
ANALISIS DAMPAK DAN POTENSI RISIKO PADA KELOMPOK KERJA BUFFING PANEL GP MENGGUNAKAN METODE VALUE AT RISK (VAR) DAN FAILURE MODE AND EFFECT ANALYSIS (FMEA) (STUDI KASUS PT. YAMAHA INDONESIA)

TUGAS AKHIR

Diajukan Sebagai Salah Satu Syarat Untuk Memperoleh Gelar Sarjana Strata-1 Pada Jurusan Teknik Industri Fakultas Teknologi Industri

Nama: Muhammad Fauzan Al Farisi

No. Mahasiswa: 17522123

PROGRAM STUDI TEKNIK INDUSTRI FAKULTAS TEKNOLOGI INDUSTRI UNIVERSITAS ISLAM INDONESIA YOGYAKARTA

2021

PERNYATAAN KEASLIAN TA

Demi Allah saya akui bahwa karya ini adalah karya saya sendiri kecuali kutipan dan ringkasan yang setiap salah satunya telah saya jelaskan sumbernya. Jika ditemukan dikemudian hari ternyata terbukti pengakuan saya ini tidak benar dan melanggar peraturan yang sah dalam karya tulis dan hak kekayaan intelektual maka saya bersedia ijazah yang saya terima untuk ditarik oleh Universitas Islam Indonesia

Cilegon, 09 Agustus 2021

Muhammad Fauzan Al Farisi

NIM. 17522123

SURAT KETERANGAN PELAKSANAAN TA

PT. YAMAHA INDONESIA

JI. Rawagelam 1/5, Kawasan Industri Pulogadung Jakarta 13930 Indonesia, PO. Box. 1190/JAT Telp.: (62 - 21) 4619171 (Hunting) Fax.: 4602864, 4607077

SURAT KETERANGAN

No. : 087/YI/PKL/IV/2021

Kami yang bertandatangan dibawah ini, Bagian Human Resource Development (HRD) PT. YAMAHA INDONESIA dengan ini menerangkan bahwa:

Nama : M. FAUZAN AL FARISI

Nomor Induk Mahasiswa : 17522123

Jurusan : TEHNIK INDUSTRI

Fakultas : TEKNOLOGI INDUSTRI

Alamat : UNIVERSITAS ISLAM INDONESIA-YOGYAKARTA

Telah melakukan program Internship melalui penelitian dan pengamatan dalam program Kerja Praktek dengan Judul "Analisis Potensi Risiko Defect Kelompok Kerja Buffing Panel GP Menggunakan Metode Failure Mode and Deffect And Effect Analysis (FMEA) (Studi Kasus PT. Yamaha Indonesia)".

Program ini dilaksanakan mulai Tanggal 01 Oktober 2020 sampai dengan 31 Maret 2021. Kami mengucapkan terima kasih atas usaha dan partisipasi yang telah diberikan.

Demikian surat keterangan ini dibuat untuk dapat dipergunakan sebagaimana mestinya.

Jakarta, 29 April 2021

HRD Department

PT. YAMAHA INDONESIA

<u>alkausar Chali</u> Manager

LEMBAR PENGESAHAN PEMBIMBING

ANALISIS DAMPAK DAN POTENSI RISIKO PADA KELOMPOK KERJA BUFFING PANEL GP MENGGUNAKAN METODE VALUE AT RISK (VAR) DAN FAILURE MODE AND EFFECT ANALYSIS (FMEA) (STUDI KASUS PT. YAMAHA INDONESIA)

Diajukan sebagai salah satu syarat untuk memperoleh gelar sarjana S-1 Jurusan Teknik
Industri – Fakultas Teknologi Industri
Universitas Islam Indonesia

Disusun Oleh:

Muhammad Fauzan Al Farisi
NIM. 17 522 123

Yogyakarta, 09 Agustus 2021

Dosen Pembimbing Tugas Akhir,

Dr., Ir., Elisa Kusrini M.T., CPIM., CSCP

LEMBAR PENGESAHAN PENGUJI

ANALISIS DAMPAK DAN POTENSI RISIKO PADA KELOMPOK KERJA BUFFING PANEL GP MENGGUNAKAN METODE VALUE AT RISK (VAR) DAN FAILURE MODE AND EFFECT ANALYSIS (FMEA) (STUDI KASUS PT. YAMAHA INDONESIA)

TUGAS AKHIR

Oleh:

Nama : Muhammad Fauzan Al Farisi

No. Mahasiswa : 17522123

Telah dipertahankan di depan sidang penguji sebagai salah satu syarat untuk memperoleh gelar Sarjana Strata-1 Teknik Industri

Yogyakarta, 2021

Tim Penguji

Dr., Ir., Elisa Kusrini M.T., CPIM., CSCP

Ketua

Dosen 1

Ir. Hartomo, M.Sc., Ph.D.

Dosen 2

M. Syahfatahillah

Mengetahui,

Ketua Program Studi Teknik Industri

Universitas Islam Indonesia

Dr. Taufiq Immawan S.T., M.M

HALAMAN PERSEMBAHAN

Alhamdulillahirabbil'alamin, puji syukur kepada Allah SWT. Karena dengan rahmat dan kuasa-Nya penelitian Tugas Akhir saya dapat selesai tepat waktu.

Terima kasih kepada kedua orang tua yang tidak pernah letih memberikan nasehat, motivasi, dukungan, serta doa terbaik kepada saya. Kepada keluarga, sahabat dan orang tercinta, terimakasih telah memberikan doa dan menjadi support system bagi saya.

HALAMAN MOTTO

"Bekerjalah kamu, maka Allah dan Rasul-Nya serta orang-orang mukmin akan melihat pekerjaanmu itu, dan kamu akan dikembalikan kepada (Allah) yang mengetahui akan yang ghaib dan yang nyata, lalu diberitakan-Nya kepada kamu apa yang telah kamu kerjakan."

(QS At- Taubah: 105)

"Dan carilah pada apa yang telah dianugerahkan Allah kepadamu (kebahagiaan) negeri akhirat, dan janganlah kamu melupakan bahagianmu dari (kenikmatan) duniawi dan berbuat baiklah (kepada orang lain) sebagaimana Allah telah berbuat baik kepadamu, dan janganlah kamu berbuat kerusakan di (muka) bumi. Sesungguhnya Allah tidak menyukai orang-orang yang berbuat kerusakan." (QS Al-Qashash: 77)

KATA PENGANTAR

Assalamualaikum Warrah matullahi Wabarakatuh,

Segala puji dan syukur penulis panjatkan kepada Allah SWT atas berkat rahmat dan nikmat-Nya sehingga penulis dapat menyelesaikan penelitian Tugas Akhir. Sholawat serta salam senantiasa penulis ucapkan kepada Nabi Muhammad SAW beserta keluarga, sahabat dan para pengikutnya yang telah berjuang dan membimbing kita keluar dari zaman jahilliyah menuju zaman dengan penuh ilmu pengetahuan.

Dalam pelaksanaan pelaksanaan penelitian dan penyusunan laporan tugas akhir, penulis banyak mendapatkan bimbingan, arahan, bantuan, dukungan, dan kesempatan dari berbagai pihak, sehingga dapat memperlancar pembuatan laporan ini. Untuk itu penulis ingin mengucapkan rasa terima kasih kepada:

- 1. Bapak Hari Purnomo, Prof., Dr., Ir., M.T. selaku Dekan Fakultas Teknologi Industri Universitas Islam Indonesia.
- 2. Bapak Muhammad Ridwan Andi Purnomo, S.T., M.Sc., Ph.D. selaku Ketua Jurusan Teknik Industri Fakultas Teknologi Industri, Universitas Islam Indonesia.
- 3. Bapak Dr. Taufiq Immawan S.T., M.M. selaku Ketua Jurusan Strata-1 Teknik Industri Universitas Islam Indonesia
- 4. Ibu Dr., Ir., Elisa Kusrini M.T., CPIM., CSCP., selaku dosen pembimbing tugas akhir
- Bapak dan Ibu Dosen Program Studi Teknik Industri Fakultas Teknologi Industri, Universitas Islam Indonesia yang telah membuka wawasan dalam bidang akademik dan non-akademik.
- 6. Bapak Samsudin DS selaku direktur PT Yamaha Indonesia yang telah memberikan izin dan bimbingan selama melakukan magang dan penelitian Tugas Akhir.
- 7. Bapak Sambu Apriliyanto selaku pembimbing lapangan yang selalu memberikan nasehat dan motivasi selama kegiatan magang di PT Yamaha Indonesia.
- 8. Seluruh staff dan operator PT Yamaha Indonesia yang telah membantu dan kooperatif selama masa pengambilan data project dan penelitian Tugas Akhir.
- 9. Kedua orang tua atas segala doa, dukungan baik moril maupun materil dan semangat yang diberikan.
- 10. Teman-teman yang telah memberikan semangat serta dukungan kepada penulis.

11. Serta semua pihak yang tidak dapat penulis sebut satu persatu yang telah membantu penulis selama penelitian Tugas Akhir.

Namun tidak lepas dari semua itu, penulis menyadari sepenuhnya bahwa ada kekurangan baik dari bahasa, isi dan format laporan yang telah disusun. Oleh karena itu kritik dan saran sangat penulis butuhkan untuk memperbaiki laporan penelitian ini. Semoga laporan ini dapat bermanfaat bagi semua pihak. Aaamiiin.

Wassalamu'alaikum Warrahmatullahi Wabarakatuh.

Yogyakarta, 3 Agustus 2021

Muhammad Fauzan Al Farisi

ABSTRAK

Pada era dewasa ini, setiap perusahaan berlomba-lomba meraih kemenangan dalam persaingan bisnis. PT Yamaha Indonesia merupakan salah satu perusahaan manufaktur yang menghasilkan produk alat musik piano yang tidak hanya dipasarkan di Indonesia namun hingga mancanegara. Proses produksi pada PT. Yamaha Indonesia menggunakan perpaduan mesin dan manusia, oleh sebab itu peluang terjadinya tidak konsisten pada proses produksi yang berlangsung sangat besar salah satunya yang terjadi pada kelompok kerja Buffing Panel GP. Tindakan yang dilakukan oleh kelompok kerja Buffing Panel GP melakukan repair yang menyebabkan kerugian pada perusahaan. Hal ini menandakan bahwa perlu dilakukan analisis dan dampak risiko produk defect untuk mengetahui dampak kerugian yang terjadi dan potensi risiko apa saja yang terjadi. Berdasarkan perhitungan menggunakan metode Value at risk didapatkan dampak kerugian terbesar pada defect pecah sebesar \$10.4 dan defect muke mentori sebesar \$1.6. Untuk menentukan usulan perbaikan dari potensi risiko terbesar didapatkan menggunakan metode FMEA dengan 3 potensi risiko terbesar antara lain; peletakan kabinet saat buffing pada proses Ryoto Buff yang tidak baik, peletakan kabinet diatas stopper atau tidak sesuai dengan ketentuan pada meja mesin Level Buff Auto dan cover rak terkelupas. Untuk dapat memberikan usulan perbaikan dapat diketahui melalui akar permasalahan dari potensi risiko yang terjadi menggunakan analisis five why's. menempelkan gambar pejuntuk posisi yang benar, melakukan pengecekan secara berkala setiap selesai melakukan pengecatan, melakukan pembersihan dan pengecekan pada rak secara rutin, Melakukan pengecekan pemasangan kabinet pada stopper secara benar sebelum proses buffing Merubah warna yang terang pada stopper. Biaya usulan perbaikan didapatkan sebesar Rp. 29.100, biaya ini jauh dibawah dampak kerugian yang terjadi sehingga dapat menjadi pertimbangan oleh perusahaan dalam menerapkan usulan perbaikan tersebut

Kata kunci: Kualitas, Risiko, Defect, Value at Risk, FMEA

DAFTAR ISI

PERNY	YATAAN KEASLIAN TA	ii
SURA	Γ KETERANGAN PELAKSANAAN TA	iii
LEMB	AR PENGESAHAN PEMBIMBING	iv
LEMB	AR PENGESAHAN PENGUJI	V
HALA	MAN PERSEMBAHAN	Vi
HALA	MAN MOTTO	vii
KATA	PENGANTAR	viii
	RAK	
	AR ISI	
	AR TABEL	
	AR GAMBAR	
	PENDAHULUAN	
BABI		
1.1.	Latar Belakang	1
1.2.	Rumusan Masalah	
1.3.	Tujuan Penelitian	3
1.4.	Batasan Penelitian	4
1.5.	Manfaat Penelitian	
1.6.	Sistematika Penulisan	5
BAB II	KAJIAN LITERATUR	7
	Kajian Induktif	
2.1.	·	
2.2.	Kajian Deduktif	17
2.2	2.1. Risiko	17
2.2	2.2. Manajemen Risiko	17
2.2	2.3. Value at Risk (VaR)	18
2.2	2.4. Penilaian ahli/ Expert judgment	19
2.2	2.5. Diagram Fishbone	19

2.2.6.	Failure Mode and Effect Analysis (FMEA)	20
2.2.7.	Analisis Five Why's	23
BAB III MI	ETODE PENELITIAN	24
3.1. Ot	bjek Penelitian	24
3.2 Je	nis Data Penelitian	24
3.2.1.	Data Primer	24
3.2.2.	Data Sekunder	
3.3 M	etode Pengumpulan Data	24
3.4 Ins	strumen Penelitian	25
3.5 Al	lur Penelitian	25
BAB IV PE	ENGUMPULAN DAN PENGOLAHAN DATA	29
4.1 Pr	ofil Perusahaan	29
4.1.1	Sejarah Perusahaan	29
4.1.2	Visi, Misi Arti dan Logo Perusahaan	30
4.1.3	Logo Perusahaan	30
4.1.4	Lokasi dan Denah Perusahaan	31
4.1.5	Nilai - Nilai yang Ada di Perusahaan	31
4.1.6	Struktur Perusahan	32
4.1.7	Hasil Produksi	34
4.2 Pe	engumpulan Data	35
4.2.1	Proses Produksi	
4.2.2	Data Jumlah Temuan Defect	
4.3 Pe	engolahan Data	38
4.3.1	Value at risk	39
4.3.2	Prioritas Defect	40
4.3.3	Diagram Fishbone	
4.3.4	Failure Mode and Effect Analysis	43
4.3.5	Analisis Prioritas Potensi Risiko	47
4.3.6	Analisis Non Prioritas Potensi Risiko	49
BAB V PE	MBAHASAN	56
5.1 Δτ	nalisis <i>Value at Risk</i>	56

5.2.	Analisis Prioritas Defect	56
5.3.	Analisis Diagram Fishbone	57
5.4.	Analisis Hasil Perhitungan Risiko Defect Menggunakan FMEA	59
5.5.	Analisis dan Usulan Perbaikan Prioritas Potensi Risiko	60
5.6.	Perbandingan Biaya Usulan Perbaikan dengan Value at Risk	63
5.7.	Analisis dan Usulan Perbaikan Non Prioritas Risiko	64
BAB VI	KESIMPULAN	66
6.1	Kesimpulan	66
DAFTA	R PUSTAKA	68
I AMDII	DAN	72

DAFTAR TABEL

Tabel 2.1. Kajian Indukif	7
Tabel 2. 2. Severity	21
Tabel 2. 3. Occurrence	21
Tabel 2. 4. Detection	
Tabel 2. 5. Skala RPN	23
Tabel 4. 1. Data Defect Buffing Panel GP	37
Tabel 4. 2. Dampak Kerugian	39
Tabel 4. 3. Resume Data Defect pecah Buffing Panel GP	
Tabel 4. 4. Penyebab Risiko	42
Tabel 4. 5. Expert	43
Tabel 4. 6. Analisa FMEA Defect Pecah	
Tabel 4. 7. Five Why's Potensi Risiko 1	
Tabel 4. 8. Five Why's Potensi Risiko 2	
Tabel 4. 9. Five Why's Potensi Risiko 3	48
Tabel 4. 10. Analisis Non Prioritas Potensi Risiko Faktor Manusia	49
Tabel 4. 11 Analisis Non Prioritas Potensi Risiko Faktor Mesin	51
Tabel 4. 12 Analisis Non Prioritas Potensi Risiko Faktor Metode	52
Tabel 4. 13. Analisis Non Prioritas Potensi Risiko Faktor Material	53
Tabel 4. 14. Analisis Non Prioritas Potensi Risiko Faktor Lingkungan	54
Tabel 5. 1. Biaya Usulan Perbaikan	63
Tabel 5. 2. Perbandingan Biaya	63

DAFTAR GAMBAR

Gambar 3. 1. Alur Penelitian	26
Gambar 4. 1. Logo Perusahaan	30
Gambar 4. 2. Lokasi dan Denah Perusahaan	31
Gambar 4. 3. Struktur Organisasi	33
Gambar 4. 4. Piano Upright	34
Gambar 4. 5. Grand Piano	34
Gambar 4. 6. Alur produksi fallboard GP, UP & PPR	35
Gambar 4. 7. Alur Produksi Top Board Front	36
Gambar 4. 8. Alur Produksi Top Board Rear	36
Gambar 4. 9. Diagram Fishbone	41
Gambar 5. 1. Proses Ryoto Buff	61
Gambar 5. 2. Stopper Mesin Level Buff Auto	62

BAB I PENDAHULUAN

1.1. Latar Belakang

Pada era dewasa ini, setiap perusahaan berlomba-lomba meraih kemenangan dalam persaingan bisnis. Dalam meraih ini antara lain perusahaan harus memahami akan persaingan pasar, mampu melihat keadaan pasar, serta mampu memenuhi kebutuhan maupun kepuasan pada konsumen. Cara yang dapat dilakukan salah satunya adalah meningkatkan kualitas produk. Kualitas merupakan suatu jumlah dari fungsi karakteristik yang bergantung pada produk atau layanan kemampuan dalam memenuhi kebutuhan nyata maupun. Kualitas atau penjaminan mutu serta produktivitas dalam dunia industri merupakan keberhasilan dalam suatu sistem produksi. Proses yang tidak terdapat disini dapat menimbulkan kerugian yang cukup besar bagi perusahaan, karena penyimpangan yang terjadi tidak diketahui yang menyebabkan perbaikan tidak dapat di tindak lanjutkan serta penyimpangan akan terus berkelanjutan.

PT Yamaha Indonesia merupakan salah satu perusahaan yang memproduksi piano. Berbagai macam piano yang diproduksi oleh PT Yamaha Indonesia antara lain adalah model UP *Right* dan *grand piano*. UP *Right* adalah piano dengan posisi vertikal sedangkan *Grand piano* adalah piano dengan posisi horizontal. Piano yang dihasilkan oleh PT Yamaha Indonesia tidak hanya dipasarkan di Indonesia namun hingga mancanegara. Oleh karena itu, untuk dapat memenangkan persaingan pasar perusahaan harus menciptakan produk berkualitas dan lebih baik dari kompetitiornya. Lebih dari 84% produksi piano dari PT Yamaha Indonesia adalah Upright Piano. Sementara itu, dari dari seluruh produksi piano UP, diketahui bahwa 76,84% produksi piano *Polished Ebony* (PE) merupakan yang terbanyak dibandingkan *Polished Mahogany* (PM)/ *Polished Walnut* (PW) dan *Polished White* (PWH). PT Yamaha Indonesia juga telah memiliki ISO 9001 yang berarti perusahaan harus mempunyai mutu kualitas yang tinggi, baik itu tampilan luar piano maupun tampilan dalam piano. Perusahaan juga memiliki target zero defect yang diharapkan mampu meminimalisir

kerugian dalam hal biaya maupun waktu produksi, serta meningkatkan produktivitas produksi.

Secara garis besar, proses produksi PT Yamaha Indonesia dibawahi oleh 3 departemen yaitu, departemen wood working, painting, dan assembly. Pada departemen painting terbagi menjadi 3 bagian, yaitu bagian sanding dasar, bagian spray, dan bagian sanding-buffing. Kelompok kerja Buffing Panel GP merupakan bagian akhir dari alur produksi pada departemen painting sehingga bagian ini memiliki peranan yang penting dalam menghasilkan hasil produksi yang bermutu.

PT. Yamaha Indonesia menggunakan perpaduan mesin dan manusia dalam proses produksinya, oleh sebab itu peluang terjadinya tidak konsisten pada proses produksi yang berlangsung sangat besar sehingga dapat menimbulkan permasalahan pada saat produksi berlangsung. Salah satu dari divisi yang terdampak adalah pada divisi *Painting* kelompok kerja *Buffing Panel GP* dengan permasalahan besar temuan cacat/*defect*. Tindakan yang dilakukan oleh kelompok kerja *Buffing Panel GP* ketika terdapat temuan *defect* pada kabinet piano adalah melakukan *repair*. *Repair* merupakan aktivitas proses dalam memperbaiki unit kabinet yang mengalami *defect* yang masih bisa diperbaiki. Aktivitas *repair* yang berlebihan dapat menyebabkan pengurangan efisiensi waktu produksi, menambah beban kerja pada operator serta menjadikan tingkat efisiensi *cost* rendah.

Berdasarkan data masih terdapat persentase yang tinggi pada produk hasil *Buffing Panel* GP dan melebihi target *defect* yang telah ditetapkan oleh perusahaan yaitu penurunan sebesar 30%. Untuk temuan *defect* pada kelompok kerja *Buffing Panel* GP memiliki rata-rata sebesar 1% yang dimana belum mencapai target penurunan *defect* sebesar 0.6%. Hal ini menandakan bahwa perlu dilakukan analisis risiko produk *defect* pada kelompok kerja *Buffing Panel* GP sehingga dapat dilakukan perbaikan untuk mengurangi jumlah produk *defect* yang terjadi.

Banyaknya temuan *defect* membuat kelompok kerja pada *Buffing Panel* GP melakukan proses *repair*. *Repair* merupakan tindakan memperbaiki kabinet yang masih dapat diperbaiki. Semakin banyak jumlah *repair* menyebabkan perusahaan mengalami kerugian dalam hal biaya dan waktu untuk mempertahankan kualitas dari produk yang

dihasilkan. Oleh karena itu, perlu adanya upaya untuk memperbaiki proses produksi berdasarkan data inspeksi dan merumuskan langkah-langkah perbaikan proses produksi.

Dalam upaya mengurangi jumlah *repair*, upaya yang dapat dilakukan adalah melakukan pelacakan penyebab timbulnya *defect* dengan melihat kinerja operator, petunjuk kerja (PK) serta lingkungan kerja. Temuan barang *defect* yang terjadi tidak bisa hanya dicatat namun perlu juga tindakan penanggulangan untuk menghasilkan produk yang memenuhi spesifikasi.

Untuk menghitung besarnya dampak risiko tertinggi yang mungkin terjadi dapat dilakukan menggunakan metode VaR (*Value at Risk*). Metode VaR merupakan metode yang menghitung kerugian terbesar yang mungkin terjadi dalam rentang waktu tertentu yang diprediksikan dengan tingkat kepercayaan tertentu. Penggunaan metode ini dapat dilakukan dengan melihat data historis sebelumnya (Kountur, 2008). Sedangkan upaya untuk meminimasi temuan-temuan *defect* sebagai pada proses di kelompok kerja *Buffing Panel GP* digunakan adalah metode FMEA (*Failure Mode and Effect Analysis*). Metode FMEA (*Failure Mode and Effect Analysis*) merupakan sebuah metode yang dapat diandalkan dalam mempertimbangkan alasan potensial pada efek gangguan atau kerusakan yang mengakibatkan resiko pada sebuah sistem yang kompleks. Analisis manajemen resiko berbasis FMEA dapat digunakan untuk mencegah peristiwa yang tidak diinginkan ataupun menghindari ketidakpuasaan pelanggan di industri (Yang, Bonsall, & Wang, 2008).

1.2. Rumusan Masalah

Adapun rumusan masalah pada penelitian ini adalah:

- 1. Seberapa besar dampak risiko yang dialami oleh kelompok kerja *Buffing Panel GP*?
- 2. Apa saja potensi risiko tertinggi masalah *defect* yang terjadi pada kelompok kerja *Buffing Panel* GP berdasarkan perhitungan RPN?
- 3. Bagaimana usulan perbaikan yang dapat diberikan terhadap hasil perhitungan RPN tertinggi yang diperoleh?

1.3. Tujuan Penelitian

Adapun tujuan dari penelitian ini adalah sebagai berikut:

1. Mengetahui besar dampak risiko yang dialami oleh kelompok kerja Buffing Panel GP

- 2. Mengetahui potensi risiko tertinggi masalah *defect* yang terjadi pada kelompok kerja *Buffing Panel* GP berdasarkan perhitungan RPN.
- 3. Memberikan usulan perbaikan berdasarkan hasil perhitungan RPN tertinggi yang diperoleh.

1.4. Batasan Penelitian

Adapun batasan masalah dalam penelitian ini adalah sebagai berikut:

- Penelitian ini hanya dilakukan pada kelompok kerja Buffing Panel GP PT. Yamaha Indonesia
- 2. Penelitian ini hanya memperhitungkan biaya berdasarkan survei *martketplace* terhadap usulan perbaikan yang diberikan.
- 3. Tidak memperhatikan faktor perawatan mesin karena seluruh mesin dianggap mampu bekerja secara normal setiap harinya.

1.5. Manfaat Penelitian

Adapun manfaat pada penelitian ini adalah:

1. Bagi Penulis:

- a Mengimplementasikan ilmu dalam kasus nyata khususnya menganilisis masalah dalam sistem produksi.yang didapatkan dari bangku perkuliahan
- b Sebagai salah satu syarat untuk memperoleh gelar sarjana di Fakultas Teknologi Industri Universitas Islam Indonesia.

2. Bagi Perusahaan:

Hasil dari penelitian ini diharapkan dapat menjadi saran atau masukan bagi perusahaan terkait pengambilan keputusan dalam sistem produksi agar terus meningkatkan produktivitas secara berkelanjutan.

1.6. Sistematika Penulisan

Sistematika dalam penulisan penelitian ini adalah sebagai berikut:

BAB I PENDAHULUAN

Bab ini akan menjelaskan secara singkat mengenai latar belakang, rumusan masalah, batasan masalah, tujuan penelitian, manfaat penelitian dan sistematika penulisan laporan Tugas Akhir

BAB II KAJIAN LITERATUR

Bab ini berisikan penelitian terdahulu dan landasan teori. Penelitian terdahulu berisikan hasil penelitian yang sudah dilakukan terkait metode VaR dan FMEA yang didapatkan melalui prosiding, jurnal nasional dan jurnal internasional. Sedangkan landasan teori ini berisikan teori-teori pendukung secara umum mengenai analisis dan manajemen risiko dengan menggunakan metode VaR dan FMEA untuk dijadikan landasan dalam melakukan penelitian sebagai acuan untuk memecahkan masalah.

BAB III METODE PENELITIAN

Dalam bab ini menjelaskan tentang objek penelitian, jenis dan sumber data penelitian, metode pengumpulan data, jenis data dan diagram alir penelitian. Diagram alur penelitian digunakan untuk menjelaskan kerangka penelitian dari tahap awal hingga kesimpulan.

BAB IV PENGUMPULAN DAN PENGOLAHAN DATA

Bab ini memperlihatkan data yang diperoleh dan data-data yang akan diolah dalam penelitian ini sesuai dengan metode yang akan diterapkan untuk mencapai tujuan penelitian yang dilakukan.

BAB V PEMBAHASAN

Bab ini menjelaskan pembahasan-pembahasan yang lebih kritis mengenai pengolahan data sebelumnya serta analisa-analisa dari perhitungan yang telah diperoleh kemudian dapat menemukan rujukan perbaikan berdasarkan perhitungan yang telah dilakukan sebelumnya.

BAB VI

KESIMPULAN

Bab ini merupakan bagian akhir dalam penelitian yang dilakukan. Kesimpulan yang ada merupakan jawaban dari rumusan masalah yang telah dijelaskan diawal penelitian serta saran yang diberikan untuk perusahaan dan juga terhadap pengembangan penelitian selanjutnya terhadap kekurangan-kekurangan yang terdapat pada penelitian ini.

DAFTAR PUSTAKA

Daftar Pustaka berisikan mengenai sumber-sumber yang digunakan dalam penelitian, berupa jurnal, prosiding, buku, ataupun kutipan-kutipan dari internet

LAMPIRAN

Lampiran berisikan uraian-uraian yang menjelaskan dan mendukung penelitian seperti lembar kuisioner dan rekapitulasi.

BAB II KAJIAN LITERATUR

Pada bab ini terbagi menjadi dua kajian yang bersumber dari hasil kajian literatur yaitu kajian induktif yang bersumber dari jurnal atau prosiding tentang hasil dari penelitian terdahulu. Serta kajian deduktif yang diperoleh dari buku, laporan, jurnal, dan prosiding yang berkaitan dengan teori dasar atau umum yang digunakan dalam penelitian.

2.1.Kajian Induktif

Kajian induktif berisikan hasil penelitian-penelitian terdahulu yang berkaitan dengan topik pembahasan yang berkaitan untuk menjadi acuan dalam pengembangan metode dalam mendukung penelitian yang dilakukan pada tabel 2.1.

Tabel 2.1. Kajian Indukif

N.T.	T 1 1	D 1'	T 1	37 ' 1 1	M . 1	TT '1
No	Judul	Penulis	Tahun	Variabel	Metode	Hasil
1	Operational	Taufiq	2018	Produksi	Fuzzy &	Penelitian pada Optimus
	risk analysis	Immawan,		buku	Failure	Creative yang bergerak
	with Fuzzy	Wahyudh		tahunan	Mode and	dibidang desain grafis,
	FMEA (Failure	i			Effect	fotografi, buku tahunan dan
	Mode and	Sutrisno			Analysis	event organizer. Dalam rangka
	Effect Analysis)	& Annisa				menjalankan aktivitasnya
	approach	Kamilia				guna meminimalkan potensi
	(Case study:	Rachman				terjadinya risiko tersebut,
	Optimus	· W = ?	(((((· w 2 (111-	perusahaan sangat
	Creative	ليلس	/			membutuhkan kebijakan dan
	Bandung)	215		人"。[]	JI*(* /	pedoman pengelolaan risiko
	(Immawan,		•			Metode yang digunakan untuk
	Sutrisno, &					mengatasi masalah ini adalah
	Rachman,					dengan menerapkan Failure
	2017)					Mode and Effects Analysis
						(FMEA) dan penggunaan
						fuzzy logic. Dari sekian banyak

						risiko yang teridentifikasi,
						terdapat 7 risiko yang
						memiliki bobot tertinggi untuk
						diproses oleh FMEA. Dari
						hasil fuzzyRPN didapatkan
				Α		resiko yang dapat diketahui
			151	$\perp A \wedge$	\mathcal{A}	menjadi prioritas untuk
		(1)				perbaikan cepat.
2	Risk Defect on	Agyl	2019	Industri	Failure	Penelitian pada du base frame
	Du Base Frame	Adriyadhi		manufaktur	Mode and	yang bergerak di bidang
	Product (Agyl	S. &			Effect	industri manufaktur Dalam
	& Singgih,	Moses			Analysis	rangka menjalankan
	2019)	Laksono				aktivitasnya guna
		Singgih.				meminimalkan potensi
						terjadinya risiko tersebut
		ш				Metode yang digunakan pada
						penelitian ini adalah FMEA
						untuk mengidentifikasi risiko
		Z				cacat yang terjadi saat proses
					7	produksi <i>DU Base Frame</i>
						yang dapat berpengaruh
		0	/ // /	4.11 0 /	11 1	kepada biaya, waktu, dan
	,		((((4	11/2	kualitas produksi PT X.
	/	" "				Fishbone diagram digunakan
		26	עוע	باسا		untuk mengidentifikasi
			*	, and the second		penyebab risiko sementara
						menentukan nilai prioritas
						risiko (RPN). Dari hasil
						penelitian didapatkan

						cohonyalz 56 rigilza agast rada
						sebanyak 56 risiko cacat pada
						seluruh proses produksi mulai
						dari proses marking hingga
						pengecatan dan didapatkan 4
						risiko yang memiliki RPN
						tertinggi yaitu pada proses
			V	\wedge \wedge	A	milling, proses blasting dan
		/ 0)		V 1	proses pengecatan.
3	The	Apol	2020	IT Risk	Failure	Penelitian ini bergerak
	Consistency	Pribadi			Mode and	dibidang teknologi informasi
	Analysis of	Subriadi			Effect	Dalam rangka menjalankan
	Failure Mode	& Nina			Analysis &	aktivitasnya guna
	and Effect	Fadilah			Risk	meminimalkan potensi
	Analysis	Najwa			Assessment	terjadinya risiko tersebut.
	(FMEA) In	Ц.				Metode yang digunakan pada
	Information					penelitian ini adalah FMEA
	Technology					dan Risk Assessment. Dari
	Risk					hasil perhitungan terdapat 3
	Assessment	Z				potensi kegagalan atau risiko
	(Subriadi &				7	dari 2 action research. Pada
	Najwa, 2020)					AC 1 antara lain: konektivitas
			/ // /	60100	11 100	jaringan menurun, corrupt data
		i Eluli		1 3	11/2	dan jaringan disconnect
	/				1 2 2	sedangkan AC 2 antara lain:
			417	-wL		konektivitas jaringan
						menurun, server down dan
						corrupt data
4	An Information	Linhan	2021	Limbah	Failure	Penelitian ini bertujuan untuk
	Fusion FMEA	Ouyang,		kesehatan	Mode and	mengetahui dan
	Method to	Yige Zhu,				mengidentifikasi defect pada

	Assess the Risk	Wei			Effect	manajemen Healthcare waste
	of Healthcare	Zheng &			Analysis	dalam pembuangan tenaga
	Waste	Lin Yan				Kesehatan. Metode fuzzy
	(Ouyang, Zhu,					FMEA digunakan untuk
	Zheng, & Yan,					menilai prioritas risiko mode
	2021)					kegagalan di berbagai bidang.
				\wedge \wedge	A	Dari hasil perhitungan terdapat
		/ ()		V1	3 potensi kegagalan tertinggi
		0)				antara lain: Jumlah tertimbang
		1				terdaftar karena kesalahan,
		7				Belum pernah menggunakan
						kendaraan pengangkut dan
		S			Λ	pengumpul tertentu serta
		O'				Tanggal pengambilan untuk
		4		\\		petugas kesehatan tidak
						dicantumkan
5	Combining	Sang-Bing	2018	Industri sel	Failure	Penelitian ini menggabungkan
	FMEA with	Tsai, Jie		fotovaltaik	Mode and	metode FMEA dan DEMATEL
	DEMATEL	Zhou,		Cina	Effect	untuk memeberikan solusi
	Models to Solve	Yang Gao,			Analysis dan	terhadap risiko yang terjadi
	Production	Jiangtao			dematel	pada produksi di industri sel
	Process	Wang,	/ ///	100 0 1	11 100	fotovoltaik Cina. Hasil dari
	Problems	Guodong		4 3	11/2	penelitian menggunakan FMEA
	(Tsai , et al.,	Li,			2 2	dan DEMATEL akan dijadikan
	2017)	Yuxiang	יוק	بكسك		pertimbangan dalam
		Zheng,				memberikan prioritas
		Peng Ren,				mengidentifikasi hubungan
		Wei Xu.				keterkaitan antar risiko pada
						impelemtasi. Dari hasil
						penelitian didapatkan 3 risiko
						yang memiliki pengaruh kuat

						terhadap terjadinya risiko lain yaitu Screen deformation, Slurry preparation error, dan Lack of cleanliness in clean room yang memerlukan upaya mitigasi risiko dengan segera.
6	Proposition of	Ilyas	2019	Automotive	AHP, AFD	Penelitian ini bertujuan untuk
	a modified	Mzougui)	Industry	& Failure	mengurangi kegagalan dalam
	FMEA to	& Zoubir		Action	Mode and	mengelola risiko pada motor
	improve	El		Group	Effect	listrik. Metode AHP, AFD dan
	reliability of	Felsoufi			Analysis	FMEA dikombinasikan untuk
	product					mendapatkan potensi
	(Mzougui &	S			λ	kegagalan yang lebih akurat.
	Felsoufi, 2019)	0				Dalam hasil yang di dapatkan
		4				terdapat 4 hasil potensi
						kegagalan terbesar antara lain:
						kumparan rusak disebabkan
						oleh hubungan pendek antara
						fase, degradasi di isolator
						disebabkan oleh insular yang
						tidak sesuai, batang rusak
		. W _ 2	/ ///	1.000	// 1	disebabkan karena kelebihan
	/	Luui		1	1112	muatan dan batang rusak
	/	"91"		((112 0	disebabkan karena pemanasan
			7/	بالسالم		yang berlebih
7	Analisis Risiko	Astri	2021	Produksi	Z-Score &	Penelitian ini bertujuan untuk
	Produksi	Indira &		Stoberi	Value at	mengelola risiko yang terjadi
	Stroberi	Lucyana			Risk	pada kegiatan produksi pada
	Dengan	Trimo				CV. Bumi Agro Technology.
	Metode Z-					Metode yang digunakan pada

	a D					1'.' ' 11177
	Score Dan					penelitian ini adalah Z-Score
	Value at Risk					& Value at Risk. Hasil dari
	Pada CV. Bumi					perhitungan ini didapatkan
	Agro					dampak kerugian yang terjadi
	Technology,					yang disebabkan oleh setiap
	Jawa Barat					sumber risiko yaitu sumber
	(Indira &			\triangle \wedge		daya manusia sebesar Rp
	Trimo, 2021)	/ 0)		V 1	2.018.298, organisme
		0)				pengganggu tanaman sebesar
						Rp 1.097.284,
						modal/keuangan sebesar Rp.
						1.015.439, dan sumber daya
		S		,		alam sebesar Rp 738.319.
8	Analisis Risiko	Ika	2018	Analisis	Z-Score &	Penelitian ini dilakukan untuk
	Produksi Padi	Rosalia		Risiko	Value at	mengidentifikasi sumber-
	Dalam	Saragih		Produksi	Risk	sumber risiko, menganalisis
	Pengembangan			Padi		peluang dan dampak risiko.
	Asuransi Usaha				(Metode yang digunakan pada
	tani Padi	Z				penelitian ini adalah Z-Score
	(AUTP) Di				7	& Value at Risk. Hasil dari
	Desa Panca					perhitungan ini didapatkan
	Arga,		/ // /	10000	11 100	dampak kerugian yang terjadi
	Kecamatan	للسائد		4 3	11/13	yang disebabkan oleh setiap
	Rawang Panca	"9 / "			2 2	sumber risiko yaitu serangan
	Arga,		711	بكسك		hama sebesar Rp.3.764.495
	Kabupaten					dan perubahan iklim sebesar
	Asahan					Rp.1.256.036
	(Saragih,					
	Chalil, & Ayu,					
	2018)					

9	Analisis Risiko	Luluk	2019	Produksi	Labor	Penelitian ini bertujuan untuk
	Produksi Daun	Hamidiyat		Daun Teh	Productivity	menganalisis perbedaan risiko
	Teh Basah	i Ula, Ni		Basah	& Value at	produksi daun teh basah pada
	Berdasarkan	Made			Risk	pemetikan mekanik dan
	Pemetikan	Suyastiri				manual Metode yang
	Mekanik dan	& Heni				digunakan pada penelitian ini
	Manual Pada	Handri		\triangle \wedge		adalah Labor Productivity dan
	PT.	Utami)		V 1	Value at Risk. Dari hasil
	Perkebunan	0)				perhitungan didapatkan hasil
	Nusantara Ix	$ \overline{} $				bahwa dampak kerugian
	Kebun					pemetikan manual sebesar
	Semugih					Rp.8.701.310,2 sementara
	Kabupaten	S				dampak kerugian pemetikan
	Pemalang (Ula,	0				mekanik sebesar
	Suyastiri, &	4				Rp.9.113.439,93
	Utami, 2019)	Ш				
10	Manajemen	Febi	2020	Penangkapa	Z-Score &	Penelitian ini bertujuan untuk
	Risiko Usaha	Yulianti,		n Ikan Laut	Value at	mengidentifikasi sumber-
	Penangkapan	Ketut			Risk	sumber risiko, menganalisis
	Ikan Laut	Sukiyono				probabilitas dan dampak risiko
	Dengan Alat	& dan				pada usaha penangkapan ikan
	Tangkap	Satria	/ ///	1.000	11 1	laut dengan alat tangkap
	Gillnet Di	Putra		1	11/2	gillnet. Metode yang
	Pulau Baai,	Utama		1	112 0	digunakan pada penelitian ini
	Kota Bengkulu		- / -			adalah Z-Score & Value at
	(Yulianti,					Risk. Berdasarkan perhitungan
	Sukiyono, &					Nilai VaR risiko operasional
	Utama, 2019)					tangkapan lebih besar dari
						nilai risiko modal, yaitu
						sebesar Rp528.221.990,08,

						sedangkan untuk sumber
						risiko nilai tangkapan sebesar
						Rp9.948.578,25.
11	Strategi	Idzhar	2017	Pemasaran	Z-Score &	Penelitian ini bertujuan untuk
11			2017			ŭ
	Penanganan	Jaya		Produk Teh	Value at	mengidentifikasi sumber-
	Risiko	Nugraha,		Celup Hijau	Risk	sumber risiko, menganalisis
	Operasional	Akhmad	151	Walini	\mathcal{A}	probabilitas dan dampak risiko
	Pemasaran	Riyadi				pada Pemasaran Produk Teh
	Produk Teh	Wastra &				Celup Hijau Walini. Metode
	Celup Hijau	Lilis				yang digunakan pada
	Walini Pada	Imamah				penelitian ini adalah Z-Score
	Industri Hilir	Ichdayati				& Value at Risk. Berdasarkan
	Teh PT	S				hasil perhitungan risiko
	Perkebunan	or				sumber daya manusia
	Nusantara VIII,					memiliki dampak atau
	Bandung, Jawa	ш				kerugian terbesar dengan nilai
	Barat					Rp 102,615,683, sedangkan
	(Nugraha,				(kerugian terkecil dialami oleh
	Wastra, &	Z				proses dengan nilai Rp
	Ichdayati,				1	78,436,664.
	2017)					
12	Analisis	Qonita	2021	K3 produksi	Risk	Penelitian ini bertujuan
	Kecelakaan	Aulia		semen di	Priority	mengurangi risiko yang
	Kerja Dengan	Rohani &		PT. Semen	Number,	menyebabkan terjadinya
	Menggunakan	Suhartini		Indonesia	Diagram	kecelakaan kerja di PT. Semen
	Metode Risk			(Persero)	Pareto,	Indonesia Tbk. Metode yang
	Priority			Tbk	Fishbone,	digunakan adalah <i>Risk</i>
	Number,				dan Five	Priority Number, Diagram
	Diagram				Why's	Pareto, Fishbone, dan Five
	Pareto,				Analysis	Why's Analysis. Berdasarkan

	Fishbone, Dan					hasil perhitungan didapatkan
	Five Why's					bahwa risiko kerja bising yang
	Analysis					mengenai pekerja saat pekerja
	(Rohani &					berada diarea mesin karena
	Suhartini,					saat pekerja berada di area
	2021)					mesin dengan akar masalah
				\triangle \wedge		melalui five why's adalah
		10)		V 1	pekerja melanggar peraturan
		0)				SOP yang sudah ditentukan
13	The Risk and	Karissa	2020	Produksi	Z-Score &	Penelitian ini bertujuan untuk
	Strategies of	Nurbudiati		kentang di	Value at	mengidentifikasi sumber-
	Potato	& Eliana		Garut	Risk	sumber risiko, menganalisis
	Production in	Wulandari				probabilitas dan dampak risiko
	Garut,	or				pada produksi kentang di
	Indonesia	171				Garut menggunakan metode Z
	(Nurbudiati &	_				score danVar. Hasil dari
	Wulandari,					perhitungan menggunakan
	2020)					tersebut didapatkan Sumber
						risiko produksi dalam kegiatan
						produksi kentang Kelompok
						Tani Cantigi adalah penyakit,
		1.W 2 ?	/ ///	1.0001	// 1	hama, curah hujan, kualitas
	/	ليلس	/	الهن		benih, kemampuan manajerial
	1	91:1		\ ·· .:/	112 0	dan kesuburan tanah.
14	Identifikasi	Sri	2020	Produksi	Fuzzy	Penelitian ini bertujuan untuk
	Masalah <i>Defect</i>	Lestari,		Toyota Hi-	Failure	mengidentifikasi masalah
	dengan Metode	Diah		Ace Di PT.	Mode Effect	Defect pada produski Toyota
	Fuzzy FMEA	Septiyana		Eds	Analysis	Hi-Ace di PT Eds
	Pada Produksi	dan Winda		Manufacturi		Manufacturing Indonesia
	Toyota Hi-Ace	Yuniawati		ng Indonesia		menggunakan metode Fuzzy

	Di PT. Eds					FMEA. Berdasarkan analisis
	Manufacturing					fuzzy FMEA dan perhitungan
	Indonesia					FRPN diperoleh hasil tingkat
	(Lestari,					kegagalan tertinggi yaitu
	Septiyana, &					demage insulation sebesar
	Yuniawati,					8,5%. Berdasarkan analisis
	2020)		ICI	\wedge \wedge	A	dengan diagram fishbone
		/ _)		V1	diperoleh hasil bahwa demage
		0)				insulation ada 4 faktor yang
						menyebabkan <i>defect</i> yaitu
						human error, kualitas material
						rendah, penyimpanan circuit
		S				di store kurang tepat dan
						lingkungan kurang baik
15	Pengendalian	Ni Wayan	2016	Produksi	Failure	Penelitian ini bertujuan untuk
	Kualitas	Anik Satria		Air Minum	Mode and	mengidentifikasi masalah
	Atribut	Dewi1, Sri		Dalam	Effect	Produksi Air Minum Dalam
	Kemasan	Mulyani &		Kemasan di	Analysis	Kemasan di PT. Tirta dengan
	Menggunakan	I Wayan		PT. Tirta		menggunakan metode FMEA
	Metode Failure	Arnata ₂		Tamanbal		Tamanbal Hasil dari
	Mode Effect					perhitungan dengan metode
	Analysis	. W _ 2	/ ///	1.w 21	// 1	FMEA didapatkan hasil
	(Fmea) Pada	للسانات		المثلا	1112	Faktor-faktor penyebab cacat
	Proses	9 /			2 2	produksi (AMDK) pada
	Produksi Air		7/2	- WZ		produk kemasan gelas plastik
	Minum Dalam					(cup) 240 ml diurutkan
	Kemasan					berdasarkan tingkat cacatnya
	(Dewi,					adalah faktor manusia (men),
	Mulyani, &					faktor bahan pengemas dan
	Arnata, 2016)					bahan baku (material), faktor

		lingkungan (measurement and
		environment), faktor metode
		(method), dan faktor mesin
		(machine).

2.2. Kajian Deduktif

2.2.1. Risiko

Risiko adalah suatu kejadian yang dapat merugikan suatu perusahaan dimana terjadinya kejadian tersebut dapat diukur melalui probabilitas oleh pengambil keputusan pada perusahaan tersebut (Robison & Barry, 1987). Keterkaitan dalam suatu usaha terhadap ketidakpastian (*uncertainty*). ketidakpastian (*uncertainty*) dapat mempengaruhi risiko yang akan dihadapi sebuah perusahaan. Risiko dan ketidakpastian memiliki perbedaan antara lain peluang pada risiko sedangkan peluang ketidakpastian tidak dapat dapat dilakukan perhitungan.

Risiko ditentukan oleh besarnya kesenjangan antara hasil yang diharapkan dan dicapai perusahaan. Besarnya penyimpangan dapat mempengaruhi risiko yang dihadapi oleh perusahaan. Semakin besar penyimpangan antara hasil yang diperkirakan dengan hasil yang dicapai oleh perusahaan maka risiko yang terjadi pada perusahaan semakin besar. Sebaliknya semakin rendah penyimpangan antara hasil yang diperkirakan dengan hasil yang dicapai oleh perusahaan maka risiko yang terjadi pada perusahaan semakin rendah (Elton & Gruber, 1995).

2.2.2. Manajemen Risiko

Menurut Harwood et al (1999) Manajemen risiko merupakan keputusan dalam meningkatkan sumber daya perusahaan, mengadopsi teknologi baru, atau mengadakan kontrak produksi atau pemasaran dengan pihak lain. Tujuan dari manajemen risiko adalah untuk mengurangi risiko yang dihadapi oleh perusahaan. Menurut Darmawi (2008) untuk memperoleh efektifitas dan efisiensi pada setiap kegiatan dalam perusahaan perlu dilakukan suatu manajemen risiko yang meliputi pengendalian risiko. Tujuan dari manajemen risiko adalah sebagai alat bantu perusahaan dalam mencapai tujuannya melalui alokasi sumber daya

untuk menyusun perencanaan, mengambil keputusan, dan melaksanakan aktivitas yang produktif.

Analisis risiko adalah tahap dimana dilakukan estimasi dan evaluasi konsekuensi sehubungan dengan dampak risiko atau kombinasi dari tiap-tiap risiko dengan menggunakan teknik Analisa. Melalui analisa risiko, dapat membantu menyediakan serangkaian mitigasi yang memungkinkan perusahaan mengidentifikasi, mengukur, dan mengatasi bahaya yang berdampak negatif terhadap perusahaan (Ridha & Alnaji, 2015). Salah satu risiko yang dapat berdampak negatif bagi perusahaan adalah masalah mutu kualitas. Semakin banyak rework yang dilakukan menyebabkan perusahaan mengalami kerugian dalam hal biaya maupun waktu untuk dapat mempertahankan mutu kualitas dari produk yang dihasilkan.

2.2.3. Value at Risk (VaR)

Dampak risiko merupakan kerugian dari suatu kejadian yang mungkin terjadi akibat adanya suatu risiko. *Value at risk* merupakan metode yang dapat digunakan untuk mengetahui besar akibat dari dampak yang ditumbulkan oleh risiko yang terjadi (Kountur, 2006). Penggunaan metode VaR dalam mengukur dampak risiko yang terjadi dapat dilakukan dengan melihat data historis sebelumnya. Kejadian yang dianggap merugikan berupa penurunan produksi sebagai akibat dari terjadinya sumber-sumber risiko. Dalam menghitung VaR terlebih dahulu dihitung jumlah data *defect* pada kelompok kerja *Buffing Panel GP*. Setelah didapat angka kerugian dari masing-masing periode kemudian dijumlahkan dan dihitung rata-ratanya, setelah itu dicari berapa besar nilai standar deviasi atau penyimpangan. Proses terakhir menetapkan batas toleransi kevalidan dan mencari nilai VaR. Perhitungan VaR dapat dihasilkan dari rumus berikut (Kountur, 2008):

$$VaR = \mu + Z(\frac{s}{\sqrt{n}})$$

$$\mu = \frac{(M1 \times P) + (M2 \times P) + \dots + (Mn \times P)}{n}$$

Keterangan:

VaR = Dampak kerugian terbesar yang ditimbulkan data *defect* (Rp)

μ = Nilai rata-rata dampak yang disebabkan masing-masing sumber risiko (Rp)

Mi = Mortalitas masing-masing sumber risiko ke-i

- P = Tingkat harga repair (Rp)
- Z = Nilai z yang diambil dari tabel distribusi normal dengan $\alpha = 5 \%$
- s = Standar deviasi kerugian (Rp)
- n = Banyaknya kejadian berisiko

2.2.4. Penilaian ahli/ Expert judgment

Expert judgment merupakan metode yang digunakan dalam mencari informasi berdasarkan pendapat para ahli pada bidang tertentu mengenai mengenai suatu masalah. Hasil dari expert judgment dapat digunakan sebagai landasan dalam pengambilan sebuah keputusan. Expert judgment dikatakan efektif dalam mengestimasi fenomena langka dan kompleks, mempelajari proses pemecahan masalah, memprediksi kejadian, mengetahui dan menggali ilmu tertentu berdasarkan data yang tersedia (Meyer & Booker, 1991). Namun, dalam memberikan penilaian terkadang memiliki permasalahan bahwa penilaian tersebut dikatakan bias, sehingga dalam memilih expert untuk pengambilan keputusan haruslah berjumlam 3-7 orang (Hora, 2009) .Dalam menentukan expert juga tidak boleh menentukan dengan sembarang orang, Menurut (Christian, Kandlikar, & Ramachandran, 2016) terdapat beberapa kriteria dalam pemilihan expert antara lain:

- 1. Memiliki pengetahuan dan pengalaman yang luas
- 2. Memiliki keahlian pada bidang yang relevan dengan penilaian yang akan dilakukan
- 3. Adil atau tidak adanya kepentingan pribadi dalam penelitian yang dilakukan
- 4. Dapat mengekspresikan penilaian mereka.

Sedangkan menurut (Dei, Dharmayanti, & Jaya, 2017) kriteria expert sebagai berikut.

- Tenaga ahli dengan pendidikan ≥ S1 dengan syarat minimal pengalaman lama bekerja yaitu 5 tahun.
- 2. Tenaga ahli dengan pendidikan dibawah S1, minimal SMA/setara SMA dengan pengalaman kerja minimal 10 tahun

2.2.5. Diagram Fishbone

Menurut Scarvada (2004), konsep dasar dari diagram *fishbone* adalah permasalahan mendasar diletakkan pada bagian kanan dari diagram atau pada bagian kepala dari kerangka tulang ikannya. 3 Penyebab permasalahan digambarkan pada sirip dan durinya. Kategori penyebab permasalahan yang sering digunakan sebagai start awal meliputi materials (bahan

baku), *machines and equipment* (mesin dan peralatan), *manpower* (sumber daya manusia), methods (metode) dan *environment* (lingkungan). Kelima penyebab munculnya masalah ini sering disingkat dengan 5M. Penyebab lain dari masalah selain 5M tersebut dapat dipilih jika diperlukan. Untuk mencari penyebab dari permasalahan, baik yang berasal dari 5M seperti dijelaskan di atas maupun penyebab yang mungkin lainnya dapat digunakan teknik *brainstorming*.

Diagram *fishbone* ini umumnya digunakan pada tahap mengidentifikasi permasalahan dan menentukan penyebab dari munculnya permasalahan tersebut. Selain digunakan untuk mengidentifikasi masalah dan menentukan penyebabnya, diagram *fishbone* ini juga dapat digunakan pada proses perubahan.

2.2.6. Failure Mode and Effect Analysis (FMEA)

Failure Modes and Effects Analysis (FMEA) merupakan sebuah metodologi sistematis yang digunakan untuk menganalisis maupun mengidentifikasi potensi dan pencegahan masalah produk dan proses sebelum masalah itu terjadi. FMEA memiliki fokus terhadap pencegahan potensi defect, mengidentifikasi dampak operasional serta mengidentifikasi tindakan untuk meminimalkan potensi kegagalan ini (Bujna, Kotus, & Matusevoka, 2019). FMEA merupakan tools yang powerfull, efisien serta sistematis untuk mengidentifikasi potensi kegagalan yang terjadi (Mzougui, 2019).

Risiko kegagalan dapat dimimalisir dengan mengurangi *severity* dan *occurrence* serta meningkatkan kemampuan *detection*. Berikut merupakan penjelasan dari ketiga kriteria tersebut (Agyl & Singgih, 2019)

1. Severity

Severity atau tingkat keparahan merupakan seberapa besar dampak yang terjadi akibat terjadinya suatu kegagalan. Berikut merupakan penjelasan dari setiap kategori rating *severity*.

Tabel 2. 2. Severity

Rating	Kriteria						
1	Negligible severity (Pengaruh buruk yang dapat diabaikan) kita tidak						
	perlu memikirkan bahwa akibat ini akan berdampak pada kinerja						
	produk. Konsumen mungkin tidak akan memperhatikan kecacatan ini.						
2,3	Mild severity (Pengaruh buruk yang ringan). Akibat yang ditimbulkan						
	akan bersifat ringan, konsumen tidak akan merasakan perubahan						
	kinerja. Perbaikan dapat dikerjakan pada saat pemeliharaan reguler.						
4,5,6	Moderate severity (pengaruh buruk yang moderate). Konsumen akan						
	merasakan penurunan kualitas, namun masih dalam batas toleransi.						
	Perbaikan yang dilakukan tidak mahal dan dapat selesai dalam waktu						
	singkat.						
7,8	High severity (Pengaruh buruk yang tinggi). Konsumen akan						
	merasakan penurunan kualitas yang berada diluar batas toleransi.						
	Perbaikan yang dilakukan sangat mahal						
9,10	Potential severity (Pengaruh buruk yang sangat tinggi). Akibat yang						
	ditimbulkan sangan berpengaruh terhadap kualitas lain, konsumen tidak						
	akan menerimanya.						

2. Occurrence

Occurrence merupakan tingkatan seberapa sering suatu kejadian tersebut terjadi. Berikut merupakan penjelasan dari setiap kategori rating Occurrence.

Tabel 2. 3. Occurrence

Rating	Probabilitas kegagalan	No. dari Kegagalan
1		< 1 per 1.000.000
	Tidak mungkin terjadinya kegagalan	1 per 100.000
2		
3	Vacantan san ast isnan a tanis di	1 per 50.000
4	Kegagalan sangat jarang terjadi	1 per 10.000

5	Kegagalan hanya terjadi sesekali	1 per 5000
6	Regagaian nanya terjadi sesekan	1 per 1000
7	Kegagalan terjadi secara berulang diarea yang	1 per 600
8	sama	1 per 400
9	Vagagalan salah hamilang	1 per 100
10	Kegagalan selalu berulang	1 per 10

3. Detection

Detection merupakan penilaian terhadap kemungkinan pendeteksian penyebab potensial dari suatu kejadian yang gagal. Penilaian ini dilakukan berdasarkan kontrol awal yang telah dilakukan untuk menghindari terjadinya kegagalan. Kontrol deteksi awal yang baik akan mencapai nilai peringkat yang lebih rendah. Berikut merupakan penjelasan dari setiap kategori rating detection.

Tabel 2. 4. Detection

Rating	Kategori	Tingkat mendeteksi		
1	Congot Tinggi	Sangat besar kemungkinan untuk mendeteksi		
2	Sangat Tinggi	penyebab yang berpotensi merusak		
3	m; ;	Besar kemungkinan untuk mendeteksi penyebab yang		
4	Tinggi	berpotensi merusak		
5	G 1	Sedang kemungkinan untuk mendeteksi penyebab		
6	Sedang	yang berpotensi merusak		
7	اللباكم	Kecil, kemungkinan untuk mendeteksi penyebab yang		
8	Rendah	berpotensi merusak		
9	C D 1-1-	Mustahil, kemungkinan untuk mendeteksi penyebab		
	Sangat Rendah	yang berpotensi merusak		

4. Risk Priority Number

Setelah dilakukan penilaian terhadap severity, occurrence dan detection dilakukan perhitungan nilai Risk Priority Number. Nilai RPN digunakan untuk menentukan potensi

risiko yang dapat segera di lakukan perbaikan atau mitigasi. Nilai RPN didapatkan dari persamaan berikut:

RPN= severity x occurrence x detection

Setelah dilakukan perhitungan nilai RPN maka dilakukan penentuan level risiko berdasarkan nilai RPN. Level risiko ini kemudian dibuat skala untuk menentukan risiko mana yang paling tinggi. Skala ini digunakan untuk menentukan tindakan organisasi atau perusahaan untuk mencegah risiko yang bernilai tinggi. Dalam menentukan skala penentuan tindakan dapat dilihat pada tabel 2.5 (Wijaya & Hakim, 2018)

 RPN
 Level Risiko

 ≥200
 Sangat tinggi

 120-199
 Tinggi

 80-119
 Sedang

 20-79
 Rendah

 0-19
 Sangat rendah

Tabel 2. 5. Skala RPN

2.2.7. Analisis Five Why's

Analisis *Five Why's* merupakan metode yang dilakukan dengan berulang kali mengajukan pertanyaan yang sama dari suatu masalah, memilah penyebab atau solusi ke dalam elemen yanglebih jelas. Pada setiap tahap, ada beberapa jawaban dari pertanyaan *why*, yang menghasilkan struktur pohon hierarki. Keuntungan menggunakan teknik ini antara lain sebagai berikut.

- 1. Memungkinkan penyidik berbagi situasi
- 2. Memungkinkan pemeriksaan ulang bagian-bagian dari analisis sehingga dapat diubah, dihapus,atau ditambahkan setiap saat. Teknik ini mendukung cara berpikir acak/non-linear
- 3. Memungkinkan untuk tidak mengikuti beberapa cabang pohon, menganalisis hanya pada area yang lebih memungkinkan

BAB III

METODE PENELITIAN

Pada bab ini menjelaskan tentang metode yang akan digunakan dalam penelitian. Bagian ini terdiri dari objek penelitian, jenis data yang digunakan, metode pengumpulan data, instrumen penelitian, serta tahapan penelitian yang akan digambarkan pada diagram alur penelitian.

3.1. Objek Penelitian

Dalam sebuah penelitian dibutuhkan subjek dan objek penelitian yang dibutuhkan untuk menentukan dan mendapatkan data yang dibutuhkan dalam penelitian. Objek penelitian pada penelitian ini adalah departemen Painting kelompok kerja *Buffing Panel* GP PT Yamaha Indonesia yang berada di Kawasan Industri Pulo Gadung, Jakarta Timur, Indonesia.

3.2 Jenis Data Penelitian

Terdapat 2 jenis data yang digunakan dalam penelitian ini, yaitu:

3.2.1. Data Primer

Data primer merupakan data yang diperoleh secara langsung dari objek yang diteliti. Dimana data primer meliputi data yang diambil dari observasi langsung maupun wawancara dengan narasumber penelitian. Data primer yang dibutuhkan adalah nilai kriteria *severity*, *occurrence*, dan *detection* dari masing-masing risiko kegagalan.

3.2.2. Data Sekunder

Data sekunder merupakan data yang diperoleh secara tidak langsung dari objek yang diteliti. Data tersebut diperoleh melalui sumber lain seperti artikel, buku, jurnal, prosiding, dan lain-lain. Data sekunder pada penelitian ini adalah data tentang profil perusahaan, hasil atau *output defect*, data alur produksi dan *cost repair* pada kelompok kerja *Buffing Panel* GP.

3.3 Metode Pengumpulan Data

Metode pengumpulan data adalah cara-cara yang digunakan dalam memperoleh data dalam penelitian. Berikut merupakan beberapa metode yang digunakan dalam pengumpulan data:

1. Observasi

Metode ini dilakukan untuk mengumpulkan data secara langsung dengan tujuan mengetahui kondisi langsung yang terjadi dan untuk mendapatkan data primer yang dibutuhkan dalam penelitian.

2. Wawancara

Wawancara dilakukan untuk memperoleh keterangan yang mendukung tujuan penelitian dengan tanya jawab antara peneliti dengan *expert* untuk mendapatkan data-data yang dibutuhkan untuk penelitian. Wawancara yang dilakukan adalah untuk mendapatkan data yang berkaitan dengan permasalahan yaitu untuk identifikasi potensi risiko produk *defect* pada kelompok kerja *Buffing Panel GP* departemen painting PT Yamaha Indonesia, keterkaitan antar risiko serta upaya yang dapat dilakukan untuk mengurangi atau mencegah produk *defect*.

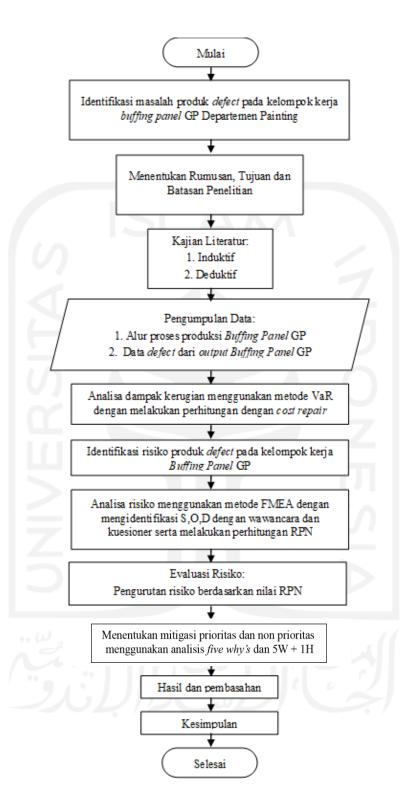
3. Kuesioner

Kuesioner merupakan suatu metode pengumpulan data yang dilakukan dengan cara mengajuan pertanyaan tertulis kepada responden. Pada penelitian ini kuesioner digunakan untuk menganalisis risiko (mengetahui *severity, occurrence*, dan *detection*) dan untuk mengetahui korelasi atau hubungan antar risiko guna mendapatkan prioritas penanganan risiko produk *defect* yang dapat dilakukan

3.4 Instrumen Penelitian

Untuk mempermudah dalam penelitian, maka digunakan alat bantu dalam pengumpulan dan pengolahan data, diantaranya adalah:

1. Alat Tulis dan Telepon Genggam


Alat tulis yang digunakan berupa buku catatan dan pena untuk mencatat permasalahan yang ada serta hasil wawancara. Telepon genggam digunakan untuk mendokumentasi beberapa hal yang dibutuhkan dalam penyusunan laporan penelitian.

2. Microsoft Office

Software Microsoft office yang digunakan antara lain adalah Ms. Word dan Ms. Excel

3.5 Alur Penelitian

Berikut merupakan diagram dari alur penelitian yang dilakukan.

Gambar 3. 1. Alur Penelitian

Berikut merupakan penjelasan dari alur penelitian yang dilakukan.

1. Identifikasi Masalah

Identifikasi masalah dilakukan dengan melakukan observasi untuk mengamati dan mengidentifikasi proses-proses serta mencari permasalahan yang dapat diangkat menjadi masalah yang harus diselesaikan. Dalam hal ini ditemukan masalah *defect* yang ada pada proses buffing panel GP departemen Painting.

2. Identifikasi Rumusan, Tujuan, dan Batasan Penelitian

Pada tahap ini dilakukan pembuatan rumusan dan tujuan penelitian yang berisi tentang titik pencapaian yang ingin diperoleh dari suatu penelitian sehingga hasil penelitian dapat memberikan manfaat. Penelitian ini dilakukan untuk menganalisis risiko terhadap produk defect yang ada pada departemen painting kelompok kerja Buffing Panel GP dengan mencari faktor penyebab defect tersebut sehingga dapat memberikan usulan atau rancangan mitigasi risiko yang dapat dilakukan untuk mengurangi produk defect tersebut. Kemudian menentukan batasan penelitian yang berfungsi sebagai batas ruang lingkup atau fokus permasalahan yang akan diteliti.

3. Kajian Literatur

Kajan literatur dilakukan dengan mencari teori tentang topik terkait penelitian serta pencari penelitian-penelitian terdahulu yang digunakan sebagai pedoman atau acuan dalam menyelesaikan masalah sehingga dapat mencapai tujuan penelitian yang diinginkan. Kajian dibedakan menjadi dua, yaitu kajian Induktif dan deduktif. Kajian induktif berisi tentang penelitian-penelitian terdahulu yang berhubungan dengan penelitian yang hendak dilakukan. Sementara kajian deduktif berisi tentang dasar-dasar teori yang digunakan dalam penelitian. Kajian-kajian tersebut didapatkan melalui artikel, buku, jurnal, prosiding, dan lain-lain.

4. Pengumpulan Data

Pada tahap ini dilakukan pengumpulan data yang dibutuhkan dalam penelitian yang berupa data alur proses produksi serta data defect dari kelompok kerja *Buffing Panel* GP

5. Analisa Dampak Kerugian menggunakan Metode VAR

Melakukan perhitungan dampak kerugian yang disebabkan oleh data *defect* di kelompok kerja *buffing panel* GP menggunakan jumlah data *defect* yang disebabkan oleh kelompok kerja *buffing panel* GP dan *cost* yang digunakan untuk melakukan pekerjaan ulang pada

kelompok kerja *buffing panel* GP kemudian hasil tersebut dihitung untuk mendapatkan besar dampak kerugian yang terjadi.

6. Identifikasi Risiko

Tahap ini dilakukan dengan mengidentifikasi risiko berdasarkan wawancara dengan expert serta pengamatan langsung dari peneliti.

7. Analisa Risiko Menggunakan Metode FMEA

Identifikasi risiko, *risk cause* dan *current control* yang digunakan untuk menentukan *severity*, *occurrence*, serta *detection* dilakukan dengan melakukan wawancara terhadap *expert*. Kemudian hasil tersebut dihitung untuk mendapatkan *Risk Priority Number* (RPN).

8. Evaluasi Risiko

Pada bagian ini dilakukan evaluasi risiko dengan pengurutan berdasarkan hasil RPN terbesar sampai terkecil.

9. Menentukan mitigasi prioritas dan non prioritas

Mitigasi risiko prioritas produk *defect* didapatkan dari perhitungan RPN terbesar. Untuk menentukan mitigasi prioritas diperlukan analisis *five* why's agar dapat mengetahui akar permasalahan sedangkan mitigasi non prioritas dapat ditentukan oleh analisis 5W+1H Mitigasi diharapkan dapat mencari usulan ataupun pertimbangan perusahaan dalam pengambilan keputusan perusahaan dalam melakukan strategi atau langkah untuk menuju perusahaan *zero defect*.

10. Hasil dan Pembahasan

Pada bagian ini dilakukan analisis terhadap hasil dan pembahasan penelitian yang didapatkan dari pengolahan data VaR dan FMEA.

11. Kesimpulan dan Saran

Kesimpulan berisi jawaban singkat dari tujuan penelitian yang telah diajukan. Selain itu terdapat saran yang akan diberikan berdasarkan hasil penelitian yang telah dilakukan.

BAB IV

PENGUMPULAN DAN PENGOLAHAN DATA

Pada bab ini berisi tentang pengumpulan dan pengolahan data penelitian. Pengumpulan data didapatkan dari data perusahaan PT Yamaha Indonesia khususnya pada departemen Painting Upright Piano kelompok kerja *Incheck Buffing Panel* GP. Data yang dikumpulkan berupa data gambaran umum perusahaan yang mencakup profil perusahaan dan produk yang dihasilkan. Selain itu, dilakukan pengumpulan data produksi khususnya data yang digunakan untuk mendukung penelitian seperti data proses & jumlah produksi, serta data produk *defect* dari kelompok kerja *Buffing Panel* GP. Sedangkan, pengolahan data dilakukan menggunakan metode yang telah dijelaskan pada bab sebelumnya,

4.1 Profil Perusahaan

4.1.1 Sejarah Perusahaan

Sejarah Yamaha dimulai ketika pendirinya, Torakusu Yamaha, memperbaiki organ yang rusak pada tahun 1887. Beliau yang sangat mengenal teknologi dan pengetahuan dunia barat sejak masa mudanya, semula menyediakan pelayanan perbaikan alat-alat kedokteran. Dengan keahliannya ini, beliau diminta untuk memperbaiki sebuah organ, sebuah proyek yang akhirnya melahirkan merek Yamaha. Dengan kepercayaan dirinya yang tinggi akan keberhasilan usahanya ini, maka beliau berusaha menghadapi segala kemungkinan untuk mendirikan *Yamaha Organ Works*. Dengan jiwa wiraswasta, wawasan yang luas, dan kegigihannya untuk mengatasi kesulitan, telah membangkitkan gairah beliau untuk meraih kesuksesan.

Kemudian di bawah pimpinan Mr. Gen' Ichi, Yamaha mulai bergerak di dalam bidang pendidikan musik. Beliau mendirikan kursus-kursus musik dan sekolah-sekolah musik, mengadakan konser-konser dan festival-festival serta mendirikan *Yamaha Music Foundation* guna mewadahi kegiatan-kegiatan tersebut yang berpusat di kota Tokyo, Jepang. Niat untuk mendirikan pabrik pembuatan/perakitan alat-alat musik di Indonesia pun akhirnya muncul sebagai upaya perluasan usaha yang dilakukan oleh Yamaha. PT Yamaha Indonesia (PT YI) yang didirikan pada tanggal 27 Juni 1974, merupakan hasil kerja sama antara *Yamaha Organ Works* dengan seorang pengusaha Indonesia.

PT YI pada awalnya memproduksi berbagai alat musik diantaranya Piano, Electone, Pianica, dan lain sebagainya. Namun mulai bulan Oktober 1998, PT Yamaha Indonesia mulai memfokuskan produksi pada piano saja di atas area seluas 15.711 m2. Piano Yamaha terdiri dari berbagai jenis dengan kemampuan akustik, disklavier dan instrumen yang dibisukan. Fungsi yang beraneka ragam tersebut hadir dalam beberapa bentuk dan desain. Piano-piano tersebut tidak hanya diproduksi langsung di Jepang namun beberapa model juga telah diproduksi di Indonesia dengan teknologi dan keterampilan modern yang disesuaikan dengan kondisi iklim dan material dasar yang terdapat di Indonesia.

4.1.2 Visi, Misi Arti dan Logo Perusahaan

Visi

"Berbakti kepada negara melalui industri, dalam rangka berpartisipasi mensukseskan pelaksanaan pembangunan negara bagi terciptanya masyarakat adil dan makmur"

Misi

- a. Peningkatan skala produksi Yamaha Indonesia
- b. Merencanakan peningkatan penjualan dengan target pasaran baru
- c. Antisipasi terhadap mutu
- d. Antisipasi terhadap lingkungan

4.1.3 Logo Perusahaan

Gambar 4. 1. Logo Perusahaan

Pada tahun 1898, satu tahun setelah pendirian Nippon Gakki Co., Ltd., pendahulu dari Yamaha Corporation saat ini, Perusahaan memutuskan untuk menggunakan garpu tala sebagai merek perusahaan seperti pada gambar 2.1. Tiga garpu tala pada Logo Yamaha mewakili hubungan kerja sama yang menghubungkan tiga pilar bisnis yaitu teknologi, produksi, dan penjualan. Mereka juga membangkitkan vitalitas yang kuat yang telah membentuk reputasi PT. Yamaha Indonesia untuk suara dan musik di seluruh dunia, wilayah yang ditandai dengan lingkaran yang melingkupinya. Tanda itu juga melambangkan tiga elemen musik esensial: melodi, harmoni, dan irama.

4.1.4 Lokasi dan Denah Perusahaan

PT Yamaha Indonesia berada di Kawasan Industri Pulo Gadung, Jalan Rawagelam I No.5, RW.9, Jatinegara, Cakung, Kota Jakarta Timur, Daerah Khusus Ibukota Jakarta 13930, Indonesia. Berikut merupakan denah perusahaan PT Yamaha Indonesia yang tertera di gambar 2.2:

Gambar 4. 2. Lokasi dan Denah Perusahaan

4.1.5 Nilai - Nilai yang Ada di Perusahaan

Pada Yamaha *Group* memiliki filosofi sebagai fondasi manajemen bisnis yang didalamnya terdapat *Way* Yamaha yang bertujuan untuk tuntunan bagi karyawan Yamaha Group setiap hari selama bekerja. *Way* Yamaha tersebut adalah:

a Keinginan

Dalam bekerja, memiliki keinginan kuat untuk memberikan kepuasan kepada pelanggan, serta berkontribusi untuk masyarakat dan budaya.

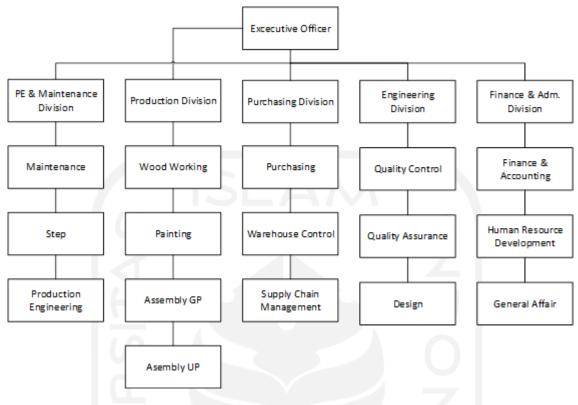
b Ketulusan

Senantiasa menjaga sikap bangga dan rendah hati, berorientasi pada keaslian, mempersembahkan produk dan layanan dengan kualitas terbaik.

c Inisiatif

Secara proaktif dari diri sendiri mengunjungi lapangan, melihat, berpikir, berdiskusi, dan mengambil tindakan. Dengan demikian, kemampuan terbaik dari masing-masing individu dan tim akan meningkat secara total.

d Tantangan


Setiap orang, masing-masing memiliki semangat untuk menerima tantangan, tidak membatasi kerangka diri sendiri, dan mempunyai keberanian untuk terus menerus mengambil tantangan baru.

e Komitmen

Sekali ditetapkan, maka target yang sudah ditetapkan akan dilaksanakan sampai tuntas dengan semangat pantang menyerah dan kreativitas.

4.1.6 Struktur Perusahan

Struktur organisasi perusahaan ini adalah *line organization*, yaitu pelaksanaan perintah berjalan secara vertikal mengikuti garis intruksi dari atas ke bawah, wewenang dan perintah dari atasan langsung ke bawah dan sebaliknya, tanggung jawab bawahan kepada atasan langsung hingga ke pimpinan perusahaan di PT Yamaha Indonesia. Berikut merupakan struktur organisasi pada PT. Yamaha Indonesia yang tertera pada gambar 2.6:

Gambar 4. 3. Struktur Organisasi

Berikut merupakan deskripsi kerja dari PT Yamaha Indonesia:

- 1. Divisi *Production Engineering* dan *Maintenance* adalah menangani masalah kaizen (perbaikan berkesinambungan) dan perbaikan (*maintenance*). Pembagian dari divisi ini yaitu *Maintenance*, STEP (*Supporting Team for Engineering Project*), dan *Production Engineering*. Apabila ada permintaan dari user untuk melakukan *upgrade* mesin, dapat diajukan kepada divisi ini untuk selanjutnya akan dikaji ulang mengenai tindakan kaizen.
- 2. Divisi Produksi adalah divisi yang menangani bagian produksi dari bahan mentah sampai jadi piano siap jual. Dalam divisi produksi dibagi menjadi 4 bagian yaitu Wood Working bagian untuk pengolahan raw material sampai menjadi part, Painting bagian untuk pewarnaan part, *Assembly Upright* Piano bagian perakitan untuk piano model *Upright* (UP), dan *Assembly Grand* Piano (GP) bagian perakitan untuk piano model *Grand Piano* (GP).,
- 3. Divisi *Purchasing* adalah divisi yang menangani dalam hal pengadaan barang, membuat laporan pembelian & pengeluaran barang (*material*, *inventory* dan lain-lain). Divisi Purchasing terdiri dari 3 bagian yaitu SCM, *Purchasing*, dan *Warehouse*.

- 4. Divisi *Engineering* adalah divisi yang membawahi bagian *Quality Control* (QC), *Quality Assurance*, dan *Design*. Setiap divisi menangani urusan pengecekan akhir (QC) dan juga penanggung jawab dalam hal design.
- 5. Divisi *Finance* & Administrasi adalah divisi yang menangani urusan keuangan peusahaan dan administrasi perusahaan. Divisi ini terdiri dari 3 bagian diantaranya *Finance* & *Accounting*, *Human Resource Development*, dan *General Affair*.

4.1.7 Hasil Produksi

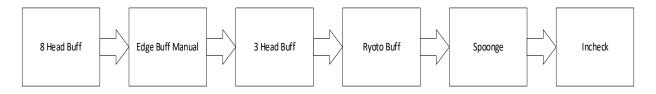
PT Yamaha Indonesia berdiri kurang lebih selama 47 tahun telah banyak memproduksi alat musik piano dari berbagai model. Mulai dari jenis *Upright Piano* hingga *Grand Piano*. Setiap harinya PT Yamaha Indonesia memiliki targer produksi untuk setiap jenis piano, seperti untuk *Upright piano* sebanyak 115 unit per 8 jam kerja dan untuk *Grand piano* sebanyak 22 unit per 8 jam kerja. Berikut merupakan hasil produksi piano *upright* yang tertera pada gambar 2.3. dan *Grand* Piano pada gambar 2.4. dari PT Yamaha Indonesia:

Gambar 4. 4. Piano Upright

Gambar 4. 5. Grand Piano

4.2 Pengumpulan Data

4.2.1 Proses Produksi


Proses produksi piano di PT Yamaha Indonesia terbagi menjadi 3 departemen yaitu departemen *wood working, painting,* dan *assembly.* Pada departemen painting terbagi menjadi 3 bagian, yaitu bagian sanding dasar, bagian spray, dan bagian sanding-buffing. Penelitian ini berfokus pada departemen painting bagian *Buffing Panel* GP. Berikut merupakan proses produksi dari kabinet GP, UP dan PPR *Fallboard*.

Gambar 4. 6. Alur produksi fallboard GP, UP & PPR

Penjelasan:

- 1. Level Buff Auto
- 2. Small Buff R Dalam
- 3. Ryoto Buff
- 4. Spoonge
- 5. In check

Gambar 4. 7. Alur Produksi Top Board Front

Penjelasan:

- 1. 8 Head Buff
- 2. Edge Buff Manual
- 3. 3 Head Buff
- 4. Ryoto Buff
- 5. Spoonge
- 6. In check

Gambar 4. 8. Alur Produksi Top Board Rear

Penjelasan:

- 1. Edge Buff Auto
- 2. Level Buff Auto Double Head
- 3. Level Buff Auto High Polished
- 4. Hand Polisher
- 5. In check

4.2.2 Data Jumlah Temuan Defect

PT Yamaha Indonesia telah memiliki ISO 9001 yang berarti perusahaan harus mempunyai mutu kualitas yang tinggi, baik itu tampilan luar piano maupun tampilan dalam piano. Perusahaan juga memiliki target *zero defect* yang diharapkan mampu meminimalisir kerugian dalam hal biaya maupun waktu produksi, serta meningkatkan produktivitas produksi. Namun, dalam proses produksi tentu tidak terlepas dari hasil produk defect. Perusahaan memiliki dokumen yang berisikan dokumen data jenis-jenis defect sebagai bahan

evaluasi menuju perusahaan dengan zero defect. Pada sub bab ini berisi tentang temuan-temuan defect yang ditemukan oleh in check departemen painting untuk model upright piano, PPR, dan Grand Piano. Data tersebut merupakan data historis perusahaan untuk bagian *Buffing Panel GP* dalam pcs. Berikut merupakan data *defect output Buffing Panel* GP

Tabel 4. 1. Data Defect Buffing Panel GP

Jenis	No	lo Warna	Nama Kabinet	Defect/cacat		
Jeilis	140	vv al IId	Nama Kavinet	Pecah	Muke Mentory	
GB	1	PE	Top Board Front	13	5	
	2		Top Board Rear	0	1	
	3		Fall Board	1	0	
			Total	14	6	
	4	PM/PW	Top Board Front	0	0	
	5		Top Board Rear	0	0	
	6		Fall Board	0	0	
			Total	0	0	
	7	PWH	Top Board Front	0	0	
	8		Top Board Rear	0	0	
	9		Fall Board	0	0	
			Total	0	0	
			Total Keselurahan	14	6	
UP	10	PE	Fall Board	7	2	
			Total	7	2	
	11	PM/PW	Fall Board	0	0	
			Total	0	0	
	12	PWH	Fall Board	1	1	
			Total	1	1	
			Total Keseluruhan	8	3	
PPR	14	PE	Fall Board W/K U1 BLAA	62	19	

	Total Seluruh Kabinet	165	41
	Total Keseluruhan	143	32
21	Fall Board Flat YC1SH BLAA	0	0
20	Fall Board W/K SU7 BLAA	1	0
19	Fall Board W/K YUS5 BLAA	12	0
18	Fall Board W/K YUS1-S3 BLAA	42	5
17	Fall Board YU33 BLAA	0	2
16	Fall Board W/K U3 BLAA	18	3
15	Fall Board YU11 BLAA	8	3

Berdasarkan hasil dari *in check* dan wawancara dengan kepala kelompok *Buffing Panel* GP terdapat 2 jenis *defect* yang disebabkan oleh bagian *Buffing Panel* GP antara lain adalah *defect* pecah dan muke mentori. Berikut ini merupakan beberapa pengertian dari jenis-jenis *defect* atau temuan yang ada di PT Yamaha Indonesia.

1. Pecah

Pecah adalah jenis cacat dimana kondisi cat poly atau bahan yang pecah (tidak menyatu) akibat faktor internal dan eksternal, baik pada bagian permukaan maupun mentori.

2. Muke Mentori

Muke Mentory adalah jenis cacat dimana hilangnya lapisan *top coat* sehingga lapisan *under coat surfacer terlihat*. Juga bisa berupa hilangnya lapisan *top coat* sehingga *baker* terlihat. Terjadi pada bagian sudut antara permukaan dan *edge* pada sebuah kabinet piano.

4.3 Pengolahan Data

Pada tahap pengolahan data, jenis defect yang sering terjadi pada kelompok kerja buffing Panel GP dan ditemukan oleh in check department painting dan dilakukan perhitungan dampak kerugian menggunakan metode VaR. Untuk mencari barang defect dengan jumlah defect terbesar dan segera di lakukan perbaikan usulan menggunakan analisis prioritas defect. Kemudian melakukan identifikasi faktor faktor yang menyebabkan temuan-temuan tersebut terjadi dengan menggunakan Cause Effect Diagram menggunakan diagram Fishbone Diagram. Lalu, dilakukan analisia risiko menggunakan FMEA.

4.3.1 *Value at risk*

Dampak kerugian yang disebabkan oleh data defect pada kelompok kerja buffing panel GP dapat dihitung dan dinilai dalam satuan mata uang (U.S. dollar) sehingga kerugian dapat diketahui dan diperkirakan sebagai akibat dari barang defect. Dampak kerugian yang disebabkan oleh kelompok kerja Buffing Panel GP didapatkan menggunakan metode value at risk. Value at Risik dapat menunjukkan kerugian maksimal yang diakibatkan oleh kelompok kerja Buffing Panel GP. Tingkat keyakinan yang digunakan dalam perhitungan VaR adalah 95 persen dan lima persen merupakan error. Dampak kerugian data temuan defect/cacat yang terjadi pada kelompok kerja Buffing Panel GP dapat dilihat pada tabel 4.2:

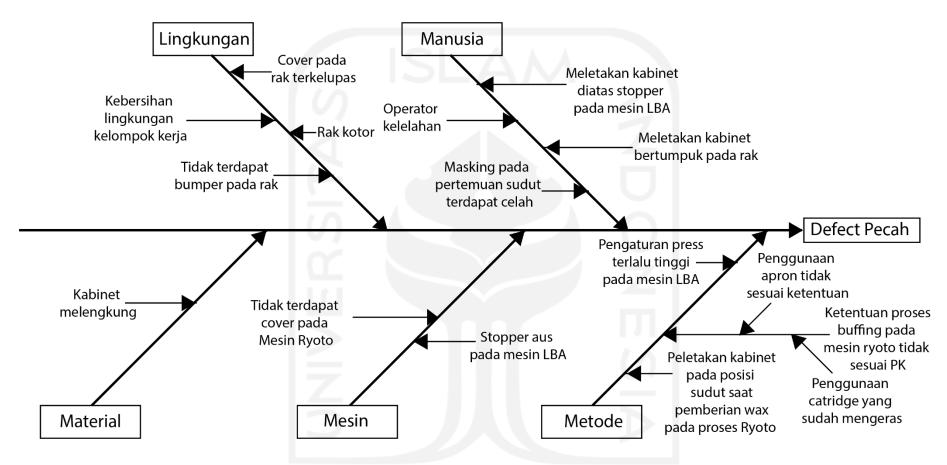
Tabel 4. 2. Dampak Kerugian

	Ke	erugian
	Pecah	Muke Mentori
Jumlah Defect	165	41
Cost repair (tambal)	\$0.18	\$0.18
Rata-Rata per bulan	\$7.92	\$1.23
Z	1.645	1.645
Standar Deviasi	4.143	0.596
VaR	\$10.4	\$1.6

Pada tabel 4.2 penggunaan *cost repair* dilakukan melalui perhitungan rata-rata pada setiap *defect* yang terjadi oleh PT Yamaha Indonesia sebesar \$ 0.18. Pada tiap cacat dapat dilihat bahwa dampak kerugian dengan rentang waktu sebanyak 6 bulan (Juli 2020 - Desember 2020) yang disebabkan oleh *defect* pecah sebesar \$10.4, sedangkan untuk *defect* muke mentory yang disebabkan oleh *defect* muke mentor sebesar \$1.6. Angka tersebut menunjukan bahwa dengan tingkat kepercayaan sebesar 95 persen dampak kerugian maksimal yang dialami oleh kelompok kerja *buffing panel GP*. Selain itu kerugian yang didapatkan juga terdapat kemungkinan lebih besar dari hasil VaR tersebut. Kemungkinan terjadinya kerugian diatas \$10.4 adalah sebesar 5 persen.

4.3.2 Prioritas Defect

Setelah didapatkan dampak kerugian yang terjadi, hasil *resume* dari data temuan yang didapatkan dari *in check* departemen *Painting* dalam rentang waktu 6 bulan (Juli 2020 – Desember 2021). *Resume* tersebut digunakan untuk mengetahui temuan *defect* yang paling dominan untuk segera diberikan usulan yang tertera di tabel 4.3.


Tabel 4. 3. Resume Data Defect pecah Buffing Panel GP

Jenis defect	Jumlah <i>defect</i> (pcs)	Persentase	Kumulatif %
Pecah	165	80.1%	80.1%
Muke Mentory	41	19.9%	100%

Setelah didapatkan hasil tertinggi dari kedua *defect* yang terjadi pada kelompok kerja *Buffing Panel* GP. Didapatkan hasil tertinggi berdasarkan hasil *In Check* yaitu *defect* pecah dengan jumlah *defect* sebesar 165 dan persentase sebesar 80.1% yang dialami oleh kelompok kerja *Buffing Panel* GP.

4.3.3 Diagram Fishbone

Berdasarkan hasil dari prioritas risiko *defect*, maka selanjutnya pada tahap ini akan dianalisis penyebab terjadinya *defect* pecah. Berikut ini merupakan analisis sebab akibat, Metode yang digunakan peneliti dalam mengidentifikasi masalah tersebut adalah *cause and effect* berdasarkan faktor 5M yaitu *Man power* Manusia), *Machine* (Mesin/teknologi), *Method* (Metode), Material, dan *Mother Nature/Environment* (Lingkungan). Dalam pembuatan diagram, dilakukan dengan wawancara dan *brainstorming* dengan kepala kelompok dari kelompok kerja *Buffing Panel* GP pada gambar 4.2.

Gambar 4. 9. Diagram Fishbone

Tabel 4. 4. Penyebab Risiko

No	Penyebab	Faktor
1	Meletakan kabinet diatas stopper atau tidak sesuai dengan ketentuan	Manusia
	pada meja mesin Level Buff Auto saat proses buffing yang berdampak	
	kabinet terpental sehingga menimbulkan risiko defect pecah	
2	Meletakan kabinet bertumpuk sehingga menimbulkan risiko defect	Manusia
	pecah	
3	Cover atau masking pada pertemuan sudut terdapat celah sehingga	Manusia
	menimbulkan risiko defect pecah	
4	Operator kelelahan pada proses Buffing pada mesin yang berdampak	Manusia
	kabinet terpental sehingga menimbulkan risiko defect pecah	
5	Kabinet melengkung yang berasal dari proses sebelumnya yang	Material
	berdampak kabinet terpental pada saat proses buffing sehingga	
	menimbulkan risiko defect pecah	
6	Stopper pada mesin Level Buff Auto sudah aus yang berdampak kabinet	Mesin
	tidak dapat tertahan pada proses buffing dan terpental sehingga	
	menimbulkan risiko defect pecah	
7	Tidak terdapat cover pada mesin Ryoto Buff sehingga menimbulkan	Mesin
	risiko defect pecah	
8	Peletakan kabinet saat buffing pada proses Ryoto Buff yang pada sudut	Metode
	kabinet sehingga menimbulkan risiko defect pecah	
9	Setingan pada mesin Level Buff Auto press/tekanan terlalu tinggi pada	Metode
	kabinet Fallboard sehingga menimbulkan risiko defect pecah	
10	Ketentuan proses Buffing pada mesin Ryoto Buff tidak sesuai dengan	Metode
	petunjuk kerja yang berdampak kabinet terpental dan terjatuh sehingga	
	menimbulkan risiko defect pecah	
11	Cover rak terkelupas sehingga menimbulkan risiko defect pecah	Lingkungan

- 12 Tidak terdapat *bumper* pada rak sehingga pada peletakan kabinet Lingkungan menimbulkan risiko *defect* pecah
- 13 Kebersihan dari lingkungan kelompok kerja *Buffing Panel* GP Lingkungan sehingga menimbulkan risiko *defect* pecah
- 14 Rak kotor terdapat bekas cat tambalan yang mengering sehingga Lingkungan menimbulkan risiko *defect* pecah

4.3.4 Failure Mode and Effect Analysis

Dalam penelitian ini digunakan metode FMEA untuk mengidentifikasi potensipotensi yang dapat menimbulkan risiko produk *defect* serta menjabarkan penyebab dari potensi-potensi risiko tersebut. Setelah didapatkan potensi-potensi risiko, dilakukan pengisian *score* mengenai tingkat keparahan (*severity*), tingkat keseringan (*Occurrence*) dan tingkat deteksi (*Detection*). Dalam pengisian *score* nilai ini didapatkan melalui wawancara dan pengisian kuesioner oleh 3 *expert* pada tabel 4.5 berikut

Tabel 4. 5. Expert

Expert	Nama	Posisi/jabatan	Masa Kerja
1	Bapak Paimun	Foreman	27 tahun
2	Bapak Nurman Isyabaro	Kepala Kelompok	21 tahun
3	Bapak Suprianto	Kepala Kelompok	19 tahun

Untuk menentukan risiko produk *defect* agar segera dilakukan perbaikan atau mitigasi dilakukan perhitungan RPN (*Risk Priority Number*) dengan mengalikan *severity, occurrence* dan *detection*. RPN tertinggi pada risiko produk *defect* dapat dijadikan sebagai acuan untuk segera dilakukan perbaikan atau mitigasi. Berikut merupakan hasil perhitungan RPN dengan metode FMEA pada tabel 4.6 berikut

Tabel 4. 6. Analisa FMEA Defect Pecah

Rank	Potential Failure	Causes Failure	Current Control	Severity	Occurrence	Detection	RPN
1	Peletakan kabinet saat <i>buffing</i> pada proses <i>Ryoto Buff</i> bertumpu pada sudut kabinet menimbulkan risiko <i>defect</i> pecah	Operator tidak memperhatikan sudut kabinet saat meletakan kabinet pada proses <i>buffing</i>	Melakukan peletakan kabinet pada sisi <i>edge</i> kabinet	7	8	7	392
2	Meletakan kabinet diatas <i>stopper</i> atau tidak sesuai dengan ketentuan pada meja mesin <i>Level Buff Auto</i> saat proses <i>buffing</i> yang berdampak kabinet terpental sehingga menimbulkan risiko <i>defect</i> pecah	Operator tidak memperhatikan stopper pada kabinet saat proses buffing berlangsung	Melakukan pengecekan pada tiap kabinet sebelum proses buffing berlangsung	7	8	5	280
3	Cover rak terkelupas sehingga menimbulkan risiko defect pecah	Proses pengambilan dan penyimpanan kabinet menggesek permukaan <i>cover</i>	Pada saat proses pengambilan dan penyimpanan kabinet dilakukan dengan berhati- hati	6	6	7	252
4	Tidak terdapat <i>cover</i> pada mesin <i>Ryoto Buff</i> sehingga menimbulkan risiko <i>defect</i> pecah	Tidak semua mesin <i>ryoto</i> diberikan <i>cover</i> dan sesuai ketentuan	Pada saat proses <i>buffing</i> dilakukan dengan berhatihati	4	5	5	100
5	Pengaturan pada mesin <i>Level Buff Auto</i> press/tekanan terlalu tinggi pada kabinet Fallboard sehingga menimbulkan risiko defect pecah	Operator melakukan pengaturan mesin tidak sesuai Petunjuk Kerja	Melakukan pelatihan kepada operator agar pengaturan sesuai dengan Petunjuk Kerja	4	5	5	100

6	Ketentuan proses <i>Buffing</i> pada mesin <i>Ryoto Buff</i> tidak sesuai dengan petunjuk kerja yang berdampak kabinet terpental dan terjatuh sehingga menimbulkan risiko defect pecah	Penggunaan cartridge yang sudah mengeras akibat penggunaan wax yang cukup banyak dan sudah menipis Penggunaan celemek yang sudah sobek atau tidak sesuai dengan ketentuan APD	Melakukan pelatihan kepada operator agar sesuai dengan ketentuan Petunjuk Kerja	4	5	5	100
7	Meletakan kabinet bertumpuk sehingga menimbulkan risiko <i>defect</i> pecah	Jumlah rak yang tidak memadai	Mengurangi jumlah penyimpanan kabinet pada rak	4	4	6	96
8	Cover atau masking pada pertemuan sudut terdapat celah sehingga menimbulkan risiko defect pecah	Operator tidak teliti pada proses masking	Proses masking dilakukan dengan teliti agar tidak terdapat celah	3	5	6	90
9	Kabinet melengkung yang berasal dari proses sebelumnya yang berdampak kabinet terpental pada saat proses <i>buffing</i> sehingga menimbulkan risiko <i>defect</i> pecah	Proses seasoning tidak maksimal sehingga masih terdapat kadar air	melakukan pengecekan pada tiap kabinet sebelum proses	8	5	2	80
10	Tidak terdapat <i>bumper</i> pada rak sehingga pada peletakan kabinet menimbulkan risiko <i>defect</i> pecah	Tidak semua rak diberikan bumper dan sesuai ketentuan	Pada saat proses <i>handling</i> rak dilakukan dengan berhati-hati	3	5	5	75

11	Stopper pada mesin Level Buff Auto sudah aus yang berdampak kabinet tidak dapat tertahan pada proses buffing dan terpental sehingga menimbulkan risiko defect pecah	Pada saat proses buffing, cartridge berputar mengenai stopper	Melakukan perawatan pada stopper pada mesin Level Buff Auto	5	4	3	60
12	Rak kotor terdapat bekas cat tambalan yang mengering sehingga menimbulkan risiko defect pecah	cat tambalan belum mengering pada saat proses repair	melakukan pengecekan terhadap proses repair penambalan cat pada kabinet dan menjaga kebersihan rak	4	5	3	60
13	Operator kelelahan pada proses <i>Buffing</i> pada mesin yang berdampak kabinet terpental sehingga menimbulkan risiko <i>defect</i> pecah	Operator kurang beristirahat dengan cukup dan sedang dalam keadaan tidak <i>fit</i>	Melakukan <i>briefing</i> kepada keseluruhan operator agar selalu menjaga kesehatan dan istirahat yang cukup	3	5	4	60
14	Kebersihan dari lingkungan kelompok kerja <i>Buffing Panel</i> GP sehingga menimbulkan risiko <i>defect</i> pecah	Rak kotor terdapat bekas cat tambalan yang mengering	Selalu menjaga kebersihan setelah selesai pada kelompok kerja	3	4	3	36

Setelah didapatkan hasil dari perhitungan RPN dengan mengalikan *severity, occurrence* dan *detection,* didapatkan 3 potensi risiko dengan hasil RPN terbesar antara lain, potensi risiko peletakan kabinet saat *buffing* pada proses *Ryoto Buff* yang tidak baik dengan hasil RPN sebesar 392, potensi risiko meletakan kabinet diatas *stopper* atau tidak sesuai dengan ketentuan pada meja mesin *Level Buff Auto* saat proses *buffing* dengan hasil RPN sebesar 280 dan potensi risiko cover rak terkelupas dengan hasil RPN sebesar 252.

4.3.5 Analisis Prioritas Potensi Risiko

Setelah didapatkan 3 potensi risiko berdasarkan perhitungan RPN terbesar, diperlukan analisis *Five Why*'s untuk mengetahui akar penyebab dari potensi risiko untuk menghasilkan tindakan korektif yang efektif agar dapat segera diberikan rekomendasi usulan perbaikan dan mitigasi untuk mengurangi insiden itu, dan mencegah kejadian kecelakaan terjadi kembali. Berikut merupakan analisa *five why's* dari masing-masing potensi risiko dengan hasil RPN tertinggi

Tabel 4. 7. Five Why's Potensi Risiko 1

Five Why's	Alasan
Why 1: Mengapa peletakan kabinet saat	Operator tidak memperhatikan sudut
buffing pada proses Ryoto Buff yang tidak	kabinet saat meletakan kabinet pada proses
baik?	buffing
Why 2: Mengapa operator tidak	Operator belum terbiasa dalam melakukan
memperhatikan sudut kabinet saat	proses buffing pada mesin Ryoto Buff
meletakan kabinet pada proses buffing?	
Why 3: Mengapa operator belum terbiasa	Operator belum memiliki pengalaman yang
dalam melakukan proses buffing pada	cukup
mesin Ryoto Buff?	
Why 4: Mengapa Operator belum memiliki	Operator belum memiliki jam kerja yang
pengalaman yang cukup?	cukup
Why 5: Mengapa Operator belum memiliki	Operator kurang dalam pelatihan sehingga
jam kerja yang cukup	masih dalam tahap beradaptasi

Tabel 4. 8. Five Why's Potensi Risiko 2

Five Why's	Alasan
Why 1: Mengapa Cover rak terkelupas?	Cover rak dalam kondisi yang kering
Why 2: Mengapa cover rak dalam kondisi	Cover rak memiliki sisa cat
yang kering?	
Why 3: Mengapa cover rak memiliki sisa	Kabinet masih dalam keadaan cat yang
cat?	basah
Why 4: Mengapa kabinet masih dalam	Pengeringan cat pada kabinet belum
keadaan cat yang basah?	maksimal
Why 5: Mengapa Operator pengeringan cat	Operator tidak teliti dengan kondisi kabinet
pada kabinet belum maksimal?	

Tabel 4. 9. Five Why's Potensi Risiko 3

Five Why's	Alasan
Why 1: Mengapa meletakan kabinet diatas	Pemasangan posisi kabinet pada stopper
stopper atau tidak sesuai dengan ketentuan	tidak maksimal
pada meja mesin Level Buff Auto saat	
proses buffing?	
Why 2: Mengapap pemasangan posisi	Pemasangan tidak sesuai dengan SOP
kabinet pada stopper tidak maksimal?	
Why 3: Mengapa pemasangan tidak sesuai	Kurangnya pengecekan pada tiap kabinet
dengan SOP?	
Why 4: Mengapa kurangnya pengecekan	Operator tidak memperhatikan posisi
pada tiap kabinet?	stopper pada saat meletakan kabinet
Why 5: Operator pengeringan cat pada	Operator tidak teliti dengan kondisi kabinet
kabinet belum maksimal?	

Berdasarkan hasil analisis *Five Why's* dari masing-masing potensi risiko dengan RPN tertinggi didapatkan akar permasalahan antara lain; Risiko peletakan kabinet saat *buffing* pada proses *Ryoto Buff* yang tidak baik disebabkan oleh operator kurang dalam pelatihan sehingga masih dalam tahap beradaptasi, risiko *Cover* rak terkelupas disebabkan oleh operator tidak teliti dengan kondisi kabinet dan risiko meletakan kabinet diatas stopper atau tidak sesuai dengan ketentuan pada meja mesin *Level Buff Auto* saat proses *buffing*.

4.3.6 Analisis Non Prioritas Potensi Risiko

Dari hasil perhitungan RPN dengan metode FMEA didapatkan 3 potensi risiko RPN tertinggi, namun perusahaan juga dapat melakukan usulan perbaikan pada non prioritas potensi risiko dengan skala risiko sedang sampai sangat rendah. Analisis non prioritas risiko diberikan untuk menambah penurunan risiko selain risiko prioritas berdasarkan perhitungan RPN menggunakan metode FMEA. Dalam menentukan usulan perbaikan untuk setiap potensi risiko pada kelompok kerja *Buffing Panel* GP menggunakan berbagai pertimbangan antara lain melakukan observasi langsung pada saat dilapangan, pendapat *expert* dan beberapa referensi dari literasi seperti jurnal. Usulan perbaikan yang dilakukan menggunakan 5W+ 1H terhadap faktor-faktor penyebab cacat. Berikut merupakan usulan perbaikan atau penanganan terhadap faktor-faktor penyebab cacat yang terjadi kelompok kerja *Buffing Panel* GP.

1). Faktor Manusia

Tabel 4. 10. Analisis Non Prioritas Potensi Risiko Faktor Manusia

Jenis	5W+1H	Deskripsi
Tujuan penelitian	What	Mengurangi produk <i>defect</i> pecah pada faktor manusia
Alasan Kegunaan	Why	Meningkatkan keahlian/skill operator, meningkatkan pengawasan dan meningkatkan ketelitian operator dalam bekerja

Lokasi	W	here	Kelompok kerja <i>Buffing</i>
			Panel GP PT. Yamaha
			Indonesia
Sekuensi (urutan)	W	hen	Pada saat dan sebelum
			melakukan proses buffing
Orang	W	ho	Operator Kelompok kerja
			Buffing Panel GP PT.
		DLAM	Yamaha Indonesia
Metode	He	ow .	Mengadakan pelatihan
			ataupun training untuk
			meningkatkan keahlian kerja
1			dan meningkatkan
1 7	70		pengawasan terhadap
			operator dalam melakukan
		Y	proses buffing serta
			memberikan SOP guna
			meningkatkan kesadaran
			pada operator itu sendiri.

Usulan perbaikan pada faktor manusia bertujuan mengurangi produk *defect* pecah yang disebabkan oleh faktor manusia. Usulan perbaikan yang dilakukan yaitu mengadakan pelatihan ataupun *training* untuk meningkatkan keahlian kerja dan meningkatkan pengawasan terhadap operator dalam melakukan proses *buffing* serta memberikan SOP guna meningkatkan kesadaran pada operator itu sendiri.

2). Faktor Mesin

Tabel 4. 11 Analisis Non Prioritas Potensi Risiko Faktor Mesin

Jenis	5W+1H	Deskripsi
Tujuan penelitian	What	Mengurangi produk <i>defect</i> pecah pecah pada faktor mesin
Alasan Kegunaan	Why	Penjadwalan perawatan mesin secara berkala serta meningkatkan kelengkapan kebutuhan mesin
Lokasi	Where	Kelompok kerja <i>Buffing Panel</i> GP PT. Yamaha Indonesia
Sekuensi (urutan)	When	Sebelum dan sesudah proses buffing
Orang	Who	Operator Kelompok kerja *Buffing Panel GP PT.* Yamaha Indonesia
Metode	How	Melakukan penjadwalan terkait perawatan terkait mesin pada proses buffing dan melakukan pergantian komponen mesin yang sudah tidak dapat dipakai Kembali serta memberikan SOP terkait kelengkapan mesin untuk mengurangi produk defect

Usulan perbaikan pada faktor mesin bertujuan mengurangi produk *defect* pecah yang disebabkan oleh faktor mesin. Usulan perbaikan yang dilakukan yaitu melakukan penjadwalan terkait perawatan terkait mesin pada proses *buffing* dan melakukan pergantian komponen mesin yang sudah tidak dapat dipakai kembali serta memberikan SOP terkait kelengkapan mesin untuk mengurangi produk *defect*

3). Faktor Metode

Tabel 4. 12 Analisis Non Prioritas Potensi Risiko Faktor Metode

Jenis	5W+1H	Deskripsi
Tujuan penelitian	What	Mengurangi produk <i>defect</i> pecah pada faktor metode
Alasan Kegunaan	Why	Meningkatkan pengawasan terhadap operator dalam bekerja dan meningkatkan pemahaman operator terhadap mesin yang digunakan
Lokasi	Where	Kelompok kerja <i>Buffing Panel</i> GP PT. Yamaha Indonesia
Sekuensi (urutan)	When	Pelaksanaan dapat dilaksanakan bersama dengan faktor manusia
Orang	Who	Operator Kelompok kerja Buffing Panel GP PT. Yamaha Indonesia
Metode	How	Memberikan standar pengaturan tekanan terkait proses <i>buffing</i> pada mesin

	Level	Buff	Auto	dan
	membe	rikan	SOP	terkait
	ketentu	an pros	es <i>buffii</i>	ng pada
	mesin <i>F</i>	Ryoto b	uff	

Usulan perbaikan pada faktor metode bertujuan mengurangi produk *defect* pecah yang disebabkan oleh faktor metode. Usulan perbaikan yang dilakukan yaitu memberikan standar pengaturan tekanan terkait proses *buffing* pada mesin *Level Buff Auto* dan memberikan SOP terkait ketentuan proses *buffing* pada mesin *Ryoto buff*

4). Faktor Material

Tabel 4. 13. Analisis Non Prioritas Potensi Risiko Faktor Material

Jenis	5W+1H	Deskripsi
Tujuan penelitian	What	Mengurangi produk <i>defect</i> pecah pada faktor material
Alasan Kegunaan	Why	Mendapatkan bahan baku sesuai standar perusahaan dan meningkatkan kelitian pada operator dalam melakukan pemeriksaan bahan baku dari proses sebelumnya
Lokasi	Where	Kelompok kerja <i>Buffing</i> Panel GP PT. Yamaha Indonesia
Sekuensi (urutan)	When	Pelaksanaan dapat dilaksanakan bersama dengan faktor manusia

Orang	Who	Operator Kelompok kerja
		Buffing Panel GP PT.
		Yamaha Indonesia
Metode	How	Memberikan pemahaman
		dan pelatihan terhadap
		operator terkait kabinet yang
		datang pada proses
	ISLAM	sebelumnya dan memberikan
		standar toleransi pada saat
		kabinet masuk pada
		kelompok kerja <i>Buffing</i>
		Panel GP

Usulan perbaikan pada faktor material bertujuan mengurangi produk *defect* pecah yang disebabkan oleh faktor material. Usulan perbaikan yang dilakukan yaitu memberikan pemahaman dan pelatihan terhadap operator terkait kabinet yang datang pada proses sebelumnya dan memberikan standar toleransi pada saat kabinet masuk pada kelompok kerja *Buffing Panel* GP

5). Faktor Lingkungan

Tabel 4. 14. Analisis Non Prioritas Potensi Risiko Faktor Lingkungan

Jenis	5W+1H	Deskripsi
Tujuan penelitian	What	Mengurangi produk defect
··ω = ?.	(11100001111	pada faktor lingkungan
Alasan Kegunaan	Why	Meningkatkan kebersihan
"91"]]] \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	terkait lingkungan kepada
	7/2027	operator
Lokasi	Where	Kelompok kerja Buffing
		Panel GP PT. Yamaha
		Indonesia

Sekuensi (urutan)	When	Sebelum dan sesudah proses
		buffing
Orang	Who	Operator Kelompok kerja
		Buffing Panel GP PT.
		Yamaha Indonesia
Metode	How	Memberikan kaizen terkait
		kebersihan lingkungan untuk
	ISLAM	mengurangi debu pada saat
		proses buffing pada
		kelompok kerja <i>Buffing</i>
		Panel GP

Usulan perbaikan pada faktor lingkungan bertujuan mengurangi produk *defect* pecah yang disebabkan oleh faktor lingkungan. Usulan perbaikan yang dilakukan yaitu memberikan kaizen terkait kebersihan lingkungan untuk mengurangi debu pada saat proses *buffing* pada kelompok kerja *Buffing Panel GP*

BAB V

PEMBAHASAN

5.1. Analisis Value at Risk

Value at risk merupakan metode yang dapat digunakan untuk mengetahui besar akibat dari dampak yang ditumbulkan oleh risiko yang terjadi (Kountur, 2006). Penggunaan metode VaR dalam mengukur dampak risiko yang terjadi dapat dilakukan dengan melihat data historis sebelumnya. Kejadian yang dianggap merugikan berupa penurunan produksi sebagai akibat dari terjadinya sumber-sumber risiko.

Dampak kerugian yang disebabkan oleh kelompok kerja *Buffing Panel GP* didapatkan menggunakan metode *value at risk. Value at Risik* dapat menunjukkan kerugian maksimal yang diakibatkan oleh kelompok kerja *Buffing Panel* GP. Tingkat keyakinan yang digunakan dalam perhitungan VaR adalah 95 persen dan lima persen merupakan *error*.

Setelah dilakukan perhitungan dengan menggunakan metode *value at risk* dengan rentang waktu sebanyak 6 bulan (Juli 2020 - Desember 2020) yang disebabkan oleh *defect* pecah sebesar \$10.4, sedangkan untuk *defect* muke mentory yang disebabkan oleh *defect* muke mentory sebesar \$1.6. Angka tersebut menunjukan bahwa dengan tingkat kepercayaan sebesar 95 persen dampak kerugian maksimal yang dialami oleh kelompok kerja *buffing panel GP*. Selain itu kerugian yang didapatkan juga terdapat kemungkinan lebih besar dari hasil VaR tersebut. Kemungkinan terjadinya kerugian diatas \$10.5 pada *defect* pecah adalah sebesar 5 persen dan kemungkinan terjadinya kerugian diatas \$1.6 pada *defect* muke mentory adalah sebesar 5 persen.

5.2. Analisis Prioritas Defect

Analisis prioritas *defect* digunakan untuk melakukan pemilihan prioritas *defect* tertinggi pada proses *Buffing Panel GP* yang diperoleh dari data temuan *In Check departemen Painting* YI dalam rentang waktu sebanyak 6 bulan yaitu Juli 2020 hingga Desember 2020.

Terdapat 15 jenis temuan *defect* yang terdata oleh bagian *In Check Painting* pada rentang waktu tersebut yaitu Muke Permukaan, Muke Edge, Dekok, Gelt, Kotor, Pinhole, Pecah, Obake, Muke Mentory, MI, NY, NG Logo, NG Putih, Mentory Bolong, dan Cat Tipis. Namun, dari

hasil *brainstorming* dengan *expert* kepala kelompok hanya terdapat 2 jenis *defect* yang disebabkan oleh kelompok kerja *Buffing Panel* GP yaitu pecah dan muke mentory.

Berdasarkan hasil dari pengolahan data menggunakan analisis prioritas *defect* untuk menentukan jenis *defect* apa yang harus diprioritaskan untuk dilakukan mitigasi terhadap risiko *defect* yang ada. Data temuan *defect* pecah merupakan jenis *defect* dengan persentase sebesar 80.1% sedangkan untuk defect muke mentory sebesar 19.9%. Adapun hasil dari analisis prioritas *defect* dapat dilihat dari tabel 4.3.

5.3. Analisis Diagram Fishbone

Diagram *fishbone* digunakan pada tahap mengidentifikasi permasalahan dan menentukan penyebab dari munculnya permasalahan tersebut. Terdapat faktor-faktor yang dianalisis dalam diagram ini, yaitu faktor 5M yang terdiri dari *man*, *machine*, *method*, *material*, dan *mother nature/environtment*.

Dalam mengidentifiikasi permasalahan dan menentukan penyebab dengan diagram *fishbone* dilakukan wawancara dengan *expert* yaitu kepala kelompok dari kelompok kerja *Buffing Panel* GP. Berdasarkan hasil dari wawancara didapatkan hasil sebagai berikut.

1. *Man* (Manusia)

Pada faktor manusia sebagai operator kelompok kerja *Buffing Panel* GP yang mengontrol mesin hingga melakukan *handling* terhadap kabinet, didapatkan beberapa potensi risiko oleh sebagai berikut.

- Meletakan kabinet diatas stopper atau tidak sesuai dengan ketentuan pada meja mesin Level Buff Auto saat proses buffing yang berdampak kabinet terpental sehingga menimbulkan risiko defect pecah
- 2). Meletakan kabinet bertumpuk sehingga menimbulkan risiko *defect* pecah yang disebabkan oleh gesekan antar kabinet
- 3). *Cover* atau *masking* pada pertemuan sudut terdapat celah sehingga menimbulkan risiko *defect* pecah yang disebabkan oleh operator yang tidak teliti dalam proses *masking*
- 4). Operator kelelahan pada proses *Buffing* pada mesin yang berdampak kabinet terpental sehingga menimbulkan risiko *defect* pecah. Kelelahan dialami operator didapatkan istirahat yang kurang dan kondisi fisik yang sedang tidak *fit*.

2. Material

Pada faktor material di kelompok kerja *Buffing Panel* GP didapatkan potensi risiko oleh Kabinet melengkung yang berasal dari proses sebelumnya yang berdampak kabinet terpental pada saat proses *buffing* sehingga menimbulkan risiko *defect* pecah yang disebabkan oleh proses *press* dan *seasoning* kurang maksimal

3. *Machine* (Mesin)

Pada faktor mesin atau alat proses di kelompok kerja *Buffing Panel* GP didapatkan beberapa potensi risiko yang terjadi sebagai berikut.

- 1). Stopper pada mesin Level Buff Auto sudah aus yang berdampak kabinet tidak dapat tertahan pada proses buffing dan terpental sehingga menimbulkan risiko defect pecah yang diakibatkan catridge pada mesin Level Buff Auto mengenai stopper berulang kali pada proses buffing
- 2). Putaran pada mesin *Ryoto Buff* terlalu cepat sehingga menimbulkan risiko *defect* pecah yang diakibatkan pengaturan putaran pada mesin *Ryoto Buff* pada proses *buffing*
- 3). Tidak terdapat *cover* pada mesin *Ryoto Buff* sehingga menimbulkan risiko *defect* pecah yang diakibatkan kurangnya kelengkapan pada *cover* dari keseluruhan mesin yang tidak merata

4. *Method* (Metode)

Pada faktor metode di kelompok kerja *Buffing Panel* GP didapatkan beberapa potensi risiko yang terjadi sebagai berikut.

- 1). Peletakan kabinet saat *buffing* pada proses *Ryoto Buff* yang tidak baik sehingga menimbulkan risiko *defect* pecah yang diakibatkan operator yang tidak memerhatikan posisi peletakan kabinet
- 2). Pengaturan pada mesin *Level Buff Auto press*/tekanan terlalu tinggi pada kabinet *Fallboard* sehingga menimbulkan risiko *defect* pecah yang diakibatkan operator tidak mengikuti sesuai dengan SOP yang diberikan
- 3). Ketentuan proses *Buffing* pada mesin *Ryoto Buff* tidak sesuai dengan petunjuk kerja yang berdampak kabinet terpental dan terjatuh sehingga menimbulkan risiko *defect* pecah yang diakibatkan operator tidak mengikuti sesuai dengan SOP yang diberikan
- 5. *Environment* (Lingkungan)

Pada faktor lingkungan di kelompok kerja *Buffing Panel* GP didapatkan beberapa potensi risiko yang terjadi sebagai berikut.

- 1). *Cover* rak terkelupas sehingga menimbulkan risiko *defect* pecah yang diakibatkan terdapat sisa cat yang mengering
- 2). Tidak terdapat *bumper* pada rak sehingga pada peletakan kabinet menimbulkan risiko *defect* pecah yang diakibatkan kurangnya kelengkapan pada *bumper* dari keseluruhan mesin yang tidak merata
- 3). Kebersihan dari lingkungan kelompok kerja *Buffing Panel* GP sehingga menimbulkan risiko *defect* pecah yang diakibatkan operator pada saat selesai melakukan proses tidak segera membersihkan lingkungan dari kelompok kerja *Buffing Panel* GP itu sendiri

5.4. Analisis Hasil Perhitungan Risiko Defect Menggunakan FMEA

Metode FMEA digunakan untuk menganalisis maupun mengidentifikasi potensi dan pencegahan masalah produk dan proses sebelum masalah itu terjadi. Dalam penelitan ini digunakan metode FMEA untuk menghitung dan menentukan prioritas penyebab temuan atau risiko defect menggunakan score RPN yang terdiri dari hasil perkalian Severity, Occurrence dan Detection. Dalam penanganan terhadap suatu risiko atau potensi kegagalan tidak semua risiko yang ada mendapatkan sebuah mitigasi atau penanganan. Hal ini dikarenakan adanya beberapa pertimbangan seperti faktor sumber daya biaya dan tenaga yang dikeluarkan dalam proses penanganan serta dampak yang ditimbulkan dianggap kecil dan mampu dikendalikan dengan penanganan yang telah ada. Dengan demikian, tidak semua risiko atau potensi kegagalan dapat ditangani oleh sebuah organisasi terkecuali dapat menimbulkan potensi kerugian baik kerugian biaya, waktu, maupun sumber daya manusia.

Setelah didapatkan hasil dari perhitungan RPN dengan mengalikan severity, occurrence dan detection, didapatkan 3 potensi risiko dengan hasil RPN terbesar dengan skala kategori sangat tinggi antara lain, potensi risiko peletakan kabinet saat buffing pada proses Ryoto Buff yang tidak baik dengan hasil RPN sebesar 392, potensi risiko meletakan kabinet diatas stopper atau tidak sesuai dengan ketentuan pada meja mesin Level Buff Auto saat proses buffing dengan hasil RPN sebesar 280, potensi risiko cover rak terkelupas dengan hasil RPN sebesar 252 potensi risiko meletakan kabinet diatas stopper atau tidak sesuai dengan ketentuan pada meja mesin

Level Buff Auto saat proses buffing dengan hasil RPN sebesar 280 dan potensi risiko meletakan kabinet bertumpuk sehingga menimbulkan risiko defect pecah dengan hasil RPN sebesar 180. Analisis

5.5. Analisis dan Usulan Perbaikan Prioritas Potensi Risiko

Analisis prioritas potensi risiko menggunakan Metode *Five why's* untuk mencari akar dari suatu permasalahan yang terjadi dengan melakukan dengan berulang kali mengajukan pertanyaan yang sama dari suatu masalah, memilah penyebab atau solusi ke dalam elemen yang lebih jelas.

Setelah didapatkan 3 potensi risiko tertinggi dengan kategori *high* dan *very high* maka dilakukan pencarian akar dari suatu risiko yang terjadi. Berdasarkan hasil analisis *Five Why's* dari masing-masing potensi risiko dengan RPN tertinggi didapatkan akar permasalahan antara lain; Risiko peletakan kabinet saat *buffing* pada proses *Ryoto Buff* yang tidak baik disebabkan oleh operator kurang dalam pelatihan sehingga masih dalam tahap beradaptasi, risiko *Cover* rak terkelupas disebabkan oleh operator tidak teliti dengan kondisi kabinet dan risiko meletakan kabinet diatas stopper atau tidak sesuai dengan ketentuan pada meja mesin *Level Buff Auto* saat proses *buffing*.

Usulan perbaikan prioritas risiko diberikan berdasarkan perhitungan RPN menggunakan metode FMEA Dalam menentukan usulan perbaikan prioritas risiko untuk setiap potensi risiko pada kelompok kerja *Buffing Panel* GP menggunakan berbagai pertimbangan antara lain melakukan observasi langsung pada saat dilapangan, pendapat *expert* dan beberapa referensi dari literasi seperti jurnal. Berikut merupakan usulan perbaikan atau penanganan terhadap masing-masing risiko yang terjadi terhadap kelompok kerja *Buffing Panel* GP.

1. Risiko peletakan kabinet saat *buffing* pada proses *Ryoto Buff* yang tidak baik

Proses buffing pada mesin Ryoto Buff merupakan proses dimana operator melakukan proses buffing dengan mengangkat kabinet lalu mengarahkan pada cartridge yang berputar dengan menggerakan kabinet secara maju dan mundur berulang kali hingga selesai. Dalam setiap proses buffing perlu dilakukan pemberian wax secara manual agar proses buffing lebih maksimal. Saat operator melakukan pemberian wax, kabinet diletakan secara vertikal agar mengurangi beban operator saat pemberian wax. Pada saat peletakan kabinet secara vertikal dapat memunculkan

potensi risiko peletakan yang salah yaitu peletakan pada ujung sudut kabinet yang menimbulkan *defect* pecah. Tindakan yang dapat diusulkan berdasarkan akar permasalahan potensi risiko melalui *five why's* adalah menempelkan gambar pejuntuk posisi yang benar saat melakukan proses *buffing* dan peletakan kabinet pada saat pemberian *wax* yang benar. Gambar tersebut digunakan untuk mengingatkan selalu terhadap operator untuk selalu mematuhi dan mencontoh posisi yang benar. Berikut merupakan gambar proses *Ryoto Buff* pada gambar 5.1.

Gambar 5. 1. Proses Ryoto Buff

2. Risiko *cover* rak terkelupas

Cover rak yang kering bisa menyebabkan potensi risiko cover rak terkelupas dikarenakan pergesekan cover dan kabinet pada saat proses pengambilan dan peletakan kabinet pada rak. Tindakan yang dapat diusulkan berdasarkan akar permasalahan dari potensi risiko melalui five why's yaitu antara lain;

- 1). Melakukan pengecekan secara berkala setiap selesai melakukan pengecatan tambalan pada kabinet agar rak tidak terkena cat yang mengering.
- 2). Melakukan pembersihan dan pengecekan pada rak secara rutin

3. Risiko meletakan kabinet diatas stopper pada meja mesin Level Buff Auto

Proses *Buffing* pada mesin *Level Buff Auto* membutuhkan pemasangan yang baik dikarenakan pada saat proses berlangsung dilakukan secara otomatis. Peletakan atau pemasangan kabinet yang diatas *stopper* pada meja mesin *Level Buff Auto* pada proses *buffing* menyebabkan risiko terpentalnya kabinet pada saat proses berlangsung. Tindakan yang dapat diusulkan berdasarkan akar permasalahan dari potensi risiko melalui *five why's* antara lain;

- 1). Melakukan pengecekan pemasangan kabinet pada *stopper* secara benar sebelum proses *buffing* berlangsung secara berkala
- 2). Merubah warna yang terang pada *stopper* agar operator lebih peka dengan pemasangan kabinet di meja *Level Buff Auto*

Berikut merupakan bentuk stopper pada mesin level buff auto pada gambar 5.2.

Gambar 5. 2. Stopper Mesin Level Buff Auto

5.6. Perbandingan Biaya Usulan Perbaikan dengan Value at Risk

Biaya yang dikeluarkan untuk usulan perbaikan dapat dilakukan dengan membandingkan dengan besar dampak kerugian yang di dapatkan menggunakan metode *value at risk*. Biaya ini didapatkan berdasarkan survei rata-rata harga melalui *marketplace*.

Tabel 5. 1. Biaya Usulan Perbaikan

	Usulan perbaikan	Jumlah	Harga	Total
			(Rp)	(Rp)
Potensi risiko 1	Kertas	3	200	600
	Print Warna	3	2.000	6.000
	Laminating	3	3.500	10.500
Potensi risiko 3	Cat besi waterproof	1	12.000	12.000
Total keseluruha		29.100		

Berdasarkan hasil perhitungan biaya untuk usulan perbaikan dari keselurahan dari potensi risiko didapatkan hasil dengan total sebesar Rp. 29.100

Tabel 5. 2. Perbandingan Biaya

Usulan Perbaikan	Value at Risk
Rp. 29.100	\$ 10,4 ≈ Rp. 150.581,6

Berdasarkan perbandingan biaya antara usulan perbaikan dengan *value at risk* didapatkan perbedaaan harga yang cukup jauh yaitu harga yang dikeluarkan oleh biaya usulan perbaikan sebesar Rp. 29.100 sedangkan dampak kerugian yang didapatkan dengan metode *value at risk* sebesar Rp. 150.581,6. Jumlah biaya dari usulan perbaikan dapat dijadikan pertimbangan oleh perusahaan karena biaya yang didapatkan lebih rendah dari dampak kerugian yang terjadi sehingga dipastikan kerugian yang dialami perusahaan dapat menjadi rendah dengan adanya usulan perbaikan.

5.7. Analisis dan Usulan Perbaikan Non Prioritas Risiko

Dari hasil perhitungan RPN dengan metode FMEA didapatkan 3 potensi risiko RPN tertinggi, namun perusahaan juga dapat melakukan usulan perbaikan pada non prioritas potensi risiko dengan skala risiko sedang sampai sangat rendah. Usulan perbaikan non prioritas risiko diberikan untuk menambah penurunan risiko selain risiko prioritas berdasarkan perhitungan RPN menggunakan metode FMEA. Dalam menentukan usulan perbaikan untuk setiap potensi risiko pada kelompok kerja *Buffing Panel* GP menggunakan berbagai pertimbangan antara lain melakukan observasi langsung pada saat dilapangan, pendapat *expert* dan beberapa referensi dari literasi seperti jurnal. Usulan perbaikan yang dilakukan menggunakan 5W+ 1H terhadap faktor-faktor penyebab cacat dari potensi risiko dengan level risiko sedang sampai sangat rendah. Berikut merupakan usulan perbaikan atau penanganan terhadap faktor-faktor penyebab cacat yang terjadi kelompok kerja *Buffing Panel* GP.

1. Faktor Manusia

Usulan perbaikan pada faktor manusia bertujuan mengurangi produk *defect* pecah yang disebabkan oleh faktor manusia. Usulan perbaikan yang dilakukan yaitu mengadakan pelatihan ataupun *training* untuk meningkatkan keahlian kerja dan meningkatkan pengawasan terhadap operator dalam melakukan proses *buffing* serta memberikan SOP guna meningkatkan kesadaran pada operator itu sendiri.

2. Faktor Mesin

Usulan perbaikan pada faktor mesin bertujuan mengurangi produk *defect* pecah yang disebabkan oleh faktor mesin. Usulan perbaikan yang dilakukan yaitu melakukan penjadwalan terkait perawatan terkait mesin pada proses *buffing* dan melakukan pergantian komponen mesin yang sudah tidak dapat dipakai kembali serta memberikan SOP terkait kelengkapan mesin untuk mengurangi produk *defect*

3. Faktor Metode

Usulan perbaikan pada faktor metode bertujuan mengurangi produk *defect* pecah yang disebabkan oleh faktor metode. Usulan perbaikan yang dilakukan yaitu memberikan standar

pengaturan tekanan terkait proses *buffing* pada mesin *Level Buff Auto* dan memberikan SOP terkait ketentuan proses *buffing* pada mesin *Ryoto buff*

4. Faktor Material

Usulan perbaikan pada faktor material bertujuan mengurangi produk *defect* pecah yang disebabkan oleh faktor material. Usulan perbaikan yang dilakukan yaitu memberikan pemahaman dan pelatihan terhadap operator terkait kabinet yang datang pada proses sebelumnya dan memberikan standar toleransi pada saat kabinet masuk pada kelompok kerja *Buffing Panel* GP

5. Faktor Lingkungan

Usulan perbaikan pada faktor lingkungan bertujuan mengurangi produk *defect* pecah yang disebabkan oleh faktor lingkungan. Usulan perbaikan yang dilakukan yaitu memberikan kaizen terkait kebersihan lingkungan untuk mengurangi debu pada saat proses *buffing* pada kelompok kerja *Buffing Panel GP*

BAB VI KESIMPULAN

6.1 Kesimpulan

Dampak kerugian terbesar didapatkan melalui perhitungan dengan menggunakan metode *value at risk* dengan rentang waktu sebanyak 6 bulan (Juli 2020 - Desember 2020) yang disebabkan oleh *defect* pecah sebesar \$10.4, sedangkan untuk *defect* muke mentory yang disebabkan oleh *defect* muke mentory sebesar \$1.6. Angka tersebut menunjukan bahwa dengan tingkat kepercayaan sebesar 95 persen dampak kerugian maksimal yang dialami oleh kelompok kerja *buffing panel GP*. Selain itu kerugian yang didapatkan juga terdapat kemungkinan lebih besar dari hasil VaR tersebut. Kemungkinan terjadinya kerugian diatas \$10.5 pada *defect* pecah adalah sebesar 5 persen dan kemungkinan terjadinya kerugian diatas \$1.6 pada *defect* muke mentory adalah sebesar 5 persen

Potensi risiko tertinggi yang terjadi didapatkan berdasarkan perhitungan metode FMEA, terdapat 3 potensi risiko dengan hasil RPN terbesar dengan skala kategori sangat tinggi antara lain, potensi risiko peletakan kabinet saat *buffing* pada proses *Ryoto Buff* yang tidak baik dengan hasil RPN sebesar 392, potensi risiko meletakan kabinet diatas *stopper* atau tidak sesuai dengan ketentuan pada meja mesin *Level Buff Auto* saat proses *buffing* dengan hasil RPN sebesar 280, potensi risiko *cover* rak terkelupas dengan hasil RPN sebesar 252 potensi risiko meletakan kabinet diatas *stopper* atau tidak sesuai dengan ketentuan pada meja mesin *Level Buff Auto* saat proses *buffing* dengan hasil RPN sebesar 280 dan potensi risiko meletakan kabinet bertumpuk sehingga menimbulkan risiko *defect* pecah dengan hasil RPN sebesar 180.

Usulan perbaikan berdasarkan potensi risiko tertinggi didapatkan berdasarkan analisis five why's antara lain; menempelkan gambar pejuntuk posisi yang benar saat melakukan proses buffing dan peletakan kabinet pada saat pemberian wax yang benar, melakukan pengecekan secara berkala setiap selesai melakukan pengecatan tambalan pada kabinet agar rak tidak terkena cat yang mengering, melakukan pembersihan dan pengecekan pada rak secara rutin, melakukan pengecekan pemasangan kabinet pada stopper secara benar sebelum proses buffing berlangsung secara berkala merubah warna yang terang pada stopper agar operator lebih peka dengan pemasangan kabinet di meja Level Buff Auto

6.2 Saran

Berikut merupakan beberapa saran yang dapat diberikan kepada perusahaan terkait penelitian ini:

- 1. Menerapkan program kaizen yang terfokus kepada pengurungan *defect* pada kelompok kerja *Buffing Panel* GP pada setiap kabinet sehingga dapat dianalisis secara menyeluruh untuk menemukan penyebab pada setiap *defect* yang terjadi
- 2. Perusahaan perlu melakukan kontrol secara rutin terhadap usaha mitigasi yang diimplementasikan pada kelompok kerja *Buffing Panel* GP agar tidak menimbulkan kerugian yang lebih banyak.

DAFTAR PUSTAKA

- Agyl, A., & Singgih, M. (2019). Risk Defect On Du Base Frame Product. *Iptek Journal Of Proceedings*, 390-395.
- Bujna, M., Kotus, M., & Matusevoka, E. (2019). Using The Dematel Model For The Fmea Risk Analysis. *Production Engineering*, 550-557.
- Christian, E., Kandlikar, M., & Ramachandran, G. (2016). *Using Expert Judgment For Risk Assessment*. Canada: Elsevier Inc.
- Dei, K., Dharmayanti, C., & Jaya, N. (2017). Analisis Risiko Dalam Aliran Supply Chain Pada Proyek Konstruksi Gedung Di Bali. *Jurnal Spektran*, 1-87.
- Dewi, N., Mulyani, S., & Arnata, I. (2016). Pengendalian Kualitas Atribut Kemasan Menggunakan Metode Failure Mode Effect Analysis (FMEA) Pada Proses Produksi Air Minum Dalam Kemasan. *Jurnal Rekayasa Dan Manajemen Agroindustri*, 149-160.
- Dunford, R., Su, Q., & Tamang, E. (2014). The Pareto Principle. *The Plymouth Student Scientist*.
- Elton, E. J., & Gruber, M. J. (1995). *Modern Portfolio Theory And Investment*. New York: John Wiley & Sons Inc.
- Hariastuti, N. P. (2015). Analisis Pengendalian Mutu Produk Guna Meminimalisasi Produk Cacat. *Seminar Nasional Ienaco*, 268-275.
- Helmi, Y. (2016). Pengaruh Biaya Mutu Terhadap Produk Cacat Pada Cv. Reva Jaya Pratama Pekanbaru. *Jurnal Mahasiswa Prodi Akuntansi Fakultas Ekonomi*, 1-10.
- Hora, S. (2009). Expert Judgment In Risk Analysis. Hilo: University Of Hawaii.
- Immawan, T., Sutrisno, W., & Rachman, A. (2017). Operational Risk Analysis With Fuzzy Fmea (Failure Mode And Effect Analysis) Approach (Case Study: Optimus Creative Bandung). *Icet4sd*, 1-8.
- Immawan, T., Sutrisno, W., & Rachman, A. K. (2017). Operational Risk Analysis With Fuzzy Fmea (Failure Mode And Effect Analysis) Approach (Case Study: Optimus Creative Bandung). *Icet4sd*, 1-8.

- Immawan, T., Sutrisno, W., & Rachman, A. K. (N.D.). Operational Risk Analysis With Fuzzy Fmea (Failure Mode And Effect Analysis) Approach (Case Study: Optimus Creative Bandung.
- Indira, A., & Trimo, L. (2021). Analisis Risiko Produksi Stroberi Dengan Metode Z-Score Dan Value At Risk Pada Cv. Bumi Agro Technology, Jawa Barat. *Jurnal Pemikiran Masyarakat Ilmiah Berwawasan Agribisnis*, 331-351.
- Kountur, R. (2006). Manajemen Risiko. Jakarta: Abdi Tandur.
- Kountur, R. (2008). Mudah Memahami Manajemen Risiko Perusahaan. Jakarta: Penerbit PPM.
- Lestari, S., Septiyana, D., & Yuniawati, W. (2020). Identifikasi Masalah Defect Dengan Metode Fuzzy Fmea Pada Produksi Toyota Hi-Ace Di Pt. Eds Manufacturing Indonesia. *Jurnal Teknik Industri*, 167-174.
- Meyer, & Booker. (1991). Eliciting And Analyzing Expert Judgment: A Practical Guide. London: Academic Press Limited.
- Mzougui, I. (2019). Proposition Of A Modified Fmea To Improve Reliability Of Product. *Procedia Cirp* 84, 1003-1009.
- Mzougui, I., & Felsoufi, Z. (2019). Proposition Of A Modified Fmea To Improve Reliability Of Product. *Procedia Cirp* 84, 1003-1009.
- Mzougui, I., & Felsoufi, Z. (2019). Proposition Of A Modified Fmea To Improve Reliability Of Product. *Procedia Cirp84*, 1003-1009.
- Nugraha, I., Wastra, A., & Ichdayati, L. (2017). Strategi Penanganan Risiko Operasional Pemasaran Produk Teh Celup Hijau Walini Pada Industri Hilir Teh Pt Perkebunan Nusantara Viii, Bandung, Jawa Barat. *Jurnal Agribisnis*, 100-115.
- Nurbudiati, K., & Wulandari, E. (2020). The Risk And Strategies Of Potato Production In Garut, Indonesia. *Journal Of Sustainable Agriculture*, 191-202.
- Ouyang, L., Zhu, Y., Zheng, W., & Yan, L. (2021). An Information Fusion Fmea Method To Assess The Risk Of Healthcare Waste. *Journal Of Management Science And Engineering*, 111-124.
- Pareto, V. (1897). Cours D'economie Politique Profess A l'universite De Lausanne.

- Prawirosentono, S. (2004). Filosofi Baru Tentang Manajemen Mutu Terpadu. *Total Quality Management Abad 21*.
- Robison, L. J., & Barry, P. J. (1987). *The Competitive Firm's Response To Risk.* London: Macmillan Publisher.
- Rohani , Q., & Suhartini. (2021). Analisis Kecelakaan Kerja Dengan Menggunakan Metode Risk Priority Number, Diagram Pareto, Fishbone, Dan Five Why's Analysis. *Jurusan Teknik Industri*, 136-143.
- S, A., & Singgih, M. (2019). Risk Defect On Du Base Frame Product. *Journal Of Proceedings Series*, 390-395.
- Saragih, I., Chalil, D., & Ayu, S. (2018). Analisis Risiko Produksi Padi Dalam Pengembangan Asuransi Usahatani Padi (Autp) Di Desa Panca Arga, Kecamatan Rawang Panca Arga, Kabupaten Asahan. *Jurnal Agrisep*, 187-196.
- Sigit, K. N., & Soliha, E. (2017). Kualitas Produk Dan Kualitas Layanan Terhadap Kepuasan Dan Loyalitas Nasabah. *Jurnal Keuangan Dan Perbankan*, 157-168.
- Subriadi, A., & Najwa, N. (2020). The Consistency Analysis Of Failure Mode And Effect Analysis (Fmea). *Heliyon*, 1-12.
- Tsai, S.-B., Zhou, J., Gao, Y., Wang, J., Li, G., Zheng, Y., . . . Xu, W. (2017). Combining Fmea With Dematel Models To Solve Production Process Problems. *Journal Of Management Science And Engineering*, 1-15.
- Ula, L., Suyastiri, N., & Utami, H. (2019). Analisis Risiko Produksi Daun Teh Basah Berdasarkan Pemetikan Mekanik Dan Manual Pada Pt Perkebunan Nusantara Ix Kebun Semugih Kabupaten Pemalang. *Jurnal Dinamika Sosial Ekonomi*, 81-95.
- Wijaya, R. A., & Hakim, A. R. (2018). Perancangan Perangkat Audit Internal Untuk Sistem Keamanan Informasi Pada Organisasi Xyz. *Jurnal Teknologi Informasi Dan Ilmu Komputer*, 435-442.
- Yang, Z., Bonsall, S., & Wang, J. (2008). Fuzzy Rule-Based Bayesian Reasoning Approach For Prioritization Of Failures In Fmea. *Ieee Trans Reliab.*, *3*(57), 517-528.

Yulianti, F., Sukiyono, K., & Utama, S. (2019). Manajemen Risiko Usaha Penangkapan Ikan Laut Dengan Alat Tangkap Gillnet Di Pulau Baai, Kota Bengkulu. *Jurnal Sosial Ekonomi Kelautan Dan Perikanan*, 133-144.

LAMPIRAN

Lampiran 1. Kuesioner FMEA

Nama :

Jenis Kelamin:

Jabatan :

Lama Bekerja :

Kuesioner ini akan digunakan untuk menghitung tiga kriteria yang digunakan dalam penelitian ini untuk mencari nilai *Risk Priority Number*, yang terdiri atas :

• Kriteria Severity : Tingkat Keparahan dari Kegagalan yang ditimbulkan

• Kriteria Occurrence : Frekuensi kemungkinan terjadinya penyebab kegagalan

• Kriteria Detectability : Pengontrolan deteksi terjadinya kegagalan

Berikut daftar untuk mengisi kuesioner FMEA

- 1. Dari mode kegagalan yang terjadi, seberapa parah akibat yang ditimbulkan (*severity*) terhadap kabinet pada kelompok kerja *Buffing Panel* GP?
- 2. Dari mode kegagalan yang terjadi, seberapa sering (*occurence*) hal tersebut dapat menyebabkan muke permukaan pada kabinet pada kelompok kerja *Buffing Panel* GP?
- 3. Dari mode kegagalan yang terjadi, seberapa jauh (*detection*) penyebab kegagalan pada kabinet pada kelompok kerja *Buffing Panel* GP?

Skala penilaian untuk mengisi kriteria yang digunakan adalah sebagai berikut:

Severity

Rating	Kriteria
1	Negligible severity (Pengaruh buruk yang dapat diabaikan) kita tidak perlu
	memikirkan bahwa akibat ini akan berdampak pada kinerja produk. Konsumen
	mungkin tidak akan memperhatikan kecacatan ini
2,3	Mild severity (Pengaruh buruk yang ringan). Akibat yang ditimbulkan akan
	bersifat ringan, konsumen tidak akan merasakan perubahan kinerja. Perbaikan
	dapat dikerjakan pada saat pemeliharaan reguler.
4,5,6	Moderate severity (Pengaruh buruk yang moderate). Konsumen akan
	merasakan penurunan kualitas, namun masih dalam batas toleransi. Perbaikan
	yang dilakukan
	tidak mahal dan dapat selesai dalam waktu singkat.
7,8	High severity (Pengaruh buruk yang tinggi). Konsumen akan merasakan
	penurunan kualitas yang berada diluar batas toleransi. Perbaikan yang dilakukan
	sangat mahal
9,10	Potential severity (Pengaruh buruk yang sangat tinggi). akibat yang
	ditimbulkan sangan berpengaruh terhadap kualitas lain, konsumen tidak akan
	menerimanya

Occurrence

Ranking	Kriteria	kejadian
1	Tidak mungkin penyebab ini mengakibatkan Kegagalan	1/1000000
2	Kegagalan akan jarang terjadi	1/200000
3	Regagaran akan jarang terjaur	1/40000
4	w _ 2/1/1/6. w 2/1/10. //	1/10000
5	Kegagalan agak mungkin terjadi	1/4000
6		1/80
7	Kegagalan sangat mungkin terjadi	1/40
8	Regagaian sangat mungkin terjadi	1/20
9	Hampir dapat dipastikan bahwa kegagalan akan mungkin terjadi	1/8
10	- Hampii dapat dipastikan banwa kegagaian akan mungkin terjadi	1/2

Detectability

Rating	Kriteria
1	Metode Pencegahan atau deteksi sangat efektif. Tidak ada kesempatan bahwa
	penyebab akan muncul lagi.
2,3	Kemungkinan bahwa penyebab itu terjadi adalah sangat rendah.
4,5,6	Kemungkinan penyebab bersifat <i>moderate</i> . Metode deteksi masih memungkinkan
	kadang-kadang penyebab itu terjadi.
7,8	Kemungkinan bahwa penyebab itu masih tinggi. Metode deteksi kurang efektif,
	karena penyebab masih berulang lagi.
9,10	Kemungkinan bahwa penyebab itu terjadi sangat tinggi

Beri penilaian pada pertanyaan yang tersaji pada nilai *severity, occurrence*, dan *detectability* untuk setiap mode kegagalan dibawah.

Defect	No	Potential Risk	S	О	D			
Pecah	1	Rak kotor terdapat bekas cat tambalan yang mengering sehingga menimbulkan risiko <i>defect</i> pecah						
	2	Kebersihan dari lingkungan kelompok kerja <i>buffing Panel GP</i> sehingga menimbulkan risiko <i>defect</i> pecah						
	3 Cover rak terkelupas sehingga menimbulkan risiko defect pecah							
	4	Tidak terdapat <i>bumper</i> pada rak sehingga pada peletakan kabinet menimbulkan risiko <i>defect</i> pecah						
	5	Cover atau masking pada pertemuan sudut terdapat celah sehingga menimbulkan risiko defect pecah						
	6	Kabinet melengkung yang berasal dari proses sebelumnya yang berdampak kabinet terpental pada saat proses <i>buffing</i> sehingga menimbulkan risiko <i>defect</i> pecah						

	7	Pada mesin Level Buff Auto pengaturan press/tekanan terlalu	
		tinggi sehingga menimbulkan risiko defect pecah pada kabinet	
		Fallboard	
	8	Putaran pada mesin <i>Ryoto Buff</i> terlalu cepat sehingga menimbulkan risiko <i>defect</i> pecah	
	9	Tidak terdapat <i>cover</i> pada mesin <i>Ryoto Buff</i> sehingga menimbulkan risiko <i>defect</i> pecah	
	10	Stopper pada mesin <i>Level Buff Auto</i> sudah aus yang berdampak kabinet tidak dapat tertahan pada proses <i>buffing</i> dan terpental sehingga menimbulkan risiko <i>defect</i> pecah	
	11	Peletakan kabinet saat proses <i>buffing</i> pada mesin <i>Ryoto Buff</i> yang tidak baik sehingga menimbulkan risiko <i>defect</i> pecah	
_	12	Operator kelelahan saat proses <i>buffing</i> pada mesin yang berdampak kabinet terpental sehingga menimbulkan risiko <i>defect</i> pecah	
	13	Meletakan kabinet bertumpuk pada rak sehingga menimbulkan risiko <i>defect</i> pecah	
	14	Meletakan kabinet diatas <i>stopper</i> atau tidak sesuai dengan ketentuan pada meja mesin <i>Level Buff Auto</i> saat proses <i>buffing</i> yang berdampak kabinet terpenta sehingga menimbulkan risiko <i>defect</i> pecah	

Lampiran 2. Hasil Rekapitulasi VaR

			G	В	$_{\perp}$ A	ÅΛ	UF			PPR	Total	
Nama Kabinet	Defect	PE	PM/PAW	PWH	Total	PE	PM/PAW	PWH	Total	PE	Perbulan	
	Pecah	1	0	0	1	0	0	0	0	1	2	
	Muke mentory	1	0	0	1	0	0	0	0	3	4	
Juli	Biaya tambal, sanding dan buffing	0.18	0.18	0.18	0.18	0.18	0.18	0.18	0.18	0.18	0.54	
	Cost pecah	0.18	0	0	0.18	0	0	0	0	0.18	0.36	
	Cost muke mentory	0.18	0	0	0.18	0	0	0	0	0.54	0.72	
	Pecah	0	0	0	0	0	0	0	0	11	11	
	Muke mentory	2	0	0	2	0	0	0	0	2	4	
Agustus	Biaya tambal, sanding dan buffing	0.18	0.18	0.18	0.18	0.18	0.18	0.18	0.18	0.18		
	Cost pecah	0	0	0	0	0	0	0	0	1.98	1.98	
	Cost muke mentory	0.36	0	0	0.36	0	0	0	0	0.36	0.72	
G 4 1	Pecah	2	0	0	2	0	0	0	0	18	20	
September	Muke mentory	0	0	0	0	0	0	0	0	11	11	

	Biaya tambal,	0.18	0.18	0.18	0.18	0.18	0.18	0.18	0.18	0.18	0.54
	sanding dan										
	buffing				\wedge	A A					
	Cost pecah	0.36	0	0	0.36	0	0	0	0	3.24	3.6
	Cost muke	0	0	0	0	0	0	0	0	1.98	1.98
	mentory						7				
	Pecah	1	0	0	1	2	0	0	2	18	21
	Muke mentory	0	0	0	0	0	0	0	0	4	4
	Biaya tambal,	0.18	0.18	0.18	0.18	0.18	0.18	0.18	0.18	0.18	0.54
Oktober	sanding dan		N .								
OKTOBEL	buffing										
	Cost pecah	0.18	0	0	0.18	0.36	0	0	0.36	3.24	3.78
	Cost muke	0	0	0	0	0	0	0	0	0.72	0.72
	mentory										
	Pecah	3	0	0	3	3	0	0	3	44	50
	Muke mentory	1	0	0	1	1	0	0	1	3	5
	Biaya tambal,	0.18	0.18	0.18	0.18	0.18	0.18	0.18	0.18	0.18	0
November	sanding dan										
November	buffing										
	Cost pecah	0.54	0	0	0.54	0.54	0	0	0.54	7.92	9
	Cost muke	0.18	0	0	0.18	0.18	0	0	0.18	0.54	0.9
	mentory		لىلى	ШИ	المائ		1524				
Desember	Pecah	7	0	0	7	2	0	1	3	51	61
Describer	Muke mentory	0	0	0	0	1	0	1	2	9	11

	Biaya tambal,	0.18	0.18	0.18	0.18	0.18	0.18	0.18	0.18	0.18	0.18
	sanding dan										
	buffing			V	\wedge	A A					
	Cost pecah	1.26	0	0	1.26	0.36	0	0.18	0.54	9.18	10.98
	Cost muke	0	0	0	0	0.18	0	0.18	0.36	1.62	1.98
	mentory						7				
	Pecah	14	0	0	14	7	0	1	8	143	165
	Muke mentory	4	0	0	4	2	0	1	3	32	39
	Biaya tambal,	0.18	0.18	0.18	0.18	0.18	0.18	0.18	0.18	0.18	0.18
TOTAL	sanding dan		\cap								
IOIAL	buffing										
	Cost pecah	2.52	0	0	2.52	1.26	0	0.18	1.44	25.74	29.7
	Cost muke	0.72	0	0	0.72	0.36	0	0.18	0.54	5.76	7.02
	mentory										

Lampiran 3. Hasil Rekapitulasi FMEA

	Kode Risiko	ode Foreman				Kepala			Kepala			Rata-rata		
Defect		Risiko			Kelompok 1			Kelompok 2						
		S	О	D	S	О	D	S	О	D	S	О	D	
	R1	6	6	3	3	5	6	4	3	1	4	5	3	
	R2	4	7	1	2	4	5	3	1	3	3	4	3	
	R3	6	6	6	5	7	7	7	5	9	6	6	7	
	R4	4	8	7	4	6	4	2	2	4	3	5	5	
	R5	4	2	3	3	7	5	3	7	10	3	5	6	
	R6	8	8	8	7	6	7	10	10	10	8	8	8	
	R7	4	4	3	2	5	6	5	7	6	4	5	5	
Pecah	R8	6	3	3	4	6	7	1	3	4	4	4	5	
	R9	7	5	6	2	5	6	3	4	6	4	5	6	
	R10	5	4	6	5	8	7	6	8	9	5	7	7	
	R11	5	7	7	9	7	8	6	10	7	7	8	7	
	R12	4	4	3	2	5	6	2	7	3	3	5	4	
	R13	5	5	6	5	5	7	1	3	4	4	4	6	
	R14	8	7	7	7	8	7	5	10	2	7	8	5	

Lampiran 4. Hasil Rekapitulasi Five Why's analysis

No	Potential Risk	Why 1	Why 2	Why 3	Why 4	Why 5
1	Peletakan kabinet saat	Operator tidak	Operator belum	Operator belum	Operator belum	Operator kurang
	buffing pada proses Ryoto	memperhatikan	terbiasa dalam	memiliki	memiliki jam	dalam pelatihan
	Buff yang tidak baik	sudut kabinet saat	melakukan	pengalaman	kerja yang	sehingga masih
		meletakan kabinet	proses buffing	yang cukup	cukup	dalam tahap
		pada proses buffing	pada mesin			beradaptasi
			Ryoto Buff			
2	Cover rak terkelupas	Cover rak dalam	Cover rak	Kabinet masih	Pengeringan cat	Operator tidak teliti
		kondisi yang kering	memiliki sisa cat	dalam keadaan	pada kabinet	dengan kondisi
				cat yang basah	belum maksimal	kabinet
3	meletakan kabinet diatas	Pemasangan posisi	Pemasangan	Kurangnya	Operator tidak	Operator tidak teliti
	stopper atau tidak sesuai	kabinet pada	tidak sesuai	pengecekan	memperhatikan	dengan kondisi
	dengan ketentuan pada meja	stopper tidak	dengan SOP	pada tiap kabinet	posisi stopper	kabinet
	mesin Level Buff Auto saat	maksimal			pada saat	
	proses buffing?				meletakan	
		الساعة	(((4, 3)))	((1)	kabinet	