T. M.Sc.

Anggota 2

Mengetahui

Ketua Program Studi Teknik Industri

Fakultas Teknologi Industri

Universitas Islam Indonesia

YOGYARARTA-

### HALAMAN PERSEMBAHAN

Laporan tugas akhir ini saya persembahkan untuk orang tua tersayang Bapak Edi Nopal dan Ibu Lisa Virnalia yang telah berusaha dengan keras untuk membesarkan saya dengan kasih sayang dan perhatian yang tiada hentinya serta doa yang selalu terucap dari lisan beliau, semoga ALLAH SWT selalu menjaga dan merahmati beliau dan juga kepada saudara-saudara saya yang telah mendukung saya dan memberikan semangat dalam melaksanakan pendidikan yang saya tempuh ini.

Kepada Ibu Sri Indrawati, S.T., M. Eng yang telah meluangkan waktunya untuk membimbing saya sehingga saya dapat melaksanakan pengerjaan laporan tugas akhir ini dengan baik, Semoga Allah SWT selalu menjaga ibu tetap dalam keimanan dan selalu diberikan kesehatan.



# MOTTO

"Sesungguhnya bersama kesulitan ada kemudahan"

(QS. Al- Insyirah: 6)



### KATA PENGANTAR



Assalamualaikum Warahmatullahi Wabarakatuh

Alhamdulillahirabbil'alamin, segala puji syukur atas kehadirat Allah Subhanahu wa Ta'ala yang telah melimpahkan segala rahmat dan hidayah-Nya, sehingga penulis dapat menyelesaikan laporan kerja praktik ini dengan baik. Tak lupa sholawat serta salam senantiasa penulis ucapkan kepada nabi besar Muhammad SAW beserta keluarga, sahabat, serta para pengikutnya yang telah berjuang dan membimbing kita keluar dari kegelapan menuju kehidupan penuh dengan ilmu pengetahuan dan akhlak mulia. Sehingga penulis dapat menyelesaikan laporan tugas akhir di PT Tritek Indonesia dengan judul "ANALISIS USULAN PERBAIKAN MENGGUNAKAN INTEGRASI STATISTICAL PROCESS CONTROL (SPC) DAN TRIZ PADA PROSES SPRAY PAINTING" (Studi Kasus: PT.Tritek Indonesia). Pelaksanaan tugas akhir yang diadakan merupakan salah satu prasyarat untuk memperoleh gelar sarjana Strata Satu (S1) pada jurusan Teknik Industri Fakultas Teknologi Industri Universitas Islam Indonesia. Dalam pelaksanaan penyusunan laporan tugas akhir, tentunya ada tantangan dan rintangan yang dihadapi ketika pengerjaan laporan tugas akhir ini. Akan tetapi penulis banyak mendapatkan bimbingan, arahan, bantuan, dukungan, dan kesempatan dari berbagai pihak, sehingga dapat memperlancar pembuatan laporan ini. Untuk itu penulis ingin mengucapkan rasa terima kasih kepada

- 1. Bapak Prof. Dr. Ir. Hari Purnomo, M.T. selaku Dekan Fakultas Teknologi Industri, Universitas Islam Indonesia.
- 2. Bapak Dr. Taufiq Immawan, S.T., M.M. selaku Kepala Program Studi Teknik Industri, Fakultas Teknologi Industri, Universitas Islam Indonesia.
- 3. Ibu Sri Indrawati, S.T., M. Eng. selaku Dosen Pembimbing tugas akhir Program Studi Teknik Industri, Fakultas Teknologi Industri, Universitas Islam Indonesia.
- 4. PT Tritek Indonesia yang telah memberikan kesempatan dan fasilitas sehingga memudahkan penulis dalam melaksanakan penulisan tugas akhir.

ix

5. Bapak Robiansyah selaku pembimbing lapangan tugas akhir yang telah memberi

arahan, bimbingan, meluangkan waktunya untuk konsultasi, dan pengambilan data

pada saat melakukan penulisan tugas akhir.

6. Kedua orang tua penulis yang telah memberikan doa, semangat, dan motivasi dalam

pelaksanaan kerja praktik ini.

7. Seluruh pekerja PT Tritek Indonesia pada bagian Departemen Produksi bagian

Spray Painting yang bersedia menjadi narasumber penulis sehingga diperolehnya

data dan yang telah memberikan informasi terkait dengan proses kerja yang

dilakukan di perusahaan.

Penulis menyadari bahwa penulisan laporan tugas akhir ini masih jauh dari sempurna,

untuk itu penulis mengharapkan kritik, saran dan masukan yang membangun demi

kesempurnaan penulisan di masa yang akan datang. Akhir kata semoga laporan kerja

praktik ini dapat digunakan sebagai mana mestinya serta berguna bagi penulis

khususnya dan bagi para pembaca pada umumnya.

Wassalamu'alaikum Warahmatullahi Wabarakatuh

Cikarang, Juli 2021

Muhammad Ridwan NIM.17522128

### **ABSTRAK**

PT Tritek Indonesia merupakan perusahaan jasa yang begerak di bidang industri metal stamping, anodizing dan painting Perusahaan didirikan pada tahun 2010 dengan nama CV. Tritech Indonesia. Munculnya produk cacat atau *defect* pada hasil proses spray painting tentu saja merugikan perusahaan, dikarenakan perusahaan harus mengulangi proses produksi dan hal itu menyebabkan penambahan biaya produksi dan biaya material. Perusahaan perlu mengupayakan suatu cara untuk menekan jumlah produk cacat. Pada penelitian ini digunakan metode Statistical Process Chart untuk menganalisis permasalahan yang terjadi. Berdasarkan penelitian yang dilakukan dari 8 jenis cacat, dua cacat yang memiliki persentasi terbesar adalah cacat dirty sebesar 32.07% dan cacat *overpaint* sebesar 27.04%. Berdasarkan identifikasi penyebab menggunakan Root Cause Analysis dan analisis FMEA, diketahui bahwa faktor penyebab dominan dari dua jenis cacat tersebut adalah Kurang nya kedisiplinan karyawan terhadap SOP kebersihan dan kurangnya konsistensi operator dalam pengaplikasian pengecetan. Rekomendasi perbaikan yang diberikan berdasarkan 40 Inventive Principle TRIZ adalah dengan membuat form "Personal Capability Status" agar dapat menganalisa seperti apa kesalahan desain pekerjaan yang sudah dilakukan kemudian memberikan pelatihan sampai pengembangan bakat dari setiap karyawan dan sebagai penilaian karyawan agar dapat memberikan reward. supaya mereka dapat termotivasi untuk meningkatkan kinerja sehingga masalah kedisiplinan dapat teratasi.

Keyword: FMEA, Pengendalian Kualitas, Root Cause Analysis, SPC, TRIZ



# **DAFTAR ISI**

| HALAMAN JUDUL                                                     |      |
|-------------------------------------------------------------------|------|
| SURAT PERNYATAAN KEASLIAN                                         | ii   |
| SURAT KETERANGAN SELESAI PENELITIAN                               | iii  |
| LEMBAR PENGESAHAN DOSEN PEMBIMBING                                | iv   |
| LEMBAR PENGESAHAN PENGUJI                                         | v    |
| HALAMAN PERSEMBAHAN                                               | v    |
| MOTTO                                                             | vii  |
| KATA PENGANTAR                                                    | viii |
| ABSTRAK                                                           |      |
| DAFTAR ISI                                                        | xi   |
| DAFTAR TABEL                                                      | xiii |
| DAFTAR GAMBAR                                                     |      |
| BAB I PENDAHULUAN                                                 |      |
| 1.1 Latar Belakang                                                | 1    |
| 1.2 Rumusan Masalah                                               | 3    |
| 1.3 Batasan Masalah                                               |      |
| 1.4 Tujuan Penelitian                                             |      |
| 1.5 Manfaat Penelitian                                            | 4    |
| 1.6 Sistematika Penulisan                                         | 5    |
| BAB II KAJIAN PUSTAKA                                             | 7    |
| 2.1 Kajian deduktif                                               | 7    |
| 2.2 Kualitas                                                      |      |
| 2.3 Pengendalian Kualitas                                         |      |
| 2.4 Statistical Process Control (SPC)                             |      |
| 2.4.1 Tools dalam SPC                                             |      |
| 2.5 Failure Mode and Effect Analysis (FMEA)                       |      |
| 2.5.1 Tujuan Implementasi FMEA (Failure Mode and Effect Analysis) |      |
| 2.6 Root Cause Analysis (RCA)                                     | 17   |
| 2.6.1 Manfaat metode Root Cause Analysis                          | 18   |
| 2.7 Metode TRIZ                                                   |      |
| 2.8 Kajian Induktif                                               |      |
| BAB III METODE PENELITIAN                                         | 28   |
| 3.1 Objek Penelitian                                              | 28   |
| 3.2 Metode Penelitian                                             | 28   |
| 3.3 Jenis Data                                                    |      |
| 3.4 Alur Penelitian                                               |      |
| BAB IV PENGUMPULAN DAN PENGOLAHAN DATA                            |      |
| 4.1 Profil Perusahaan                                             |      |
| 4.1.1 Lokasi Perusahaan                                           |      |
| 4.1.2 Visi Dan Misi Perusahaan                                    |      |
| 4.1.3 Struktur Organisasi                                         |      |
| 4.1.4 Sistem Kepegawaian                                          |      |
| 4.1.5 Proses Yang Dihasilkan                                      |      |
| 4.1.6 Proses Produksi                                             |      |
| 4.1.7 Pengumpulan data                                            |      |
| 4.1.8 Jenis barang defect                                         | 41   |

| 4.2 Pengolahan data                              | 42 |
|--------------------------------------------------|----|
| 4.2.1 Tahap Statistical Process Control          | 42 |
| 4.2.2 Failure Mode & Effect Analysis FMEA        | 52 |
| 4.2.3 Root Cause Analyisis                       | 55 |
| 4.2.4 Improvement menggunakan METODE TRIZ        | 57 |
| BAB V HASIL DAN PEMBAHASAN                       | 60 |
| 5.1 Tahap Statistical Process Control            | 60 |
| 5.2 Tahap FMEA dan Root Cause Analysis           | 62 |
| 5.3 Tahap Improve menggunakan metode TRIZ        | 66 |
| BAB VI PENUTUP                                   | 69 |
| 6.1 Kesimpulan                                   | 69 |
| 6.2 Saran                                        | 69 |
| Daftar Pustaka                                   | 71 |
| LAMPIRAN                                         | 74 |
| LAMPIRAN A- Pengumpulan data produksi dan defect | 74 |
| LAMPIRAN B – Hasil Kuisioner FMEA                |    |
| LAMPIRAN 3 – Area Line spray Painting            |    |



# **DAFTAR TABEL**

| Tabel 2.1 Nilai Rating Severity                                             | 14 |
|-----------------------------------------------------------------------------|----|
| Tabel 2.2 Nilai rating index skala occurrence                               | 15 |
| Tabel 2.3 Nilai Rating Detection                                            | 16 |
| Tabel 2.4 TRIZ 39 Parameter                                                 | 19 |
| Tabel 2.5 Inventive Principles                                              | 21 |
| Tabel 2.6 Kajian Induktif                                                   | 26 |
| Tabel 4.1 Jumlah produksi dan defect spray painting bulan Maret 2021        | 41 |
| Tabel 4.2 Jumlah produksi dan defect spray painting bulan April 2021        | 42 |
| Tabel 4.3 Jumlah produksi dan defect spray painting bulan Mei 2021          | 43 |
| Tabel 4. 4 Data rekapitulasi check sheet defect bulan Maret sampai Mei 2021 | 45 |
| Tabel 4.5 Perhitungan batas kendali bulan Maret 2021                        | 47 |
| Tabel 4.6 Perhitungan batas kendali bulan April 2021                        | 49 |
| Tabel 4.7 Perhitungan batas kendali bulan Mei 2021                          | 51 |
| Tabel 4.8 Data Frekuensi dan Persentase Kumulatif Jenis Cacat               |    |
| Tabel 4.9 Hasil FMEA Cacat Dirty                                            | 54 |
| Tabel 4.10 Hasil FMEA Cacat Overpaint                                       | 55 |
| Tabel 4.11 Improving Parameter dan Worsening Parameter                      | 60 |
| Tabel 4.12 Tabel Kontradiksi                                                | 60 |

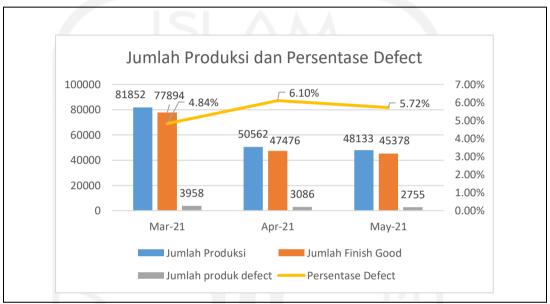


# **DAFTAR GAMBAR**

| Gambar 1.1 Jumlah Produksi dan Persentase Defect              | 2  |
|---------------------------------------------------------------|----|
| Gambar 2.1 Contoh Lembar Pemeriksaan                          | 9  |
| Gambar 2.2 Contoh Scatter diagram                             | 9  |
| Gambar 2.3 Contoh Diagram paretto                             | 10 |
| Gambar 2.4 Contoh Diagram sebab-akibat                        | 10 |
| Gambar 2.5 Contoh Diagram flowchart                           | 11 |
| Gambar 2.6 Contoh Histogram                                   |    |
| Gambar 2.7 Contoh Diagram Control chart                       | 12 |
| Gambar 2.8 Tahapan pengerjaan Root Cause Analysis             |    |
| Gambar 3.1 Alur Penelitian                                    |    |
| Gambar 4.1 Logo PT.Tritek Indonesia                           | 34 |
| Gambar 4.2 Lokasi PT. Tritek Indonesia                        | 35 |
| Gambar 4. 3 Struktur Organisasi PT. Indonesia                 |    |
| Gambar 4. 4 Proses Treatment                                  |    |
| Gambar 4.5 Proses Input part                                  | 38 |
| Gambar 4.6 Proses Spray painting                              | 38 |
| Gambar 4.7 Proses pengeringan menggunakan oven konveyor       | 39 |
| Gambar 4.8 Proses pendinginan                                 | 39 |
| Gambar 4.9 Proses Inspeksi                                    | 40 |
| Gambar 4.10 Proses packaging                                  | 40 |
| Gambar 4.11 Histogram defect pada bulan Maret sampai Mei 2021 | 46 |
| Gambar 4.12 Control chart bulan Maret 2021                    |    |
| Gambar 4.13 Control Chart pada April 2021                     | 50 |
| Gambar 4.14 Control Chart bulan Mei 2021                      | 52 |
| Gambar 4.15 Persentase Diagram Pareto                         | 53 |
| Gambar 4.16 Jenis defect dirty                                | 57 |
| Gambar 4.17 Fishbone diagram dirty                            | 57 |
| Gambar 4.18 Jenis defect overpaint                            | 58 |
| Gambar 4.19 Fishbone diagram overpaint                        | 59 |
| Gambar 4.20 Form Personal Capability Status                   | 61 |

### **BABI**

### **PENDAHULUAN**


### 1.1 Latar Belakang

Pada saat ini pelaku bisnis dalam industri di Indonesia menyadari semakin berubahnya orientasi pelanggannya terhadap kualitas dimana sebelumnya hanya berpatokan pada kuantitas dan harga produk yang murah yang dilihat oleh pelanggan. Keadaan ini menuntut setiap perusahaan untuk selalu menjaga dan meningkatkan kualitas produk yang dihasilkan. Kualitas produk inilah yang nantinya berpengaruh mutlak terhadap kesetian dan kepercayaan pelanggan terutama dalam persaingan bisnis yang semakin ketat. Karena masih ada produk yang belum memenuhi spesifikasi dan standar yang sudah ditentukan atau produk *defect* (NG *product*), hal ini menjadi permasalahan yang harus diperhatikan perusahaan terutama dalam menjaga kualitas pada level yang diharapkan oleh pelanggan (Farchiyah, 2021)

Kualitas suatu jasa yang dipahami oleh pelanggan terdiri atas dua dimensi. Dimensi pertama technical Quality (outcome dimension) berkaitan dengan kualitas output jasa. Dimensi kedua, Functional Quality (process-related dimension) berkaitan dengan kualitas 9 cara penyampaian jasa atau menyangkut proses transfer kualitas teknis, output atau hasil akhir jasa dari penyedia jasa kepada pelanggan. (Tjiptono, 2014) Kualitas merupakan syarat penting bagi konsumen atau customer dalam memilih suatu produk oleh karena itu, pengendalian kualitas merupakan salah satu aspek utama di dalam perusahaan untuk meningkatkan strategi dan nilai jual produk. Kualitas suatu produk tidak dapat dikatakan selalu baik dan tidak sesuai spesifikasi karena hal tersebut bergantung terhadap proses produksi yang sedang berjalan. Pengendalian produksi merupakan suatu hal yang penting karena kondisi pada saat proses produksi akan mempengaruhi terhadap hasil akhir produk.

PT. Tritek Indonesia merupakan perusahaan pelayanan jasa *finishing* produk yang bergerak di Jasa produksi *Metal Stamping*, *Jasa Anodizing* dan Jasa *Spray Painting* untuk part bagian Elektronik, Elektrik dan Otomotif. belokasi di Jalan Kampung Bugel Salam No 37 RT.003, RW. 01 Kel. Hegarmanah, Cikarang Timur, Bekasi, Jawa Barat. PT Tritek Indonesia menghasilkan hasil proses *finsihing spray painting* yang terdiri dari part *Body top supporter* dan *Telenoir*.

Pada hasil proses *spray painting* yang dilakukan oleh perusahaan, terdapat jenis defect seperti *Scratch*, *Dirty*, *Bubble*, *Overpaint*, *Oil*, *Discolour*, *Crack* dan kulit jeruk. Pada produksi spray painting selama bulan Maret 2021 sampai bulan Mei 2021 masih ditemukan defect produksi dengan persentase *defect* melebihi batas toleransi yang ditetapkan perusahaan sebesar 5%. Gambaran peningkatan defect proses *spray painting* pada bulan Maret 2021 sampai Mei 2021 dapat dilihat pada Gambar 1.1



Gambar 1.1 Jumlah Produksi dan Persentase Defect

Dari Gambar 1.1 terlihat bahwa persentase defect mengalami peningkatan dari April 2021 sampai dengan bulan Mei 2021 dengan nilai 6.10% di bulan April dan nilai 5.72% dibulan Mei 2021 dengan nilai tersebut masih diatas batas toleransi sebesar 5%. Berdasarkan permasalahan tersebut maka dibutuhkan suatu metode yang dapat menyelesaikan permasalahan tersebut seperti jenis *defect* yang dominan serta mencari akar penyebab masalah tersebut untuk mengurangi produk cacat pada perusahaan ini.

Peneliti berencana untuk membantu perusahaan mengurangi timbulnya kecacatan produk dan mengurangi persentase agar tidak berada di luar batas toleransi dengan menganalisis permasalahan yang terjadi dalam proses *spray painting* menggunakan metode *Stastical Process Control*, Implementasi dalam penggunaan SPC dapat mengarah pada keputusan berdasarkan fakta, ke persepsi yang berkembang tentang kualitas di semua tingkatan, ke metodologi sistematis mengenai penyelesaian masalah, untuk mengumpulkan pengalaman dan untuk semua jenis perbaikan, bahkan dalam

komunikasi. Setelah itu penulis akan menggunakan metode Failure Mode and Effect Analysis (FMEA). FMEA digunakan untuk mengevaluasi kemungkinan terjadinya sebuah kegagalan dari sebuah sistem, desain, proses atau servis untuk dibuat langkah penanganannya (Yumaida, 2011). Setelah itu penulis akan menggunakan metode Root Cause Analysis (RCA) untuk menganalisis akar masalah menolong untuk mengetahui apa, bagaimana dan mengapa suatu peristiwa terjadi. Teknik ini mengidentifikasi sumber masalah dengan menggunakan langkah-langkah dan alat yang tepat sehingga langkah-langkah yang diperlukan dapat diambil di masa mendatang untuk menghindari suatu masalah terulang kembali (James J. Rooney, 2004), Nantinya peneliti akan menggunakan Metode TRIZ (Teoria Rechenia Izobretatelskih Zadatchi) untuk tahap improvement nya. Metode TRIZ memiliki tahapan untuk memecahkan masalah dengan dimulai dari masalah yang spesifik dan mengidentifikasi kontradiksi yang terjadi. Kontradiksi yang telah diselesaikan akan diaplikasikan menjadi solusi general untuk dijadikan solusi yang spesifik (G. Navas, 2013), diharapkan, nantinya penelitian ini dapat menjadi informasi yang dapat membantu perusahaan dalam melakukan pengendalian kualitas pada hasil proses spray painting.

### 1.2 Rumusan Masalah

Dari penjelasan latar belakang diatas, berdasrkan rumusan masalah yaitu perusahaan menargetkan minimal *defect* dibawah 5%, namun berdasarkan data bulan April dan Mei hasil *defect* pada proses *spray painting* berada di luar batas toleransi 5% oleh karena itu untuk mencapai dibawah 5% di bulan selanjutnya dilakukan penelitian dan analisis yaitu:

- 1. Berapa nilai dari perhitungan *Stastical Process Control* dan jenis *defect* apa yang dominan dalam hasil proses *spray painting*?
- 2. Apa akar penyebab permasalahan dari produk defect yang teridentifikasi?
- 3. Apa rekomendasi yang dapat diberikan untuk meningkatkan kualitas dari hasil proses *spray painting* pada PT. Tritek Indonesia?

### 1.3 Batasan Masalah

Permasalahan dalam penelitian ini diharapkan tidak menyimpang dari tujuan yang di inginkan, untuk itu diberikan batasan-batasan dalam penelitian, diantaranya adalah:

- Penelitian dilakukan di PT Tritek Indonesia yang berlokasi di Jalan Kampung Bugel Salam No 37 RT.003, RW. 01 Kel. Hegarmanah, Cikarang Timur, Bekasi, Jawa Barat, khusus nya di bagian line *spray painting*.
- 2. Data yang digunakan yaitu data produksi dan data produk *defect* periode Maret hingga Mei 2021.
- 3. Pengolahan data menggunakan tools yang terdapat pada *Statistical Process Control* (SPC), *Root Cause Analysis*, *Failure Mode and Effect Analysis* (FMEA) dan metode TRIZ untuk mengurangi jumlah semua jenis *defect* pada proses *spray painting*.
- 4. Jenis *defect* yang di teliti hanya jenis *defect* yang dominan pada hasil proses *spray* painting.
- 5. Tindakan perbaikan yang dilakukan tidak diimplementasikan secara langsung, melainkan hanya sebatas usulan.

### 1.4 Tujuan Penelitian

Berkaitan dengan rumusan masalah yang telah dibuat sebelumnya, maka tujuan dari penelitian yang dilakukan adalah:

- 1. Menganalisis besar nilai jumlah produk cacat hasil proses *spray painting* dari bulan Maret sampai Mei 2021 dengan metode *Stastical Process Control*.
- 2. Menganalisis faktor-faktor yang dominan yang menyebabkan cacat pada hasil proses spray painting menggunakan metode FMEA dan RCA
- 3. Menganalisis rekomendasi atau usulan untuk mengurangi jumlah jenis *defect* menggunakan metode TRIZ di PT. Tritek Indonesia.

### 1.5 Manfaat Penelitian

Manfaat dari penelitian ini adalah hasil ketercapaian dari tujuan yang telah ditetapkan. Adapun manfaat dari penelitian ini adalah sebagai berikut:

- Bagi Universitas Dapat mengetahui sejauh mana kemampuan mahasiswa dalam mengaplikasikan ilmu pengetahuan yang telah didapatkan. Hasil penulisan ini dapat dijadikan sebagai bahan studi kasus dan acuan bagi mahasiswa secara umum untuk menambah ilmu pengetahuan bagi pembaca.
- 2. Bagi Perusahaan Penelitian ini dapat membantu perusahaan dengan memberikan manfaat bagi pihak perusahaan sebagai bahan masukan yang berguna, terutama dalam menentukan strategi pengendalian kualitas yang dilakukan perusahaan untuk di masa yang akan datang sebagai upaya peningkatan kualitas produksi

terutama dibagian line *spray painting*. Adapun manfaat dalam menggunakan metode SPC, FMEA, RCA dan Triz bagi perusahaan. Berikut manfaat dari masing-masing metode yang digunakan untuk pengendalian kualitas bagi perusahaan.

- a. Manfaat metode SPC: membuat lebih mudah untuk memantau kualitas produk yang sedang diproduksi secara real-time.
- b. Manfaat metode FMEA: membantu dalam meningkatkan kepuasan pelanggan dan meningkatkan segi kualitas, keandalan, dan keamanan suatu produk
- c. Manfaat metode RCA: Melakukan identifikasi hambatan dan penyebab masalah, sehingga solusi permanen dapat ditemukan.
- d. Manfaat metode TRIZ: membantu meningkatkan kualitas yang ideal dalam bentuk yang sistematis dan efisien.
- 3. Bagi Peneliti Mampu menerapkan keilmuan teknik industri yang diperoleh selama kuliah untuk memberikan solusi terhadap masalah yang ada pada perusahaan dan pengalaman praktek dalam menganalisis suatu masalah yang terjadi secara ilmiah, khususnya di PT Tritek Indonesia.

### 1.6 Sistematika Penulisan

Sistematika penulisan dalam tugas akhir ini disusun sebagai berikut:

### BAB I PENDAHULUAN

Pada bab ini berisi latar belakang, rumusan permasalahan, batasan permasalahan tujuan penelitian, manfaat penelitian, dan sistematika laporan TA.

### BAB II KAJIAN PUSTAKA

Pada bab ini berisi kajian literatur deduktif dan induktif yang dapat membuktikan bahwa topik penelitian yang diangkat memenuhi syarat dan kriteria yang telah dijelaskan di atas.

### BAB III METODE PENELITIAN

Pada bab ini berisi obyek penelitian, data yang digunakan, dan tahapan yang telah dilakukan dalam penelitian.

### BAB IV PENGUMPULAN DAN PENGOLAHAN DATA

Pada bab ini berisi uraian proses pengolahan data termasuk gambar dan grafik yang diperoleh dari hasil penelitian.

### BAB V PEMBAHASAN

Pada bab ini berisi pembahasan mengenai pengolahan dan analisis data yang telah dilakukan pada bab sebelumnya. Hasil pembahasan diharapkan dapat dijadikan dasar dalam menentukan usulan perbaikan baik untuk perusahaan dan penelitian selanjutnya.

### BAB VI PENUTUP

Pada bab ini berisi kesimpulan yang berupa pernyataan singkat untuk menjabarkan hasil penelitian. Selain itu, bab ini berisi saran yang ditujukan baik untuk perusahaan maupun untuk penelitian selanjutnya.



### **BAB II**

### KAJIAN PUSTAKA

### 2.1 Kajian deduktif

Pada sub bab ini membahas mengenai teori-teori yang mendukung dalam penelitian ini. Teori-teori tersebut diambil dari literatur berupa buku-buku karangan para pakar. Berikut merupakan kajian-kajian yang digunakan sebagai dasar dalam penelitian ini.

### 2.2 Kualitas

Menurut (Vincent, 2005) Kualitas merupakan karakteristik dari suatu produk untuk menunjang kemampuan dan memuaskan kebutuhan yang sesuai spesifikasi atau diterapkan. (Zulian Yamit, 2003) menjelaskan mutu merupakan istilah relatif yang bergantung terhadap situasi yang ditinjau dari pandangan konsumen, secara subjektif orang mengatakan kualitas merupakan sesuatu yang cocok dengan selera (*fitness for use*). Menurut (Nastiti, 2014) kualitas pada suatu produk memliki peranan yang penting di dalam perusahaa karena dapat memiliki simbol kepercayaan dan simbol yang bernilai di mata konsumen. Usaha yang telah dilakukan perusahaan untuk mencapai nama baik perusahaan itu sendiri yang bergantung dari kualitas itu sendiri.

### 2.3 Pengendalian Kualitas

Pengendalian kualitas menurut (Badri, 2009) merupakan suatu aktivitas atau kegiatan manajemen perusahaan dalam menjaga dan mengarahkan agar kualitas produk dan jasa perusahaan dapat dipertahankan sebagaimana yang telah direncanakan. (Ahyari, 2000) menjelaskan bahwa pengendalian kualitas merupakan usaha preventif dan dilaksanakan sebelum kualitas produk mengalami kerusakan. Selain itu menurut (Assauri, 2004) pengendalian kualitas merupakan suatau kegiatan untuk memastikan apakah keunggulan dalam hal standar dan mutu dapat tercermin di dalam proses hasil akhir. Dengan kata lain pengendalian mutu merupakan usaha untuk mempentahankan kualitas dan mutu dari barang yang dihasilkan agar sesuai dengan spesifikasi dan standar produk yang telah ditetapkan berdasarkan standar yang di putuskan oleh pimpinan perusahaan. Pengertian pengendalian kualitas sangat luas, dikarenakan berhubungan dengan beberapa unsur yang mempengaruhi kualitas harus dimasukkan dan dipertimbangkan. Secara garis besar pengendalian kualitas dikelompokkan menjadi:

- a. Pengendalian kualitas sebelum pengolahan atau proses yaitu pengendalian kualitas yang berkenaan dengan proses yang diurutkan dan teratur termasuk bahan-bahan material yang akan diproses.
- b. Pengendalian kualitas terhadap produk jadi yaitu pengendalian yang dilakukan terhadap barang hasil produksi untuk menjamin agar produk jadi tidak mengalami kecacatan atau tingkat kecacatan produk masih diambang batas.

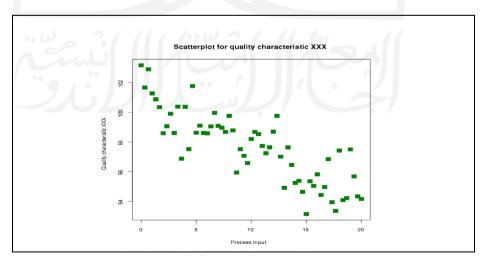
Pengendalian kualitas menentukan persyaratan, ukuran dan cara fungsional lain suatu produk dan merupakan manajemen untuk mempertahankan kualitas yang sudah sesuai standar, memperbaiki kualitas produk dan mengurangi jumlah produk yang mengalami kecacatan. Untuk mengurangi kerugian karena kerusakan-kerusakan dalam proses pengecekan atau inpeksi tidak terbatas pada pengeckan akhir saja, tetapi perlu juga diadakan pengecekan pada barang yang sedang diproses maupun sebelum diproses.

### 2.4 Statistical Process Control (SPC)

Statistical Process Control (SPC) merupakan metode pengumpulan dan pengambilan data untuk meningkatkan kualitas. Menurut (Gaspersz, 2007) pengumpulan data menggunakan SPC bertujuan untuk mengobservasi dan mengendalikan proses yang dikerjakan, menganalisis hal hal yang tidak sesuai dan melakukan pengecekan atau inspekasi Menurut (Antony, 2000) pengendalian proses statistik memiliki berbagai manfaat bagi organisasi atau perusahaan yang menerapkannya. Terdapat beberapa manfaat tersebut, antara lain menyediakan informasi bagi karyawan apabila ingin memperbaiki proses, menyediakan bahasa yang umum dalam proses untuk berbagai pihak, menghilangkan penyimpangan karena sebab khusus untuk mencapai konsistensi dan kinerja yang lebih baik.

### 2.4.1 Tools dalam SPC

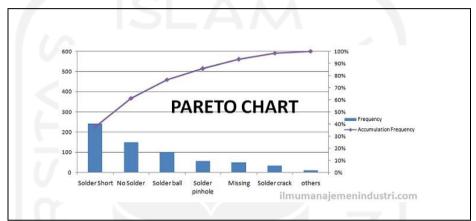
Terdapat Tujuh alat bantu pengendalian kualitas dalam *Statistical Process Control* atau SPC yang sering disebut juga sebagai *seven tools of quality control* diantara nya:


Lembar Pemeriksaan (Check Sheet)
 Menurut (Prihartono, 2012) Check Sheet merupakan suatu lembar yang digunakan untuk mencatat data hasil produk termasuk juga waktu pengamatan, permasalahan yang dicari, dan jumlah yang mengalami kecacatan pada setiap permasalahan.

| Type of Defect      | Count                 | Score |
|---------------------|-----------------------|-------|
| Dirty               | <i>Ш</i> ШП           | 12    |
| Broken stitching    | <i>шшшшшшш</i>        | 42    |
| Inconsistent margin | ин ин ин              | 15    |
| Wrinkle             | ин ин ин ин ин        | 30    |
| Long thread         | <i>ш</i> т <i>ш</i> т | 10    |
| Padding shape       | <b>Ш</b> III          | 8     |
| Off center          | <i>ШШШ</i>            | 18    |
| Stitch per inch     | <i>ШШШШ</i> Ш         | 24    |
| Others              | <i>ш</i> тштшти       | 22    |
|                     | Total Defects:        | 181   |

Gambar 2.1 Contoh Lembar Pemeriksaan Sumber : ilmumanajemenindustri.com

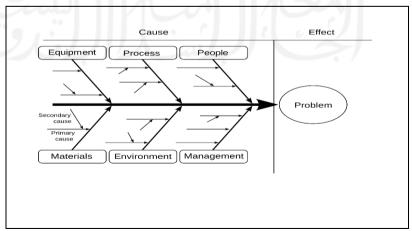
### 2. Scatter Diagram atau peta korelasi


Menurut Prihantoro (Prihartono, 2012) *Scatter Diagram* merupakan grafik yang menampilkan hubungan antara dua variabel apakah hubungan antara dua variabel tersebut kuat atau tidak, yaitu faktor proses yang mempengaruhi proses dengan kualitas produk. Fungsi diagram Pareto yaitu untuk mengidentifikasi beberapa permasalahan penting yang terjadi , mencari cacat yang terbesar dan yang paling berpengaruh dan melakukan perbandingan dari masing-masing persoalan terhadap keseluruhan.



Gambar 2.2 Contoh Scatter diagram Sumber: Wikimedia Commons

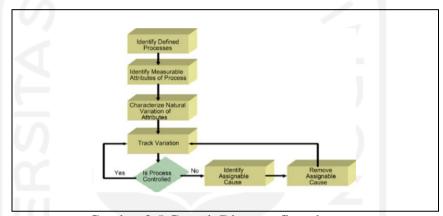
### 3. Diagram Paretto


Menurut (Nasution, 2015) Diagram Pareto digunakan untuk melakukan perbandingan dari berbagai kategori kejadian yang disusun berdasarkan dari segi ukuran , urutan yang paling tinggi yang berada disebelah kiri dan paling kecil berada disebelah kanan. Susunan-Susunan tersebut akan membantu untuk menentukan prioritas kategori yang terjadi dan mengetahui masalah utama proses.



Gambar 2.3 Contoh Diagram paretto Sumber; ilmumanajemenindustri.com

### 4. Diagram sebab-akibat (Fishbone Diagram)

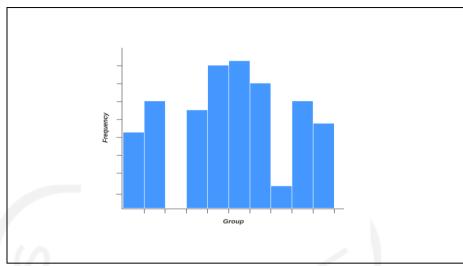

Menurut (Nasution, 2015) *Cause and Effect Diagram* merupakan proses pendekatan yang terstuktur yang kemungkinan dilakukan suatu analisis lebih rinci dalam menemukan penyebab – penyebab suatu masalah yang terjadi dalam suatu sistem dan kesenjangan yang terjadi.



Gambar 2.4 Contoh Diagram sebab-akibat Sumber: Wikipedia

### 5. Diagram Alir atau Diagram flowchart

Menurut (Nasution, 2015) *FlowChart* merupakan gambaran skematik yang menunjukkan seluruh langkah dalam suatu proses dan menunjukkan bagaimana langkah tersebut saling berinteraksi satu sama lain. Diagram alir digunakan sebagai alat analisis untuk mengumpulkan data dengan mengetahui proses yang dilakukan dan mengimplementasikan data sehingga memudahkan dalam memecahkan suatu permasalahan.




Gambar 2.5 Contoh Diagram flowchart

Sumber: <a href="https://www.researchgate.net/figure/Schematic-chart-of-Statistical-Process-Control-SPC">https://www.researchgate.net/figure/Schematic-chart-of-Statistical-Process-Control-SPC</a>

### 6. Histogram

Menurut (Prihartono, 2012) *Histogram* atau disebut juga diagram batang yaitu diagram yang menunjukkan tabulasi dari data yang diatur berdasarkan ukurannya. Tabulasi data ini umumnya dikenal sebagai distribusi frekuensi. Histogram menunjukan karakteristik – karakteristik dari data yang dibagi – bagi menjadi kelas – kelas. Pada histogram frekuensi sumbu x menunjukan nilai pengamatan dari tiap kelas.



Gambar 2.6 Contoh Histogram Sumber: LucidChart.com

### 7. Peta Kendali atau Control chart

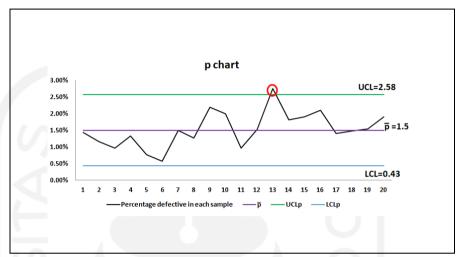
Menurut (Prihartono, 2012) *Control Chart* merupakan suatu alat grafis digunakan untuk memantau apakah suatu aktivitas dapat diterima sebagai proses yang sudah terkendali. Grafik pengendali terkadang disebut dengan Shewhart control chart karena grafik ini pertama kali disebut oleh Walter A. Shewhart. Nilai dari karakteristik kualitas yang dimonitor, digambarkan sepanjang sumbu y, sedangkan sumbu x menggambarkan sampel atau subgroup dari karakteristik kualitas tersebut. Untuk menghitung proporsi data grafik *control p-chart* yaitu:

$$\overline{p} = \frac{\text{Jumlah banyak nya produk cacat}}{\text{Jumlah produksi}}.....(2.1)$$

Setelah itu untuk menghitung nilai control limit, sebagai berikut:

$$\overline{p}$$
=jumlah keseluruhan produk cacat

Jumlah keseluruhan produksi .....(2.2)


Untuk menentukan batas kendali untuk peta kontrol p, terdapat 2 perhitungan yang terdiri dari perhitungan *Upper Control Line* (UCL) dan *Lower Control Line* (LCL). Rumus yang digunakan sebagai berikut:

a. Menentukan nilai Upper Center Line (UCL)

UCL = 
$$\bar{p} + 3\sqrt{\frac{\bar{p}(1-\bar{p})}{N}}$$
....(2.3)

b. Menentukan nilai Lower Control Line (LCL)

$$LCL = \overline{p} - 3\sqrt{\frac{\overline{p}(1-\overline{p})}{N}}....(2.4)$$



Gambar 2.7 Contoh Diagram Control chart Sumber: SixSigmastudyguide.com

### 2.5 Failure Mode and Effect Analysis (FMEA)

Menurut (Yumaida, 2011) FMEA adalah sebuah metode perbaikan terjadinya suatu kegagalan dari sebuah desain, proses, sistem atau servis dengan dibuat langkah penanganannya. Dalam FMEA, setiap kemungkinan kegagalan yang terjadi akan dilakukan perhitungan untuk membuat sebuah prioritas dalam penanganannya. Failure Mode and Effect Analysis (FMEA) pertama kali diperkenalkan pada tahun tahun 1940-an di dalam dunia militer oleh US Armed Forces. Failure Mode and Effect Analysis. (FMEA) merupakan teknik rekayasa digunakan untuk mendefinisikan dan mengidentifikasikan suatu masalah yang terdiri sistem, desain, proses, dan jasa sebelum suatu produk tersebut diterima oleh konsumen. FMEA dikategorikan menjadi dua jenis yaitu:

- Desain FMEA yaitu alat yang digunakan untuk memastikan bahwa potential failure modes, sebab dan akibatnya telah di obeservasi terkait dengan karakteristik desain, pada kasus ini tim dari *Design Responsible Engineer* ditugaskan untuk mengidentifikasi masalah.
- 2. Process FMEA yaitu alat yang digunakan untuk memastikan bahwa potential *failure modes*, sebab dan akibatya telah diperhatikan terkait dengan karakteristik prosesnya

dan pada kasus ini digunakan oleh *Manufacturing Engineer/Team* untuk mengidentifikasi masalah.

### 2.5.1 Tujuan Implementasi FMEA (Failure Mode and Effect Analysis)

Menurut (Chrysler, 1995) terdapat tujuan dalam penerapan FMEA diantaranya mengidentifikasi efek dari kegagalan tersebut yaitu mode kegagalan dan tingkat keparahan, mengidentifikasi keunggulan yang signifikan dan mengurutkan pesanan dari proses yang effisiensi dan desain potensial. Manfaat Implementasi FMEA (Failure Mode and Effect Analysis) dalam penerapan FMEA diantaranya:

- 1. Membantu dalam meningkatkan kepuasan pelanggan.
- 2. Meningkatkan segi kualitas, keandalan, dan keamanan suatu produk.
- 3. Meningkatkan citra baik dan daya saing perusahaan.
- 4. Menurangi waktu dan biaya pengembangan produk.

Definisi failure mode and effect analysis tersebut disampaikan oleh (MeDermott, R. E., Mikulak, R. J., dan Beaurgard, 2002) bahwa definisi dari FMEA adalah analisa teknik dilakukan dengan tepat dan waktu yang tepat akan memberikan nilai yang besar dalam dalam proses pengambilan keputusan. Analisa tersebut biasa disebut analisa "bottom up" yaitu dilakukan pengecekan terhadap proses produksi dengan tingkat awal dan mempertimbangkan kegagalan yang terjadi. sistem yang merupakan hasil dari keseluruhan yang mengalami kegagalan. FMEA membantu dalam mengidentifikasi dan menentukan prioritas kegagalan potensial yang ada. Penentuan prioritas dilakukan dengan memberikan nilai pada masing-masing kegagalan berdasarkan tingkat kefatalan (Severity), tingkat frekuensi (Occurance), dan tingkat deteksi (Detection). Selanjutnya, akan ditentukan nilai RPN yang merupakan hasil perhitungan severity, occurance, dan detection. Nilai RPN ditentukan untuk menentukan permasalahan yang menjadi fokus utama.

1. Tingkat dampak (*Severity*) kesalahan. Nilai *severity* terdiri dari rating 1 hingga 10. Tabel 2.1 menjelaskan setiap kriteria dari nilai rating *severity*. Semakin parah efek yang ditimbulkan maka nilai yang didapat akan semakin tinggi .

Tabel 2.1 Nilai Rating Severity

| ruber 2.1 Titur Ruting Severity |                 |                                                |  |
|---------------------------------|-----------------|------------------------------------------------|--|
| Rating                          | Severity effect | Deskripsi                                      |  |
| 1                               | Tidak ada efek  | Kegagalan tidak berdampak pada kualitas produk |  |

| Rating | Severity effect               | Deskripsi                                                                                                                                                                                 |
|--------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2      | Sangat minor                  | Kegagalan memberikan efek (<25%) dan hanya pelanggan jeli yang menyadari kecacatan tersebut tetapi tetap diterima                                                                         |
| 3      | Minor                         | Kegagalan memberikan efek (50%) dan sebagian pelanggan menyadari kecacatan tersebut tetapi tetap diterima.                                                                                |
| 4      | Sangat rendah                 | Kegagalan memberikan efek (>75%), pelanggan merasakan penurunan kualitas masih dalam batas toleransi, dan pelanggan secara umum menyadari kecacatan tersebut namun tetap diterima         |
| 5      | Rendah                        | Kegagalan memberikan efek terhadap penurunan fungsi<br>sebagian item dan pelanggan merasakan penurunan<br>kualitas namun masih dalam batas toleransi                                      |
| 6      | Sedang                        | Kegagalan memberikan efek terhadap hilangnya fungsi<br>sebagian item dan dan pelanggan merasakan penurunan<br>kualitas namun masih dalam batas toleransi                                  |
| 7      | Tinggi                        | Kegagalan memberikan efek terhadap penurunan fungsi<br>utama item, pelanggan merasakan penurunan kualitas<br>diluar batas toleransi                                                       |
| 8      | Sangat tinggi                 | Kegagalan memberikan efek terhadap hilangnya fungsi<br>utama sistem, pelanggan merasakan penurunan kualitas<br>diluar batas toleransi, produk akan menjadi waste di<br>proses selanjutnya |
| 9      | Berbahaya<br>dengan           | Kegagalan membahayakan sistem dengan adanya peringatan terlebih dahulu                                                                                                                    |
|        | peringatan                    |                                                                                                                                                                                           |
| 10     | Berbahaya tanpa<br>peringatan | Kegagalan membahayakan sistem tanpa adanya peringatan terlebih dahulu                                                                                                                     |

2. Tingkat Frekuensi/Kemungkinan Terjadi *Occurance* merupakan perkiraan mengenai probabilitas atau peluang terjadinya suatu penyebab yang menyebabkan kegagalan. Di bawah ini merupakan tabel penentuan nilai *occurance*.

Tabel 2.2 Nilai rating index skala occurrence

| Probability of failure              | Occurance | Rating |
|-------------------------------------|-----------|--------|
| Sangat tinggi:                      | 1 in 2    | 10     |
| Kegagalan hampir tak bisa dihindari | 1 in 3    | 9      |

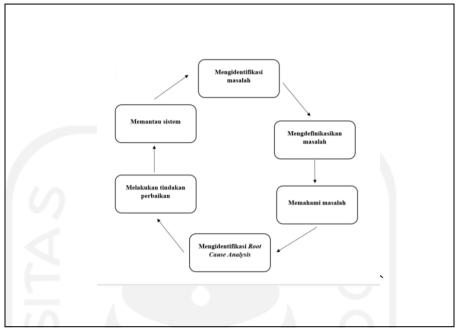
| Probability of failure                      | Occurance   | Rating |
|---------------------------------------------|-------------|--------|
| Tinggi:                                     | 1 in 8      | 8      |
| Umumnya berkaitan dengan proses terdahulu   |             |        |
| yang kadang mengalami kegagalan             | 1 in 20     | 9      |
| Sedang:                                     | 1 in 80     | 6      |
| Umumnya berkaitan dengan proses terdahulu   | 1 in 400    | 5      |
| yang kadang mengalami kegagalan tetapi      |             |        |
| tidak dalam jumlah yang besar               | 1 in 2000   | 4      |
| Rendah:                                     |             |        |
| Kegagalan terisolasi berkaitan proses yang  |             |        |
| serupa                                      | 1 in 15000  | 3      |
| Sangat rendah:                              |             |        |
| Hanya kegagalan terisolasi yang berkaitan   |             |        |
| dengan proses hampir identik                | 1 in 150000 | 2      |
| Remote:                                     |             |        |
| Kegagalan mustahil. Tak pernah ada          |             |        |
| kegagalan terjadi dalam proses yang identik | 1in 1500000 | 1      |

3. Tingkat Deteksi (*Detection*) merupakan perkiraan mengenai seberapa efektif cara pencegahan yang dilakukan untuk menghilangkan mode kegagalan. Di bawah ini merupakan tabel penentuan nilai *detection*:

Tabel 2.3 Nilai Rating Detection

| Deteksi               | -/U 0   | Kri                    | teria            | 11    | Rank |
|-----------------------|---------|------------------------|------------------|-------|------|
| Absolutely impossible | Tidak   | ada                    | kendali          | untuk | 10   |
|                       | mendete | eksi kega              | galan            |       |      |
| Very remote           | Sangat  | sedikit                | kendali          | untuk | 9    |
|                       | mendete | eksi kegaş             | galan            |       |      |
| Remote                |         | terdapat<br>eksi kegaş | kendali<br>galan | untuk | 8    |

| Deteksi         | Kriteria                       | Rank |
|-----------------|--------------------------------|------|
| Very low        | Sangat rendah terdapat kendali | 7    |
|                 | untuk mendeteksi kegagalan     |      |
| Low             | Rendah terdapat kendali untuk  | 6    |
|                 | mendeteksi kegagalan           |      |
| Moderate        | Sedang terdapat kendali untuk  | 5    |
|                 | mendeteksi kegagalan           |      |
| Moderately high | Sedang tinggi terdapat kendali | 4    |
|                 | untuk mendeteksi kegagalan     |      |
| High            | Tinggi terdapat kendali untuk  | 3    |
|                 | mendeteksi kegagalan           |      |
| Very high       | Sangat tinggi terdapat kendali | 2    |
|                 | untuk mendeteksi kegagalan     |      |
| Almost certain  | Kendali hampir pasti dapat     | 1    |
|                 | mendeteksi kegagalan           |      |


4. Nilai RPN (*Risk Priority Number*) Nilai RPN adalah hasil perkalian antara *severity*, *occurance*, dan *detection*. RPN akan dimiliki oleh setiap mode kegagalan. Dengan nilai RPN, dapat diketahui mode kegagalan apa yang paling kritis yang menjadi fokus utama dalam penerapan tindakan perbaikan. Rumus nilai RPN adalah sebagai berikut:

Risk Priority Number = (Severity) 
$$x$$
 (Occurrence)  $x$  (Detection)......(2.5)

### 2.6 Root Cause Analysis (RCA)

Menurut (Jucan, 2005) *Root Cause Analysis* (RCA) merupakan suatu metodologi untuk mengidentifikasi dan memeriksa kembali sebab-sebab yang fungsional. Metode RCA sangat berguna untuk mengidentifikasi dan menganalisis suatu kegagala terhadap sistem yang tidak diharapkan yang terjadi, bagaimana hal itu bisa terjadi, dan mengapa hal itu bisa terjadi. Menurut (Vorley, 2008), *Root Cause Analysis* merupakan metode yang digunakan untuk mengatasi suatu masalah dan ketidaksesuaian, untuk mendapatkan "akar penyebab" dari suatu masalah. digunakan untuk memperbaiki atau menghilangkan suatu masalah yang terjadi dan mencegah masalah yang terjadi kembali terulang. *Root Cause* merupakan kerusakan awal atau kegagalan suatu proses yang ketika diselesaikan, untuk mencegah

suatu masalah terulang kembali di bawah ini adalah sejumlah definisi yang merangkum poin utama dari teknik ini.



Gambar 2.8 Tahapan pengerjaan Root Cause Analysis.

### 2.6.1 Manfaat metode Root Cause Analysis

Manfaat penerapan metode *Root Cause Analysis* didapatkan ketikah hasil dari akar penyebab masalah dapat dipecahkan dan sesuai dengan usulan perbaikan. Oleh karena itu, manfaat yang didapat pada metode ini sebagai berikut:

- 1. Penghapusan aktivitas kegagalan yang berulang.
- 2. Pemberdayaan untuk staf pemeliharaan.
- 3. Pencatatan data yang mengalami kegagalan.
- 4. Peningkatan pemahaman tentang mekanisme yang mengalami kegagalan.
- 5. Mengoptimalkan biaya.
- 6. Mendapatkan kepuasan pelanggan yang lebih tinggi.
- 7. Mengidentifikasi akar penyebab masalah yang sebenarnya dengan jelas.

Terdapat berbagai metode evaluasi terstruktur untuk mengidentifikasi akar penyebab (*root cause*) suatu kejadian yang tidak diharapkan (*undesired outcome*) dari yang sederhana sampai dengan kompleks yaitu:

a. 5 *Why methods*, merupakan alat analisis sederhana untuk menginvestigasi suatu masalah secara mendalam.

b. *Fishbone diagram*, merupakan alat analisis populer yang sangat baik untuk mengindentifikasi suatu penyebab masalah dalam jumlah besar.

### 2.7 Metode TRIZ

Menurut (G. Navas, 2013) metode TRIZ (*Theory of Inventive Problem Solving*) berasal dari akronim bahasa Rusia merupakan metode yang dikembangkan oleh Genrich Altshuller. TRIZ memiliki tahapan atau algoritma dalam memecahkan masalah dengan diawali dari masalah yang spesifik dan dilakukan identifikasi kontradiksi yang terjadi. Kontradiksi yang telah diselesaikan akan diaplikasikan menjadi solusi general yang nanti nya akan dijadikan solusi yang spesifik. Menurut (Render, 2006) TRIZ merupakan metode untuk memecahkan suatu masalah berdasarkan logika maupun data, bukan sebuah intuisi dalam mempercepat menyelesaikan suatu masalah secara kreatif Menurut (Putri, 2018) ada tiga tahapan dalam proses penyelasaian masalah menggunakan metode TRIZ, yaitu:

- a. Melakukan identifikasi dari suatu masalah dengan mencari tahu segala kemungkinan faktor-faktor yang dapat menjadi masalah.
- b. Melakukan klasifikasi suatu masalah dengan menentukan faktor yang mendukung dan faktor yang menentang ke dalam 39 parameter teknis dan menggunakan matriks kontradiksi untuk mencari solusinya menjadi pola penyelesaian masalah selanjutnya.

Tabel 2.4 TRIZ 39 Parameter

| No | Title                        | No | Title                   |
|----|------------------------------|----|-------------------------|
| 1  | Weight of Moving Object      | 21 | Power (Tenaga)          |
|    | (Berat Objek Bergerak)       |    |                         |
| 2  | Weight of Stationary Object  | 22 | Loss of Energy          |
|    | (Berat Objek Tidak Bergerak) |    | (Pengurangan Tenaga)    |
| 3  | Length of Moving Object      | 23 | Loss of Substance       |
|    | (Panjang Objek Bergerak)     |    | (Pengurangan Bahan)     |
| 4  | Length of Stationary Object  | 24 | Loss of Information     |
|    | (Panjang Objek Tak           |    | (Pengurangan Informasi) |
|    | Bergerak)                    |    |                         |
| 5  | Area of Moving Object        | 25 | Loss of Time            |
|    | (Luas Objek Bergerak)        |    | (Pengurangan Waktu)     |

| No | Title                        | No | Title                        |
|----|------------------------------|----|------------------------------|
| 6  | Area of Stationary Object    | 26 | Quantity of Substance        |
|    | (Luas Objek Tak Bergerak)    |    | (Kuantitas Bahan)            |
| 7  | Volume of Moving Object      | 27 | Realiability (Keandalan)     |
|    | (Volume Objek Bergerak)      |    |                              |
| 8  | Volume of Stationary Object  | 28 | Measurement Accuracy         |
|    | (Volume Objek Tak            |    | (Ketepatan Pengukuran)       |
|    | Bergerak)                    |    |                              |
| 9  | Speed (Kecepatan)            | 29 | Manufacturing Precision      |
|    |                              |    | (Ketepatan Manufaktur)       |
| 10 | Force (Daya)                 | 30 | Object-Affected Harmful      |
|    |                              |    | Factors                      |
|    |                              |    | (Objek yang Terkena          |
|    |                              |    | Dampak Berbahaya)            |
| 11 | Stress or Pressure (Tekanan) | 31 | Object-Generated Harmful     |
|    |                              |    | Factors                      |
|    |                              |    | (Objek yang Menghasilkan     |
|    |                              |    | Dampak Berbahaya)            |
| 12 | Shape (Bentuk)               | 32 | Ease of Manufacture          |
|    |                              |    | (Mudah dalam Manufaktur)     |
| 13 | Stability of Object's        | 33 | Convenience of Use           |
|    | Composition (Kestabilan)     |    | (Mudah dalam Penggunaan)     |
| 14 | Strength (Kekuatan)          | 34 | Ease of Repair               |
|    |                              |    | (Kemampuan untuk Dapat       |
|    |                              |    | Diperbaiki)                  |
| 15 | Duration of Action bt Moving | 35 | Adaptability or Verssatility |
|    | Object                       |    | (Kemampuan untuk Dapat       |
|    | (Ketahanan Objek Bergerak)   |    | Beradaptasi)                 |
| 16 | Duration of Action by        | 36 | Device of Complexity         |
|    | Stationary Object            |    | (Kekompleksan Alat)          |
|    | (Ketahanan Objek Tak         |    |                              |
|    | Bergerak)                    |    |                              |

| No | Title                    | No | Title                        |
|----|--------------------------|----|------------------------------|
| 17 | Temperature (Suhu)       | 37 | Difficulty of Detecting and  |
|    |                          |    | Measuring (Sulit untuk       |
|    |                          |    | Dideteksi dan Diukur)        |
| 18 | Illumination Intensity   | 38 | Extent of Automation (Tahap  |
|    | (Kecerahan)              |    | Automasi)                    |
| 19 | Use of Energy by Moving  | 39 | Productivity (Produktivitas) |
|    | Object                   |    |                              |
|    | (Tenaga yang Digunakan   |    |                              |
|    | Oleh Objek Bergerak)     |    |                              |
| 20 | Use of Energy Stationary |    |                              |
|    | Object                   |    |                              |
|    | (Tenaga yang Digunakan   |    |                              |
|    | Oleh Objek Tak Bergerak) |    |                              |
|    |                          |    |                              |

Sumber: https://www.researchgate.net/figure/Parameters-of-TRIZ\_tbl2\_301699508

c. Menemukan solusi dari permasalahan yang dikerjakan dengan penyelesaian kontradiksi menggunakan metode 40 prinsip inventif.

Tabel 2.6 Inventive Principles

|    |                                      |    | r                                      |
|----|--------------------------------------|----|----------------------------------------|
| No | Title                                | No | Title                                  |
| 1  | Segmentation (Segmentasi)            | 21 | Rushing Through (Melewatkan Tahapan    |
|    |                                      |    | Yang Tidak Perlu)                      |
| 2  | Taking Out or Extraction             | 22 | Blessing in Disguise (Mengubah Faktor- |
|    | (Pemisahan)                          |    | faktor Berbahaya untuk Diperbaiki)     |
| 3  | Local Quality                        | 23 | Feedback (Memberikan Umpan Balik       |
|    | (Kualitas Internal)                  |    |                                        |
| 4  | Asymmetry (Ketidaksimetrisan)        | 24 | Intermediary/Mediator (Memberikan      |
|    |                                      |    | Perantara)                             |
| 5  | Merging/Consolidation (Penggabungan) | 25 | Self –Service (Pelayanan Sendiri)      |
| 6  | Universality (Multifungsi)           | 26 | Copying                                |
|    |                                      |    | (Penyalinan)                           |
| 7  | Nested Doll (Menempatkan Objek Lain) | 27 | Cheap Short -Living Objects            |

| No | Title                                | No | Title                                  |
|----|--------------------------------------|----|----------------------------------------|
|    |                                      |    | (Menggunakan Objek Identik Lebih       |
|    |                                      |    | Murah)                                 |
| 8  | Counterweight (Penyeimbangan)        | 28 | Replace Mechanical System (Penggantian |
|    |                                      |    | Sistem/Teknik)                         |
| 9  | Prior Counteraction (Tidak           | 29 | Pneumatics and Hydraulics              |
|    | Membutuhkan Tindakan Awal)           |    | (Pemanfaatan Gas atau Tenaga Angin)    |
| 10 | Prior Action                         | 30 | Flexible Shells & Thin Films           |
|    | (Pemberian Tindakan Awal)            |    | (Kerangkan yang Mudah Disesuaikan      |
|    |                                      |    | dan Lapisan Tipis)                     |
| 11 | Cushion in Advance (Pengamanan)      | 31 | Porous Materials (Membuat Material     |
|    |                                      |    | Dapat Menyerap)                        |
| 12 | Equipotentiality (Penyelarasan)      | 32 | Colour Changes (Mengubah Warna)        |
| 13 | The Other Way Around (Lakukan        | 33 | Homogeneity (Homogenitas)              |
|    | Tindakan Sebaliknya/Berlawanan)      |    |                                        |
| 14 | Spheroidality Curvature              | 34 | Discarding and Recovering (Membuang    |
|    | (Mengubah Objek Datar Menjadi Bulat) |    | dan Memulihkan)                        |
| 15 | Dynamics (Pendinamisan)              | 35 | Parameter Changes (Perubahan           |
|    |                                      |    | Paramater)                             |
| 16 | Partial or Excessive Actions         | 36 | Phase Transitions (Transisi)           |
|    | (Memperbaiki Objek Secara Bertahap)  |    |                                        |
| 17 | Another Dimension (Penambahan        | 37 | Thermal Expansion (Penyesuaian Objek   |
|    | Dimensi)                             |    | dengan Suhu)                           |
| 18 | Mechanical Vibration                 | 38 | Accelerated Oxidation (Meningkatkan    |
|    | (Meningkatkan Frekuensi)             |    | Mutu Layanan)                          |
| 19 | Periodic Action (Tindakan Periodik)  | 39 | Inert Atmosphere (Memisahkan Objek ke  |
|    |                                      |    | Lingkungan Khusus)                     |
| 20 | Continuity of Useful Action          | 40 | Composite Materials                    |
|    | (KelanjutanTindakan Objek)           | 40 | (Menyediakan Material Pelengkap)       |

Sumber: qualityengineering.wordpress.com

# 2.8 Kajian Induktif

Kajian Induktif berisikan segala informasi dan hasil dari penelitian yang telah dilakukan sebelumnya berkaitan dengan permasalahan dan metode dengan penelitian yang akan dilakukan. Penelitian terdahulu digunakan sebagai acuan untuk mempermudah dalam menentukan metode serta fokus penelitian yang telah dilakukan.

- a. Pada tahun 2017, Dude Burlikowska melakukan penelitian dengan tujuan untuk melakukan perbaikan kualitas dan pengendalian kualitas terhadap proses produksi di perusahaan metalurgi. Hasil observasi yang dilakukan peneliti terdapat 3 jenis defect yaitu *The surface defects, The shape defects* dan *The Material Defect*. Dari hasil perhitungan FMEA bahwa Jenis *the surface defect* menghasilkan nilai RPN menjadi 40 yang sebelumnya 210. Pada *the material defect* dengan melakukan evaluasi perpanjangan tanggung jawab untuk pelurusan kualitas pada mandor dan menganalisis deteksi cacat bentuk selama operasi *finishing* tabung, setelah dilakukan evaluasi nilai RPN menjadi 30 yang sebelumnya 150.
- b. Pada tahun 2018, Nanda Prasetiya Pambudi, Dr. Andre Sugiyono, ST., MM, Wiwiek Fatmawati, ST., M. Eng melakukan penelitian dengan tujuan untuk melakukan perbaikan kualitas terhadap produk celana chinos. Dari hasil perhitungan menggunakan FMEA diketahui nilai RPN tertinggi pada proses penjahitan dan pemotongan yaitu sebesar 384 dan 96.dari hasil perbaikan menggunakan FMEA didapat jumlah kecacatan setelah perbaikan sebesar 9 lusin, atau jumlah kecacatan sebesar 4,5 %. Rekomendasi yang diberikan peneliti yaitu mencatat jumlah cacat yang terjadi setiap kali produksi, serta mencatat apa saja yang menjadi penyebab terjadinya kecacatan, sehingga memudahkan untuk melakukan perbaikan dan Para pekerja sebaiknya diberi pengarahan atau pelatihan mengenai proses produksi yang baik dan benar, sehingga nantinya hasil produksi lebih optimal.
- c. Pada tahun 2018, Masud Rana, Xinmin Zhang dan Sayed Abdul Akher melakukan penelitian yang berjudul "Determination of Factors and Quality Control of Car Painting Based on FMEA and SPC" bertujuan untuk mengetahui prioritas cacat yang paling banyak dan menggunakan diagram tulang ikan untuk menganalisis asal-usul cacat. Berdasarkan dari hasil analisis menggunakan FMEA didapatkan bahwa penyebab terjadinya barang cacat disebabkan faktor pengukuran, material, mesin, manusia, lingkungan dan metode. Evaluasi yang didapat dari penelitian

yaitu jika tingkat keparahan 10 atau 9, Proses pengecatan memiliki grand limit sebesar 100 RPN. Tim FMEA perlu melihat kembali setelah dilakukan tindakan untuk desain atau proses ulang apakah nilai RPN kurang dari 100 atau tidak.

- d. Pada tahun 2020, Chia-Fen Chi, Davin Sigmund dan Martin Octavianus Astardi melakukan penelitian yang bertujuan untuk memperbaiki kualitas kendaraan penumpang menggunakan metode FMA dan *Root Cause Analysis*. Berdasarkan dari hasil analisis FMEA dan *Root Cause analyisis* didapatkan bahwa penyebab penarikan kembali kendaraan penumpang disebabkan oleh beberapa faktor seperti cacat terhadap desain dan kesalahan dari *manufacturing*, rekomendasi yang diberikan yaitu proses pengambilan keputusan material otomotif di mana insinyur material dan pemasok material dan komponen harus berkolaborasi untuk membuat rencana yang mencapai tujuan pemangku kepentingan lainnya, termasuk kemampuan proses, biaya, berat, dan masalah integritas struktural kendaraan. untuk pemilihan dan pengujian bahan kandidat.
- e. Pada tahun 2020, Veronica, Nurul Retno Nurwulan dan Wilcha Anatasya melakukan penelitian yang bertujuan untuk mengidentifikasi penyebab-penyebab dari produk cacat yang selanjutnya merekomendasikan metode penanggulangan dari penyebab produk cacat pada salah satu pabrik kertas di Indonesia. Berdasarkan dari hasil analisis menggunakan FMEA didapatkan bahwa penyebab terjadinya barang cacat disebabkan beberapa faktor seperti mesin, manusia, metode dan material. Rekomendasi yang diberikan yaitu perusahaan perlu meningkatkan proses produksinya dengan menegakkan SOP, melatih operator, menggunakan kualitas bahan baku yang lebih baik, dan melakukan perawatan berkala terhadap mesin yang digunakan.
- f. Pada tahun 2020, Purba, Mislan dan Humiras Hardi melakukan penelitian dengan tujuan untuk melakukan perbaikan kualitas dan pengendalian kualitas disalah satu perusahaan baja. Hasil analisis menggunakan metode FMEA nilai RPN (*Risk Priority Number*). Semua penyebab cacat ini menjadi rekomendasi perbaikan seperti jenis *Line Defect* menunjukkan bahwa penyebab dominan untuk cacat garis adalah karena kaliber rol penjepit terlalu kecil dengan nilai RPN adalah 392, Penyebab lainnya adalah kaliber roll yang aus, dan skill adjuster yang kurang

mumpuni. Semua penyebab yang muncul disarankan untuk perbaikan. Jenis *Cross Defect* nilai RPN tertinggi adalah 336 dimana masalah yang perlu segera diselesaikan adalah gulungan atas dan bawah yang tidak berada di tengah, Selanjutnya terjadi keausan pada *bearing chocks* dan yang terakhir adalah kelalaian teknisi dalam memeriksa *spy plate*.

- g. Pada tahun 2020, Fithri1, D Jovie Andra, E Wirdianto and Taufik melakukan penelitian dengan tujuan untuk melakukan perbaikan kualitas dan mengurangi jumlah produk cacat di Departemen Weaving PT. Unitex, Tbk. Menggunakan metode FMEA. Hasil analisis menggunakan FMEA menunjakan tingkat keparahan tertinggi yaitu dari faktor manusia, nilai kejadian tertinggi untuk presisi dan kontrol yang kurang, dan tertinggi nilai deteksi untuk perawatan mesin. Usulan yang dapat diberikan yaitu membuat SOP yang baik dan menempel pada setiap mesin, membuat form untuk mengontrol keadaan komponen mesin dan memberikan pelatihan kepada operator.
- h. Pada tahun 2021, Nurhayati Sembiring and Jeanica Devan melakukan penelitian dengan tujuan untuk melakukan perbaikan kualitas dan pengendalian kualitas terhadap produk kotak pemotong cutter dengan menggunakan metode FMEA. Hasil perhitungan dan analisis menggunakan metode FMEA menunjukan jumlah RPN untuk cacat bengkok: 120 + 125 + 60 + 96 = 401. Karena jumlah RPN lebih kecil dari 1000 maka dapat disimpulkan bahwa cacat yang terjadi tidak terlalu mengganggu, namun tetap harus ditingkatkan.
- i. R Ginting and S Supriadi pada tahun 2021, melakukan penelitian dengan tujuan untuk melakukan perbaikan kualitas dan mengurangi jumlah produk cacat terhadap produk PVC dengan menggunakan metode Statistical Process Chart. Hasil analisis menggunakan metode SPC menunjukan hasil produksi pipa PVC, cacat yang diamati adalah meleleh dan retak di mana:hampir 80% cacat yang ditemukan keduanya cacat. Penyebab cacat yang berasal dari manusia, mesin, bahan dan metode.

Tabel 2.7 Kajian Induktif

|       |                                | ajian Induktif        |                    |
|-------|--------------------------------|-----------------------|--------------------|
| Tahun | Judul                          | Penulis               | Metode             |
| 2017  | Monitoring Of The Production   | Dude Burlikowska      | FMEA. Manufaktur,  |
|       | Processing in Metalurgical     |                       | Polandia           |
|       | Company Using FMEA             |                       |                    |
| 2018  | Determination of Factors and   | Masud Rana, Xinmin    | FMEA, SPC.         |
|       | Quality Control of Car         | Zhang dan Sayed       | Manufaktur, China  |
|       | Painting Based on FMEA and     | Abdul Akher           |                    |
|       | SPC                            |                       |                    |
| 2018  | Analisis Risk Management       | Nanda Prasetiya       | FMEA, Manufaktur,  |
|       | Untuk Memberikan Usulan        | Pambudi, Dr.Andre     | Indonesia          |
|       | Perbaikan Kualitas Celana      | Sugiyono,ST.,MM,      |                    |
|       | Chinos Menggunakan FMEA        | dan Wiwiek            |                    |
|       |                                | Fatmawati,ST.,        |                    |
|       |                                | M.Eng                 |                    |
| 2020  | Classification Scheme for Root | Chia-FenChi, Davin    | FMEA, RCA.         |
|       | Cause and Failure Modes and    | Sigmund dan Martin    | Departement of     |
|       | Effect Analysis (FMEA) of      | Octavianus Astardi    | Industrial         |
|       | Passanger Vehicale Recalls     |                       | Engineering,       |
|       |                                |                       | National Taiwan    |
|       |                                |                       | University Science |
|       |                                |                       | of Technoogy,      |
|       |                                |                       | Taiwan             |
| 2020  | Implementation of Failure      | Veronica, Nurul Retno | FMEA. Manufaktur,  |
|       | Mode and Effect Analysis and   |                       | Indonesia          |
|       | Fault Tree Analysis in Paper   | Anatasya              |                    |
|       | Mill: A Case Study             |                       |                    |
| 2020  | Quality Control of Steel       | Mislan and Humiras    | FMEA, SQC.         |
|       | Deformed Bar Product using     | Hardi Purba           | Manufaktur,        |
|       | Statistical Quality Control    |                       | Indonesia          |
|       | (SQC) and Failure Mode and     |                       |                    |
|       | Effect Analysis (FMEA)         |                       |                    |
|       |                                |                       |                    |

| Tahun | Judul                          | Penulis             | Metode               |  |
|-------|--------------------------------|---------------------|----------------------|--|
| 2020  | The use of FMEA for the        | Fithril, D Jovie    | FMEA, Manufaktur.    |  |
|       | Quality Control Analysis of    | Andra, E Wirdianto  | Indonesia            |  |
|       | Greige Fabrics (case study in  | and Taufik          |                      |  |
|       | the Weaving Department of      |                     |                      |  |
|       | PT. Unitex, Tbk)               |                     |                      |  |
| 2021  | Quality control of cutter case | Nurhayati Sembiring | Six Sigma, FMEA.     |  |
|       | at PT. X with six sigma        | and Jeanica Devan   | Manufaktur,          |  |
|       | approach                       |                     | Indonesia            |  |
|       |                                |                     |                      |  |
| 2021  | Defect analysis on PVC pipe    | R Ginting and S.    | Stastical Quality    |  |
|       | using Statistical Quality      | Supriadi            | Control. Manufaktur, |  |
|       | Control (SQC) approach to      |                     | Indonesia            |  |
|       | reduce defects (Case Study:    |                     |                      |  |
|       | PT. XYZ)                       |                     |                      |  |

Untuk penelitian ini akan berfokus pada proses *spray painting*, dimana penelitian akan dilakukan di PT. Tritek Indonesia yang merupakan sebuah badan usaha yang bergerak di bidang jasa *Painting*. Objek dari penelitian ini adalah part elektronik yang merupakan terbuat dari bahan besi. Diketahui perusahaan memiliki masalah dalam pengendalian kualitas dimana hasil proses *spray painting* pada part elektronik yang memiliki jumlah produk cacat cukup tinggi. Berdasarkan penelitian-penelitian di atas, nantinya peneliti akan menggunakan Metode *Statistical Process Chart* dalam menghitung dan menganalisis jumlah barang yang mengalami defect. Peneliti juga akan menggunakan metode *Failure Methode and Effect Analysis* (FMEA) dan metode *Root Cause Analysis* (RCA) untuk mengindentifikasi penyebab barang yang mengalami cacat produk. Nantinya peneliti juga akan memberikan rekomendasi atau usulan menggunakan metode TRIZ untuk memberikan masukan kepada perusahaan agar dapat mengurangi jumlah barang yang megalami *defect*, dimana hal ini belum ditemukan pada penelitian-penelitian di atas.

#### **BAB III**

# METODE PENELITIAN

#### 3.1 Objek Penelitian

Penelitian ini dilakukan di departemen *painting* pada area bagian *Spray* PT Tritek Indonesia yang berlokasi di Jalan Kampung Bugel Salam no 37. Proses *spray painting* merupakan tahap pengecatan yang dilakukan pada part elektronik. Proses *spray painting* dilakukan setelah part tersebut melalui proses *inspect, loading spray* dan menaruh *part* yang akan di proses tersebut ke *jig*. Fokus penelitian ini adalah membahas mengenai apa saja faktor-faktor penyebab terjadinya barang yang mengalami *defect* pada proses *spray painting* dan mengetahui penyebab kegagalan yang paling berdampak untuk diprioritaskan berdasarkan dari hasil perhitungan pembobotan kriteria.

#### 3.2 Metode Penelitian

Data-data yang dibutuhkan didalam penelitian ini dikumpulkan dengan menggunakan teknik pengambilan data sebagai berikut:

#### 1. Observasi

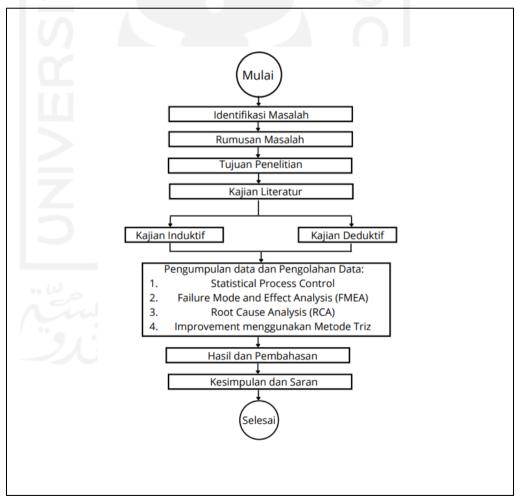
Observasi, merupakan pengambilan data dengan melakukan pengamatan langsung pada objek penelitian. Pada tahapan ini peneliti melakukan pengamatan langsung dilapang pada objek penelitian yang telah ditentukan sebelumnya.

#### 2. Wawancara

Pada tahap wawancara, peneliti mewawancara *expert* pada departemen - departemen terkait yang berkaitan dengan aktivitas *proses spray painting*.

#### 3. Kuesioner

Kuesioner merupakan alat pengumpulan data dengan memberikan pertanyaan tertulis kepada obyek penelitian. Tujuan dari kuesioner ini adalah untuk dapat mengetahui data dan penilaian dari *expert*.


#### 3.3 Jenis Data

Adapun jenis-jenis data yang digunakan pada penelitian ini adalah sebagai berikut.

1. Data primer merupakan data yang diperoleh secara langsung. Pada penelitian ini data primer diperoleh dari wawancara dan pengisian kuesioner terhadap para *expert* pada departemen yang berkaitan dengan aktivitas *proses spray painting*.

- 2. Data Sekunder, merupakan data yang diperoleh dengan cara mengumpulkan artikel, jurnal, buku-buku, serta memanfaatkan media internet yang dapat digunakan untuk mendukung penelitian ini atau pengumpulan data yang didapatkan dari studi pustaka, literatur serta referensi yang mendukung terbentuknya suatu landasan teori penelitian ini.
- 3. Data kuantitatif adalah data informasi yang berupa simbol angka atau bilangan. Berdasarkan simbol-simbol angka tersebut, perhitungan secara kuantitatif dapat dilakukan untuk menghasilkan suatu kesimpulan yang berlaku umum di dalam suatu parameter. Pada penelitian ini data sekunder di peroleh dari hasil pengumpulan dan pengamatan jumlah barang yang mengalami *defect* selama 3 bulan yang bersumber dari perusahaan bagian *line spray painting*.

# 3.4 Alur Penelitian



Gambar 3.1 Alur Penelitian

Dalam penelitian ini dilakukan beberapa tata cara penelitian serta tahapan penelitian sesuai pada Gambar 3.1 diatas yang akan dijelaskan sebagai berikut

# 1. Mendapatkan Data

Tahapan selanjutnya adalah merumuskan masalah yang ada pada *spray painting*. Perumusan masalah dilakukan untuk mempermudah pemecahan masalah. Rumusan masalah ditentukan untuk mencapai tujuan dari penelitian yang dilakukan. Penelitian ini dilakukan untuk mengetahui jenis cacat dan faktor-faktor penyebab dari banyaknya produk *defect* pada proses *spray painting* untuk kemudian di analisis dan memberikan usulan perbaikan dengan harapan mengurangi produk rusak tersebut.

# 2. Kajian Literatur

Kajian literatur yang digunakan untuk mendeskripsikan atau mereview bahasan penelitian yang dibutuhkan teradapat 2 macam yaitu kajian induktif dan kajian deduktif.

# 3. Pengumpulan dan Pengolahan data

Pada tahapan ini yaitu mengumpulkan data hasil jumlah produksi dan data jumlah produk *defect* pada proses *spray painting* di bulan Maret sampai bulan Mei 2021. Data hasil produksi dan data jumlah barang *defect* didapat berdasarkan perhitungan *daily production report* di PT. Tritek Indonesia.

# 4. Statistical Process Control (SPC)

Pada tahapan ini yaitu mengumpulkan data yang bertujuan untuk memantau dan mengendalikan proses, menganalisis hal hal yang tidak sesuai dan melakukan Inspeksi serta mengolah data jumlah dan jenis produk yang mengalami defect menggunakan Check Sheet, Diagram Pareto (*Pareto Chart*), Kendali (*Control Chart*) dan Diagram batang (*Histogram*) output yang dihasilkan dari perhitungan *Statistical Process Control* ini yaitu jenis *defect* yang dominan.

# 5. Failure Mode and Effect Analysis (FMEA) dan Root Cause Analysis (RCA)

Pada tahapan ini yaitu membahas analisis untuk melihat signifikansi masingmasing faktor yang diuji dalam FMEA. Tahap analisis dilakukan dengan mengambil data dari penyebab barang defect, pembobotan nilai severity, nilai occurance dan nilai detection, setelah itu menghitung nilai Risk Priority Number (RPN) yang didapat dari hasil pembobotan dari nilai severity, occurance dan detection. Setelah dilakukan pengolahan menggunakan metode FMEA maka tahap

selanjutnya yaitu mengidentifikasi permasalahan dengan menggunakan metode *Root Cause Analysis*. Pada tahapan ini yaitu membahas suatu kegagalan terhadap sistem tentang hal yang tidak diharapkan terjadi, seperti adanya barang defect dari *hasil spray painting*. Untuk memecahkan permasalahan tersebut akan diidentifikasi dengan menggunakan *Fishbone diagram*. Untuk mendapatkan analisis RCA maka hasil dari analisis FMEA digunakan yang berdasakan dari hasil wawancara dengan internal perusahaan.

# 6. Improvement mengggunakan Metode TRIZ

Pada tahapan ini yaitu membahas solusi dan rekomendasi menggunakan tools Metode TRIZ untuk membantu dalam memberikan usulan perbaikan pada mode kegalalan dengan nilai RPN tertinggi yang sebelumnya sudah ditentukan dari nilai Metode FMEA.

#### 7. Hasil dan pembahasan

Pada tahap ini yaitu melakukan pembahasan dari hasil pengumpulan dan pengolahan data yang telah dikerjakan, hasil dan pembahasan akan membantu dalam menentukan rekomendasi dan usulan perbaikan yang benar.

# 8. Kesimpulan dan Saran

Tahap terakhir dalam penelitian ini yaitu menentukan kesimpulan dan saran setelah dilakukan pengumpulan, pengolahan dan pembahasan nya maka akan ditarik kesimpulan tekait dari penelitian yang telah dilakukan dan akan diberikan kepada perusahaan dan bagi penelitian selanjutnya.

# **BAB IV**

# PENGUMPULAN DAN PENGOLAHAN DATA

#### 4.1 Profil Perusahaan

PT Tritek Indonesia merupakan perusahaan jasa yang begerak di bidang industri metal stamping, anodizing dan painting Perusahaan didirikan pada tahun 2010 dengan nama CV. Tritech Indonesia. Pada tanggal 17 Januari 2012 perusahaan berganti nama menjadi PT Tritek Indonesia Awalnya perusahaan hanya memproduksi komponen part elektrik saja. seiring berkembang nya perusahaan, PT Tritek Indonesia tidak hanya memproduksi komponen part elektrik melainkan komponen part elektronik dan komponen part otomotif. Sampai tahun 2021 ini PT Tritek Indonesia memiliki karyawan sebanyak 90 orang.



Gambar 4.1 Logo PT.Tritek Indonesia Sumber: Perusahaan

PT Tritek Indonesia selalu menjabarkan perkembangan terakhir dalam teknologi dan menempatkan hubungan baik dengan pelanggan sebagai hal yang terpenting dalam bisnis. Kepuasan pelanggan merupakan dasar untuk pengambilan keputusan bagi manajemen. Manajemen dan seluruh karyawan menempatkan pehatian terhadap keinginan dan persyaratan pelanggan sebagai fokus dalam pelaksanaan tugas sehari-hari.

# 4.1.1 Lokasi Perusahaan

PT. Tritek Indonesia perusahaan jasa yang begerak di bidang industri metal stamping, anodizing, painting . Perusahaan ini belokasi di Jalan Kampung Bugel Salam No 37 RT.003, RW. 01 Kel. Hegarmanah, Cikarang Timur, Bekasi, Jawa Barat.



Gambar 4.2 Lokasi PT. Tritek Indonesia

# 4.1.2 Visi Dan Misi Perusahaan

Dalam rangka meningkatkan kualitas dan memacu untuk mampu bersaing dalam persaingan dengan perusahaan lain, PT Tritek Indonesia memiliki visi dan misi yang dapat mencerminkan masa depan perusahaan ini. Adapun visi dan misi PT Tritek Indonesia adalah sebagai berikut.

- 1. Visi PT Tritek Indonesia bertekad menjadi perusahaan yang berfokus kepada Kepuasan Pelanggan dan menjadi perusahaan yang *Market Leader*.
- 2. Misi PT Tritek Indonesia bertekad menjadi perusahaan yang berfokus meningkatkan kualitas produksi yang sesuai dengan keinginan pelanggan, meningkatkan produktivitas. meningkatkan kemampuan sumber daya manusia dan meningkatkan situasi kerja yang kondusif.

# Direktur Manager Produksi Manager HRD dan Accounting Marketing & Purchasing Leader Stamping Leader Anodizing Leader Painting Leader QA Staff Marketing Staff Purchasing

# 4.1.3 Struktur Organisasi

Gambar 4.3 Struktur Organisasi PT. Indonesia

# 4.1.4 Sistem Kepegawaian

PT. Tritek Indonesia memiliki total karyawan yang terdiri dari karyawan 55 laki-laki dan 35 karyawan perempuan. Karyawan perusahaan terbagi atas karyawan kantor dan karyawan lapangan,. Pembagian jam kerja pada karyawan adalah sebagai berikut:

# 1. Karyawan Kantor

Untuk karyawan kantor memiliki jam kerja sebanyak 8 jam mulai pukul 08.00 WIB sampai dengan pukul 17.00 WIB, dengan waktu istirahat dimulai pukul 12.00 WIB hingga pukul 13.00 WIB.

# 2. Karyawan lapangan

Untuk karyawan bagian produksi terbagi kedalam dua shift, yaitu shift pagi dan shift malam. Untuk shift pagi dimulai pukul 08.00 WIB hingga pukul 16.00 WIB dengan waktu istirahat dimulai pukul 12.00 WIB hingga pukul 13.00 WIB. Sedangkan, untuk shift malam dimulai pukul 16.00 WIB hingga pukul 12.00 WIB dengan waktu istirahat dimulai pukul 18.00 WIB hingga pukul 19.00 WIB.

# 4.1.5 Proses yang dihasilkan

Produk atau Part yang dilakukan proses *spray painting* oleh PT. Tritek Indonesia terdiri dari *Stand Body Top* dan *Telenoir* 

# 1. Stand Body Top

Stand Body Top merupakan part Elektronik yang dibuat oleh PT. Woo In. Part tersebut merupakan part yang digunakan sebagai dudukan didalam komponen display seperti monitor dan TV. PT Tritek Indonesia sebagai perusahaan bagian jasa sray painting melakukan proses finishing part dengan proses painting part tersebut dengan memberi warna hitam Doff sesuai dengan yang diminta oleh PT Woo in selaku pemilik part tersebut.

#### 2. Telenoir

*Telenoir* merupakan part Elektronik yang dibuat oleh PT. Yong Shin. PT Tritek Indonesia sebagai perusahaan bagian *jasa sray painting* melakukan proses *finishing* part dengan proses *painting* part tersebut dengan memberi warna *silver* sesuai dengan yang diminta oleh PT Yong Shin selaku pemilik part tersebut.

# 4.1.6 Proses Produksi

Bahan baku pada proses *spray painting* terdiri dari cat, *hexane* dant*hinner*. Proses *spray painting* terdiri dari beberapa tahapan, antara lain:

#### 1. Proses *Treatment*

Part yang akan di proses *spray painting* akan dilakukan *treatment* terlebih dahulu dengan menggosok *part* tersebut dengan kuas dan cairan *hexane* agar minyak yang terdapat pada *part* dapat hilang.



Gambar 4. 4 Proses Treatment

# 2. Proses Input part

Part yang sudah dilakukan treatment, selanjutnya dilakukan Input\_Proses Spray dengan menaruh 10 part yang sudah ditreatment ke bagian jig, setelah itu part yang sudah ditaruh ke bagian jig dipindahkan kebagian konveyor untuk dilakukan proses spray.



Gambar 4.5 Proses Input part

# 3. Proses Spraying

Setelah dilakukan proses *input* proses maka dilakukan proses *sraying*, proses *spraying* dilakukan dengan jarak *spray gun* 100-200 mm dengan sudut 90 derajat dan dilakukan didalam ruangan *spray booth*.



Gambar 4.6 Proses Spray painting

# 4. Proses pengeringan

Selanjutnya, yaitu proses pengeringan atau drying. pada proses ini barang yang sudah dilakukan proses *spraying* akan dimasukan kedalam konveyer oven bersuhu 120-150 derajat celcius untuk dilakukan pengeringan.



Gambar 4.7 Proses pengeringan menggunakan oven konveyor

# 5. Proses pendinginan.

Selanjutnya, yaitu proses pendinginan barang yang sudah keluar dari konveyer oven maka barang dipindahkan ke meja pendinginan, proses pendinginan dilakukan menggunakan kipas dengan berkecepatan maksimal agar part yang panas setelah proses pengeringan dapat menjadi dingin lebih cepat.



Gambar 4.8 Proses pendinginan

# 6. Proses Inspeksi

Proses Inspeksi bertujuan untuk memeriksa apakah barang yang diproses sudah sesuai dengan spesifikasi yang ditentukan dan melakukan sortir untuk memisahkan barang yang sudah *finish good* dan barang yang mengalami *defect* atau *not good*. Proses inspeksi dilakukan oleh operator *Quality Control*.



Gambar 4.9 Proses Inspeksi

# 7. Proses packing

Selanjutnya, barang yang sudah diperiksa dan sudah memenuhi standar kualitas maka barang siap untuk di *packing*.



Gambar 4.10 Proses packaging

# 4.1.7 Pengumpulan data

PT. Tritek Indonesia menerapkan sistem produksi *Make To Order* dalam melakukan proses *spray painting* pada *part top body supporter* dan *telenoir*. Berikut adalah data produksi proses *spray painting* pada *part body top supporter* dan *telenoir* pada bulan Maret 2021 – Mei 2021

Tabel 4.1 Jumlah produksi dan defect spray painting pada bulan Maret 2021

| No | Tanggal  | Jumlah Produksi | Jumlah Defect |
|----|----------|-----------------|---------------|
| 1  | 01 Maret | 2588            | 108           |
| 2  | 02 Maret | 2785            | 125           |
| 3  | 03 Maret | 3155            | 155           |
| 4  | 04 Maret | 1442            | 100           |
| 5  | 05 Maret | 698             | 48            |
| 6  | 06 Maret | 1657            | 57            |
| 7  | 08 Maret | 3152            | 152           |
| 8  | 09 Maret | 2545            | 145           |
| 9  | 10 Maret | 1950            | 332           |
| 10 | 11 Maret | 2000            | 100           |
| 11 | 12 Maret | 1972            | 265           |
| 12 | 13 Maret | 1576            | 76            |
| 13 | 15 Maret | 3452            | 152           |
| 14 | 16 Maret | 3445            | 145           |
| 15 | 17 Maret | 2860            | 60            |
| 16 | 18 Maret | 4347            | 147           |
| 17 | 19 Maret | 3311            | 271           |
| 18 | 20 Maret | 2322            | 122           |
| 19 | 22 Maret | 4298            | 200           |
| 20 | 23 Maret | 4247            | 247           |
| 21 | 24 Maret | 4300            | 200           |
| 22 | 25 Maret | 3553            | 244           |
| 23 | 26 Maret | 4368            | 68            |
| 24 | 27 Maret | 4392            | 92            |
| 25 | 29 Maret | 3445            | 125           |
| 26 | 30 Maret | 3651            | 81            |
| 27 | 31 Maret | 4341            | 141           |
|    | Total    | 81852           | 3958          |

Tabel 4.2 Jumlah produksi dan defect spray painting pada bulan April 2021

| No No | Tanggal  | efect spray painting pada bu<br>Jumlah Produksi | Jumlah Defect |
|-------|----------|-------------------------------------------------|---------------|
| 1     | 1 April  | 3846                                            | 231           |
| 2     | 3 April  | 2138                                            | 208           |
| 3     | 5 April  | 2720                                            | 89            |
| 4     | 6 April  | 2585                                            | 189           |
| 5     | 7 April  | 1605                                            | 120           |
| 6     | 8 April  | 3467                                            | 67            |
| 7     | 9 April  | 1452                                            | 52            |
| 8     | 10 April | 1550                                            | 100           |
| 9     | 12 April | 3118                                            | 68            |
| 10    | 13 April | 3238                                            | 78            |
| 11    | 14 April | 1259                                            | 59            |
| 12    | 15 April | 401                                             | 77            |
| 13    | 16 April | 1334                                            | 180           |
| 14    | 17 April | 1277                                            | 97            |
| 15    | 19 April | 1598                                            | 118           |
| 16    | 20 April | 1941                                            | 141           |
| 17    | 21 April | 1765                                            | 65            |
| 18    | 22 April | 1600                                            | 180           |
| 19    | 23 April | 3104                                            | 204           |
| 20    | 24 April | 1849                                            | 49            |
| 21    | 26 April | 1585                                            | 234           |
| 22    | 27 April | 1638                                            | 138           |
| 23    | 28 April | 1777                                            | 77            |
| 24    | 29 April | 2207                                            | 207           |
| 25    | 30 April | 1508                                            | 58            |
|       | Total    | 50562                                           | 3086          |

Tabel 4.3 Jumlah produksi dan defect spray painting pada bulan Mei 2021

| 1  | 1 Mei  | ***   |      |
|----|--------|-------|------|
| •  |        | 2086  | 151  |
| 2  | 3 Mei  | 3968  | 218  |
| 3  | 4 Mei  | 2200  | 100  |
| 4  | 5 Mei  | 3474  | 224  |
| 5  | 6 Mei  | 3570  | 452  |
| 6  | 7 Mei  | 3557  | 107  |
| 7  | 8 Mei  | 3963  | 113  |
| 8  | 10 Mei | 3460  | 180  |
| 9  | 11Mei  | 2200  | 100  |
| 10 | 17 Mei | 1250  | 150  |
| 11 | 18 Mei | 2367  | 72   |
| 12 | 19 Mei | 1653  | 103  |
| 13 | 20 Mei | 2800  | 150  |
| 14 | 21 Mei | 2960  | 160  |
| 15 | 22 Mei | 1000  | 50   |
| 16 | 24 Mei | 1155  | 105  |
| 17 | 25 Mei | 804   | 54   |
| 18 | 27 Mei | 1046  | 46   |
| 19 | 28 Mei | 2275  | 75   |
| 20 | 29 Mei | 1445  | 95   |
| 21 | 31 Mei | 900   | 50   |
|    | Total  | 48133 | 2755 |

# 4.1.8 Jenis barang defect

Berikut penjelasan dari jenis cacat produk yang terjadi pada proses spray painting:

# a. Scratch

*Scratch* adalah jenis produk cacat dimana terdapat goresan pada part yang sudah di proses, Penyebab terjadi nya *scratch* karena lapisan cat yang tipis.

# b. Dirty / Kotor

*Dirty* atau kotor adalah jenis produk cacat dimana terdapat bintik bintik yang terdapat pada item, penyebab terjadinya *dirty* karena sirkulasi udara yang tidak baik.

#### c. Bubble

*Bubble* adalah jenis produk cacat dimana terdapat partikel berbentuk gelembung pada *item* yang sudah diproses, penyebab terjadinya bubble karena suhu oven yang terlalu tinggi saat proses pengeringan.

#### d. Overpaint

Overpaint adalah jenis produk cacat dimana permukaan cat tidak rata dan pada bagian tertentu catnya terlihat lebih tebal, penyebab overpaint karena saat proses spray yang berlebihan.

#### e. Oil

Oil atau berminyak adalah jenis produk cacat dimana terdapat bercak seperti minyak pada item yang sudah di proses, penyebab terjadinya oil karena saat proses treatment kurang bersih.

#### f. Discolor

*Discolor* atau belang adalah jenis produk cacat dimana warna yang dihasilkan oleh cat tidak sesuai dengan standar warna. Penyebab terjadinya discolor karena adanya kontaminasi antara cat atau *thinner* yang dipakai.

#### g. Crack

*Crack* atau mengelupas adalah jenis produk cacat diakibatkan kerusakan cat yang mudah terkelupas jika ditarik dengan *cellotape* atau *tape* yang lain, penyebab terjadinya *crack* karena pemakaian *thinner* yang kurang sesuai.

# h. Kulit jeruk

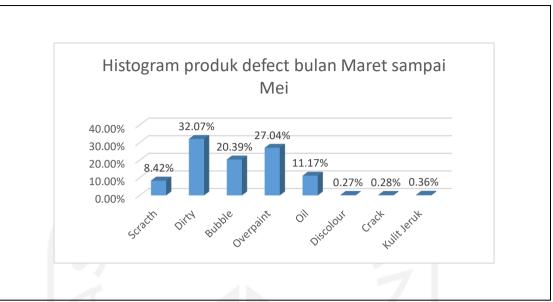
Kulit jeruk atau orange peel adalah jenis produk cacat dimana terdapat lapisan cat yang tidak merata dan bergelombang seperti kulit jeruk pada permukaan *item*, penyebab terjadinya kulit jeruk karena tekanan udara penyemprotan yang terlalu tinggi.

# 4.2 Pengolahan data

# 4.2.1 Tahap Statistical Process Control

Berdasarkan hasil penetilian yang telah di dilakukan pada PT. Tritek Indonesia diperoleh data jumlah produksi berserta jumlah produk yang mengalami *defect* dari bulan Maret sampai bulan Mei 2021 yang akan diolah menggunakan alat atau *tools* pengendali kualitas pada *Statistical Process Control* (SPC) untuk melakukan pengendalian kualitas terhadap hasil proses *spray painting item Stand Body Top* dan item *Telenoir*.

#### 1. Check Sheet


Langkah awal yang dilakukan dalam pengendalian kualitas untuk meningkatkan kualitas hasil proses *spray painting* yaitu membuat tabel pemerikasaan atau *check sheet* dari jumlah produksi dan produk *defect* yang disebabkan dari ketidaksesuaian dengan standar yang telah ditentukan. Berikut data yang akan digunakan dalam melakukan analisis data yaitu jenis produk yang mengalami *defect* selama bulan Maret sampai Mei 2021.

Tabel 4.4 Data rekapitulasi check sheet defect bulan Maret sampai Mei 2021.

| No | Jenis Defect    | Jumlah Defect |
|----|-----------------|---------------|
| 1  | Scratch         | 825           |
| 2  | Dirty / Kotor   | 3143          |
| 3  | Bubble          | 1998          |
| 4  | Overpaint       | 2650          |
| 5  | Oil / Berminyak | 1095          |
| 6  | Discolor        | 26            |
| 7  | Crack           | 27            |
| 8  | Kulit Jeruk     | 35            |
|    | Total           | 9799          |

# 2. Histogram

Langkah selanjutnya yaitu membuat diagram batang atau *histogram* bertujuan untuk melihat tingkat variasi pengukuran data. *Histogram* berfungsi untuk menunjukan karakteristik – karakteristik dari data yang dibagi – bagi menjadi kelas – kelas. Pada histogram frekuensi sumbu x menunjukan nilai pengamatan dari tiap kelas. Berikut hasil histogram produk defect saat proses *spray painting* selama priode bulan Maret sampai Mei 2021. Dari diagram diatas, diketahui jenis cacat dengan jumlah terbesar adalah *Dirty* dari total keseluruhan jumlah defect yang ada.



Gambar 4.11 Histogram defect pada bulan Maret sampai Mei 2021

#### 3. Control Chart

Proses selanjutnya yaitu menghitung peta kontrol P untuk menghitung dan digunakan mengikuti metode statistik, dimana data yang terkait dengan kualitas produk akan diuraikan dalam sebuah peta kontrol. Untuk menghitung jumlah proporsi cacat dari data *defect* pada bulan Maret mengacu pada sub bab 2.4 bagian peta kendali atau *control chart*:

1. Menghitung Proporsi produk cacat

$$\overline{p} = \frac{\text{Jumlah banyak nya produk cacat}}{\text{Jumlah produksi}}.....(2.1)$$

$$\overline{p} = \frac{108}{2588} = 0.04173$$

2. Menentukan nilai Control Limit

$$\frac{\overline{p}=\text{jumlah keseluruhan produk cacat}}{\text{Jumlah keseluruhan produksi}}....(2.2)$$

$$\overline{p}=\frac{3858}{81852}=0.04713$$

- 3. Menentukan batas kendali untuk peta kontrol p
  - c. Menentukan nilai Upper Control Limit (UCL)

$$UCL = \bar{p} + 3\sqrt{\frac{\bar{p}(1-\bar{p})}{N}}....(2.3)$$

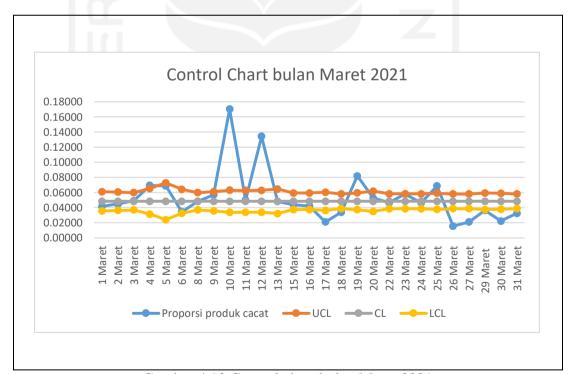
$$= 0.04713 + 3\frac{\sqrt{0.0473(1-0.0473)}}{2588}$$

$$= 0.05963$$

d. Menentukan nilai Lower Control Limit (LCL)

LCL = 
$$\bar{p} - 3\sqrt{\frac{\bar{p}(1-\bar{p})}{N}}$$
....(2.4)

$$= 0.04713 - 3\frac{\sqrt{0.0473(1 - 0.0473)}}{2588}$$


= 0.03464

Tabel 4.5 Perhitungan batas kendali bulan Maret 2021

|    |          |                    |                  | <u> </u>                 |         |         |         |
|----|----------|--------------------|------------------|--------------------------|---------|---------|---------|
| No | Tanggal  | Jumlah<br>Produksi | Jumlah<br>Defect | Proporsi produk<br>cacat | UCL     | CL      | LCL     |
| 1  | 01 Maret | 2588               | 108              | 0.04173                  | 0.05963 | 0.04713 | 0.03464 |
| 2  | 02 Maret | 2785               | 125              | 0.04488                  | 0.05918 | 0.04713 | 0.03509 |
| 3  | 03 Maret | 3155               | 155              | 0.04913                  | 0.05845 | 0.04713 | 0.03581 |
| 4  | 04 Maret | 1442               | 100              | 0.06935                  | 0.06388 | 0.04713 | 0.03039 |
| 5  | 05 Maret | 698                | 48               | 0.06877                  | 0.07120 | 0.04713 | 0.02307 |
| 6  | 06 Maret | 1657               | 57               | 0.03440                  | 0.06275 | 0.04713 | 0.03152 |
| 7  | 08 Maret | 3152               | 152              | 0.04822                  | 0.05846 | 0.04713 | 0.03581 |
| 8  | 09 Maret | 2545               | 145              | 0.05697                  | 0.05974 | 0.04713 | 0.03453 |
| 9  | 10 Maret | 1950               | 332              | 0.17026                  | 0.06153 | 0.04713 | 0.03274 |
| 10 | 11 Maret | 2000               | 100              | 0.05000                  | 0.06135 | 0.04713 | 0.03292 |
| 11 | 12 Maret | 1972               | 265              | 0.13438                  | 0.06145 | 0.04713 | 0.03282 |
| 12 | 13 Maret | 1576               | 76               | 0.04822                  | 0.06315 | 0.04713 | 0.03112 |
| 13 | 15 Maret | 3452               | 152              | 0.04403                  | 0.05795 | 0.04713 | 0.03631 |
| 14 | 16 Maret | 3445               | 145              | 0.04209                  | 0.05797 | 0.04713 | 0.03630 |
| 15 | 17 Maret | 2860               | 60               | 0.02098                  | 0.05902 | 0.04713 | 0.03525 |
| 16 | 18 Maret | 4347               | 147              | 0.03382                  | 0.05678 | 0.04713 | 0.03749 |
| 17 | 19 Maret | 3311               | 271              | 0.08185                  | 0.05818 | 0.04713 | 0.03608 |
| 18 | 20 Maret | 2322               | 122              | 0.05254                  | 0.06033 | 0.04713 | 0.03394 |
| 19 | 22 Maret | 4298               | 200              | 0.04653                  | 0.05683 | 0.04713 | 0.03744 |
| 20 | 23 Maret | 4247               | 247              | 0.05816                  | 0.05689 | 0.04713 | 0.03738 |
| 21 | 24 Maret | 4300               | 200              | 0.04651                  | 0.05683 | 0.04713 | 0.03744 |
| 22 | 25 Maret | 3553               | 244              | 0.06867                  | 0.05780 | 0.04713 | 0.03647 |

| No | Tanggal            | Jumlah<br>Produksi | Jumlah<br>Defect | Proporsi produk<br>cacat | UCL     | CL      | LCL     |
|----|--------------------|--------------------|------------------|--------------------------|---------|---------|---------|
| 23 | 26 Maret           | 4368               | 68               | 0.01557                  | 0.05675 | 0.04713 | 0.03751 |
| 24 | 27 Maret           | 4392               | 92               | 0.02095                  | 0.05673 | 0.04713 | 0.03754 |
| 25 | 29 Maret           | 3445               | 125              | 0.03628                  | 0.05797 | 0.04713 | 0.03630 |
| 26 | 30 Maret           | 3651               | 81               | 0.02219                  | 0.05766 | 0.04713 | 0.03661 |
| 27 | 31 Maret           | 4341               | 141              | 0.03248                  | 0.05678 | 0.04713 | 0.03748 |
|    | Total<br>Rata-Rata | 81852<br>2640.4    | 3958<br>127.68   |                          |         |         |         |

Setelah melakukan perhitungan P-*chart*, selanjutnya adalah hasil perhitungan tersebut dibuatkan diagram Grafik peta kontrol yang bertujuan untuk menggambarkan apakah titik yang terdapat pada grafik bersifat normal atau tidak normal. Di bawah ini merupakan grafik peta kontrol-p pada hasil produksi bulan Maret 2021.



Gambar 4.12 Control chart bulan Maret 2021

Dari gambar 4.12 dapat bisa dilihat bahwa peta kendali pada bulan Maret 2021 sebanyak 5 data yang melewati batas *Upper Control Limit* (UCL). Terdapat data jumlah *defect* yang mendekati batas *Upper Control Limit* (UCL) yaitu pada tanggal 5, 9 dan 23 Maret 2021. Kemudian sebanyak 5 data yang berada pada batas kontrol yang

telah ditentukan dan 7 data yang berada di bawah nilai *Lower Control Limit* (LCL). Terdapat juga data jumlah *defect* yang mendekati batas *Lower Control Limit* (LCL) pada tanggal 1, 5, 15 dan 16 Maret 2021. Penyimpangan di luar batas kendali pada *Upper Center Line* (UCL) menunjukkan masih adanya permasalahan pada hasil proses produksi karena output yang didapat sudah optimal tetapi masih banyak juga hasil produksi yang mengalami *defect* sehingga data berada diluar batas kendali pada periode tertentu. Sedangkan penyimpangan di luar batas kendali pada *Lower Center Line* (LCL) karena hasil output yang didapat sudah bagus tetapi jumlah *defect* nya sedikit. Sehingga data berada diluar batas kendali pada periode tertentu.

Tabel 4.6 Perhitungan batas kendali bulan April 2021

|    |          | 1                  |                  |                          |        |        |        |
|----|----------|--------------------|------------------|--------------------------|--------|--------|--------|
| No | Tanggal  | Jumlah<br>Produksi | Jumlah<br>Defect | Proporsi<br>produk cacat | UCL    | CL     | LCL    |
| 1  | 1 April  | 3846               | 231              | 0.0601                   | 0.0726 | 0.0610 | 0.0495 |
| 2  | 3 April  | 2138               | 200              | 0.0973                   | 0.0766 | 0.0610 | 0.0455 |
| 3  | 5 April  | 2720               | 89               | 0.0327                   | 0.0748 | 0.0610 | 0.0473 |
| 4  | 6 April  | 2585               | 189              | 0.0731                   | 0.0752 | 0.0610 | 0.0469 |
| 5  | 7 April  | 1605               | 120              | 0.0748                   | 0.0790 | 0.0610 | 0.0431 |
| 6  | 8 April  | 3467               | 67               | 0.0193                   | 0.0732 | 0.0610 | 0.0488 |
| 7  | 9 April  | 1452               | 52               | 0.0358                   | 0.0799 | 0.0610 | 0.0422 |
| 8  | 10 April | 1550               | 100              | 0.0645                   | 0.0793 | 0.0610 | 0.0428 |
| 9  | 12 April | 3118               | 68               | 0.0218                   | 0.0739 | 0.0610 | 0.0482 |
| 10 | 13 April | 3238               | 78               | 0.0241                   | 0.0737 | 0.0610 | 0.0484 |
| 11 | 14 April | 1259               | 59               | 0.0469                   | 0.0813 | 0.0610 | 0.0408 |
| 12 | 15 April | 401                | 77               | 0.1920                   | 0.0969 | 0.0610 | 0.0252 |
| 13 | 16 April | 1334               | 180              | 0.1349                   | 0.0807 | 0.0610 | 0.0414 |
| 14 | 17 April | 1277               | 97               | 0.0760                   | 0.0811 | 0.0610 | 0.0409 |
| 15 | 19 April | 1598               | 118              | 0.0738                   | 0.0790 | 0.0610 | 0.0431 |
| 16 | 20 April | 1941               | 141              | 0.0726                   | 0.0773 | 0.0610 | 0.0447 |
| 17 | 21 April | 1765               | 65               | 0.0368                   | 0.0781 | 0.0610 | 0.0439 |
| 18 | 22 April | 1600               | 180              | 0.1125                   | 0.0790 | 0.0610 | 0.0431 |
| 19 | 23 April | 3104               | 204              | 0.0657                   | 0.0739 | 0.0610 | 0.0481 |
| 20 | 24 April | 1849               | 49               | 0.0265                   | 0.0777 | 0.0610 | 0.0443 |

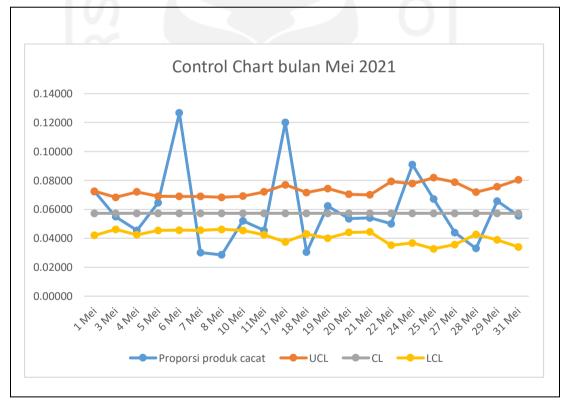
| No | Tanggal   | Jumlah<br>Produksi | Jumlah<br>Defect | Proporsi<br>produk cacat | UCL    | CL     | LCL    |
|----|-----------|--------------------|------------------|--------------------------|--------|--------|--------|
| 21 | 26 April  | 1585               | 234              | 0.1476                   | 0.0791 | 0.0610 | 0.0430 |
| 22 | 27 April  | 1638               | 138              | 0.0842                   | 0.0788 | 0.0610 | 0.0433 |
| 23 | 28 April  | 1777               | 77               | 0.0433                   | 0.0781 | 0.0610 | 0.0440 |
| 24 | 29 April  | 2207               | 207              | 0.0938                   | 0.0763 | 0.0610 | 0.0457 |
| 25 | 30 April  | 1508               | 58               | 0.0385                   | 0.0795 | 0.0610 | 0.0425 |
|    | Total     | 50562              |                  | 3086                     |        |        |        |
|    | Rata-Rata | 1685.4             |                  | 102.9                    |        |        |        |
|    |           |                    |                  |                          |        |        |        |

Setelah melakukan perhitungan P-*chart*, selanjutnya adalah hasil perhitungan tersebut dibuatkan diagram grafik peta kontrol yang bertujuan untuk menggambarkan apakah titik yang terdapat pada grafik bersifat normal atau tidak normal. Di bawah ini merupakan grafik peta kontrol p pada hasil produksi bulan April 2021.



Gambar 4.13 Control Chart pada April 2021

Dari gambar 4.13 diatas dapat dilihat bahwa peta kendali pada bulan April 2021 sebanyak 7 data yang melewati batas *Upper Control Limit* (UCL). Terdapat data jumlah *defect* yang mendekati batas *Upper Control Limit* (UCL) yaitu pada tanggal 6, 7, 17,19 dan 20. Kemudian sebanyak 5 data yang berada pada batas kontrol yang telah ditentukan. Dan sebanyak 7 data berada di bawah nilai *Lower Control Limit* (LCL).


Terdapat juga data jumlah *defect* yang mendekati batas *Lower Control Limit* (LCL) yaitu pada tanggal 14 dan 28 April 2021. Penyimpangan di luar batas kendali pada *Upper Center Line* (UCL) menunjukkan masih adanya permasalahan pada hasil proses produksi karena output yang didapat sudah optimal tetapi masih banyak juga hasil produksi yang mengalami *defect* sehingga data berada diluar batas kendali pada periode tertentu. Sedangkan penyimpangan di luar batas kendali pada *Lower Center Line* (LCL) karena hasil output yang didapat sudah bagus tetapi jumlah *defect* nya sedikit. sehingga data berada diluar batas kendali pada periode tertentu.

Tabel 4.7 Perhitungan batas kendali bulan Mei 2021

| No | Tanggal | Jumlah<br>Produksi | Jumlah<br>Defect | Proporsi<br>produk<br>cacat | UCL     | CL      | LCL     |
|----|---------|--------------------|------------------|-----------------------------|---------|---------|---------|
| 1  | 1 Mei   | 2086               | 151              | 0.07239                     | 0.07250 | 0.05724 | 0.04198 |
| 2  | 3 Mei   | 3968               | 218              | 0.05494                     | 0.06830 | 0.05724 | 0.04617 |
| 3  | 4 Mei   | 2200               | 100              | 0.04545                     | 0.07209 | 0.05724 | 0.04238 |
| 4  | 5 Mei   | 3474               | 224              | 0.06448                     | 0.06906 | 0.05724 | 0.04541 |
| 5  | 6 Mei   | 3570               | 452              | 0.12661                     | 0.06890 | 0.05724 | 0.04557 |
| 6  | 7 Mei   | 3557               | 107              | 0.03008                     | 0.06892 | 0.05724 | 0.04555 |
| 7  | 8 Mei   | 3963               | 113              | 0.02851                     | 0.06831 | 0.05724 | 0.04617 |
| 8  | 10 Mei  | 3460               | 180              | 0.05202                     | 0.06908 | 0.05724 | 0.04539 |
| 9  | 11Mei   | 2200               | 100              | 0.04545                     | 0.07209 | 0.05724 | 0.04238 |
| 10 | 17 Mei  | 1250               | 150              | 0.12000                     | 0.07695 | 0.05724 | 0.03753 |
| 11 | 18 Mei  | 2367               | 72               | 0.03042                     | 0.07156 | 0.05724 | 0.04291 |
| 12 | 19 Mei  | 1653               | 103              | 0.06231                     | 0.07438 | 0.05724 | 0.04010 |
| 13 | 20 Mei  | 2800               | 150              | 0.05357                     | 0.07041 | 0.05724 | 0.04407 |
| 14 | 21 Mei  | 2960               | 160              | 0.05405                     | 0.07005 | 0.05724 | 0.04443 |
| 15 | 22 Mei  | 1000               | 50               | 0.05000                     | 0.07927 | 0.05724 | 0.03520 |
| 16 | 24 Mei  | 1155               | 105              | 0.09091                     | 0.07774 | 0.05724 | 0.03673 |
| 17 | 25 Mei  | 804                | 54               | 0.06716                     | 0.08181 | 0.05724 | 0.03266 |
| 18 | 27 Mei  | 1046               | 46               | 0.04398                     | 0.07878 | 0.05724 | 0.03569 |
| 19 | 28 Mei  | 2275               | 75               | 0.03297                     | 0.07185 | 0.05724 | 0.04263 |
|    |         |                    |                  |                             |         |         |         |

| No | Tanggal   | Jumlah<br>Produksi | Jumlah<br>Defect | Proporsi<br>produk<br>cacat | UCL     | CL      | LCL     |
|----|-----------|--------------------|------------------|-----------------------------|---------|---------|---------|
| 20 | 29 Mei    | 1445               | 95               | 0.06574                     | 0.07557 | 0.05724 | 0.03890 |
| 21 | 31 Mei    | 900                | 50               | 0.05556                     | 0.08047 | 0.05724 | 0.03401 |
|    | Total     | 48133              | 2755             |                             |         |         |         |
|    | Rata-Rata | 2292               | 131.19           |                             |         |         |         |

Setelah melakukan perhitungan P-*chart*, selanjutnya adalah hasil perhitungan tersebut dibuatkan diagram Grafik peta kontrol yang bertujuan untuk menggambarkan apakah titik yang terdapat pada grafik bersifat normal atau tidak normal. Di bawah ini merupakan grafik peta kontrol-p pada hasil produksi bulan Mei 2021.

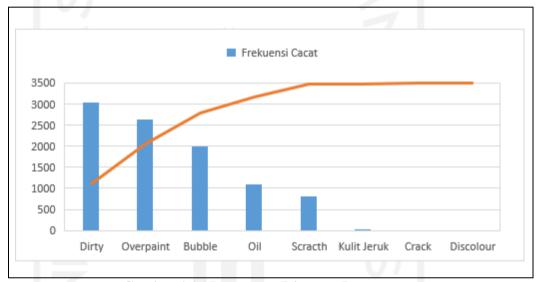


Gambar 4.14 Control Chart bulan Mei 2021

Dari gambar 4.14 diatas dapat dilihat bahwa peta kendali pada bulan Mei 2021 sebanyak 3 data yang melewati batas *Upper Control Limit* (UCL). Terdapat data jumlah *defect* yang mendekati batas *Upper Control Limit* (UCL) yaitu pada tanggal 1 dan 5 Mei 2021. Kemudian 9 data yang berada pada batas kontrol yang telah

ditentukan. Dan Sebanyak 4 data yang berada di bawah nilai *Lower Control Limit* (LCL). Terdapat juga data jumlah *defect* yang mendekati batas *Lower Control Limit* (LCL) yaitu pada tanggal 4, 11 dan 27 Mei 2021. Penyimpangan di luar batas kendali pada *Upper Center Line* (UCL) menunjukkan masih adanya permasalahan pada hasil proses produksi karena output yang didapat sudah optimal tetapi masih banyak juga hasil produksi yang mengalami *defect* sehingga data berada diluar batas kendali pada periode tertentu. Sedangkan penyimpangan di luar batas kendali pada *Lower Center Line* (LCL) karena hasil output yang didapat sudah bagus tetapi jumlah *defect* nya sedikit. Sehingga data berada diluar batas kendali pada periode tertentu.

#### 4. Diagram Parretto


Diagram Pareto Penggambaran diagram pareto menggunakan data jenis cacat pada bulan Maret sampai Mei 2021 dimana terdapat 8 jenis cacat yang terdiri dari *scratch*, *dirty*, *bubble*, *overpaint*, *oil*, *discolor*, *crack* dan kulit jeruk. Jumlah cacat pada setiap *defect* didapat berdasarkan pengumpulan data dari bulan Maret hingga Mei 2021 yang bersumber dari internal perusahaan, berikut merupakan data frekuensi dan persentase kumulatif dari jenis cacat yang ada.

Tabel 4.8 Data Frekuensi dan Persentase Kumulatif Jenis Cacat

| No | Jenis Defect | Jumlah cacat | Frekuensi<br>kumulatif cacat | Persentase<br>Frekuensi<br>Cacat | Persentase Kumulatif<br>Frekuensi<br>Cacat |
|----|--------------|--------------|------------------------------|----------------------------------|--------------------------------------------|
| 1  | Scracth      | 825          | 825                          | 8.42%                            | 8.42%                                      |
| 2  | Dirty        | 3143         | 3968                         | 32.07%                           | 40.49%                                     |
| 3  | Bubble       | 1998         | 5966                         | 20.39%                           | 60.88%                                     |
| 4  | Overpaint    | 2650         | 8716                         | 27.04%                           | 87.93%                                     |
| 5  | Oil          | 1095         | 9711                         | 11.17%                           | 99.10%                                     |
| 6  | Discolour    | 26           | 9737                         | 0.27%                            | 99.37%                                     |
| 7  | Crack        | 27           | 9764                         | 0.28%                            | 99.64%                                     |
| 8  | Kulit Jeruk  | 35           | 9799                         | 0.36%                            | 100.00%                                    |
|    | Total        |              | 9799                         | 100%                             |                                            |

Data hasil perhitungan persentase kumulatif *defect scracth* sebesar 8,42% didapat dari jumlah pembagian antara jumlah masing-masing *defect* dibagi dengan total frekuensi kumulatif cacat sebesar 9799. Untuk perhitungan frekuensi kumulatif cacat yaitu

dengan menjumlahkan tiap-tiap jenis *defect*, contoh nya untuk mendapatkan frekuensi kumulatif cacat jenis *dirty* yaitu menjumlahkan frekuensi kumulatif dari cacat jenis *scratch* sebesar 852 dengan jumlah cacat jenis *dirty* sebesar 3143 sehingga nilai frekuensi kumulatif cacat pada jenis defect dirty sebesar 3968, begitu juga untuk jenis defect yang lain. Sedangkan perhitungan persentase kumulatif frekuensi cacat seperti jenis *dirty* yang mempunyai nilai sebesar 40,49% didapat dari penjumlahan persentase frekuensi cacat *scratch* sebesar 8,42% dengan persentase frekuensi cacat *dirty* sebesar 32,07% sehingga persentase kumulatif frekuensi cacat dirty didapat sebesar 40.49%, begitu juga untuk jenis *defect* yang lain nya.



Gambar 4.15 Persentase Diagram Pareto

Berdasarkan diagram pareto di atas, dapat diketahui jenis cacat dengan persentase tertinggi adalah *dirty* dengan persentase sebesar 32,07% dari total keseluran persentase jenis cacat yang ada. Berdasarkan hasil rekapitulasi data dari bulan Maret hingga Mei 2021 dan pengolahan data menggunakan *check sheet, histogram, control p-chart* dan *paretto diagram* didapat bahwa jenis *defect* yang dominan yaitu jenis defect *Dirty* dan *Overpaint*.

# **4.2.2** Failure Mode & Effect Analysis FMEA

Setelah dilakukan identifikasi penyebab dengan menggunakan *Stastitical Process Control*, selanjutnya dilanjutkan dengan menggunakan metode FMEA (*Failure Mode & Effect Analysis*). Pada metode FMEA, analisis berkembang untuk mengetahui seberapa buruk pengaruh yang dirasakan terkait timbulnya potensi kegagalan, (*Severity*) peluang dari suatu penyebab menyebabkan kegagalan (*Occurrence*), serta

seberapa efektif metode deteksi dalam menghilangkan potensi kegagalan tersebut (*Detection*). Kemudian ditentukan nilai RPN berdasarkan perhitungan berdasarkan hasil dari rating *severity*, *occurrence*, serta *detection*. Berikut merupakan hasil FMEA dari tanya jawab yang dilakukan dengan pihak internal perusahaan bernama bapak Robiasnyah selaku kepala produksi bagian *line spray painting*:

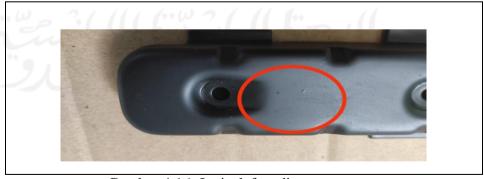
# a. FMEA Dirty

| Tabel | 4.9 Hasil | FMEA | Cacat | Dirty |
|-------|-----------|------|-------|-------|
|       |           |      |       |       |

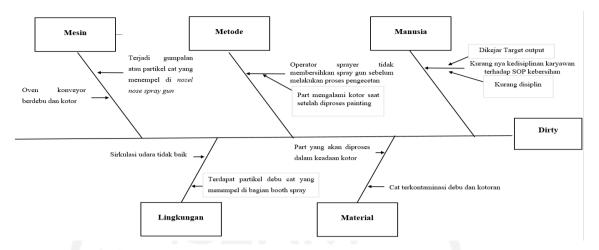
| Potential<br>Failure<br>Mode | Potential Effects of S Failure                | Potential Cause of Failure                                                             | O | Current Control                                                                      | D | RPN |
|------------------------------|-----------------------------------------------|----------------------------------------------------------------------------------------|---|--------------------------------------------------------------------------------------|---|-----|
|                              | ZT Z                                          | Manusia: Kurang nya kedisiplinan karyawan terhadap SOP kebersihan                      | 6 | Perlu pengawasan agar<br>semua area dibersihkan<br>secara menyeluruh                 | 8 | 336 |
|                              |                                               | Mesin: Terjadi gumpalan atau partikel cat yang menempel di <i>nozel</i> nose spray gun | 7 | Membersihkan bagian<br>yang kotor pada nozel<br>nose spray                           | 3 | 147 |
|                              |                                               | Oven konveyor berdebu dan kotor                                                        | 2 | Memeriksa dan<br>membersihkan oven<br>secara berkala                                 | 2 | 28  |
|                              |                                               | Material: Part yang akan diproses dalam keadaan kotor                                  | 1 | Melakukan treatment part menggunakan hexane secara bersih dan menyeluruh             | 7 | 49  |
| Dirty                        | Terdapat bintik kotor yang terdapat pada part | Cat mengalami kontaminasi<br>debu dan kotoran                                          | 5 | Membuka galon cat di<br>tempat yang steril.agar<br>tehindar dari debu dan<br>kotoran | 2 | 70  |
|                              | 1 1                                           | Metode:                                                                                | 3 | Perlu pengawasan oleh<br>bagian kepala produksi                                      | 5 | 105 |

| Potential<br>Failure<br>Mode | Potential<br>Effects of<br>Failure | S  | Potential Cause of Failure      | О | Current Control       | D | RPN |
|------------------------------|------------------------------------|----|---------------------------------|---|-----------------------|---|-----|
|                              |                                    |    | Operator tidak membersihkan     |   |                       |   |     |
|                              |                                    |    | spray gun sebelum melakukan     |   |                       |   |     |
|                              |                                    |    | proses pengecetan               |   |                       |   |     |
|                              |                                    |    | Lingkungan:                     |   | Melakukan             |   |     |
|                              |                                    |    | Sirkulasi udara di tidak stabil |   | pemerikasaan dibagian |   |     |
|                              |                                    |    |                                 | 3 | filter udara dan      | 7 | 147 |
|                              |                                    |    |                                 |   | melakukan perbaikan   |   |     |
|                              |                                    |    |                                 |   | secara berkala        |   |     |
|                              |                                    |    | Terdapat partikel debu cat      |   | Melakukan pengecekan  |   | 280 |
|                              |                                    |    | yang berterbangan di bagian     |   | pada filter udara di  |   |     |
|                              |                                    |    | booth spray                     | 8 | booth spray           | 5 |     |
|                              |                                    |    |                                 |   |                       |   |     |
|                              |                                    | VL |                                 |   |                       |   |     |

# B. FMEA Overpaint

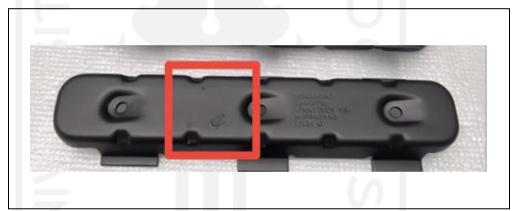

Tabel 4.10 Hasil FMEA Cacat Overpaint

| <b>Potential</b> | Potential       |                                   |   |                        |   |            |
|------------------|-----------------|-----------------------------------|---|------------------------|---|------------|
| Failure          | Effects of S    | <b>Potential Cause of Failure</b> | O | <b>Current Control</b> | P | RPN        |
| Mode             | Failure         |                                   |   | (/)                    |   |            |
|                  |                 | Manusia:                          |   |                        |   |            |
|                  |                 | Kurangnya konsistensi             | 5 | Perlu pengawasan oleh  | 7 | <b>245</b> |
|                  |                 | operator dalam pengaplikasian     | 3 | bagian kepala produksi |   |            |
|                  |                 | pengecetan                        |   |                        |   |            |
|                  |                 | Mesin:                            |   | Melakukan pengecekan   |   |            |
| Overpaint        | Permukaan 7     | Tuas penyemprot atau trigger      | 3 | dan perbaikan pada     | 6 | 126        |
| Overpaint        | cat tidak rata  | pada spray gun rusak              | 3 | bagian tuas penyemprot | U | 120        |
|                  | dan pada        |                                   |   | atau trigger           |   |            |
|                  | bagian          | Metode:                           |   | Melakukan Pemeriksaan  |   |            |
|                  | tertentu        | Pengaturan knop volume cat di     |   | indikator tekanan knop | 4 | 112        |
|                  | catnya terlihat | spray gun terlalu terbuka         | 4 | volume cat sebelum     | 4 | 112        |
|                  | lebih tebal     |                                   |   | melakukan pengecetan   |   |            |

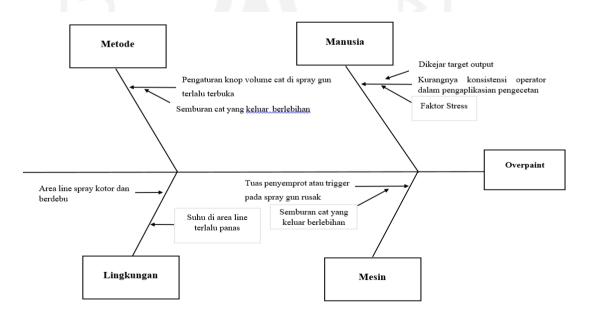

| Lingkungan:                     | Membersihkan area line |                       |   |     |
|---------------------------------|------------------------|-----------------------|---|-----|
| Area line spray kotor dan       | 3                      | produksi secara       | 5 | 105 |
| berdebu                         |                        | menyeluruh            |   |     |
|                                 |                        | Melakukan pemeriksaan |   |     |
| Suhu di area line terlalu panas | 4                      | dan membersihkan      | 5 | 140 |
|                                 | -                      | kipas exhaust di line | 3 | 140 |
|                                 |                        | produksi              |   |     |

Berdasarkan hasil penilaian di atas, penyebab dengan nilai RPN tertinggi dari dua jenis cacat, baik cacat *dirty* maupun *overpaint* terletak pada faktor manusia yang terdiri karyawan tidak membersihkan *spray gun* sebelum melakukan proses pengecetan dengan nilai RPN sebesar 336 dan pengaplikasian proses *spray painting* yang berlebihan dengan nilai 245. Tahapan selanjutnya yaitu melakukan improvement menggunakan metode TRIZ. Tahapan *improvement* ini dibuat berdasarkan dari nilai RPN tertinggi yang didapat pada metode FMEA. Setelah pengumpulan data dari FMEA, selanjutnya yaitu mengidentifikasi jenis *defect* menggunakan *Root Cause Analyisis*. Dari hasil analisis FMEA didapatkan bahwa jenis cacat dengan persentase terbesar adalah *dirty* dan *overpaint*. Kemudian, untuk mengetahui potensial *Root Cause Analyis* dilakukan identifikasi menggunakan *fishbone diagram* Berdasarkan *fishbone diagram*, diketahui bahwa timbulnya jenis cacat disebabkan oleh beberapa faktor, yaitu:

#### a. Jenis Dirty




Gambar 4.16 Jenis defect dirty




Gambar 4.17 Fishbone diagram dirty

# b. Jenis Overpaint



Gambar 4.17 Jenis defect overpaint



Gambar 4.18 Fishbone diagram overpaint

# 4.2.3 Improvement menggunakan METODE TRIZ

Fase *improve* terdiri dari pengembangan solusi dan pemilihan solusi optimal untuk hasil terbaik. Pada tahap ini digunakan *tools* antara lain metode TRIZ untuk membantu dalam memberikan usulan perbaikan pada mode kegalalan dengan nilai RPN tertinggi yang sebelumnya sudah ditentukan menggunakan metode FMEA.

Berdasarkan FMEA, nilai RPN tertinggi terdapat pada permasalahan terdapat pada faktor manusia yaitu kurang nya kedisiplinan karyawan terhadap SOP kebersihan dan kurangnya konsistensi operator dalam pengaplikasian pengecetan. karyawan kerap melewatkan tahapan yang seharusnya dilakukan karena agar mencapai target dengan bekerja secara cepat.

Masalah yang teridentifikasi akan dimasukkan ke dalam parameter kontradiksi berdasarkan 39 Parameter TRIZ. Dalam penyusunan kontradiksi ditentukan improving parameter dan worsening parameter. *Improving parameter* adalah paramater yang ingin diperbaiki, sedangkan *worsening paramater* merupakan paramater yang ada sebagai efek dari perbaikan.

Tabel 4.11 Improving Parameter dan Worsening Parameter

| Tabel 4.11 Illiprov       | Tabel 4.11 Improving Farameter dan worsening Farameter |                     |  |  |  |  |  |
|---------------------------|--------------------------------------------------------|---------------------|--|--|--|--|--|
| Penyebab                  | Improving Parameter                                    | Worsening Parameter |  |  |  |  |  |
| Kurang nya kedisiplinan   |                                                        | 171                 |  |  |  |  |  |
| karyawan terhadap SOP     | Degree of responsibility                               | Stress or Pressure  |  |  |  |  |  |
| kebersihan                | of supervisor                                          |                     |  |  |  |  |  |
|                           |                                                        |                     |  |  |  |  |  |
| Kurangnya konsistensi     |                                                        |                     |  |  |  |  |  |
| operator dalam            | Degree of responsibility                               | Stress or Pressure  |  |  |  |  |  |
| operator dalam            | of supervisor                                          | Siress or Fressure  |  |  |  |  |  |
| pengaplikasian pengecetan | of supervise.                                          |                     |  |  |  |  |  |
| pengaphkasian pengecetan  |                                                        |                     |  |  |  |  |  |

Parameter yang ingin di-*improve* adalah *Degree of responsibility of supervisor* atau tingkat tanggung jawab atasan. Kepala produksi memiliki tanggung jawab sebagai pengawas, meningkatkan dan memperketat kontrol mereka kepada karyawan, maka karyawan akan lebih patuh terhadap SOP yang ada, khususnya SOP produksi. Tetapi jika kepala produksi tidak konsisten dalam memberikan informasi SOP dan mengkontrol karyawan menjadi terlalu ketat, dapat menimbulkan pengurangan informasi dan menyebabkan stress sehingga pada saat melakukan proses spraying karyawan tidak fokus dalam bekerja dengan keadaan dimana karyawan harus bisa

bekerja secara cepat untuk memenuhi target produksi. Sehingga worsening parameter yang muncul *strees or pressure*.

Tabel 4.12 Tabel Kontradiksi

| No | Worsening Parameter                    | Stress or Pressure |
|----|----------------------------------------|--------------------|
| 1  |                                        | 11                 |
|    |                                        | Stress or Pressure |
|    |                                        | 11                 |
|    | Improving Parameter                    |                    |
| 2  | Degree of responsibility of supervisor | 13, 29,10,18       |

Berdasarkan matriks kontradiksi yang terbentuk antara *improving parameter* dan *worsening parameter*, didapatkan beberapa alternatif penyelesaian yang yang bersumber dari 40 *Inventive Principles*, yaitu prinsip nomor 10,13,18,29. Berdasarkan uraian di atas, prinsip yang dirasa relevan dan layak untuk diterapkan beserta usulan perbaikannya adalah prinsip no 10: *Prior Action* 

- a. Nomor 10: Prior Action (Pemberian Tindakan Awal)
- b. Nomor 13: *The Other Way Around* (Lakukan Tindakan Sebaliknya/Berlawanan)
- c. Nomor 18: Mechanical Vibration (Meningkatkan Frekuensi)
- d. Nomor 29: Pneumatics and Hydraulics (Pemanfaatan Gas atau Tenaga Angin

Rekomendasi dapat diberikan adalah membuat form "*Personal Capability Status*" agar dapat menganalisa seperti apa kesalahan desain pekerjaan yang sudah dilakukan kemudian memberikan pelatihan sampai pengembangan bakat dari setiap karyawan dan sebagai penilaian karyawan agar dapat memberikan *reward*.

|                                                                                |     | ■ IDENTITAS |       |       |             |                                        |                                              |               |       |         |
|--------------------------------------------------------------------------------|-----|-------------|-------|-------|-------------|----------------------------------------|----------------------------------------------|---------------|-------|---------|
| PERSONAL CAPABILITY                                                            |     | NAM         | A JAI | BATAN | DEPAR       | TEMENT                                 | STATUS<br>LEVEL                              | MASA<br>KERJA | SCORE | GRADE   |
| STATUS                                                                         |     |             |       | Spra  |             | Painting                               |                                              |               |       |         |
|                                                                                |     |             |       | ■ CA  | PABILIT     | Y LEVEL                                |                                              |               |       |         |
| ASPEK                                                                          | STD | HASIL       | GRADE | L     | EVEL        |                                        | ь                                            | ETERANGAN     | Ň     |         |
| ASTER                                                                          | 315 | HASIL       | OKADE |       | I DAPAT MEL |                                        | DAPAT MELAKUKAN TRAINING KEPADA SPRAYER LAIN |               |       |         |
| Konsisten dalam melakukan<br>pembersihan area painting                         |     |             |       |       | П           | DAPAT MEL                              | AKUKAN TUGA                                  | S SECARA MAN  | DIRI  |         |
| Konsisten dalam                                                                |     |             |       | +     | Ш           | MASIH PERLU ADANYA CONTROL DARI LEADER |                                              |               |       |         |
| membersihkan peralatan dan<br>mesin proses painting seperti                    |     |             |       | ■ KI  | ASIFIKA     | SI NILAI                               |                                              |               |       |         |
| Konveyor, Kipas pendingin,                                                     |     |             |       |       | MUTU        | BOBOT KETERANGAN                       |                                              | .N            |       |         |
| Spray gun Adapt membaca dan                                                    |     |             |       | -     | S           |                                        | 91 ~ 100                                     | Special       |       |         |
| memahami semua proses                                                          |     |             |       | -     | A           |                                        | 81 ~ 90                                      | Baik Sekali   |       |         |
| Painting/spray                                                                 |     |             |       |       | В           |                                        | 71 ~ 80                                      | Baik          |       |         |
| Dapat melakukan penyetingan                                                    |     |             |       | קן    | С           | 61 ~ 70 Lulus Dengan Perbaikan         |                                              |               |       |         |
| pada spray                                                                     |     |             |       | 100   |             | RAINING                                |                                              |               |       |         |
|                                                                                |     |             |       | NO    | ·           |                                        | JUDUL                                        |               | - 1   | TRAINER |
| Mampu menganalisa dan<br>membuat keputusan apabila<br>terjadi problem/ masalah |     |             |       |       |             |                                        |                                              |               |       |         |
| Dapat Melakukan<br>pencampuran viscositas pada<br>spray                        |     |             |       |       |             |                                        |                                              |               |       |         |
| Cara dan penanganan produk<br>NG                                               |     |             |       |       |             |                                        |                                              |               |       |         |

Gambar 4.20 Form Personal Capability Status

## **BAB V**

## HASIL DAN PEMBAHASAN

## **5.1 Tahap Statistical Process Control**

Statistical Process Control (SPC) memiliki manfaat sebagai informasi bagi karyawan apabila ingin memperbaiki proses produksi.

## a. Lembar pemeriksaan

Lembar pemeriksaan merupakan langkah awal menentukan kejadian atau permasalahan apa yang akan diteliti dan menentukan kapan data tersebut akan diambil dan berapa lama. Lembar periksa ini terdiri atas periode pengamatan, jumlah produk yang diproduksi, jenis cacat yang terjadi, dan jumlah kecacatan dari jenis-jenis cacat yang terjadi. Jumlah produk yang diamati adalah 180.547 pcs pada periode bulan Maret sampai Mei 2021. Dengan jumlah produk yang mengalami kecacatan 9799 pcs pada periode bulan Maret sampai Mei 2021. Ada delapan jenis cacat yang muncul dari hasil pengamatan, yaitu *scratch, dirty, bubble, overpaint, oil, discolour,crack dan kulit jeruk.* Jenis cacat yang paling banyak terjadi dari kedelapan jenis cacat tersebut yaitu *dirty* dengan jumlah cacat 3143 pcs.

## b. Histogram

Langkah selanjutnya adalah menyusun histogram, yaitu grafik yang menampilkan berbagai periode waktu dalam bentuk batangan. Manfaat dari penggunaan Histogram yaitu memberikan informasi terkait variasi dalam suatu proses dan membantu manajemen dengan membuat keputusan dalam upaya meningkatkan proses yang berkesimbungan. Pada *histogram* di Gambar 4.11 menunjukkan jumlah cacat dengan nilai tertinggi yaitu jenis *dirty* yaitu 3143 pcs dan jenis cacat terendah yaitu *discolour* sebanyak 26 pcs.

## c. Diagram control chart

Langkah selanjutnya yaitu menyusun Peta kendali, Salah satu *tools* SQC yang digunakan ke dalam tahap ini adalah peta kontrol p. Peta kontrol p memperlihatkan perubahan data dari waktu ke waktu dengan menyertakan batas maksimal dan minimal sebagai batas area pengandalian.

Penggunaan peta kontrol p didasarkan pada jumlah produk yang dilakukan observasi pada penelitian ini bervariasi, dimana pada setiap subgrup jumlah data tidak konstan dan perusahaan memang melalukan 100% inspeksi terhadap produk. Dalam penggunaan peta kontol, ditentukan 3 batasan antara lain yaitu *Center Line* (CL) atau garis tengah, *Upper Control Limit* (UCL) yang merupakan nilai batas kontrol atas, dan (*Lower Control Limit*) yang merupakan nilai batas kontrol bawah. Dari pengolahan data peta kendali p bulan Maret untuk 27 periode, didapatkan CL berada pada nilai 0.04836 pengolahan data peta kendali p periode bulan April untuk 25 periode, didapatkan CL berada pada nilai 0.0610 Dan pengolahan data peta kendali p bulan Mei untuk 21 periode, didapatkan CL berada pada nilai 0.05724 Nilai UCL dan LCL berbeda untuk tiap periodenya disebabkan oleh jumlah produk yang diobservasi bervariasi.

Berdasarkan data periode pada bulan Maret 2021 sebanyak 5 titik berada di dalam batas kendali dan titik berada di luar batas kendali yang terdiri 5 titik melebihi UCL dan 7 titik dibawah LCL. Terdapat data jumlah defect yang mendekati batas Upper Control Limit (UCL) yaitu pada tanggal 5, 9 dan 23 Maret 2021 dan data jumlah defect yang mendekati batas Lower Control Limit (LCL) pada tanggal 1, 5, 15 dan 16 Maret 2021. Data periode pada bulan April 2021 sebanyak 5 titik berada di dalam batas kendali dan titik berada di luar batas kendali yang terdiri 7 titik melebihi UCL dan 7 titik dibawah LCL. Terdapat data jumlah defect yang mendekati batas Upper Control Limit (UCL) yaitu pada tanggal 6, 7, 17, 19 dan 20 April 2021 dan jumlah defect yang mendekati batas Lower Control Limit (LCL) pada tanggal 14 dan 28 April 2021. Data periode pada bulan Mei 2021 sebanyak 9 titik berada di dalam batas kendali, dan titik berada di luar batas kendali yang terdiri 3 titik melebihi UCL dan 4 titik dibawah LCL. Terdapat data jumlah defect yang mendekati batas Upper Control Limit (UCL) yaitu pada tanggal 1 dan 5 Mei 2021 dan jumlah defect yang mendekati batas Lower Control Limit (LCL) pada tanggal 4, 11 dan 27 Mei 2021. Penyebab terjadinya data yang mendekati batas UCL dan LCL karena nilai proporsi yang didapat lebih mendekati batas UCL dan LCL dibanding ke CL. Nilai proporsi didapat berdasarkan beberapa faktor seperti jumlah material yang dikerjakan, jumlah output finish good yang hasilkan dan jumlah output defect yang dihasilkan.

Penyimpangan di luar batas kendali pada *Upper Center Line* (UCL) menunjukkan masih adanya permasalahan pada hasil proses produksi karena *output* yang didapat sudah optimal tetapi masih banyak juga hasil produksi yang mengalami *defect* sehingga data

berada diluar batas kendali pada periode tertentu. Sedangkan penyimpangan di luar batas kendali pada Lower Center Line (LCL) karena hasil output yang didapat sudah bagus tetapi jumlah defect nya sedikit. sehingga data berada diluar batas kendali pada periode tertentu. Analisis pada data yang berada di luar batas kendali pada Upper Center Line (UCL) disebabkan oleh beberapa faktor seperti faktor material, faktor lingkungan dan faktor operator saat proses produksi, sedangkan terjadinya penyimpangan diluar batas kendali pada Lower Center Line (LCL) disebabkan faktor performansi dari operator yang bagus, sehingga output ditanggal yang berada di batas kendali Lower Center Line tinggi tetapi output defect yang didapat sedikit.

#### d. Diagram Paretto

Diagram Pareto digunakan untuk menentukan jenis cacat terbesar dengan menunjukkan persentase kumulatif dari jenis-jenis cacat yang ada. Berdasarkan Prinsip Pareto 80/20, 80% permasalahan timbul disebabkan oleh 20% penyebab. Dengan meminimalkan 20% penyebab, perusahaan dapat menghilangkan 80% masalah. 20% masalah adalah masalah yang "sedikit vital" (Bauer et al., 2006). Maka dapat dikatakan, apabila penyebab jenis cacat dengan persentase kumulatif mencapai 20% dapat diperbaiki. Permasalahan terkait keseluruhan cacat dapat teratasi. Penggambaran Diagram Pareto menggunakan data jenis cacat pada bulan Maret sampai Mei 2021 dimana terdapat jenis cacat. Total jumlah produk yang diinspeksi adalah sebanyak 180.547 pcs dengan total produk cacat sebanyak 9799 pcs. Jenis cacat *dirty* memiliki frekuensi sebesar 3143 dengan persentase sebesar 32.07% kemudian, untuk jenis cacat *overpaint* memiliki frekuensi sebesar 2650 pcs dengan persentase sebesar 27.32% Maka dari itu, kedua jenis cacat ini menjadi fokus utama dalam perbaikan dengan tujuan untuk mengurangi timbulnya cacat produk secara keseluruhan.

## **5.2 Tahap FMEA**

FMEA digunakan sebagain untuk membantu dalam mengidentifikasi dan menentukan prioritas kegagalan potensial yang ada. Penentuan prioritas dilakukan dengan memberikan nilai pada masing-masing kegagalan berdasarkan tingkat kefatalan (Severity), tingkat frekuensi (Occurrence), dan tingkat deteksi (Detection). Selanjutnya, akan ditentukan nilai RPN yang merupakan hasil perhitungan severity, occurrence, dan detection. Nilai RPN ditentukan untuk menentukan permasalahan yang menjadi fokus utama.

Jenis cacat dirty memiliki tingkat kefatalan (severity) sebesar 7. Dimana nilai ini memiliki arti jenis cacat ini memberikan efek terhadap penurunan kualitas dalam proses spray painting, customer merasakan penurunan kualitas diluar batas toleransi. Body top supporter dan telenoir memiliki cacat dirty sehingga tidak akan bisa di kirim ke customer. Adapun faktor penyebab timbulnya cacat dirty terdiri dari faktor manusia, mesin, metode, material, dan lingkungan. Pada Tabel 4.5 dapat dilihat dari perhitungan nilai RPN menunjukkan bahwa RPN tertinggi ditempati oleh faktor manusia yaitu kurangnya kedisiplinan karyawan terhadap SOP kebersihan dengan nilai RPN sebesar 336. Nilai ini berpengaruh besar terhadap sejumlah cacat yang dihasilkan karena menimbulkan lingkungan yang kotor dan berdampak pada hasil proses produksi, perlu pengawasan oleh bagian kepala produksi agar SOP kebersihan dapat berjalan dengan baik. Selanjutnya faktor lingkungan yaitu terdapat partikel debu cat yang berterbangan di bagian booth spray dengan nilai RPN sebesar 280, nilai ini berpengaruh sedang terhadap sejumlah cacat yang dihasilkan karena terdapat partikel debu cat yang berterbangan di bagian booth spray, serta pada faktor lingkungan seperti sirkulasi udara tidak stabil berpengaruh sedang terhadap sejumlah cacat yang dihasilkan dengan nilai RPN sebesar 147. Faktor terakhir yaitu faktor metode yaitu terjadi gumpalan atau partikel cat yang menempel di nozel nose spray gun dengan nilai RPN sebesar 147. nilai ini berpengaruh sedang terhadap sejumlah cacat yang dihasilkan dan oven konveyor berdebu dan kotor dengan nilai RPN sebesar RPN sebesar 28. Nilai ini berpengaruh kecil terhadap sejumlah cacat yang dihasilkan.

Kemudian Jenis cacat *overpaint* memiliki tingkat kefatalan (*severity*) sebesar 7. Dimana nilai ini memiliki arti jenis cacat yang memberikan efek terhadap penurunan kualitas dalam proses spray painting, customer merasakan penurunan kualitas diluar batas toleransi sama hal nya seperti jenis cacat *dirty* produk seperti *Body top supporter* dan *Telenoir* memiliki cacat seperti *overpaint* tidak akan bisa di kirim ke *customer*. Adapun faktor penyebab timbulnya cacat *dirty* terdiri dari faktor manusia, mesin, metode dan lingkungan. Pada tabel 4.6 dapat dilihat dari perhitungan nilai RPN menunjukkan bahwa RPN tertinggi ditempati oleh faktor manusia yaitu kurangnya konsistensi operator dalam pengaplikasian pengecetan dengan nilai RPN sebesar 245. Nilai ini berpengaruh besar terhadap sejumlah cacat yang dihasilkan karena kurangnya konsistensi operator dalam pengaplikasian pengecetan, sehingga dibutuhkan pengawasan oleh bagian kepala produksi agar dapat memantau kinerja operator dalam proses produksi. Faktor selanjutnya yaitu faktor lingkungan yaitu suhu di area *line* terlalu panas dengan nilai RPN sebesar

140 dan area *line spray* kotor dan berdebu nilai RPN sebesar 105. Faktor lingkungan Nilai ini berpengaruh sedang terhadap sejumlah cacat yang dihasilkan. Faktor selanjutnya yaitu faktor mesin yaitu tuas penyemprot atau trigger pada spray gun rusak nilai RPN sebesar 126 Nilai ini berpengaruh sedang terhadap sejumlah cacat yang dihasilkan. Dan faktor terakhir yaitu faktor metode yaitu Pengaturan knop volume cat di spray gun terlalu terbuka dengan nilai RPN sebesar 112. Nilai ini berpengaruh kecil terhadap sejumlah cacat yang dihasilkan seperti cacat *overpaint*. Kekurangan pada penelitian ini dari metode FMEA yaitu untuk penelitian selanjutnya agar mendalamai nilai RPN yang didapat dari hasil wawancara dengan internal perusahaan. Root Cause Analysis dapat difungsikan untuk mendapatkan akar penyebab dari suatu masalah, dan digunakan untuk memperbaiki atau menghilangkan suatu masalah yang terjadi dan mencegah masalah yang terjadi kembali terulang (Vorley, 2008). Berdasarkan diagram pareto, jenis cacat yang mempunyai persentase tertinggi adalah jenis cacat dirty dan overpaint. Untuk dapat memberikan solusi yang tepat terhadap jenis-jenis cacat ini, dilakukan analisis untuk mencari faktor penyebabnya. SOP kebersihan di perusahaan sudah disosialisasikan dengan para karyawan namun, SOP kebersihan tidak dijalankan dengan baik karena karyawan berfokus langsung kepada proses pengerjaan pengecatan yang disebabkan permintaan customer yang tinggi dan untuk memenuhi target produksi secara cepat, sehingga SOP kebersihan tidak dilakukan setiap hari. Dalam tahap ini, digunakan fishbone diagram untuk membantu dalam mengidentifikasi faktor-faktor apa saja yang menjadi penyebab timbulnya jenis cacat dirty dan overpaint. Dalam mengidentifikasi faktor penyebab, peneliti melakukan sesi tanya jawab dengan pihak internal perusahaan, yaitu leader produksi bagian spray painting. Pada jenis cacat dirty, terdapat beberapa faktor penyebab, antara lain:

#### a. Faktor Manusia.

Dari sisi manusia, timbulnya jenis barang cacat *dirty* karena kurang nya kedisiplinan karyawan terhadap SOP kebersihan. terkadang karyawan tidak mengikuti SOP kebersihan, sehingga menimbulkan lingkungan yang kotor dan berdampak pada hasil proses produksi, serta karena mengejar hasil *output* yang maksimal yang menyebabkan karyawan sering lupa dalam membersihkan area line produksi.

#### b. Faktor Mesin

Pada faktor mesin, terjadi nya jenis cacat *dirty* karena terjadi gumpalan atau partikel cat yang menempel di *nozel nose* pada alat *spray gun* yang menyebabkan cat menjadi

kotor pada saat proses pengecetan, kemudian faktor oven konveyor yang berdebu dan kotor menyebabkan jenis cacat *dirty* muncul karena saat proses pengeringan, dibagian dalam oven konveyor terdapat debu yang menempel sehingga debu tersebut menempel juga ke part yang masih basah setelah di proses pengecetan.

#### c. Faktor Material

Pada faktor material, terjadinya jenis cacat dirty karena *part* yang akan diproses dalam keadaan kotor diakibatkan saat melakukan treatment karyawan tidak membersihkan part dengan baik sehingga part yang akan diproses masih terdapat kotoran seperti partikel minyak, selain itu adalah cat terkontaminasi debu dan kotoran yang disebabkan karena karyawan saat membuka cat baru dalam kondisi yang tidak steril dan bersih sehingga menyebabkan cat menjadi kotor.

#### d. Faktor Metode

Dari faktor metode, terjadinya jenis cacat *dirty* disebabkan operator tidak membersihkan *spray gun* sebelum melakukan proses pengecetan sehingga jika *spray gun* tidak dibersihkan sebelum proses pengecetan dapat memberikan dampak pada saat pengaplikasian proses pengecetan ke *material* yang mengakibatkan hasil *material* yang diproses akan menjadi kotor.

## e. Faktor Lingkungan

Dari faktor lingkungan, hal-hal yang menjadi penyebab timbulnya cacat *dirty* adalah Sirkulasi udara di area produksi tidak baik, di area *booth spray* jika sirkulasi udara tidak baik dapat memberikan dampak seperti debu atau partikel cat yang menempel di area produksi dan di bagian material yang masih basah sehingga mempengaruhi part yang sudah di cat menjadi kotor. Selain itu terdapat partikel debu cat yang menempel di bagian *booth spray* yang diakibatkan filter udara di *booth spray* jarang dibersihkan sehingga kondisi di *booth spray* menjadi berdebu dan menyebabkan debu tersebut menempel saat proses *spray painting*. Selain cacat *dirty* jenis cacat lain yang dianalisis pada penelitian ini adalah cacat *overpaint* . Faktor-faktor yang menyebakan jenis cacat ini yaitu:

#### a. Faktor Manusia.

Dari sisi manusia, timbulnya jenis barang cacat *overpaint* karena kurangnya konsistensi karyawan dalam pengaplikasian pengecetan. Terkadang karyawan tidak

konsisten dalam pengaplikasian karena posisi sudut tangan yang sering berubah sehingga menyebabkan part yang di proses menjadi ketebalan di satu sisi dan menimbulkan jenis cacat *overpaint*.

#### b. Faktor Mesin

Pada faktor mesin, terjadi nya jenis *overpaint* karena tuas penyemprot atau *trigger* pada *spray gun* rusak hal ini menyebabkan semburan cat yang yang keluar dari *spray gun* berlebihan sehingga part yang akan di proses hasil nya menjadi tebal dan tidak sesuai spesifikasi yang telah di tentukan.

#### c. Faktor Metode

Dari faktor metode, terjadinya jenis cacat overpaint disebabkan pengaturan knop volume cat di *spray gun* terlalu terbuka, terkadang operator tidak melakukan *setting* pada *knop volume* cat yang menyebabkan semburan cat yang keluar dari *nozzle spray* berlebihan sehingga hasil pengecetan part terlihat tidak rata dan tebal.

### d. Faktor Lingkungan

Pada faktor lingkungan, terjadinya jenis cacat *overpaint* karena area *line spray kotor* dan berdebu yang menyebabkan operator tidak fokus dalam melakukan pekerjaan nya, selain itu suhu di *area line* juga terlalu panas juga yang dapat mempengaruhi performa dari operator yang bersangkutan, sehingga saat melakukan pengecetan operator tidak konsisten dalam pengaplikasian nya dan memberikan dampak overpaint karena hasil pengaplikasian nya tidak merata dan tebal. Kekurangan pada metode TRIZ dalam penelitian ini penulis tidak mendapatkan *prevention* atau pencegahan terkait ketidak konsistensi kepala produksi dalam menjalankan SOP kebersihan.

#### 5.3 Tahap Improve menggunakan metode TRIZ

Output hasil dari perhitungan FMEA adalah memprioritaskan mode kegagalan yang dapat membantu mengidentifikasi mode kegagalan yang paling penting untuk ditangani. Jika tindakan tidak diterapkan dan dievaluasi efektivitasnya, mode kegagalan tidak dapat dihilangkan. Selain itu, tindakan lebih lanjut di luar cakupan FMEA mungkin diperlukan. Oleh karena ini, pada tahap *improve* digunakan metode TRIZ untuk membantu dalam memberikan usulan perbaikan pada mode kegalalan dengan nilai RPN tertinggi yang sebelumnya sudah ditentukan menggunakan metode FMEA. TRIZ yang terintegrasi dengan

FMEA dapat lebih membantu dalam memecahkan masalah dengan cepat dan efektif. Ini juga mendukung peneliti dalam mencari solusi yang paling efektif.

Berdasarkan FMEA, nilai RPN tertinggi terdapat pada permasalahan terdapat pada faktor manusia yaitu kurang nya kedisiplinan karyawan terhadap SOP kebersihan dan Kurangnya konsistensi operator dalam pengaplikasian pengecetan. Karyawan kerap melewatkan tahapan yang seharusnya dilakukan dan kurang nya konsistensi dalam melakukan proses produksi karena agar mencapai target dengan bekerja secara cepat. Untuk meningkatkan kedisiplinan SOP kebersihan diperlukan pengawasan oleh kepala produksi agar semua area dibersihkan secara menyeluruh dan perlu pengawasan oleh bagian kepala produksi agar dapat menilai performa kerja operator. Berdasarkan masalah yang teridentifikasi, peneliti menentukan *improving parameter* dan *worsening Parameter*. Kemudian, akan ditentukan solusi yang tepat dengan menggunakan *Inventive Principles* berdasarkan matriks kontradisksi antara *improving parameter* dan *worsening parameter*.

Improving parameter yang dipilih adalah Degree of responsibility of supervisor atau tingkat tanggung jawab atasan. Kepala produksi memiliki tanggung jawab sebagai pengawas, meningkatkan dan memperketat kontrol mereka kepada karyawan, maka karyawan akan lebih patuh terhadap SOP yang ada, khususnya SOP produksi. Tetapi jika kepala produksi tidak konsisten dalam memberikan informasi SOP dan mengkontrol karyawan menjadi terlalu ketat, dapat menimbulkan pengurangan informasi dan menyebabkan stress sehingga pada saat melakukan proses spraying karyawan tidak fokus dalam bekerja dengan keadaan dimana karyawan harus bisa bekerja secara cepat untuk memenuhi target produksi. kepala produksi tidak konsisten dalam memberikan informasi SOP disebabkan karena saat *briefing* lebih mengutamakan untuk memenuhi target produksi agar cepat tercapai dan bagian kepala produksi juga memiliki job desk lain sepertu harus bertemu dengan client atau customer, mengontrol pengendalian bahan baku dan mendata barang finish good yang akan dikirim ke customer, sehingga kepala produksi lupa untuk melakukan sosialisasi terhadap SOP kebersihan. Berdasarkan analisis worsening parameter yang timbul adalah adalah stress or pressure karena kepala produksi tidak konsisten dalam memberikan informasi SOP dan mengkontrol karyawan menjadi terlalu ketat, ditambah dengan keadaan dimana karyawan harus bisa bekerja secara cepat untuk memenuhi target produksi.

Berdasarkan uraian pada Tabel *intentive principle*, prinsip yang dirasa relevan dan layak untuk diterapkan beserta usulan perbaikannya adalah Prinsip nomor 10 yaitu *Prior Action*. Berdasarkan uraian di atas, prinsip yang dirasa relevan dan layak untuk diterapkan beserta usulan perbaikannya adalah sebagai berikut prinsip 10 yaitu *prior action* atau pemberian tindakan awal yang memiliki sub prinsip dengan mempersiapkan atau mengambil beberapa tindakan sebelumnya untuk memperlancar dan meringankan peristiwa ketika itu terjadi. Ide perbaikan yang diberikan oleh peneliti berdasarkan prinsip ini adalah dengan dengan membuat form "*Personal Capability Status*" agar dapat menganalisa seperti apa kesalahan desain pekerjaan yang sudah dilakukan kemudian memberikan pelatihan sampai pengembangan bakat dari setiap karyawan, form ini juga digunakan sebagai penilaian karyawan agar dapat memberikan *reward* dan dapat digunakan untuk menganalisa seperti apa kesalahan desain pekerjaan yang sudah dilakukan kemudian memberikan pelatihan sampai pengembangan bakat dari setiap karyawan.

Untuk pemberian penilaian form "Personal Capability Status" terdapat urutan penilaian yang tertinggi yaitu dari nilai 91-100 termasuk kategori "Special", setelah itu nilai 81-90 termasuk kategori "Baik sekali", setelah itu nilai 71-80 termasuk kategori "Baik" dan nilai kategori rendah yaitu nilai 61-70 dengan kategori "Lulus dengan perbaikan". Dan terdapat penilaian Grade yaitu Grade 'S' untuk yang berada penilaian di range 91-100, Grade 'A' untuk yang berada penilaian di range 81-90, Grade 'B'untuk yang berada penilaian di range 71-80 dan grade 'C' untuk yang berada di range 61-70. Untuk pemberian nilai Status level nya, perusahaan akan memberikan nilai tersebut berdasarkan Capability Level yang terdiri dari 3 level. Pemberian nilai performa ini didapat berdasarkan hasil performansi karyawan saat melakukan perkerjaan di lapangan. Apabila karyawan mendapatkan nilai dan grade yang bagus maka perusahaan dapat menetapkan kebijakan terkait pemberian reward. Dalam hal ini, reward yang diberikan bertujuan untuk meningkatkan kinerja, khususnya kedisiplinan, sehingga target produksi tercapai dengan tingkat produk cacat menurun. Pemberian reward akan diberikan di setiap akhir bulan. Jika terdapat karyawan yang mendapat nilai kurang baik, maka perusahaan akan memberikan training kembali dan melakukan edukasi kembali terhadap karyawan yang bersangkutan.

## **BAB VI**

## **PENUTUP**

## 6.1 Kesimpulan

Berdasarkan pengamatan, pengolahan data, analisan dan usulan perbaikan yang telah dipaparkan di-bab sebelumnya, maka dapat ditarik kesimpulan sebagai berikut:

- a. Berdasarkan hasil perhitungan meggunakan *Statistical Process Control*, hasil rekapitulasi *check sheet* barang cacat bulan Maret sampai Mei 2021 sebesar 9799. berdasarkan hasil perhitungan menggunakan diagram paretto diketahui jenis cacat dengan persentase tertinggi adalah *Dirty* dengan persentase sebesar 31,37% dari total keseluran persentase jenis cacat yang ada.
- b. Berdasarkan identifikasi dan analisis penyebab menggunakan *Root Cause analysis* didapat bahwa jenis cacat yang dominan yaitu *Dirty* dan *Overpaint*.. Berdasarkan identifikasi dengan Metode *Failure Mode Effect Analysis* terdapat dua jenis cacat terbesar yaitu cacat *Dirty* dan *Overpaint*, diperoleh faktor dominan dengan nilai RPN tertinggi yang menimbulkan cacat produk adalah kurang disiplinnya karyawan terhadap SOP kebersihan dan tidak konsisten nya operator dalam pengaplikasian pengecatan.
- c. Rekomendasi yang diberikan didasarkan pada 40 *Inventive Principle* adalah menggunakan Prinsip 10 yaitu *Prior action*. Ide perbaikan berdasarkan prinsip ini adalah membuat form "*Personal Capability Status*". agar dapat menganalisa seperti apa kesalahan desain pekerjaan yang sudah dilakukan

#### 6.2 Saran

## 1. Bagi Perusahaan

- a. Perusahaan dapat melakukan evaluasi dan perbaikan secara berkala sehingga dapat mengurangi jumlah barang yang cacat.
- b. Menjadikan hasil penelitian ini sebagai bahan pertimbangan dalam melakukan perbaikan sehingga dapat mengurangi jumlah barang yang mengalami cacat.

#### 2. Bagi Penelitian selanjutnya

a. Mendapatkan data *rework* saat pengambilan data dan digunakan untuk menganalisis metode *statistical process control* nya dan pengambilan data

- b. Pengambilan data untuk FMEA belum menyesuaikan dengan kondisi perusahaan dan menggunakan rubik.
- c. Untuk metode TRIZ, diharapkan mendapatkan prevention nya, agar rekomendasi pada metode TRIZ lebih dapat jelas terkait rekomendasi yang diberikan.
- d. Dapat memberikan usulan perbaikan di setiap penyebab timbulnya cacat, tidak hanya dari faktor dominan nya saja.



## **Daftar Pustaka**

- Ahyari, A. (1990). Pengendalian Produksi, Buku 2. Yogyakarta: BPFE, Yogyakarta.
- Ahyari, A. (2000). *Manajemen Produksi Perencanaan Sistem Produksi Buku II*. Yogyakarta: BPFE Yogyakarta.
- Assauri, S. (2004). Manajemen Pemasaran. Jakarta: Rajawali Press.
- Besterfield, D. H. (1995). Total Quality Management. Prentice Hall College Div.
- Burlikowska, D. (2017). MONITORING OF THE PRODUCTION PROCESSING IN A METALLURGICAL COMPANY USING FMEA METHOD).
- Chia-Fen Chi, D. S. (2020). Classification Scheme for Root Cause and Failure Modes and Effects Analysis. Taipei, Taiwan: Department of Industrial Management, National Taiwan University of Science and Technology,.
- Chrysler, C. (1995). Potential Failure and Effects Analysis (FMEA) Reference.
- Farchiyah, 2. (2021). *Analisis Pengendalian Kkualitas Spanduk Dengan Detode Seven Quality Control (7QC) Pada PT.FIM PRINTING*. Tekmapro: Journal of Industrial Engineering and Management, 16(1), 36-47. https://doi.org/10.33005/tekmapro.v16i1.187.
- Ford Motor, C. (1992). Worldwide Failure Mode and Effects Analysis: System-Design-Process Handbook.
- Gaspersz, V. (2005). Sistem Manajemen Kinerja Terintegrasi Balanced Scorecard Dengan Six Sigma Untuk Organisasi Bisnis dan Pemeritah. . Jakarta: Jakarta: Gramedia Pustaka Utama.
- Gaspersz, V. (2007). "Lean Six Sigma for Manufacturing and Services. Jakarta: PT Gramedia Pustaka Utama.
- Godina, R. &. (2016). *Quality Improvement With Statistical Process Control in the Automotive Industry*. International Journal of Industrial Engineering and Management (IJIEM), 7, 1-8.
- Handoko, H. (2002). *Manajemen Personalia dan Sumberdaya Manusia*. Yogyakarta: BPFE.
- Heizer, J. &. (2011). Manajemen Operasi. Edisi Sembilan. Buku. Jakarta: Salemba Empat.
- James J. Rooney, L. V. (2004). *Root Cause Analysis For Beginners*. Quality Progress. 37, 45-53.
- Jucan, G. (2005). *Root Cause Analysis for IT Incidents Investigation*. Digilib.its.ac.id/public/ITS/ Undergraduate-11025-Paper.pdf.
- Kotler, P., & Armstrong, G. (2008). *Prinsip-prinsip Pemasaran, Jilid 1.* Jakarta: Erlangga.
- L. J. Susilo and V. R. Kaho. (2014). *Panduan Manajemen Risiko Berbasis ISO 31000 Industri Non-Perbankan*,. Jakarta: PPM.

- Marcelo Oliveira, S. B. (2019). APPLICATION OF FMEA FOR FOR IMPROVEMENT IN THE MANUFACTURING PROCESS OF MOBILE PHONES IN A FACTORY OF THE NDUSTRIAL POLE OF MANAUS. International Journal for Quality Research 13(4) 1021–1036.
- Masud Rana, X. Z. (2018). *Determination of Factors and Quality Control of Car Painting Based on FMEA and SPC.V2*. Shenyang: Department of Mechanical Engineering, Shenyang University of Technology, Shenyang, China.
- McDermott, R. E. (2009). *The Basics of FMEA 2nd Edition*. New York: Taylor & Francis Group.
- MeDermott, R. E. (2002). Failure Mode and Effect. Southern California: Kaiser permanente.
- Nastiti, H. (2014). "Analisis pengendalian kualitas produk dengan metode statistical quality control (Studi Kasus: pada PT "X" Depok). Depok: (SCA) 4.1.
- Nasution, M. (2015). *Manajemen Mutu Terpadu (Total Quality Management)*. Jakarta: Ghalia Indonesia.
- Navas V. G., H. (2013). TRIZ: Design Problem Solving with Systematic Innovation, Advances in Industrial Design Engineering. ISBN: 978-953-51-1016-3, InTech, DOI: 10.5772/55979.
- Navas V. G., H. (2013). TRIZ: Design Problem Solving with Systematic Innovation, Advances in Industrial Design Engineering, ISBN: 978-953-51-1016-3,. InTech, DOI: 10.5772/55979.
- Prihartono, R. (2012). Konsep pengendalian Mutu. Bandung: PT. Remajarosdakarya.
- Purba, M. a. (2020). JUDUL: Quality Control of Steel Deformed Bar Product using Statistical Quality Control (SQC) and Failure Mode and Effect Analysis (FMEA).
- Putri, D. A. (2018). Perbaikan kualitas dengan menggunakan metode TRIZ untuk meminimasi cacat pada proses pembuatan al-quran di PT Sygma Exa Grafika. Prosiding Teknik Industri, 4, 473-480.
- Render, B. e. (2006). *Quantitative Analysis for Management. Edisi 9.* New Jersey: Pearson Education.
- Sutrisno Badri, R. (2009). Jurnal Penelitian: Pengendalian Kualitas Produk Dengan Pendekatan Model SQC (Statistikal Quality Control): Aplikasi Model Pada Perusahaan Furnitur. Klaten.
- Tjiptono, F. (2008). Strategi Pemasaran, Edisi III, Yogyakarta: CV. Andi Offset.
- Tjiptono, F. (2014). *Pemasaran Jasa, Prinsip, Penerapan dan Peneltian*. Yogyakarta: ANDI.
- Veronica, N. R. (2020). *Implementation of Failure Mode and Effect Analysis and Fault Tree*. Jakarta selatan.
- Vorley, G. (2008). *Mini Guiden to Root Cause Analysis*. Quality Management&Training (Publications)Ltd.

- Yamit, Z. (2003). Manajemen Produksi Dan Operasi. Edisi Kedua. FE UII.
- Yumaida. (2011). 2011. Analisis Risiko Kegagalan Pemeliharaan Pada Pabrik Pengolahan Pupuk NPK Granular (Studi Kasus: PT. Pupuk Kujang Cikampek), 15-21. .
- Yumaida. (2011). Analisis Risiko Kegagalan Pemeliharaan Pada Pabrik Pengolahan Pupuk NPK Granular (Studi Kasus: PT. Pupuk Kujang Cikampek). 15-21.
- Yumaida. (2011). Analisis Risiko Kegagalan Pemeliharaan Pada Pabrik Pengolahan Pupuk NPK Granular (Studi Kasus: PT. Pupuk Kujang). Fakultas Teknik, Program Studi Teknik Industri, halaman 15-21. .



## LAMPIRAN

## LAMPIRAN A- Pengumpulan data produksi dan defect

|               | DAFTAR REKAP HASIL PRO | DUKSI DAN DEFECT   |                     |
|---------------|------------------------|--------------------|---------------------|
| Periode Maret |                        |                    |                     |
| Tanggal       | Jumlah Produksi        | Jumlah Finish Good | Jumlah produk defec |
| 1             | 2588                   | 2480               | 108                 |
| 2             | 2785                   | 2660               | 125                 |
| 3             | 3155                   | 3000               | 155                 |
| 4             | 1442                   | 1342               | 100                 |
| 5             | 698                    | 650                | 48                  |
| 6             | <b>1</b> 657           | 1600               | 57                  |
| 8             | 3152                   | 3000               | 152                 |
| 9             | 2545                   | 2400               | 145                 |
| 10            | 1950                   | 1618               | 332                 |
| 11            | 2000                   | 1900               | 100                 |
| 12            | 1972                   | 1707               | 265                 |
| 13            | 1576                   | 1500               | 76                  |
| 15            | 3452                   | 3300               | 152                 |
| 16            | 3445                   | 3300               | 145                 |
| 17            | 2860                   | 2800               | 60                  |
| 18            | 4347                   | 4200               | 147                 |
| 19            | 3311                   | 3040               | 271                 |
| 20            | 2322                   | 2200               | 122                 |
| 22            | 4298                   | 4098               | 200                 |
| 23            | 4247                   | 4000               | 247                 |
| 24            | 4300                   | 4100               | 200                 |
| 25            | 3553                   | 3309               | 244                 |
| 26            | 4368                   | 4300               | 68                  |
| 27            | 4392                   | 4300               | 92                  |
| 29            | 3445                   | 3320               | 125                 |
| 30            | 3651                   | 3570               | 81                  |
| 31            | 4341                   | 4200               | 141                 |
| TOTAL         | 81852                  | 77894              | 3958                |

| Periode April |                 |                    |                     |
|---------------|-----------------|--------------------|---------------------|
| Tanggal       | Jumlah Produksi | Jumlah Finish Good | Jumlah produk defec |
| 1             | 3846            | 36 <b>1</b> 5      | 231                 |
| 3             | 2138            | 1930               | 208                 |
| 5             | 2720            | 2631               | 89                  |
| 6             | 2585            | 2396               | 189                 |
| 7             | 1605            | 1485               | 120                 |
| 8             | 3467            | 3400               | 67                  |
| 9             | 1452            | 1400               | 52                  |
| 10            | 1550            | 1450               | 100                 |
| 12            | 3118            | 3050               | 68                  |
| 13            | 3238            | 3160               | 78                  |
| 14            | 1259            | 1200               | 59                  |
| 15            | 401             | 324                | 77                  |
| 16            | 1334            | 1154               | 180                 |
| 17            | 1277            | 1180               | 97                  |
| 19            | 1598            | 1480               | 118                 |
| 20            | 1941            | 1800               | 141                 |
| 21            | 1765            | 1700               | 65                  |
| 22            | 1600            | 1420               | 180                 |
| 23            | 3104            | 2900               | 204                 |
| 24            | 1849            | 1800               | 49                  |
| 26            | 1585            | 1351               | 234                 |
| 27            | 1638            | 1500               | 138                 |
| 28            | 1777            | 1700               | 77                  |
| 29            | 2207            | 2000               | 207                 |
| 30            | 1508            | 1450               | 58                  |
| TOTAL         | 50562           | 47476              | 3086                |



| Periode Mei |                 |                    |                      |
|-------------|-----------------|--------------------|----------------------|
| Tanggal     | Jumlah Produksi | Jumlah Finish Good | Jumlah produk defect |
| 1           | 2086            | 1935               | 151                  |
| 2           | 3968            | 3750               | 218                  |
| 3           | 2200            | 2100               | 100                  |
| 4           | 3474            | 3250               | 224                  |
| 5           | 3570            | 3118               | 452                  |
| 6           | 3557            | 3450               | 107                  |
| 7           | 3963            | 3850               | 113                  |
| 8           | 3460            | 3280               | 180                  |
| 9           | 2200            | 2100               | 100                  |
| 10          | 1250            | 1100               | 150                  |
| 11          | 2367            | 2295               | 72                   |
| 12          | 1653            | 1550               | 103                  |
| 13          | 2800            | 2650               | 150                  |
| 14          | 2960            | 2800               | 160                  |
| 15          | 1000            | 950                | 50                   |
| 16          | 1155            | 1050               | 105                  |
| 17          | 804             | 750                | 54                   |
| 18          | 1046            | 1000               | 46                   |
| 19          | 2275            | 2200               | 75                   |
| 20          | 1445            | 1350               | 95                   |
| 21          | 900             | 850                | 50                   |
| 22          | 48133           | 45378              | 2755                 |



## LAMPIRAN B – Hasil Kuisioner FMEA

#### KUISIONER PENILAIAN FMEA DEFECT DIRTY

Berikan penilaian berdasarkan kriteria yang telah ditentukan

Narasumber: Robian 5yah Jabatan: Kepala Produksi bagian Painting

| Potential<br>Failure<br>Mode                                 | Potential<br>Effects of<br>Failure                                                                                 | Pengaruh                                                                       | Potential Cause of Failure                                            | Kejadian                                                | Current Control                                                   | Deteksi | RPN |
|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------------|---------|-----|
| Terdapat<br>bintik kotor<br>Dirty yang terdapat<br>pada part |                                                                                                                    |                                                                                | Kurang nya kedisiplinan karyawan<br>terhadap SOP kebersihan           | 6                                                       | Perlu pengawasan agar semua area<br>dibersihkan secara menyeluruh | 8       | 336 |
|                                                              |                                                                                                                    | Terjadi gumpalan atau partikel cat<br>yang menempel di nozel nose spray<br>gun | 7                                                                     | Membersihkan bagian yang kotor<br>pada nozel nose spray | 3                                                                 | 147     |     |
|                                                              | -                                                                                                                  | intik kotor                                                                    | Oven konveyor berdebu dan kotor                                       |                                                         | Memeriksa dan membersihkan oven<br>secara berkala                 | 2       | 28  |
|                                                              | bintik kotor                                                                                                       |                                                                                | Part yang akan diproses dalam<br>keadaan kotor                        | ١                                                       | Membersikan part sebelum material<br>di lakukan proses spray      | 7       | 49  |
|                                                              |                                                                                                                    | Cat mengalami kontaminasi debu<br>dan kotoran                                  | 5                                                                     | Membuka galon cat di tempat yang<br>steril.             | 2                                                                 | 70      |     |
|                                                              | Operator tidak membersihkan spray<br>gun sebelum melakukan proses<br>pengecetan<br>Sirkulasi udara di tidak stabil |                                                                                | 3                                                                     | Perlu pengawasan oleh bagian kepala<br>produksi         | 5                                                                 | 105     |     |
|                                                              |                                                                                                                    | 3                                                                              | Melakukan pemerikasaan secara<br>rutin oleh karyawan                  | 7                                                       | 147                                                               |         |     |
|                                                              |                                                                                                                    |                                                                                | Terdapat partikel debu cat yang<br>berterbangan di bagian booth spray | 8                                                       | Melakukan pengecekan pada booth<br>spray                          | 5       | 280 |

## KUISIONER PENILAIAN FMEA DEFECT OVERPAINT

| Potential<br>Failure<br>Mode                                                  | Potential Effects<br>of Failure             | Pengaruh    | Potential Cause of Failure                                                                                   | Kejadian                                                                                   | Current Control                                                                | Deteksi | RPN |
|-------------------------------------------------------------------------------|---------------------------------------------|-------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|---------|-----|
| Permukaan cat tidak rata dan pada bagian tertentu catnya terlihat lebih tebal |                                             | ak rata dan | Kurangnya konsistensi operator dalam pengaplikasian pengecetan  Perlu pengawasan oleh bagian kepala produksi |                                                                                            | 7                                                                              | 245     |     |
|                                                                               | tidak rata dan                              |             | Tuas penyemprot atau trigger<br>pada spray gun rusak                                                         |                                                                                            | Melakukan pengecekan dan perbaikan pada<br>bagian tuas penyemprot atau trigger | 6       | 126 |
|                                                                               | ertentu catnya di spray gun terlalu terbuka | 201 201     | 4                                                                                                            | Melakukan Pemeriksaan indikator tekanan<br>knop volume cat sebelum melakukan<br>pengecetan | 4                                                                              | 112     |     |
|                                                                               |                                             | 3           | Membersihkan area line produksi secara<br>menyeluruh                                                         | 5                                                                                          | 105                                                                            |         |     |
|                                                                               |                                             |             | Suhu di area line terlalu panas                                                                              | 4                                                                                          | Melakukan pemeriksaan dan membersihkan<br>kipas exhaust di line produksi       | 5       | 140 |

# LAMPIRAN C – Area Line spray Painting

