Proceedings of International Conference on Women's Health in Science & Engineering
Bandung, December 6-7, 2012

Empowering women's health awareness for a stronger & smarter generation

WiSE Health 2012

Organized by:
School of Electrical Engineering & Informatics
School of Life Sciences & Technology
School of Pharmacy
Proceedings of
International Conference on
Women’s Health in Science &
Engineering 2012

Institut Teknologi Bandung
December 6 – 7, 2012
Bandung, Indonesia

Organized by:

School of Electrical Engineering & Informatics
School of Life Sciences & Technology
School of Pharmacy
Proceedings of

International Conference on Women's Health in Science & Engineering 2012

Copyright ©2012 by Biomedical Engineering Research Group,
School of Electrical Engineering and Informatics, Institut Teknologi Bandung
All right reserved

Abstracting is permitted with credit to the source. For copying, reprint, or reproduction request should be
addressed to Biomedical Engineering Research Group, School of Electrical Engineering and Informatics,
Institut Teknologi Bandung

Additional copies of this publication are available from:

WISE—Health 2012 Secretariat
Biomedical Engineering Research Group
School of Electrical Engineering and Informatics
Institut Teknologi Bandung
Achmad Bakrie Building, 3rd Floor
Phone: +62 22 253 4117
Fax: +62 22 253 4117
Email: wisehealth2012@gmail.com
Preface

Good day,

Welcome to Bandung to the International Conference on Women’s Health in Science and Engineering (WISE-HEALTH) 2012.

On behalf of the organizing committee, we are delighted to welcome all participants to the WISE-HEALTH 2012. This first conference is organized under the auspices of the Institut Teknologi Bandung (ITB), technically sponsored by Institute of Electrical & Electronics Engineers (IEEE) Indonesia Section, IEEE EMBS (Engineering in Medicine & Biology Society) Indonesia Chapter, Indonesian Biomedical Engineering Society (IBES), Indonesian Medical Doctor Association (Ikatan Dokter Indonesia – IDI) West Java, Indonesian Midwifery Association (Ikatan Bidan Indonesia - IBI) West Java, and IEEE WIE (Women in Engineering) Indonesia Chapter.

WISE-HEALTH 2012 is the first international conference which incorporates multidisciplinary aspects in Woman’s health in Science and Engineering. With the mission ‘Empowering women’s health awareness for a stronger and smarter future generation’, the conference is basically aiming at encouraging knowledge improvement and initiating multidisciplinary research collaborations in the field of women’s health. This conference also highlights the two points in the Millennium Development Goals (MDGs), Reduce Child Mortality and Improve Maternal Health, to be the main concerns in the discussion.

With the theme Trends in Women’s Health Science & Technology: Engineering, Medical, & Scientific Approaches, WISE-HEALTH 2012 is organized to gather healthcare professionals, scientists, educators, students, public policy professionals, organizations and services, government, and industries in the field of engineering, medicine, and science to contribute to an international dialogue, share their knowledge and experiences in women’s health research topics in an interdisciplinary point of view.

Our gratitude to many people who helped making this conference a reality, to all of our invited speakers and guests, and for all of our committee members for their effort to ensure the success of this conference. Finally, we hope that all participants will learn new things, make new contacts, get new ideas, and have fruitful discussion while having a pleasant experience during our conference in Bandung.

Thank you,

Prof. Dr. Ir. Tati Latifah R. Mengko
Chair of WISE-HEALTH 2012
WiSE – Health 2012 Committee

General Chair
Prof. Dr. Ir. Tati Latifah R. Mengko (Institut Teknologi Bandung – Indonesia)

Board of Trustee
Prof. Dr. Akhmaloka, Rector of Institut Teknologi Bandung (ITB)
Ir. Yani Panigoroo, MM, Director of Board of Trustee, Institut Teknologi Bandung (ITB)
Prof. Dr. Ir. Wawan Abdulkadir, WRRIM – Institut Teknologi Bandung (ITB)
Prof. Dr. Irawati, WRSO – Institut Teknologi Bandung (ITB)
Prof. Dr. Ir. Suwono, Dean of School of Electrical and Informatics Engineering ITB
Prof. Dr. Hermawan K. Dipojono, Dean of Faculty of Industrial Technology ITB
Prof. Dr. Daryono Hadi Tjahjono, Dean of School of Pharmacy ITB
Prof. Dr. Dr. rer. nat. Umar Fauzi, Dean of Faculty of Mathematics and Natural Science ITB
Prof. Dr. Tati Suryati Syamsudin Subahar, MS, DEA, Dean of School of Life Sciences and Technology ITB
Prof. Dr. Ir. Yatna Yuwana Martawiyia, Dean of Faculty of Mechanical Engineering and Aeronautics ITB
Prof. Dr. Ir. Dr. Tri Hanggono, Dean of Medical Faculty, Universitas Padjadjaran
DR. Dr. Tri Wahyu Murni, SpB, SpBTKV, MH.Kes, Indonesian Medical Association, Bandung Branch
Dr. Rullyanto, MPH, DFM, SH, MH.Kes, Indonesian Medical Association, West Java

Scientific Committee
Prof. Dr. Ir. Tati Latifah R. Mengko (Institut Teknologi Bandung – Indonesia)
Prof. Dr. Ir. Soegijardjo Soegijoko (Institut Teknologi Bandung – Indonesia)
Prof. Dr. J. B. Helms (University of Utrecht – The Netherlands)
Prof. Dr. Ir. G. J. Verkerke (University Medical Center Groningen, University of Groningen – The Netherlands)
Prof. Dr. Ir. N. M. Maurits (University Medical Center Groningen, University of Groningen – The Netherlands)
Prof. Bart M. ter Haar Romeny, PhD (TU Eindhoven – The Netherlands)
Prof. Dr. Andre Andrijono, SpOG(K) (Universitas Indonesia – Indonesia)
Prof. Dr. drg. M. F. Lindawati Soetanto Kusdhany, SpPros(K) (Universitas Indonesia – Indonesia)
Prof. Ir. Dr.-Ing. Eko Supriyanto (Universiti Teknologi Malaysia – Malaysia)
Prof. Dr. drg. Widowati Siswowihardjo, M.S (Universitas Gadjah Mada – Indonesia)
Prof. Dr. Timothy R. Hirst (Gamma Vaccine, Australia)
Prof. Sofia Mubarka, dr., M.Med.Sc., Ph.D (Universitas Gadjah Mada – Indonesia)
Prof. Ing. Tomas Ruml, CSc (University of Prague, Czech Republic)
Prof. Dr. MyoungHo Lee (Yonsei University – South Korea)
Prof. Isao Nakajima, M.D, PhD (Tokai University – Japan)
Dr. rer. Physiol. Dr Septelina Inawati (Universitas Indonesia – Indonesia)
Dr. Pingkan Adityawati (Institut Teknologi Bandung – Indonesia)
Dr. Widyawardana Adiprawita (Institut Teknologi Bandung – Indonesia)
Dr. Hasbullah Zakaria (Institut Teknologi Bandung – Indonesia)
Dr. Adi Indrayanto (Institut Teknologi Bandung – Indonesia)
Dr. G. A. Putri Saputawati (Institut Teknologi Bandung – Indonesia)
Dr. Debbie S. Retnoingrum (Institut Teknologi Bandung – Indonesia)
Dr. Bachti Alisyahbana (Universitas Padjadjaran, Indonesia)
Dr. Ahmad Faried (Universitas Padjadjaran, Indonesia)
Dr. I. Ketut Eddy Purnama, ST, MT (10 Nopember Institute of Technology – Indonesia)
Dr. dr. Oerip S. Santoso, M.Sc (Institut Teknologi Bandung – Indonesia)
Dr. Sasanti Tarini Darjanto (Institut Teknologi Bandung – Indonesia)
Dr. Dina Shona Laila (University of Southampton – United Kingdom)
Dr. Dessy Natalia (Institut Teknologi Bandung – Indonesia)
Organizing Committee
Dr. Tjandra Anggraeni
Dr. Indra Wibowo
Dr. Anggraini Barlian
Dr. Heni Rachmawati
Dr. Catur Riani
Dr. Nuning Nuraini
Dr. Made Tri Ari Penia Kresnowati
Dr. Ihsanawati
Dr. Ir. Aciek Ida Wuryandari
Ir. Hira Laksmiwiati Soemitro, M.Sc.
Dr. Fazat Nur Azizah, S.T., M.Sc.
Dr. dr. Yoke Saadia Irawan, M.T.
Ir. Amy Hamidah Salman, M.Sc
Elvayandri, S.T., M.T.
D. E. O. Dewi, Ph.D

Nurjannah Syakrani, M.T.
Dwiiza Riana, M.M., M.Kom.
Titin Pramiyati, S.Kom., M.Si.
dr. Ira Dewi Jani
Amy Hadiastuti, S.T., M.T.
Astri Maria, S.T., M.T.
Beni Rio Hermanto, S.T., M.M.
Agung W. Setiawan, S.T., M.T.
drg. Nina Ariani, SpPros
dr. Deborah Johana Rattu
dr. Doddy Lintong Lumban Gaol
dr. H. Dadang Prahadi, DTMH, MPH
Arga Aridarma, S.Si., M.T.
Rories Rulaningtyas., S.T., M.T.
Nedyia Utami, S.T.
Table of Contents

KEYNOTE ADDRESS

HIV/AIDS in Indonesian Women
Dr. Nafisah Mboi, Sp.A, MPH
Minister of Health of Republic of Indonesia

1

The role of education in women’s health

YB Dr. Hajjah Halimah Ali
Selangor State Executive Councilor, Malaysia

2

Complications in Pregnancy & Childbirth: Causes, Consequences, & Prevention

Prof. Dr. Sofie Rifayani Krisnadi, dr., Sp.OG(K)
Department of Obstetrics & Gynecology, Dr. Hasan Sadikin Hospital, Faculty of Medicine, Universitas Padjadjaran, Indonesia

3

Cervical Cancer: Latest Issues in Early Detection, Diagnosis, Treatment, and Surgery

Prof. Dr. Andri Andrijono, Sp.OG(K)
Oncology Division, Department of Obstetrics & Gynecology, Cipto Mangunkusumo Hospital, Faculty of Medicine, Universitas Indonesia, Indonesia

4

Obesity, Nutrition, and Reproductive Health in Woman

Dr. Detty Stl Nurdianti, MPH, PhD, Sp.OG(K)
Department of Obstetrics & Gynecology, Dr. Sardjito Hospital, Faculty of Medicine, Universitas Gadjah Mada, Indonesia

5

Monitoring Technology for Cervical Cancer

Prof. Dr.-Ing Eko Supriyanto
Faculty of Health Science & Biomedical Engineering, Universiti Teknologi Malaysia

6

Recent Advances in Reconstruction for Facial Injuries and Its Impact in Women’s Health

Dr. Kelvin Lim Lye Hock
Oral Health Centre, Prince Court Medical, Kuala Lumpur, Malaysia: School of Medicine & Health Sciences, and School of Biomedical Sciences, Monash University, Australia

7

Aging & Anti-Aging in Women

Prof. Dr. Soedigdo Adi, dr., SpKK(K)
Department of Dermatology & Venereology, Dr. Hasan Sadikin Hospital, Faculty of Medicine, Universitas Padjadjaran, Indonesia

8

Cosmetics and skin health consequences

Dr. Anggraini Barlian
School of Life Sciences & Technology, Institut Teknologi Bandung, Indonesia

9

Novel Cosmetic Delivery System

Dr. Sasanti Tarini Darjanto
School of Pharmacy, Institut Teknologi Bandung, Indonesia

10

Mother’s & Children’s health in Indonesia: Facts and Challenges

Mrs. Linda Amalia Sari Gumelar
Minister of Women Empowerment & Child Protection of Republic of Indonesia

11

Post-menopausal Osteoporosis and Missing Teeth Replacement

Prof. Dr. drg. M. F. Lindawati Soetanto Kusdhany, Sp.Pros(K)
Department of Prosthodontics, Faculty of Dentistry, Universitas Indonesia, Indonesia

12
Orthopedic Prosthesis for Women
Prof. dr. ir. G. J. Verkerke
Department of Bio Medical Engineering, University Medical Center Groningen, The Netherlands

Fractures in Women
Dr. Hermawan Nagar Rasyid, dr.,SpOT(K),.MT(BME),Ph.D.,FICS
Department of Orthopedic Surgery, Dr Hasan Sadikin Hospital, Faculty of Medicine, Universitas Padjadjaran, Indonesia

Tele-homecare for Women's Health
Prof. Toshiyo Tamura
Osaka Electro-Communication University, Osaka, Japan

The Role of Health Informatics to Support Healthcare in Women
Dr. Gemala Hatta, MRA, MKes, PhD
Center for Planning & Management HRH, Ministry of Health, Republic Indonesia

e-Health Systems to Improve Women's Health
Prof. Dr. Ir. Soegijardjo Soegijoko
Biomedical Engineering, School of Electrical Engineering & Informatics, Institut Teknologi Bandung, Indonesia

PAPERS

Women Living with Lupus (Wolupus) Mobile Service
Berlian Al Kindhi

Pap smear Nuclei Texture Analysis
Giffary Kautsar Pratama, Dwiza Riana, Dyah Ekashanti Octorina Dewi, Dwi H. Widyantoro and Tati Latifah R. Mengko

Detection of Cytoplasm Area of Pap Smear Image Using Image Segmentation
Hasanuddin Dwiza Riana, Dyah Ekashanti Octorina Dewi, Dwi H. Widyantoro and Tati Latifah R. Mengko

Neonatal Spontaneous Intracranial Hemorrhage
Selly Oswari and Muhammad Zafrullah Arifin

Optimization of the Length of Soybean Soaking Time and the Inoculum Ratio of Rhizopusoligosporus and Micrococcus luteus for Isoflavone Factor 2 Production by Solid State Fermentation
Pingkan Aditiawati and Putu Virgina Portha Devanti

Production of Poly-γ-Glutamic Acid (y-PGA)--Potent Substance for Cosmetic Active Ingredient--Using Bacterial Strain (Bacillus sp. strain-S) Isolated from CianjurNatto
PingkanA diliawati and Luh Putu Pitraayani Sukma

Junita Tarigan, Nurhayati Silalahi and Prima Heptayana

Evolving Neighborhood Based Adaptive Neural Network for Breast Cancer Detection
I Putu Dody Lesmana and Beni Widiawan

The Use Of Social Media And Mobile Internet : A Potential Broader Audiences For Maternal Health Awareness in Indonesia
Gregorius Bimantoro and Bonito Effendi
features extraction of cervical cell types in pap smear image 54
Komariyuli Ambariyah, Izzati Muhimmah and Indrayanti

Evaluating The Impact of Social Media for Access to Sexual and Reproductive Health Information among Indonesian Female Teens 58
Gregorius Bimantoro and Agnes Susanto

WOMEN IN GREEN CHEMISTRY 62
Norazah Mohammad Nawawi, Nor Suhaila Yaacob, Fridelina Sjahir and Moegala Nallapan Maniyam

A Simple New Fingerprint Image Quailty Enhancement Method 66
Muhammad Qurharul Riaqie, Agus Kristiantoro and Wigati Agdy Surya

Gender-Sensitive Human Resource Management Practices: The Case of Mobility Practices In The Healthcare Department In Bandung, Indonesia 70
Allya Koesoema, Yoke Swito and Ahyani Roksanagara

Entertaining Robots Based on Cloud System 74
Inneke Mayachita, Rizka Widyarini, Hadi Rasyid Sono and Widyawardana Adigrawita

STUDY ABOUT INTENTION OF ADOLESCENTS SEXUAL BEHAVIORS 78
Muwaga Musa, Muwaga Musa and Muwaga Musa

Heart Sound Visualization and Classification for Home Health Care Use 82
Amy Hamidah Salman and Astri Maria

Filter Based Envelope Detection Algorithm For Low Complexity Heart Sound Analysis 86
Astri Maria, Richard Mengko and Amy Hamidah

Design Information System Electronic Pregnant Women 90
Titin Pramijayti and Erikanosa Ruth

The Concept of Mechanotransduction for Knee Pain in Early Knee Osteoarthritis 94
Hendroyono Kumoroachy

Prevalence of XbaI polymorphism of ESRe gene in Javenese menopausal women 98
Syafufdin Ali Akhmad

Design of Smartcard e-Health System to Solve Medical Record Connectivity Problem in Indonesia 102
Ira Dewi Jani, Tuti Mengko, Hasbiyah Zakaria, Putri Saptawati, Adi Indrayanto, Arga Ardiana and Agung W. Setiawan

Segmentation and Area Measurement in Abnormal Pap Smear Images Using Color Canals Modification with Canny Edge Detection 106
Dwiza Riana, Dyah Ekashanti Octorina Dewi, Dwi H. Widyantoro and Tati Latifah R. Mengko

K-Nearest Neighbours Approach to Predict Medical Prescription (Study Case: BLUD RSUD Prof. Dr. W. Z. Yohannes) 110
Bertha Seviana Djahi and Ayu Purwarianti

Analysis of μ Rhythm Desynchronization as a Response to Imagination of Motor-related Activity 114
Finde Putri, Lulu L. Fitri and Suprijanto

Analysis of Brainwaves Response Related to Brain Cognitive Function Due to Non-Visual Effect of Light 118
Falma Kemalasari, Suprijanto Suprijanto, Lulu L. Fitri, Sheila Nur Karima and Abdulazis Ramadya Sayntoko
COLOR SEGMENTATION USING BAYESIAN METHOD OF TUBERCULOSIS BACTERIA IMAGES IN ZIEHL-NEELSEN SPUTUM SMEAR
Riries Rulainingtyas, Andriyan Bayu Suksmono, Tati Latifa Mengko and Putri Saptawati

Building a Prototype Application to Choose The Best Exercise for Pregnant Woman using Simple Additive Weighting Method
Nur W. Rahayu and Dede C. Azis

Processing of MRI Phase Image
Nurjannah Syakrani, D.E.O. Dewi and Tati L. R. Mengko

Peran AkupunkturTerhadap Hormonal Wanita
Felesia Fandy

Dimension Measurement for Feature Extraction in Facial Expression Recognition
Antonius Hendro, Muhammad Sulthon and Moh. Mofidulahri

Development of m-Health Systems to Support Integrated Management of Childhood Illness (IMCI) Program in Indonesia
Ira Dewi Jani, Soegijardjo Soejijoko, Oerip S Santoso, Arga Aridarma and Xanda Kharis Sigalingging

Breast Microcalcification Detection Using Adaptive Histogram Equalization and Pixel Value Adjustment as Contrast Enhancement Technique
Timothy Alexander Tandian

Fracture Prevention of The Subchondral Bone in Osteoarthritis of The Knee Joints
Hendrayono Kumoroceho

DETERMINATION OF PLANAR POLYGONS OBJECT ON A COLLECTION OF OBJECTS
Iva Atyna and Arinilhaq

Design of Sputum Collection Room for Mycobacterium tuberculosis Examination
Aziz Ansori Wohid, Antonius Hendro Noviyanto and Nugroho Budi Wicaksono

Development method of early detection of patients with beta-thalassemia minor through morphological analysis of red blood cell images
Amalia Sholihati and Risha Amilia Pratiwi

GPR5S Expression as a Potential Indicator of Worse Prognosis in Ovarian Cancer
Marcelina I. Tan and IrestiRudijito

Forward looking in Osteoporosis
Marina Moeliana

Functional Near Infrared (fNIR) for measuring and detecting human brain activity
Dita Yuni Rachmawati and Dr. Ir. Endang Juliastuti

Knowledge Management Overview of Hypertension in Elderly Women at PantiSosialTresnaWerdha
Budi Pertiw Bandung
Okatiranti Oma and Indah Kumiaty

SMARTMOM – Maternity and Neonatal Mobile Service
Rayana Afwani, Raisdah Hanifah, Berlian Al-Kindhi, Suhana Harso Supangkat, Aroa Aridarma and Astri Maria

µCT Imaging on Bone Microarchitecture Analysis for Osteoporosis Study
Dyah Ekashanti Octorina Dewi, Fourier Dzar Eljabbar Latief, Hermawan Nagar Rasyid and Tati Latifah R. Mengko
The Experience of nurses in caring for HIV-positive mothers with seksiosoasarea at GunungJati Hospital
Sri Hayati

Segmentation and Centerline Extraction of Coronary Arteries Using Region Growing and Multistencils Fast Marching Methods
Nedyo Utami, Hasballah Zakaria and Tati L. R. Mengko

Effect of Grape (Vitis vinifera) Skin Crude Extract Intake to Pichia vini Growth on Fed-batch Fermentation
Dea Indriani Astuti and Yuniar Devi Utami

Impact Force Attenuation Capacity Of Coconut Husk (Cocus Nucifera) as Hip Protector for Prevention of Hip Fracture in Elderly Women
Adijayansiya M, Magetsari R, Dewo P.

Modelling the Factors Affecting Maternal Mortality in East Java Province in 2010 using the Zero Inflated Poisson Regression
Eka diiah kartiningrum

Cryopreservation of Human Fertility: Inserting embryo in the microvolume of cryoloops
Ita Fauzia Hanoum, Djaswadi Dasuki, Mulyoto Pangestu

Social Media for Woman with Work-Family Conflict Using Emotional Expression
Ani Wahyu, Anggjo Rahayu, Masayu Lelia K.

Optimization In Kojic Acid Production As An Anti-Aging Compounds Using Variations of Carbon Sources By Aspergillus oryzae
Dea Indriani Astuti, Aisha Nanda Ardea

Production of Isoflavone Aglycones as Antioxidant Compound from Black Soybean Fermentation using Rhizopus oligosporus due to Variation of Fermentation time
Pingkan Aditiawati, Amalia Ghaosani Komarudin

Analysis of Ka-band Channel Model for High Speed Train Delivered from High Altitude Platforms
Irma Zakia, Suhartono Tjondronegoro, Iskandar and Adit Kurniawan

Efficient Compression for Digital Medical Video Signal using Compressive Sampling
Issa Wahidah, Tati Rajib Mengko and Andriyan Bayu Sukmono

Triangular Microstrip Antenna Array with Dolph Chebyshev Current Distribution Feeding Network
Effriana Yanti Hamid and Hapi Ludiyati
Prevalence of XbaI Polymorphism of ESR α Gene in Healthy Javanese Menopausal Women

Syafudin Ali Akhmad

Department of Biochemistry, Islamic University of Indonesia, Yogyakarta, Indonesia
Jl. Kaliurang km 14.5 Sleman
(Tel: +62-274-898470, E-mail: saafk1ui@gmail.com)

Abstract: Polymorphism of estrogen receptor alpha (ESR α) may cause pleiotrophic effect to lipid levels, lipid response to hormone replacement therapy (HRT), myocardial infarction risk, stroke, migraine, bone fracture risk, bone mineral density (BMD). The polymorphism in the ESR α gene have associated with the incidence of breast cancer, menopausal osteoporosis, recurrent abortions, arterial hypertension, changes in serum lipid levels, cardiovascular heart disease (CHD), and diabetes mellitus. Recently there are two types of well-known polymorphisms in the ESR α gene i.e. PvuII and XbaI. Both are the most widely studied by researchers as a risk factor for many diseases in women. In several countries some studies of the PvuII and XbaI defined polymorphisms (ESR α rs2234693 and ESR α rs9340799, respectively) have also been shown to be predictive marker for some disease especially in menopausal women and have also shown the prevalence of PvuII and XbaI polymorphism in healthy menopausal women population. In this study we aimed to evaluate the prevalence of XbaI polymorphism in Javanese menopausal women. Our study has focused on XbaI polymorphism without PvuII based on previous study in Javanese menopausal women that XbaI has associated with diabetes mellitus. Subjects of our study were 34 consecutive menopausal women fragment length polymorphism (RFLP). The absence of XbaI restriction site was indicated by "X1" and the presence was indicated by "X2". XbaI genotype was distributed as follows: X2X2 8.8% (n=3), X1X2 20.5% (n=7), X1X1 70.6% (n=24). Prevalence of XbaI polymorphism of ESR α in Javanese menopausal women is similar to previously studied in other population.

Keyword: Prevalence ESRα-XbaI polymorphism-Javanese menopausal women

I. INTRODUCTION

Estrogen included one of the steroidal hormone in women that has decreased in menopausal age. Estrogen has influence to many physiological processes including female reproduction, cardiovascular, bone integrity, energy metabolism, cognition and behaviour [1,2]. Menopausal women may increase for getting several disease because of the reduction of endogenous estrogen [3]. For some decades, there is assumption that decrease in estrogen cause vasomotor symptoms, vaginal atrophy, and other menopausal complaint. Therefore, the use of estrogen in menopausal women has been available to prevent menopausal symptoms and also to prevent chronic disease [4]. In ESRα and ESRβ knock-out mice, estrogen is well known to be a morphogen, and its role in morphogenesis is evident from the structure of the uterus, ovary, mammary gland, prostate, lung, and brain [5].

The physiological effect of estrogen is mediated mainly through estrogen receptors i.e. ESR α and ESR β [6]. At the promoters of some genes, particularly those involved in proliferation, ESRα and ESRβ can have opposite action, a findings which suggests that the overall proliferative response to estrogen is the result of a balance between ESRα and ESRβ signaling [5].

Effect of estrogen depends on interaction between estrogen and its receptor. Estrogen receptor alpha (ESRα) function is determined by ESRα gene with present of polymorphism and other mutation. Epidemiological findings have indicated that there are several disease suffered by menopausal women associated with polymorphisms of ESR α. Polymorphism of estrogen receptor alpha (ESR α) may cause pleiotropic effect including for normal condition such as lipid levels, lipid response to hormone replacement therapy (HRT) and for pathologic condition such as myocardial infarction risk, stroke, diabetes, migraine, bone fracture risk, bone mineral density (BMD) and changes in BMD over time [2].

The ESRα gene is large approximately 140 kb of DNA, encompassing 8 exons, encodes protein consisting of 595 amino acids with molecular weight 66 kDa [7]. The ESRα is located on chromosome 6q25.1 [8,9]. The first intron of gene usually contains a larger number of regulatory sequen single nucleotide polymorphisms (SNPs) in
The ESRαs have been identified and found to be associated with either an increased or a decreased of various diseases. The best characterized SNPs of ESRαs are the PvuII and XbaI restriction site polymorphisms both located in first intron (Figure 2) [10]. The polymorphisms, c454-397T→C and c454A→G, are 397 and 351 bp upstream of exon 2 and have been described by the name of detecting restriction enzyme, PvuII or XbaI, or their reference ID numbers, rs2244693 and rs9340799, respectively [11,12]. Our study has focused to XbaI polymorphisms because in Indonesia especially Javanese Population XbaI was proven by prior study contributing higher risk to suffer diseases especially in type 2 diabetes mellitus [13].

II. METHODOLOGY

Research Design

We carried out a cross-sectional study during Mei-August 2012 over 34 post menopause women. Study Subjects

Thirty four healthy menopausal women aged 45 to 70 years from village Sumberharjo Prambanan Subdistrict, Sleman District were chosen for the study.

Physical examinations

We have performed physical examination to all subject encompassed blood pressure and anthropometric measurements i.e. waist circumference, height, weight, BMI, hip circumference and ratio waist circumference with hip circumference and blood pressure. Waist and hip circumference was measured using portable microtoise to the nearest 0.1 cm.

Biochemical analysis

Blood samples were collected from the subjects after a 10-12-h fasting. Total cholesterol, HDL cholesterol, and triglyceride levels were determined by standard methods using commercial kits from DiaSys Germany.

DNA Isolation

Isolation of DNA carried out with guanidine isothiocyanate method. DNA was isolated from peripheral blood leukocyte cells derived from the median cubity vein. Examination of the presence of PvuII and XbaI polymorphisms in the ESR alpha gene has been performed by PCR-RFLP. PCR reactions have used the forward primer 5'CGGCAAGGGTATTCTCAATTCGTTTCTCTGTGCTCCCTC' and reverse primer 5'TGACTGTTGATGGTGAGTACAGTATTCTGAA3'. PCR reaction was performed by using a Biometra PCR thermocycler and reagents intron. PCR reactions using the total volume of 30 μl PCR reaction consisted of 2 ml DNA, 15 ml PCR master mix containing 1 × PCR buffer, 150 mM dNTP and U Tag DNA polymerase, 2 ml primer and 1 ml of each forward and reverse, 11 ml distilled water. Temperature conditions of PCR cycles that initial denaturation for 5 min at 95 °C, followed by 35 cycles of PCR with denaturation at 95 °C 30 sec, annealing at 62 °C 30 sec, extension at 72 °C for 30 sec, 2-minute final extension and cooling at 72 ° to 4 °C.

Polymorphism Analysis

PCR products have been digested by using restriction enzyme of XbaI. Volume 8 μl of PCR products have incubated with 1 unit of XbaI for detecting polymorphism of X1/X2. Then we have added 1.5 μl of NE buffer 1x, 1.5 μl BSA10x, 3 μl distilled water up 15 μl for each reaction. Incubation have conducted for 8 hours at 60°C. The enzyme restriction have digested the product PCR into X1 for absent restriction site and X2 for presence restriction site. Detection of X1 and X2 product have conducted using 2 % agarose electrophoresis gel and stained with ethidium bromide. The enzyme of XbaI will cut transition A/G in intron I (c.454-351A>G) because of transition G to A. The product of XbaI enzyme digestion are 1372 bp fragment as wild type by symbol X1X1, heterozygous mutant with 3 fragments 1372, 936, 436 bp by symbol X1X2 and homozygous mutant with 2 fragments 936 and 436 bp by symbol X2X2.

Statistics

Genotype distribution of the polymorphism was tested for Hardy-Weinberg equilibrium by X². A p-value less than 0.05 was considered significant. Statistical analysis was performed with SPSS version 17.0 and THESIAS software version 6.0.

Ethical clearance

The study was approved by the Ethics Committee of the Medical Faculty of Gadjah Mada University and written consent was given by each participant.
III. RESULTS & DISCUSSION

Characteristic of the subjects are presented in table 1. All variables are in normal condition and fit to the criteria of this study for healthy menopausal women. All subjects is normal without any disease based on the result of examinations below. We did not examine the menopause symptoms and comorbid disease such as osteoporosis, dementia and psychological problem. In fact, normal of laboratory results is not always healthy especially in menopausal women.

<table>
<thead>
<tr>
<th>Characteristic of Subjects</th>
<th>Menopausal Women</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n = 34)</td>
<td></td>
</tr>
<tr>
<td>Mean ± SD</td>
<td></td>
</tr>
<tr>
<td>Age (years)</td>
<td>53.4±3.29</td>
</tr>
<tr>
<td>Systole (mmHg)</td>
<td>125.4±16.62</td>
</tr>
<tr>
<td>Diastole (mmHg)</td>
<td>78.9±8.85</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>151.19±6.18</td>
</tr>
<tr>
<td>Weight (Kg)</td>
<td>51.4±9.96</td>
</tr>
<tr>
<td>BMI</td>
<td>22.4±3.85</td>
</tr>
<tr>
<td>Abdominal Circumference (cm)</td>
<td>80.68±10.89</td>
</tr>
<tr>
<td>Cholesterol (mg/dl)</td>
<td>171.90±32.74</td>
</tr>
<tr>
<td>LDL (mg/dl)</td>
<td>101.74±32.79</td>
</tr>
<tr>
<td>HDL (mg/dl)</td>
<td>51.03±15.07</td>
</tr>
<tr>
<td>TGA (mg/dl)</td>
<td>108.89±70.92</td>
</tr>
<tr>
<td>Fasting-Glucose (GLU)</td>
<td>84.61±14.80</td>
</tr>
<tr>
<td>2 hours Post Prandial-GLU</td>
<td>108.48±22.79</td>
</tr>
</tbody>
</table>

The subjects have been examined for the genotype to determine the Xbal polymorphism. The results of genotype examination have presented in figure 3 table 2.

![Fig.3 Detection of Xbal polymorphism in ESR α gene](image_url)

In comparison to the other studies in several countrys, distribution of genotype of Xbal in Javanese Menopausal women is similar to India and Caucasian presented in table 3 [2,14]. The frequency of AA (X2X2), GA (X1X2), and GG (X1X1) genotypes were 8.9%, 20.5%, 70.6%. This result is similar with India population studied by Ganasyam et al [14]. There were 4%, 10% and 86% in distribution of X2X2, X1X2, X1X1 respectively in India menopausal women. The distribution of normal allele (G) and mutated allele (A) in both population were 89.5% and 10.5% respectively in India, and 80.9% and 19.1% in Indonesia, respectively. The difference between the two groups in genotype distribution was not significant (χ²= 7.255; P=0.02). By using Chai Square test, the difference allele of Xbal i.e. G and A were not significant in both country (χ²=2.602, P=0.10). It means that both frequency of allele in India and Indonesia is same. Then the HWE of Xbal polymorphism is not violated. So the equilibrium of Xbal polymorphism is normal in Javanese population analyzed by using THESIAS software (p=0.051).

ESRα polymorphisms have attracted great interest in the last few years and the PvuII and Xbal are the most extensively investigated issues. These study has only focused on Xbal polymorphism in healthy Javanese menopausal women. However, we do not know whether polymorphic alterations in the genes are responsible for ESRα function and, in particular, the alterations analyzed in the present study are responsible for higher or lower receptor expression. Also, it is not known how and to what extent the polymorphisms of the ESRα gene may act as genetic markers of diabetes [15]. PvuII and Xbal polymorphisms may be different in their effects on ESRα. Our study have focused only for Xbal polymorphism because previous study conducting by Akhmad et al. indicated that allele A/X2 as risk factor of DM type 2 in Javanese Menopausal Women (OR=3.66 CI=1.71-7.84) [13]. Distribution of allele X2 and X1 in previous study by Akhmad et al. in diabetic patients are 58.8% and 41.2% whereas distribution of allele X2 and X1 in control subjects are 28% and 72%. Frequencies of Xbal polymorphisms based on previous study are 56%, 32%, 12% respectively for X1X1, X1X2, and X2X2. The X allele (Xbal restriction site) was also found more frequently in genomic DNA from breast cancer patients than from control subjects [6]. After we compared the present finding with previous finding the result were same. The present finding is consistent in prevalence of Xbal genotype and allele frequencies with previous study in control groups. In women of Asian descent the X1 allele frequency ranged from 17% to 53% (overall 23%) and in subjects of Occident descent, frequencies ranged from 24% to 44% for the X1 allele (overall 35%) in menopausal women with bone mineral
density examination. XX served as a protective factor in postmenopausal fracture spine bone and osteoporosis. Considering all women in the study, women with X1X1 had higher BMD than those with either X1X2 or X2X2 [16].

The Xbal polymorphism has been found to be significantly associated with upper-body obesity in middle-aged others. Other observations indicated an association between ERα intron I RFLPs and height or body mass index. In one study the association of the A→G polymorphism or the combination of the T→C and A→G polymorphisms with not only a greater BMI, but also larger % fat mass, FM, waist circumference and WHR in middle-aged women had been shown [2].

The age of menarche was associated with the Xbal in healthy adolescent Greek girls. Xbal XX homozygotes or, in more general terms, subjects homozygous for the PX haplotype seem to have a modest delay in the age of menarche [2].

The effects of Xbal are not clear. The biological pathway for Xbal that may affect the age of menarche is unknown. Restriction sites of Xbal polymorphisms are located in the intron 1 of the ERα gene. Some introns contain regulatory sequences such as enhancers, which means binding sites for elements that regulate the level of gene expression and thus also affect protein synthesis. The observed association may reflect linkage disequilibrium with some other functional polymorphisms in the Xbal vicinity. Regardless of the exact mechanism, if ERα gene polymorphisms can alter the estrogenic biological activity at the cellular level, this may influence the maturation of the hypothalamic-pituitary-gonadal axis, which determines the onset of menarche [2].

TABLE 3. DISTRIBUTION OF Xbal POLYMORPHY IN HEALTHY MENOPAUSAL WOMEN IN SEVERAL COUNTRIES

<table>
<thead>
<tr>
<th>Reference</th>
<th>GG (%)</th>
<th>AG (%)</th>
<th>AA (%)</th>
<th>G</th>
<th>A</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>[14] Gansayam et al.</td>
<td>86 (86%)</td>
<td>10 (10%)</td>
<td>4 (4%)</td>
<td>186 (89.5%)</td>
<td>22 (10.5%)</td>
<td>Asian India</td>
</tr>
<tr>
<td>[15] Goklu et al.</td>
<td>26 (26%)</td>
<td>50 (50%)</td>
<td>24 (24%)</td>
<td>51 (51%)</td>
<td>49 (49%)</td>
<td>Asian Iran</td>
</tr>
<tr>
<td>[8] Qin et al.</td>
<td>150 (43.9%)</td>
<td>138 (46.3%)</td>
<td>33 (9.8%)</td>
<td>456 (68.1%)</td>
<td>214 (31.9%)</td>
<td>Asian China</td>
</tr>
<tr>
<td>[2] Jakimik et al.</td>
<td>38 (59.4%)</td>
<td>22 (34.4%)</td>
<td>4 (6.25)</td>
<td>98 (76.6%)</td>
<td>30 (23%)</td>
<td>Caucasian Polish</td>
</tr>
<tr>
<td>[17] Hye-Sung et al.</td>
<td>117 (67.2%)</td>
<td>51 (29.3%)</td>
<td>6 (0.3%)</td>
<td>185 (74.6%)</td>
<td>63 (25.5%)</td>
<td>Asian Korean</td>
</tr>
<tr>
<td>[18] Jin Kim et al.</td>
<td>39 (61.9%)</td>
<td>18 (28.6%)</td>
<td>6 (9.5%)</td>
<td>96 (76.2%)</td>
<td>30 (22.8%)</td>
<td>Asian Korean</td>
</tr>
<tr>
<td>[19] Albagha et al.</td>
<td>1136 (41.0%)</td>
<td>1382 (46.3%)</td>
<td>347 (12.1%)</td>
<td>3714 (64.7%)</td>
<td>2022 (35.3%)</td>
<td>Caucasian UK</td>
</tr>
<tr>
<td>[20] Gori et al.</td>
<td>209 (66.3%)</td>
<td>97 (30.8%)</td>
<td>9 (2.9%)</td>
<td>515 (81.7%)</td>
<td>115 (19.3%)</td>
<td>Asian Japanese</td>
</tr>
<tr>
<td>[21] Sad et al.</td>
<td>7 (21%)</td>
<td>26 (78%)</td>
<td>-</td>
<td>40 (60.6%)</td>
<td>26 (39.4%)</td>
<td>Egyptian Arabian</td>
</tr>
<tr>
<td>[13] Akhmad et al.</td>
<td>24 (70.6%)</td>
<td>7 (20.6%)</td>
<td>3 (8.8%)</td>
<td>55 (80.9%)</td>
<td>13 (19.1%)</td>
<td>Javanese Indonesian</td>
</tr>
</tbody>
</table>

heterozygous G/A (X1X2), homozygous mutant A/A (X2X2), normal G/G (X1X1)

IV. CONCLUSIONS

In conclusion, the prevalence of Xbal polymorphism in healthy menopausal women in Javanese population is no difference from India population. We have concluded therefore that these SNPs are very rare in our population. The present findings are limited in the way that they were obtained from a relatively small study population. The results of our study should be considered exploratory and confirmed by additional studies, which include larger sample size and other polymorphisms in estrogen receptor. Investigation of these polymorphisms in other ethnic groups and comparing premenopausal with postmenopausal women are recommended.

ACKNOWLEDGMENT

The present study was supported by a grant from HIBAH BERSAING (competitive research grant) General Directorate of Higher Education Ministry of National Education Republic of Indonesia Government.

Conflict of Interest: None declared

References

WiSE 2012, Organized by Institut Teknologi Bandung, Desember 6-7, 2012

143