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Chapter 1 

Introduction 

 

1.1. Background 

PID controllers dominate the world of industrial automation with their 

prevalence being such that they have become the de facto standard controller. 

Similarly, in many industries it is hard to find a process, system, or appliance that 

does not incorporate a DC motor in some way. The ubiquity of DC motors is almost 

on par with that of PID controllers, as they are used in everything from cranes, 

conveyor belts, extruders, mixers, and machine presses. Since both DC motors and 

PID controllers find such wide usage in many industrial applications, it is very 

common to see DC motors being controlled by PID controllers. 

While PID controllers provide reasonable performance for the control systems 

to which they have been applied, they suffer from several limitations. The most 

prominent of which are their linearity and their susceptibility towards uncertainties 

within the plant. When placed in control of a nonlinear system, such as a DC motor, 

PID controllers cannot offer optimal performance. 

 A promising solution is to use a neural network (NN) in place of a PID 

controller. One of the greatest strengths of the NN is its ability to approximate both 

linear and nonlinear functions of arbitrary complexity. This makes NNs capable of 

developing a model for processes that are difficult or even impossible to model 

through analytical methods. Given the nonlinear nature of a DC motor, a NN is quite 

capable of functioning as a controller in a DC motor control system. 

 Despite this advantage, there are some obstacles that must be surmounted 

before NNs see widespread use. The biggest of these is developing an accurate model 

of a DC motor such that it captures the behavior of the motor. Due to their being 

based in statistics, NNs require data in order to build a model of a given process. For 

a complex process such as a DC motor the NN requires data from the motor under as 
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many different conditions as possible. In many cases, it is very difficult to obtain this 

data. 

 Due to this, many researchers in this area use online training methods in order 

to acquire the data directly. However, in practice this is not always feasible as these 

methods tend to be very technical and implementing them as part of a practical 

application requires extensive knowledge in the field of NNs. A simpler approach is 

to begin with a feed forward system and then build off of it. 

 

1.2. Problem Statement 

How do we design and train a neural network to act as a feed forward 

controller for a DC motor that provides good performance? 

 

1.3. Purpose of Research 

The purpose of this research is to design a feed forward neural network 

controller for a DC motor and analyze its performance. 

 

1.4. Benefits of Research 

There are several benefits provided by this research, such as: 

1. Providing the configuration of a neural network controller and the optimization 

algorithm used to train it. 

2. Detailing the method used to train the neural network controller for feed 

forward control. 

3. Serving as a stepping stone for future research in this area. 

 

1.5. Scope of Research 

This research encompasses the following: 

1. The type of DC motor along with its associated model. For this research project 

the DC motor in my university’s Control and Industrial Automation Lab. 
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2. The number of hidden layers and hidden neurons used in the NN controller as 

well as the algorithm used to train it. For this project, the NN controller has 

three layers: two hidden layers and one output layer. The first hidden layer has 

three hidden neurons, the second has two, and the output layer has one output 

layer. The activation function of each hidden neuron is the hyperbolic tangent 

function while the activation function of the output neuron is the linear 

function. 

3. The configuration of the control system. 

 

1.6. Research Method 

The methodology used in this research is to first learn the underlying theory 

of NNs and DC motors. After understanding the underlying theory both the NN 

architecture and the control scheme will be determined. Once this is complete the 

next step is to acquire data from a DC motor, train the NN on it, and evaluate the 

performance of the trained NN. The final step is to insert the NN into the DC motor 

feed forward control scheme and collect the resulting data. 

  

1.7. Report Structure 

This report consists of five chapters, the contents and order of which are as 

follows: 

 

Chapter 1 Introduction 

 This chapter consists of the title, background, problem statement, purpose of 

the research, benefits of the research, scope of the research, research method, and 

report outline. 

 

Chapter 2 Literature Review 

 This chapter discusses NNs and their training as well as provides a summary 

of previous research in the field. 
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Chapter 3 Design of the Feed Forward DC Motor Control System 

 This chapter describes the architecture of the NN controller and the method 

used to train it. It also describes the DC motor control system and how it was 

implemented. 

 

Chapter 4 Result Analysis 

 This chapter consists of an analysis and evaluation of the NN controller as 

part of the feed forward DC motor control system. 

 

Chapter 5 Closing 

 This chapter consists of the conclusions derived from this research and 

suggestions for future research. 
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Chapter 2 

Literature Review 

 

Despite having existed as a concept since as early as 1943 the study of NNs 

for use in control systems is relatively recent. Research in this area with regards to the 

control of a DC motor mainly focuses on adaptive control or predictive control. 

Before we can discuss this research, it is imperative to examine the operating 

principles behind NNs in order to have a better understanding of how they are applied 

to control systems. We will also briefly look at adaptive and predictive control 

schemes and how they function. 

 

2.1 Neural Networks 

 NNs draw inspiration from the human brain, which consists of an extremely 

large number of neurons connected together to form a massive network. The neuron 

serves as the primary computing element of the NN. From Figure 2.1, we can see that 

a neuron consists of three main components: the dendrites, the cell body, and the 

axon. The dendrites accept input signals from other neurons that have been weighted 

by the strength of the connection between the neuron receiving the input signals and 

the neurons transmitting them. The cell body collects the weighted input signals, 

sums them, and generates an output signal if the sum of the inputs exceeds a certain 

threshold. The axon sends the output signal from the cell body to other neurons [1]. 
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Figure 2.1. A biological neuron 

 

 

Figure 2.2. The perceptron model of a neuron 

The neuron essentially performs three operations: multiplying the input 

signals by the connection weights, taking the sum of the input signals, and passing the 

sum of the input signals through an activation function. With this knowledge, we can 

create an abstract model of the neurons that encapsulates these operations. Such a 

model is shown in Figure 2.2 and is known as the perceptron model of the neuron. 

Perceptrons by themselves do not possess a great deal of computing ability. 

However, when combined into a network their computing power increases 

dramatically and it is through these networks that perceptrons derive their uncanny 
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ability to approximate nearly any function. These perceptron networks, known as 

multilayer perceptrons (MLP), are comprised of three layers: the input layer, the 

hidden layer, and the output layer. It should be noted that while there is only one 

input layer and one output layer, there can be more than one hidden layer. Each layer 

can contain an arbitrary number of neurons. An illustration of an MLP is provided in 

Figure 2.3a while an illustration of the same MLP with more compact notation is 

provided in Figure 2.3b. 

 

 

(a) 

 

(b) 

Figure 2.3. Illustration of an MLP [3]: (a) Expanded notation, (b) compact notation. 
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 We pause here to elaborate on the notation used in Figures 2.3 and 2.4 as they 

will be used for throughout the rest of this chapter. From these figures, we have: 

 p: the inputs to the network 

 W: the connection weights for a given layer, usually referred to as weights 

 b: the layer biases 

 n: the net layer input 

 f: the layer activation function 

 a: the layer output 

 

2.2 Neural Network Training 

 Much like the human brain on which they are based, MLPs are capable of 

learning. Since the concept of learning is key to a proper understanding of NNs, the 

following sections briefly explain learning as it is understood within the context of 

NNs. An overview of the learning process is also provided. 

 

2.2.1 The Concept of Learning in Neural Networks 

 Children are first taught about the world by being shown examples of the 

various objects that comprise it. They learn about trees, clouds, cats and dogs by 

looking at them. While the knowledge gained about these objects can, at times, be 

lacking it is usually sufficient for most purposes. NNs learn in much the same way. 

Presented with a dataset containing many examples of some set of objects described 

by a set of features along with a label indicating what the object is a NN, through a 

process of altering the values of its weights and biases, can learn to correctly identify 

the objects. 

 As an illustrative example, suppose we had a pile of assorted fruits and 

vegetables. We would like to teach a NN to be able to tell us whether an object drawn 

from this pile is a fruit or a vegetable. To do this we would select features, such as 

crunchiness and sweetness, that the NN could use to distinguish between fruits and 
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vegetables. After ranking both the crunchiness and sweetness of each object in the 

pile according to some measurement scale, we then assign each object a label 

identifying them as either a fruit or vegetable. This set of object features and their 

associated label is called the training data. The features for each object are then fed to 

the NN and the resulting output is compared to the actual label for that object. If the 

label generated by the NN is not the same as the actual label, an error value is 

calculated and used to update the weights and biases of the NN in order to correct the 

output of the NN. This process of presenting object features and altering the weights 

and biases continues until a certain performance measure is reached. Usually this 

performance measure is having the error of a performance function such as the Mean 

Squared Error (MSE) fall below a certain threshold. Upon reaching this performance 

measure, the NN is said to be trained and should be able to accurately predict whether 

a given object is a fruit or vegetable [2]. 

 The process described above is known as training and is an instance of 

supervised learning. Supervised learning is a learning paradigm that involves using a 

set of training examples consisting of both a set of features and the correct network 

output for those features. This is why supervised learning is often called “learning 

with a teacher.” The majority of NNs used for practical applications are trained using 

supervised learning. The types of problems that supervised learning is used to solve 

can be divided into two broad categories: classification and regression. In a 

classification problem the output value, or target, is a class label. The fruit and 

vegetable identification example given above is an example of a classification. In a 

regression problem, the target is a continuous value. Function approximation is an 

example of regression. It is this latter problem that we will be focusing on for the 

remainder of this chapter. 

 Training a NN to solve a regression problem is not much different than 

training a NN to solve a classification problem. In fact, the main difference is that the 

output value is no longer a label indicating the class to which a training example 

belongs. Rather, the output value is a real number which represents the output of the 
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function we are attempting to estimate when presented with the current input. The 

process of altering the values of the weights and biases remains the same in both 

cases. In MLPs, this process is known as backpropagation. 

 

2.2.2 Backpropagation 

 Backpropagation makes up the bulk of the MLP learning process. Despite 

being a central component in NN training the idea behind it is quite simple. When 

updating the weights and biases of a NN, it is necessary for us to calculate the error. 

In the case of a single layer NN, this is as simple as subtracting the output of the NN 

from the target value associated with the current input. This is because the output of 

the layer neurons depends only on the immediately preceding set of weights and 

biases. 

For an MLP, where there are multiple layers, the final output depends not 

only on the weights and biases of the output layer but also the weights and biases of 

the preceding layers. In complex networks with many hidden layers and neurons, 

even slight changes in the weight and bias values can cause the output of the NN to 

vary wildly. In order to determine the degree to which all of the weights in such a 

network should be altered, we need to know the error at each output of each layer. 

We do this by calculating the error for the output layer and propagating it back 

towards the input layer. 

Backpropagation can be broken down into two stages: the backward error 

propagation stage and the weight and bias update stage. During the backward error 

propagation stage, the total network error is calculated according to some error 

function, usually the Sum of Squared Error (SSE) or the MSE as mentioned earlier. 

Once this is done, the error for each output neuron is computed and then passed 

backwards through each layer of the NN starting with the output layer. After all of the 

errors have been calculated, the weights and biases for the entire network are updated. 

The entire NN training process is essentially an optimization problem. The 

goal is to find a set of weight and bias values that minimize an error function. Thus, 
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the calculations used in the backpropagation process to compute the errors and update 

the weights and biases are entirely dependent on the optimization algorithm used to 

train the network. Many different optimization algorithms are used with some 

commonly used ones being Gradient Descent, Resilient Backpropagation, Conjugate 

Gradient, and Levenberg-Marquardt. In developing an NN controller for the DC 

motor used in this research project, the Levenberg-Marquardt algorithm was used. 

 

2.2.3 The Levenberg-Marquardt Algorithm 

 The Levenberg-Marquardt (LM) algorithm can be seen as a combination of 

the Gradient Descent and Gauss-Newton algorithms. As a result, the LM algorithm 

inherits the strengths of both algorithms, namely stability and quick convergence. The 

LM algorithm is primarily a batch or offline training algorithm, which means that it is 

designed to be trained on data that has already been collected. This, in conjunction 

with its previously mentioned strengths, makes the LM algorithm ideal for training an 

NN controller on the data acquired from a live DC motor. 

 

 

Figure 2.4. Pseudocode of the LM algorithm 
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Pseudocode of the LM algorithm is shown in Figure 2.4. From this 

pseudocode, we see that the LM algorithm consists of three main stages: calculating 

the error on the current weights, calculating the Jacobian matrix for the current 

weights, and updating the weights. In order to aid in visualizing the calculations, refer 

to the illustration of an MLP using compact notation presented in Figure 2.3b 

 Calculating the error on the current weights involves presenting each pattern 

from the set of training data and propagating them forward through the network 

according to the following equations [3]: ࢇ૙ =  (2.1)                    ,࢖

૚+࢓ࢇ                         = ࢓ࢇ૚+࢓�૚ሺ+࢓ࢌ +  ૚ሻ for m = 0,1,…, M-1            (2.2)+࢓࢈

Once ࡹࢇis obtained for the current pattern, the error can be obtained by: ࢗࢋ =  (2.3)         ࡹࢗࢇ − ࢚ࢗ

We then calculate the SSE for all patterns using: �ሺ࢝࢑ሻ =  ∑ ࢚ࢗ) ૚=ࢗ�ࢀ(ࢗࢇ − ࢚ࢗ) − (ࢗࢇ =  ∑ ૚=ࢗ�ࢗࢋࢀࢗࢋ = ∑ ∑ ૚=࢐ࡹ૛(ࢗ,࢐ࢋ) = ∑ ሺ࢜࢏ሻ૛࢏ࡺ=૚�ࢗ=૚     (2.4) 

 The Jacobian matrix is calculated by first computing the sensitivities for each 

layer with: ࡹ̃ࢗࡿ = −�̇ ࡹ(ࡹࢗ࢔)
̃࢓ࢗࡿ (2.5)        = �̇ ࢓(࢓ࢗ࢔) ሺ�࢓+૚ሻ࢓ࢗࡿࢀ+૚̃             (2.6) 

where �̇ is defined as: 

ሻ࢓࢔ሺ̇࢓� = [   
ሻ࢓૚࢔ሺ̇࢓ࢌ  0 ڮ 00 ሻ࢓૛࢔ሺ̇࢓ࢌ … ڭ0 ڭ ⋱ 0ڭ 0 ڮ ࢓࢓ࡿ࢔ሺ̇࢓ࢌ ሻ]   

                   (2.7) 

Once the sensitivities have been calculated, they are then combined according to: ̃࢓ࡿ | ̃࢓૛ࡿ | ̃࢓૚ࡿ] = …  (2.8)            [ ̃࢓�ࡿ |

From here, the individual elements of the Jacobian matrix can be calculated using: [ࡶ]࢒,ࢎ ̃࢓ࢎ,�࢙ =  (2.9)         1̃−��,�ࢇ

for each weight and 
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࢒,ࢎ[ࡶ] ̃࢓ࢎ,�࢙ =          (2.10) 

for each bias. 

 The final stage, updating the weights, requires the calculation of ∆࢝࢑. This is 

done through the following equation: ∆࢝࢑ ሺ࢝࢑ሻࡶሺ࢝࢑ሻࢀࡶ]− = +  ሺ࢝࢑ሻ࢜ሺ࢝࢑ሻ      (2.11)ࢀࡶ૚−[ࡵ࢑�

Recompute the SSE using ࢝࢑ + ∆࢝࢑. If this new SSE is smaller than that computed 

using ࢝࢑ then divide � by some factor f, let ࢝࢑ = ࢝࢑ + ∆࢝࢑ and go back to the first 

stage. If the SSE is not reduced, then multiply � by f and repeat the weight update 

stage [3,4]. 

 All three stages of the LM algorithm are repeated until a stopping condition is 

met. Usually there is more than one stopping condition for a given training session. 

These stopping conditions include exceeding a maximum number of epochs, having 

the SSE fall below a certain threshold, having � exceed a certain maximum or 

minimum value, or having the gradient exceed a certain maximum or minimum 

value. 

 

2.3 DC Motor Control Schemes using NNs 

 NNs are typically used to control DC motors in one of two types of control 

schemes: adaptive control schemes or predictive control schemes. In an adaptive 

control scheme, corrections are made to the NN controller in real time based on the 

current error. The error is calculated as either the difference between the set point and 

the DC motor output or the difference between the output of a reference model and 

the DC motor output. The vast majority of adaptive control schemes are closed loop 

in nature as they very often require the output of the DC motor to be fed back so as to 

calculate the error. Even those implementations that calculate the error based on a 

reference model need to have the error fed back to the NNs. Figure 2.5a shows an 

example of this latter adaptive control scheme. 
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(a) 

 

(b) 

Figure 2.5. DC motor control schemes: (a) an example of an adaptive control scheme, 

(b) an example of a predictive control scheme 

 

 Rather than adjust the NN controller in response to the error in the system, a 

predictive control scheme anticipates the error at the next time step and provides the 

control signal value necessary to reduce this error. In order to do this, a model of the 

plant is first developed using system identification techniques. This model is then 

used to generate an estimate of the error which the NN controller can then use to 

prepare the correct control signal. In several implementations of the predictive control 

scheme, the model and controller are combined into a single NN. Predictive control 
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schemes make use of previous system inputs and outputs far more often than adaptive 

control schemes. Figure 2.5b shows an example of a predictive control scheme. 

 

2.4 Summary of Previous Research in this Field 

 The majority of research concerning the control of a DC motor through a NN 

controller makes use of either adaptive or predictive control schemes. In the case of 

adaptive control schemes, there seem to be two trends. The first trend is to have NNs 

serve as both the reference model and the controller [4-7] while the second is to have 

a separate controller whose parameters are adjusted by a NN [8,9]. A significant 

shortcoming of feedforward NNs such as MLPs is that they cannot process sequences 

of inputs. This prevents them from learning more complex relationships within the 

data of processes like DC motors that would allow them to develop a more accurate 

model of the process. Due to this, some implementations of the adaptive control 

scheme make use of Recurrent Neural Networks which overcome this limitation 

[4,5]. 

 The implementations of predictive control schemes follow a similar set of 

trends as the implementations of adaptive control schemes. The first noticeable trend 

is the use of a pair of NNs, one to act as the controller and the other to act as the DC 

motor model [10-16] where the purpose of the model is to predict the system error in 

the next time step. In some implementations, the NN model and NN controller are 

combined into a single unit [14, 16]. The next trend is an extension of the first and 

involves using the predictions made by the NN to adjust a controller which may or 

may not be a NN [17-19]. The final trend is to train a single NN to act as both a 

predictor and a controller [20]. 

 The one thing that both adaptive and predictive control schemes have in 

common is that they are both closed loop systems. Unfortunately, compared to closed 

loop systems research about feedforward control of DC motors using NNs is rather 

scarce. This research project seeks to rectify this problem by providing a basis for 

further research in this area. 
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Chapter 3 

Design of the Feed Forward DC Motor Control System 

 

3.1 Neural Network Controller Architecture 

 The NN architecture used for the NN controller is shown in Figure 3.1. From 

the figure, we see that the NN controller taken as a whole has one input and one 

output. Looking at the structure of the NN controller reveals that it consists of three 

layers: two hidden layers and one output layer. The first hidden layer has three hidden 

neurons, the second hidden layer has two hidden neurons, and the output layer has 

only one output neuron. Borrowing the terminology of the field of NN research, this 

NN has a 3-2-1 architecture. The neurons of both hidden layers have as their 

activation function the hyperbolic tangent function, ����ሺ࢞ሻ =  ,(Figure 3.2a) ࢞−ࢋ +࢞ࢋ࢞−ࢋ −࢞ࢋ 

while the activation function of the output neuron is a linear function, ࢌሺ࢞ሻ =  ࢞ 

(Figure 3.2b). All three layers of the NN controller have biases. 

 

 

Figure 3.1. NN controller architecture 
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(a) (b) 

Figure 3.2. NN activation functions: (a) Hyperbolic tangent function, (b) linear 

function. 

 

 Designing a NN for any application can be a rather difficult task. Unlike the 

mathematical computations that make up a NN and its many training algorithms, 

there are no strict rules or guidelines for choosing an optimum NN architecture for a 

given application. Thus a fair amount of time is spent at the beginning of any 

endeavor involving NNs narrowing down a set of NN architectures through a process 

of trial-and-error. Each NN architecture in this set of potential NN architectures is 

trained on the data obtained for the application and its performance measured. The 

performance of each NN architecture is then compared to identify the one with the 

best performance as specified for the given application. A similar process was used to 

select the NN architecture used in this research project. At the start of the project, 

there were two NN architectures: 2-1 and 3-2-1. After training the two architectures 

on sample DC motor data, it was determined that the 3-2-1 NN architecture yielded 

the best performance in terms of the MSE. 
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3.2 Neural Network Controller Training 

 Since the goal of this research project is to design a feedforward control 

system for a DC motor, the NN controller is trained as an inverse model of the DC 

motor. For this project, the plant consisted of the DC motor along with the PWM 

generator that controls the speed of the DC motor. This means that the training data 

gathered from the DC motor contained speed-duty cycle percentage value pairs. 

Therefore, when training the NN controller the order of these value pairs was 

swapped so that the input of the NN controller was the motor speed and the output 

was the duty cycle percentage of the PWM generator. 

As mentioned in the previous chapter, the NN controller was trained using the 

LM algorithm. The data used to train the NN controller was taken from a live DC 

motor with no load. During this research project, the NN controller was trained using 

validation-based early stopping in MATLAB. 

For the NN controller training, the data acquired from the DC motor was 

randomly divided into three sets: a training set, a validation set, and a test set. 70 

percent of the original DC motor dataset made up the training set while 15 percent 

made up both the validation and training sets. The training and validation sets were 

then passed to the NN training algorithm where training proceeded until the error on 

the validation set increased for six consecutive epochs. 

The MATLAB vendor MathWorks provides a NN toolbox which was 

included in the installation of MATLAB used in this project. Through the use of this 

toolbox, the splitting of the data as well as the training itself was handled by 

MATLAB. After importing the data into MATLAB the LM algorithm used in the NN 

toolbox was able to converge. The results of the NN Controller training are shown in 

Figure 3.4. The plot of the training set, validation set, and test set errors show that the 

MSE, while not particularly small, is acceptable for the data used to train the network 

(shown in Figure 3.3). The plots of the correlation between the network outputs and 

target values for the three sets indicate good performance from the network as the 

tests of correlation for the sets all have r values of around 0.99. 
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Figure 3.3. Scatterplot of NN controller training data 

 

 

 

(a) 
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(b) 

Figure 3.4. MATLAB training results: (a) Error on the training, validation and test 

sets, (b) correlation between the outputs of each set and the target values. 

 

3.3 Applying the Neural Network Controller to the DC Motor 

 The DC motor used in the project was part of a digital control system 

implemented in LabVIEW that made use of a National Instruments USB-6008 DAQ 

to mediate between the computer with the LabVIEW control VI and the DC motor. 

Figure 3.5 shows a block diagram of the entire control system. 



21 

 

 

Figure 3.5. DC motor control system 

 

 As mentioned earlier in this chapter, the plant for this system consists of the 

DC motor and a PWM generator. The VI controls the speed of the DC motor by 

allowing the user to set the speed of the DC motor (࢟ࢊ), where the speed is measured 

in RPM. This value is then passed to the trained NN controller which converts the 

RPM value to a duty cycle percentage (�). The VI then sends a PWM signal to the 

DC motor. The VI can be seen in Figure 3.6. 

 

 

(a) 
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(b) 

Figure 3.6. DC motor control VI: (a) Front panel, (b) block diagram 
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Chapter 4 

Result Analysis 

 

 In this chapter, we evaluate the performance of the NN controller. We begin 

by examining the step response of the DC motor without any controller and compare 

it to that of the DC motor with the NN controller. We then look at the results of 

subjecting the NN control system to a series of tests. The first of these tests was to set 

the load on the DC motor to 0 percent while varying the set point of the control 

system. The next test was identical to the first with the only difference being the load 

on the DC motor which was set to100 percent. The final test was to select a constant 

value for the set point of the control system and vary the load. We compare the results 

of each of these tests to those of an equivalent control system that has a single 

variable linear regression model (LRM) in place of an NN controller. 

 

4.1 Step Response 

 The step response was obtained from the DC motor by itself as well as the DC 

motor with the NN controller. Since an alternative control system using a LRM was 

used as a point of comparison for the performance tests, the step response of this 

system was taken as well. Below is the LRM equation showing the values of the 

coefficients. ࢟ =  −૚. ૝ૠ૛ૢૡૡ૛૟ + ૙. ૙૜૛૟૝૝૝૛࢞ 

The use of a live DC motor for this project means that the step response 

characteristics could not be determined analytically as there was no mathematical 

model from which to derive the necessary calculations. For this reason, the step 

response characteristics for each of these systems were determined as follows. The 

value of 2000 RPM was chosen to be the set point for each of these systems and from 

the resulting motor speed data the step response characteristics were approximated 
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using MATLAB. Figure 4.1 shows the graphs of the step response for each of these 

systems. 

 

 

Figure 4.1. Step response graph 

 

As can be seen from the graphs, none of the systems were able to reach the set 

point. In the case of the DC motor by itself this is due to the fact that, without a 

controller converting the set point from units of speed to duty cycle percentage, the 

duty cycle percentage required to reach the set point of 2000 RPM had to be 

estimated. Table 4.1 shows us the step response characteristics for each system. This 

table tells us that the overshoot percentage for each system is 0 percent, supporting 

what we saw in the graphs. The table also shows us that the performance of both the 

DC motor with the NN controller and the DC motor with the LRM controller are both 

quite good with small steady-state errors. The NN controller had slightly better 

performance than the LRM controller. 

We can see from the table that the rise time for each system was within 0.12-

0.16 seconds which tells us that neither the NN controller nor the LRM controller 
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introduced a significantly large delay into the system. However, there is a slight 

discrepancy between the rise times of the DC motor with the NN controller and the 

DC motor with the LRM controller. This discrepancy likely stems from the fact that 

the MATLAB function used to determine the step response characteristics for each 

system, makes its estimates based on data. Had the data we acquired for the step 

response of the DC motor with the LRM controller been different it is possible that 

the rise time of this system would have been closer to that of the other systems. There 

was also a discrepancy in the settling times of the systems with the NN controller 

system having a fairly long settling time compared to the plain DC motor and LRM 

controller systems. The reasoning behind the rise time discrepancies applies here as 

well. 

 

Table 4.1. Step response characteristics for each system 

System Rise time 

(s) 

Overshoot 

(%) 

Settling Time 

(s) 

Steady-state 

error (%) 

DC motor 0.1206 0 0.146 9.17 

DC motor with NN 

controller 

0.1253 0 0.169 7.74 

DC motor with LRM 

controller 

0.1610 0 0.115 9.59 

 

4.2 Steady State Tracking with no Load 

 During this test, the load on the DC motor was set to 0 percent while the 

motor was running. With the control system active, the set point of the motor was 

varied from the control VI and the resulting motor output was captured. Figure 4.2 

shows the results of this test. 
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(a) 

 

(b) 

Figure 4.2. Graph of steady-state tracking of DC motor with no load: (a) DC motor 

with NN controller, (b) DC motor with LRM controller 

 

Comparing the graph of the set point to the graph of the control signal for 

both control systems, we see that the curves mirror each other. Significant changes in 



27 
 

the values seem to occur at about the same time. This tells us that there were no major 

issues regarding delay between the control VI and the DC motor that could affect the 

performance of either controller. The graph comparing the set point to the motor 

speed for both control systems shows us that at steady state, the speed of the DC 

motor stays close to the set point. In other words, the steady state error is small. This 

graph also seems to show that the NN controller gave slightly better performance than 

the LRM controller as the DC motor output with the NN controller remained much 

closer to each set point value compared to the DC motor output with the LRM 

controller. 

 

4.3 Steady State Tracking with Full Load 

 During this test, the load on the DC motor was set to 100 percent while the 

motor was running. With the control system active, the set point of the motor was 

varied from the control VI and the resulting motor output was captured. Figure 4.3 

shows the results of this test. 

 

 

(a) 
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(b) 

Figure 4.3. Graph of steady-state tracking of DC motor with full load: (a) DC motor 

with NN controller, (b) DC motor with LRM controller 

 

A comparison of the graph of the set point and the graph of the control signal 

for both control systems shows that, again, the curves mirror each other. So, as with 

the previous test, we do not need to worry about problems regarding delay between 

the control VI and the DC motor that could affect the performance of either 

controller. However, this time the graph comparing the set point and the DC motor 

speed for both control systems shows that there is significant steady state error 

particularly for the set points above 1000 RPM. Since the NN controller is just an 

inverse model of the DC motor it is not able to adjust the speed of the DC motor in 

order to account for the load. The reasoning is similar for the degraded performance 

of the LRM controller. Being a linear model, it cannot account for any of the more 

complex behavior displayed by the DC motor when the load is set to 100 percent. 

From this graph, we see that the performance of both controllers is equally terrible. 
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4.4 Steady State with Variable Load 

 For this test, the set point for the DC motor was set to 2000 RPM and the load 

was varied between 0 percent, 25 percent, 50 percent, 75 percent, and 100 percent. As 

mentioned in the previous sections the output of the DC motor fluctuates very rapidly 

about the steady state value. Due to this, we use the average of the DC motor output 

values when calculating the steady state error for each load percentage. 

 

Table 4.2. Load percentages and their associated steady-state errors 

Load 

(%) 

Steady-state Error (%) 

NN controller LRM controller 

0 7.41 7.48 

25 7.07 7.54 

50 12.79 12.61 

75 24.36 25.26 

100 35.43 35.72 

 

 Table 4.3 shows us each load percentage along with the steady state error at 

that load percentage and Figure 4.4a shows us the graphs of the DC motor output and 

the set point at each load percentage. From both the table and the graphs it is apparent 

that the DC motor speed and the load are inversely proportional regardless of the 

controller meaning the greater the load on the DC motor, the greater the steady state 

error. This is to be expected as any amount of load on a DC motor reduces its speed. 

Also, as mentioned previously, due to the nature of both controllers neither of them 

can compensate for the additional load. From Table 4.3, we see that the NN controller 

offers marginally better performance than the LRM controller for a greater range of 

load percentages. This can be attributed to the fact that NNs are far better at detecting 

patterns and structure within data than LRMs. Thus, the NN controller was able to 

create a slightly better model of the DC motor than the LRM. 
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(a) 

 

(b) 
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(c) 

 

(d) 
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(e) 

Figure 4.4. Steady-state at different load percentages: (a) 0% load, (b) 25% load, (c) 

50% load, (d) 75% load, (e) 100% load. 
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Chapter 5 

Closing 

 

5.1 Conclusion 

Several conclusions can be drawn from this research: 

1. A NN trained as an inverse model of a DC motor is capable of acting as a 

controller for said DC motor in a feed forward control system. With no load, 

the NN gives good performance with minimal steady state error. Even when 

compared to the performance of a LRM controller, the performance of the NN 

controller was slightly better. 

2. When the load of the DC motor is set to 100 percent, the performance of the 

NN drops drastically. The same is true of the LRM controller, whose 

performance was about the same as the NN controller in this regard. For set 

point values at approximately 1000 RPM and above the steady state error is 

enormous. Since a DC motor controller should allow the motor to maintain a 

consistent speed regardless of the load on the motor, an NN trained as an 

inverse DC motor model is not suitable for controlling a DC motor at full load. 

3. The performance of the NN controller becomes progressively worse the larger 

the load on the DC motor is. At 0 percent load, the steady state error was 

calculated to be 8.14%. At 25 percent load, the steady state error was 7.35%. At 

50 percent load, the steady state error was 13.05%. At 75 percent, it was 

24.80% and at 100 percent it was 35.65%. Thus, the NN controller developed 

for this research project is not suitable for controlling DC motors with large 

loads although it is quite able to control DC motors with relatively small loads. 

4. For each of the tests performed in this research project, the NN displayed better 

performance than the LRM albeit by a small amount. This demonstrates the 

effectiveness of NNs as controllers. 
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5.2 Suggestions for Future Research 

 The research done here has shown the viability of NNs as DC motor 

controllers in a feed forward system. From here the logical next step is to apply NNs 

to DC motor closed loop control. It is also possible to continue this research by 

improving either the NN controller, the control scheme, or both in order to yield a 

feed forward NN control system with better performance than the one developed for 

this project. 
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