HALAMAN PENGESAHAN TUGAS AKHIR ANALISIS PERBANDINGAN PANJANG ANTRIAN LAPANGAN DENGAN PANJANG ANTRIAN METODE MKJI 1997 PADA SIMPANG BERSINYAL

(STUDI KASUS LENGAN MAYOR PADA PERTIGAAN IAIN YOGYAKARTA)

Nama

: ARDI SUSANTO

No. Mhs : 97 511 241

Nama

: RIKKY MUSLIH WIRANANDA

No. Mhs

: 98 511 171

Telah diperiksa dan disetujui oleh:

Ir, Iskandar S, MT

Dosen Pembimbing I

Tanggal: $(6 - \frac{9}{2003})$

Ir. Subarkah, MT

Dosen Pembimbing II

Tanggal: 08-09-2003

"...Allah meninggikan orang yang beriman di antara kamu dan orang yang berilmu pengetahuan beberapa derajat...."

(QS Mujaadilah|58|: 11)

Tugas Akhir ini Ku

Tugas Akhir ini Ku persembahkan untuk :

Ayahanda tercinta Susilo Ernanto, Ibunda tercinta Farida, Adıkku Diah Fitriasari, Budi Santoso dan Hendri Cahyadi serta Kekasihku Yulia Yamin atas segala perhatiannya selama ini. (Ardi Susanto)

Ibunda tercinta Sri, Ayahanda tercinta Herry,
Adikku Anditha dan Audy
serta seluruh teman – temanku
yang telah banyak membantu dan memberi dorongan.
(Rikky Muslih Wirananda)

KATA PENGANTAR

Assalamu'alaikum Wr. Wb,

Alhamdulillahirobbil'aalamiin, dengan segala Rahmat dan Hidayah Allah SWT serta Shalawat dan Salam kepada junjungan kita Nabi Muhammad saw, sehingga penyusun dapat menyelesaikan Tugas Akhir dengan judul Analisis Perbandingan Panjang Antrian Lapangan Dengan Panjang Antrian Metode MKJI 1997 Pada Simpang Bersinyal (Studi Kasus Lengan Major Pada pertigaan IAIN Yogyakarta) yang diajukan sebagai syarat memperoleh gelar strata – 1 (S1) pada Jurusan Teknik Sipil, Fakultas Teknik Sipil dan Perencanaan, Universitas Islam Indonesia Yogyakarta.

Selama pengerjaan dan penyusunan Tugas Akhir ini, tentunya penyususn tidak lepas dari hambatan dan rintangan. Akan tetapi atas bantuan, petunjuk, bimbingan serta masukan – masukan yang berharga dari berbagai pihak akhirnya berbagai hal tersebut dapat teratasi. Oleh karena itu pada kesempatan ini perkenankanlah penyusun menyampaikan rasa terima kasih kepada:

- 1. Bapak Prof. Ir. H. Widodo, MSCE, Ph.D selaku Dekan Fakultas Teknik Sipil dan Perencanaan Universitas Islam Indonesia Yogyakarta.
- Bapak Ir. H. Munadhir, MS selaku Ketua Jurusan Teknik Sipil Fakultas
 Teknik Sipil dan Perencanaan Universitas Islam Indonesia Yogyakarta.
- 3. Bapak Ir. Iskandar S, MT selaku Dosen Pembimbing I Tugas Akhir
- 4. Bapak Ir. Subarkah, MT selaku Dosen Pembimbing II Tugas Akhir

5. Bapak Ir. H. Corry Ya'cub, MS selaku Dosen Penguji Tugas Akhir

6. Rekan - rekan mahasiswa yang telah banyak membantu dalam penyelesaian

Tugas Akhir ini.

7. Untuk Yudi, Yayan, Iki, Mas Fani, Mas Dian, Abang, Firman terima kasih

atas bantuannya.

8. Seluruh dosen, karyawan dan staf FTSP Universitas Islam Indonesia.

9. Yang tercinta Ayah, Ibu, serta adik-adik kami dan orang - orang yang kami

cintai yang telah memberikan dorongan sehingga laporan ini terwujud.

10. Semua pihak yang telah membantu dan tidak dapat kami sebutkan satu

persatu.

Akhirul kata, semoga semua kebaikan ini mendapat pahala dan balasan yang

setimpal dari Allah SWT dan besar harapan penulis semoga laporan ini dapat

memberikan manfaat baik bagi penulis sendiri khususnya dan bagi semua pihak

pada umumnya.

Wassalaamu'alaikum Wr. Wb.

Yogyakarta, Agustus 2003

Ardi Susanto

ď

Rikky Muslih Wirananda

V

DEFINISI UMUM DAN ISTILAH

KONDISI DAN KARAKTERISTIK LALULINTAS

Unsur Lalulintas

Benda atau pejaln kaki sebagai bagian

dari lalulintas

kend

Kendaraan

Unsur lalulintas diatas roda

LV

Kendaraan Ringan

Kendaraan bermotor ber-as dua dengan empat roda dengan jarak as 2,0-3,0

meter (meliputi : mobil penumpang,

oplet, mikrobis, pick up dan truk kecil

sesuai sistem klasifikasi Bina Marga)

HV Kendaraan Berat

Kendaraan bemotor dengan lebih dari 4

roda (meliputi : bis, truk 2 as, truk 3 as

dan truk kombinasi sesuai sistem

klasifikasi Bina Marga).

Catatan: lihat bab 2-5 dan 6-7 untuk definisi khusus dari tipe kendaraan lainnya yang digunakan pada metode perhitungan jalan perkotaan dan luar kota.

MC	Sepeda Motor	Kendaraan bermotor dengan2 atau 3 as
,		roda (meliputi : sepeda motor dan
		kendaraan roda 3 sesuai sistem
		klasifikasi Bina Marga)
UM	Kendaraan tak	Kendaraan dengan roda yang
	Bermotor	digerakkan oleh orang atau hewan
		(meliputi : sepeda, becak, kereta
		kuda dan kereta dorong sesuai sistem
ì		klasifikasi Bina Marga).
emp	Ekivalensi Mobil	Faktor konversi berbagai jenis
•	Penumpang	kendaraan dibandingkan dengan
		mobil penumpang atau kendaraan
		ringan lainnya sehubungan dengan
		dampaknya pada perilaku lalulintas
		(untuk mobil penumpang dan
		kendaraan ringan lainnya, mp = 1,0)
smp	Satuan Mobil	Satuan arus lalulintas dari berbagai tipe
		kendaraan yang diubah menjadi
		kendaraan ringan (termasuk mobil
		penumpang) dengan menggunakan

faktor emp.

Tipe O	Arus Berangkat	Keberangkatan dengan konflik antar
,	Terlawan	gerak belok kanan dengan lurus/belok
		kiri dari bagian pendekat dengan lampu
		hijau pada fase yang sama.
Tipe P	Arus Berangkat	Keberangkatan tanpa konflik antara
	Terlindung	gerakan lalulintas belok kanan dan
		lurus.
LT	Belok Kiri	Indeks untuk lalulintas yang belok kiri.
LTOR	Belok Kiri Langsung	Indeks untuk lalulintas belok kiri yang
		diijinkan lewat pada saat sinyal merah.
ST	Lurus	Indeks untuk lalulintas yang lurus.
RT	Belok Kanan	Indeks untuk lalulintas yang belok ke
		kanan.
T	Pembelokan	Indeks untuk lalulintas yang berbelok.
PRT	Rasio Belok Kanan	Rasio untuk lalulintas yang belok ke
į	عالاند	kanan.
Q	Arus Lalulintas	Jumlah unsur lalulintas yang melalui
		titik tak terganggu dihulu, pendekat
		persatuan waktu (sebagai contoh :
		kebutuhan lalulintas kendaraan/jam ;
		smp/jam).

0		
Qo	Arus Melawan	Arus lalulintas dalam pendekat yang
		berlawanan yang berangkat dalam fase
		hijau yang sama.
Qrto	Arus Melawan, Belok Kanan	Arus dari lalulintas belok kanan dari
		pendekat yang berlawanan (kend/jam ;
		smp/jam).
S	Arus Jenuh	Besarnya keberangkatan antrian didalam
		suatu pendekat selama kondisi yang
		ditentukan (smp/jam hijau).
So	Arus Jenuh Dasar	Besarnya keberangkatan antrian didalam
		pendekat selama kondisi ideal (smp/jam
		hijau).
DS	Derajat Kejenuhan	Rasio dari arus lalulintas terhadap kapa-
		sitas untuk suatu pendekat = $(Q \times c/S \times g)$.
FR	Rasio Arus	Rasio arus terhadap arus jenuh (Q/S dari
	عالاند	suatu pendekat).
IFR	Rasio Arus Simpang	Jumlah dari rasio arus kritis (=tertinggi)
		untuk semua fase sinyal yang berurutan
		dalam suatu siklus (IFR = $\sum (Q/S)CRIT$).
PR	Rasio Fase	Rasio arus kritis dibagi dengan rasio
		arus simpang (sebagi contoh : untuk fase
		i : PR = FR/iFR).

С	Kapasitas	Arus lalulintas maksimum yang dapat
		dipertahankan (sebagi contoh, untuk
		bagian pendekat j : $Cj = Sj \times gj/c$;
		kend/jam, smp/jam).
F	Faktor Penyesuaian	Faktor koreksi untuk penyesuaian dari
		nilai ideal ke nilai sebenarnya dari suatu
		variabel.
QL	Panjang Antrian	panjang antrian kendaraan dalam suatu
		pendekat (m).
NQ	Antrian	Jumlah kendaraan yang antri dalam
		suatu pendekat (kendaraan; smp).

KONDISI DAN KARAKTERISTIK GEOMETRIK

	Pendekat	Daerah dari suatu lengan persimpangan
		jalan untuk kendaraan mengantri
ì		sebelum keluar melewati garis henti.
WA	Lebar Pendekat	Lebar dari bagian pendekat yang
· ·		diperkeras, diukur dibagian tersempit
		disebelah hulu (meter).
WMASUK	Lebar Masuk	Lebar dari bagian pendekat yang
		diperkeras, diukur pada garis henti
		(meter).

WKELUAR Lebar Keluar

Lebar dari bagian pendekat yang diperkeras, yang digunakan oleh lalulintas buangan setelah melewati

persimpangan jalan (meter).

Lebar dari bagian pendekat yang diperkeras, yang digunakan dalam perhitungan kapasitas (yaitu dengan pertombangan terhadap WA, WMASUK dan WKELUAR dan gerakan lalulintas

Panjang dari segmen jalan (m).

membelok; m).

Kemiringan dari suatu segmen jalan dalam arah perjalanan (+/- %)

W_e Lebar Efektif

L Jarak

GRAD Landai Jalan

KONDISI LINGKUNGAN

COM Komersial

Tata guna lahan komersial (sbg. Contoh: toko, restoran, kantor) dengan jalan masuk langsung bagi pejalan kaki dan kendaraan.

Permukiman	Tata guna lahan tempat tinggal dengan
	jalan masuk langsung bagi pejalan kaki
	dan kendaraan.
^kses Terbatas	Jalan masuk langsung terbatas atau tidak
	ada sama sekali (sbg. contoh karena
	adanya hambatan fisik, jalan samping
	dan sebagainya).
Ukuran Kota	Jumlah penduduk dalam suatu daerah
	perkotaan.
Hambatan Samping	Interaksi antara arus lalulintas dan
	kegiatan di samping jalan yang
	menyebabkan pengurangan terhadap
	arus jenuh di dalam pendekat.
	^kses Terbatas Ukuran Kota

PARAMETER PENGATURAN SINYAL

1	Fase	Bagian dari siklus-siklus dengan lampu
		hijau disediakan bagi kombinasi tertentu
		dari gerakan lalulintas (i = indeks untuk
		nomor fase).
c	Waktu Siklus	Waktu untuk urutan lengkap dari
		indikasi sinyal (sbg. Contoh, diantara

		j j j
		di dalam pendekat yang sama; det).
g	Waktu Hijau	Waktu nyala hijau dalam suatu pendekat
		(det).
GR	Rasio Hijau	Perbandingan antara waktu hijau dan
		waktu siklus dalam suatu pendekat (GR
		= g/c).
ALL RED	Waktu Merah Semua	Waktu di mana sinyal merah menyala
		bersamaan dalam pendekat-pendekat
		yang dilayani oleh dua fase sinyal yang
;		berturutan (det).
AMBER	Waktu Kuning	Waktu di mana lampu kuning
		dinyalakan setelah hijau dalam sebuah
		pendekat (det).
IG	Antar Hijau	Periode kuning + merah semua antara
	שעווענטב	dua fase sinyal yang berurutan (det).
LTI	Waktu Hilang	Jumlah semua periode antar hijau dalam
		siklus yang lengkap (det). Waktu hilang
		dapat juga diperoleh dari beda antara
		waktu siklus dengan jumlah waktu hijau
		dalam semua fase yang berurutan.

dua saat permulaan hijau yang berurutan