
CHAPTER II

LITERATURE REVIEW

This chapter describe about the fundamental theory used to conduct the research model.

2.1 Previous research

Hassan and Nath (2005) presented Hidden Markov Models (HMM) approach for

forecasting slock price at the interrelated markets. Any fluctuation in market influences

personal and corporate financial lives, and the economic health of a country. Hassan et

al„ (2005) consider 4input features for astock, which is the opening price, closing price,

highest price, and the lowest price. The next day's closing price is taken as the target

price associated with the four input features. The idea behind new approach in using

HMM is that the using of training dataset for estimating the parameter set (A,B,x). Using

the trained HMM, likelihood value for current day's dataset is calculated. For instance the

likelihood value for the day is £ then from the past dataset using the HMM locate those

instances that would produce the same £or nearest to the £likelihood value. Assuming

that the next day's stock price should follow about the same past data pattern, from the

located past day(s) simply calculate the difference of that day's closing price and next to

that day's closing price. Thus the next day's stock closing price forecast is established by

adding the above difference to the current day's closing price. The results show potential

of using HMM for time series prediction.

 



Amri, (2008) discussing about Hidden Markov Model concerning about speech

signal recognition using IIMM-Neural Network (NN) method. The method is used to

determine the sequence of speech signal data based on the initial and feature extraction

from a batch of different word. NN is used to determine the success of speech signal

recognition processes. In this research, a word is spelled by single utterance with different

word and different number of words and being done with the set of5-50 words in Bahasa.

The condition applied is 50 number of words, NN structure used is amount to 5 layer

hidden, 20 node, 10 node, 5 node, 10 node, 20 node for each.

Testing data using AT & T Database by the number of 40 individuals with three

training images per individual and 7 images per individual testing. While the Yale Face

Database with a number of 15 individuals with 4 images per individual and 7 training

images per individual testing. Those models have successfully built applications

embedded IIMM-based face recognition with identification accuracy of 94.64%

generalization (AT &T Database) and 77.14% (Yale Face Database). By the results it is

known that AT & T database that does not require cutting face area is much better than

the Yale Face Database. This is because the cutting area of the face in an image depends

on the accuracy of face detection, so changes will take effect in the detection area of

training and testing results.

Irfani et ah, (2006) discussed about speech recognition. The development of speech

recognition technology is one form of technological developments in the 20th century that

utilize voice as input. The voice is an alternative method for humans to interact with

computers. The computer will recognize the voice commands and perform the stretcher as

a reaction to the command. Modern speech recognition systems are generally based on

 



Hidden Markov Models (HMMs). By HMMs sound signals can be characterized as a

random process parameters, and parameters of the stochastic process which can be

determined precisely. That statistical model then processed using the Viterbi algorithm.

Viterbi algorithm is a dynamic programming algorithm to find possible hidden state

sequence (commonly called the Viterbi path) which produced the series of observations

of events, especially within the scope of the HMM. By viterbi algorithm processing

statuses in the voice recognition system can be optimized.

On the other hand, the expansion ofHidden markov model was also discussed by

Imam (2007). In this research, an application for face recognition is built based on

embedded Hidden Markov Models (eHMM). eFIMM are able to modeling image as 2

dimensional data better than ordinary HMM. eHMM will segmented face area on digital

image into 5 super states (forehead, eyes, nose, lips, and chin) and into couple of

embedded states inside those super states. Identifications are being done by comparing

test image's observation likelihood with eHMM face model. Viterbi Algorithm is used to

evaluate the best likelihood from the comparison of test image's observation with all

people's eHMM. The accuracy of identification is known by introduction to each test

image belongs to every individual.

The other study has been done by Fathom, (2008) in Continuous hidden markov

model review and its application on harvest unhusked. The harvest unhusked price is

fluctuated according to some factors such as thai-rice import policy, fertilizer, harvest

failure, natural disaster, political situation etc. Those factors assumed as the state of

unobservable markov chain. The input data was the average at the producers in region I

from January 2000 through March 2007. It is assumed that the price of unhusked raised

 



by the random variables Yk that spread in a certain distribution at interval changes

(QTJ>). To facilitate the search for the parameter estimators created a functional

programmmg-based computing using Mathematica 6.0. The estimators obtained are used

to calculate the expected value of the price of unhusked rice. From the results obtained,

the continuous hidden Markov model is good enough explain the behavior of the price

harvest. The more the cause value ofthe alleged incident, the better.

Research in the field of prediction using Hidden markov model is a new

breakthrough, because most of them are used for bio technology or recognition. Previous

literature suggests that there has been no research on the gold market scientifically.

Community observe the trends based on intuition and a simple calculation. Meanwhile

they need to know the market trend for gold itself. This research was intended to study

time series trend using Hidden Markov Model to give ascientific description by finding
the most likely sequence.

2.2 Probability theory

The fields of statistics are related to the ways of data collection, processing, presentation,

analytical and conclusion has been made based on data and analysis. Resulting conclusion

is expected to be the description of population and their characteristics. Experiment is a

method of data collecting. Set of all possible outcomes from arandomized trial called the

sample space and its denoted by a. An events is asubset of the sample space Q

2.2.1 Probabilty And Random Variabel

Ifan experiment obtain a continued sample, then the random variable that connected

to those sample is called continued random variable. The probability spread of

 



random variable is called probability density function (Lungan, 2006). A random

variablex is a function ofx: Q ->M which {a)tU:X{(o) <X] e field, for each Xc

E. It is not a variable but rather a function that maps events to numbers. ARandom

Variable is a function, which assigns unique numerical values to all possible

outcomes ofa random experiment under fixed conditions (Ali, 2000).

This example is extracted from Ali, (2000). Suppose that a coin is tossed three

times and the sequence of heads and tails is noted. The sample space for this

experiment evaluates to: 5={HHH, IIHT, HTH, HTT, THH, THT, TTH, TIT}. Now

let the random variable Xbe the number of heads in three coin tosses. Xassigns each

outcome in Sa number from the set Sx={0, 1, 2, 3}. The table below lists the eight

outcomes of S and the corresponding values ofX

Table 2.1 Probabi ity sample space

Outcome HHH IIHT HTH THH HTT THT TTH TTT
X 3 2 2 2 1 1 1 0

X is then a random variable taking on values in the set Sx - {0, 1, 2, 3}.

Mathematically, a random variable is defined as a measurable function from a

probability space to some measurable space. This measurable space is the space of

possible values ofthe variable, and it is usually taken to be the real numbers. The

condition for a function to be a random variable is that the random variable cannot be

multivalued. 'There are 2 types of random variables:

a. AContinuous Random Variable is one that takes an infinite number of

possible values. Example: Duration ofacall in atelephone exchange.
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b. ADiscrete Random Variable is one that takes a finite distinct value.

Example: A number of students who fail a test.

a. Continuous random variable

Ifthe random variable Xis continuous with probability density function fix),

Var(X)-/fx-/02f(*)dx, (2J)

where // is the expected value, i.e.

fl~ Jxf(x)dx, q 2)

b. Discrete random variable

If the random variableXis discrete with probability mass function x,-+p,...., x„

—• p„, then

Var (X) =TUVi • (xt - fi) 2 {23)

where ju is the expected value, i.e.

f =iP;X, (2.4)
/-I

2.2.2 Conditional Expectation

In probability theory, aconditional expectation, also known as conditional expected

value or conditional mean, is the expected value of areal random variable respect to

a conditional probability distribution.
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2.2.3 Expected Value and Variance

The expected value, or mean, of arandom variable is the weighted average of all

possible values. The weights used in computing this average correspond to the

probabilities in case of a discrete random variable, or densities in ease of a

continuous random variable. In probability theory and statistics, the variance is used

as a measure of how far a set of numbers are spread out from each other. It is

describing how far the numbers lie from the mean (expected value).

The variance is aparameter describing the actual probability distribution of an

observed population. In the latter case a sample of data from a distribution can be

used to construct the variance defined below.

Ifa random variable Xhas the expected value (mean)// - E[Xjf then the variance

ofXis given by:

varW =£[(jr-//) )J (25)

2.3 Time Series Analysis

Atime series is a sequence ofobservations ofarandom variable. Hence, it is a stochastic

process. Examples include the monthly demand for a product or the annual freshman

enrollment in a department of a university. Forecasting time series data is important

component of operations research because these data often provide the foundation for

decision models. An inventory model requires estimates of future demands and a course

scheduling and staffing model for auniversity requires estimates offuture student inflow.

Time series analysis provides tools for selecting a model that can be used to forecast of

future events. Modeling the time series is a statistical problem. Forecasts are used in
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computational procedures to estimate the parameters ofa model being used to allocated

limited resources or to describe random processes. There are two main goals of time

series analysis:

a. Identifying the nature of the phenomenon represented by the sequence of

observations.

b. Predicting future values of the time series variable.

Both of these goals require that the pattern of observed data is identified and described.

Once the pattern is established, we can interpret and integrate it with other data.

2.4 Stochastic Process

Aprobability space associated with arandom experiment is a triple (QTy P)
where:

(i) i2is the set of all possible outcomes of the random experiment, and it is called the

sample space.

(ii) 7 is a family of subsetsof Q which has the structure of a trfield:

a)0 ET

b) IfA6 F, then its complement Ac also belongs toT

c)AhA2t..., eT-+\jf=lAte?

(iii) P is a function which associates a number P(A) to each set A GT with the

following properties:

a)0< P(A)< 1,

b) P(Q) = 1
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c) For any sequence AhA2,... of disjoints sets in 7 (that is, AtC]Aj ~0 if/^

d)P(UUAt)-^iP(At)

The elements of the a-ficld 7 arc called events and the mapping P is called a

probability measure. In this way we have the following interpretation ofthis model:

P(F) = probability that the event F occurs

The set 0 is called the empty event and it has probability zero. Indeed, the additivity

property (iii,c) implies:

P(0)+r(0)+...=P(0)

The set Qis also called the certain set and by property (iii,b) it has probability one.

Usually, there will be other events ATQ such that P(A) =- 1. Ifa statement holds for

all win a set Awith P(A) - 1, then the statement is true, or that the statement holds for

almost all roGQ. The axioms a), b) and c) lead to the following basic rules of the

probability calculus:

P(AXJB) = P(A) + P(B) ifADB = 0

P{AC)=\-P{A)

ATB^P(A)<P(B)

Example : Consider the experiment offlipping a coin once.

0= {H,T} (the possible outcomes are "Heads" and "Tails")

7 = P(Q) (7 contains all subsets ofQ)

n{H})=/>({T}) =i
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2.5 Markov Chain

Andrey Markov produced the first results (1906) for these processes theoretically.

Markov chains are related to Brownian motion and the ergodic hypothesis, but Markov

appears to have pursued this out ofa mathematical motivation, namely the extension of

the law oflarge numbers to dependent events. In 1913, he applied his findings for the first

time to the first 20,000 letters of Pushkin's Eugene Onegin.

AMarkov chain is a discrete random process with the property that the next state

depends only on the current state. It is named for Andrey Markov, and is a mathematical

tool for statistical modeling in modern applied mathematics, particularly information

sciences. A useful heuristic is that ofa frog jumping among several lily-pads, where the

frog's memory is short enough that it doesn't remember what lily-pad it was last on. and

so its next jump can only be influenced by where it is now.

Formally, a Markov chain is adiscrete random process with the Markov property

that goes on forever. A discrete random process means a system which is in a certain state

at each step, with the state changing randomly between steps. The steps are often thought

of as time (such as in the frog and lily-pad example), but they can equally well refer to

physical distance or any other discrete measurement. The Markov property states that the

conditional probability distribution for the system at the next step depends only on the

current state of the system, and not additionally on the state of the system at previous

steps:

P(Xn+i\Xl,X2, ,Xn)=P(Xn+1|Xn) (2.6)
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Since the system changes randomly, it is generally impossible to predict the exact

state in the future. However, the statistical properties of the system's future can be

predicted. In many applications it is these statistical properties that are important. The

changes of state arc called transitions, and the probabilities associated with various state-

changes are called transition probabilities, fhe set of all stales and transition probabilities

completely characterizes a Markov chain. By convention, assume all possible states and

transitions have been included in the definition ofthe processes, so there is always anext-

state and the process goes on.

A famous Markov chain is the drunkard's walk, a random walk on the number line

where the position may change by +1 or -1 with equal probability. From any position

there are two possible transitions, to the next or previous integer. The transition

probabilities depend only on the current position, not on the way the position was

reached. For example, the transition probabilities from 5 to 4 and 5 to 6 are both 0.5, and

all other transition probabilities from 5 are 0. These probabilities are independent of

whether the system was previously in 4 or 6.

However, the theory is usually applied only when the probability distribution of

the next step depends non-trivially on the current state. AMarkov chain is a sequence of

random variables X,, X2, X3, ... with the Markov property, given the present state, the

future and past states are independent. Formally,

Pr^^-x^Xi^-^-.-.A-Xn^Pr^^-x^Xn) (2.7)

The possible values of X{ form a countable set S called the state space of the chain.

Markov chains are often described by adirected graph, where the edges are labeled by the
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probabilities ofgoing from one state to the other states. Asimple example is shown in the

figure below, using a directed graph to picture the state transitions. The states represent

whether the economy is in a bull market, a bear market, or a recession, during a given

week. According to the figure, a bull week is followed by another bull week 90% of the

time, a bear market 7.5% ofthe lime, and arecession the other 2.5%. From this figure it is

possible to calculate, for example, the long-term fraction of time during which the

economy is ina recession, oron average how long it will take to go from a recession to a

bull market.

Figure 2.1 Example of state transition

The probability of going from state / to state/ in n time steps is

Pij =Pr (Xn -j \X0 - i) (2.8)

and the single-step transition is

Pi, =Pr(Xj=j\X0=i) (2.9)

For a time-homogeneous Markov chain:

P0 =Pr (XnH=j jXk =/) (2.10)
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And

Pi,=*?r(Xkil-j\Xk = i) (2.11)

so, the rt-step transition satisfies the Chapman-Kolmogorov equation, that for any ksuch

that 0 < k < n,

(n) ^_, . (k) Jn-k)
P„ =Lpir prj (2.12)

res

The marginal distribution Pr(X„ = x) is the distribution over states at time n. The initial

distribution is Pr(Ao = x).

2.6 Hidden Markov Model

A Hidden Markov Model (HMM) is a finite state machine which has some fixed number

of states. Hidden Markov models were introduced in the beginning of the 1970's as a tool

in speech recognition. This model based on statistical methods has become increasingly

popular in the last several years due to its strong mathematical structure and theoretical

basis for use in a wide range of applications. If the parameters of the chain are known,

quantitative predictions can be made. In other cases, they are used to model a more

abstract process, and the theoretical underpinning ofan algorithm. Transitions among the

states are governed by a set of probabilities called transition probabilities. In a particular

state an outcome orobservation can be generated, according to the associated probability

distribution. It is only the outcome, not the state visible to an external observer and

therefore states are hidden to the outside, hence the name Hidden Markov Model

 



18

2.6.1 Characteristic of Hidden Markov Model

Hidden Markov Model is characterized by the following

a. number of states in the model (N/Q)

Q^ {q\l qi: : • : ;qrl - -ve/ ofstates

b. number of observation symbols (M/ O)

O = {o\; 02/ •' .' .' ;ojj - set ofsymbols

c. state transition probabilities (%)

aij = P(ql+i =j\qt = i)

d. observation emission probability distribution that characterizes each state (bj)

b/k) = P(o,= k\qt =/) i<k<M

e. initial state distribution (tt)

As mentioned above the HMM is characterized by N,M,A,B and n. The aip 6/0,), and

7t( have the properties:

^ aij =1, ^T bi(Ot) =1, Vni =1 and

av> M0')> K^- 0for all /;/,/ (2.13)

2.6.2 Main issues using HMM

Most applications of HMMs are finally reduced to solving three main problems. These

are:
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a. Evaluation problem

Given the HMM k~ (A, B.tt) and the observation sequence 0=oi 02 ... ok ,

calculate the probability that model M has generated sequence 0. Trying to find

probability of observations 0=O[ 02... Ok by means of considering all hidden state

sequences.

b. Decoding problem

Given the HMM X~ {A, B,tv) and the observation sequence 0=0io2— ok , calculate

the most likely sequence of hidden states s, that produced observation sequence 0.

c. Learning problem

Given some training observation sequences Q^o\ 02... Ok and general structure of

HMM (numbers of hidden and visible states), determine HMM parameters A=(A;

B, 71) that best fit training data.

a0= P(Sj Isj)

b,(vm)='P(ym\si)

number of transition from state Sj to state Si

number of transitions out of state Sj

number of time observation Vm occurs in state Si

Number of times in state Si

%= P(sj) ^ Expected frequency in state st at time k^l

In a Hidden Markov Model, three parameters need to be re-estimated, which is:

a. Transition probabilities (ay)

b. Initial state distribution (n)
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c. Emission probabilities [bf(ot)]

a. Re-estimating Transition Probabilities

What's the probability ofbeing in state ,Vj at time tand going to state sh given the current

model and parameters?

Figure 2.2 Reestimating transition probabilities

Given:

tAUj) =P(clt=snq^=Si\0,X) ,

So that,

II«1(,>,J»,(»,j/?H1(i)
'=1 J = l

The intuition behind the re-estimation equation for transition probabilities is:

expected number of transitions from state s- to state s
i j

expected number of transitions from state s

(2.14)
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/•-i

1,1 aj)
= a...= t=l

>,! 7' I A'

(-1 f=\

(2.15)

Defining

N

//(0 =X#,(U) (2-16)
/=t

As the probability of being in state s„ given the complete observation 0 and can be

written as:

E<f,c./)
a. -,=l

'J 7-1

I>,(0
(2.17)

f=i

b. Re-estimation of Initial State Probabilities

Initial state distribution nt is the probability that a-, is a start state

tzx = expected number of state s{at time 1

Thus can be written:

*, = riO) (2.18)

c. Re-estimation of Emission Probabilities

 



Emission probabilities arc re-estimated as:

b(k) =^P_5^1^nil!T^1^>fii^^instates^aiid^observesymbo1
expected number of times in state s

22

^W^"1^

ZM'l
(2.19)

/=]

Where S(o,, vk) = 1, if o, = vk, and 0otherwise

d. Updated Model

Coming from X=(A7B,x) we get to '̂= (A,B^) by the following update rules:

7-1

I^ay)
a. , = ,=1

2>,<0
^i

^W =i=!-T > (2.22)
f=i

£, =/,(/) (2.23)
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2.6 Percentage Error

The percentage error for each number obtained by Percentage Mean Error (PME) stated

below:

©=1*^x100%) (2.23)

Where

Yk = actual data

fk = simulation data

 


