PENERAPAN ALGORITMA GENETIKA UNTUK MENENTUKAN RUTE DISTRIBUSI DAN MINIMASI TOTAL COST MENGGUNAKAN DISTRIBUTION REQUIREMENT PLANNING

(Studi Kasus pada PT. Amgo Mandiri, Gorontalo, Provinsi Gorontalo)

TUGAS AKHIR

Diajukan Sebagai Salah Satu Syarat Untuk Memperoleh Gelar Sarjana Strata-1

Disusun Oleh:

Nama : Abdullah Suweleh

No. Mahasiswa : 07522181

PROGRAM STUDI TEKNIK INDUSTRI FAKULTAS TEKNOLOGI INDUSTRI UNIVERSITAS ISLAM INDONESIA YOGYAKARTA

2012

LEMBAR PENGAKUAN

Demi Allah, saya akui karya ini adalah hasil kerja saya sendiri kecuali nukilan dan ringkasan yang setiap satunya telah saya jelaskan sumbernya. Jika dikemudian hari ternyata terbukti pengakuan ini tidak benar dan melanggar peraturan yang sah dalam karya tulis dan hak intelektual, saya bersedia ijazah yang telah saya terima untuk ditarik kembali oleh Universitas Islam Indonesia.

Yogyakarta, Januari 2012

Abdullah Suweleh

SURAT KETERANGAN DARI PERUSAHAAN

PT. Amgo Mandiri Jl. Raja Eyato No. 45 Kota Gorontalo Prov. Gorontalo ☎ (0435) 831 465 / (0435) 831 458

SURAT KETERANGAN

Yang bertanda tangan dibawah ini pimpinan dari PT. Amgo Mandiri, Menerangkan :

Nama

: Abdullah Suweleh

NIM

: 07522181

Jurusan

: Teknik Industri

Fakultas

: Teknologi Industri, Universitas Islam Indonesia

Dengan ini kami beritahukan bahwa yang bersangkutan telah melakukan penelitian laporan tugas akhir diperusahaan kami periode bulan agustus 2011. Demikian surat ini kami buat, agar dapat digunakan sebagaimana mestinya

Gorontalo, September 2011

LEMBAR PENGESAHAN

PENERAPAN ALGORITMA GENETIKA UNTUK MENENTUKAN RUTE DISTRIBUSI DAN MINIMASI TOTAL COST MENGGUNAKAN DISTRIBUTION REQUIREMENT PLANNING

(Studi Kasus pada PT. Amgo Mandiri, Gorontalo, Provinsi Gorontalo)

Oleh:
Nama : Abdullah Suweleh
No Mahasiswa : 07 522 181
Yogyakarta, 02 Januari 2012

Pembimbing,

Ir. Ali Parkhan. MT

LEMBAR PENGESAHAN PENGUJI

PENERAPAN ALGORITMA GENETIKA UNTUK MENENTUKAN RUTE DISTRIBUSI DAN MINIMASI TOTAL COST MENGGUNAKAN DISTRIBUTION REQUIREMENT PLANNING

TUGAS AKHIR

Oleh:

Abdullah Suweleh

No. Mahasiswa: 07 522 181

Telah Dipertahankan di Depan Sidang Penguji sebagai Salah Satu Syarat untuk Memperoleh Gelar Sarjana Teknik Industri Fakultas Teknologi Industri Universitas Islam Indonesia Yogyakarta, 2 Januari 2012

Tim Penguji

Ir. Ali Parkhan, MT

Ketua

Prof. Dr. Ir. Hari Purnomo, MT

Anggota I

Sri Indrawati, ST., M.Eng

Anggota II

Mengetahui,

Ketua Jurusan Teknik Industri Universitas Islam Indonesia

Drs. H. M. Ibnu Mastur, MSIE

PERSEMBAHAN

Ku persembahkan karya kecilku ini teruntuk:

Kepada ibuku (**Muzna Suweleh**) yang telah mengajarkan keseimbangan dalam diriku. kesungguhan, ketekunan, kesabaran, dan cara mencintai makhluk yang menjadikanku merasa bersyukur diantara kelebihan dan kekuranganku yang tetap membuatku ingat untuk selalu menunduk dihadapan – Nya

Kakak ku (Lutviah Suweleh)

yang selalu menunjukkan arti semangat dalam menjalani hidup dan kasih sayang terhadap sesama umat manusia di muka bumi.

- Motto -

إِنَّ مَعَ ٱلْعُسُرِ يُسُرًا ۞ فَإِذَا فَرَغُتَ فَأَنصَبُ ۞ وَإِلَىٰ رَبِّكَ فَأَرُغَب ۞

"Sesungguhnya bersama kesulitan ada kemudahan. Maka apabila engkau telah selesai (dari suatu urusan), tetaplah bekerja keras (untuk urusan yang lain). Dan hanya pada Tuhan-mulah engkau berharap"

QS: Al-Insyirah (94): 6-8

وَلَوُ أَنَّمَا فِي ٱلْأَرُضِ مِن شَجَرَةٍ أَقُلَدمُّ وَٱلْبَحُرُ يَمُدُّهُ مِنْ بَعُدِهِ عَسَبُعَةُ أَبْحُرٍ مَّا نَفِدَتُ كَلِمَتُ ٱللَّهِ إِنَّ ٱللَّهَ عَزِيزٌ حَكِيمٌ ۞

"Dan seandainya pohon-pohon di bumi menjadi pena dan lautan (menjadi tinta), ditambahkan kepadanya tujuh lautan (lagi) setelah (kering)nya, niscaya tidak akan habishabisnya (dituliskan) kalimat-kalimat Allah. Sesungguhnya Allah Maha Perkasa, Maha

Bijaksana

QS: Luqman (31): 27

قل بما شئت في مسبة عرضي فسكوتي عند اللئيم جواب ما أنا عادم الجواب ولكن ما من الأسد أن تجيب الكلاب Berkatalah sekehendakmu untuk menghina kehormatanku diamku dari orang hina adalah suatu jawaban Bukanlah artinya aku tidak punya jawaban, tetapi Tidak pantas bagi seekor singa meladeni anjing-anjing (Diwan asy-Syafi'i hal. 44, tahqiq DR. Imil Badi' Ya'qub)

KATA PENGANTAR

Assalamu'alaikum Warohmatulloohi Wabarokaatuh

Segala puji dan syukur kami panjatkan kehadirat Allah SWT yang telah memberikan petunjuk dan karuniaNYA sehingga Penulis dapat menyelesaikan laporan Tugas Akhir yang berjudul "PENERAPAN ALGORITMA GENETIKA UNTUK MENENTUKAN RUTE DISTRIBUSI DAN MINIMASI *TOTAL COST* MENGGUNAKAN *DISTRIBUTION REQUIREMENT PLANNING* (Studi Kasus pada PT. Amgo Mandiri, Gorontalo, Provinsi Gorontalo)".

Maksud dan tujuan dari penyelesaian Tugas Akhir ini untuk memenuhi syarat guna memperoleh gelar Sarjana Teknik Jenjang Strata 1, Jurusan Teknik Industri, Fakultas Teknologi Industri, Universitas Islam Indonesia.

Kami banyak menemui kesulitan dan hambatan dalam menyelesaikan laporan ini, namun berkat bantuan dan bimbingan dari berbagai pihak, laporan Tugas Akhir ini dapat terwujud meskipun masih banyak kekurangan, untuk itu kami sangat berharap saran dan kritik yang sekiranya dapat menambah pengetahuan serta lebih menyempurnakan laporan ini.

Dalam kesempatan ini kami dengan segala ketulusan hati mengucapkan banyak terima kasih kepada:

- Bapak Ir. Gumbolo Hadi Susanto, M.Sc selaku Dekan Fakultas Teknologi Industri, Universitas Islam Indonesia.
- Bapak Drs. M. Ibnu Mastur, MSIE selaku Ketua Program Studi Teknik Industri, Fakultas Teknologi Industri, Universitas Islam Indonesia.

3. Bapak Ir.Ali Parkhan. MT., selaku Dosen Pembimbing yang telah memberikan

bimbingan dalam penyusunan laporan Laporan Tugas Akhir ini.

4. Kedua orang tua dan anggota keluargaku tercinta yang selalu memberikan

dukungan, semangat, pengorbanan, perhatian, kasih sayang, do'a serta nasehat

yang tak ada habisnya selama ini.

5. Prof. Dr. dr. Meita Tunjung Dewanti MPH. Sp.A, Andri, Anum, Meigy, Sita,

Topan, Mutiara, Zeanal, Adi, Anggrian serta segenap karyawan PT. Amgo

Mandiri yang telah banyak membantu dalam penyusunan laporan Tugas Akhir ini.

6. Semua pihak yang tidak dapat penulis sebutkan satu persatu, yang telah

memberikan banyak bantuan hingga terselesaikannya laporan Tugas Akhir ini.

Penulis menyadari bahwa tugas akhir ini masih jauh dari sempurna, walaupun

demikian penulis berharap semoga apa yang sudah penulis ketengahkan ini bisa

bermanfaat bagi semua pihak, dan semoga seluruh bantuan yang telah disumbangkan

kepada penulis dapat diterima Allah SWT sebagai amal sholeh dan dibalasnya dengan

pahala besar.

Wassalamu'alaikum Warohmatulloohi Wabarokaatuh

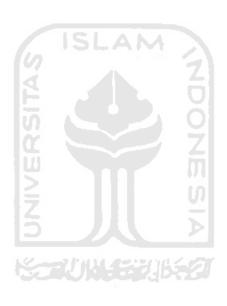
Jogjakarta, Januari 2012

Abdullah Suweleh

ix

DAFTAR ISI

HALAMAN JUDUL	i
LEMBAR PENGAKUAN	ii
SURAT KETERANGAN DARI PERUSAHAAN	iii
LEMBAR PENGESAHAN PEMBIMBING	iv
LEMBAR PENGESAHAN PENGUJI	v
HALAMAN PERSEMBAHAN	vi
HALAMAN MOTTO	vii
KATA PENGANTAR	viii
DAFTAR ISI	X
DAFTAR GAMBAR	xiv
DAFTAR TABEL	XV
TAKARIR	xvii
ABSTRAKSI	xviii
BAB I PENDAHULUAN	
1.1 Latar Belakang	1
1.2 Rumusan Masalah	4
1.3 Batasan Masalah	4
1.4 Tujuan Penelitian	5
1.5 Manfaat Penelitian	5
1.6 Sistematika Penulisan	6
BAB II LANDASAN TEORI	
2.1 Kajian Literatur	8
2.2 Biaya-biaya Dalam Persediaan	9
2.3 Distribusi	12
2.3.1 Konsep Dasar Distribusi	12
2.3.2 Manajemen Transportasi dan Distribusi	12

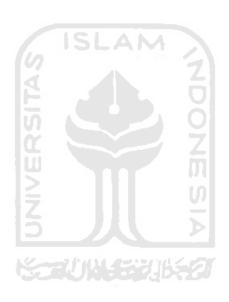

2.3.3 Fungsi-fungsi Dasar Manajemen Transportasi dan Distribusi	14
2.3.4 Struktur Jaringan Distribusi	18
2.3.5 Manajemen Persediaan Distribusi	20
2.3.6 Konsep Distribution Requirement Planning (DRP)	21
2.3.7 Prosedur Perhitungan DRP	22
2.4 Peramalan	25
2.4.1 Pengertian Peramalan	25
2.4.2 Pendekatan Peramalan	26
2.4.3 Pola Data Peramalan Time Series	27
2.4.4 Teknik-teknik Peramalan Dan Runtut Waktu	28
2.4.5 Keakuratan Peramalan	31
2.4.5 Keakuratan Peramalan	32
2.4.7 Safety Stock	41
2.5 Algoritma Genetika	43
2.5.1 Pengertian Algoritma Genetika	43
2.5.2 Teknik Penyandian	45
2.5.3 Pembangkitan Generasi Awal	46
2.5.4 Perhitungan Nilai Fitness	46
2.5.5 Pemilihan Seleksi Induk	47
2.5.6 Crossover (Perkawinan Silang)	47
2.5.7 Mutasi (Mutation)	51
2.5.8 Pembaharuan Generasi	52
BAB III METODOLOGI PENELITIAN	
3.1 Obyek Penelitian	54
3.4 Metode Pengumpulan Data	54
3.5 Data-data yang Dibutuhkan	55
3.6 Pengolahan Data	57
3.8 Diagram Alir Penelitian	60

DAD IV	PENGUMPULAN DAN PENGULAHAN DATA
4	4.1 Pengumpulan Data
	4.1.1 Sejarah Perusahaan Singkat
	4.1.2 Data Penjualan
	4.1.3 Data Persediaan
	4.1.4 Lead Time
	4.1.5 Biaya Simpan
	4.1.6 Biaya Pesan
	4.1.7 Bill Of Distribution
	4.1.8 Jarak Tempuh Antara Satu Titik Dengan Yang Lain
4	4.2 Pengolahan Data
	4.2.1 Peramalan Penjualan
	4.2.2 Hasil Peramalan Penjualan
	4.2.3 Rencana Induk Penjualan
	4.2.4 Perhitungan Safety Stock
	4.2.5 Distribution Requirement Planning
	4.2.6 Perhitungan Total Cost
	4.2.7 Algoritma Genetika
BAB V	PEMBAHASAN SEEDING SEE
	5.1 Pembahasan <i>Bill of Distribution</i> (BoD)
	5.2 Pembahasan Peramalan
4	5.3 Pembahasan Hasil Rencana Induk Penjualan
4	5.4 Pembahasan Teknik Lot Size
4	5.5 Pembahasan DRP
	5.6 Pembahasan Total Cost
4	5.7 Pembahasan Pemesanan
	5.8 Pembahasan Algoritma Genetika
	5.9 Pembahasan Rute dan Lokasi Pendistribusian

BAB VI KESIMPULAN DAN SARAN

6.1 Kesim	ıpulan	 . 108
6.2 Saran		 . 109

DAFTAR PUSTAKA LAMPIRAN


DAFTAR GAMBAR

Gambar 2.1 Pola Data	28			
Gambar 2.2 EOQ	33			
Gambar 2.3 Kurva Z Dengan Service Level 95%	42			
Gambar 2.4 Interaksi Antara Permintaan Dan Lead Time				
Pada Penentuan Safety Stock	42			
Gambar 3.1 Diagram Alir Proses Penelitian	60			
Gambar 4.1 <i>Bill of Distribution</i>	66			
Gambar 4.2 Peta Distribusi Awal	67			
Gambar 4.3 Pola Data Penjualan Di Gorontalo	67			
Gambar 4.4 Pola Data Penjualan Di Marisa	68			
Gambar 4.5 Pola Data Penjualan Di Moutong				
Gambar 4.6 Pola Data Penjualan Di Bintauna	69			
Gambar 4.7 Pola Data Penjualan Di Popayato	69			
Gambar 4.8 Pola Data Penjualan Di Paguyaman	70			
Gambar 4.9 Grafik Performansi Nilai Fitness Setiap Generasi	99			
Gambar 4.10 Hasil Penetuan Rute	100			
Gambar 4.2 Peta Distribusi Usulan	102			

DAFTAR TABEL

Tabel 2.1 Evaluasi Umum Berbagai Mode Transportasi	18
Tabel 4.1 Data Penjualan PT. Amgo Mandiri Mei-Juli	61
Tabel 4.2 Data Persediaan	62
Tabel 4.4 Data Jarak Tempuh Distribusi	65
Tabel 4.5 Akurasi Peramalan Untuk Wilayah Gorontalo	70
Tabel 4.6 Akurasi Peramalan Untuk Wilayah Marisa	70
Tabel 4.7 Akurasi Peramalan Untuk Wilayah Moutong	70
Tabel 4.8 Akurasi Peramalan Untuk Wilayah Bintauna	70
Tabel 4.9 Akurasi Peramalan Untuk Wilayah Popayato	71
Tabel 4.10 Akurasi Peramalan Untuk Wilayah Paguyaman	71
Tabel 4.11 Hasil Peramalan Data permintaan Air Minum	
Bulan Agustus – Oktober 2011	71
Tabel 4.12 Rencana Induk Penjualan	72
Tabel 4.13 Total Cost	82
Tabel 4.14 Matriks Jarak	83
Tabel 4.15 Populasi Awal	84
Tabel4.16 Nilai Fitness	85
Tabel 4.17 Fitness Kamulatif	85
Tabel 4.18 Bilangan Random Roda Rolet	87
Tabel 4.19 Hasil Seleksi Kromosom	88
Tabel 4.20 Bilangan Random Crossover	89
Tabel 4.21 Kromosom Crossover	90
Tabel 4.22 Populasi Baru	92
Tabel 4.23 Bilangan Random Mutasi	93
Tabel 4.24 Hasil Mutasi	94
Tabel 4.25 Hasil Iterasi Generasi 1	95
Tabel 4.26 Hasil Iterasi Generasi 10 (Mariks Semifinal)	95
Tabel 4.27 Hasil Iterasi Generasi 20 (Matriks Final)	96

Tabel4.28 Fitness Terbaik Setiap Generasi	96
Tabel 4.29 Perbandingan Desain Rute	99
Tabel 4 30 Desain Rute Minimal	90

TAKARIR

Supply Chain Management = Manajemen Rantai Pasok

Retail = Pengecer

Supply = Pemasok

Inventory = Persediaan

Lead Time = Tenggang Waktu

Forecasting = Peramalan

Safety Stock = Stok Pengaman

Lot = Ukuran Pemesanan

Crossover = Pindah Silang

Fitness = Nilai Sesuaian

Total Cost = Biaya Total

ABSTRAKSI

Semakin tingginya tingkat persaingan dalam dunia industri, menuntut perusahaan untuk dapat menghadapi persaingan secara baik dan siap dengan segala resiko yang akan dihadapi. Agar dapat memenuhi kebutuhan konsumen dalam pendistribusian, pihak manajemen persediaan menghitung ukuran lot size sendiri agar dapat menentukan jumlah produk serta waktu pemesanan dan pengiriman. Kurang optimalnya dalam penentuan rute distribusi yang berakibat terjadinya arus bolak balik yang tidak teratur maka memperpanjang rute pengiriman sehingga mengakibatkan keterlambatan dan dapat membuat biaya pengiriman semakin tinggi.

Penelitian ini dilakukan bertujuan untuk menentukan teknik lot size yang sesuai dengan kebijakan perusahaan agar mendapatkan total cost terkecil dan juga menentukan jarak tempuh minimum untuk setiap rute agar dapat menghemat biaya distribusi. Pemilihan teknik lot size yang terbaik dilakukan dengan melihat total cost yang paling rendah dan penyusunan rute distribusi ini diselesaikan dengan menggunakkan algoritma genetika.

Hasil penelitian menunjukkan bahwa teknik lot size yang sesuai adalah Least Unit Cost (LUC) yang dapat menghemat biaya hingga Rp. 31.995.556,- / 3 bulan, dan terdapat perubahan rute distribusi yang semula menempuh jarak total 1.248 km dapat diminimalkan menjadi 781 km dan dapat menghemat biaya distribusi sebesar Rp. 135.000 / siklus distribusi.

Kata Kunci : Distribusi dan transportasi, Algoritma Genetika, Least Unit Cost, Rute Distribusi

BAB I

PENDAHULUAN

1.1 Latar Belakang

Di era globalisasi sekarang ini persaingan perusahaan sudah tidak terjadi lagi dan sudah berubah menjadi persaingan *supply chain*. Salah satu faktor kesuksesan perusahaan sangat bergantung pada pengelolaan jaringan bisnisnya. Siklus hidup produk yang semakin kritis, daur hidup yang semakin pendek, ekonomi dunia, dan kemajuan teknologi memaksa harus lebih kompetitif dan menuntut secara tepat tempat dan tepat waktu (Zabidi, 2001).

Suatu perusahaan yang bekerjasama dengan distributornya sering menghadapi masalah tentang pendistribusian di kedua belah pihak. Untuk itu diperlukan suatu kebijakan produksi dan persediaan, untuk jenis-jenis item yang akan diproduksi dan disuplai oleh perusahaan, yang terkoordinasi diantara kedua belah pihak tersebut, tujuannya adalah memenuhi kebutuhan gabungan antara perusahaan dan distributornya, yang dalam hal ini terdiri dari biaya persiapan untuk menjalankan proses produksi pada perusahaan, biaya pemesanan pada distributor serta biaya transportasi pada perusahaan dan distributornya. Untuk menghitung total biaya gabungan tersebut akan didekati dengan dua buah model matematis (Schroeder, 2000). Menurut Sucky (2002) perusahaan harus

mengetahui jumlah permintaan dalam suatu periode tertentu, serta biaya transportasi dan biaya pesan dari distributor. Secara umum, model mengasumsikan bahwa data-data permintaan, rata-rata produksi dan biaya setup pada perusahaan serta biaya order pada distributor diketahui dan konstan. Sedangkan, biaya kekurangan persediaan tidak diperhitungkan.

Dalam pemenuhan kebutuhan produk ke distributor perusahaan sering mengalami permasalahan disebabkan pemilihan kendaraan yang tidak tepat, kurang optimalnya dalam penggunaan kendaraan dan berakibat terjadinya arus bolak balik yang tidak teratur maka memperpanjang rute pengiriman sehingga mengakibatkan keterlambatan dan dapat menambah biaya pengiriman. Pada umumnya penentuan rute distribusi dengan mempertimbangkan kepentingan antara pengguna dan operator, sehingga didapatkan rute optimal yang diharapkan memenuhi tujuan dan kepentingan pihak terkait. Dalam penentuan rute optimal harus mempertimbangkan alokasi sumber daya yang dimiliki tersebut sehingga tujuan penyedia jasa angkutan tercapai. Penentuan rute merupakan salah satu aktivitas penting dalam proses pendistribusian, proses penentuan rute yaitu pergerakan antara dua zona yang dibebankan pada rute tertentu yang terdiri dari jaringan distribusi. Penentuan rute menjadi salah satu dari banyak permasalahan yang ada dalam aktivitas pendistribusian (Lananza, 2007)

Travelling Salesmen Problem (TSP) adalah rumusan optimasi yang banyak digunakan bagi para peneliti karena TSP belum dapat menjamin hasil yang optimal dalam jangka waktu secara polynomial dan belum ada metode yang eksak (Syarif et al., 2007). Masalah dalam TSP merupakan masalah dimana seorang penjual atau distributoryang harus mengunjungi keseluruhan titik dalam satu siklus dan hanya dikunjungi satu kali dan

harus mulai dan berhenti di kota asal (Amin, et al., 1998). Algoritma harus memberikan hasil yang sesuai tujuan dalam waktu yang singkat dan penggunaannya harus efisien serta langkah dan prosedurnya dapat berjalan dengan lancar sehingga diperoleh suatu solusi bahkan sekalipun tidak ada solusi (Yulikuspartono, 2004 : 4)

Dalam penelitian ini bertujuan untuk meminimalisasi biaya persediaan, serta pengoptimalan rute untuk meminimalisasi jarak dan biaya transportasi.Oleh karena itu, perlu adanya kebijaksanaan dan kontrol dari perusahaan dalam perencanaan pengiriman produk agar persediaannya tidak terlalu besar jumlahnya sehingga dapat meminimasi biaya penyimpanan dan pemesanan.

Penentuan rute distribusi merupakan sebuah aktivitas dalam manajemen distribusi dan transportasi, proses penentuan rute yaitu perpindahan produk antara dua daerah atau lebih (yang didapat dari tahap sebaran pergerakan) yang dititik beratkan pada rute tertentu yang terdiri dari ruas jaringan jalan tertentu (armada).

PT. Amgo Mandiri merupakan perusahaan yang bergerak dibidang Air Minum Dalam Kemasan (AMDK) yang berfungsi sebagai penyuplai air minum bersih ke setiap retail outlet di daerah Sulawesi bagian utara dan tengah. Perusahaan ini memeliki peranan penting bagi masyarakat dalam kelangsungan kegiatan home industry. PT. Amgo Mandiri merupakan sebuah perusahaan yang terletak di Gorontalo, dimana perusahaan tersebut sedang mendifinisikan permasalahan dalam proses penetuan ukuran pemesanan dan proses distribusi terutama penentuan rute yang optimal. Kondisi penentuan ukuran pemesanan dan pemilihan rute dalam perusahaan ini dianggap tidak efisien karena minimnya pengetahuan para pekerja mengenai manajemen persediaan dan distribusi. Dalam penetuan rute distribusi yang dilakukan oleh PT. Amgo Mandiri hanya

berdasarkan pada pengalaman dan kebiasaan para pengemudi. Kondisi ini juga tentunya sangat merugikan jika tidak ditanggulangi dengan baik. Hal ini membuat penelititan kurang spesifik karena penelitian hanya menghitung berapa kuantitas produk yang harus dihasilkan untuk didistribusikan serta kapan waktu yang tepat untuk pendistribusian tanpa mempertimbangkan biaya transportasi yang ada sehingga bisa mengefisiensikan biayabiaya yang dikeluarkan perusahaan dan sesuai dengan permintaan dan kapasitas gudang. Belajar dari penelitian sebelumnya, maka penelitian kali ini difokuskan untuk melakukan optimasi perencanaan distribusi produk dan pemilihan metode transportasi yang lebih dispesifikasikan.

1.2 Rumusan Masalah

Berdasarkan latar belakang masalah diatas maka dapat ditentukan perumusan masalah antara lain sebagai berikut:

- 1. Berapa jumlah produk dan kapan melakukan pemesanan untuk memenuhi kebutuhan pada tiap lokasi ?
- 2. Bagaimana rute pendistribusian yang mampu memberikan jarak total yang minimum untuk distribusi produk ?

1.3 Batasan Masalah

Agar penelitian ini lebih terarah dan topik yang dibahas tidak meluas, maka perlu dilakukan pembatasan lingkup penelitian. Adapun pembatasan lingkup penelitian ini adalah:

1. Penelitian ini dilakukan di perusahaan PT. Amgo Mandiri

- 2. Perusahaan yang diteliti harus bersifat *make to stock* sehingga strategi penempatan produknya menggunakan strategi dorong (*pushed system*) sehingga konsep *Distribution Resource Planing* (DRP) dapat di aplikasikan.
- 3. Biaya yang digunakan dalam disribusi dan produksi produk dianggap tetap dan digunakan untuk periode mendatang dalam satu periode.
- 4. Data penjualan diperoleh data masa lampau selama 12 bulan.
- 5. Biaya biaya yang terkait dengan persediaan dan distribusi produk menggunakan biaya terkini.
- 6. Permasalahan TSP yang diambil adalah permasalahan penentuan rute satu siklus distribusi.

1.4 Tujuan Penelitian

Adapun tujuan diadakannya penelitian ini adalah sebagai berikut:

- Menentukkan kuantitas yang optimal dan waktu yang tepat pada pendistribusian produk untuk tiap lokasi distribusi pada periode yang akan datang.
- 2. Memperoleh rute distribusi produk dengan total jarak tempuh yang minimum.

1.5 Manfaat Penelitian

Dengan adanya penelitian ini dapat diambil beberapa manfaat sebagai berikut:

- 1. Dapat menekan biaya transportasi.
- 2. Dapat menentukkan berupa jumlah produk yang harus disimpan, dan yang harus dipesan sehingga dapat meminimalisasi biaya simpan dan biaya pesan.

- 3. Jalur distribusi yang optimal yang diperoleh akan memberikan biaya transportasi yang rendah bagi perusahaan.
- 4. Memberikan masukan pemikiran pemecahan masalah terhadap perusahaan terutama penerapan teknik perencanaan kebutuhan distribusi.
- 5. Bagi peneliti dan pembaca dapat menambah ilmu pengetahuan dan pengalaman terutama dalam hal teknik perencanaan distribusi yang optimal.

1.6 sistematika Penulisan

Agar penelitian ini mudah dimengerti dan memenuhi persyaratan, maka penulisan dibgi menjadi beberapa tahapan. Tahapan tersebut adalah :

BAB I PENDAHULUAN

Bab ini berisi pengantar pemasalahan yang akan dibahas seperti latar belakang masalah,rumusan masalah, batasan masalah, tujuan penelitian, manfaat penelitian, dan sistematika penulisan

BAB II LANDASAN TEORI

Bab ini berisi tinjauan hasil penelitian sebelumnya yang relevan dengan permasalahannya, landasan teori yang langsung mendukung pelaksanaan penelitian dan juga menjadi landasan/ pedoman dalam pembahasan pemecahan masalah yang berhubungan dengan analisis yang dilakukan.

BAB III METODOLOGI PENELITIAN

Bab ini mengandung uraian tentang bahan atau materi penelitian, objek penelitian, metode pengumpulan data, data-data yang dibutuhkan, metode pengolahan data, dan diagram alir penelitian.

BAB IV PENGUMPULAN DAN PENGOLAHAN DATA

Berisi uraian tenteng gambaran umum perusahaan data-data yang diperlukan dalam pemecahan masalah dan pengolahan data dari hasil penelitian.

BAB V PEMBAHASAN

Berisi pembahasan dari hasil perhitungan yang dilakukan

BAB VI KESIMPULAN DAN SARAN

Berisi kesimpulan dan saran-saran bagi perusahaan berdasarkan hasil penelitian yang diperoleh.

DAFTAR PUSTAKA

LAMPIRAN

BAB II

LANDASAN TEORI

2.1 Kajian Literatur

Menurut Tarigan (2006) dalam mendesain rute atau penjadwalan pengiriman dapat meminimalkan jarak tempuh yang akan berdampak pada biaya transportasi. Asumsi yang terpenting dalam penetuan rute adalah perusahaan harus mengetahui jumlah permintaan dalam satu periode pada masing-masing outlet, serta biaya transportasi dan biaya pesan dari masing-masing distributor. Kedua model mengasumsikan bahwa ratarata permintaan, rata-rata produksi dan biaya setup pada perusahaan serta biaya order pada distributor diketahui konstan, sedangkan biaya kekurangan persediaan tidak diperhitungkan (Sucky, 2002).

Dalam pemenuhan kebutuhan produk ke distributor perusahaan sering mengalami permasalahan yang disebabkan pemilihan kenderaan yang tidak tepat, kurang optimalnya dalam penggunaan kenderaan dan berakibat arus bolak-balik yang tidak teratur maka memperpanjang rute pengiriman sehingga mengakibatkan keterlambatan dan dapat menambah biaya pengiriman (Lananza, 2007). Sampai saat ini TSP masih merupakan masalah yang belum dapat diselesaikan dengan benar-benar optimal. Berbagai pendekatan telah dilakukan dengan berbagai sudut, namun masih belum dapat menyelesaikan masalah tersebut dengan optimal (Widhiyasa, 2006). Mitra

(2011) dalam skripsinya menyelesaikan kasus distribusi yang bertujuan untuk menentukan teknik lot size dan juga penentuan pengiriman yang dibutuhkan.

Menurut Bryant (2000) algoritma genetika merupakan sebuah teknik evolusi seperti pindah silang dan mutasi untuk memecahkan masalah optimasi. Hal ini biasanya berhasil digunakan dalam TSP. TSP dapat didefinisikan sebagai pencarian urutan kota yang harus dikunjungi yang meminimalkan total biaya dimana setiap kota hanya boleh dikunjungi maksimum satu kali, dan TSP memiliki ruang masalah yang sangat besar (Suyanto, 2007)

2.2 Biaya-Biaya Dalam Persediaan (Fogarty, 1991)

1. Biaya pembelian (*Purchasing Cost*)

Biaya pembelian (*purchasing cost*) dari suatu item adalah harga pembelian setiap unit item jika item tersebut berasal dari sumber-sumber eksternal, atau biaya produksi perunit bila item tersebut berasal dari internal perusahaan atau diproduksi sendiri oleh perusahaan.

2. Biaya pengadaan (*Procurement Cost*)

Biaya pengadaan dibedakan atas 2 jenis sesuai asal-usul barang, yaitu biaya pemesanan (*Ordering Cost*) bila barang yang diperlukan diperoleh dari pihak luar (*supplier*) dan biaya pembuatan (*setup cost*) bila barang diperoleh dengan produksi sendiri.

a. Biaya pemesanan (*Ordering Cost*) adalah semua pengeluaran yang timbul untuk mendatangkan barang dari luar. Biaya ini pada umumnya meliputi pemrosesan pesanan, biaya ekspedisi, biaya telepon, biaya administrasi, biaya

pengepakan, biaya penimbangan, biaya inspeksi, biaya pengiriman ke gudang dan lain-lain.

b. Biaya pembuatan (*Setup Cost*) adalah semua pengeluaran yang ditimbulkan untuk persiapan memproduksi barang. Biaya ini biasanya timbul didalam pabrik, yang meliputi biaya menyetel mesin, biaya mempersiapkan gambar benda kerja dan sebagainya.

3. Biaya penyimpanan (Carrying Cost)

Biaya penyimpanan adalah biaya yang timbul akibat disimpannya suatu item. Biaya penyimpanan terdiri atas biaya-biaya yang bervariasi secara langsung dengan kuantitas persediaan. Biaya-biaya yang termasuk sebagai biaya penyimpanan adalah sebagai berikut:

- a. Biaya Modal (*Cost Of Capital*). Adanya penumpukan barang dalam persediaan sama artinya dengan penumpukan modal yang menyebabkan peluang untuk investasi lainnya berkurang. Modal ini dapat diukur dengan besarnya suku bunga bank, oleh karena itu biaya yang disebabkan oleh karena memiliki harus diperhitungkan dalam biaya sistem persediaan.
- b. Biaya gudang adalah biaya yang dikeluarkan untuk tempat/gudang penyimpanan barang. Apabila gudang yang digunakan adalah sewa, maka biayanya dapat berupa biaya sewa dan apabila gudang adalah milik sendiri, maka biayanya merupakan biaya depresiasi.
- c. Biaya keusangan/kadaluwarsa (*Obselent Cost*). Penyimpanan barang dalam waktu yang relatif lama dapat berakibat menurun/merosotnya nilai barang, hal

ini dapat disebabkan oleh adanya perubahan teknologi, model dan tren konsumen.

- d. Biaya kehilangan (*loss cost*) dan biaya kerusakan (*deteriotion*). Penyimpanan barang dapat mengakibatkan kerusakan dan penyusutan karena beratnya dapat berkurang atau jumlahnya berkurang karena kehilangan.
- e. Biaya asuransi (*insurance cost*). Akibat lain dalam penyimpanan persediaan adalah bahaya yang tidak dapat dikendalikan seperti bencana alam, kebakaran dan lain-lain.
- f. Biaya administrasi dan pemindahan merupakan biaya yang dikeluarkan untuk adiministrasi persediaan barang yang ada, baik pada saat pemesanan, penerimaan barang, maupun penyimpanannya, dan biaya untuk memindahkan dari dan ke tempat penyimpanan termasuk biaya tenaga kerja dan *material handling*.

4. Biaya kekurangan persediaan (Shortage Cost)

Dari semua biaya-biaya yang berhubungan dengan tingkat persediaan, biaya kekurangan bahan (*Stockout Cost*) adalah yang paling sulit diperkirakan. Biaya ini timbul bilamana persediaan tidak mencukupi permintaan produk atau kebutuhan bahan. Biaya-biaya yang termasuk biaya kekurangan persediaan adalah biaya kehilangan penjualan, biaya kehilangan langganan, biaya pemesanan khusus, biaya terganggunya proses produksi, biaya tambahan pengeluaran tambahan kegiatan manjerial dan sebagainya.

5. Biaya sistemik

Selain biaya-biaya disebut di atas yang biasanya bersifat rutin, maka ada ongkos lain yang disebut biaya sistemik. Biaya ini meliputi biaya perancangan dan perencanaan sistem persediaan serta ongkos-ongkos untuk mengadakan peralatan serta melatih tenaga yang digunakan untuk mengoperasikan sistem.

2.3 Distribusi

2.3.1 Konsep Dasar Distribusi (Pujawan, 2005)

Distribusi dari suatu produk akan menciptakan hierarki dari lokasi-lokasi penyimpanan yang dapat meliputi: pusat-pusat produksi (*manufacturings centers*), pusat-pusat distribusi (*distibution centers*), grosir (*wholesalers*) dan pengecer (*retailers*). Distribusi dari suatu produk mengacu pada hubungan yang ada dimana titik produksi dan pelanggan akhir, yang sering terdiri dari beberapa jenis *inventory* yang harus dikelola. Menurut vincent gasperzdistribusi didefinisikan sebagi ilmu dan seni dari perolehan, produksi, dan distribusi material dan produk dalam kuantitas dan tempat yang tepat. Sedangkan menurut J. David Viale Manajemen sediaan adalah mengganti asset yang sangat mahal yang disebut "sediaan" menjadi asset yang lebih murah yang disebut "informasi". Agar pertanyaan berapa banyak sediaan yang perlu dicadangkan untuk mengatasi fluktuasi peramalan, permintaan pelanggan dan pengiriman pemasok mencapai tujuan tersebut, informasi haruslah tepat waktu, akurat, andal dan konsisten.

2.3.2 Manajemen transportasi dan distribusi

Pada kebanyakan produk yang kita gunakan, peran jaringan distribusi dan transportasi sangatlah vital. Jaringan distribusi dan transportasi ini memungkinkan produk pindah dari lokasi dimana mereka diproduksi ke lokasi konsumen / pemakai yang sering kali dibatasi oleh jarak yang sangat jauh. Kemampuan untuk mengirimkan produk ke pelanggan secara tepat waktu dalam jumlah yang sesuai dalam kondisi yang baik sangat menetukan apakah produk tersebut pada akhirnya akan kompetitif di pasar. Oleh karena itu, kemampuan untuk mengelola jaringan distribusi dewasa ini merupakan satu komponen keunggulan kompetitif yang sangat penting kebanyakan industri.

Untuk menciptakan keunggulan berkompetisi, perusahaan tidak bisa lagi mengandalkan cara-cara traditional dalam mendistribusikan produk-produk mereka. Perkembangan teknologi dan inovasi dalam manajemen distribusi memungkikan perusahaan untuk menciptakan kecepatan waktu kirim serta effisiensi yang tinggi dalam jaringan distribusi mereka, sesuatu yang sangat dipentingkan oleh pelanggan dewasa ini. Teknologi penyimpanan, barcoding, ASRS (automatic storage and retrieval system), RFID (radio frequency identification) adalah sebagian teknologi yang dewasa ini sangat banyak memudahkanoperasi distribusi produk. Demikian juga teknik-teknik yang inovatif seperti crossdocking, flow trough distribution, dan penggunaan 3PL (jasa logistic pihak ketiga) untuk kegiatan distribusi adalh sebagian dari pendekatan-pendekatan yang modern yang menciptakan banyak keunggulan dalam manajemen distribusi dan transportasi.

Secara traditional, jaringan distribusi seringkali dianggap sebagai serangkaian fisik seperti gudang dan fasilitas pengangkutan dan operasi masing-masing fasilitas ini cenderung terpisah antara satu dengan yang lainnya. Tekanan kompetisi serta kebutuhan

pelanggan yang tinggi memaksa perusahaan-perusahaan untuk melakukan perbaikan dalam kegiatan distribusi dan transportasi. Dewasa ini, jaringan distribusi tidak lagi dipandang hanya sebagai serangkaian fasilitas yang mengerjakan fungsi-fungsi fisik seperti pengangkutan dan penyimpanan, tetapi merupakan bagian integral dari kegiatan supply chain secara holistik dan memiliki peran strategis sebagai titik penyalur produk maupun informasi dan juga sebagai wahana untuk menciptakan nilai tambah.

Kegiatan transportasi dan distribusi semakin menjadi penting artinya bagi supply chain dewasa ini dengan semakin banyaknya perusahaan yang harus mengirimkan langsung ke pelanggan. Tumbuhnya industridot com yang menyediakan pelayanan pembelian online dengan pengiriman langsung kepintu pelanggan (seperti amazon.com, borders.com, dell.com, tesco.com) mebuat kegiatan distribusi dan transportasi menjadi semakin penting dan komponen aktifitas ini semakin besar pada supply chain. Pelanggan yang membeli buku di toko akan menanggung biaya transportasi dan distribusi yang lebih rendah dibandingkan dengan mereka yang membeli buku secara on-line dan di hantar langsung ke alamat pelanggan.

2.3.3 Fungsi-fungsi dasar manajemen distribusi dan transportasi

Secara trasitional kita mengenal menejemen distribusi dan transportasi dengan berbagai sebutan. Sebagian perusahaan menggunakan manajemen logistik, sebagian lagi menggunakan distribusi fisik (*physical distribution*). Apapun istilahnya, secara umum fungsi distribusi dan transportasi pada dasarnya adalah untuk menghantarkan produk dari lokasi dimana produk tersebut diproduksi sampai mana mereka akan digunakan. Menejemen transportasi dan distribusi mencakup baik aktivitas fisik yang secara kasat

mata bisa kita saksikan, seperti menyimpan dan mengirim produk, maupun fungsi non-fisik yang berupa aktivitas pengolahan informasi dan pelayanan kepada pelanggan. Pada prinsipnya, fungsi ini bertujuan untuk menciptakan pelayanan yang tinggi ke pelanggan yang bisa dilihat dari tingkat *service level* yang dicapai, kecepatan pengiriman, kesempurnaan barang sampai ke tangan pelanggan, serta pelayanan purna jual yang memuaskan.

Kegiatan transportasi dan distribusi bisa dilakukan oleh perusahaan manufaktur dengan membentuk bagian distribusi / transportasi tersendiri atau diserahkan ke pihak ketiga. Dalam upaya memunuhi tujuan-tujuan di atas, siapapun yang melaksanakan (internal perusahaan atau mitra pihak ketiga), menejemen distribusi dan transportasi pada umumnya melakukan sejumlah fungsi dasar yang terdiri dari :

a. Melakukan segmentasi dan menentukan service level.

Segmentasi pasar perlu dilakukan karena kontribusi mereka pada *revenue* perusahaan bisa sangat bervariasi dan karakteristik tiap pelanggan bisa sangat berbeda antara satu dengan lainnya. Dari segi *revenue*, seringkali hukum pareto 20/80 berlaku disini. Artinya hanya sekitar 20% dari pelanggan atau area penjualan menyumbangkan sejumlah 80 % dari pendapatan yang diperoleh perusahaan. Perusahaan tidak bisa menomor satukan semua pelanggan. Dengan memahami perbedaan karakteristik dan kontribusi tiap pelanggan atau area distribusi, perusahaan bias mengoptimalkan alokasi persediaan maupun kecepatan pelayanan. Misalnya, pelanggan kelas 1, yang menyumbangkan pendapatan yang terbesar, memiliki target *service level* yang tinggi

dibandingkan pelanggan kelas 2 atau kelas 3 yang yang kontribusinya jauh lebih rendah.

b. Menetukan mode transportasi yang akan digunakan.

Tiap mode transportasi memilik karakteristik yang berbeda dan mempunyai keunggulan serta kelemahan yang berbeda juga. Sebagai contoh, transportasi laut memiliki keunggulan dari segi biaya yang rendah, namun lebih lambat dibandingkan dengan trasportasi udara. Menejemen transportasi harus bisa menetukan mode apa yang akan digunakan dalam mengirimkan / mendistribusikan produk-produk mereka ke pelanggan. Kombinasi dua atau lebih transportasi tentu bisa atau bahkan harus dilakukan tergantung dari situasi yang dihadapi.

c. Melakukan konsolidasi informasi dan pengiriman

Konsolidasi merupakan kata kunci yang sangat penting dewasa ini. Tekanan untuk melakukan pengiriman cepat namun murah menjadi pendorong utama perlunya melakukan konsolidasi informasi maupun pengiriman. Salah satu contoh konsolidasi informasi adalah konsolidasi data permintaan dari berbagai *regional distribution centre* oleh gudang pusat untuk keperluan pembuatan jadwal pengiriman. Sedangkan konsolidasi pengiriman dilakukan misalnya dengan menyatukan permintaan beberapa toko atau ritel yang berbeda dalam sebuah truk. Dengan cara ini truk bisa berjalan lebih sering tenpa harus membebankan biaya lebih pada pelanggan / klien yang mengirimkan produk tersebut.

d. Melakukan penjadwalan dan penetuan rute pengiriman.

Salah satu kegiatan operasional yang dilakukan oleh gudang atau distributor adalah menetukan sebuah truk harus berangkat dan rute mana yang harus dilalui untuk memenuhi permintaan dari sejumlah pelanggan. Apabila jumlah pelanggan sedikit, keputusan ini bisa diambil dengan relative gampang. Namun perusahaan yang memiliki ribuan atau puluhan ribu toko atau tempattempat penjualan yang harus dikunjungi, penjadwalan dan penetuan rute pengiriman adalah pekerjaan yang sangat sulit dan kurang tepatan dalam mengambil dua keputusan tersebut bisa berimplikasi pada biaya pengiriman dan penyimpanan yang tinggi.

e. Memberikan pelayanan nilai tambah.

Disamping mengirimkan produk kepelanggan, jaringan distribusi semakin banyak dipercaya untuk melakukan proses nilai tambah tersebut tadinya dilakukan oleh pabrik. Beberapa proses nilai tambah yang bisa dikerjakan oleh distributor adalah pengepakan, pelabelan harga, pemberian *barcode*, dan sebagainya. Untuk mengakomodasikan kebutuhan lokal dengan lebih baik, beberapa industri, seperti industri printer, memindahkan proses konfigurasi akhir dari produknya ke distributor di tiap-tiap Negara. Ini meningkatkan fleksibilitas produk sehingga mengurangi kelebihan stok di suatu Negara dan kekurangan di Negara lain.

f. Menyimpan persediaan

Jaringan distribusi selalu melibatkan proses penyimpanan produk baik disuatu gudang pusat maupun gudang regional, maupun di toko di mana produk tersebut di pajang untuk di jual. Oleh karena itu menejemen distribusi tidak bisa dilepaskan dari menejemen pergudangan.

g. Menangani pengembalian (return).

Menejemen distribusi juga punya tanggung jawab untuk melakukan kegiatan pengembalian produk dari hilir ke hulu dalam *supply chain*. Pengembalian ini bisa karena produk rusak atau tidak terjual sampai batas waktu penjualannya habis, seperti produk-produk makanan, sayur, buah, dan sebagainya. Kegiatan pengembalian ini bisa terjadi pada produk kemasan, seperti botol yang akan digunakan kembali dalam proses produksi atau yang harus diolah lebih lanjut untuk menghindari pencemaran lingkungan. Proses pengembalian produk atau kemasan ini lumrah dengan sebutan *reserve logistics*.

Tabel 2.1 Evaluasi Umum Berbagai Mode Transportasi

Mode transportasi	truk	Kereta	kapal	pesawat	paket
Volume yang bisa dikirim	Sedang	Sangat	Sangat	Banyak	Sangat sedikit
		banyak	banyak		
Fleksibilitas waktu kirim	Tinggi	Rendah	Rendah	Rendah	Inggi
Fleksibilitas waktu pengiriman	Tinggi	Sangat	Sangat	Sangat	Sangat tinggi
		rendah	rendah	rendah	
Kecepatan	Sedang	Sedang	Rendah	Sangat	Tinggi
				tinggi	
Biaya pengiriman	Sedang	Rendah	Rendah	Tinggi	Sangat tinggi
Inventory (in transit)	sedikit	banyak	Sangat	rendah	Sangat rendah
			banyak		

Sumber : Pujawan, *Supply Chain Management*, Manajemen Transportasi dan Distribusi, 2005; 173-211

2.3.4 Struktur Jaringan Distribusi (Gaspersz, 1998)

Sistem distribusi produk ke konsumen dengan menggunakan konsep *Distribution* Requierement Planning (DRP) pada hakekatnya identik dengan konsep Material Requirement Planning (MRP). Hubungan ketergantungan antara gudang distributor dengan para pengecer bersifat hierarki dimana jadwal induk pengadaan barang tidak hanya menyaratkan adanya pasokan untuk semua distributor dan pengecer namun juga memeperhitungkan waktu tenggang untuk semua lini tersebut.

Secara umum dalam *Bill Of Distribution (BOD)* terdiri dari empat elemen utama yaitu :

- 1. Titik distribusi paling rendah (*retail outlet*), biasanya mengambil lokasi yang dekat pada pelanggan, karena lokasi memberikan ongkos transportasi yang memadai dan tingkat pelayanan pelanggan yang tinggi.
- 2. Titik distribusi area/subdistributor (regional warehouse), pada titik ini secara langsung memasok titik-titik distribusi paling rendah (retail outlet).
- 3. Titik distribusi pusat (*central distribution*), pada titik ini secara langsung akan memasok pada titik distribusi tingkat regional.
- 4. Titik *manufacturing/factory*, banyak perusahaan telah mendistribusikan pabrik-pabrik secara geografis untuk memberikan pelayanan lebih baik untuk salah satu titik distribusi regional.

Didalam sistem pendistribusian ini terdapat jalur keterkaitan antara produsen, disrtributor, subdistributor dan *retail* (titik tejauh dari jaringan distribusi) diberi kebebasan untuk merencanakan mengenai kebutuhan produk (meramalkan penjualan) untuk beberapa periode kedepan. Selanjutnya rencana dari masing-masing retail akan

menjadi kebutuhan kotor dari masing-masing subdistributor. Kemudian rencana kebutuhan produk dari masing-masing retail akan menjadi kebutuhan kotor dari masing-masing subdistributor. Kemudian rencana kebutuhan pokok dari masing-masing subdistributor akan menjadi kebutuhan dari distributor, kemudian kebutuhan bersih dari distributor akan menjadi jadwal produksi dari pabrik.

Sedangkan untuk waktu tenggang (*lead time*) diakibatkan karena adanya jarak yang menghubungkan antara pabrik, gudang pusat distributor dan *retail outlet*.

Dari gambar terlihat adanya keterkaitan antara distributor, sub distributor dan pengecer memesan barang dari sub distributor sedangkan sub distributor memesan kepada distributor.

Masing-masing cabang mempunyai kebebasan untuk meramalkan kebutuhan barang dagangannya dan diharapkan mampu untuk menyusun rencana kebutuhannya untuk beberapa periode ke depan. Pengecer melakukan pemesanan kepada sub distributor sesuai dengan rencana kebutuhan yang telah diramalkan kemudian oleh sub distributor rencana pemesanan tersebut diteruskan ke distributor dan selanjutnya distributor akan merealisasikan rencana kebutuhan barang tersebut dengan melakukan negoisasi dengan pihak produsen.

2.3.5 Manajemen Persediaan Distribusi

Objek dari manajemen persediaan distribusi adalah menempatkan persediaan dalam tempat dan waktu yang tepat dengan biaya yang sesuai sehingga dapat mencapai tingkat yang diinginkan pelanggan.

Menurut Forgaty dkk,(1991). Keputusan distribusi mempertimbangkan:

- 1. Fasilitas
- 2. Transpotasi
- 3. Modal yang ditanam
- 4. Frekuensi kehilangan penjualan
- 5. Kemampuan produksi
- 6. Komunikasi dan pemrosesan data.

Sistem manajemen distribusi dapat dikelompokan menjadi 2 bagian, yakni :

- 1. Sistem tarik (*pull system*), prinsip dari system ini adalah setiap pusat distribusi mengelola persediaan barang yang dimilikinya. Setiap pusat distribusi pada tingkat yang lebih rendah menghitung kebutuhan dan distribusi pada tingkat yang lebih tinggi.
- 2. Sistem dorong (*Push system*), peramalan kebutuhan untuk seluruh gudang-gudang dan dijumlah per periode tertentu dan disesuaikan dengan jadwal produksi serta dialokasikan ke gudang-gudang dapat dikatakan persediaan dikendalikan secara terpusat dimana gudang pusat yang akan memusatkan berupa jumlah produk yang akan dikirim ke gudang daerah. Salah satu model pengadaan persediaan dengan system ini adalah *Distribution Requirement Planning* (DRP).

2.3.6 Konsep Distribution Requierement (or Resources) Planning

Istilah DRP memiliki dua pengertian yang berbeda yaitu *DistributionRequirement*Planning dan Distribution Resource Planning berfungsi menentukan kebutuhankebutuhan untuk mengisi kembali Inventory pada branch warehouse. Sedangkan

Distribution Resources Planning yang mencakup lebih dari sekedar system perencanaan

dan pengendalian pengisian kembali *Inventory*, tetapi ditambah dengan perencanaan dan pengendalian sumber-sumber yang terkait dalam sistem distribusi seperti *warehouse space*, tenaga kerja, uang (modal), fasilitas transportasi dan *warehouse*.

Sistem kerja Distribution Requirement Planning berdasarkan pada kesamaan logis yang digunakan pada Material Requirement Planning untuk menetukan kebutuhan material yang diproduksi Time Phased Order Point (TPOP) standar yang digunakan untuk setiap stock keep unit, dimana setiap catatan item berdiri sendiri atau bebas dari catatan item lain. Dengan DRP ketergantungan atau hubungan diantara stockpoint/location dalam struktur jaringan distribusi ditunjukan oleh suatu Bill OfDistribution (BOD) dan memiliki konsep yang serupa dengan Bill Of Material (BOM) dalam MRP Planned Order Release pada titik distribusi akhir dalam sistem ditentukan dengan TPOP konvensional, yang kemudian di exploded guna menentukan kebutuhan kotor dari item itu pada pusat distribusi yang berada pada tingkat yang lebih tinggi.

Terminologi *scheduled receipt* yang digunakan dalam baris setiap TPOP grid menunjukan waktu penyerahan dan kuantitas barang yang sudah dipesan dan dalam pengangkutan, kecuali untuk *factory level*, yang menggambarkan barang dalam proses pembuatan.

Banyaknya periode waktu di masa yang akan datang untuk *time record* dalam sistem DRP harus direncanakan ketika sistem itu dirancang. Secara umum horizon perencanaan harus dikembangkan cukup jauh ke masa depan sehingga mencakup jumlah dari semua waktu tunggu dari permulaan proses *manufacturing* sampai penyerahan ke titik distributor akhir.

2.3.7 Prosedur Perhitungan DRP

Langkah-langkah dalam menyelesaikan perhitungan DRP adalah sebagai berikut :

- a. Menentukan kebutuhan bersih (*Net Requirement*) yaitu selisih antar kebuthan kotor dengan persediaan yang ada di tangan.
- b. Menentukan jumlah pesanan.
- c. Penentuan jumlah pesanan pada setiap jaringan distribusi, didasarkan pada kebutuhan bersih dan ditentukan dengan menggunakan metode*Lot For Lot* (LFL), Fixed Order Quantity(FOQ), Economic Order Quantity (EOQ), Period Order Quantity (POQ), Fixed Period Requirement (FPR), Least Unit Cost (LUC), dan Least Total Cost (LTC).
- d. Menentukan *Bill Of Distibution* (BOD) dan kebutuhan kotor di setiap jaringan distribusi, sedangkan kebutuhan kotor untuk setiap jaringan distribusi jaringan ditentukan berdasarkan *Planned Order Release* jaringan distribusi.

Perhitungan perencanaan kebutuhan distribusi dimulai dari peramalan permintaan, kemudian dihitung kebutuhan bersih sampai penentuan perencanaan pesanan dikirim.

Menurut Forgaty dkk (1991) asumsi yang didapat digunakan dalam mengoperasikan metode perencanaan kebutuhan pokok adalah sebagai berikut:

- a. Mengetahui lama waktu pemesanan (*Lead Time*)untuk setiap mata rantai distribusi.
- Jumlah persediaan dipengaruhi oleh persediaan yang harus selalu dikontrol untuk transaksi yang ada.
- c. Pada saat periode penjualan berjalan semua barang dagangan tersedia.

d. Pengadaan dan pemakaian persediaan bersifat diskrit, artinya pengadaan mampu memenuhi rencana penjualan pada periode penjualan.

Menurut Tersine RJ (1994) masukan untuk kebutuhan distribusi antara lain :

- a. Catatan persediaan mencakup informasi persediaan yang dimiliki *lead time*, rencana kedatangan barang, ukuran pemesanan dan sebagainya.
- b. Strukur jaringan pemasaran merupakan gambaran tentang kondisi jaringan usaha eceran.
- c. Rencana induk penjualan mengenai jumlah barang yang akan dijual dalam suatu periode sesuai dengan peramalan yang telah dilakukan.

Secara garis besar perhitungan DRP adalah sebagi berikut

1. Perhitungan Kebutuhan Bersih (Netting)

Proses yang merupakan proses perhitungan kebutuhan bersih (net requirement) yang besarnya merupakan selisih antara kebutuhan kotor (gross requirement) dengan jadwal penerimaan barang (scheduled order receipt) dan persediaan awal yang tersedia (beginning Inventory). Data yang diperlukan dalam proses perhitungan kebutuhan bersih ini adalah:

- a. Kebutuhan kotor untuk setiap periode.
- b. Persediaan yang dimiliki pada awal perencanaan.
- c. Rencana penerimaan untuk setiap periode perencanaan.

Rumus yang berhubungan dengan proses *netting* adalah:

$$POH_T = (On\text{-}Hand)_{T\text{-}I} - (GR)_{T\text{-}I} + (SR)_{T\text{-}I}$$

 $(NR)_T = (GR)_T - (SR)_T - (POH_T)_T$

POH $_{\rm T}$ = persediaan ditangan (planned on hand) pada periode T

GR_T = kebutuhan kotor (gross requirement) pada periode T

SR_T = jadwal kedatangan (scheduled receipt) pada periode T

NR_T = kebutuhan bersih (net requirement) pada periode T

2. Proses *Lotting*

Lotting merupakan proses untuk menentukan besarnya pesanan disetiap mata rantai distribusi berdasarkan kebutuhan bersih yang dihasilkan dari proses netting. Terdapat banyak alternatif untuk menghitung ukuran lot, dan teknik lot yang sering digunakan adalah lot for lot (LFL) dan EOQ.

3. Proses Offsetting

Offsetting merupakan proses yang bertujuan untuk menentukan saat yang tepat untuk merencanakan pemesanan dalam rangka memenuhi kebutuhan bersih. Rencana pemesanan diperoleh dengan cara mengurangkan saat awal tersedianya kebutuhan bersih yang diinginkan dengan *lead time* yang dibutuhkan.

4. Proses Explosion

Proses *explosion* merupakan proses kebutuhan kotor untuk tingkat mata rantai diatasnya (subdistributor dan distributor) yang didasarkan atas rencana pemesanan. Kebutuhan bersih (*planned order release*) pengecer atau cabang didapat dari peramalan penjualan periode yang lalu. Kebutuhan kotor untuk tingkat diatasnya didapat dari kebutuhan bersih tingkat jaringan dibawahnya.

2.4 Peramalan (Ginting, 2007)

2.4.1 Pengertian Peramalan

Peramalan adalah proses untuk memperkirakan berapa kebutuhan dimasa yang akan datang yang meliputi kebutuhan dalam ukuran kuantitas, kualitas, waktu dan lokasi yang dibutuhkan dalam rangka memenuhi permintaan barang ataupun jasa (Nasution, 1999).

Peramalan permintaan merupakan tingkat permintaan produk-produk yang diharapkan akan terealisasi untuk jangka waktu tertentu pada masa yang akan datang. Dalam melakukan peramalan kita harus memperhatikan prosedur-prosedur yang harus dilaksanakan, yaitu:

- 1. Menentukan tujuan peramalan.
- 2. Memilih *itemindependent demand* yang akan diramalkan. Plot data kedalam diagram pencar.
- 3. Memilih metode peramalan yang sesuai dengan pola data untuk tujuan yang telah ditetapkan.
- 4. Menghitung kesalahan yang ada agar performansi dari masing-masing metode yang digunakan dapat diketahui.
- 5. Pemilihan metode terbaik yaitu yang mempunyai tingkat kesalahan terkecil.
- 6. Melakukan prediksi terhadap permintaan dimasa datang, kemudian melakukan test verifikasi bahwa hasil peramalan yang dilakukan representatif terhadap data masa lalu.

2.4.2 Pendekatan Peramalan

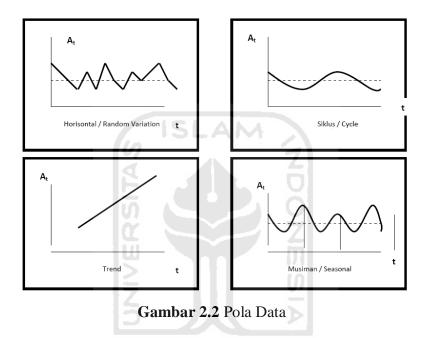
Pada dasarnya pendekatan peramalan dapat diklasifikasikan menjadi dua pendekatan, yaitu:

a. Pendekatan kualitatif

Pendekatan kualitatif bersifat subjektif dimana peramalan dilakukan berdasarkan pertimbangan, pendapat, pengalaman dan prediksi peramal (*forecaster*), pengambil keputusan atau para ahli. Pendekatan ini digunakan pada saat tidak tersedia sedikitpun data historis.

b. Pendekatan kuantitatif

Pendekatan kuantitatif meliputi metode deret berkala (*time series*) dan metode kausal (eksplanatoris). Metode deret berkala melakukan prediksi masa yang akan datang berdasarkan data masa lalu tanpa melihat faktor-faktor yang mempengaruhi data tersebut. Metode kausal mengasumsikan faktor yang diramal memiliki hubungan sebab akibat terhadap beberapa variabel independent.


Pendekatan kuantitatif dapat diterapkan bila terdapat tiga kondisi sebagai berikut (Makridakis, *et.al.*, 1995):

- a. Tersedia informasi tentang masa lalu.
- b. Informasi masa lalu tersebut dapat dikuantitatifkan dalam bentuk data numerik.
- Dapat diasumsikan bahwa beberapa aspek pola masa lalu akan terus berlanjut di masa mendatang

2.4.3 Pola Data Peramalan *Time Series*

Dalam kegiatan peramalan secara teoritis ada empat jenis pola data yang banyak dikenal orang yaitu pola data horison, pola data musiman, pola data siklis dan pola data trend (Sypros, 1994):

Berikut ini disajikan visualisasi dari pola-pola data:

- 1. Pola data horison, pola ini timbul jika data fluktuasi konstan pada nilai tertetu.
- 2. Pola data musiman, pola ini timbul jika sekumpulan data dipengaruhi faktor musiman (mingguan, bulanan,atau perempat tahun)
- 3. Pola data siklus, pola data ini timbul jika data data dipengaruhi fluktuasi ekonomi jangka panjang.
- 4. Pola data trend, pola data ini timbul jika ada kenaikan / penurunan data dalam waktu jangka panjang.

2.4.4 Teknik – teknik Peramalan Data Runtut Waktu

Dalam melakukan peramalan berdasarkan data runtut waktu, terdapat beberapa metode/teknik yang bisa digunakan, yaitu :

1. Naive Forecast

Metode ini merupakan metode peramalan yang paling sederhana, menganggap bahwa peramalan periode berikutnya sama dengan nilai aktual periode sebelumnya. Dengan demikian data aktual periode waktu yang baru saja berlalu merupakan alat peramalan yang terbaik untuk meramalkan keadaan di masa mendatang.

2. Simple Average (Rata-rata Sederhana)

Metode *simple average* menggunakan sejumlah data aktual dari periode-periode sebelumnya yang kemudian dihitung rata-ratanya untuk meramalkan periode waktu berikutnya.

3. Simple Moving average

Metode ini menggunakan satu set data dengan jumlah data yang tetap sesuai periode pergerakannya (*moving period*), yang kemudian nilai rata-rata dari set data tersebut digunakan untuk meramalkan nilai periode berikutnya.

Dengan munculnya data yang baru maka nilai rata-rata yang baru dapat dihitung dengan menghilangkan data yang terlama dan menambahkan data yang terbaru.

4. Weighted Moving Average (WMA)

Metode ini mirip dengan metode simple moving average, hanya saja diperlukan pembobotan yang berbeda untuk setiap data pada set terbaru, dimana data terbaru memiliki bobot yang lebih tinggi daripada data sebelumnya pada set data yang tersedia. Jumlah bobot harus sama dengan 1,00

5. Moving Average With Linear Trend

Metode ini akan efektif jika trend linear dan faktor random error tidak besar.

6. Single Exponential Smoothing (SES)

Peramalan dengan metode SES dihitung berdasarkan hasil peramalan periode terdahulu ditambah suatu penyesuaian untuk kesalahan yang terjadi pada ramalan terakhir. Dengan demikian kesalahan peramalan sebelumnya digunakan untuk mengoreksi peramalan berikutnya. Masalah yang dihadapi dalam melakukan peramalan metode ini adalah mencari α optimum, karena akan memberi MSE, MAPE atau pengukuran yang lainnya minimum.

7. Single Exponential Smoothing With Linear Trend

Metode ini pada dasarnya menggunakan prinsip yang sama dengan metode SES, namun metode ini mempertimbangkan adanya unsur trend/kecenderungan linear dalam deretan data.

8. Double Exponential Smoothing

Metode ini dapat digunakan pada data historis yang mengandung unsur trend.

9. Double Exponential Smoothing with Linear Trend

Metode ini digunakan pada data historis yang mengandung unsur *linear trend*.

10. Adaptive Exponential Smoothing

Metode ini akan memulai dari sebuah penetapan *smoothing constant* (α). Dalam setiap periode diperiksa dengan tiga nilai, yaitu ; α -0.05, α , α +0.05 Kemudian dihitung nilai F_t dengan *absolut error* yang terkecil.

11. Linear Regression (Trend Linear Adjusment)

Merupakan salah satu bentuk khusus dan paling sederhana dari regresi, dimana hubungan atau korelasi antara dua variabel tersebut berbentuk garis lurus (straight line).

12. Winter's Method

Merupakan metode peramalan yang sering dipilih untuk menangani data permintaan yang mengandung baik variasi musiman maupun unsur trend.

2.4.5 Keakuratan Peramalan

Pengukuran akurasi peramalan dapat dilakukan dengan beberapa cara sebagai berikut : (parameter akurasi) :

ISLAM

1. MAD (Mean Absolute Deviation)

$$MAD = \frac{\sum_{t} |e_{t}|}{n}.$$
 (2.13)

2. MSE (Mean Square Error)

$$MSE = \frac{\sum_{t} (et)^2}{n}.$$
 (2.14)

Pendekatan ini penting karena suatu teknik yang menghasilkan kesalahan yang moderat lebih disukai oleh suatu peramalan yang biasanya menghasikan kesalahan yang lebih kecil tetapi kadang-kadang menghasilkan kesalahan yang sangat besar.

3. Bias / Mean Error / Deviation

$$Bias = \frac{\sum_{t} |e_{t}|}{n}.$$
 (2.15)

4. R²: Multiple Correction Coefficient

$$R^2 = \frac{(1-n)*MSD}{(n-1)*v}.$$
 (2.16)

5. MAPE (Mean Absolute Percentage Error).

MAPE =
$$\frac{\sum_{t} \left| \frac{e_{t}}{A_{T}} \right|}{n} \times 100. \tag{2.17}$$

6. MPE

$$MPE = \frac{\sum_{t} \left| \frac{e_{t}}{A_{T}} \right|}{n} \times 100. \tag{2.18}$$

Nilai MAD atau MSE dapat digunakan sebagai dasar untuk membandingkan beberapa alternatif metode peramalan. Kriteria yang dipakai dalam menentukan metode peramalan yang terbaik adalah MAD dan MSE / MSD, karena lebih menghasilkan hasil yang akurat dengan pengkuadratan nilai sehingga tiap nilai mendapat perlakuan yang sama yaitu pengkuadratan, berbeda dengan MAD yang memperlakukan semua variabel dengan nilai mutlak (Gaspersz, 1998).

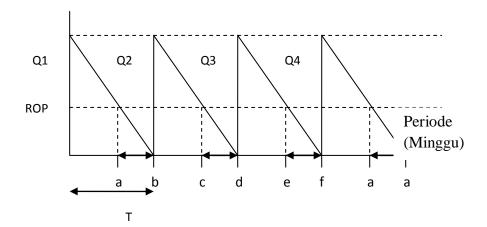
2.4.6 Ukuran Kebijakan Lot

Lot sizing merupakan teknik yang dipakai dalam DRP guna memperoleh ukuran pemesanan dengan tujuan minimasi biaya pemesanan dan biaya simpan. Yang termasuk perhitungan lot sizing adalah kebutuhan bersih (net requirement) yang telah terlihat pada jadwal penerimaan (planned order receipt) dan rencana pemesanan (planned order release).

Dalam perhitungan *lot sizing* tersedia berbagai teknik yang terbagi dalam dua kelompok besar yaitu: (Daniel Sipper dan Robert L. Buffin, Jr.1998)

1. Model Lot Sizing Statis

Dalam penggunaan model *Lot Sizing*, permintaan dianggap konstan dengan permintaan rata – rata (D) sebagai pendekatan terhadap permintaan. Teknik – teknik model statis antara lain :


a. Economic Order Quantity (EOQ)

Teknik ini sebenarnya bukan dimaksudkan untuk DRP, sekalipun begitu teknik ini dapat dengan mudah diterapkan pada DPR. Teknik ini didasarkan pada asumsi bahwa kebutuhan bersifat kontinyu terhadap pola permintaan yang stabil. Model ini dikemukakan oleh Ford W. Harris sekitar tahun 1915.

Dalam model ini diasumsikan bahwa (Tersine, 1994):

- 1. *Demand* (permintaan) diketahui dan bersifat konstan.
- 2. *Lead Time* diketahui dan konstan.
- Variabel biaya yang diketahui hanyalah biaya pesan dan biaya simpan.
- 4. Stock outs / Shortages sedapatnya dihindari.

Model *inventori* klasik yang diasumsikan pada konsumsi berikut : Unit (Jumlah Barang)

Gambar 2.1 EOQ

Q = Kuantitas pesanan (Unit)

ROP = Titik pesan kembali (reorder point)

T = Waktu proses

ab = cd = ef = gh = Lead Time

$$EOQ = \frac{\sqrt{2xDxS}}{H}$$

EOQ = Jumlah Lot pemesanan yang ekonomis

D = Jumlah kebutuhan dalam satu tahun

S = biaya pemesanan unutk satu kali pesan

H = Biaya simpan tiap unit produk

Untuk perhitungan reorder pointnya akan tergantung pada siklus persediaan (*Inventory cycle*) yang ada. Rumus yang digunakan untuk menghitung *reorder point* adalah sebagai berikut :

$$R = \frac{LD}{jumla\ h\ hari\ kerja}$$
 (bila L < C)

$$R = F \frac{L}{C} Q \qquad \text{(bila L > C)}$$

R = reorder point

L= *Lead Time*

C = *Inventory Cycle*

b. Kebutuhan dengan Periode Tetap (*Fixed Period Requirement*)

Teknik ini menggunakan konsep interval pemesanan yang konstan, sedangkan ukuran kwantitas pemesanannya (lot size) boleh bervariasi. Ukuran kwantitas pemesanan tersebut merupakan penjumlahan kebutuhan bersih (Rt) dari setiap periode yang tercakup dalam interval pemesanan yang telah ditetapkan. Penetapan interval pemesanannya dilakukan secara seimbang atau intuitif. Teknik FPR ini, jika saat pemesanan jatuh pada periode yang kebutuhan bersihnya sama dengan nol, maka pemesanannya dilaksanakan pada periode berikutnya (Ginting, 2007).

c. Fixed Order Quantity (FOQ)

Teknik ini menggunakan kuantitas pemesanan yang tetap, yang berarti ukuran kuantitas pemesanan lot sizing adalah sama untuk setiap kali pemesanan. Ukuran lot ditentukan secara sembarang berdasarkan faktorfaktor empiris, misalnya menggunakan kebutuhan bersih tertinggi sebagai ukuran lotnya.

Perhitungan Lot size dengan metode FOQ

$$FOQ = \frac{\sqrt{2xD(S+pxEs)}}{H}$$

D = jumlah rata – rata permintaan selama satu periode.

S = biaya pesan setiap kali pesan.

P = harga jual suatu barang

Es = perkiraan kehilangan penjualan (20%)

H = biaya simpan.

d. Period Order Quantity (POQ)

Teknik ini interval pemesanan ditentukan dengan suatu perhitungan yang didasarkan pada logika EOQ klasik yang telah dimodifikasi dapat digunakan pada permintaan yang berperiode waktu diskrit.

Jumlah periode interval pemesanan dihitung dengan rumus :

$$POQ = \frac{EOQ}{R} = \sqrt{\frac{2S}{RPh}}$$

POQ = interval pemesanan ekonomis dalam satu periode

S = Biaya pemesanan setiap kali pesan

H = % biaya simpan sekali periode

P = harga atau biaya pembelian per unit

R = rata – rata permintaan per periode

e. Lot for Lot

Teknik ini merupakan teknik lot sizing yang paling sederhana dan mudah dimengerti. Pemesanan dilakukan dengan pertimbangan minimasi ongkos simpan. Pada teknik ini, pemenuhan kebutuhan bersih dilaksanakan disetiap periode yang membutuhkan sebagian besar ukuran kuantitas pemesanannya adalah sama dengan jumlah kebutuhan bersih harus dipenuhi pada periode yang bersangkutan. Teknik ini biasanya digunakan untuk item-item yang mahal atau tingkat continues permintaannya tinggi.

f. Least Unit Cost (LUC)

Ukuran kuantitas pemesanan dan interval pemesanannya dapat bervariasi. Pada teknik ini ukuran kuantitas pemesanan dilakukan dengan cara cobacoba, yaitu dengan jalan mempertanyakan apakah ukuran lot disuatu periode sebaiknya sama dengan kebutuhan bersih atau bagaimana ditambah dengan periode-periode berikutnya.

Dm = permintaan periode ke m

Km = rata – rata biaya tiap periode dengan order m

A = biaya pemesanan

H = biaya simpan tiap unit/periode

Demand = $D_1, D_2, D_3, ..., Dm$

$$Km = \frac{A + hD2 + 2h.D3 + \dots + (m-1)hDm}{D1 + D2 + D3 + \dots + Dm}$$

g. Ongkos Total Terkecil (Least Total Cost)

Metode ini hampir sama dengan LUC, namun pada metode ini memilih ongkos total terkecil selama periode berurutan dengan cara menggabungkan kebutuhan sampai ongkos simpan mendekati ongkos pesan (Fogarty et.al., 1991)

h. Part Period Balancing

Teknik ini menggunakan dasar logika yang sama dengan teknik ongkos total terkecil. Perbedaannya terletak pada pengalokasian pemesanan yang dilakukan dengan melihat kebutuhan bersih periode yang ada didepan dan dibelakang dari periode yang bersangkutan. Metode ini mirip dengan model EOQ yang berusaha menyeimbangkan biaya pemesanan dan biaya penyimpanan. Perbedaan metode ini dengan EOQ adalah pada dimungkinkannya setiap pesanan dapat dilakukan dalam jumlah yang berbeda, hal ini diakibatkan oleh jumlah permintaan setiap periode yang berbeda. Ukuran lot dihitung dengan menggunakan pendekatan periode bagian yang ekonomis (*economic part periode*/EPP), yaitu dengan membagi biaya pemesanan/set up dengan biaya penyimpanan per unit per periode (Joko, 2004).

$$PP_1 = 0$$
 $PP_2 = D_2$
 $PP_3 = D_2 + 2(D_3)$
 $EPP = \frac{Biayapemesanan \ (Setup)}{Biayapenyimpananperunit \ /periode}$

i. The silver method

Metode ini mempertimbangkan permintaan untuk jumlah periode kedepan, metode ini bertujuan untuk memperoleh biaya minimum rata – rata per periode untuk periode ke – m. Biaya yang dipertimbangkan ialah biaya variabel seperti, biaya pesan (set up) ditambah dengan biaya simpan. Permintaan untuk periode ke- n adalah :

$$(D_1,D_2,D_3,...,D_n)$$

K (m) merupakan rata – rata biaya variabel per periode, jika order D untuk memenuhi permintaan sebanyak periode m dan diasumsikan biaya penyimpanan saat akhir dari periode dan banyaknya kebutuhan untuk tiap periode digunakan pada awal periode, jika order untuk memenuhi permintaan pada periode 1 didapatkan.

$$K(1) = A$$

Jika order $D_1 + D_2$ di periode 1 untuk memenuhi permintaan di periode 1 dan 2, didapatkan

$$K(2) = \frac{1}{2} (A + hD_2)$$

Dimana h adalah biaya simpan/unit periode. Karena kita mengangap D_2 sebagai periode tambahan dan dikalikan dengan h dan untuk mendapatkan biaya rata – rata untuk dua periode di bagi 2 demikian pula.

$$K(3) = \frac{1}{2}(A + hD_2 + 2 hD_3)$$

Dan pada umunya,

$$K(m) = 1/m(A + hD_2 + 2 hD_3 + ... + (m-1) hD_m)$$

Meperhitungkan $K(m), m = 1, 2, \dots, m$ dan stop bila :

$$K(m+1) > K(m)$$

Didalam periode yang mana biaya rata — rata per periode mulai meningkat. Dan order pada periode 1 banyaknya untuk memenuhi permintaan pada periode ke-*m*

$$Q = D_1 + D_2 + ... + D_m$$

Pada umunya Q_1 adalah banyaknya order pada periode i, dan hingga periode ke-m. Jika tidak ada order dalam periode i, maka Q_1 adalah 0. Proses diulang pada periode (m+1) dan berlanjut terus pada perencanaan berikutnya.

j. Wagner Within Algorithm (WMA)

Teknik ini menggunakan prosedup optimasi yang didasarkan pada sebuah model dinamis. Tujuannya adalah untuk mendapatkan strategi pemasaran yang optimal untuk seluruh jadwal kebutuhan bersih dengan jalan meminimasi total ongkos pengadaan dan ongkos simpan. Pada dasarnya teknik ini menguji semua cara pemesanan yang mungkin dalam memenuhi kebutuhan bersih setiap periode yang ada pada horizon perencanaan, sehingga senantiasa memberikan jawaban optimal.

$$Qi = \sum_{k=1}^{j} DK \text{ untuk } j \ge 1$$

Qi = jumlah pesanan optimal

Prosedur menghitung biaya variabel total untuk semua alternative yang mungkin untuk waktu konsisten periode:

Kt,i = A + h
$$[\sum_{i=1}^{i} (j0t)Dj]$$
 T =1,2,3,...,n

$$L = t+l, t+n$$

Kt,l = biaya memnuhi permintaan dalam periode t,t+1,...1

Dynamic Lot Sizing Models dapat digunakan apabila data permintaan bersifat humpy sedangkan static Lot Sizing Models dapat digunakan apabila data permintaan bersifat uniform. Untuk mengetahui data

permintaan tersebut *Humpy* atau *Uniform* yaitu dengan aturan *Peterson* – *Silver* dengan rumus sebagai berikut :

Dimana D_I adalah permintaan peramalan pada setiap periode dan n adalah jumlah data, uji *humpynes* apabila :

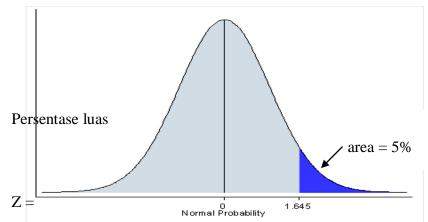
$$V = \frac{n \sum_{t=1}^{n} D_1^2}{\left(\sum_{t=1}^{n} D_1\right)} - 1$$

V < 0,25, mengunakan EOQ dengan D nilai permintaan

 $V \ge 0.25$, menggunakan *Dynamic lot Sizing Methods*.

2.4.7 Safety Stock

Persediaan pengaman atau *safety stock* berfungsi untuk melindungi kesalahan dalam memprediksi permintaan selama *lead time*. Pada situasi normal, ketidakpastian permintaan diwakilkan dengan standar deviasi besarnya permintaan per periode. Untuk menghitung *safety stock* dapat dilakukan dengan menggunakan rumus:


$$SS = Z \times S_{dl}$$

Dimana

SS = safety stock

Z = nilai keputusan manajemen dari tabel z

 S_{dl} = standar deviasi permintaan selama *lead time*

Gambar 2.5 kurva z dengan *lead time* mencapai *service level* 95% dengan

$$S_{dl} = \sqrt{(d^2 x S_l^2 + l x S_d^2)}$$

 S_1 = standar deviasi *lead time*

 S_d = standar deviasi permintaan per periode

Dengan menggunakan patokan rumus tersebut maka kita bias melihat empat kondisi seperti yang ditunjukkan oleh gambar 2.6

variabel	1911	1.4-2-21/11/2018
variabei	Sdl = Sd × √l	$SdI = \sqrt{(d^2 \times Sl^2 + I \times Sd^2)}$
	Safety stock ditentukan oleh ketidakpastian permintaan	Safety stock ditentukan oleh interaksi dua ketidakpastian
permintaan		
1	Sdl = 0	Sdl = d × Sl
konstan	Tidak diperlukan safety stock	Safety stock ditentukan oleh ketidakpastian lead time
i	konstan Lead	time variabel

Gambar 2.6 interaksi antara permintaan dan lead time pada penentuan safety stock

2.5 Algoritma genetika (Kusumadewi, 2003)

2.5.1 Pengertian algoritma genetika

Algoritma genetika adalah algoritma pencarian heuristik yang didasarkan pada mekanisme evolusi biologis (kusumadewi, 2003). Algoritma genetika merupakan evolusi/perkembangan dunia komputer dalam bidang kecerdasan buatan (artificial intellegenci). Sebenarnya algoritma genetika ini terinspirasi oleh teori evolusi Darwin (walaupun pada kenyataannya teori tersebut terbukti keliru). Berbeda dengan teknik pencarian konvensional, algoritma genetika berangkat dari himpunan solusi yang dihasilkan secara acak. Himpunan ini disebut populasi. Sedangkan setiap individu dalam populasi disebut kromosom yang merupakan representasi dari solusi. Kromosom-kromosom berevolusi dalam suatu proses iterasi yang berkelanjutan disebut generasi.

Dalam hal ini populasi dari kromosom dihasilkan secara random dan memungkinkan untuk berkembang biak sesuai dengan hukum-hukum evolusi dengan harapan akan menghasilkan individu kromosom yang prima. Kromosom ini pada kenyataannya adalah kandidat dari penyelesaian masalah, sehingga bila kromosom yang baik berkembang, solusi yang baik terhadap masalah diharapkan akan dihasilkan. Sejak pertama kali dirintis oleh john hollad pada tahun 1960-an, algoritma genetika telah dipelajari, diteliti, dan diaplikasikan secara luas pada berbagai bidang. Algoritma genetika banyak digunakan pada masalah praktis yang berfokus pada pencarian parameter-parameter optimal. Hal ini membuat banyak orang mengira bahwa algoritma genetika hanya bisa digunakan untuk masalah optimasi. Pada kenyataannya, algoritma genetika juga memiliki performansi yang bagus untuk masalah-masalah lain selain performansi (Suyanto, 2005).

Pada algoritma ini, teknik pencarian dilakukan sekaligus atas sejumlah solusi yang dikenal dengan istilah populasi. Individu yang terdapat dalam satu populasi disebut dengan istilah kromosom. Kromosom ini merupakan suatu solusi yang masih berbentuk simbol. Populasi awal dibangun secara acak, sedangkan populasi berikutnya merupakan hasil evolusi kromosom-kromosom melalui iterasi yang disebut dengan istilah generasi. Pada setiap generasi, kromosom akan melalui proses evaluasi dengan alat ukur yang disebut dengan fungsi fitness. Nilai fitness dari suatu kromosom akan menunjukkan kualitas kromosom dalam populasi tersebut. Generasi berikutnya dikenal dengan istilah anak (offspring) terbentuk dari gabungan 2 kromosom generasi sekarang yang bertindak sebagai induk (parent) dengan menggunakan operator penyilangan (crossover). Selain operator penyilangan, suatu kromosom dapat juga dimodifikasi dengan menggunakan operator mutasi. Populasi generasi yang baru dibentuk dengan cara menyeleksi nilai fitness dari kromosom induk (parent) dan nilai fitness dari kromosom anak (offspring), serta menolak kromosom-kromosom lainnya sehingga ukuran populasi (jumlah kromosom dalam suatu populasi) konstan. Setelah melalui beberapa generasi, maka algoritma ini akan konvergen ke kromosom terbaik.

Algoritma genetika sangat tepat digunakan untuk penyelesaian masalah optimasi yang kompleks dan sukar diselesaikan dengan menggunakan metode yang konvensional. Sebagaimana halnya proses evolusi dialam, suatu algoritma genetika sederhana umumnya terdiri dari tiga operator yaitu : operator reproduksi, operator *crossover* (persilangan), dan operator mutasi. Struktur umum dari suatu algoritma genetika dapat didefinisikan dengan langkah-langkah umum sebagai berikut :

- Membangkitkan populasi awal. Populasi awal ini dibangitkan secara random sehingga didapatkan solusi awal. Populasi itu sendiri terdiri dari sejumlah kromosom yang merepresentasikan solusi yang diinginkan.
- 2. Membentuk generasi baru. Dalam membentuk digunakan tiga operator yang telah disebut diatas yaitu : reproduksi/seleksi, *crossover*, dan mutasi. Proses ini dilakukan berulang-ulang sehingga didapatkan jumlah kromosom yang cukup untuk membentuk generasi baru dimana generasi baru ini merupakan representasi dari solusi baru.
- 3. Evaluasi solusi. Proses ini akan mengevaluasi setiap populasi dengan menghitung nilai *fitness* setiap kromosom dan mengevaluasinya sampai terpenuhi kriteria berhenti. Bila kriteria berhenti belum terpenuhi maka akan dibentuk lagi generasi baru dengan mengulang langkah 2.

Beberapa kriteria berhenti yang sering digunakan antara lain:

- a. Berhenti pada generasi tertentu
- b. Berhenti setelah beberapa generasi berturut-turut didapatkan nilai *fitness* tertinggi tidak berubah
- c. Berhenti bila dalam n generasi berikut tidak didapatkan nilai *fitness* yang lebih tinggi

2.5.2 Teknik Penyandian

Teknik penyandian disini meliputi penyandian gen dari kromosom. Gen merupakan bagian dari kromosom. Satu gen biasanya akan mewakili satu variabel. Kromosom dan gen dapat direpresentasikan kedalam bentuk : *string*, *bit*, pohon, *array*

bilangan real, daftar urutan, elemen permutasi, elemen program, atau representasi lainnya yang dapat diimplementasikan untuk operator genetika.

Contoh:

1. String bit: 10011, 01101, 111101, dst.

2. Bilangan real: 65.65, -67.98, 526.88, dst.

3. Daftar urutan: R1, R2, R3, dst.

4. Struktur lainnya

2.5.3 Pembangkitan Generasi Awal

Ukuran populasi tergantung pada masalah yang akan dipecahkan dan jenis operator genetika yang diimplementasikan. Setelah ukuran populasi ditentukan, kemudian harus dilakukan inisialisasi terhadap kromosom yang terdapat pada populasi tersebut. Inisialisasi kromosom dilakukan secara acak, namun demikian harus tetap memperhatikan domain solusi dan kendala permasalahan yang ada.

2.5.4 Perhitungan Nilai Fitness

Deretan kromosom yang dapat dievaluasi dengan suatu nilai *fitness*. Ada dua hal yang harus dilakukan dalam melakukan evaluasi kromosom, yaitu : evaluasi fungsi objektif (fungsi tujuan) dan konversi fungsi objektif ke dalam funsi *fitness*. Secara umum, fungsi *fitness* diturunkan dari fungsi objektif dengan nilai yang tidak negatif. Apabila ternyata fungsi objektif memiliki nilai negatif, maka perlu ditambahkan suatu konstanta C agar nilai *fitness* yang terbentuk menjadi tidak negatif.

2.5.5 Pemilihan Seleksi Induk

Operasi seleksi digunakan untuk memilih kromosom dalam proses *crossover* nantinya. Jenis operasi seleksi yang biasa digunakan antara lain seleksi yang biasa digunakan seleksi secara acak, seleksi roda *roulette*, seleksi rangking, dan seleksi turnamen. Masing-masing seleksi menerapkan penekanan selektif, yaitu memilih kromosom berdasarkan nilai *fitness*, kecuali seleksi acak. Seleksi berguna untuk mengeksploitasi ruang pencarian kandidat solusi. Seleksi disini adalah pemilihan-pemilihan individu dengan nilai *fitness* terbaik untuk dijadikan induk dalam menghasilkan individu-individu baru.

Pemilihan individu-individu terbaik itu dapat dilakukan dengn menggunakan mekanisme mesin *roulette* dimana semua individu ditempatkan dalam suatu lingkaran. Prosentase luas dari setiap individu pada lingkaran *roulette* didasarkan pada nilai *fitness* nya. Mengingat fungsi tujuan adalah memaksimalkan nilai *fitness*, dengan nilai *fitness* individu makin besar maka makin besar luas daerah yang diperoleh dalam lingkaran *roulette* sehingga makin besar pula kemungkinan individu tersebut terpilih. Kemudian mesin *roulette* diputar dimana jarumnya kemudian akan menunjuk individu yang terpilih. *Crossover* berguna untuk mengeksploitasi ruang pencarian kandidat solusi.

2.5.6 *Crossover* (perkawinan silang)

Setelah dilakukan pemilihan induk, maka antar kromosom induk yang terpilh dilakukan persilangan untuk mendapatkan kromosom-kromosom anak yang berbeda dengan induknya, juga merepresentsikan alternatif solusi dari permasalahan yang dihadapi.

Pada operasi *crossover* dibutuhkan dua induk untuk menghasilkan keturunan. Untuk itu setiap *crossover* diperlukan dua induk dari hasil seleksi, jika hasil seleksi merupakan bilangan ganjil maka dibuang satu kromosomnya sehingga jadi bilangan genap. Jenis *crossover* antara lain penyilangan satu titik (*single-point-crossover*), penyilangan banyak titik (*multi –point-crossover*), penyilangan seragam (*uniform crossover*) Dengan masing-masing penjelasan sebagai berikut (kusumadewi dan purnomo, 2005)

1. Penyilangan Satu Titik (single-point-crossover)

Pada penyilangan satu titik, posisi penyilangan k ($k = 1,2,3,\ldots$, N-1) dengan N = panjang kromosom diseleksi secara random. Variabel-variabel ditukar antar kromosom pada titik tersebut untuk menghasilkan anak. Misalkan ada 2 kromosom dengan panjang 12

Induk 1:

0	1	1	1	0	0	1.0	0	1	1	1	0
							-				

Induk 2:

1	1	0	1	0	0	1	0	1	1	1	0

2. Penyilangan Banyak Titik (*multi-point crossover*)

Pada penyilangan banyak titik, posisi penyilangan k ($k = 1,2,3,\ldots,N-1,I = 1,2,3,\ldots$,m) dengan N = panjang kromosom diseleksi secara random dan tidak diperbolehkan ada posisi sama, serta diurutkan naik. Variabel-variabel ditukar antar kromosom pada titik tersebut untuk menghasilkan anak.

Misalkan ada 2 kromosom dengan panjang 12 :

Induk 1:

0	1	1	1	0	0	1	0	1	1	1	0

Induk 2:

1	1	0	1	0	0	0	0	1	1	0	1

Posisi penyilangan yang terpilih:

Misalkan (m = 3) : 26 10

Setelah penyilangan, diperoleh kromosom-kromosom baru:

Anak 1

1 1 0	1 0	0 0	0 1	1 0	1
-------	-----	-----	-----	-----	---

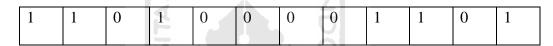
Anak 2:

1	1	1	1_	0	0	12.3	0	1	1	0	1
---	---	---	----	---	---	------	---	---	---	---	---

3. Penyilangan Seragam (*uniform crossover*)

Pada penyilangan seragam, setiap lokasi memiliki potensi sebagai tempat penyilangan. Sebuah mask penyilangan dibuat sepanjang panjang kromosom secara random yang menunjukkan bit-bit dalam mask yang mana induk akan mensupply anak dengan bit-bit yang ada.

Induk mana yang akan menyumbangkan bit keanak dipilih secara random dengan probabilitas yang sama. Tiap-tiap variabel induk yang akan. Disini anak_1 akan


dihasilkan dari induk_1 jika bit mas bernilai 1, atau sebaliknya, anak_1 akan dihaasilkan dari induk_2 jika bit mask bernilai 0. Sedangkan anak_2 dihasilkan dari mask.

Misalkan ada 2 kromosom dengan panjang 12:

Induk 1:

0	1	1	1	0	0	1	0	1	1	1	0

Induk 2:

Mask bit

Sampel 1:

1	0	0	1	1	1	0	0	1	1	0	1
			11	n de la cida		out Z					

Sampel 2

0	1	1	0	0	0	1	1	0	0	1	0

Setelah penyilangan, dipilih kromosom-kromosom baru :

Anak 1:

г	_		_					_				
	0	1	0	1	0	0	0	0	1	1	0	0
	-				_		_	_				_

Anak 2:

1	1	1	1	0	0	1	0	1	1	1	1

2.5.7 Mutasi (mutation)

Setelah mengalami proses rekombinasi, pada *offspring* dapat dilakukan mutasi variabel *offspring* dimutasi dengan ditambahkan nilai random yang sangat kecil (ukuran langkah mutasi), dengan probabilitas yang rendah. Peluang mutasi (P0) didefinisakan sebagai presentasi dari jumlah total gen pada populasi yang mengalami mutasi. Peluang mutasi mengendalikan banyaknya gen baru yang akan dimunculkan untuk dievaluasi. Jika peluang mutasi terlalu kecil, banyaknya gen yang mungkin berguna tidak pernah dievaluasi. Tetapi bila peluang mutasi ini terlalu besar, maka akan terlalu banyak gangguan acak sehingga anak akan kehilangan kemiripan dari induknya, dan juga algoritma akan kehilangan kemampuan untuk belajar dari histori pencarian. Ada beberapa pendapat mengenai laju mutasi ini. Ada yang berpendapat bahwa, laju mutasi sebesar 1/n akan memberikan hasil yang cukup baik. Ada juga yang beranggapan bahwa laju mutasi tidak tergantung pada ukuran populasinya. Komponen hasil mutasi harus diperiksa, apakah masih berada pada domain solusi, dan bila perlu dilakukan perbaikan.

Mutasi ini berperan untuk menggantikan gen yang hilang dari populasi akibat proses seleksi yang memungkinkan munculnya kembali gen yang tidak muncul pada inisialisasi populasi. Jenis mutasi ini antara lain : mutasi bilangan real dan mutasi biner. Dengan penjelasan sebagai berikut :

1. Mutasi Bilangan Real

Pada mutasi bilangan real, ukuran langkah mutasi biasanya sangan sulit ditentukan. Ukuran yang kecil biasanya sering mengalami kesuksesan, namun adakalanya ukuran yang lebih besar berjalan lebih cepat.

Operator mutasi untuk bilangan real ini dapat ditetapkan sebagai :

- a. variabel yang dimutasi = variabel \pm range * delta; (+ atau memiliki probabilitas yang sama).
- b. Range = 0.5 domain variabel; (interval pencarian)
- c. Delta $\sum (a * 2^{-1}) : a_{1} = 1$ dengan probabilitas 1/m, selain itu $a_{1} = 0$, dengan m = 20.

2. Mutasi biner

Cara sederhana untuk mendapatkan mutasi biner adalah dengan mengganti saru atau beberapa nilai gen dari kromosom. Langkah-langkah mutasi ini adalah :

- a. Hitung jumlah gen pada populasi (panjang kromosom dikalikan dengan ukuran populasi)
- b. Pilih secara acak gen yang akan dimutasi
- c. Tentukan kromosom dari gen yang terpilih untuk dimutasi
- d. Ganti nilai gen (0 ke 1, atau 1 ke 0) dari kromosom yang akan dimutasi tersebut.

2.5.8 Pembaharuan Generasi

Proses terakhir setelah operasi mutasi adalah pembaharuan generasi, yang dilakukan untuk mengganti populasi lama dengan populasi baru dengan harapan bahwa

populasi baru tersebut akan mempunyai nilai *fitness* yang lebih baik daripada populasi lama. Pembaharuan tersebut dapat dilakukan dengan mengganti secara keseluruhan populasi lama dengan populasi baru yang disebut *generational update*, atau menggantikan sebagian kromosom dalam populasi lama dengan kromosom-kromosom baru disebut *continous update*. Jika pendekatan selektif yang dilakukan cenderung mempertahankan kromosom yang lebih baik dari generasi lama ke generasi baru dan hanya menggantikan kromosom yang nilai *fitness* nya kurang baik, maka jenis pembaharuan ini disebut *steady state update*.

BAB III

METODE PENELITIAN

Pada bab ini akan dijelaskan mengenai sub bab dari metode penelitian yaitu tempat dan objek penelitian, data-data yang diperlukan, cara pengambilan data, pengolahan data dan analisis data serta diagram alir penelitian.

3.1 Objek Penelitian

Objek dari penelitian ini adalah permintaan konsumen dan daerah pendistribusian pada perusahaan PT. Amgo Mandiri yang bergerak dibidang perusahaan air minum mineral kemasan gelas.

3.2 Metode Pengumpulan Data

1. Studi Lapangan

Studi lapangan dilakukan dengan beberapa cara, yaitu:

a. Wawancara (interview)

Yaitu teknik pengumpulan data dengan cara tanya-jawab yang dilakukan secara langsung kepada karyawan perusahaan yang berkaitan dengan penelitian.

b. Pengamatan (*Observasi*)

Yaitu teknik pengumpulan data dengan cara melakukan pengamatan secara langsung pada objek yang diteliti.

2. Studi Pustaka

- a. Studi Pustaka yang dilakukan dengan dua metode kajian, yaitu kajian induktif dan deduktif. Kajian induktif adalah kajian yang diperoleh dari makalahmakalah, proseding, atau hasil penelitian sebelumnya. Sedangkan kajian deduktif adalah kajian yang diperoleh dari buku (textbook) tentang teori-teori mendasar untuk menyelesaikan masalah.
- b. Studi pustaka lainya, yaitu dengan cara mempelajari dokumen-dokumen atau arsip perusahaan yang berhubungan dengan topik penelitian.

3.3 Data-data yang dibutuhkan

Dalam penelitian ini ada beberapa sumber data yang relevan untuk menyelesaikan permasalahan yang diteliti antara lain :

1. Data primer

Data yang diperoleh secara langsung dari sumber data yakni pihak perusahaan.

Untuk memperoleh data primer digunakan metode:

- a. Observasi, yaitu usaha yang dilakukan untuk memperoleh data dengan cara mengadakan pengamatan dan pencatatan semua kegiatan didalam operasional perusahaan yang berhubungan dengan masalah yang sedang diteliti
- Interview, yaitu semua usaha untuk memperoleh data dengan jalan mengadakan Tanya jawab secara langsung.

2. Data sekunder

Data yang diperoleh bukan dari sumber keputusan seperti literature, majalah, bahan kuliah, seerta hal-hal yang berhubungan dengan masalah yang akan diteliti.

Adapun langkah-langkah yang dilakukan dalam penyusunan tugas akhir adalah:

- a. Mempelajari kebijakan distribusi yang dilakukan oleh perusahaan saat ini
- b. Menyiapkan data-data yang diperlukan antara lain:
 - 1. Jenis Produk
 - 2. Persediaan awal
 - 3. Biaya set up produksi
 - 4. Bill Of Distribution (BOD)

Daftar gudang pusat yang menangani cabang-cabang

- 5. Data volume permintaan produk selama 12 bulan
- 6. Lead Time
- 7. Biaya beli
- 8. Data biaya pemesanan (dari pabrik ke agen distribusi)
 - a. Biaya telepon
 - b. Biaya fax
 - c. Biaya pengiriman (biaya kendaraan dan biaya buruh)
- 9. Data biaya simpan.
 - a. Biaya modal
 - b. Biaya administrasi
 - c. Biaya fasilitas (biaya listrik, biaya sewa gudang dll)
 - d. Biaya pemeliharaan produk dalam gudang

- e. Biaya karyawan
- 10. Jumlah titik agen/konsumen yang harus didatangi
- 11. Kapasitas armada
- 12. Jumlah armada
- 13. Jarak tempuh total
- 14. Jarak tempuh antara satu titik dengan titik yang lain

3.4 Pengolahan Data

1. Pemilihan metode peramalan

Untuk menentukan metode peramalan yang akan digunakan, lebih dahulu digambarkan pola data yang ada. Hasil permintaan selama N periode menggunakan metode terpilih.

2. Tahap penentuan rencana induk penjualan

Pada tahap ini perusahaan membuat rencana induk penjualan untuk beberapa periode yaitu mingguan, dimana setiap periode telah diketahui berapa produk yang akan dijual.

3. Tahap rencana pemenuhan kebutuhan

Pada tahap ini ditentukan kapan produk yang dibutuhkan harus disiapkan dan berapa banyaknya.

a. Netting

Netting, pada tahap ini akan dihitung kebutuhan bersih masing-masing jaringan pemasaran.

b. *Lotting*

Pada tahap ini akan ditentukan ukuran pemesanan. Metode yang digunakan dalam penentuan ukuran pemesanan adalah metode LFL, FOQ, EOQ, POQ, FPR, LUC, dan LTC.

c. Offsetting

Pada tahap ini akan diketahui kapan dan berapa kuantitas perencanaan.

d. Explosion.

Pada tahap ini akan dihitung kebutuhan kotor untuk tingkat mata rantai dibawahnya didasarkan atas rencana pemesanan.

4. Tahap rencana pemesanan

Pada tahap ini distributor akan memesan kebutuhan sesuai dengan kebutuhannya kepada produsen.

5. Proses algoritma genetika

a. Skema Pengkodean

Untuk dapat diproses menggunakan AG, suatu permasalahan harus dikonversi dulu kedalam bentuk individu yang diwakili oleh suatu atau lebih kromosom dengan kode tertentu.

b. Penetuan nilai fitness

Pada AG, suatu individu dievaluasi berdasarkan suatu fungsi tertentu dengan ukuran nilai fitness-nya.

c. Seleksi orang tua

Proses pemilihan dua individu sebagai orang tua biasanya dilakukan secara proporsional berdasarkan nilai-nilai fitness-nya. Salah satu metode seleksi yang umum digunakan adalah roulette-wheel.

d. Pindah silang

Pada proses pindah silang terjadi kombinasi pewarisan gen-gen dari induknya, gen-gen dari kedua induk dapat bercampur sehingga dihasilkan susunan kromosom yang baru. Dari proses tersebut akan dihasilkan variasi genetik.

e. Mutasi

Mutasi diperlukan untuk mengembalikan informasi bit yang hilang akibat pindah silang. Mutasi diterapkan dengan probabilitas yang sangat kecil.

f. Elitisme

Untuk menjaga agar individu bernilai fitness tertinggi tersebut tidak hilang selama evolusi, perlu dibuat satu atau dua kopinya.

g. Pergantian populasi

Individu yang lama akan digantikan dengan individu yang baru hasil dari pindah silang dan mutasi.

3.5 Diagram Alir Penelitian

Gambar 3.1 Diagram alir proses penelitian

BAB IV

PENGUMPULAN DAN PENGOLAHAN DATA

4.1 Pungumpulan Data

4.1.1 Sejarah Singkat Perusahaan

Amgo adalah perusahaan yang bergerak di bidang air minum dalam kemasan (AMDK). Berdiri pada tanggal 21november2005. Kegiatan fisik perusahaan dimulai pada bulan februari2006. Amgo lahir atas ide bapak Amin Baladraf, Beliau menggagas lahirnya industri air minum dalam kemasan di Gorontalo melalui PT. Amgo Mandiri, ditandai dengan pembangunan pabrik di kawasan Raja Eyato, Gorontalo. Untuk membesarkan perusahaan, amgo melakukan pengembangan, terutama pada peningkatan standar mesin, menjaga kualitas dan jadwal pengiriman pesanan. Agar produk yang dihasilkan benar-benar berkualitas, maka dalam proses produksinya perusahaan senantiasa menggunakan bahan baku yang berkualitas baik agar dapat memenuhi kepuasan pelanggan perusahaan PT. Amgo Mandiri bertipe make to stock dan make to order. Saat ini amgo melayani pesanan air minum dalam kemasan gelas, dan air minum isi ulang. Sampai saat ini PT. Amgo Mandiri memiliki tenaga kerja sebanyak 50 orang yang terdiri dari staff, bagian produksi, bagian marketing, bagian pergudangan, bagian distribusi. PT. Amgo Mandiri memiliki beberapa rekanan bisnis dalam memasarkan produknya. Mitra bisnisnya sangat bervariasi dan banyak macamnya, baik dari toko grosir, pengecer, maupun perorangan, baik yang berasal dari dalam kota maupun luar kota. Untuk saat ini PT. Amgo Mandiri masih memproduksi 1 jenis produk yaitu air minum kemasan 240 ml, dan akan memperluas industri ini dengan mencoba memasarkan produk baru yaitu air minum kemasan 600 ml yang direncanakan akan memulai proses pabrikasi pada awal tahun 2012.

4.1.2 Data Penjualan

Penelitian ini menggunakan data penjualan periode Mei 2011 sampai dengan Juli 2011 sebagai gambaran untuk merencanakan penjualan dimasa yang akan datang. Data penjualan pada masing – masing distributor atau outlet-outlet diberikan sebagai berikut :

Tabel 4.1 Data Penjualan PT. Amgo Mandiri Mei – Juli

			onjunia 1		ayah		
Bulan	minggu	Gorontalo	Marisa	Moutong	Bintauna	Popayato	Paguyaman
		(Karton)	(Karton)	(Karton)	(Karton)	(Karton)	(Karton)
	1	893	898	868	856	877	900
Mei	2	899	853	896	889	871	863
Mei	3	856	864	873	887	899	875
	4	862	874	895	878	886	897
	1	906	859	914	929	825	937
Juni	2	918	898	898	899	828	901
Julii	3	938	816	817	905	877	845
	4	944	916	851	857	944	862
	1	993	875	983	889	920	833
Juli	2	836	763	917	760	901	879
Jun	3	771	957	893	967	922	883
	4	787	813	842	933	863	902
Rata-rata p	erminggu	883.5833	865.5	887.25	887.4167	884.4167	881.4167

4.1.3 Data Persediaan

Data catatan persediaan merupakan catatan tentang keadaan persediaan pada terakhir kali diadakan pencatatan dalam kurun waktu satu tahun yaitu dari bulan juni tahun 2010 – juni tahun 2011. Data yang didapat sebagai berikut :

Tabel 4.2 Data Persediaan

No.	Wilayah	Jumlah Karton			
1	Gorontalo	200			
2	Marisa	200			
3	Moutong	200			
4	Bintauna	200			
5	Popayato	200			
6	Paguyaman	200			

4.1.4 Lead Time

Waktu ancang (*lead time*) adalah waktu yang lewat antara saat pemesanan produk sampai produk tiba dilokasi outlet atau gudang.

Tabel 4.3 Data Lead Time

No.	Wilayah	Waktu Ancang
1	Gorontalo	1 Minggu
2	Marisa	1 Minggu
3	Moutong	1 Minggu
4	Bintauna	1 Minggu
5	Popayato	1 Minggu
6	Paguyaman	1 Minggu

4.1.5 Biaya Simpan

Biaya penyimpanan merupakan biaya yang harus dikeluarkan oleh perusahaan untuk menyimpan dan menjaga produk didalam gudang. Biaya ini meliputi biaya modal, biaya pemeliharaan, listrik, administrasi, dan biaya karyawan. Yang ditambahkan dengan suku bunga bank 13% berdasarkan informasi dari pimpinan perusahaan. Berikut adalah rincian dari biaya simpan perusahaan.

1. Biaya modal

Biaya produksi = Rp 14.500 / karton

Suku bunga per tahun = 13 %

Biaya modal per karton/tahun = biaya pokok per karton × suku bunga per tahun

Biaya modal per karton/tahun = Rp $14.500 \times 13\%$ = Rp 1885

Biaya modal = Rp 1885per karton/tahun

Biaya modal = $\frac{\text{Rp } 1885 \text{ per karton /tahun}}{12 \text{ bulan}} = \text{Rp } 157,0833 \text{ per karton/bulan}$

Biaya modal = Rp 39,2708 per karton/minggu

2. Biaya Tambahan Lainnya

Biaya tambahan meliputi biaya administrasi, biaya listrik, biaya pemeliharaan, biaya karyawan yang dikeluarkan oleh perusahaan setiap bulannya.

Biaya administrasi = Rp. 300.000 / bulan

Biaya listrik = Rp. 140.000 / bulan

Biaya pemeliharaan = Rp. 4.500.000 / bulan

Biaya karyawan = Rp. 1.000.000 / bulan

65

Biaya tambahan =
$$\frac{\text{Rp } 300.000 + \text{Rp } 140.000 + \text{Rp } 4.500.000 + \text{Rp } 1.000.000}{23.000 \times 4}$$

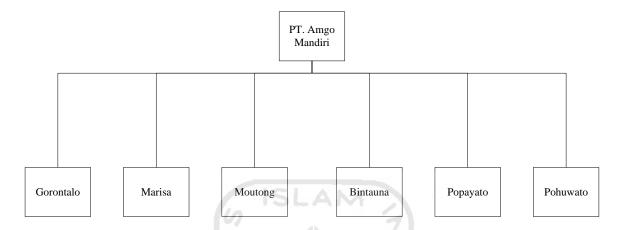
= Rp 64,56 per karton/bulan

Biaya simpan = Biaya modal + biaya administrasi + biaya listrik + biaya pemeliharaan + biaya karyawan

Biaya simpan = Rp 39,2708 + Rp 64,56

Biaya simpan = Rp 103,82 per karton / minggu

4.1.6 Biaya Pesan

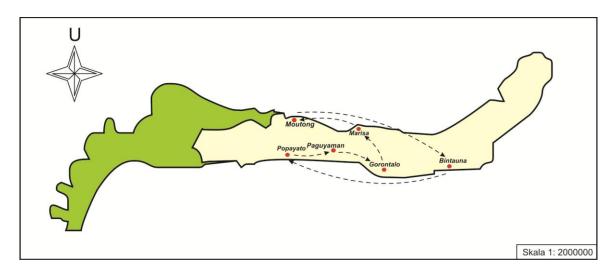

Proses pemesanan awalnya dimulai dari pihak perusahaan yang akan menanyakan kepada pihak swalayan-swalayan atau outlet-outlet melalui telepon dan pihak swalayan-swalayan atau outlet-outlet juga akan menelepon kembali untuk memberitahukan hal-hal tertentu. Setelah itu pihak perusahaan akan mengirimkan air minum amgo apabila produk sudah tersedia dan siap didistribusikan. Tentunya dalam mengirimkan produk sampai ke tujuan membutuhkan biaya transportasi dan buruh untuk mengantar air minum amgo. Pihak perusahaan juga sering meminta data yang tidak bisa diserahkan ke pihak ketiga untuk itu pihak perusahaan sering menggunakan faxmile sebagai alternatif transaksi pengiriman data penjualan. Dalam hal ini biaya yang dikeluarkan perusahaan dalam pemesanan amgo yaitu biaya telepon, biaya faxmile, biaya transportasi dan biaya buruh

Biaya Pesan = Biaya telepon + biaya faxmile + biaya kenderaan + biaya Buruh $= Rp\ 600.000\ /\ bulan + Rp\ 100.000\ /\ bulan + Rp\ 2.000.000\ /\ bulan + Rp\ 900.000\ /\ bulan$

Biaya pesan = Rp 3.600.000 / order

Biaya pesan = Rp 900.000 / order

4.1.7 Bill Of Distribution



Gambar 4.1 Bill Of Distribution

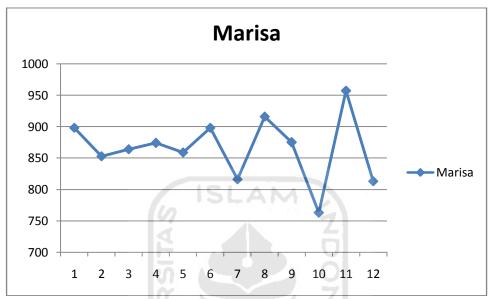
4.1.8 Jarak Tempuh Antara Satu Titik Dengan Titik Yang Lain

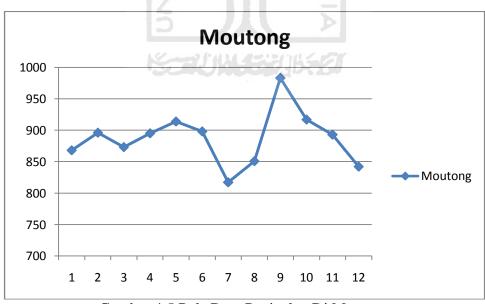
Tabel 4.4 Data Jarak Tempuh

	Rute	Gorontalo	Marisa	Moutong	Bintauna	Popayato	Paguyaman
Gorontalo	Rute 1	- 14		Assembly	-61		
Marisa	Rute 2	166 km					
Moutong	Rute 3	272 km	114 km	ı			
Bintauna	Rute 4	180 km	346 km	452 km	1		
Popayato	Rute 5	219 km	167 km	115 km	399 km	-	
Paguyaman	Rute 6	102 km	51 km	83 km	282 km	117 km	-

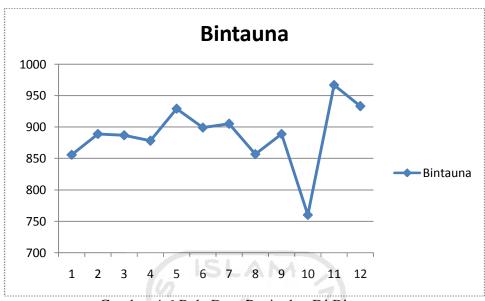
Gambar 4.2 Peta Distribusi Awal

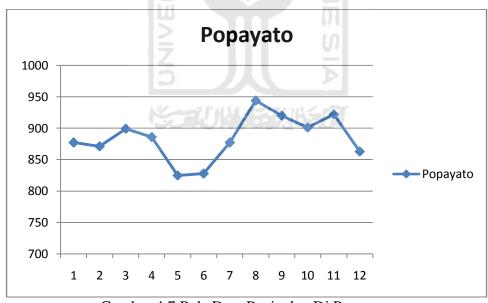
4.2 Pengolahan Data

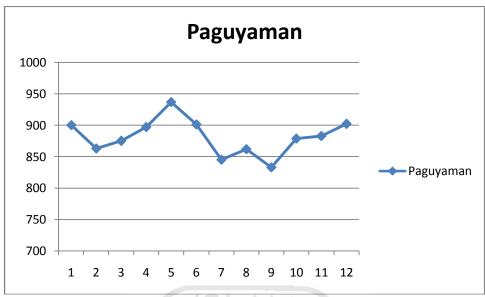

Berdasarkan data penjualan yang dikumpulkan pada saat penelitian, maka selanjutnya dilakukan peramalan penjualan untuk 3 bulan kedepan. Untuk melakukan peramalan digunakan bantuan software WinQSB.


Gambar 4.3 Pola Data Penjualan Di Gorontalo

Data untuk daerah gorontalo diplot sebanyak 24 minggu dengan tujuan mencari tipe data yang sesuai untuk diramalkan. Terjadi penurunan permintaan yang sangat


signifikan pada bulan juli minggu kedua dikarenakan terjadi bencana alam yaitu banjir di daerah perkotaan gorontalo.


Gambar 4.4 Pola Data Penjualan Di Marisa


Gambar 4.5 Pola Data Penjualan Di Moutong

Gambar 4.6 Pola Data Penjualan Di Bintauna

Gambar 4.7 Pola Data Penjualan Di Popayato

Gambar 4.8 Pola Data Penjualan Di Paguyaman

4.2.1 Peramalan Penjualan

Ada dua aspek ukuran keakuratan peramalan yang memiliki nilai signifikansi yang potensial pada saat dilakukan penetuan teknik peramalan. Uang pertama performansi kesalahan historis peramalan, yang kedua kemampuan peramalan menanggapi adanya perubahan. Dua nilai keakuratan yang umum untuk menghitung jumlah kesalahan historis adalah *Mean Absolutue Deviation* (MAD) dan *Mean Square Error* (MSE). MAD merupakan rata-rata nilai mutlak kesalahan, sedangkan MSE merupakan ratatara pengkuadratan nilai kesalahan (Gasperz, 1998). Untuk memilih metode yang dipakai, perlu diukur besarnya kesalahan residual. Besaran ukurasi peramalan yang umum dipakai adalah MAD, MSE, dan *Mean Absolute Procentage* (MAPE). MAPE menunjukkan tingkat kesalahan secara absolute, MSE mununjukkan kuadrat dari kesalahan peramalan, kedua cara ini memberikan kesalahan ekstrim yang berat ketika membandingkan peramalan. Pada saat tidak ada kecocokan, maka nilai MSE sangat besar, sehingga ukuran yang paling banyak dipilih adalah MAD. Jika metode-metode

memiliki kecocokan yang sempurna maka nilai MAD = 0, sedangkan jika metode tidak memiliki kecocokan maka, MAD sangat besar. Dengan demikian pada saat membandingkan beberapa metode peramalan, yang dipilih adalah metode dengan MAD minimum. *Tracking signal* (TS) menunjukkan bagaimana baiknya suatu peramalan memperkirakan nilai –nilai aktual. TS yang positif menunjukkan bahwa nilai aktual lebih besar daripada nilai ramalan, sedangkan nilai TS yang negatif berarti nilai aktual permintaan lebih kecil daripada peramalan. Berikut ini adalah hasil peramalan:

Tabel 4.5 akurasi peramalan untuk wilayah gorontalo

Metode	SA	SA MA (3) WN		SES (0.8)	LR	Metode
		io a		ŏ		Terbaik
MAD	57.5401	64.2963	53.4568	40.4109	49.2787	
MSE	4708.0950	6020.7400	4753.4240	3443.7730	3435.0880	SES
TS	-2.0567	-2.6959	-2.4734	-3.2611	-2.9505	

Tabel 4.6 akurasi peramalan untuk wilayah Marisa

Metode	SA	MA (3)	WMA(3)	SES (0.5)	LR	Metode
						Terbaik
MAD	40.3202	43.7778	53.8765	48.7966	35.000	
MSE	2502	2996.8150	4427.7730	3571.4840	1958.6230	LR
TS	-2.2727	-0.3807	-0.3052	-1.7741	-0.2236	

Tabel 4.7 akurasi peramalan untuk wilayah Moutong

Metode	SA	MA (5)	WMA(3)	SES (0.5)	LR	Metode
						Terbaik
MAD	34.7218	42.600	42.8149	35.6390	30.7308	
MSE	2094.5060	3111.2410	3743.2370	2716.7610	1656.3870	LR
TS	1.7163	-0.3709	-0.6280	0.3210	0.2137	

Tabel 4.8 akurasi peramalan untuk wilayah Bintauna

Metode	SA	MA (3)	WMA(3)	SES (0.5)	LR	Metode
						Terbaik
MAD	39.2777	46.8148	48.888	42.7818	32.7007	
MSE	2980.342	4582.939	4956.274	3999.876	2364.922	LR
TS	2.74303	1.4098	1.4318	2.7030	-1.6798	

Tabel 4.9 akurasi peramalan untuk wilayah Popayato

Metode	SA	MA (3)	WMA(3)	SES (0.8)	LR	Metode
						Terbaik
MAD	33.519	38.2962	35.851	30.860	26.661	
MSE	1540.144	2231.951	1889.351	1431.421	1062.786	LR
TS	2.8417	0.1566	-0.2975	-0.1164	0.0000086	

Tabel 4.10 Akurasi Peramalan Untuk Wilayah Paguyaman

Metode	SA	MA (6)	WMA(3)	SES (0.8)	LR	Metode
				S		Terbaik
MAD	25.116	28.3055	31.0370	27.65991	22.2706	
MSE	1006.033	1204.856	1246.302	1041.262	723.3574	LR
TS	-2.7367	-3.055	1.0811	-0.1031	-5.481	

4.2.2 Hasil Peramalan Penjualan

Tabel 4.11Hasil Peramalan Data permintaan Air Minum Bulan Agustus – Oktober

		li i Cramaian i	1		layah	<u> </u>	
Bulan	Minggu	Gorontalo	Marisa	Moutong	Bintauna	Popayato	Paguyaman
		(Karton)	(Karton)	(Karton)	(Karton)	(Karton)	(Karton)
	1	884	859	892	899	906	873
Agustus	2	884	858	892	901	909	872
Č	3	884	857	893	903	913	871
	4	884	855	893	905	916	870
	1	884	854	894	906	920	868
September	2	884	852	894	908	923	867
1	3	884	851	895	910	927	866
	4	884	850	896	912	930	864
	1	884	848	896	914	934	863
Oktober	2	884	847	897	915	937	862
	3	884	845	897	917	941	861
	4	884	844	898	919	944	859

4.2.3 Rencana Induk Penjualan

Merupakan pernyataan tentang beberapa banyak target jumlah penjualan dalam satu periode. Penentuan rencana induk penjualan berdasarkan peramalan terhadap data historis penjualan pada periode sebelumnya.

4.12 Rencana Induk Penjualan

Bulan	Minggu	Gorontalo	Marisa	Moutong	Bintauna	Popayato	Paguyaman
	1	884	859	892	899	906	873
Agustus	2	884	858	892	901	909	872
8	3	884	857	893	903	913	871
	4	884	855	893	905	916	870
	1	884	854	894	906	920	868
September	2	884	852	894	908	923	867
September	3	884	851	895	910	927	866
	4	884	850	896	912	930	864
	1	884	848	896	914	934	863
Oktober	2	884	847	897	915	937	862
	3	884	845	897	917	941	861
	4	884	844	898	919	944	859

4.2.4 Perhitungan Safety Stock

dari hasil peramalan dengan metode terpilih dapat ditentukan *safety stock* (persediaan pengaman) dengan rumus :

$$SS = Z . SD$$

Dimana:

Z = faktor pengaman yang besarnya bergantung pada tingkat pengaman (*level of service*)

SD = standar deviasi selama t+1

Pada penelitian ini, peneliti menggunakan level of service 95 %, maka nilai Z = 1,645

Rumus standar deviasi :
$$SD = \frac{\sqrt{\Sigma(x-\dot{x})^{-2}}}{N}$$

 χ = permintaan aktual

★ = rata-rata permintaan

N = jumlah periode

Dari perhitungan manual didapat nilai SD = 46,131 maka *safety stock*:

$$SS = Z . SD$$

= 1,645 x 46,131
= 75.8861 \approx 76

4.2.5 Distribution Resource Planning(DRP)

Proses selanjutnya dilakukan perhitungan manual dengan metode yang ada, perhitungan ini digunakan untuk menghitung kebutuhan bersih, persediaan, dan rencana pemesanan. Hasil dari perencanaan kebutuhan distribusi berapa informasi tentang jumlah kebutuhan bersih produk disetiap wilayah. Dan pada pusat distribusi untuk setiap minggu selama tiga bulan mendatang, kapan produk tersebut dibutuhkan dan harus dipesan serta berapa produk yang harus dipesan. Dalam perhitungan perencanaan kebutuhan distribusi, proses pertama yang dilakukan adalah proses *netting*. Proses *netting* merupakan proses perhitungan kebutuhan bersih (*net requirement*), dimana:

Kebutuhan bersih (net requirement) = {kebutuhan kotor (gross requiremqnt) + \$Safetystock} - { penerimaan terjadwal (schedule receipt) + Persediaan (projected on hand) periode sebelumnya}.

Proses kedua dari perhitungan kebutuhan distribusi adalah *lotting*, proses untuk penentuan ukuran lot. Dalam penentuan ukuran lot yang dipertimbangkan adalah biaya yang terkecil akan digunakan dalam proses selanjutnya. Dalam perencanaan kebutuhan produk, biaya adalah salah satu faktor penentu yang paling diperhitungkan. Ukuran pemesanan berkaitan sekali dengan masalah biaya. Biaya dalam penentuan kebijakan ukuran lot dipilih berdasarkan total biaya terkecil. Penentuan lot dilakukan dengan melihat biaya yang ditanggung. Ukuran lot yang mempunyai biaya terkecil yang akan dipilih. Dalam perhitungan ini digunakan dua metode ukuran lot, yaitu *lot for lot*dan *Economic Order Quantity (EOQ)*. Dalam metode *EOQ* untuk menentukan ukuran lot perlu dihitung biayanya. Dari analisis biaya yang dilakukan dipilih ukuran lot yang memberikan biaya terkecil.

Proses yang ketiga adalah offseting, dimana pada proses ini akan diketahui kapan dan berapa kuantitas pesanan. Proses selanjutnya adalah proses explosion yang merupakan tahap penurunan rencana pemesanan. Dalam proses ini rencana pemesanan dari masing – masing toko akan dikirim pada pusat distribusi untuk menghitung kebutuhan kotornya.

Least unit Cost
 Wilayah Gorontalo

Periode	Jumlah Order	Biaya Pesan	Biaya Simpan	Total Cost	Total Cost / Karton
1	884	900.000	0	900.000	1.184,2
1-2	1768	900.000	91776,88	991.776,88	603,27
1-3	2652	900.000	183.553,76	1.083.553,76	428,62
1-4	3536	900.000	550.661,28	1.450.661,28	425,16
5	884	900.000	0	900.000	1.184,2
5-6	1768	900.000	91776,88	991.776,88	603,27
5-7	2652	900.000	275.330,64	1.175.330,64	428,62
5-8	3536	900.000	642.438,16	1.542.438,16	425,16
9	884	900.000	0	900.000	1.184,2
9-10	1768	900.000	91776,88	991.776,88	603,27
9-11	2652	900.000	275.330,64	1.175.330,64	428,62
9-12	3536	900.000	642.438,16	1.542.438,16	425,16

LT = 1 Lot Size : LUC SS = 76	PD	1	2	3	4	5	6	7	8	9	10	11	12
Kebutuhan Kotor (unit)		884	884	884	884	884	884	884	884	884	884	884	884
Jadwal Penerimaan (unit)													
Persediaan Di Tangan (unit)	200	2776	1892	1008	124	2776	1892	1008	124	2776	1892	1008	124
Kebutuhan Bersih (unit)		760				760				760			
Rencana Penerimaan (unit)		3536				3536				3536			
Rencana Pemesanan (unit)	3536				3536				3536				

Wilayah Marisa

Periode	Jumlah Order	Biaya Pesan	Biaya Simpan	Total Cost	Total Cost / Karton
1	859	900.000	0	900.000	1.365,7
1-2	1717	900.000	89.077,56	989.077,56	651,99
1-3	2574	900.000	267.025,04	1.167.025,04	491,58
1-4	3429	900.000	622.400,9	1.522.400,9	471,47
5	854	900.000	0	900.000	1053,864
5-6	1706	900.000	88.454,64	988.454,64	579,39
5-7	2557	900.000	265.156,28	1.165.156,28	455,67
5-8	3407	900.000	618.351,92	1.518.351,92	445,65
9	848	900.000	0	900.000	1061,32
9-10	1695	900.000	87.935,54	987.935,54	582,85
9-11	2540	900.000	263.391,34	1.163.391,34	458,02
9-12	3384	900.000	614.199,12	1.514.166,12	447,45
			2 11	()	

LT = 1 Lot Size : LUC SS = 76	PD	1	2	3	4	5	6	7	8	9	10	11	12
Kebutuhan Kotor (unit)		859	858	857	855	854	852	851	850	848	847	845	844
Jadwal Penerimaan (unit)													
Persediaan Di Tangan (unit)	200	2694	1836	979	124	2677	1825	974	124	2660	1813	968	124
Kebutuhan Bersih (unit)		735				730				724			
Rencana Penerimaan (unit)		3429				3407				3384			
Rencana Pemesanan (unit)	3429				3407				3384				

Wilayah Moutong

Periode	Jumlah Order	Biaya Pesan	Biaya Simpan	Total Cost	Total Cost / Karton
1	892	900.000	0	900.000	1300,57
1-2	1584	900.000	92.607,44	992.607,44	626,64
1-3	2477	900.000	278.029,96	1.178.029,96	475,58
1-4	3370	900.000	648.771,18	1.548.771,18	459,57
5	894	900.000	10 AN	900.000	1006,71
5-6	1788	900.000	89.700,48	989.700,48	553,52
5-7	2683	900.000	275.538,28	1.175.538,28	438,14
5-8	3579	900.000	644.306,92	1.544.306,92	431,491
9	896	900.000	0	900.000	1004,46
9-10	1793	900.000	93.126,54	993.123,54	553,89
9-11	2690	900.000	279.379,62	1.179.379,62	438,43
9-12	3588	900.000	652.196,62	1.552.196,62	432,60
			5	D	

LT = 1 Lot Size : LUC SS = 76	PD	1	2	3	4	5	6	7	8	9	10	11	12
Kebutuhan Kotor (unit)		892	892	893	893	894	894	895	896	896	897	897	898
Jadwal Penerimaan (unit)													
Persediaan Di Tangan (unit)	200	2802	1910	1017	124	2809	1915	1020	124	2816	1919	1022	124
Kebutuhan Bersih (unit)		768				770				772			
Rencana Penerimaan (unit)		3570				3579				3588		·	
Rencana Pemesanan (unit)	3570				3579				3588				

Wilayah Bintauna

Periode	Jumlah Order	Biaya Pesan	Biaya Simpan	Total Cost	Total Cost / Karton
1	899	900.000	0	900.000	1287,55
1-2	1600	900.000	93.541,82	993.541,82	620,96
1-3	2503	900.000	281.040,74	1.181.040,74	471,85
1-4	3408	900.000	656.453,86	1.556.453,86	456,70
5	906	900.000	0	900.000	993,37
5-6	1814	900.000	94.268,56	994.268,56	548,1
5-7	2724	900.000	283.220,96	1.183.220,96	434,36
5-8	3636	900.000	661.541,04	1.561.541,04	429,46
9	914	900.000	0	900.000	984,68
9-10	1829	900.000	94.995,3	994.995,3	544,01
9-11	2746	900.000	285.401,18	1.185.401,18	431,68
9-12	3665	900.000	666.628,22	1.566.628,22	427,45
			2 11	(A)	

LT = 1 Lot Size : LUC SS = 76	PD	1	2	3	4	5	6	7	8	9	10	11	12
Kebutuhan Kotor (unit)		899	901	903	905	906	908	910	912	914	915	917	919
Jadwal Penerimaan (unit)													
Persediaan Di Tangan (unit)	200	2833	1932	1029	124	2854	1946	1036	124	2875	1960	1043	124
Kebutuhan Bersih (unit)		775				782				790			
Rencana Penerimaan (unit)		3608				3636				3665			
Rencana Pemesanan (unit)	3608			·	3636				3665			·	

Wilayah Popayato

Periode	Jumlah Order	Biaya Pesan	Biaya Simpan	Total Cost	Total Cost / Karton
1	906	900.000	0	900.000	1.274,78
1-2	1.615	900.000	94.372,38	994.372,38	615,71
1-3	2.528	900.000	283.947,7	1.183.947,7	468,33
1-4	3.444	900.000	663.617,44	1.563.617,44	454,01
5	920	900.000	0	900.000	978,26
5-6	1843	900.000	94.787,66	994.787,66	539,76
5-7	2770	900.000	287.269,94	1.187.269,94	428,61
5-8	3700	900.000	671.715,4	1.571.715,4	424,78
9	934	900.000	0	900.000	963,59
9-10	1871	900.000	97.279,34	997.279,34	533,01
9-11	2812	900.000	292.668,58	1.192.668,58	424,13
9-12	3756	900.000	683.966,16	1.583.966,16	421,71
			2 111	(A)	

LT = 1 Lot Size : LUC SS = 76	PD	1	2	3	4	5	6	7	8	9	10	11	12
Kebutuhan Kotor (unit)		906	909	913	916	920	923	927	930	934	937	941	944
Jadwal Penerimaan (unit)													
Persediaan Di Tangan (unit)	200	2862	1953	1040	124	2904	1981	1054	124	2946	2009	1068	124
Kebutuhan Bersih (unit)		782				796				810			
Rencana Penerimaan (unit)		3644				3700				3756			
Rencana Pemesanan (unit)	3644				3700				3756				

Wilayah Paguyaman

Periode	Jumlah Order	Biaya Pesan	Biaya Simpan	Total Cost	Total Cost / Karton
1	873	900.000	0	900.000	1337,29
1-2	1545	900.000	90.531,04	990.531,04	641,12
1-3	2416	900.000	271.593,12	1.171.593,12	484,93
1-4	3286	900.000	633.094,36	1.533.094,36	466,55
5	868	900.000	0	900.000	1036,86
5-6	1735	900.000	90.011,94	990.011,94	570,61
5-7	2601	900.000	269.828,18	1.169.828,18	449,76
5-8	3465	900.000	628.941,56	1.528.941,56	441,25
9	863	900.000	0	900.000	1042,87
9-10	1725	900.000	89.492,84	989.492,84	573,61
9-11	2586	900.000	268.270,88	1.168.270,88	451,76
9-12	3445	900.000	625.307,86	1.525.307,86	442,75
			<u> </u>	(V)	

LT = 1 Lot Size : LUC SS = 76	PD	1	2	3	54	5	6	7	8	9	10	11	12
Kebutuhan Kotor (unit)		873	872	871	870	868	867	866	864	863	862	861	859
Jadwal Penerimaan (unit)													
Persediaan Di Tangan (unit)	200	2737	1865	994	124	2721	1854	988	124	2706	1844	983	124
Kebutuhan Bersih (unit)		749				744				739			
Rencana Penerimaan (unit)		3486				3465				3445			
Rencana Pemesanan (unit)	3486				3465				3445				

4.2.6 Perhitungan Total Cost

Total cost = total biaya simpan + total biaya pemesanan

Total biaya simpan = biaya simpan per karton per/minggu \times total persediaan

Total biaya pemesanan = biaya pesan per order \times jumlah pemesanan

1. Lot For Lot

Total biaya simpan =
$$103,82 \times 0 = 0$$

Total biaya pemesanan = $900.000 \times 66 = 59.400.000$

$$Total\ cost = 0 + 59.400.000 = 59.400.000$$

2. POQ

Total biaya simpan = $103,82 \times 147.862 = 15.351.033$

Total biaya pemesanan = $900.000 \times 18 = 16.200.000$

$$Total\ cost = 15.351.033 + 16.200.000 = 31.551.033$$

3. FOQ

Total biaya simpan = $103,82 \times 75.557 = 7.846.404$

Total biaya pemesanan = $900.000 \times 36 = 32.400.000$

$$Total\ cost = 7.846.404 + 32.400.000 = 40.246.404$$

4. FPR

Total biaya simpan = $103,82 \times 78.395 = 8.138.969$

Total biaya pemesanan = $900.000 \times 24 = 21.600.000$

$$Total\ cost = 8.138.969 + 21.600.000 = 29.738.969$$

5. EOQ

Total biaya simpan = $103,82 \times 127.513 = 13.238.400$

Total biaya pemesanan = $900.000 \times 18 = 16.200.000$

 $Total\ cost = 13.238.400 + 16.200.000 = 29.438.400$

6. LUC

Total biaya simpan = $103,82 \times 104.069 = 10.804.444$

Total biaya pemesanan = $900.000 \times 18 = 16.200.000$

 $Total\ cost = 10.429.030 + 16.200.000 = 26.629.030$

7. LTC

Total biaya simpan = $103,92 \times 104.933 = 10.894.144$

Total biaya pemesanan = $900.000 \times 18 = 16.200.000$

 $Total\ cost = 10.894.144 + 16.200.000 = 27.094.144$

Tabel 4.13Total Cost

		14001 1.1310141 (
No	Teknik Lot Sizing	Biaya Simpan	Biaya Pemesanan	Total Cost
1.	Lot For Lot	0	Rp 59.400.000	Rp 59.400.000
2.	Period Order Quantity (POQ)	Rp 15.351.033	Rp 16.200.000	Rp 31.551.033
3.	Fixed Order Quantity (FOQ)	Rp 7.846.404	Rp 32.400.000	Rp 40.246.404
4.	Fixed Period Requirement (FPR)	Rp 8.138.969	Rp 21.600.000	Rp 29.738.969
5.	Economic Order Quantity (EOQ)	Rp 13.238.400	Rp 16.200.000	Rp 29.438.400
6.	Least Unit Cost (LUC)	Rp 10.804.444	Rp 16.200.000	Rp 27.004.444
7.	Least Total Cost (LTC)	Rp. 10.894.144	Rp. 16.200.000	Rp 27.094.144

4.2.7 Algoritma Genetika

Tabel 4.14 Matriks Jarak

	Rute	Gorontalo	Marisa	Moutong	Bintauna	Popayato	Paguyaman	Order
Gorontalo	Rute 1	-						3.412
Marisa	Rute 2	166 km	-					3.229
Moutong	Rute 3	272 km	114 km	-				3.370
Bintauna	Rute 4	180 km	346 km	452 km	-			3.408
Popayato	Rute 5	219 km	167 km	115 km	399 km	-		3.444
Paguyaman	Rute 6	102 km	51 km	83 km	282 km	117 km	-	3.286

1. Skema Pengkodean

Tahap ini bertujuan untuk pembangkitan awal kromosom-komosom sebagai kode dari altenatif-alternatif solusi permasalahn yang dihadapi. Adapun untuk fase petama dasar representasi kromosom adalah banyaknya rute distribusi yang dilalui selama proses distribusi, yaitu sebanyak 6 rute. Langkah pertama yang dilakukan pada tahap ini adalah menentukkan ukuran populasi (popsize sebesar 16). Dan pembangkitan kromosom awal yang digunakan dengan menggunakan metode pencarian acak (*random search*).

Setelah itu membangkitkan bilangan random dari 1 sampai jumlah rute yang dilalui, dalam penelitian ini bejumlah 16, dengan nilai bilangan random yang dibangkitkan dalah bilangan bulat (integer) yang tidak boleh berulang dalam sebuah kromosomnya. Hasil pembangkitan kromosom awal ini adalah sebagai berikut :

Tabel 4.15 Populasi Awal						
V_1	1	2	3	4	5	6
V_2	2	1	3	6	5	4
V_3	3	4	5	6	1	2
V_4	4	5	6	3	2	1
V_5	5	6	1	2	3	4
V_6	6	5	4	1	2	3
V_7	1	4	5	2	3	6
V_8	2	5	1	4	3	6
V_9	3	6	4	1	2	5
V ₁₀	6	5	1	4	3	2
V ₁₁	5	1	4	2	3	6
V ₁₂	4	3	2	1	5	6
V ₁₃	2	6	4	5	3	1
V ₁₄	5	1	3	2	6	4
V ₁₅	1	3_	4	6	5	2
V ₁₆	3	4	1	6	2	5

2. Penetuan model fungsi fitness

Dalam evolusi alam, penentuan fungsi evaluasi pada kromosom dilakukan oleh alam. Sedangkan pada algoritma genetika peran alam digantikan oleh sebuah nilai yang biasa disebut dengan nilai suaian (*fitness value*). Oleh sebab itu, langkah selanjutnya yang harus dilakukan adalah menentukan model fungsi evaluasi, untuk menghitung nilai suaian (*fitness value*) dari setiap kromosom. Karena algoritma genetika bersifat buta, tidak mengetahui permasalahan yang dihadapi, maka penentuan model evaluasi ini harus dilakukan secara tepat. Hal ini disebabkan karena dengan nilai suaian inilah algoritma genetika dapat berhubungan dengan pemasalahan yang dihadapi.

Selain itu juga pelu dilakukan penskalaan setiap kromosom agar tidak terjadi dominasi super kromosom pada sebuah generasi, yang akan mengakibatkan algoritma genetika terging dalam optimasi lokal (*premature convergen*). Oleh karena itu, suatu nilai fitness kromosom juga harus dapat

merespon dua hal tersebut secara bersamaan, agar generator algoritma genetika yang dihasilkan bisa merespon diluar daerah hasil yang didapatkan.

Tujuan dari penetuan rute distribusi pada fase pertama ini adalah konsep minimasi, yaitu untuk mereduksi jarak antar kota. Sedangkan pada konsep algoritma genetika identik dengan konsep maksimasi, yaitu mempertahankan kromosom-kromosom yang mempunyai fungsi suaian besar. Sehingga diperlukan sebuah fungsi transfer, dairi nilai murni hasil setiap kromosom. Karena tujuan TSP adalah untuk meminimalkan jarak maka fungsi fitness yang digunakan adalah 1 dibagi dengan jarak.

Tabel 4.16 Nilai Fitness

	Fitness						
V_1	1_	2	3	4	5	6	0.000801
V_2	2	1	3	6	5	4	0.000964
V_3	3	4	5	6	1	2	0.000809
V_4	4	5	6	3	2	1	0.001138
V_5	5	6	1	2	3	4	0.001052
V_6	6	5	4	1	2	3	0.001025
V_7	15	4	5	2	3	6	0.00106
V_8	2	5	1	4	3	6	0.000908
V_9	3	6	4	1	2	5	0.001139
V_{10}	6	5	1	4	3	2	0.000924
V ₁₁	5	1	4	2	3	6	0.001062
V_{12}	4	3	2	1	5	6	0.000936
V_{13}	2	6	4	5	3	1	0.000837
V_{14}	5	1	3	2	6	4	0.001066
V ₁₅	1	3	4	6	5	2	0.000775
V ₁₆	3	4	1	6	2	5	0.00105
	To	otal l	Fitne	ess			0.015547

Tabel 4.17 Fitness Kamulatif

		Kro	mos	$\mathbf{P_k}$	$\mathbf{q}_{\mathbf{k}}$			
V_1	1	2	3	4	5	6	0.05154	0.05154
V_2	2	1	3	6	5	4	0.062027	0.113567
V_3	3	4	5	6	1	2	0.052041	0.165608

		Kro	moso	$\mathbf{P}_{\mathbf{k}}$	$\mathbf{q}_{\mathbf{k}}$			
V_4	4	5	6	3	2	1	0.073177	0.238784
V_5	5	6	1	2	3	4	0.067636	0.306421
V_6	6	5	4	1	2	3	0.065904	0.372325
V_7	1	4	5	2	3	6	0.06821	0.440535
V_8	2	5	1	4	3	6	0.058422	0.498956
V_9	3	6	4	1	2	5	0.07326	0.572216
V_{10}	6	5	1	4	3	2	0.059447	0.631664
V ₁₁	5	1	4	2	3	6	0.068283	0.699946
V ₁₂	4	3	2	1	5	6	0.060227	0.760173
V ₁₃	2	6	4	5	3	1	0.053826	0.813999
V ₁₄	5	1	3	2	6	4	0.068574	0.882573
V ₁₅	1	3	4	6	5	2	0.049862	0.932435
V ₁₆	3	4	1	6	2	5	0.067565	1

3. Tahap Seleksi Kromosom Induk

Pada tahap ini dilakukan seleksi pemilihan kromosom-kromosom induk yang akan mengalami opeasi-operasi genetika ketahap selanjutnya. Metode pemilihan kromosom induk yang digunakan dalam penelitian ini adalah metode pemilihan kromosom induk dengan seleksi roda rolet (*roulette wheel parent selection*), yaitu metode seleksi pemilihan kromosom-komosom induk dengan memperhatikan tingkat penyesuaian setiap kromosom dengan lingkungannya, yang ditunjukkan oleh besanya nilai suaian setiap kromosom. Semakin besar nilai suaian yang dimiliki oleh sebuah kromosom induk untuk generasi berikutnya.

Adapun konsep pemilihan kromosom induk melalui metode ini adalah dengan membagi roda rolet menjadi beberapa bagian, yang mencerminkan besarnya peluang setiap kromosom untuk terpilih. Pemilihannya sendiri

dilakukan dengan cara memutar roda rolet, dan kromosom yang terpilih ditunjukkan oleh bagian yang terpilih oleh sebuah alat pemilih saat putaran roda berakhir. Langkah selanjutnya adalah melakukan perhitungan probabilitas relative setiap kromosom.

Tabel 4.18 Bilangan Random Roda Rolet

No.	Bilangan Random
1	0.11
2	0.57
3	0.84
4	ISL 0.17
5	0.51
6	0.23
7	0.13
8	0.63
9	0.8
10	0.74
11	0.36
12	0.8
13	0.69
14	0.2
15	0.44
16	0.32

Tabel 4.19 Hasil Seleksi Kromosom

	$\mathbf{q}_{\mathbf{k}}$						
V_1	1	2	3	4	5	6	0.05154
V_2	2	1	3	6	5	4	0.113567
V_3	3	4	5	6	1	2	0.165608
V_4	4	5	6	3	2	1	0.238784
V_5	5	6	1	2	3	4	0.306421
V_6	6	5	4	1	2	3	0.372325
V_7	1	4	5	2	3	6	0.440535
V_8	2	5	1	4	3	6	0.498956
V_9	3	6	4	1	2	5	0.572216
V_{10}	6	5	1	4	3	2	0.631664
V ₁₁	5	1	4	2	3	6	0.699946
V ₁₂	4	3	2	1	5	6	0.760173
V ₁₃	2	6	4	5	3	5	0.813999
V_{14}	5	1	3	2	6	4	0.882573
V ₁₅	1	3	4	6	5	2	0.932435
V ₁₆	3	4	1	6	2	5	1

Kromosom Asal	Kromosom Terseleksi
V ₁ '	V_3
V ₂ '	V_8
V ₃ '	V_{14}
V ₄ '	V_2
V ₅ '	V_9
V ₆ '	V_5
V ₇ '	V_3
V ₈ '	V_{11}
V ₉ '	V ₁₃
V ₁₀ '	V_{12}
V ₁₁ '	V_6
5 V ₁₂ '	V_{13}
V ₁₃ '	V_{12}
Z V ₁₄ '	V_4
V ₁₅ '	V_8
V ₁₆ '	V_6

4. Operasi Pesilangan (Crossover)

Dalam Opeasi ini langkah pertama yang diambil adalah menentukkan jumlah kromosom induk yang diharapkan melakukan persilangan. Sesudah itu dilanjutkan dengan menentukkan ukuran probabilitas persilangan dari populasi kromosom induk. Pada penelitian ini ditetukkan sebesar 0.25 (pc = 0.25) yang artinya diharapkan sejumlah 0.25 x popsize kromosom induk akan melakukan persilangan secara sempurna.

Langkah berikutnya adalah membangkitkan bilangan random dari 0 sampai 1 sejumlah popsize untuk memilih kromosom-kromosom induk yang akan

melakukan persilangan. Adapun hasil pembangkitan bilangan random tersebut dapat dilihat pada tabel 4.23 sebagai berikut :

Tabel 4.20 Bilangan Random Crossover

No.	Bilangan Random
1	0.8
2	0.91
3	0.2
4	0.16
5	0.15
6	0.24
7	0.23
8	0.63
9	0.03
10	0.67
11	0.6
12	0.17
13	0.09
14	0.53
15	0.16
16	0.87

Bilangan random yang ke-3, 4, 5, 6, 7, 9, 12, 13, dan 15 adalah lebih kecil dari probabilitas persilangan yang sudah ditentukkan, sehingga kromosom V_3 , V_4 , V_5 , V_6 , V_7 , V_9 , V_{12} , V_{13} , dan V_{15} terpilih sebagai kromosom induk yang siap melakukan persilangan. Persilangan yang digunakan digunakan adalah memerlukkan dua kromosom induk untuk menghasilkan minimal satu kromosom anak. Kromosom-kromosom yang akan melakukan crossover adalah:

Tabel 4.21 Kromosom Crossover

V ₁ '	3	4	5	6	1	2
V ₂ '	6	5	4	1	2	3
V ₃ '	5	1	3	2	6	4
V_4	2	1	3	6	5	4
V ₅ '	3	6	4	1	2	5
V ₆ '	5	6	1	2	3	4
V ₇ '	3	4	5	6	1	2
V_8	5	1	4	2	3	6
V ₉ '	2	6	4	5	3	1
V ₁₀ '	4	3	2	1	5	6
V ₁₁ '	6	5	4	1	2	3
V ₁₂ '	2	6	4	5	3	1
V ₁₃ '	4	3	2	1	5	6
V ₁₄ '	4	5	6	3	2	1
V ₁₅ '	2	5	1_	4	3	6
V ₁₆ ,	6	5	4	1	2	3

Pada penyilangan V_3 '& V_4 ', bangkitkan bilangan random antara 1 sampai panjang kromosom (=6), misal: 2. Berarti posisi crossover ada di bit ke-2.

V_3	5	1	3	2	6	4
V ₄ '	2	1	3	6	5	4

Hasil Crossover:

V ₃ '	5	1	3	6	2	4
V ₄ '	2	1	3	5	6	4

Pada penyilangan V_5 '& V_6 ', bangkitkan bilangan random antara 1 sampai panjang kromosom (=6), misal: 3. Berarti posisi crossover ada di bit ke-3.

V ₅ '	3	6	4	1	2	5
V ₆ '	5	6	1	2	3	4

Hasil Crossover:

V ₅ '	3	6	4	2	1	5
V ₆ '	5	6	1	3	2	4

Pada penyilangan V_7 '& V_9 ', bangkitkan bilangan random antara 1 sampai panjang kromosom (=6), misal: 4. Berarti posisi crossover ada di bit ke-4.

V ₇ '	3	4	5	6	1	2
V ₉ '	2	6	4	5	3	1

Hasil Crossover:

V ₇ '	3	4	5	6	2	1
V ₉ '	2	6	4	5	1	3

Pada penyilangan V_{12} $\&V_{13}$, bangkitkan bilangan random antara 1 sampai panjang kromosom (=6), misal: 2. Berarti posisi crossover ada di bit ke-2.

V ₁₂ '	2	6	4	5	3	1
V ₁₃ '	4	3	2	1	5	6

Hasil Crossover:

V ₁₂ '	2	6	4	1	5	3
V ₁₃ '	4	3	2	5	6	1

Populasi baru setelah Crossover

Tabel 4.22 Populasi Baru

Pop Baru		ŀ	Crom			- F -	Asal
V ₁ '	3	4	5	6	1	2	V_3
V ₂ '	6	5	4	1	2	3	V_8
V ₃ ''	5	1	3	6	2	4	Anak 1 Crossover V ₃ '&V ₄ '
V ₄ ''	2	1	3	5	6	4	Anak 2 Crossover V ₃ '&V ₄ '
V ₅ ''	3	6	4	2	1	5	Anak 1 Crossover V ₅ '&V ₆ '
V ₆ ''	5	6	1	3	2	4	Anak 2 Crossover V ₅ '&V ₆ '
V ₇ ''	3	4	5	6	2	1	Anak 1 Crossover V ₇ '&V ₉ '
V ₈ '	5	1	4	2	3	6	V ₁₁
V ₉ ''	2	6	4	5	1	3	Anak 2 Crossover V ₇ '&V ₉ '
V ₁₀ '	4	3	2	1	5	6	V_{12}
V ₁₁ '	6	5	4	1	2	3	V ₆
V ₁₂ ''	2	6	4	1	5	3	Anak 1 Crossover V ₁₂ '&V ₁₃ '
V ₁₃ ''	4	3	2	5	6	1	Anak 2 Crossover V ₁₂ '&V ₁₃ '
V ₁₄ '	4	5	6	3	2	1	V_4
V ₁₅ '	2	5	D	4	3	6	V_8
V ₁₆ '	6	5	4	.1	2	3	V ₆

5. Operasi Mutasi

Seperti kasus Crossover, langkah pertama dalam operasi mutasi ini adalah menentukkan jumlah kromosom yang akan terkena mutasi. Caranya adalah dengan menentukan nilai probabilitas mutasi dalam penelitian ini ditentukan sebesar 0,01 yang artinya diharapkan sejumlah 0,01 x popsize kromosom induk akan mengalami mutasi pada generasi selanjutnya.

Dalam algoritma konvensional, probabilitas mutasi yang telah ditentukkan juga akan bergerak pada ruang gen kromosom. Yang artinya bahwa, jumlah gen yang akan terkena mutasi adalah sebesar pm x popsize x panjang

kromosom. Namun demikian, cara ini dapat merubah susunan rute, karena dimungkinkan akan terjadi mutasi lebih dari satu gen dalam satu kromosom. Oleh karena itu, dalam penelitian ini mutasi bergerak hanya pada ruang kromosom. Dan setelah terpilih kromosom yang akan melakukan mutasi, baru kemudian ditentukkan gen mana yang akan terkena mutasi.

Langkah berikutnya adalah membangkitkan bilangan random dari 0 sampai 1 sejumlah popsize x panjang kromosom untuk memilih kromosom induk yang akan terkena mutasi gen. hasil pembangkitan bilangan random adalah seperti tabel 4.25 sebaagai berikut :

Tabel 4.23 Bilangan Random Mutasi

	0.457				0.044
0.808	0.457	0.209	0.004	0.818	0.944
0.983	0.844	0.636	0.647	0.946	0.007
0.691	0.842	0.967	0.747	0.008	0.825
0.177	0.657	0.183	0.204	0.117	0.606
0.271	0.503	0.008	0.581	0.481	0.101
0.531	0.39	0.398	0.669	0.007	0.197
0.261	0.448	0.916	0.345	0.186	0.101
0.579	0.237	0.534	0.104	0.953	0.421
0.558	0.207	0.381	0.134	0.792	0.221
0.189	0.008	0.737	0.569	0.002	0.871
0.804	0.717	0.961	0.655	0.844	0.003
0.239	0.703	0.892	0.207	0.162	0.229
0.499	0.525	0.008	0.752	0.252	0.003
0.766	0.268	0.427	0.371	0.779	0.438
0.92	0.817	0.157	0.341	0.857	0.363
0.404	0.381	0.15	0.327	0.48	0.45

Komponen mutasi biasanya diimplementasikan dengan menukarkan gen termutasi dengan gen lain secara acak. Skema mutasi ini dikenal sebagai *swapping mutation*

Berdasarkan pembangkitan bilangan random pada tahap mutasi:

- a. Kromosom ke-1 bit ke-4
- b. Kromosom ke-2 bit ke-6
- c. Kromosom ke-3 bit ke-5
- d. Kromosom ke-5 bit ke-3
- e. Kromosom ke-6 bit ke-5
- f. Kromosom ke-10 bit ke-2 dan bit ke-5
- g. Kromosom ke-11 bit ke-6
- h. Kromosom ke-13 bit ke-3 dan bit ke-6

Tabel 4.24 Hasil Mutasi

	Kr	omo	som			13	Asal
V ₁ ''	3	4	5	1	2	6	V ₁ ' yang terkena mutasi
V ₂ ''	3	6	5	4	1	2	V ₂ ' yang terkena mutasi
V ₃ *	5	1	3	6	4	2	Anak 1 Crossover V ₃ '&V ₄ '& V ₃ ' yang terkena mutasi
V ₄ ''	2	1	3	5	6	4	Anak 2 Crossover V ₃ '&V ₄ '
V ₅ *	3	6	2	1	5	4	Anak 1 Crossover V ₅ '&V ₆ '& V ₅ ' yang terkena mutasi
V ₆ *	5	6	1	3	4	2	Anak 2 Crossover V ₅ '&V ₆ '& V ₆ ' yang terkena mutasi
V ₇ ''	3	4	5	6	2	1	Anak 1 Crossover V ₇ '&V ₉ '
V ₈ '	5	1	4	2	3	6	V_{11}
V ₉ ''	2	6	4	5	1	3	Anak 2 Crossover V ₇ '&V ₉ '
V ₁₀ ''	4	5	2	1	3	6	V ₁₀ ' yang terkena mutasi
V ₁₁ ''	3	6	5	4	1	2	V ₁₁ ' yang terkena mutasi
V ₁₂ ''	2	6	4	1	5	3	Anak 1 Crossover V ₁₂ '&V ₁₃ '
V ₁₃ *	4	3	1	5	6	2	Anak 2 Crossover V ₁₂ '&V ₁₃ '& V ₁₃ ' yang terkena mutasi
V ₁₄ '	4	5	6	3	2	1	V_4
V ₁₅ '	2	5	1	4	3	6	V_8
V ₁₆ '	6	5	4	1	2	3	V_6

Tabel 4.25 Hasil Iterasi Generasi 1

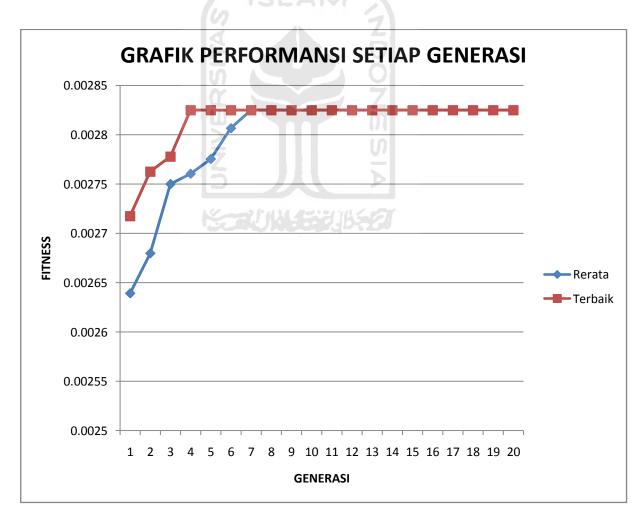
	ŀ	Crom	osor	Fitness			
V ₁ ''	3	4	5	1	2	6	0.000777
V ₂ ''	3	6	5	4	1	2	0.001954
V ₃ *	5	1	3	6	4	2	0.000832
V ₄ ''	2	1	3	5	6	4	0.002717
V ₅ *	3	6	2	1	5	4	0.001052
V_6 *	5	6	1	3	4	2	0.000776
V ₇ ''	3	4	5	6	2	1	0.000844
V_8 '	5	1	4	2	3	6	0.001062
V ₉ ''	2	6	4	5	1	3	0.000818
V ₁₀ ''	4	5	2	1	3	6	0.00092
V ₁₁ ''	3	6	5	4	1	2	0.001058
V ₁₂ ''	2	6	4	1	5	3	0.001181
V ₁₃ *	4	3	1	5	3	2	0.000853
V ₁₄ '	4	5	6	3	2	1	0.001138
V ₁₅ '	2	5	1	4	3	6	0.000908
V ₁₆ '	6	5	4	1	2	3	0.001025
	T	otal l	Fitne	ess		C	0.015496

Dari hasil diatas dapat diketahui bahwa kromosom yang terbaik adalah kromosom 4 dengan nilai suaian sebesar 0,002717, yang menunjukkan rute. Sehingga dapat disimpulkan bahwa terjadi peningkatan performansi kromosom apabila dibandingkan pada saat inisialisasi sebelumnya. Satu generasi telah terbentuk setelah melewati satu iterasi dalam algoritma genetika. Setelah dijalankan sebanyak 20 generasi algoritma genetika memberikan catatan performansi yang dicapai setiap generasi, sebagai berikut:

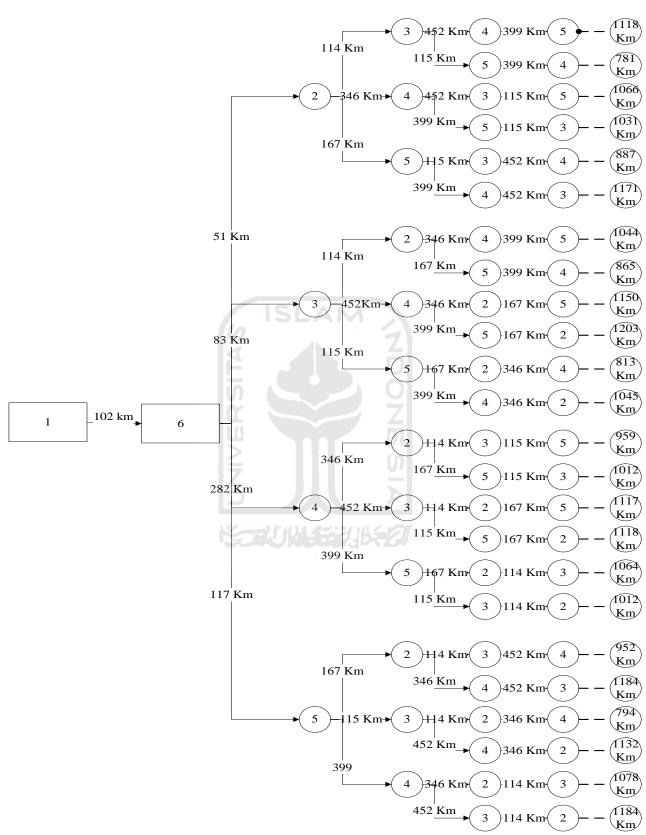
Tabel 4.26 Hasil Iterasi Generasi 10 (Matriks Semi Final)

		Kro	mos	om			Fitness
10	1	6	2	3	5	4	0.002837
16	3	4	1	6	2	5	0.00105
6	6	5	4	1	2	3	0.001025
12	4	3	2	1	5	6	0.000936
7	1	4	5	2	3	6	0.00106
1	1	2	3	4	5	6	0.000801
4	4	5	6	3	2	1	0.001138

		Kro	mos	om			Fitness
9	3	6	4	1	2	5	0.001139
3	3	4	5	6	1	2	0.000809
5	5	6	1	2	3	4	0.001052
14	5	1	3	2	6	4	0.001066
13	2	6	4	5	3	1	0.000894
2	2	1	3	6	5	4	0.000964
11	5	1	4	2	3	6	0.001062
15	1	3	4	6	5	2	0.000775
8	2	5	1	4	3	6	0.000908
_	5 5 6 14 5 1 13 2 6 2 2 1 11 5 1 15 1 3 8 2 5		l Fiti	ness			0.017516


Tabel 4.27 Hasil Iterasi Generasi 20 (Matriks Final)

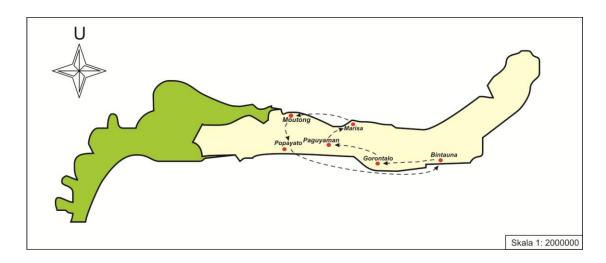
1001		100011	recru	<i>-</i> 1	110101	JI 2 0	(Tittet His I III
		Kro	mos	om			Fitness
10	2	3	4	1	5	6	0.000924
16	5	2	6	1	4	3	0.00105
6	3	2	1	4	5	6	0.001025
12	6	5	1	2	3	4	0.001052
7	6	3	2	5	4	1	0.00106
1	6	5	4	-3	2	1	0.000801
4	1	2	3	6	5	4	0.001138
9	5	2	1	4	6	3	0.001139
3	2	1	6	5	4	3	0.000809
5	4	3	2	1	6	5	0.001052
14	4	6	-2	3	-1-	5	0.001066
13	1	6	2	3	5	4	0.002824
2	4	5	6	3	1	2	0.000964
11	6	3	2	4	1	5	0.001062
15	2	5	6	4	3	1	0.000775
8	6	3	4	1	5	2	0.000924
	ı	Tota	l Fitı	ness			0.015197


Tabel 4.28Hasil Fitness Terbaik Setiap Generasi

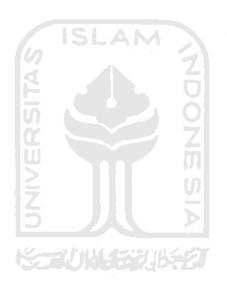
No.	Fitness Rata-Rata	Fitness Terbaik
1	0.002639	0.002717
2	0.002679	0.002762
3	0.002749	0.002777
4	0.00276	0.002824
5	0.002775	0.002824
6	0.002783	0.002824

No.	Fitness Rata-Rata	Fitness Terbaik
7	0.002798	0.002824
8	0.002819	0.002824
9	0.002795	0.002824
10	0.002793	0.002824
11	0.002783	0.002824
12	0.002778	0.002824
13	0.002807	0.002824
14	0.002785	0.002824
15	0.002777	0.002824
16	0.002813	0.002824
17	0.002748	0.002824
18	0.002795	0.002824
19	0.002781	0.002824
20	0.002739	0.002824

Gambar 4.9 Grafik Performansi Nilai Fitness Setiap Generasi


Gambar 4.10 Hasil Penetuan Rute

Tabel 4.29 Perbandingan Desain Rute


		1 abel 4.2	9 Perbandinga	an Desam Kuu	e		
Rute	1	2	3	4	5	6	Jarak Total
							(Km)
1	Marisa	Moutong	Bintauna	Gorontalo	Popayato	Paguyaman	1082
2	Popayato	Marisa	Paguyaman	Gorontalo	Bintauna	Moutong	952
3	Moutong	Marisa	Gorontalo	Bintauna	Popayato	Paguyaman	976
4	Paguyaman	Popayato	Gorontalo	Marisa	Moutong	Bintauna	951
5	Paguyaman	Moutong	Marisa	Popayato	Bintauna	Gorontalo	943
6	Paguyaman	Popayato	Bintauna	Moutong	Marisa	Gorontalo	1248
7	Gorontalo	Marisa	Moutong	Paguyaman	Popayato	Bintauna	879
8	Popayato	Marisa	Gorontalo	Bintauna	Paguyaman	Moutong	878
9	Marisa	Gorontalo	Paguyaman	Popayato	Bintauna	Moutong	1236
10	Bintauna	Moutong	Marisa	Gorontalo	Paguyaman	Popayato	951
11	Bintauna	Paguyaman	Marisa	Moutong	Gorontalo	Popayato	938
12	Gorontalo	Paguyaman	Marisa	Moutong	Popayato	Bintauna	781
13	Bintauna	Popayato	Paguyaman	Moutong	Gorontalo	Marisa	1037
14	Paguyaman	Moutong	Marisa	Bintauna	Gorontalo	Popayato	942
15	Marisa	Popayato	Paguyaman	Bintauna	Moutong	Gorontalo	1290
16	Marisa	Moutong	Bintauna	Gorontalo	Popayato	Paguyaman	1082

Tabel 4.30 Desain Rute Minimal

Desain	1	2	3	4	5	6	Total Jarak
Rute							Tempuh
Awal	Gorontalo	Marisa	Moutong	Bintauna	Popayato	Paguyaman	1248 Km
Usulan	Gorontalo	Paguyaman	Marisa	Moutong	Popayato	Bintauna	781 Km
		467	Km				

Gambar 4.11 Peta Distribusi Usulan

BAB V

PEMBAHASAN

5.1 Pembahasan Bill Of Distribution (BoD)

BoD disusun berdasarkan pada jaringan yang dimiiki oleh PT. Amgo Mandiri. Penyusunannya dimulai darititik main distributor ke retail-retail outlet. Dalam penelitian ini, jaringan distribusi yang diteliti adalah beberapa distributor yang suplai produknya ditangani oleh PT. Amgo Mandiri itu sendiri. Distributor tersebut adalah yang berada diwilayah Gorontalo, Marisa, Moutong, Bintauna, Popayato, dan Paguyaman. Dari tiap wilayah memiiki rata-rata permintaan yang konstan dari tahun ke tahun.

5.2 Pembahasan Peramalan

Langkah pertama dalam melakukan peramalan adalah mengeplotkan data historis produksi air minum amgo apakah pola data mengandung unsur trend, musiman, siklus, atau horizon (stasioner). Pola data ini digunakan sebagai dasar untuk menentukkan metode peramalan yang akan digunakan. Dari plot pada bab IV, pola data cenderung mengandung unsur horizon, sehingga metode peramalan yang cocok digunakan adalah single average (SA), moving average (MA), weight moving average (WMA), single exponential smoothing (SES), dan linier regression (LR). Pemilihan metode terbaik adalah berdasarkan kesalahan peramalan terkecil, dimana tingkat ukuran yang dipakai adalah MAD (mean absolute deviation), MSE (mean square error). Sedangkan untuk kontrol

peramalan digunakan pendekatan peta kontrol *tracking signal* (TS). Setelah dilakukan peramalan metode LR yang terpilih sebagai metode terbaik karena memiliki nilai MAD dan MSE yang paling rendah dan juga mempunyai TS dalam batas yang terkendali.

5.3 Pembahasan Hasil Rencana Induk Penjualan

Perusahaan membuat rencana induk penjualan untuk beberapa periode yaitu mingguan, dimana setiap periode telah diketahui berapa produk yang akan dijual. Rencana produk yang akan dijual tersebut selain dari hasil peramalan juga dari prediksi yang dilakukan perusahaan. Rencana induk penjualan 3 bulan mendatang tersebut akan menjadi kebutuhan setiap minggu pada perhitungan *Distribution Requirement Planning* (DRP).

5.4 Pembahasan Teknik Lot Size

Dalam perencanaan produk biaya adalah salah satu faktor penentu yang paling diperhitungkan. Ukuran pemesanan Lot (*Lot Size*) terkait sekali dengan masalah biaya. Penentuan ukuran lot dilakukan dengan melihat jumlah biaya yang terus ditanggung, ukuran lot yang memiliki biaya terkecil yang akan dipilih. Dalam perhitungan penelitian ini menggunakan 7 metode ukuran lot,yaitu *Lot for lot* (LFL) dan *Economic Order Quantity* (EOQ), *Fixed Order Quantity* (FOQ), *Period Order Quantity* (POQ), *Fixed Period Requirement* (FPR), *Least Unit Cost* (LUC), dan*Least Total Cost* (LTC).

5.5 Pembahasan DRP

Dari hasi peramalan diperoleh jadwal induk produksi selanjutnya akan berfungsi sebagai kebutuhan kotor untuk periode 1 sampai 12. Setelah kebutuhan kotor diketahui dilakukan proses netting, yaitu perhitungan kebutuhan bersih yang diperoleh dari hasil pengurangan antara penjumlahan kebutuhan kotor dan*safety stock* dan penjumlahan-penjumlahan periode sebelumnya dan penerimaan terjadwal. Untuk memenuhi kebutuhan bersih pada periode berikutnya dilakukan proseslotting dengan metode *lot for lot* sehingga ukuran pemesanan di dapat. Setiap terjadi pemesanan, jumlah produk yang akan dimasukkan kedalam rencana penerimaan. Selanjutnya dilakukan proses offsetting yaitu proses untuk menentukkan waktu yang tepat untuk melakukan pemesanan. Karena leadtime pemesanan diketahui 1 minggu sehingga waktu rencana pemesanan dimasukkan pada periode sebelumnya. Hal tersebut diatas juga berlaku untuk periode selanjutnya.

5.6 Total Cost

Perbandingan total cost antara kebijakan perusahaan dengan teknik lot size dapat dilihat pada tabel 4.17. dapat dilihat teeknik Least Unit Cost memberikan total cost lebih rendah dan lebih optimal. Dari least unit cost ini perusahaan dapat memberikan penghematan sebesar Rp. 31.995.556,-

5.7 Rencana Pemesanan

Jumlah produk dan waktu rencana pengiriman produk yang tepat diperoleh dari perhitungan *Distribution Requirement Planning* (DRP) dengan teknik *Least Total Cost* (LTC).Dari perhitungan *Distribution Requirement Planning* (DRP)

sudah diketahui jumlah produk sekali pemesanan dan waktu rencana pengiriman pesanan yang tepat untuk retail.

5.8 Pembahasan Algoritma Genetika

Dalam penelitian kali ini, algoritma genetika dijalankan hingga generasi ke 20 dengan populasi 16 kromosom yang mengalami proses evolusi untuk setiap generasinya. Dengan kata lain ada 320 kromosom yang mengalami proses seleksi dalam proses pengolahan data untuk masing-masing area distribusi. Algoritma terbaik harus mampu memberikan output yang tepat guna (efektif) Dalam waktu yang relatif singkat dan dengan penggunaan memori yang relatif sedikit (efisien) serta dengan langkah yang berhingga dan prosedurnya berakhir baik dalam keadaan diperoleh suatu solusi maupun tidak ada solusinya (yulikuspartono, 2004:4)

5.9 Rute Dan Lokasi Pendistribusian

Perusahaan air minum mineral dalam kemasan dalam perkembangannya selalu berusaha untuk memperluas wilayah usaha di beberapa daerah. Mengingat bisnis ini ada hubungnnya dengan ketepatan waktu demi membangun kepercayaan konsumen terhadap perusahaan, maka penetuan rute distribusi optimal merupakan pilar utama pemasaran. Setelah dilakukan pengolahan data dengan menggunakan algoritma genetika terdapat perbedaan hasil antara penelitian yang dilakukan dengan sebelum dilakukan penelitian. Dengan menggunakan algoritma genetika dan rute distribusi awal terdapat perbedaan total panjang lintasan dan rute. Total panjang lintasan awal diperoleh dari hasil perhitungan sebesar 1248 Km (sampai pada agen terakhir) dan 1350 (kembal ikegudang). Sedangkan total panjang

lintasan yang diperoleh dari pengolahan data adalah sebesar 781 Km (sampai pada agen terakhir) dan 961 (kembali kegudang).

Pada saat awal proses pengolahan data (Pada generasi ke 1), diperoleh urutan rute terpendek 1-2-3-5-6-4-1. Panjang rute terpendek yang dihasilkan adalah 919 Km. pada pengolahan akhir data peneitian untuk penetuan rute distribusi menghasilkan output bahwa iterasi sampai dengan generasi ke 20 diperoleh rute terpendek 1-6-2-3-5-4-1. Panjang rute terpendek yang diperoleh adalah 781 Km. Dari data diatas diperoeh selisih panjang jalur terbaik sebesar 467 km dengan satuan jarak atau sebesar37.41 % dari proses awal pengolahan data. Panjang jalur yang digunakan oleh perusahaan adalah 1248 km sehingga terdapat selisih 467 km dari hasil pengolahan data. Hal ini menunjukkan bahwa rute yang ditempuh oleh salesman dengan area distribusi belum cukup optimal.

Dari segi ekonomi, pemendekan jalur sebesar 37.41 % seperti yang diperoleh dari pengolahan data juga akan memberikan pengaruh penghematan konsumsi bahan bakar hingga biaya distribusi juga akan berkurang. Jika diasumsikan ratarata penggunaan bahan bakar 1 liter dipakai untuk jarak tempuh 15 km (sangat bergantung pada kondisi dan jalan yang dilalui, muatan, kecepatan, cara mengendarai, jenis kenderaan) dan rata-rata jarak tempuh seorang salesman dalam mendistribusikan produknya adalah 1286 x 37.41 % = 437 km, maka pemendekkan jalurakan memberikan dampak sebesar 437 km / 15 km = 29.1 \approx 30 Liter. Harga bahan bakar minyak yang berlaku adalah Rp 4.500/liter Sehingga penghematan dari sisi biaya penggunaan bahan bakar dalam proses pendistribusian produk adalah 30 liter x 4.500 = Rp 135.000 Nilai tersebut akan meningkat seiring bertambahnya jarak tempuh jika jumlah agen yang harus didatangi lebih banyak lagi dan cakupan area distribusi produk juga akan semakin luas

BAB VI

KESIMPULAN DAN SARAN

6.1 Kesimpulan

Berdasarkan pengamatan, pengolahan dan pembahasan yang telah dilakukan penelitian, maka dapat diambil kesimpulan :

- 1. Dari hasil perhitungan dengan DRP dengan perolehan total cost terkecil adalah teknik *Least Unit Cost* (LUC) bahwa untuk memenuhi kebutuhan pemesanan dan waktu pengiriman pemesanan masing-masing wilayah 12 minggu mendatang adalah sebagai berikut:
 - a. Jumlah produk untuk setiap kali pemesanan pada wilayah gorontalo adalah sebesar3412 karton, 3536 karton, dan 3536 karton. Waktu pengiriman pesanan adalah pada minggu ke-4 dan ke-8.
 - b. Jumlah produk untuk setiap kali pemesanan pada wilayah Marisa adalah sebesar3229 karton, 3407 karton, dan 3384 karton. Waktu pengiriman pesanan adalah pada minggu ke-4 dan ke-8.
 - c. Jumlah produk untuk setiap kali pemesanan pada wilayah Moutong adalah sebesar3370 karton, 3579 karton, dan 3588 karton. Waktu pengiriman pesanan adalah pada minggu ke-4 dan ke-8.
 - d. Jumlah produk untuk setiap kali pemesanan pada wilayah Bintauna adalah sebesar3408 karton, 3636 karton, dan 3665 karton. Waktu pengiriman pesanan adalah pada minggu ke-4 dan ke-8.

- e. Jumlah produk untuk setiap kali pemesanan pada wilayah Popayato adalah sebesar 3444 karton, 3700 karton, dan 3756 karton. Waktu pengiriman pesanan adalah pada minggu ke-4 dan ke-8.
- f. Jumlah produk untuk setiap kali pemesanan pada wilayah Paguyaman adalah sebesar 3286 karton, 3465 karton, dan 3445 karton. Waktu pengiriman pesanan adalah pada minggu ke-4 dan ke-8.
- 2. Rute yang direncanakan / usulan akan menghemat jarak tempuh sebesar 467 km yaitu dengan rute Gorontalo-Paguyaman-Marisa-Moutong-Popayato-Bintauna dengan total jarak tempuh sebesar 781 km dibandingkan dengan rute distribusi yang ada pada PT. Amgo Mandiri yaitu Gorontalo-Marisa-Moutong-Bintauna-Popayato-Paguyaman dengan total jarak tempuh sebesar 1248 km dan juga dapat menghemat biaya bahan bakar sebesar Rp 135.000

6.2 Saran

Setelah melakukan peneitian ini, terdapat beberapa hal yang dapat diterapkan agar penelitian bisa memberikan hasil yang lebih baik, diantaranya adalah :

- Hampir seluruh proses-proses yang digunakan dalam algoritma genetika berlangsung secara random sehingga solusi yang diperoleh tidak bias dipastikan secara global optimal. Membandingkan sousi yang diperoleh dari penyelesaian TSP dengan metode algoritma genetika dengan pencarian yang lain akan memberikan gambaran posisi global optimal.
- 2. Algoritma genetika untuk pemecahan masalah TSP efektif dengan jumlah kota/agen yang besar sehingga penggunaan algoritma genetika yang hendaknya disesuaikan dengan tingkat kompleksitas persoalan yang dihadapi.

DAFTAR PUSTAKA

- Amin, A. R., Ikhsan, M., Wibisono, L. 2002. *Traveling Salesmen Problem*.

 Departemen Teknik Informatika Institut Teknologi Bandung
- Fogarty, Donald W., Blackstone Jr., John H., Hoffmann, dan Thomas R., (1991). *Production & Inventory Management*. 2nd Edition. South-Western Publishing Co.
- Ginting, R., (2007). Sistem Produksi. Yogyakarta: Graha Ilmu.
- Kylie Bryant, 2000. Genetic Algoritms and the Traveling Salesman Problem.

 Department of mathematics, Harvey Mudd Collage
- Lananza, L., (2007). Penetuan Rute Distribusi Guna Penjadwalan Rantai Supply Ke

 Distributor Dengan Metode Saving Matriks (Studi kasus di PT. Kutai Timber

 Indonesia Probolinggo Jawa Timur). Surabaya.
- Mitra, Jelvi., 2011. Pemilihan Teknik Lot Sizing Untuk Meminimalkan Biaya Pada

 Pendistribusian Produk "coklat roso", Universitas Islam Indo

 Yogyakarta
- Pujawan, I.N., (2005). Supply Chain Management. Surabaya: Guna Widya.
- Schroeder, R. G., 2000. Operation Management Contemporary Concept and Cases.

 United State of America: McGraw Hill Companies, Inc.
- Kusumadewi, *Artificial Intelligence (Teknik dan Aplikasinya)*, Graha Ilmu, Yogyakarta, 2003.
- Sucky, E., 2002, A Single Buyer-Single Supplier Bargaining Problem With Asymetric Information- Theoretical Approach and Sofware Implementation, *Proceeding of the 36 th Hawai Internasional Conference on System Sciences*, Hawai.

- Syarif, A., Wailama., Junaidi, A., 2007. *Hybrid Gentic Algorithm Dengan Fuzzy Logic*Controller: Sebuah Pendekatan Baru Penyelesaian Traveling Selesmen

 Problem. Fakultas Matematika Dan Ilmu Pengetahuan Alam Universiatas

 Lampung
- Tarigan ZJH., 2006. Penetuan Rute Distribusi Produk Yang Optimal Dengan Menggunakan Algoritma Heuristik Pada PT. Coca Cola Bottling Indonesia Medan, Fakultas Teknik Universitas Sumatra Utara, Sumatra Utara
- Widhiyasa, A., 2006. Kajian Genetic Algorithm Dalam Penyelesaian TSP, Institut Teknologi Bandung. Bandung
- Yulikuspartono, 2004. *Pengantar Logika Dan Algoritma*, Yogyakarta : Andi Publisher.
- Zabidi, Y., 2001, Supply Chain Management: teknik terbaru dalam mengelola aliran material / produk dan informasi dalam memenangkan persaingan, *usahawan no.* 02 th XXX, Indonesia

1. Lot for lot

Wilayah Gorontalo

LT = 1 Lot Size : Lot For Lot SS = 76	PD	1	2	3	4	5	6	7	8	9	10	11	12
Kebutuhan Kotor (Karton)		884	884	884	884	884	884	884	884	884	884	884	884
Jadwal Penerimaan (Karton)				6	SLA	1141							
Persediaan Di Tangan (Karton)	200	76	76	76	76	76	76	76	76	76	76	76	76
Kebutuhan Bersih (Karton)		760	884	884	884	884	884	884	884	884	884	884	884
Rencana Penerimaan (Karton)		760	884	884	884	884	884	884	884	884	884	884	884
Rencana Pemesanan (Karton)	760	884	884	884	884	884	884	884	884	884	884	884	

Wilayah Marisa

LT = 1 Lot Size : Lot For Lot SS = 76	PD	1	2	3	4	5	6	7	8	9	10	11	12
Kebutuhan Kotor (Karton)		859	858	857	855	854	852	851	850	848	847	845	844
Jadwal Penerimaan (Karton)													
Persediaan Di Tangan (Karton)	200	76	76	76	76	76	76	76	76	76	76	76	76
Kebutuhan Bersih (Karton)		735	858	857	855	854	852	851	850	848	847	845	844
Rencana Penerimaan (Karton)		735	858	857	855	854	852	851	850	848	847	845	844
Rencana Pemesanan (Karton)	735	858	857	855	854	852	851	850	848	847	845	844	

Wilayah Moutong

LT = 1 Lot Size : Lot For Lot SS = 76	PD	1	2	3	4	5	6	7	8	9	10	11	12
Kebutuhan Kotor (Karton)		892	892	893	893	894	894	895	896	896	897	897	898
Jadwal Penerimaan (Karton)				(0)	SEA	1141							
Persediaan Di Tangan (Karton)	200	76	76	76	76	76	76	76	76	76	76	76	76
Kebutuhan Bersih (Karton)		768	892	893	893	894	894	895	896	896	897	897	898
Rencana Penerimaan (Karton)		768	892	893	893	894	894	895	896	896	897	897	898
Rencana Pemesanan (Karton)	768	892	893	893	894	894	895	896	896	897	897	898	

Wilayah Bintauna

						2015	131						
LT = 1 Lot Size : Lot For Lot	PD	1	2	3	4	5	6	7	8	9	10	11	12
SS = 76													
Kebutuhan Kotor (Karton)		899	901	903	905	906	908	910	912	914	915	917	919
Jadwal Penerimaan (Karton)													
Persediaan Di Tangan (Karton)	200	76	76	76	76	76	76	76	76	76	76	76	76
Kebutuhan Bersih (Karton)		775	901	903	905	906	908	910	912	914	915	917	919
Rencana Penerimaan (Karton)		775	901	903	905	906	908	910	912	914	915	917	919
Rencana Pemesanan (Karton)	775	901	903	905	906	908	910	912	914	915	917	919	

Wilayah Popayato

LT = 1 Lot Size : Lot For Lot SS = 76	PD	1	2	3	4 SLA	5	6	7	8	9	10	11	12
Kebutuhan Kotor (Karton)		906	909	913	916	920	923	927	930	934	937	941	944
Jadwal Penerimaan (Karton)				E	7		Q						
Persediaan Di Tangan (Karton)	200	76	76	76	76	76	76	76	76	76	76	76	76
Kebutuhan Bersih (Karton)		782	909	913	916	920	923	927	930	934	937	941	944
Rencana Penerimaan (Karton)		782	909	913	916	920	923	927	930	934	937	941	944
Rencana Pemesanan (Karton)	782	909	913	916	920	923	927	930	934	937	941	944	

Wilayah Paguyaman

LT = 1 Lot Size : Lot For Lot SS = 76	PD	1	2	3	4	5	6	7	8	9	10	11	12
Kebutuhan Kotor (Karton)		873	872	871	870	868	867	866	864	863	862	861	859
Jadwal Penerimaan (Karton)													
Persediaan Di Tangan (Karton)	200	76	76	76	76	76	76	76	76	76	76	76	76
Kebutuhan Bersih (Karton)		749	872	871	870	868	867	866	864	863	862	861	859
Rencana Penerimaan (Karton)	749	872	871	870	868	867	866	864	863	862	861	859	

2. Period Order Quantity (POQ)

Wilayah Gorontalo

$$POQ = \frac{\sqrt{2 S}}{DH} = \sqrt{\frac{2 \times 900.000}{884 \times 103.82}} = 4.42 \approx 5$$

LT = 1 POQ = 5 SS = 76	PD	1	2	3AT	4	5	26	7	8	9	10	11	12
Kebutuhan Kotor (Karton)		884	884	884	884	884	884	884	884	884	884	884	884
Jadwal Penerimaan (Karton)				IŒ.			Z						
Persediaan Di Tangan (Karton)	200	4296	3412	2528	1644	760	3660	2776	1892	1008	124	1644	760
Kebutuhan Bersih (Karton)		5180		17			4544					1768	
Rencana Penerimaan (Karton)		5180		15	9,7		4544					1768	
Rencana Pemesanan (Karton)	5180			14	erusi.	4544	C/SY				1768		

Wilayah Marisa

$$POQ = \frac{\sqrt{2 S}}{DH} = \sqrt{\frac{2 \times 900.000}{851.67 \times 103.82}} = 4.511 \approx 5$$

LT = 1 POQ = 5 SS = 76	PD	1	2	3	4	5	6	7	8	9	10	11	12
Kebutuhan Kotor (Karton)		859	858	857	855	854	852	851	850	848	847	845	844
Jadwal Penerimaan (Karton)													
Persediaan Di Tangan (Karton)	200	4152	3294	2437	1582	728	3513	2662	1812	964	117	1572	728
Kebutuhan Bersih (Karton)		5011					4365					1689	
Rencana Penerimaan (Karton)	5011			6-	ISLA	4365					1689		

Wilayah Moutong

$$POQ = \frac{\sqrt{2 S}}{DH} = \sqrt{\frac{2 \times 900.000}{894.75 \times 103.82}} = 4.401 \approx 5$$

LT = 1 POQ = 5 SS = 76	PD	1	2	3	1 44	5	6	7	8	9	10	11	12
Kebutuhan Kotor (Karton)		892	892	893	893	894	894	895	896	896	897	897	898
Jadwal Penerimaan (Karton)													
Persediaan Di Tangan (Karton)	200	4342	3450	2557	1664	770	3711	2816	1920	1024	127	1668	770
Kebutuhan Bersih (Karton)		5234					4605					1795	
Rencana Penerimaan (Karton)	5234					4605					1795		

Wilayah Bintauna

$$POQ = \frac{\sqrt{2 S}}{DH} = \sqrt{\frac{2 \times 900.000}{909.83 \times 103.82}} = 4.367 \approx 5$$

LT = 1 POQ = 5 SS = 76	PD	1	2	3	15L	5 AM	6	7	8	9	10	11	12
Kebutuhan Kotor (Karton)		899	901	903	905	906	908	910	912	914	915	917	919
Jadwal Penerimaan (Karton)				E		55.	X						
Persediaan Di Tangan (Karton)	200	4399	3498	2595	1690	784	3784	2874	1962	1048	133	1703	784
Kebutuhan Bersih (Karton)		5298		155			4692					1836	
Rencana Penerimaan (Karton)		5298		>			4692					1836	
Rencana Pemesanan (Karton)	5298			Z		4692					1836		

Wilayah Popayato

$$POQ = \frac{\sqrt{2 S}}{DH} = \sqrt{\frac{2 \times 900.000}{925 \times 103.82}} = 4.329 \approx 5$$

LT = 1 POQ = 5 SS = 76	PD	1	2	3	4	5	6	7	8	9	10	11	12
Kebutuhan Kotor (Karton)		906	909	913	916	920	923	927	930	934	937	941	944
Jadwal Penerimaan (Karton)													
Persediaan Di Tangan (Karton)	200	4457	3548	2635	1719	799	3870	2943	2013	1079	142	1743	799
Kebutuhan Bersih (Karton)		5363					4793					1885	
Rencana Penerimaan (Karton)		5363		1/2	ISL	AM	4793					1885	
Rencana Pemesanan (Karton)	5363			3		4793	2				1885		

Wilayah Paguyaman

$$POQ = \frac{\sqrt{2 S}}{DH} = \sqrt{\frac{2 \times 900.000}{866.33 \times 103.82}} = 4.473 \approx 5$$

					BUNG		TG#						
LT = 1 POQ = 5 $SS = 76$	PD	1	2	3	4	5	6	7	8	9	10	11	12
Kebutuhan Kotor (Karton)		873	872	871	870	868	867	866	864	863	862	861	859
Jadwal Penerimaan (Karton)													
Persediaan Di Tangan (Karton)	200	4224	3352	2481	1611	743	3573	2707	1843	980	118	1602	743
Kebutuhan Bersih (Karton)		5097					4440					1720	
Rencana Penerimaan (Karton)		5097					4440					1720	
Rencana Pemesanan (Karton)	5097					4440					1720		

3. Fixed Order Quantity Wilayah Gorontalo

LT = 1 Fixed Size = 2.000 SS = 76	PD	1	2	3	4	5	6	7	8	9	10	11	12
Kebutuhan Kotor (Karton)		884	884	884	884	884	884	884	884	884	884	884	884
Jadwal Penerimaan (Karton)					191	ΔΝΑ							
Persediaan Di Tangan (Karton)	200	1240	356	1472	588	1704	820	1936	1052	168	1284	400	1516
Kebutuhan Bersih (Karton)		760		528		296	á	64			716		484
Rencana Penerimaan (Karton)		2000		2000	į	2000	ŏ	2000			2000		2000
Rencana Pemesanan (Karton)	2000		2000	l cr	2000		2000			2000		2000	

Wilayah Marisa

LT = 1 Fixed Size = 2.000 SS = 76	PD	1	2	V3.	4	5	6	7	8	9	10	11	12
Kebutuhan Kotor (Karton)		859	858	857	855	854	852	851	850	848	847	845	844
Jadwal Penerimaan (Karton)													
Persediaan Di Tangan (Karton)	200	1265	407	1550	695	1841	989	138	1288	440	1593	748	1904
Kebutuhan Bersih (Karton)		735		450		159			712		407		96
Rencana Penerimaan (Karton)		2000		2000		2000			2000		2000		2000
Rencana Pemesanan (Karton)	2000		2000		2000			2000		2000		2000	

Wilayah Moutong

LT = 1 Fixed Size = 2.000 SS = 76	PD	1	2	3	4	5	6	7	8	9	10	11	12
Kebutuhan Kotor (Karton)		892	892	893	893	894	894	895	896	896	897	897	898
Jadwal Penerimaan (Karton)													
Persediaan Di Tangan (Karton)	200	1232	340	1447	554	1660	766	1871	975	79	1182	285	1387
Kebutuhan Bersih (Karton)		768		553	ISL	340		129			818		613
Rencana Penerimaan (Karton)		2000		2000	- 1	2000	71	2000			2000		2000
Rencana Pemesanan (Karton)	2000		2000	12	2000		2000			2000		2000	

Wilayah Bintauna

LT = 1 Fixed Size = 2.000 SS = 76	PD	1	2	30	4	5	6	7	8	9	10	11	12
Kebutuhan Kotor (Karton)		899	901	903	905	906	908	910	912	914	915	917	919
Jadwal Penerimaan (Karton)													
Persediaan Di Tangan (Karton)	200	1225	324	1421	516	1610	702	1792	880	1966	1051	134	1215
Kebutuhan Bersih (Karton)		775		579		390		208		34			785
Rencana Penerimaan (Karton)		2000		2000		2000		2000		2000			2000
Rencana Pemesanan (Karton)	2000		2000		2000		2000		2000			2000	

Wliayah Popayato

LT = 1 Fixed Size = 2.000 SS = 76	PD	1	2	3	4	5	6	7	8	9	10	11	12
Kebutuhan Kotor (Karton)		906	909	913	916	920	923	927	930	934	937	941	944
Jadwal Penerimaan (Karton)													
Persediaan Di Tangan (Karton)	200	1218	309	1396	480	1560	637	1710	780	1846	909	1968	1024
Kebutuhan Bersih (Karton)		782		604		440	3)	290		154		32	
Rencana Penerimaan (Karton)		2000		2000		2000	ál	2000		2000		2000	
Rencana Pemesanan (Karton)	2000		2000	liō	2000		2000		2000		2000		

Wilayah Paguyaman

LT = 1 Fixed Size = 2.000 SS = 76	PD	1	2	3	4	5	6	7	8	9	10	11	12
Kebutuhan Kotor (Karton)		873	872	871	870	868	867	866	864	863	862	861	859
Jadwal Penerimaan (Karton)													
Persediaan Di Tangan (Karton)	200	1251	379	1508	638	1770	903	37	1173	310	1448	587	1728
Kebutuhan Bersih (Karton)		749		492		230			827		552		272
Rencana Penerimaan (Karton)		2000		2000		2000			2000		2000		2000
Rencana Pemesanan (Karton)	2000		2000		2000			2000		2000		2000	

4. Fixed Period Requerment (FPR)

Wilayah Gorontalo

LT = 1 Lot Size : FPR = 3 SS = 76	PD	1	2	3	4	5	6	7	8	9	10	11	12
Kebutuhan Kotor (Karton)		884	884	884	884	884	884	884	884	884	884	884	884
Jadwal Penerimaan (Karton)					191	0 h A							
Persediaan Di Tangan (Karton)	200	1968	1084	200	1968	1084	200	1968	1084	200	1968	1084	200
Kebutuhan Bersih (Karton)		684		Ø	684			684			684		
Rencana Penerimaan (Karton)		2652		15	2652		ŏ	2652			2652		
Rencana Pemesanan (Karton)	2652			2652			2652			2652			
Wilayah Marisa				NIVE			E SIN						

Wilayah Marisa

LT = 1 Lot Size : FPR = 3 SS = 76	PD	1	2	3	at 4	5	6	7	8	9	10	11	12
Kebutuhan Kotor (Karton)		859	858	857	855	854	852	851	850	848	847	845	844
Jadwal Penerimaan (Karton)													
Persediaan Di Tangan (Karton)	200	1915	1057	200	1906	1052	200	1898	1048	200	1889	1044	200
Kebutuhan Bersih (Karton)		659			655			651			647		
Rencana Penerimaan (Karton)		2574			2561			2549			2536		
Rencana Pemesanan (Karton)	2574			2561			2549			2536			

Wilayah Moutong

LT = 1 Lot Size : FPR = 3 SS = 76	PD	1	2	3	4	5	6	7	8	9	10	11	12
Kebutuhan Kotor (Karton)		892	892	893	893	894	894	895	896	896	897	897	898
Jadwal Penerimaan (Karton)													
Persediaan Di Tangan (Karton)	200	1985	1093	200	1988	1094	200	1992	1096	200	1995	1098	200
Kebutuhan Bersih (Karton)		692			693	AM		695			697		
Rencana Penerimaan (Karton)		2677		103	2681		71	2687			2692		
Rencana Pemesanan (Karton)	2677			2681			2687			2692			

Wilayah Bintauna

LT = 1 Lot Size : FPR = 3 SS = 76	PD	1	2	317	4	5	6	7	8	9	10	11	12
Kebutuhan Kotor (Karton)		899	901	903	905	906	908	910	912	914	915	917	919
Jadwal Penerimaan (Karton)				1			SEN SEN						
Persediaan Di Tangan (Karton)	200	2004	1103	200	2014	1108	200	2026	1114	200	2036	1119	200
Kebutuhan Bersih (Karton)		699			705			710			715		
Rencana Penerimaan (Karton)		2703			2719			2736			2751		
Rencana Pemesanan (Karton)	2703			2719			2736			2751			

Wilayah Popayato

LT = 1 Lot Size : FPR = 3 SS = 76	PD	1	2	3	4	5	6	7	8	9	10	11	12
Kebutuhan Kotor (Karton)		906	909	913	916	920	923	927	930	934	937	941	944
Jadwal Penerimaan (Karton)													
Persediaan Di Tangan (Karton)	200	2022	1113	200	2043	1123	200	2064	1134	200	2085	1144	200
Kebutuhan Bersih (Karton)		706			716	AM		727			737		
Rencana Penerimaan (Karton)		2728		103	2759		21	2791			2822		
Rencana Pemesanan (Karton)	2728			2759	7.5	1	2791			2822			
Wilayah Paguyaman				RSI			07						

Wilayah Paguyaman

LT = 1 Lot Size : FPR = 3 SS = 76	PD	1	2	3171	4	5	M V6	7	8	9	10	11	12
Kebutuhan Kotor (Karton)		873	872	871	870	868	867	866	864	863	862	861	859
Jadwal Penerimaan (Karton)				18		13.716							
Persediaan Di Tangan (Karton)	200	1943	1071	200	1935	1067	200	1927	1063	200	1920	1059	200
Kebutuhan Bersih (Karton)		673			670			666			662		
Rencana Penerimaan (Karton)		2616			2605			2593			2582		
Rencana Pemesanan (Karton)	2616			2605			2593			2582			

5. EOQ

Wilayah Gorontalo

$$EOQ = \sqrt{\frac{2DS}{H}} = \sqrt{\frac{2*884*900.000}{103.82}} = 3915$$

LT = 1 Lot Size : EOQ = 3915 SS = 76	PD	1	2	3	4 15L	5 A M	6	7	8	9	10	11	12
Kebutuhan Kotor (Karton)		884	884	884	884	884	884	884	884	884	884	884	884
Jadwal Penerimaan (Karton)				12			O.						
Persediaan Di Tangan (Karton)	200	3231	2347	1463	579	3031	2147	1263	379	3031	2147	1263	379
Kebutuhan Bersih (Karton)		684		Œ	305		Z		505				
Rencana Penerimaan (Karton)		3915		TW.	3915	9	m		3915				
Rencana Pemesanan (Karton)	3915			3915			(J)	3915					

Wilayah Marisa

$$EOQ = \sqrt{\frac{2DS}{H}} = \sqrt{\frac{2*851.67*900.000}{103.82}} = 3843$$

LT = 1 Lot Size : EOQ = 3843 SS = 76	PD	1	2	3	4	5	6	7	8	9	10	11	12
Kebutuhan Kotor (Karton)		859	858	857	855	854	852	851	850	848	847	845	844
Jadwal Penerimaan (Karton)													
Persediaan Di Tangan (Karton)	200	3184	2326	1469	614	2989	2137	1286	436	2995	2148	1303	459
Kebutuhan Bersih (Karton)		659			240				412				
Rencana Penerimaan (Karton)		3843			3843	M			3843				
Rencana Pemesanan (Karton)	3843			3843			7	3843					

Wilayah Moutong

$$EOQ = \sqrt{\frac{2DS}{H}} = \sqrt{\frac{2*894.75*900.000}{103.82}} = 3939$$

LE 11.46' EOO 2020				1500	WHA	20113	E						
LT = 1 Lot Size : EOQ = 3939 SS = 76	PD	1	2	3	4	5	6	7	8	9	10	11	12
Kebutuhan Kotor (Karton)		892	892	893	893	894	894	895	896	896	897	897	898
Jadwal Penerimaan (Karton)													
Persediaan Di Tangan (Karton)	200	3247	2355	1462	569	3045	2151	1256	360	3043	2146	1249	351
Kebutuhan Bersih (Karton)		692			325				536				
Rencana Penerimaan (Karton)		3939			3939				3939				
Rencana Pemesanan (Karton)	3939			3939				3939					

Wilayah Bintauna

$$EOQ = \sqrt{\frac{2DS}{H}} = \sqrt{\frac{2*909.83*900.000}{103.82}} = 3971$$

LT = 1 Lot Size : EOQ = 3971 SS = 76	PD	1	2	3	ISL.	5	6	7	8	9	10	11	12
Kebutuhan Kotor (Karton)		899	901	903	905	906	908	910	912	914	915	917	919
Jadwal Penerimaan (Karton)				E		R.	9						
Persediaan Di Tangan (Karton)	200	3272	2371	1468	563	3065	2157	1247	335	3057	2142	1225	306
Kebutuhan Bersih (Karton)		699			343		4		579				
Rencana Penerimaan (Karton)		3971		18	3971		171		3971				
Rencana Pemesanan (Karton)	3971			3971			2	3971					

Wilayah Popayato

$$EOQ = \sqrt{\frac{2DS}{H}} = \sqrt{\frac{2*925*900.000}{103.82}} = 4005$$

LT = 1 Lot Size : EOQ = 4005 SS = 76	PD	1	2	3	4	5	6	7	8	9	10	11	12
Kebutuhan Kotor (Karton)		906	909	913	916	920	923	927	930	934	937	941	944
Jadwal Penerimaan (Karton)													
Persediaan Di Tangan (Karton)	200	3299	2390	1477	561	3085	2162	1235	305	3071	2134	1193	249
Kebutuhan Bersih (Karton)		706			359				629				
Rencana Penerimaan (Karton)		4005			4005	MA			4005				
Rencana Pemesanan (Karton)	4005			4005	-1		7	4005					

Wilayah Paguyaman

$$EOQ = \sqrt{\frac{2DS}{H}} = \sqrt{\frac{2*866.33*900.000}{103.82}} = 4452$$

IT. 11 (S) POO 4452													
LT = 1 Lot Size : EOQ = 4452 SS = 76	PD	1	2	3	4	5	6	7	8	9	10	11	12
Kebutuhan Kotor (Karton)		873	872	871	870	868	867	866	864	863	862	861	859
Jadwal Penerimaan (Karton)													
Persediaan Di Tangan (Karton)	200	3203	2331	1460	590	3008	2141	1275	411	3013	2151	1290	431
Kebutuhan Bersih (Karton)		673			278				452				
Rencana Penerimaan (Karton)		3876			3876				3876				
Rencana Pemesanan (Karton)	3876			3876				3876					

