BAB V

HASIL PENELITIAN DAN PEMBAHASAN

Hasil penelitian dan pengujian yang dilakukar di lapangan dan di laboratorium jalan raya Fakultas Teknik Sipil dan Perencanaan Universitas Islam Indonesia meliputi penghitungan nilai *Pavement Condition Index* (PCI), pemeriksaan CBR tanah dasar lapangan dengan *Dynamic Cone Penetrometer* (DCP) dan pemeriksaan kadar aspal, pemeriksaaan gradasi agregat, pemeriksaan kepadatan beton aspal. Untuk lebih jelasnya, pembagian unit segmen penelitian dan titik pengambilan sampel benda uji penelitian yang dilakukan dengan menggunakan mesin *Core Drill* dapat dilihat pada lampiran 6-1.

5.1 Hasil Penelitian

5.1.1 Menghitung Nilai Pavement Condition Index (PCI)

Penelitian PCI di lapangan yang terdiri dari 22 unit *segmen* dengan luas masing-masing unit *segmen* sebesar 800 m², didapat nilai PCI melalui contoh perhitungan PCI berikut ini dari perhitungan unit *segmen* 1 (satu):

1. Data Pengamatan

Dari hasil pengamatan di lapangan diperoleh data kerusakan perkerasan lentur dalam m² dan m¹ untuk masing-masing severity level. Penulisan jenis-jenis

kerusakan dalam bentuk kode angka yang sesuai dengan nomor urut pada daftar lembar pengamatan.

Tabel 5.1 Data Pengamatan (Segmen No.1)

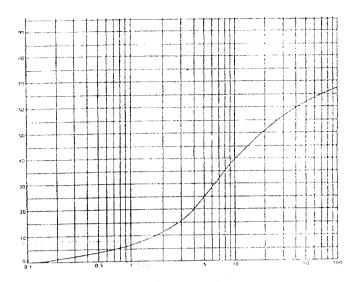
		KEAI	DAAN TIP	E KERUSAKA	4N		
NO. KODE KE	RUSAKAN	2	4	7	8	11	13
		20 X 0,5	6 X 1 L	1 X 0,5 L	3 L	2 X 12	5 X 0,5 L
			8 X 1 L	1,5 X 0,5 L			4 X 0,5 L
			8 X 1 L	2 X 0,5 L			
				6 X 0,5 M			
	LOW		6 m ²	2,25 m ²	3 m		4,5 m ²
TOTAL	MEDIUM	10 m ²	8 m ²	3 m ²		24 m ²	
SEVERITY	HIGH		8 m ²				

Sumber: Hasil Pengamatan dan Analisis Data.

2. Analisa Segmen No.1

2.1 Density dan Deduct Value

a. Bleeding


Tabel 5.2 Density dan Deduct Value, Bleeding.

No. Kode	Severity	Luas Total	Luas Kerusakan	Density
Kerusakan	Level	(m²)	(m²)	(%)
2	-	800	10	1,25

Sumber: Hasil Pengamatan dan Analisis Data.

Density =
$$(Ad / As) \times 100\%$$

= $(10 / 800) \times 100\%$

= 1,25%

(Sumber: FAA AC 150/5380-6) Grafik 5.1 Deduct Value Bleeding

Berdasarkan Grafik 5.1 maka diketahui sebagai berikut :

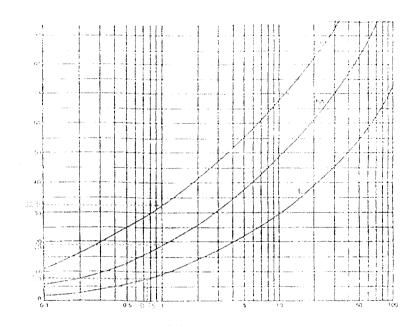
Density = 1,25% (tanpa Severity Level), maka diperoleh nilai Deduct Value = 7.8

b. Corrugation

Tabel 5.3 Density dan Deduct Value, Corrugation.

No. Kode Kerusakan	Severity Level	Luas Total (m²)	Luas Kerusakan (m²)	Density (%)
4	L	800	6	0.75
4	M	800	8	1
4	Н	800	8	1

Sumber: Hasil Pengamatan dan Analisis Data.


Density untuk severity level L:

Density =
$$(Ad / As) \times 100\%$$

= $(6 / 800) \times 100$
= 0.75%

Density untuk severity level M:

Density =
$$(Ad / As) \times 100\%$$

= $(8 / 800) \times 100\% = 1\%$

Density untuk severity level H:

(Sumber FAA AC 150/5380-6) Grafik 5.2 Deduct Value Corrugation

Berdasarkan Grafik 5.2 maka diketahui sebagai berikut :

- 1. Density = 0,75% (Low Severity Level), maka didapat nilai Deduct Value = 7.5
- 2. Density = 1% (Medium Severity Level), maka didapat nilai Deduct Value = 18
- 3. Density = 1% (High Severity Level), maka didapat nilai Deduct Value = 32,5

c. Joint Reflection Cracking

Tabel 5.4 Density dan Deduct Value, Joint Reflection Cracking.

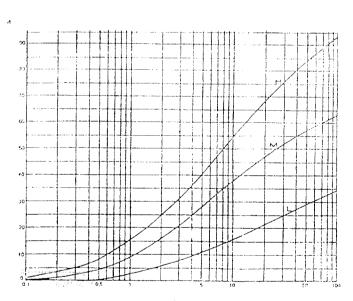
No. Kode	Severity	Luas Total Luas Kerusaka		an Density	
Kerusakan	Level	(m^2)	(m^2)	(%)	
7	L	800	2,25	0,281	
7	M	800	3	0,375	

Sumber: Hasil Pengamatan dan Analisis Data.

Density untuk severity level L:

$$Density = (Ad / As) \times 100\%$$

$$= (2.25 / 800) \times 100\%$$


$$=0.281\%$$

Density untuk severity level M:

$$Density = (Ad / As) \times 100\%$$

$$= (3/800) \times 100\%$$

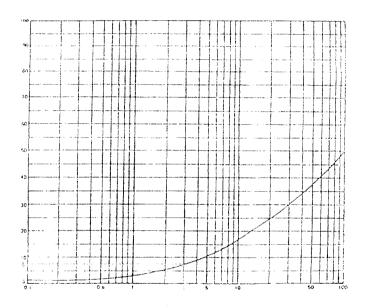
$$= (),375\%$$

(Sumber FAA AC 150/5380-6) Grafik 5.3 Deduct Value Joint Reflection Cracking

Berdasarkan Grafik 5.4 diketahui sebagai berikut :

Density = 0,375% (Low Severity Level), maka diperoleh nilai Deduct Value = 3

e. Polished Agregat


Tabel 5.6 Density dan Deduct Value, Polished Aggregaet.

			(10)	
No. Kode	Severity	Luas Total	Luas Kerusakan	Density
Kerusakan	Level	(m ²)	(m ²)	(%)
11	_	800	24	3

Sumber: Hasil Pengamatan dan Analisis Data.

$$Density = (Ad / As) \times 100\%$$

$$= (24/800) \times 100\% = 3\%$$

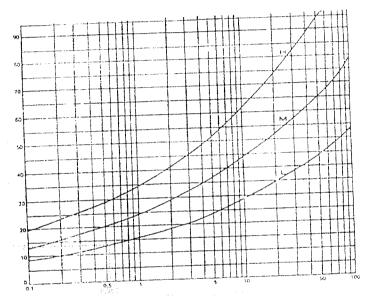
(Sumber FAA AC 150/5380-6) Grafik 5.5 Deduct Value Polished Aggregate

Berdasarkan Grafik 5.5 maka diketahui sebagai berikut:

Density = 3% (tanpa Severity Level), maka diperoleh nilai Deduct Value = 8

f. Rutting

Tabel 5.7 Density dan Deduct Value, Rutting.


Т	abel 5.7 <i>Densi</i>	ty dan Deauci v	due, Ruung.	Density
No. Kode	Severity	2	Luas Kerusakan (m²)	(%)
Kerusakan	Level	(m ⁻) 800	4.5	0,563
1.5		1: : D /-	1	

Sumber: Hasil Pengamatan dan Analisis Data.

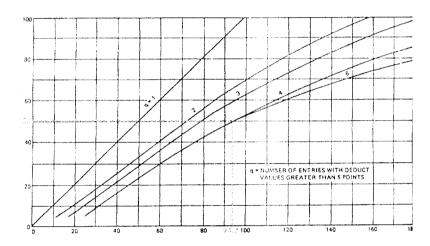
Density = $(Ad / As) \times 100\%$

 $= (4.5 / 800) \times 100\%$

=0.563%

(Sumber FAA AC 150/5380-6) Grafik 5.6 Deduct Value Rutting

Berdasarkan Grafik 5.6 maka diketahui sebagai berikut :


Density = 0,563% (Low Severity Level), maka diperoleh nilai Deduct Value = 3.5

2.2 Total Deduct Value dan Corrected Deduct Value

Tabel 5.8 Total Deduct Value

Jenis Kerusakan	Severity Level	Density	Deduct Value
2	_	1.25	7.8
4	L	0.75	7,5
4	M	l	18
4	Н	1	32,5
7	L	0,281	0
7	M	0,375	4
8	L.	0,375	3
11	-	3	8
13	L	0,563	13,5
Total Deduct Value	94,3		

Sumber: Hasil Pengamatan dan Analisis Data.

(Sumber FAA AC: 150/5380-6) Grafik 5.7 Corrected Deduct Value

Berdasarkan Grafik 5.7 maka diketahui sebagai berikut:

Total Deduct Value = 94.3

Jumlah data *Individual Deduct Value* >5 (q) = 6

Maka diperoleh nilai Corrected Deduct Value = 50

Gan

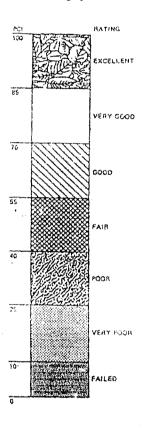
Pavement

untuk seg

-CDV

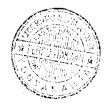
nilai ters

-50


kan gamb

2.3 Nilai Pavement Condition Index dan Rating

Nilai PCI untuk segmen No.1 adalah:


$$PCI = 100 - CDV$$

= 100 - 50
= 50

Kemudian nilai tersebut dicarikan ratingnya berdasarkan gambar 5.1 berikut:

(Sumber FAA AC : 150/5380-6) Gambar 5.1 *Ratting* (Klasifikasi Kualitas Perkerasan)

Berdasarkan gambar 5.1 diperoleh Rating: FAIR.

Jalan Pai

erhitunga

Parang T

Tabel 5.

Rata-rata Pengama

ksi Beton 🔍

jian ekstr

ran bahar

campuran

g dapat c

Hasil perhitungan unit segmen 1 se'engkapnya dapat dilihat pada tabel 5.9 berikut

ini:

Tabel 5.9 Lembar Data Pengamatan

FAS:LITAS : AWAL JALAN FEATURE : AKHIR JALAN UNIT CONTOH SEGMEN 1	TA	LAN PAR				~			TAN	GGAL 3 AP	RIL 2003
DISURVEY OLEH : RUBY FITRIAWAN & ARIEFIANSYAH LUAS AREA 800 m²								JALA			
JENIS KERUSAKAN 9. 0il Spillage 10. Patching 10. Patching 10. Patching 11. Polished Agregat 4. Corrugation 12. Ravelling & Wathering 5. Depression 13. Rutting 6. Jet Blast Erotion* 14. Shoving From PCC 15. Slippage Cracking 10. Om 10. Swell										UAS AREA	800 m ²
1. Allizator Cracking 2. Ble aling 3. Block Cracking 4. Corrugation 5. Depression 13. Rutting 14. Shoving From PCC 15. Slippage Cracking 8. Long & Transversal Cracking* 16. Swell NO. KODE KERUSAKAN NO. KODE KERUSAKAN Variable Variable	DISCRIBI						***		SKETSA		
2. Ble ding 3. Block Cracking 4. Corrugation 5. Dep. ession 6. Jet Rlast Erotion* 7. JT. Peflection (PCC) 8. Long & Transversal Cracking* 16. Swell No. Kode Kerusakan 2	1. Alligator Ci					lage					
3. Block Cracking 4. Corrugation 5. Dep. ession 6. Jet Blast Erotion* 7. JT.Peflection (PCC) 8. Long & Transversal Cracking* 16. Swell NO. KODE KERUSAKAN NO. KODE KERUSAKAN 2		G								<u> </u>	
12. Ravelling & Wathering 13. Rutting 14. Showing From PCC 15. Slippage Cracking 100 m 100		king					regat		i		i
5. Depression 6. Jet Blast Erotion* 13. Rutting 14. Shoving From PCC 15. Slippage Cracking 16. Swell 100 m No. Kode Kerusakan 2				12.	Ravellii	ng &	Wather	ing	i		8 m
6. Jet Rlast Erotion* 7. JT. Peflection (PCC) 8. Long & Transversal Cracking* 16. Sveilppage Cracking 100 m KEADAAN TIPE KERUSAKAN	5. Depression 13. Ruttin							į		! ↓	
No. Kode Kerusakan 2 4 7 8 11 13 13 14 15 15 15 15 15 15 15											-
No. Kode Kerusakan S. Sweit					ze Cr	acking			00	→	
NO, KODE KERUSAKAN 2	8. Long & Transversal Cracking* 16. Swell								UU III		
20 x 0,5 6 x 1 L 1 x 0,5 L 3 L 2 x 12 5 x 0,5 L				KE	ADAA	N TI	PE KEI	RUSA	KAN	1	- ₁
R N 1 M	NO. KODE KE	RUSAKAN			4		·				
S H 2 N 5 L			20 :	0,5	6 x 1	L		-	3 L	2 x 12	
Comparison Com											4 x 0,5 L
TOTAL SEVERITY DENSITY DENSITY VALUE SEVERITY DENSITY SEVERITY DENSITY VALUE SEVERITY SEVERITY DENSITY SEVERITY SE					8 x 1	Н	2×0.5	5 L			
Name							6 x 0,5	5 L			
Name											
Name											
Name											
Name											
SEVERITY MEDICM 10	TOTAL	LOW			6		2,2	5	3	24	4,5
Figure 1 Figure 2 Figure 3		MEDIUM	l	0	8		3				
JENIS KERUSAKAN SEVERITY DENSITY DEDUCT VALUE 2 - 1,25 7,8 4 L 0,75 7,5 4 M 1 18 4 H 1 32,5 7 L 0,281 0 7 M 0,375 4 8 L 0,375 3 11 L 3 8 13 L 0,563 13,5 RATING SEGMEN 1 = GOOD	SEVERITI	HIGH			8						
KERUSAKAN SEVERITY DENSITY VALUE 2 - 1,25 7,8 4 L 0,75 7,5 4 M 1 18 4 H 1 32,5 7 L 0,281 0 7 M 0,375 4 8 L 0,375 3 11 L 3 8 13 L 0,563 13,5 RATING SEGMEN 1 = GOOD					PER			PCI			
2 - 1,25 7,8 4 L 0,75 7,5 4 M 1 18 4 H 1 32,5 7 L 0,281 0 7 M 0,375 4 8 L 0,375 3 11 L 3 8 11 L 3 8 11 L 3,563 13,5 TOTAL DEDUCT VALUE 94,3						1					
4 L 0,75 7,5 4 M 1 18 4 H 1 32,5 7 L 0,281 0 7 M 0,375 4 8 L 0,375 3 11 L 3 8 11 L 3 8 11 L 3,563 13,5 TOTAL DEDUCT VALUE 94,3	KERUSAKA	N SEVE	RITY	DEN	SITY	V_{λ}	4LUE_				
4 M 1 18 4 H 1 32,5 7 L 0,281 0 7 M 0,375 4 8 L 0,375 3 11 L 3 8 13 L 0,563 13,5 RATING SEGMEN 1 = GOOD TOTAL DEDUCT VALUE 94,3	2		<u>.</u>	4		<u> </u>					
TOTAL DEDUCT VALUE 94,3	4		L	0,	75		7,5				
7 L 0,281 0 7 M 0,375 4 8 L 0,375 3 11 L 3 8 13 L 0,563 13,5 TOTAL DEDUCT VALUE 94,3	4	1	1		1	32,5			= 100 - 50		
7 M 0,375 4 8 L 0,375 3 11 L 3 8 13 L 0,563 13,5 TOTAL DEDUCT VALUE 94,3	4		H								
8 L 0,375 3 11 L 3 8 13 L 0,563 13,5 TOTAL DEDUCT VALUE 94,3	7		L	-			0 = 50				
11 L 3 8 13 L 0,563 13,5 RATING SEGMEN 1 = GOOD	7	7 M 0,375		4							
13 L 0,563 13,5 TOTAL DEDUCT VALUE 94,3	8		L 0,375		3						
TOTAL DEDUCT VALUE 94,3	11			3		8		DATEINIO GEOMENI 4 - COOD			
The second secon	13	13 L 0,563		563		$ \begin{array}{c c} \hline 13.5 & RATING SEGMEN & 1 = G \end{array} $		GOOD			
The second secon											
The state of the s											
The state of the s											
	TOT	AL DEDU	CT VAI	LUE			94,3				
*Total Severity Lavel delar settian m² kecuali kerusakan no 6 dan 8 dalam m	CORRE	CTED DE	DUCT	VAL UI	E		50				

^{*}Total Severity Level dalam satuan m² kecuali kerusakan no 6 dan 8 dalam m¹.

Sumber: Hasil Pengamatan dan Analisis Data.

2.4 Nilai PCI Jalan Parangtritis, Propinsi Daerah Istimewa Yogyakarta

Hasil perhitungan Pavement Condition Index (PCI) seluruh unit segmen pada ruas jalan Parang Tritis dapat dilihat pada tabel 5.10

Tabel 5.10 Nilai PCI masing-masing unit segmen

No.Unit Segmen	Luas Unit Segmen (m²)	Nilai PCI	Rating	
1	800	50	FAIR	
$\frac{1}{2}$	800	85	VERY GOOD	
3	800	72	VERY GOOD	
4	800	45,5	FAIR	
5	800	69,5	GOOD	
6	800	86	EXCELLENT	
7	800	87,5	EXCELLENT	
8	800	58,5	GOOD	
9	800	75	VERY GOOD	
10	800	64,5	GOOD	
11	003	62,5	GOOD	
12	800	80	VERY GOOD	
13	800	67	GOOD	
$\frac{15}{14}$	800	58,5	GOOD	
15	800	74	VERY GOOD	
$-\frac{15}{16}$	800	77,5	VERY GOOD	
$-\frac{10}{17}$	800	81	VERY GOOD	
$-\frac{17}{18}$	800	60	GOOD	
19	800	45	FAIR	
20	800	60	GOOD	
20	800	67,2	GOOD	
$\frac{21}{22}$	800	59	GOOD	
LAI PCI TO		1413,2	_	
ILAI PCI R		64,236	GOOD	

Sumber: Hasil Pengamatan dan Analisis Data.

5.1.2 Ekstraksi Beton Aspal

Pengujian ekstraksi bertujuan untuk mengetahui kadar aspal yang ada dalam campuran bahan perkerasan. Dari penelitian ekstraksi ini diperoleh data kadar aspal campuran permukaan perkerasan daerah selatan dan daerah utara penelitian yang dapat dilihat pada tabel 5.11 dan tabel 5.12 di bawah ini:

)6	63
55	54
78	3
73	13
4	4
ata	

Agregat Diekstraks

255

ta

ari 6 cor
'), dida

Tabel 5.11 Hasil Uji Ekstraksi

Beton Aspal Untuk Daerah Penelitian Bagian Utara

No	Stasiun	Kadar Aspal (%) Hasil Penelitian
1	0 + 320 R	7,844
2	0 + 640 L	7,631
3	0 + 960 R	7,935
	Rata - rata	7,803

Sumber: Hasil Pengamatan dan Analisis Data

Keterangan: R = Kanan, L = Kiri.

Tabel 5.12 Hasil Uji Ekstraksi

Beton Aspal Untuk Daerah Penelitian Bagian Selatan

No	Stasiun	Kadar Aspal (%) Hasil Penelitian
4	0 + 1280 L	7,137
5	0 + 1600 R	7,844
6	0 + 1920 L	7,925
	Rata - rata	7,635

Sumber: Hasil Pengamatan dan Analisis Data

Keterangan: R = Kanan, L = Kiri.

5.1.3 Analisa Saringan

Bermanfaat untuk menentukan pembagian butir (gradasi) agregat dengan menggunakan saringan (lampiran 5-1 s.d 5-6). Hasil penelitian analisa saringan untuk daerah penelitian bagian utara dan daerah penelitian bagian selatan adalah sebagaimana tercantum dalam tabel 5.13 dan tabel 5.14 di bawah ini :

Tabel 5.13 Hasil Analisa Saringan Agregat Sampel Uji Daerah Utara Setelah Diekstraksi

Nome	Hasil P	enelitian (' Saringan	,	Rata-
Nomor Saringan	Stasiun 0 + 320 R	Stasiun 0 + 640 L	Stasiun 0 + 960 R	rata
(a)	(b)	(c)	(d)	(e)
1"	100	100	100	100
3/4"	100	100	100	100
1/2"	96,64	94,801	86,772	92,738
3/8"	88,331	86,471	80,736	85,179

#4	64,296	58,195	67,206	63,232
#8	55,246	47,354	60,155	54,252
#30	31,552	28,591	36,578	32,24
#70	10,453	10,418	19,373	13,414
#200	4,167	4,614	4,234	4,338

Sumber: Hasil Pengamatan dan Analisis Data

Keterangan: R = Kanan, L = Kiri.

Tabel 5.14 Hasil Analisis Saringan Agregat Sampel Uji Daerah Selatan Setelah Diekstraksi

Nomor Saringan	Hasil P	Rata-		
	Stasiun 0 + 1280 L	Stasiun 0 + 1600 R	Stasiun 0 + 1920 L	rata
(a)	(b)	(c)	(d)	(e)
1"	100	100	100	100
3/4"	100	100	100	100
1/2"	84,409	93,203	93,646	90,419
3/8"	75,051	86,377	84,952	81,793
#4	51,849	61,317	62,935	58,7
#8	42,011	51,026	52,180	48,406
#30	23,041	24,953	29,399	25,798
#70	8,627	9,046	11,969	9,881
#200	4,186	4,376	6,255	4,939

Sumber: Hasil Pengamatan dan Analisis Data

Keterangan : R = Kanan, L = Kiri.

5.1.4 Kepadatan Beton Aspal

Hasil pemeriksaaan kepadatan beton aspal dari 6 contoh benda uji yang diambil dari dua daerah pengambilan (lampiran 5-7), didapat nilai kepadatan seperti pada tabel 5.15 di bawah ini:

Tabel 5.15 hasil Pemeriksaan Kepadatan Beton Aspal Daerah Pengambilan Sampel Utara

			Berat (gr)			
Nomor Stasiun	Tebal (cm)	Kering	Dalam Air	SSD	Volume (D)=(C)-(B)	Bulk (A)/ (D)
~ • • • • • • • • • • • • • • • • • • •	(0.1.1)	(A)	(B)	(D)	(cm ³)	(gr/cm ³)
0 + 320 R	13	2388	1376	2379	1021	2,3389
0 + 640 L	11	1916	1114	1929	815	2,35069
0 + 960 R	12,5	2123	1235	2133	898	2,3641
				Kenada	atan Rata-rata	2.35123

Sumber: Hasil Pengamatan dan Analisis Data

Keterangan: R = Kanan, L = Kiri.

Tabel 5.16 Hasil Pemeriksaan Kepadatan Beton Aspal Daerah Pengambilan Sampel Selatan

		Berat (gr)				
Nomor Stasiun	Tebal (cm)	Kering	Dalam Air	SSD	Volume (D)=(C)-(B) (cm ³⁾	Bulk (A)/(D)
		(A)	(B)	(D)	(cm ³⁾	(gr/cm ³)
0 + 1280 L	15	2770	1600	2778	1178	2,3514
0 + 1600 R	13	2260	1307	2264	957	2,3616
0 + 1920 L	5	785	463	795	332	2,3645
				Kepada	atan Rata-rata	2,359

Sumber: Hasil Pengamatan dan Analisis Data

Keterangan: R = Kanan, L = Kiri.

Untuk HRS, nilai kepadatan yang disyaratkan adalah 2,323 gr/cm³ (Bina Marga , DPU Cabang Dinas Propinsi D.I. Yogyakarta).

5.1.5 Pemeriksaan CBR Lapangan dengan Dynamic Cone Penetrometer

Pemeriksaan ini bertujuan untuk mencari nilai CBR lapangan tanah dasar secara langsung. Nilai CBR yang dipakai pada penelitian ini adalah CBR pada kedalaman *penetrasi* 300 mm (30 cm) dengan asumsi pemadatan *subgrade* 30 cm tebal padat.

Hasil pemeriksaan dapat dinyatakan dengan penetrabilitas skala penetrometer (SPP) yaitu mudah tidaknya melakukan penetrasi ke dalam tanah (dinyatakan dalam cm atau tumbukan) atau dapat dinyatakan juga dengan tahanan penetrasi skala (SPR).

Contoh perhitungan:

1. Stasiun 0 + 1280 L

Hasil dari 5 (lima) tumbukan pertama:

$$A = 5$$
 (lima) tumbukan; $D_0 = 0$ cm; $D_1 = 4$ cm

$$\Delta D = D_1 - D_0 = 4 - 0 = 4 \text{ cm}$$

$$SPP = \Delta D / A = 4 / 5 = 0.8 / tumbukan$$

$$SPR = 1 / SPP = 1 / 0.8 = 1.25 \text{ tumbukan / cm}$$

Hasil dari 5 (lima) tumbukan kedua:

$$A = 5$$
 (lima) tumbukan; $D_1 = 4$ cm; $D_2 = 12$ cm

$$\Delta D = D_2 - D_1 = 12 - 4 = 8 \text{ cm}$$

$$SPP = \Delta D / A = 8 / 5 = 1.6 / tumbukan$$

$$SPR = 1 / SPP = 1 / 1,6 = 0,625 \text{ tumbukan / cm}$$

Hasil dari 5 (lima) tumbukan ketiga:

$$A = 5$$
 (lima) tumbukan; $D_2 = 12$ cm; $D_3 = 20$ cm

$$\Delta D = D_3 - D_2 = 20 - 12 = 8 \text{ cm}$$

$$SPP = \Delta D / A = 8 / 5 = 1,6 / tumbukan$$

$$SPR = 1 / SPP = 1 / 1,6 = 0,625 \text{ tumbukan / cm}$$

Demikian juga seterusnya untuk tumbukan berikutnya.

Data lapangan umumnya dalam SPP, tapi dalam analisa data dipergunakan SPR. Korelasi dengan nilai CBR diperoleh dengan menggunakan kertas transparan seperti gambar pada lampiran 6. Kertas transparan tersebut digesergeserkan dengan tetap menjaga sumbu grafik pada kedua gambar sejajar sehingga diperoleh garis kumulatif tumbukan berimpit dengan salah satu garis pada kertas transparan. Nilai yang ditunjukkan oleh garis tersebut merupakan nilai CBR lapangan pada kedalaman tersebut. Setelah didapat grafik hubungan antara kumulatif pukulan dan kedalaman penetrasi selanjutnya ditarik garis yang menyinggung grafik tersebut. Dari garis singgung itulah didapat nilai CBR lapangan pada lokasi pengujian. (lampiran 5-8).

Pada stasiun 0 + 1280 L setelah dicari dengan cara tersebut diatas didapatkan CBR lapangan sebesar 30% pada kedalaman 40-50 cm di bawah tapisan perkerasan.

2. Stasiun 0 + 1600 R

Untuk mendapatkan nilai CBR lapangan pada stasiun berikutnya caranya sama dengan cara mendapatkan nilai CBR lapangan pada stasiun 0 + 1280 L sehingga didapat nilai CBR lapangan sebesar 4 % pada kedalaman 45-65 cm di bawah lapisan perkerasan.

5.2 Pembahasan

Pekerjaan terakhir pada struktur lapis perkerasan jalan Parangtritis berdasarkan informasi dari Dinas Pemukiman dan Prasarana Wilayah Propinsi D.I. Yogyakarta adalah pekerjaan pelapisan tambahan pada tahun 1989 dengan menggunakan lapisan HRS.

5.2.1 Nilai Pavement Condition Index (PCI)

Evaluasi kondisi jalan dengan mencari nilai PCI termasuk cara pemeriksaan non dekstruktif. Pemeriksaaan dilakukan untuk mengetahui jenisjenis kerusakan yang terdapat di jalan yang diperiksa dan untuk mengetahui tingkat kerusakan yang ada pada ruas jalan tersebut.

Hasil penelitian nilai PCI pada ruas jalan Parangtritis didapat nilai PCI rata-rata sebesar 64,236 dengan kualifikasi kualitas perkerasan menurut FAA tergolong bagus (GOOD). Hasil keseluruhan unit *segmen*, sebanyak 22 *segmen*, yang mempunyai nilai PCI dengan kualifikasi *EXCELLENT* yaitu unit *segmen* VI dan VII. Untuk kualifikasi *VERY GOOD* didapati pada unit *segmen* II,III,IX,XII,XV,XVI, dan XVII. Untuk kualifikasi *GOOD* didapati pada unit *segmen* V,VIII,X,XI,XIII,XIV,XVIII,XX,XXI,dan XXII. Sedangkan untuk kualifikasi *FAIR* didapati pada unit *segmen* I,IV, dan XIX. Untuk Nilai PCI terendah adalah 45 pada unit *segmen* XIX dan nilai PCI tertinggi adalah 87,5 pada unit *segmen* VII.

Pada tabel 5.17 dapat dilihat bahwa klasifikasi kualitas perkerasan tiap unit segmen memiliki rating yang hampir seragam dibeberapa unit segmen, walaupun ada juga yang tidak seragam. Berikut ini ringkasan urutan kategori nilai PCI dari tabel 5.10 terdapat pada tabel 5.17.

Tabel 5.17 Urutan Kategori Nilai PCI

NO	RATING	UNIT SEGMEN KE
1	EXCELLENT	VI, VII,
2	VERY GOOD	II,III,IX,XII,XV,XVI, XVII,
3	GOOD	V,VIII,X,XI,XIII,XIV,XVIII,XX,XXI, XII,
4	FAIR	I,IV, XIX.

Sumber: Hasil Pengamatan dan Analisis Data.

Jenis kerusakan yang memiliki kadar luas kerusakan tertinggi yang banyak dijumpai pada tiap unit *segmen* pada penelitian ini, ditampilkan pada tabel 5.18 di bawah ini:

Tabel 5.18 Density (Kadar Kerusakan)
Tertinggi Pada Masing-masing Unit Segmen

No	Stasiun	Kode	Jenis Kerusakan	Density
1	0 – 100	11	Polishea Agregat	3
2	100 - 200	2	Bleeding	4,94
3	200 – 300	4	Corrugation	6,38
4	300 – 400	2	Bleeding	12,5
		4	Corrugation	12,5
5	400 - 500	2	Bleeding	8,75
6	500 - 600	2	Bleeding	2
7	600 - 700	2	Bleeding	5
8	700 – 800	4	Corrugation	11,81
9	800 - 900	4	Corrugation	8,63
		10	Patching	4,25
10	900 – 1000	4	Corrugation	7,5
	, , , , , , , , , , , , , , , , , , , ,	2	Bleeding	4,88
11	1000 - 1100	10	Patching	5,56
12	1100 – 1200	11	Polished Agregat	4,44
13	1200 - 1300	11	Polished Agregat	8,25
,,	1200 1000		Alligator Cracking	5.61
14	1300 – 1400	1	Alligator Cracking	9,44
1.	1,000 1,100	3	Block Cracking	4,75
15	1400 – 1500	1	Alligator Cracking	2,84
16	1500 - 1600	10	Patching	6,19
17	1600 – 1700	3	Block Cracking	3,13
18	1700 - 1800	1	Alligator Cracking	11,31
10	1,00 1000	3	Block Cracking	8,38
19	1800 – 1900	1	Alligator Cracking	26,88
20	1900 - 2000	1	Alligator Cracking	23,81
21	2000 - 2100	i	Alligator Cracking	17,31
22	2100 - 2200	1	Alligator Cracking	20,56

Sumber: Hasil Pengamatan dan Analisis Data.

Dari tabel 5.18 dapat disimpulkan mayoritas keadaan jalan dalam keadaan baik (*GOOD*), kecuali pada unit *segmen* 1, 4 dan 19 yang berada dalam keadaan sedang (*FAIR*).

Dari kerusakan-kerusakan yang terjadi pada 22 unit *segmen* pada ruas jalan Parang Tritis, ditemui 12 jenis kerusakan dari 16 jenis kerusakan yang ada pada metode PCI. Diantara 12 jenis kerusakan tersebut, terdapat beberapa jenis kerusakan yang dominan yang terjadi. Berikut ini pada tabel 5.19 terangkum 5 jenis kerusakan berdasarkan kadar kerusakan tertinggi dan untuk perhitungan berdasarkan kadar kerusakan selengkapnya dapat dilihat pada lampiran 3.

Tabel 5.19 Jenis Kerusakan Berdasarkan Kadar Kerusakan Tertinggi

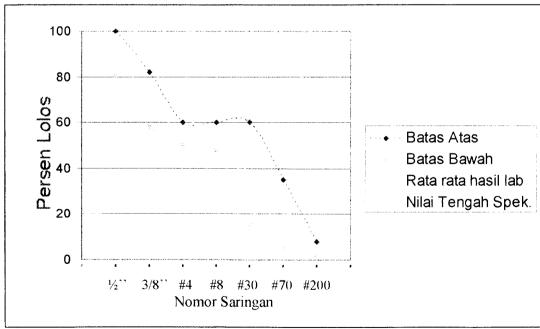
No	Kode	Jenis Kerusakan	Density Total
$\frac{110}{1}$	1	Alligator Cracking	119.957
$\frac{1}{2}$	4	Corrugation	57.25
3	2	Bleeding	51.0625
$\frac{1}{4}$	10	Patching	28.779
.	3	Block Cracking	25.0625

Sumber: Hasil Pengamatan dan Analisis Data.

5.2.2 Evaluasi Hasil Laboratorium Terhadap Spesifikasi

Berdasarkan perbandingan hasil penelitian di laboratorium jalan raya dan data yang didapat dari laboratorium jalan raya Universitas Islam Indonesia, dihasilkan bahwa contoh sampel perkerasan dari dua daerah pengambilan sampel yang diuji adalah HRS. Hal ini dapat dilihat dari hasil penelitian analisa saringan pada sampel yang menunjukkan gradasi agregat lebih cenderung memenuhi spesifikasi HRS.

Berdasarkan pemeriksaan melalui ekstraksi aspal terhadap sampel perkerasan yang diambil dengan cara *coredrill*, didapat dua hasil penelitian yaitu kadar aspal dan gradasi agregat bahan perkerasan. Hasil penelitian kadar aspal menunjukkan bahwa kadar aspal yang terkandung di dalam campuran bahan


perkerasan daerah utara adalah sebesar 7.803% sedangkan kadar aspal di daerah selatan adalah sebesar 7.6357%.

Pada penelitian gradasi agregat dari dua daerah pengambilan sampel di Jalan Parangtritis yang dilakukan di laboratorium dengan cara analisa saringan. didapat hasil uji rata-rata ada yang tidak memenuhi spesifikasi HRS yang ditetapkan oleh Bina Teknik Departemen Pekerjaan Umum. Hal ini dapat dilihat pada tabel 5.20 di bawah ini.

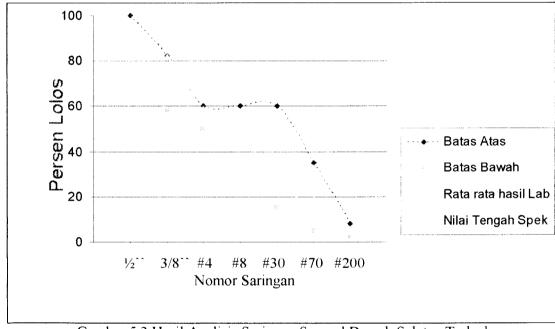
Tabel 5.20 Perbandingan Hasil Uji Laboratorium Sampel Daerah Utara Dengan Spesifikasi HRS.

2000.00.00.00.00.00.00.00.00.00.00.00.00							
No. Saringan	1/2"	3/8"	#4	#8	#30	#70	#200
Hasil Uji Lab.Rata-rata	92,738	85,179	63,232	54,252	32,24	13,414	4,338
Spesifikasi	80/100	58/82	50/60	48/60	15/60	5/35	2/8
NilaiTengahSpesifikasi	90	70	55	54	37,5	20	5

Sumber: Hasil Pengamatan dan Analisis Data.

Gambar 5.2 Hasil Analisis Saringan Sampel Daerah Utara Terhadap Spesifikasi HRS.

diasum degrada


terhada

utara ja bawah Berdasarkan perbandingan antara hasil penelitian analisis saringan terhadap spesifikasi seperti terlihat di gambar 5.3 diatas maka terjadi degradasi agregat. vaitu pada saringan 3/8" dan no.4.

Tabel 5.21 Perbandingan Hasil Uji Laboratorium Sampel Daerah Selatan Dengan Spesifikasi HRS

No. Saringan	1/2**	3/8"	#4	#8	#30	#70	#200
Hasil Uji Lab. Rata-rata	90,419	81,793	58,7	48,406	25,798	9 4 ,881	4,939
Spesifikasi	80/100	58/82	50/60	48/60	15/60	5/35	2/8
Nilai Tengah Spesifikasi	90	70	55	54	37,5	20	5

Sumber: Hasil Pengamatan dan Analisis Data.

Gambar 5.3 Hasil Analisis Saringan Sampel Daerah Selatan Terhadap Spesifikasi HRS.

Berdasarkan perbandingan antara hasil penelitian analisis saringan terhadap spesifikasi seperti yang terlihat gambar 5.4 di daerah selatan belum terjadi degradasi agregat.

0 + 3. Hal ii

masa

selata dibay Karena data JMD (*Job Mix Design*) dari perkerasan jalan tidak ada, diasumsikan JMD sama dengan nilai tengah spesifikasi gradasi, maka prosentase degradasi dihitung dengan cara membagi kelebihan prosentase nilai lolos saringan terhadap nilai tengah spesifikasi.

Degradasi agregat untuk masing-masing sampel yang diambil dari bagian utara jalan Parangtritis yang diteliti selengkapnya dapat dilihat pada tabel 5.22 ai bawah ini.

Tabel 5.22 Prosentase
Degradasi Agregat Sampel Daerah Utara.

	Hasil Penelitian (% lolos) Saringan					
Nomor Saringan	Stasiun 0 + 320 R	Stasiun 0 + 640 L	Stasiun 0 + 960 R			
1/2"	7,378	5,334	-			
3/8"	26,187	23,53	15,337			
#4	16,902	5,807	22,193			
#8	2,307	-	11,398			

Sumber: Hasil Pengamatan dan Analisis Data.

Berdasarkan tabel 5.22 diatas, degradasi tertinggi terdapat pada Stasiun 0 + 320 R tetapi secara keseluruhan degradasi tertinggi terjadi pada saringan 3/8". Hal ini mungkin disebabkan karena adanya proses pengausan agregat selama masa pelayanan jalan.

Degradasi agregat untuk masing-masing sampel yang diambil dari bagian selatan jalan Parangtritis yang diteliti selengkapnya dapat dilihat pada tabel 5.23 dibawah ini.

Tabel 5.23 Prosentase
Degradasi Agregat Sampel Daerah Selatan.

	Hasil Pen	Saringan	
Nomor Saringan	Stasiun 0 + 1280 L	Stasiun 0 + 1600 R	Stasiun 0 + 1920 L
1/2"		3,559	4,051
3/8"	7,216	23,396	21,36
#4	-	11,486	14,427
#8	-	-	_

Sumber: Hasil Pengamatan dan Data Analisis.

Berdasarkan Tabel 5.23 diatas, degradasi tertinggi terjadi pada Stasiun 0 + 1920 tetapi secara keseluruhan degradasi tertinggi terjadi pada saringan 3/8". Hal ini mungkin disebabkan karena adanya proses pengausan agregat selama masa pelayanan jalan.

Adapun contoh perhitungan untuk mendapatkan nilai prosentase degradasi agregat dapat dilihat pada contoh perhitungan berikut ini (sampel dari stasiun 0+320 R, dengan nomor saringan 1/2")

$$\% Degradasi = \frac{(\% Lolos Saringan - \% Lolos Nilai Tengah)}{\% Lolos Nilai Tengah} \times 100$$
$$= \frac{(96,64 - 90)}{90} \times 100$$
$$= 7,378$$

Prosentase degradasi agregat untuk stasiun yang lain dihitung sama dengan cara seperti contoh untuk mencari prosentasi degradasi pada stasiun 0+320 R, pada saringan 1/2".

Hasil penelitian kepadatan beton aspal rata-rata daerah utara didapat sebesar 2,35123 gram/cm³ dan kepadatan beton aspal rata-rata daerah selatan

٠4

ı Visual I Pei Per R mei PC 72 (ten ked rati god Per me PC 86 ter ke rat exi Pt m P sϵ d: k

Γć

didapat sebesar 2,357 gram/cm³. Sedangkan kepadatan yang disyaratkan oleh spesifikasi adalah 98% dari kepadatan hasil laboratorium. Karena JMD pekerjaan *recylcling* jalan sebelumnya tidak diketahui, maka kepadatan beton aspal tersebut dijadikan kepadatan hasil laboratorium sehingga didapatkan kepadatan lapangan untuk daerah utara sebesar 2,3042 gram/cm³ dan kepadatan lapangan untuk daerah selatan sebesar 2,3118 gram/cm³. Untuk HRS, nilai kepadatan yang disyaratkan adalah 2,323 gr/cm³ (Bina Marga, DPU Cabang Dinas Propinsi D.I. Yogyakarta), jadi kepadatan yang terdapat pada ruas jalan Parangtritis masih masuk dalam spesifikasi.

Hasil penelitian kualitas aspal berupa penetrasi dan titik lembek. Penetrasi rata-rata untuk ruas jalan bagian utara didapat 11,8 dan ruas jalan bagian selatan sebesar 12. Untuk titik lembek, pada ruas jalan bagian utara terjadi pada suhu 78 °C dan pada ruas jalan bagian selatan sebesar 79 °C. Karena JMD pekerjaan *recylcling* jalan sebelumnya tidak diketahui, maka diasumsikan aspal yang digunakan pada lapis perkerasan pada ruas jalan tersebut adalah aspal AC 60/70. Berdasarkan spesifikasi Bina marga, aspal 60/70 memiliki titik lembek antara 48°C - 58 °C.

5.2.3 Perbandingan Hasil Pengamatan Secara Visual Dan Uji Laboratorium

Perbandingan hasil pengamatan secara visual dengan hasil pengamatan laboratorium kondisi perkerasan pada unit segmen pengamatan yang dilakukan pengambilan sampel benda uji dapat dilihat pada Tabel 5.24 dan Tabel 5.25 dibawah ini.

T7 •4	Jugania	Kor	5.24 Ha Idis	sıl Uji Laborator i Perkerasan	ium	Pada Daerah Utara
Unit Segmen	Stasiun	· ·	Ber	rdasarkan Uji		Keterangan
6 dan	STA 0 + 320 F STA 0 + 640 L	Perkerasan	i a s k s d b s c c r	Laboratorium Terjadi degrada agregat pada saringan 3/8" da no.4, kadar aspa sebesar 7,844 % serta kepadatan beton aspal sebesar 2,292 gr/cm³. Ferjadi degradasi agregat pada saringan 3/8", sadar aspal ebesar 7,631 %, an kepadatan eton aspal ebesar 2,3037 m³.	kdd sad do kee daa to kee dis set gr/	Kondisi perkerasa jalan dalam keadaan baik dan degradasi agregat serta kepadatan beton aspal yang terjadi masih dalam batas toleransi dari kepadatan yang disyaratkan DPU Bina Marga, sebesar 2,323 gr/cm³. Kondisi perkerasan alam keadaan angat baik dan egradasi agregat erta kepadatan yang rjadi masih alam batas leransi dari padatan yang syaratkan DPU na Marga pesar 2,323 cm³.
10	1	memiliki nilai PCI rata-rata sebesar 69,75 dan termasuk kedalam rating good.	de kad seb dar bet	elum terjadi gradasi agregat, dar aspal pesar 7,935 %, n kepadatan on aspal esar 2,3169	dal bai agr kep aspa	ndisi perkerasan am keadaan k dan degradasi egat serta adatan beton al yang tarjadi sih dalam batas

	disyaratkan DPU
	Bina Marga sebesar 2,323
	sebesar 2,323
	gr/cm ³ .

Sumber: Hasil Pengamatan dan Analisis Data.

Tabel 5.25 Perbandingan Hasil

Pengamatan Visual dengan Hasil Uji Laboratorium Pada Daerah Selatan. Kondisi Perkerasan					
- I chiga	indian y isaas				
Unit Segmen Stasiı	Staainn	Berd	Keterangan		
	Stasiun	Pengamatan	Uji		
		Visual	Laboratorium	Kondisi perkerasan	
12 dan 13	STA 0 + 1280 L	Perkerasan memiliki nilai PCI rata-rata sebesar 75 dan termasuk kedalam rating very good.	Belum terjadi degradasi agregat, kadar aspal sebesar 7,137 %, dan kepadatan betonaspal sbesar 2,3044 gr/cm ³ .	dalam keadaan sangat baik dan degradasi agregat serta kepadatan beton aspal yang terjadi masih dalam batas toleransi dari kepadatan yang disyaratkan DPU Bina Marga sebesar 2,323 gr/cm ³ .	
16	STA 0+1600 R	Perkerasan memiliki nilai PCI sebesar 77,5 dan termasuk kedalam rating very good.	Terjadi degradasi pada saringan 3/8" dan no.4, kadar aspal sebesar 7,844 %, serta kepadatan beton aspal sebesar 2,3144 gr/cm ³ .	Kondisi perkerasan dalam keadaan sempurna dan degradasi agregat serta kepadatan beton aspal yang terjadi masih dalam batas toleransi dari kepadatan yang disyaratkan DPU Bina Marga sebesar 2,323 gr/cm ³ .	
19	STA 0 + 1920 L	Perkerasan memiliki nilai PCI set esar 45 dan termasuk kedalam rating fair.	Terjadi degradasi agregat pada saringan 3/8" dan no.4, kadar aspal sebesar 7,925 %, serta kepadatan beton aspal	Kondisi perkerasan dalam keadaan sangat baik dan degradasi agregat serta kepadatan beton aspal yang terjadi masih dalam	

	sebesar 2,3172 gr/cm ³ .	batas toleransi dari kepadatan yang disyaratkan DPU Bina Marga sebesar 2,323 gr/cm ³ .
--	-------------------------------------	---

Sumber: Hasil Pengamatan dan Analisis Data.

5.2.4 Pemeriksaan CBR Lapaugan

Dari pemeriksaan CBR lapangan dengan menggunakan *Dynamic Cone Penetrometer pada* beberapa titik pada ruas jalan Parangtritis, didapat nilai CBR lapangan sebesar 15 % di kedalaman 20-45 cm pada stasiun 0+1280 dan stasiun 0+1600 R yang diasumsikan terletak di bawah lapisan *base course* perkerasan, sedangkan pada stasiun 0+1920 L, pada kedalaman tersebut didapati keadaan CBR lapangan sebesar 30 %. Jadi keadaan tanah di bawah lapisan perkerasan pada ruas jalan Parangtritis masih dalam kedaan stabil dan belum mempengaruhi keadaan perkerasan di atasnya.

5.3 Evaluasi Jenis-jenis Kerusakan Yang Terjadi Dengan Hasil Penelitian Laboratorium dan Penelitian Di Lapangan

Dari kerusakan-kerusakan yang terjadi pada 22 unit *segmen* pada ruas jalan Parangtritis, ditemui 12 jenis kerusakan dari 16 jenis kerusakan yang ada pada metode PCI. Diantara 12 jenis kerusakan tersebut, terdapat 5 jenis kerusakan yang dominan yang terjadi yaitu *c, Corrugation, Bleeding, Patching, dan Block Cracking.*

Dari 5 jenis kerusakan yang ditemukan di lapangan tersebut bisa disimpulkan bahwa terdapat jenis-jenis kerusakan dengan penyebab kerusakan

kelelehan mpu lagi m va dukung di lapanga

ang terjadi

yang sama. Menurut manual Pemeliharaan jalan Nomor: 03/MN/B/1983 Dirjen Bina Marga, *bleeding* disebabkan oleh pemakaian kadar aspal yang tinggi pada campuran aspal, sedangkan dalam *Principles of Pavement Design* (M.W. Witczak and E.J. Yoder) disebutkan bahwa penyebab kegemukan karena terlalu banyaknya aspal di dalam campuran, aspal yang terlalu peka terhadapa temperatur, dan konsolidasi batuan.

Bleeding yang dominan terjadi pada ruas jalan Parangtritis di daerah utara disebabkan oleh kadar aspal yang tinggi di dalam campuran serta telah terjadi konsolidasi batuan. Beban lalu lintas yang meningkat setiap tahun dengan repetisi beban yang cukup besar menyebabkan antar batuan bergesekan, gesekan ini menyebabkan terjadinya degradar agregat. Batuan yang terdegradasi akan turun sedangkan hasil degradasi bersama-sama dengan agregat halus dan aspal akan naik ke permukaan. Dari pemeriksaan laboratorium seperti tercantum dalam tabel 5.20 persentase degradasi yang terbesar terjadi pada saringan 3/8" dan 4". Karena jumlah persentase yang bertambah tersebut menyebabkan rongga dalam campuran berkurang dan bersama-sama dengan aspal akan naik ke permukaan.

Pada ruas jalan Parangtritis bagian selatan jenis kerusakan yang dominan dijumpai adalah *alligator cracking* yang disebabkan oleh hal yang sama oleh penyebab terjadinya *bleeding*. Penyebab yang lainnnya adalah terjadinya pengausan lapisan HRS. Dari hasil pemeriksaan kualitas aspal didapati nilai penetrasi sebesar 12 dan titik lembek yang terjadi pada suhu 79 °C. Hasil tersebut menunjukkan bahwa aspal yang ada sudah mengeras yang ditandai dengan sudah

berkurangnya sifat kelelehan plastis dari aspal tersebut sehingga menjadi getas dan sudah tidak mampu lagi mengikat agregat pada lapis perkerasan.

Keadaan daya dukung tanah dasar di lapangan berdasarkan tes DCP bahwa kondisi tanah dasar di lapangan masih dalam kondisi baik sehingga bisa dikatakan bahwa kerusakan yang terjadi tidak disebabkan oleh kondisi tanah dasar yang ada di lapangan.