
ANALISIS DAN DESAIN SISTEM INFORMASI SCOR MENGGUNAKAN METODE WATERFALL SEBAGAI SARANA UNTUK MENGETAHUI KINERJA RANTAI PASOK DAN BENCHMARKING INDUSTRI KECIL MENENGAH KULIT YOGYAKARTA

TUGAS AKHIR

Diajukan Sebagai Salah Satu Syarat Untuk Memperoleh Gelar Sarjana Strata-1 Pada Jurusan Teknik Industri Fakultas Teknologi Industri

Nama : Refrian Husni Syihabuddin

No. Mahasiswa : 16 522 255

PROGRAM STUDI TEKNIK INDUSTRI FAKULTAS TEKNOLOGI INDUSTRI UNIVERSITAS ISLAM INDONESIA YOGYAKARTA

2020

LEMBAR PERNYATAAN KEASLIAN

ii

LEMBAR PERNYATAAN KEASLIAN

Demi Allah, Saya akui karya ini adalah hasil kerja saya sendiri kecuali nukilan dan ringkasan yang setiap satunya telah saya jelaskan sumbernya. Jika dikemudian hari ternyata terbukti pengakuan saya ini tidak benar dan melanggar peraturan yang sah dalam karya tulis dan hak kekayaan intelektual maka saya bersedia ijazah yang telah saya terima untuk ditarik kembali oleh Universitas Islam Indonesia.

SURAT KETERANGAN SELESAI PENELITIAN

FAKULTAS TEKNIK INDUSTRI

Gedung IOH, Mas Mansur JI, Kaliurang Km 14,5 Yogyakarta Telp. (0274) 895287, 898444 ext 2511; Fax. (0274) 895007

SURAT KETERANGAN PENELITIAN

Nomor: 187/A/Ka.Lab DELSIM/FTI-UII/VII/2020

Assalamu'alaikum Warahmatullahi Wabarakatuh

Kami yang bertanda tangan dibawah ini, menerangkan bahwa mahasiswa dengan keterangan sebagai berikut :

Nama : Refrian Husni Syihabuddin

No. Mhs : 16522255

Dosen Pembimbing : Vembri Noor Helia, S.T., M.T.

Telah selesai melaksanakan penelitian yang berjudul "Analisis dan Desain Sistem Informasi SCOR Menggunakan Metode Waterfall Sebagai Sarana Untuk Mengetahui Kinerja Rantai Pasok Dan Benchmarking Industri Kecil Menengah Kulit Yogyakarta " di Laboratorium Pemodelan dan Simulasi Industri (DELSIM) Prodi Teknik Industri Fakultas Teknologi Industri Universitas Islam Indonesia tercatat mulai tanggal 01 Maret sampai dengan tanggal 01 Mei 2020 Demikian surat keterangan kami keluarkan, agar dapat dipergunakan sebagaimana mestinya.

Wassalamu'alaikum Warahmatullahi Wabarakatuh

<u>Dikeluarkan : di Yogyakarta</u> Tanggal : 04 Agustus 2020 Mengetahui,

Kepala Lab. Pemodelan dan Simulasi Industri

(Vembri Noor Helia, S.T., M.T.)

LEMBAR PENGESAHAN PEMBIMBING

LEMBAR PENGESAHAN PEMBIMBING

ANALISIS DAN DESAIN SISTEM INFORMASI SCOR MENGGUNAKAN METODE WATERFALL SEBAGAI SARANA UNTUK MENGETAHUI KINERJA RANTAI PASOK DAN BENCHMARKING INDUSTRI KECIL MENENGAH KULIT YOGYAKARTA

Diajukan sebagai salah satu syarat untuk memperoleh gelar sarjana S-1 Jurusan Teknik Industri – Fakultas Teknologi Industri

Disusun Oleh :

Refrian Husni Sythabuddin

NIM. 10 522 255

Yogyakarta, 2020

Mengetahui,

Dosen Pembimbing Tugas Akhir

PRODI TEKNIK INDUSTRI FAKULTAS TEKNOLOGI INDUSTRI UNIVERSITAS ISLAM INDONESIA 2020

Vembri Noor Helia, S.T., M.T.

LEMBAR PENGESAHAN PENGUJI

v

LEMBAR PENGESAHAN PENGUJI

ANALISIS DAN DESAIN SISTEM INFORMASI SCOR MENGGUNAKAN METODE WATERFALL SEBAGAI SARANA UNTUK MENGETAHUI KINERJA RANTAI PASOK DAN BENCHMARKING INDUSTRI KECIL MENENGAH KULIT YOGYAKARTA

Oleh

Nama : Refrian Husni Syihabuddin

No. Mahasiswa : 16522255

Telah dipertahankan di depan sidang penguji sebagai salah satu syarat untuk memperoleh gelar Sarjana Strata-i Teknik Industri

Yogyakarta, 2020

Tim Penguji

Vembri Noor Helia, S.T., M.T.

Ketua

Abdullah 'Azzam, S.T., M.T.

Anggota I

Muchamad Sugarindra, S.T., M.T.I.

Anggota II

Mengetahui,

Ketua Program Studi Teknik Industri

Universitas Islam Indonesia

Dr. Faufiq Immawan S.T., M.M.

HALAMAN PERSEMBAHAN

Karya skripsi ini adalah persembahan kecil bagi kedua orang tua saya

Dengan segala macam upaya yang mereka curahkan hanya untuk melihat anaknya

bahagia dan tanpa pamrih.

Terimakasih yang sebesar- besarnya untuk semua yang telah diberikan yang kiranya sulit terbalas.

Dan semoga selalu dalam lindungan Allah SWT.

MOTTO

Dan perumpamaan-perumpamaan ini Kami buat untuk manusia. Dan tidak ada yang bisa memahaminya kecuali mereka yang berilmu.

(Q.S Al-Ankabut: 43)

Siapa yang menempuh jalan untuk mencari ilmu, maka Allah akan mudahkan baginya jalan menuju surga.

(HR. Muslim, no. 2699)

Tidak peduli seberat apapun atau tidak mungkin untuk dicapai, kau tidak boleh menyerah dengan tujuanmu

(Monkey D. Luffy)

KATA PENGANTAR

Assalamu'alaikum Warahmatullahi Wabarakatuh.

Alhamdulillahi Rabbil'aalamiin. Puji dan syukur penulis panjatkan kehadirat Allah Subhanallahu wa Ta'ala atas segala rahmat dan karunia-Nya sehingga Tugas Akhir yang berjudul "Analisis Dan Desain Sistem Informasi Scor Menggunakan Metode Waterfall Sebagai Sarana Untuk Mengetahui Kinerja Rantai Pasok Dan Benchmarking Industri Kecil Menengah Kulit Yogyakarta" dapat terselesaikan dengan baik.

Tugas Akhir ini disusun sebagai salah satu syarat yang harus dipenuhi oleh setiap mahasiswa Jurusan Teknik Industri untuk menyelesaikan studi Strata-1 pada Fakultas Teknologi Industri Universitas Islam Indonesia. Karya sederhana ini tidak akan terselesaikan tanda adanya bantuan dan dukungan dari berbagai pihak. Maka dari itu, dengan segala kerendahan hati, penulis mengucapkan terimakasih kepada:

- 1. Bapak Prof. Dr. Ir Hari Purnomo, M.T. selaku Dekan Fakultas Teknologi Industri Universitas Islam Indonesia Yogyakarta.
- 2. Bapak Muhammad Ridwan Andi Purnomo, S.T., M.Sc., Ph.D. selaku Ketua Jurusan Teknik Industri Fakultas Teknologi Industri Universitas Islam Indonesia Yogyakarta.
- 3. Bapak Dr Taufiq Immawan, S.T., M.M. selaku Ketua Prodi Teknik Industri Fakultas Teknologi Industri Universitas Islam Indonesia Yogyakarta.
- 4. Ibu Vembri Noor Helia, S.T., M.T. selaku dosen pembimbing yang telah memberikan ilmu, bantuan, dukungan dan kesabarannya selama penyusunan Tugas Akhir ini sehingga penulis dapat menyelesaikan karya ini dengan baik.
- 5. Kedua orang tua dan keluarga yang selalu memberikan apa yang terbaik untuk peneliti dalam segala hal yang tak terhitung banyaknya.
- 6. Lestari dwi susanto yang telah memberikan dukungan dan *support* kepada penulis dalam mengerjakan tugas akhir ini.
- 7. Para sahabat-sahabat karib yang selalu menemani dan memberi dukungan selama ini.
- 8. Semua pihak yang tidak dapat penulis sebutkan satu persatu, yang telah membantu baik secara langsung maupun tidak langsung selama melaksanakan studi di Fakultas Teknologi Industri Universitas Islam Indonesia maupun selama proses penyelesaian skripsi ini.

Penulis menyadari bahwa dalam pembuatan Tugas Akhir ini masih terdapat banyak kekurangan. Penulis membutuhkan kritik dan saran demi kesempurnaan laporan. Semoga karya yang masih jauh dari kata sempurna ini bisa berguna dan memberikan manfaat bagi berbagai pihak.

Aamiin ya Rabbal'alamin,

Wassalamu'alaikum Warahmatullahi Wabarakatuh

ABSTRAK

Pertumbuhan IKM di Indonesia meningkat dari tahun ke tahun. Dan sangat berimbas dalam jumlah penciptaan lapangan pekerjaan. Dapat dilihat pada grafik data jumlah perusahaan Industri Mikro dan Kecil di Indonesia tahun 2013 hingga tahun 2015. Berdasarkan penelitian sebelumnya permasalahan yang dihadapi IKM kulit adalah bagaimana cara untuk meningkatkan daya saing dan melakukan evaluasi kinerja rantai pasok. Masih banyak IKM Kulit di Yogyakarta masih menggunakan cara tradisional. Maka perlu adanya evaluasi kinerja rantai pasok apakah proses yang ada dalam IKM Kulit sudah optimal. Dalam penelitian ini akan membuat sistem informasi berbasis web yang digunakan untuk IKM Kulit di Yogyakarta untuk mengukur kinerja rantai pasok dan melakukan bencmarking. Pengukuran kinerja rantai pasok dalam sistem informasi yang dibuat menggunakan prinsip pengukuran SCOR 12.0. sehingga pelaku IKM Kulit di Yogyakarta dapat dengan mudah menggunakan dan mengakses. Dengan adanya sistem informasi ini diharapkan dapat mempermudah pelaku IKM Kulit Yogyakarta mengetahui nilai kinerja rantai pasok sehingga dapat menjadi acuan perbaikan dan dapat meningkatkan daya saing IKM.

Kata Kunci: IKM Kulit, Rantai Pasok, SCOR 12.0, Sistem Informasi, Benchmarking, Website.

DAFTAR ISI

LEMBA	R PERNYATAAN KEASLIAN	i
SURAT	KETERANGAN SELESAI PENELITIAN	ii
LEMBA	R PENGESAHAN PEMBIMBING	iv
LEMBA	R PENGESAHAN PENGUJI	······································
HALAM	AN PERSEMBAHAN	v
MOTTO		vi
KATA P	ENGANTAR	vii
ABSTRA	AK	ix
DAFTA	R ISI	Σ
	R TABEL	
DAFTA	R GAMBAR	xii
BAB I P	ENDAHULUAN	1
1.1	Latar belakang	1
1.2	Rumusan Masalah	
1.3	Batasan Masalah	∠
1.4	Tujuan Penelitian	
1.5	Manfaat Penelitian	
1.6	Sistematika Penulisan	
BAB II I	ANDASAN TEORIPenelitian Terdahulu	
2.1	Penelitian Terdahulu	
2.2	Landasan Teori	
2.2.	71.7	
2.2.		
2.2.	3 Sistem Informasi	22
2.2.	4 Metode Waterfall	23
2.2.	5 Website	24
BAB III	METODE PENELITIAN	26
3.1	Objek Penelitian	26
3.2	Jenis dan Sumber Data	26
3.3	Diagram Alur Penelitian	26
3.4	Pengolahan Data	29
BAB IV	PENGUMPULAN DAN PENGOLAHAN DATA	32
4.1	Requirement Analysis and Definition	32

4.1.1 Pengumpulan Data	32
4.1.2 Identifikasi Kebutuhan Sistem	33
4.1.3 Data Perhitungan SCOR	34
4.2 System and Software Design	34
1.2.1 Perancangan Sistem	34
1.2.1.1 Perancangan Pengguna	34
1.2.1.2 Activity Diagram	35
1.2.2 Perancangan Basisdata	42
1.2.2.1 Struktur Tabel	43
1.2.2.2 Entity Relationship Diagram (ERD)	45
1.2.2.3 Data Flow Diagram (DFD)	46
1.2.3 Perancangan <i>Interface</i>	49
Gambar 4. 21 Nilai Akhir <i>User</i>	
1.3 Implementation and Unit Testing	52
1.3.1 Implementasi Sistem	
1.3.2 Implementasi Basisdata	
1.3.3 Implementasi Interface	54
1.3.4 Pengujian	59
1.4 Integration and System Testing	
BAB V HASIL DAN PEMBAHASAN	
5.1 Sistem Informasi	
BAB VI KESIMPULAN DAN SARAN	
6.1 Kesimpulan	66
6.2 Saran	66
LAMPIRAN	71

DAFTAR TABEL

Tabel 2. 1 State of The Art	8
Tabel 4. 1 Profil IKM Kulit di Yogyakarta	32
Tabel 4. 2 Kebutuhan Input	33
Tabel 4. 3 Kebutuhan Proses	
Tabel 4. 4 Kebutuhan Output	33
Tabel 4. 5 Nilai Kinerja IKM Kulit Sleman Yogyakarta	
Tabel 4. 6 Tabel User	43
Tabel 4. 7 Tabel Sub Kriteria	43
Tabel 4. 8 Tabel Snorm	43
Tabel 4. 9 Tabel Nilai	44
Tabel 4. 10 Tabel Kriteria	
Tabel 4. 11 Tabel Akhir	
Tabel 4. 12 Pengujian Black Box.	59
Tabel 4. 13 Penguijan Ahli.	60
Tabel 5. 1 Hasil Penguijan Black Box.	63
Tabel 5. 2 Hasil Pengujian Sistem Oleh Ahli.	64

DAFTAR GAMBAR

Gambar 1. 1 Jumlah Perusahaan Industri Mikro dan Kecil di Indonesia	2
Gambar 2. 1 Model Supply Chain dan Alirannya.	19
Gambar 2. 2 Proses dari SCOR	
Gambar 2. 3 Cara Kerja Website	25
Gambar 3. 1 Diagram Alur Penelitian	27
Gambar 3. 2 Tahapan Metode Waterfall	
Gambar 4. 1 Activity Diagram Log In	36
Gambar 4. 2 Activity Diagram Sign Up	37
Gambar 4. 3 Activity Diagram Manajemen Profil User.	38
Gambar 4. 4 Activity Diagram Manajemen Nilai Akhir User.	39
Gambar 4. 5 Activity Diagram Manajemen Perhitungan Nilai Akhir User	40
Gambar 4. 6 Activity Diagram Manajemen Profil Nilai Akhir User	41
Gambar 4. 7 Activity Diagram Manajemen Perhitungan Nilai Akhir User	42
Gambar 4. 8 Entity Relationship Diagram.	46
Gambar 4. 9 Relasi	46
Gambar 4. 10 DFD Level 0	47
Gambar 4. 11 DFD Level 1	
Gambar 4. 12 DFD Level 2	48
Gambar 4. 14 DFD Level 3	48
Gambar 4. 15 Login	49
Gambar 4. 16 Home	49
Gambar 4. 17 Daftar User.	
Gambar 4. 18 Nilai Akhir.	50
Gambar 4. 19 Pengisian Data.	51
Gambar 4. 20 Profil Nilai.	
Gambar 4. 21 Nilai Akhir <i>User</i> .	52
Gambar 4. 22 Tools	52
Gambar 4. 23 Skrip Login	53
Gambar 4. 24 Skrip Perhitungan	53
Gambar 4. 25 PhpMyAdmin	54
Gambar 4. 26 Skrip Database	54
Gambar 4. 27 Login	
Gambar 4. 28 Gagal Login	55
Gambar 4. 29 Halaman Utama Admin	
Gambar 4. 30 Halaman Utama User	56
Gambar 4. 31 Daftar User.	56
Gambar 4. 32 Nilai Akhir.	57
Gambar 4. 33 Pengisian Data.	58
Gambar 4. 34 Profil Nilai.	
Gambar 4. 35 Nilai Akhir <i>User</i>	59

BABI

PENDAHULUAN

1.1 Latar belakang

Industri Kecil dan Menengah (IKM) memiliki peran strategis pada perekonomian Indonesia. Beberapa peran IKM di Indonesia antara lain yaitu jumlah IKM di Indonesia sangat besar dan tersebar di setiap sektor ekonomi, memiliki potensi yang besar dalam penyedia lapangan pekerjaan dan menghasilkan produk yang dibutuhkan oleh masyarakat (Muchlas, 2015). Peranan industri kecil dan menengah dalam pertumbuhan perekonomian nasional selaras dengan ditetapkannya undang – undang yang mengatur tentang usaha mikro, kecil dan menengah. Dalam UU nomor 20 tahun 2008 mengatur bahwa dalam usaha mikro, kecil dan menengah harus dan perlu deselenggarakan secara menyeluruh, optimal dan berkesinabungan. Yang diikuti dengan peraturan pemerintah nomor 32 tahun 1998 tentang usaha mikro, kecil dan menengah memiliki kedudukan, potensi dan peran penting dalam pembangunan ekonomi nasional (Ridwan et al., 2014).

Menurut Gati Wibawaningsih selaku Direktur Jendral Industri Kecil Menengah dan Aneka melalui situs resmi Kementrian Perindustrian menyatakan bahwa pada tanggal 30 Desember 2019 jumlah Industri Kecil dan Menengah di Indonesia mencapai 4,4 juta unit usaha atau 99% dari seluruh unit usaha yang ada di Indonesia dan sudah menyerap tenaga kerja sebesar 10,5 juta tenaga kerja atau 65% dari sektor industri. Dan untuk menjawab tantangan di era digitalisasi dalam industri 4.0 sejak tahun .2014 telah melibatkan 190 *startup* melalui ICT Center dan pelatihan IKM. Hal ini didukung dengan penggelontoran dana oleh pemerintah sebesar Rp 144,65 miliar untuk investasi mesin dan peralatan kepada 341 IKM (kemenpern.go.id, 2019)

Pertumbuhan IKM di Indonesia meningkat dari tahun ke tahun. Dan sangat berimbas dalam jumlah penciptaan lapangan pekerjaan. Dapat dilihat pada grafik data jumlah perusahaan Industri Mikro dan Kecil di Indonesia tahun 2013 hingga tahun 2015 sebagai berikut.

Jumlah Perusahaan Industri Mikro dan Kecil di Indonesia, 2013-2015

Gambar 1. 1 Jumlah Perusahaan Industri Mikro dan Kecil di Indonesia.

Sumber: (Badan Pusat Statistik, 2018)

Indonesia sendiri mempunyai beranekaragam IKM yang telah berkembang diberbagai provinsi, salah satunya adalah Daerah Istimewa Yogyakarta. Yogyakarta memiliki IKM yang bervariasi dalam beberapa sektor yang ada, seperti hasil pertanian dan kehutanan, industri logam mulia, kimia, *fashion*, kuliner dan kerajinan. Salah satunya adalah kerajinan berbahan dasar kulit. Yogyakarta juga terkenal dengan adanya sentra kerajinan kulit dimana terdapat beberapa IKM Kulit yang memproduksi berbagai macam kerajinan seperti aksesoris, tas, alas kaki dan masih banyak lagi.

Dari data tersebut menunjukkan bahwa jumlah pelaku IKM semakin meningkat dan bervariasi. Dengan maraknya digitalisasi dalam segala bidang IKM juga dituntut untuk bisa mengikuti arus. Hal ini didukung oleh pemerintah dengan upaya meningkatkan transfer dan akses teknologi untuk mengembangkan pelaku IKM terutama dalam pemanfaattan teknologi dan komunikasi sehingga dapat bersaing dengan pelaku IKM asing (Rustono, 2013).

Berdasarkan penelitian sebelumnya yang dilakukan oleh (Nabl'a, 2019) menjelaskan bahwa pada penelitian selanjutnya dibutuhkan *tools* untuk mengatasi permasalahan yang dihadapi IKM kulit sekarang ini yaitu bagaimana cara untuk meningkatkan daya saing dan evaluasi kinerja rantai pasok dikarenakan masih banyak

IKM Kulit di Yogyakarta masih menggunakan cara tradisional dan bahkan dari pihak IKM masih belum mengetahui ilmu untuk menukur kinerja rantai pasok.

Salah satu *tools* yang bisa digunakan yaitu sistem informasi, menurut (Jogiyanto, 2005) sistem informasi merupakan kompulan dari komponen- komponen yang saling berinteraksi untuk memenuhi kebutuhan pengolahan data dan informasi yang berguna bagi pengambil keputusan.

Di era digitalisasi sekarang ini tidak terlepas dengan adanya internet yang semakin menyebar. Penggunaan internet meningkat dengan pesat terutama di Indonesia. Menurut (Jayani, 2020) pengguna internet di Indonesia mencapai 175,3 juta atau sekitar 64% dari total penduduk di Indonesia. Dengan tingginya animo pengguna internet di Indonesia penggunaan website sebagai wadah untuk sistem informasi yang dibuat sangatlah tepat. Sehingga sistem informasi dapat mudah digunakan dan diakses. Karena penggunaan internet tak terlepas dengan adanya website.

Dalam penelitian yang dilakukan akan melanjutkan penelitian oleh (Nabl'a, 2019), yaitu dengan membuat sistem informasi berbasis web yang digunakan untuk IKM Kulit di Yogyakarta untuk mengukur kinerja rantai pasok dan melakukan *bencmarking*. Metode yang digunakan yaitu *waterfall*, dimana menurut (Rosa & Shalabuddin, 2013) metode *waterfall* adalah salah satu metode dasar pengembang perangkat lunak dimana dalam penerapanya metode ini menggunakan pendekatan sekuential atau berurutan sehingga dapat meminimalisir kesalahan.

Pengukuran kinerja rantai pasok dalam sistem informasi yang dibuat menggunakan prinsip pengukuran SCOR 12.0. sehingga pelaku IKM Kulit di Yogyakarta dapat dengan mudah menggunakan dan mengakses. Adapun penelitian dilakukan pada IKM Kulit di Yogyakarta yaitu CV. Kay Nusa Bihaka, Kingswood, M. A. R. S Genuine Leather, Mario Rubinni, Fanri Collecction, Daniela Art, IKM Brill Leather, IKM Fatimah Handcraft, Genkzhi Leather, IKM Yanto Kulit, dan IKM Kulit Pak Gandoeng. Dengan adanya sistem informasi ini diharapkan dapat mempermudah pelaku IKM Kulit Yogyakarta mengetahui nilai kinerja rantai pasok sehingga dapat menjadi acuan perbaikan dan dapat meningkatkan daya saing IKM.

.

1.2 Rumusan Masalah

Pengukuran kinerja rantai pasok sangat dibutuhkan oleh IKM untuk melakukan evaluasi dan perbaikan agar meningkatkan daya saing. Dengan memadukan industri 4.0 peneliti ingin membuat sistem informasi berbasis website untuk mengukur kinerja rantai pasok IKM Kulit di Yogyakarta yang bisa dengan mudah diakses semua pelaku IKM. Jadi untuk pertanyaan penelitiannya adalah, Bagaimana perancangan sistem informasi pengukuran kinerja rantai pasok dan benchmarking berbasis website untuk membantu IKM Kulit di Yogyakarta?.

1.3 Batasan Masalah

Batasan masalah dalam penelitian ini adalah:

- a. Menggunakan model SCOR 12.0 dalam melakukan pengukuran kinerja rantai pasok dan hanya berfokus pada komponen *performance* dan *processes*.
- b. Penyusunan *Key Performance Indicator* (KPI) yang terdapat dalam SCOR 12.0 berdasarkan data historis IKM Kulit di Yogyakarta.
- c. Data historis yang digunakan adalah data historis dari IKM Kulit CV. Kay Nusa Bihaka, Kingswood, M. A. R. S Genuine Leather, Mario Rubinni, Fanri Collection, Daniela Art, IKM Brill Leather, IKM Fatimah Handcraft, Genkzhi Leather, IKM Yanto Kulit, dan IKM Kulit Pak Gandoeng.
- d. Pada pengisian data kriteria terbatas pada 3 periode saja
- e. Tidak sampai ketahap pengujian usabilitas..

1.4 Tujuan Penelitian

Berdasarkan rumusan masalah diatas tujuan dari pelaksanaan penelitian ini adalah merancang sistem informasi berbasis web untuk memudahkan dalam pengukuran kinerja rantai pasok dan *benchmarking* IKM Kulit Yogyakarrta dengan konsep model SCOR 12.0.

1.5 Manfaat Penelitian

Penelitian yang akan dilakukan diharapkan dapat memberikan manfaat:

a. Bagi Peneliti

- 1. Dapat menerapkan dan mengembangkan ilmu secara langsung yang telah didapatkan dibangku perkuliahan tentang Manajemen Rantai Pasok.
- 2. Dapat menyelesasikan salah satu syarat wajib dalam menyelesaikan studi strata 1 Universitas Islam Indonesia..

b. Bagi Perusahaan

- Perusahaan dapat mengukur kinerja rantai pasok dan mengetahui kondisi perusahaan dengan secara mudah dalam mengakses dengan bantuan sistem informasi yang dibuat..
- 2. Perusahaan dapat melakukan evaluasi perbaikan dalam meningkatkan kinerja rantai pasoknya.

1.6 Sistematika Penulisan

Sistematika penulisan yang disusun dalam penelitian ini agar lebih terstruktur dan tersusun dengan baik dalam pembuatan laporan penelitian adalah sebagai berikut:

BAB I PENDAHULUAN

Pada bab ini akan diuraikan menjadi beberapa sub bab yang membahas tentang latar belakang permasalahan yang akan diangkat dalam penelitian, perumusan masalah, tujuan penelitian, batasan penelitian, manfaat penelitian serta sistematika penelitian.

BAB II KAJIAN LITERATUR

Kajian literatur yang terdapat pada bab ini memuat tentang konsep dan prinsip dasar yang digunakan untuk memecahkan permasalahan dalam penelitian. Selain itu, juga berisi tentang uraian dari hasil penelitian-penelitian sebelumnya yang berhubungan dengan penelitian yang akan dilakukan.

BAB III METODOLOGI PENELITIAN

Metodologi penelitian mengandung uraian tentang objek penelitian, diagram alur penelitian, teknik yang digunakan, data-data yang diperlukan dalam penelitian serta analisis yang digunakan untuk penelitian.

BAB IV PENGUMPULAN DAN PENGOLAHAN DATA

Pada bab ini berisi tentang paparan data-data selama penelitian dan bentuk analisis data yang disajikan baik dalam bentuk grafik maupun tabel. Selain itu, bab ini merupakan dasar untuk pembahasan hasil yang akan dijabarkan pada bab selanjutnya.

BAB V PEMBAHASAN

Pada bab ini terdapat pembahasan kritis tentang hasil yang diperoleh dalam penelitian dengan melihat tujuan penelitian sebagai pilar utama sehingga menghasilkan kesimpulan dan saran yang dapat digunakan sebagai acuan dalam penyusunan penelitian selanjutnya.

BAB VI PENUTUP

Tahapan terakhir dalam penelitian ini berisi kesimpulan yang merupakan poin-poin penting dari hasil pembahasan serta pemberian saran untuk penelitian selanjutnya yang masih membutuhkan pengkajian dari permasalahan yang ditemukan selama penelitian.

DAFTAR PUSTAKA LAMPIRAN

BABII

LANDASAN TEORI

2.1 Penelitian Terdahulu

Dalam melakukan pengukuran kinerja rantai pasok suatu perusahaan dapat digunakan metode SCOR untuk mengetahui besarnya nilai kinerjanya. Model SCOR adalah model referensi proses yang digunakan untuk menjadi standar industri guna memungkinkan manajemen rantai pasok beregenerasi dan berkelanjutan. Penelitian yang pertama dilakukan oleh (Saputro, 2019), hanya menggunakan metode SCOR 12.0 yang digunakan untuk menghitung nilai kinerja rantai pasok dari IKM Kulit Danila Art. Dengan menggunakan atribut poroses plan, source, make, deliver, return, dan enable. Memiliki kesamaan pada penelitian yang dilakukan oleh (Gumelar, 2019), menggunakan metode SCOR 12.0 dalam mengukur nilai kinerja rantai pasoknya. Hanya berbeda pada objek penelitian yaitu pada IKM Kulit Fanri Collection. Sedangkan pada penelitian yang dilakukan oleh (Budiman, 2019), juga menggunakan metode SCOR 12.0 dalam menghitung nilai kinerja rantai pasoknya. Namun pada penelitian ini berfokus atau mengunakan pendekatan atribut proses enable dalam proses benchmarking-nya. Penelitian serupa juga dilakukan oleh (Alhadi, 2019), dalam penelitian ini sama halnya dengan penelitian sebelumnya yakni menggunakan metode SCOR 12.0 dalam mengukur nilai kinerja ranta pasoknya tetapi yang menjadi fokus adalah atribut proses return.

Penggunaan dashboard dapat membantu menyajikan informasi dan data yang digunakan untuk mengambil keputusan dengan basis website dapat menambah kemudahan dalam penggunaan secara real time. Pada penelitian yang dilakukan oleh (Hanafi et al., 2019), menggunakan konsep dashboard berbasis webite untuk memonitori layanan perpesanan instan. Dengan adanya dashboard berbasis website ini petugas pemantauan akan mendapatkan mendapatkan pemberitahuan apabila terjadi masalah atau kesalahan yang

sedang terjadi dapat segera diketahui dan dapat mengurangi *downtime*. Penelitian serupa juga dilakukan oleh (Saputro et al., 2012), sama menggunakan *dashboard* berbasis *website* namun digunakan untuk mengevaluasi keadaan internal dan penilaian akreditasi BAN-PT pada perguruan tingg. Melalui *dashboard* yang dibuat pihak internal dapat mengetahui posisi penilaian dan dapat memperbaiki masalah yang ada..

Dalam penelitian yang dilakukan, peneliti menggunakan metode SCOR 12.0 untuk acuan perhiungan nilai kinerja rantai pasok yang akan diaplikasikan kedalam *dashboard* berbasis *website*. Sehingga penelitian ini berbeda dengan penelitian terdahulu dan penelitian pertama pembuatan *dashboard* berbasis *website* sebagai sarana menghitung nilai kinerja rantai pasok dan *benchmarking* IKM Kulit di Yogyakarta. Dan berikut adalah penelitian . terdahulu yang digunakan peneliti untuk melakukan perbandingan juga sebagai referensi dalam menyelesaikan permasalahan yang diteliti. Berikut merupakan hasil dari penelitian – penelitain sebelumnya yang dapat digunakan untuk perbandingan :

Tabel 2. 1 State of The Art

No	Nama Penulis	Judul Me	tode Hasil
1	Fergiawan	Aplikasi E- SDLC	, Dengan pembuatan
	Listianto, Fauzi,	Cimmerce Water	fall dashboard berbasis web dan
	Rita Irviani,	Berbasis WEB	mobile aplikasi konveksi
	Kasmi, Garaika	Mobile pada	seragam drumband dapat
	(2017)	Industri	memudahkan masyarakat dan
		Konveksi	pemilik konveksi. Karena
		Seragam	kemudahan dalam mengakses
		Drumband di	untuk melakukan pemesanan
		Pekon Klaten	dan dapat memperluas
		Gadingrejo	lingkup pemasaran.
		Kabupaten	
		Pringsewu	

No	Nama Penulis	Judul	Metode	Hasil
2	Anderson	Model	User Centered	Membuat Dashboard
	Bernadus	Pengembangan	Design	untuk menyajikan
	Oktavianus	Dashboard		KPI sesuai kebutuhan
	Padita1,	Berbasis User		dan mudah dipahami
	Hanung Adi	Centered Design		pengguna.
	Nugroho,			
	Paulus Insap			
	Santosa			
	(2015)			
3	Dini	Informational	Wireless Sensor	Aplikasi monitoring
	Nurmalasari,	Dashboard untuk	Network Dan	berbasis web yang
	Retro Tri	Monitoring Sistem	Informational	digunakan untuk
	Wahyuni,	Drainase secara	Dashboard	memberikan
	Yusmar	Real-Time		informasi dan data
	Palapa			mengenai kondisi
	(2015)			drainase secara
		15	N N	efektif dan efisien.
		12-3111	4534111LS611	
4	Agustina	Sistem Informasi	Unified Modelling	Pembuatan sistem
	Simangunsong	Pengarsipan	Language	pengarsipan
	(2018)	Dokumen Berbasis		dokumen berbasis
		Web		web pada perumnas
				regional I Medan.
				Dengan sistem ini
				dapat mempermudah
				pekerjaan dan dapat
				diakses kapanpun dan
				dimanapun.

No	Nama Penulis	Judul	Metode	Hasil
5	Untung	Monitoring	Web Based	Dengan adanya
	Rahardja,	Kinerja User	Accounting	dashboard pada
	Qurotul Aini,	Akuntan	Online	sistem Go+ 30 dapat
	Alfiah	Menggunakan		mempermudah
	Khoirunisa	Dashboard		mahasiswa dalam
	(2018)	pada Web Based		memperoleh
		Accounting Online		informasi dan data,
		di Perguruan		serta dapat
		Tinggi		melakukan
				pembayaran tanpa
		151		harus kekasir.
6	Andre Parvian	Pembuatan	<i>Pearls</i> dan	Hasil penelitian ini
	Aristio,	Dashboard	Dashboard	menunjukkan bahwa
	Radityo	Penilaian Rasio		penggunaan
	Prasetyo	Keuangan dengan		dashboard yang di
	Wibowo,	Metode Pearls		integrasikan dengan
	Nafida	pada Koperasi	N	metode Pearls dapat
	Fikriyah	Berbasis Web		membantu koperasi
	(2015)	12-2143	ASSETTED SHORT	dalam mengukur
				kinerja dan akurasi
				laporan.
7	Henderi, Sri	Dashboard	Data URL	Aplikasi dashboard
	Rahayu,	Information	(uniform resource	information system
	Bangun Mukti	System	located)	yang dibuat dapat
	Prasetyo	Berbasis Key		menampilkan
		Performance		informasi dan data
		Indicator		capaian KPI yang
				sudah ditetapkan
				rumahsakit.

No	Nama Penulis	Judul	Metode	Hasil
8	Inggitana	Pengukuran	SCOR, OMAX dan	Terdapat 9 KPI yang
	Widya	Kinerja Supply	AHP	tidak masuk kategori
	Kumala Putri	Chain		hijau. Terdapat 22
	dan Dadang	Management		KPI yang valid,
	Surjasa	Menggunakan		terbagi menjadi 3 KPI
	(2018)	Metode SCOR		plan, 7 KPI source, 5
		(Supply Chain		KPI make, 4 KPI
		Operation		deliver, dan 3 KPI
		Reference), AHP		retrun. Dan didapat
		(Analytical		hasil pengukuran
		Hierarchy		kinerja rantai pasok
		Process) dan	-AM	perfomansi terendah
		OMAX (Objective		berada pada bulan
		Matrix) di PT. X		Desember 2017
				dengan index total
				sebesar 3,5934.
9	Shilfarina	Analisis Hasil	SCOR 12.0	Hasil pengukuran
	Fuaedya	Pengukuran		kinerja rantai pasok
	Nab'la (2019)	Kinerja Rantai	resemble at	pada IKM Fatimah
		Pasok Pada		Handycraft memiliki
		Industri Kulit		nilai secara
		Menggunakan		keseluruhan sebesar
		Metode Supply		79,98. Dan usulan
		Chain Operations		yang diberikan
		Reference (Scor)		adalah membuat
		12.0		laporan terkait
		(Studi Kasus: Ikm		penjualan,
		Fatimah		pembelian,
		Handycraft)		pendapatan, dan pengeluaran.

No	Nama Penulis	Judul	Metode	Hasil
10	Dimas Aji	Analisis Kinerja	SCOR 12.0	Dari hasil penilaian
	Saputro	Supply Chain		kinerja supply chain
	(2019)	(Rantai Pasok)		IKM Daniela Art
		Pada Proses Make		dengan atribut proses
		Menggunakan		didapatkan nilai plan
		Metode Supply		sebesar 10, source
		Chain Operations		sebesar 51,62, make
		Reference (Scor)		sebesar 43,51, deliver
		12.0 (Studi		sebesar 98,04, return
		Kasus:Ikm Kulit		sebesar 0, dan enable
		Daniela Art)		sebesar 51,59. Total
		6 151	-AM	keseluruhan nilai
				kinerja supply chain
				pada IKM Daniela
		UNIVERSI		Art adalah sebesar
				43,31 dan
		14	(n	dikategorikan
				sebagai marginal atau
		14	100000000000000000000000000000000000000	masih dibawah rata-
				rata.
11	Muhammad	Analisis Nilai	SCOR 12.0	Pengukuran kinerja
	Arief	Kinerja Rantai		rantai pasok yang
	Budiman	Pasok		dilakukan di IKM
	(2019)	Menggunakan		Brill Leather
		Metode Supply		mendapatkan skor
		Chain Operations		akhir perhitungan
		Reference (Scor)		sebesar 60,52 yang
		12.0 Dengan		termasuk ke dalam
		Pendekatan Pada		kategori average.
		Atribut Proses		Dimana rincian nilai
		Enable (Studi		dari setiap atribut

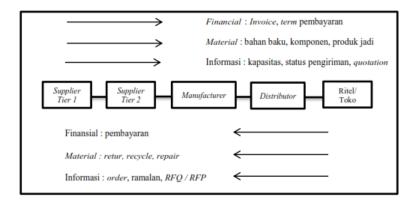
No	Nama Penulis	Judul	Metode	Hasil
		Kasus : Ikm		proses antara lain
		Kerajinan Kulit		sebagai berikut: nilai
		Brill Leather)		atribut proses plan
				sebesar 36,67, nilai
				atribut proses source
				sebesar 50,51, nilai
				atribut proses make
				sebesar 46,39, nilai
				atribut proses deliver
				sebesar 100, nilai
				atribut proses return
		6 131	-AM	sebesar 100, dan nilai
				atribut proses enable
				sebesar 29,55.
12	Tio Akbar	Analisis Kinerja	SCOR 12.0	Penelitian ini
	Gumelar	Supply Chain Pada	U	dilakukan dengan
	(2019)	Proses Return		pendekataan
		Menggunakan	1455006681	processes dan
		Metode Supply		performance. Atribut
		Chain Operation		processes meliputi
		Refrence (Scor)		plan, source, make,
		12.0 (Studi		deliver, return, dan
		Kasus:Ikm Kulit		enable. Sedangkan
		Fanri Collection)		atribut performance
				meliputi reliability,
				responsiveness, cost,
				dan asset
				management.
				Perhitungan terhadap
				kinerja rantai pasok

No	Nama Penulis	Judul	Metode	Hasil
				menggunakan
				metode
				SCOR Reference
				model 12.0 didapati
				skor keseluruhan
				yang berhasil
				dihitung
				pada seluruh proses
				IKM Fanri Collection
				mulai dari plan,
				source, make, deliver,
		6	LAM A	return, dan enable
				adalah 5,1, 8,776049,
				12,70107, 16,71728,
		a e		0, dan 13,86161.
13	Rifqi Alhadi	Analisis Kinerja	SCOR 12.0	Dari perhitungan
		Rantai Pasok		terhadap kinerja
		Industri		rantai pasok
		Pengolahan Kulit	14531116561	menggunakan
		Pada Proses		metode SCOR
		Return		Reference Model
		Menggunakan		12.0 dapat diketahui
		Metode Supply		total skor yang
		Chain Operations		dimiliki IKM Pak
		Reference 12.0		Gandoeng. Untuk
		(Studi Kasus: Ikm		nilai process secara
		Pengrajin Kulit		berurutan setiap
		Gandung)		proses nya mulai dari
				Plan, Source, Make,
				Deliver, Return, dan
				Enable adalah
				sebesar sebesar 6,99;

No	Nama Penulis	Judul	Metode	Hasil
				4,55; 8,58; 16,75;
				7,69; 3,96. Untuk
				penilaian proses
				secara keseluruhan
				pada IKM Pak
				Gandoeng memiliki
				nilai sebesar 48,87
				dan dikategorikan
				"Marginal" atau
				dibawah rata rata
		ISL		berdasarkan indeks
		(0)	-41	performansi standar.
14	E.N. Ntabe, L.	A systematic	SCOR	Terdapat 5 proses
	LeBel, A.D.	literature review of		SCOR, 5 atribut
	Munson, L.A.	the supply chain		kinerja, 3 jenis proses
	Santa-Eulalia	operations		dan 4 tingkat metrik
	(2015)	reference (SCOR)	N W	yang diterapkan oleh
		model application		penulis. Dengan
		with special	LESS IN SOFT	strategi rantai
		attention to		pasokan, efektivitas
		environmental		strategi pada
		issues		komponen
				operasional rantai.
				Tiga strategi rantai
				pasokan: Make-To-
				Stock (MTS), Make-
				To-Order (MTO) dan
				Engineer-To-Order
				(ETO) diterapkan.
				48,9% dari makalah
				yang ditangani
				dengan MTS, 55,6%

dengan MTO dan 31,1% dengan ETO strategi. 15 Francisco An adaptive SCOR, Fuzzi Hasil dari penelitian ini adalah evaluasi Lima-Junior, fuzzy inference kinerja berdasarkan Luiz Cesar system to supply kombinasi antara Ribeiro chain performance metrik tingkat 1 dan 2 Carpinetti evaluation based (2019) on SCOR metrics. SCOR dengan model neuro-fuzzy ANFIS. Secara total, 56 topologi dinilai menggunakan metode cross-validasi sub-sampling acak
SCOR, Fuzzi Hasil dari penelitian Rodrigues network-based ini adalah evaluasi Lima-Junior, fuzzy inference Luiz Cesar system to supply kombinasi antara Ribeiro chain performance metrik tingkat 1 dan 2 Carpinetti evaluation based (2019) on SCOR metrics. Secara total, 56 topologi dinilai menggunakan metode cross-validasi sub-sampling acak
Rodrigues network-based ini adalah evaluasi Lima-Junior, fuzzy inference kinerja berdasarkan Luiz Cesar system to supply kombinasi antara Ribeiro chain performance metrik tingkat 1 dan 2 Carpinetti evaluation based SCOR dengan model (2019) on SCOR metrics. Secara total, 56 topologi dinilai menggunakan metode cross-validasi sub-sampling acak
Rodrigues network-based ini adalah evaluasi Lima-Junior, fuzzy inference kinerja berdasarkan Luiz Cesar system to supply kombinasi antara Ribeiro chain performance metrik tingkat 1 dan 2 Carpinetti evaluation based SCOR dengan model (2019) on SCOR metrics. secara total, 56 topologi dinilai menggunakan metode cross-validasi sub-sampling acak
Lima-Junior, fuzzy inference kinerja berdasarkan Luiz Cesar system to supply kombinasi antara Ribeiro chain performance metrik tingkat 1 dan 2 Carpinetti evaluation based SCOR dengan model (2019) on SCOR metrics. neuro-fuzzy ANFIS. Secara total, 56 topologi dinilai menggunakan metode cross-validasi sub-sampling acak
Luiz Cesar system to supply Ribeiro chain performance metrik tingkat 1 dan 2 Carpinetti evaluation based SCOR dengan model (2019) on SCOR metrics. neuro-fuzzy ANFIS. Secara total, 56 topologi dinilai menggunakan metode cross-validasi sub-sampling acak
Ribeiro chain performance metrik tingkat 1 dan 2 Carpinetti evaluation based SCOR dengan model (2019) on SCOR metrics. neuro-fuzzy ANFIS. Secara total, 56 topologi dinilai menggunakan metode cross-validasi sub-sampling acak
Carpinetti evaluation based SCOR dengan model (2019) on SCOR metrics. neuro-fuzzy ANFIS. Secara total, 56 topologi dinilai menggunakan metode cross-validasi sub-sampling acak
(2019) on SCOR metrics. Secara total, 56 topologi dinilai menggunakan metode cross-validasi sub-sampling acak
Secara total, 56 topologi dinilai menggunakan metode cross-validasi sub-sampling acak
topologi dinilai menggunakan metode cross-validasi sub-sampling acak
menggunakan metode cross-validasi sub-sampling acak
metode cross-validasi sub-sampling acak
sub-sampling acak
untuk memilih yang
paling tepat untuk
Settle Model III (1 Is)
Nilai MSE yang
diperoleh oleh
masing-masing
topologi selama
proses pembelajaran
menunjukkan bahwa model ANFIS 1
mencapai akurasi
prediksi yang lebih tinggi (1,9203 × 10
)16), sementara
model tersebut
mencapai terendah
$(3,6508 \times 10-7).$

No	Nama Penulis	Judul	Metode	Hasil
				Akurasi terendah dari
				model 6 mungkin
				karena fakta bahwa ia
				memodelkan
				nonlinier
16	Jaime A.	Analytical	SCOR, AHP	Hasil yang
	Palma,	hierarchy process		disediakan dalam
	Mendoza	and SCOR model		penelitian ini AHP
	(2014)	to support supply		melampaui pemilihan
		chain re-design		proses target. Dari
		101		analisis AHP,
		6 151	-AM	dimungkinkan untuk
				menghitung
				peringkat prioritas
				untuk kriteria metrik
		UNIVERSI		yang digunakan;
		15	N	dengan demikian,
				membuatnya
		15 1 till	12:20:04:20	mungkin untuk
				mengidentifikasi
				metrik SCOR paling
				penting dan terkait
				dengan target untuk
				desain ulang.
17.	Zulhendry	Sistem Penilaian	Waterfall	Dari hasil penelitian
	Muhammad	Kompetensi		didapatkan bahwa
	Salman (2019)	Keahlian Digital		sistem sudah sesuai
		Forensik		dengan fungsional
				dan memberikan
				hasil yang diharapkan
				dalam melakukan


No Nama Penulis	Judul	Metode	Hasil
			penilaian kompetensi
			keahlian forensik.

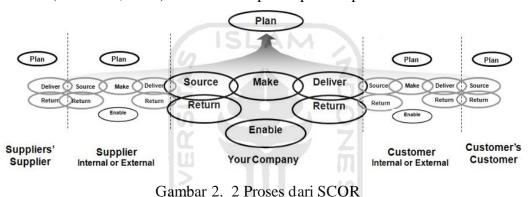
Dari studi literatur yang sudah dilakukan dapat ditarik kesimpulan bahwa penelitian yang dilakukan adalah penelitian baru yang belum ada sebelumnya. Penelitian yang dilakukan membuat model SCOR yang dapat diakses oleh semua orang dengan mudah sehingga dapat membantu pelaku IKM dalam mengetahui nilai kinerja rantai pasoknya. Adapun kesamaan hanya pada metode yang digunakan dan juga menegasan bahwa penelitian ini adalah pembaharuan dari penelitian- penelitian sebelumnya.

2.2 Landasan Teori

2.2.1 Supply Chain Management

Terdapat perbedaan antara *supply chain* dengan *supply chain management*. Menurut (Lu, 2011) *supply chain* merupakan kelompok atau jaringan perusahaan – perusahaan yang saling terkait satu sama lain dalam menambahkan nilai pada aliran dari mulai input atau sumber daya yang digunakan hingga *output* perusahaan atau produk yang dibuat sampai ke konsumen akhir. Selanjutnya menurut (Pujawan & Mahendrawathi , 2017) *supply chain* merupakan jaringan yang dibentuk oleh perusahaan – perusahaan dengan tujuan untuk menciptakan *value* dalam pembuatan produk hingga produk sampai ke tangan konsumen akhir. Dari mulai *supplier* bahan baku, pabrik, distributor, ritel, dan perusahaan penyedia jasa pengiriman atau logistik. Jadi inti dari *supply chain* adalah jaringan antar perusahaan yang tercipta karena sama- sama memiliki tujuan dan berperan dalam penambahan *value* terhadap produk yang dibuat hingga produk sampai ke tangan konsumen akhir. Untuk dapat lebih memahami *supply chain* berikut adalah model *supply chain* dan alirannya.

Gambar 2. 1 Model Supply Chain dan Alirannya.


Sumber: (Pujawan I. N., 2010)

Sedangkan untuk supply chain management atau yang dikenal dengan menejemen rantai pasok menurut (Heizer & Render, 2011) supply chain management merupakan sekumpulan aktivitas yang saling berintegrasi dalam mendapatkan bahan, material dan jasa, kemudian mengubahnya menjadi produk setengah jadi ataupun produk jadi sampai ke konsumen. Menurut (Darojat & Yunitasari, 2017). Supply chain management adalah terintegrasinya suatu organisasi atau kelompok dalam upaya bekerja sama untuk menghasilkan bahan baku, dari bahan baku diubah menjadi produk setengah jadi ataupun produk jadi setelah itu akan dikirimkan kepada konsumen. Supply chain management tidak hanya berfokus pada masalah internal perusahaan saja, tetapi juga supply chain management dapat mencakup masalah eksternal perusahaan seperti hubungan antar perusahaan dan hubungan dengan partner. Dimana setiap perusahaan memiliki tujuan yang sama yaitu untuk memuaskan kebutuhan konsumen. Jadi perusahaan- perusahaan harus bekerja sama agar produk dapat dierima oleh pelanggan (Pujawan & Mahendrawathi, 2017).

Jadi dapat definisikan secara singkat *supply chain managemet* merupakan metode yang digunakan untuk mengelola material, informasi dan keuangan oleh kelompok atau perusahaan terkait yang saling terintegrasi dari mulai pembuatan produk hingga produk bisa sampai ke konsumen. Dengan tujuan untuk dapat mendapatkan keunggulan dari segi kualitas dan biaya serta dapat membuat kegiatan yang dilakukan menjadi efisien dan efektif.

2.2.2 Supply Chain Operating Reference (SCOR 12.0)

Menurut penelitian (Liputra et al., 2018) dalam membuat manajemen kinerja yang efektif dan efisien perlu adanya suatu sistem pengukuran yang dapat memberikan evaluasi kinerja rantai pasok secara holistik. Dan salah satu model yang dapat digunakan untuk mengukur kinerja rantai pasok adalah model *supply chain operation reference* (SCOR). Metode SCOR (*Supply Chain Operation Reference*) digunakan untuk mengukur kinerja rantai pasok karena dalam pengukurannya metode SCOR menggunakan data- data yang ada dan dapat mengidentifikasi perbaikan apa yang perlu dilakukan sehingga bersifat objektif. Namun dalam metode ini terdapat kekurangan dalam implementasinya karena membutuhkan usaha yang tidak sedikit dalam mendefinisikan proses bisnis dalam suatu perusahaan (Ulfa et al., 2016). Berikut merupakan proses- proses dari model SCOR.

Gambar 2. 2 Proses dan SCO

Sumber: (APICS.,2017)

Dalam SCOR terdapat proses- proses yang harus dilakukan atau dijalankan oleh rantai pasok agar tujuan dapat tercapai dan terpenuhi sehingga sistem tersebut dapat berjalan (Paul, 2014):

1. Plan

Proses awal yang dilakukan adalah proses *plan*, proses *plan* memiliki fungsi untuk menyeimbangkan permintaan dengan sumberdaya yang tersedia. Terdapat proses perencanaan kebutuhan, perencanaan pemasaran, dan perencanaan produksi.

2. Source

Pada proses *source* terdapat proses pemilihan *supplier* dan pengadaan bahan baku. Dari proses pemesanan, pengiriman, dan penerimaan bahan baku atau jasa dengan mempertimbangkan kualitas yang diberikan.

3. Make

Dalam proses *make* terdapat penambahan *value* dalam proses pembuatan produk. Bahan baku yang sudah tersedia dirubah atau diproses menjadi bahan jadi ataupun produk jadi. Proses ini berdasar akan permintaan konsumen yang ada.

4. Delivery

Proses *delivery* merupakan proses pengelolaan pesanan dari konsumen atau pemakai produk. Proses ini terdapat aktivitas- aktivitas pemenuhan pesanan seperti transportasi dan pendistribusian produk ke kinsmen.

5. Return

Proses *return* merupakan proses pengembalian barang atau produk oleh konsumen karena tidak sesuainya produk yang diterima dengan apa yang diinginkan seperti terdapat kerusakan atau cacat pada produk dan proses perbaikan produk.

6. Enable

Proses *enable* merupakan proses pelaksanaan, penerapan, pemeliharaan, dan perencanaan rantai pasok dalam penentuan target kinerja dan dalam mengidentifikasi permasalahan serta perbaikan pada permasalahan agar tujuan rantai pasok tercapai.

Dalam pengukuran model SCOR terdapat atribut kinerja yang digunakan. Menurut (Pujawan & Mahendrawathi , 2017) terdapat 5 atribut kinerja yang digunakan dalam melakukan evaluasi rantai pasuk.

1. Reliability

Pada aspek ini mengukur kemampuan dan kesesuaian produk dengan permintaan konsumen. Seperti ketepatan waktu, kuantitas dan kualitas dari produk.

2. Responsiveness

Kecepatan dalam respon yang diberikan dalam pemenuhan pesanan dari konsumen.

3. Agility

Pada aspek ini mengukur kemampuan dalam merespon pesanan yang berubah tidak sesuai perencanaan.

4. Cost

Menyatakan biaya yang dikeluarkan dalam melakukan proses. Seperti biaya material, biaya tenaga kerja, biaya transportasi dan biaya penyimpanan yang diukur mengunakan *cost of goods sold*.

5. Asset Management

Pada aspek ini mengukur tingkat kemampuan dalam memanfaatkan aset secara efisien.

2.2.3 Sistem Informasi

Menurut penelitian yang dilakukan (Sutabari, 2005) Sistem informasi terdiri dari dua kata sistem dan inforasi dimana sistem merupakan kumpulan beberapa elemen atau komponen yang saling berhubungan dan memiliki tujuan tertentu. Sedankan informasi merupakan kumpulan data yang telah diolah sehingga dapat berguna bagi pengambil keputusan.

Sistem informasi mengubungkan pengguna teknologi dengan penyedia informasi untuk pihak- pihak yang membutuhkan atau pengguna. Sistem informasi merupakan kerangka kerja yang dapat merubah masukan dari sumberdaya (Bodnar et.al., 2006). Menurut penelitian yang dilakukan oleh (Antonio & Safriadi, 2012). Sistem informasi diartikan sebagai kerangka kerja yang menyingkronisasikan sumber daya (manusia dan komputer) untuk mengubah masukan (*input*), menjadi keluaran (*output*) berbentuk informasi memiliki tujuan untuk mencapai target perusahaan.

Ada beberapa komponen pada sistem informasi yaitu sebagai berikut (Jogiyanto, 2007):

1. Input

Dalam *input* digunakan untuk menangkap masukan data-data ke dalam sistem yang nantinya akan diolah berupa audio, gambar, video, file dokumen dan teks.

2. Proses

Merupakan kumpulan dari fungsi, logika, prosedur yang dilakukan untuk memaniplasi apa yang sudah di *input* kan dan yang sudah tersimpan di basisdata.

3. Output

Merupakan informasi yang dihasilkan dari proses pengolahan data yang telah dilakukan.

4. Teknologi

Merupakan komponen yang berfungsi untuk membantu proses pengolahan data yang sudah di *input*-kan pada sistem.

5. Basisdata

Merupakan kumpulan dari data-data yang sudah di *input*-kan ke dalam sistem dimana saling berkaitan dan berhubungan satu sama lainnya yang tersimpan dalam alat penyimpanan.

6. Kendali

Merupakan tindakan untuk melakukan pencegahan, penanganan, dan pengembangan apabila terjadi kerusakan atau kesalahan dalam sistem.

2.2.4 Metode Waterfall

Metode waterfall merupakan proses pengembangan perangkat lunak tradisional yang sering digunakan untuk membuat proyek perangkat lunak. Metode waterfall adalah model sekuensial, sehingga satu set kegiatan harus terselesaikan agar kegiatan berikutnya bisa dimulai. Dikatakan waterfall karena prosesnya mengalir secara sistematis dari satu tahap ke tahap berikutnya. Dalam metode ini ada lima tahap yaitu: requirement analysis and definition, system and software design, implementation and unit testing, integration and system testing, dan operation and maintenance (Pressman, 2010).

Metode waterfall sebagai salah satu metode dalam mengembangkan sistem, tentu saja memiliki beberapa kelebihan dan kekurangan. Berikut merupakan kelebihan dan kekurangan dari metode waterfall dalam mengembangkan sistem:

a. Kelebihan

Metode ini mempunyai alur proses urut, mulai dari proses analisa hingga support, Setiap proses memiliiki spesifikasi masing- masing secara lengkap, sehingga sebuah sistem dapat dikembangkan sesuai dengan apa yang diinginkan atau dapat tepat sasaran, dan setiap proses tidak dapat saling tumpang tindih.

b. Kekurangan

Untuk kekurangan dari metode ini yaitu, proses yang dilakukan cenderung lama dan juga Panjang, untuk biaya penggunaan metode yang cenderung mahal, dan juga dalam penggunaanya membutuhkan banyak riset dan penelitian pendukung dalam mengembangkan sistem.

Menurut (Sommerville, 2011) tahapan metode waterfall ada 5 yaitu:

1. Requirement analysis and definition

Berisikan kendala, tujuan, dan layanan sistem yang ditetapkan dari hasil konsultasi dengan pengguna yang didefinisikan secara rinci untuk menjadi spesifikasi dari sistem yang ingin dibuat.

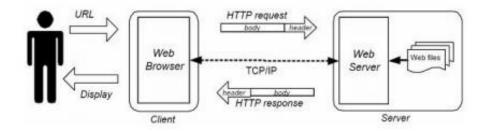
2. System and software design

Pada tahapan ini dilakukan perancangan sistem sesuai dengan kebutuhan, baik perangkat keras maupun perangkat lunak. Dengan membentuk kerangka sistem secara keseluruhan. Dalam perancangan ini melibatkan identifikasi, penggambaran, dan hubungannya dalam dasar sistem.

3. Implementation and unit testing

Pada tahap ini rancangan keseluruhan sistem yang sudah dibuat direalisasikan atau diwujudkan sebagai serangkaian program. Kemudian melibatkan pengujian agar setiap spesifikasi terpenuhi.

4. *Integration and system testing*


Program yang sudah dibuat dan diuji selanjutnya akan dilakukan penggabungan dan kemudian diuji sebagai sebuah sistem yang utuh untuk memastikan apakah sesuai dengan kebutuhan sebelum sampai ke *user*.

5. *Operation and maintenance*

Pada tahap terakhir program yang sudah jadi akan diimplementasikan dalam sistem nyata dan dalam berjalanya program akan selalu dilakukan perbaikan apabila terdapat kesalahan- kesalahan yang tidak muncul saat dilakukan pengujian.

2.2.5 Website

Website merupakan media yang terdiri dari kumpulan halaman saling terhubung satu dengan yang lainnya yang diakses melalui jaringan local maupun internet. Website memiliki beberapa manfaat diantaranya website dapat digunakan untuk memperluas jangauan promosi perusahaan, juga bisa sebagai media untuk memperkenalkan sesuatu, website dapat diakses oleh semua orang, dan masih banyak lagi (Sumaryadi, 2014). Dan berikut adalah cara kerja dari website.

Gambar 2. 3 Cara Kerja Website

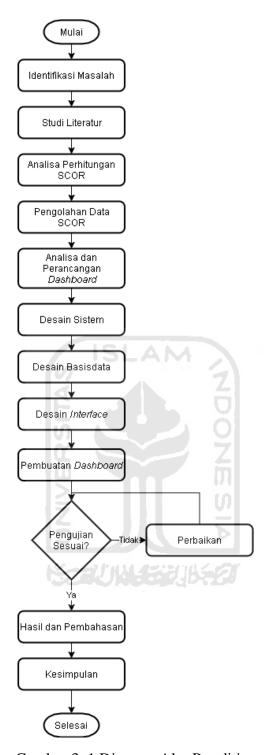
Pengguna website atau user dalam mengakses website harus memasukan alamat website (URL) terlebih dahulu melalui perangkat web browser. Setelah itu web browser mengirimkan permintaan kepada web server berupa HTTP request melalui TCP/IP. Kemudian web server merespon dengan memberikan web files yang diminta apabila tersedia. Jika web files tersedia, web server akan mengirimkan melalui TCP/IP kepada web browser yang kemudian akan ditampilkan kepada pengguna website atau user.

Website memiliki dua sifat yaitu dinamis dan statis. Website dinamis dimana konten dalam webite ini dapat berubah setiap saat karena faktor CMS (content management system) atau siapapun memiliki akses ke administrator website sehingga dapat merubah dan meng-update setiap saat. Sedangkan untuk website statis kebalikan dari website dinamis dimana kontennya jarang ada perubahan atau perubahan tidak sering dilakukan seperti website profil perusahan dan organisasi. Dengan adanya website tentunya dapat mempermudah seseorang dalam mendapatkan sebuah informasi (Yogya, 2018).

BABIII

METODE PENELITIAN

3.1 Objek Penelitian


Penelitian ini dilakukan di beberapa IKM Kulit di Yogyakarta yaitu IKM Kulit CV. Kay Nusa Bihaka, Kingswood, M. A. R. S Genuine Leather, Mario Rubinni, Fanri Collecction, Daniela Art, IKM Brill Leather, IKM Fatimah Handcraft, Genkzhi Leather, IKM Yanto Kulit, dan IKM Kulit Pak Gandoeng dimana IKM ini menggunakan kulit sebagai bahan baku pembuatan produk. Objek penelitian yang digunakan adalah kinerja rantai pasok dari beberapa IKM Kulit di Yogyakarta tersebut. Hasil dari perhitungan kinerja rantai pasok yang dilakukan menggunakan model SCOR 12.0 akan dibuat menjadi sistem informasi.

3.2 Jenis dan Sumber Data

Penelitian ini menggunakan data sekunder yakni data yang diperoleh dari hasil melakukan studi literatur. Data berasal dari buku, jurnal dan beberapa penelitian terdahulu. Seperti hasil perhitungan model SCOR 12.0 yang didapatkan dari penelitian terdahulu terhadap beberapa IKM Kulit di Yogyakarta.

3.3 Diagram Alur Penelitian

Berikut adalah diagram alur penelitian yang berisikan tahapan- tahapan yang dilakukan untuk mempermudah jalannya penelitian.

Gambar 3. 1 Diagram Alur Penelitian

Penjelasan terkait diagram alur diatas adalah sebagai berikut:

1. Mulai

Tahap mulainya penelitian.

2. Identifikasi Masalah

Pada tahap ini peneliti melakukan identifikasi pada IKM Kulit di Yogyakarta apakah terdapat permasalahan yang dapat diangkat.

3. Studi Literatur

Setelah permasalahan ditemukan, dilakukan pengkajian data dari berbagai macam literatur sebagai dasar dalam melakukan penelitian terkait topik penelitian.

4. Analisa perhitungan SCOR 12.0

Pada tahap ini peneliti melakukan analisa data skunder yang ada terkait perhitungan dan langkah- langkah dari metode SCOR 12.0.

5. Pengolahan data SCOR 12.0

Setelah melakukan analisa peneliti mengolah data skunder yang ada sehingga didapat rumus yang akan digunakan dalam *dashboard*.

6. Analisa dan perancangan dashboard

Pada tahap ini peneliti menganalisa informasi dan mengidentifikasi kebutuhan dari *dashboard* yang akan dibuat kemudian dilakukan perancangan.

7. Desain sistem, basisdata, dan interface

Setelah rancangan *dashboard* terbentuk, peneliti mendesain sistem. Teknis dari mulai *input* hingga *output* yang nantinya akan terhubung ke basisdata. Kemudian peneliti juga mendesain *interface* atau tampilan secara berurutan dari *dashboard* berbasis *website*.

8. Pembuatan dashboard

Pada tahap ini peneliti membuat *dashboard* dengan bantuan *software sublime text* dan *XAMPP control panel* versi 7.

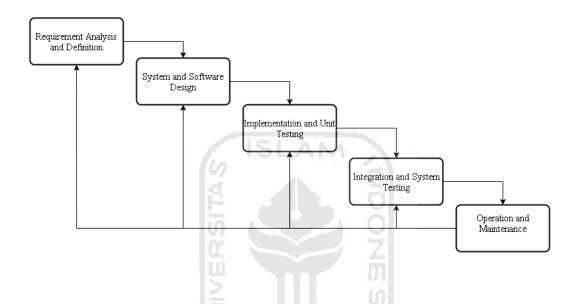
9. Perbaikan

Dilakukan pengujian apakah terdapat kesalahan dalam pembuatan. Jika terjadi *error* atau kesalahan dilakukan perbaikan.

10. Hasil dan pembahasan

Melakukan analisia pembahasan terhadap Dashboard yang sudah dibuat.

11. Kesimpulan


Menarik kesimpulan berdasarkan hasil keseluruhan dari pembuatan dashboard.

12. Selesai.

Penelitian selesai.

3.4 Pengolahan Data

Dalam pembuatan sistem informasi pada penelitian menggunakan metode waterfall. metode ini terdiri dari lima tahapan yaitu, requirement analysis and definition, system and software design, implementation and unit testing, integration and system testing, dan operation and maintenance. Berikut merupakan diagram dari metode waterfall:

Gambar 3. 2 Tahapan Metode Waterfall

1. Requirement Analysis and Definition

Pada tahap ini dilakukan pengumpulan data dan analisa kebutuhan dari sistem yang akan dibuat. Dilakukan studi literaur terkait data dan informasi yang mendukung sedangkan untuk analisis dilakukan untuk mengetahui kebutuhan *inpu* dan *output* dari sistem.

a. Pengumpulan Data

Dalam pengumpulan data peneliti menggunakan data skunder yaitu data dari penelitian sebelumnya yang dilakukan pada IKM Kulit di Yogyakarta. Data yang digunakan dalam pembuatan sistem informasi adalah data perhitungan dan rumus perhitungan model SCOR 12.0 sebagai dasar dari logika sistem yang dibuat dalam sistem informasi. Sehingga terjadi proses penerjemahan rumus SCOR 12.0 kedalam logika sistem.

b. Analisa Kebutuhan

Dilakukan analisa dan identifikasi data dan informasi kemudian memasukan dalam kategori kebutuhan *input* dan kebutuhan *output* pada sisem.

1) Kebutuhan Input

Kebutuhan *input* merupakan suatu proses masukan data sehingga akan dilakukan pengolahan untuk menghasilkan informasi yang dapat diambil atau disimpulkan. Berdasarkan proses pada sistem sistem informasi yang dibuat kebutuhan *input* sebagai berikut:

- a. Proses Regristrasi *User* atau pengguna Kebutuhan pada proses ini berupa data dari *user* yang berisikan data nama, alamat, email, nama perusahaan, dan bidang usahanya.
- b. Proses Pengisian Data Produksi oleh *User* Kebutuhan pada proses ini berupa data-data yang dimiliki oleh *user* terkait dengan kegiatan produksi yang dilakukan sesuai dengan model SCOR 12.0 yaitu *plan, source, make, deliver, enable,* dan *return.*

2) Kebutuhan *Output*

Kebutuhan *output* merupakan informasi dari hasil proses yang telah dilakukan dalam sistem. Data informasi yang dihasilkan dalam sistem sistem informasi berbasis *website* ini adalah:

- a. Data dan informasi hasil pengukuran kinerja rantai pasok oleh sistem.
- b. Data dan informasi saran yang harus dilakukan untuk *user*.

2. System and Software Design

Dalam tahap ini peneliti membuat pemodelan proses dari sistem, perancangan basisdata, dan perancangan *interface* dari sistem informasi.

a. Pemodelan Sistem

Pemodelan sistem yang dilakukan digambarkan dalam bentuk notasi bisnis untuk membantu mempermudah dalam pembuatan logika dalam sistem.

b. Perancangan Basisdata

Perancangan basisdata dilakukan dalam bentuk diagram untuk mempermudah mengetahui hubungan antar data yang sudah di-*input*-kan dalam sistem oleh *user*.

c. Perancangan Interface

Perancangan ini bertujuan untuk membuat tampilan dari sistem informasi agar apat menampilkan semua proses yang ada di sistem. Dan membantu mempemudah *user* dalam penggunaanya.

3. Implementation and Unit Testing

Pada tahap ini peneliti merealisasikan desain sistem ke dalam bentuk *prototype*. Fitur- fitur utama yang terdapat dalam sistem disesuaikan dengan pemodelan sistem, perancangan basisdata, dan perancangan *interface*. *Prototype* dikembangkan dalam bentuk *website* dengan bantuan *software* XAMPP dan *Sublime Text*.

Dalam *unit testing* dilakukan dengan melakukan pengujian terhadap sistem yang dibuat untuk mengetahui kesalahan fungsi logika dalam sistem. Pengujian dilakukan dengan cara memasukan data *input* secara acak untuk melihat hasil yang didapat apakah sesuai dengan fungsi dari logika dalam sistem.

4. Integration and System Testing

Setelah semua proses dalam sistem siap dilakukan penerapan sistem untuk digunakan *user*. peneliti melakukan instalasi sistem yang sudah dibuat kedalam *hosting* dan *domain* agar bisa diakses *user* secara *online*. Untuk mengetahui respon penggunaan sistem yang telah dibuat, selanjutnya dilakukan pengujian sistem oleh *user* pengujian melibatkan para pengguna sistem informasi seperi pemilik IKM atau pemilik usaha. Pengujian dilakukan oleh *user* dengan menjalankan fitur- fitur yang tersedia dalam sistem atau sistem informasi yang dibuat.

5. *Operation and Maintenance*

Tahap ini merupakan tahap terakhir dalam pengembangan dan pembuatan sistem. Pada tahap ini terapat kegiatan pengoprasian sistem yang telah diuji coba dan telah disetujui oleh *user*. Kemudian dilakukan *maintenance* apaila terdapat kesalahan- kesalahan atau *error* yang tidak ditemukan saat *unit testing* dan *system testing*.

BAB IV

PENGUMPULAN DAN PENGOLAHAN DATA

4.1 Requirement Analysis and Definition

4.1.1 Pengumpulan Data

Dalam profil perusahaan berisi deskripsi singkat tentang perusahaan yang diteliti. Profil perusahaan dapat berupa sejarah berdirinya, visi, misi, struktur organisai, dan produk. Berikut adalaah profil singkat dari IKM Kulit di Yogyakarta yang telah dilakukan penelitian sebelumnya.

Tabel 4. 1 Profil IKM Kulit di Yogyakarta

No	Nama IKM Kulit	Alamat
1	CV. Kay Nusa Bihaka	Jl. Kaliurang No. 9, Dentan, Sinduharjo Kec.
		Ngaglik Sleman Daerah Istimewa Yogyakarta.
2	Kingswood	Jl. Jetis, Jetis, Wedomartani, Kec. Ngemplak
	IZ.	Sleman Daerah Istimewa Yogyakarta.
3	M.A.R.S Genuine	Jl. Perum, Jl. Gadjah Mada Asri, Sangurejo,
	Leather	Wono Kerto, Kec Turi Sleman Daerah
		Istimewa Yogyakarta.
4	Mario Rubini	Jl. Kenanga, Sambeligu Kidul, Maguwoharjo,
		Kec. Depok, Sleman Daerah Istimewa
		Yogyakarta.
5	Fanri Collection	Jl. Kaliurang No. K. 13,5 Besi, Sukoharjo Kec.
		Ngaglik Sleman Daerah Istimewa Yogyakarta.
6	Daniella Art	Sleman
7.	IKM Brill Leather	Bantul
8.	IKM Fatimah	Bantul
9.	Handcraft	Bantul
10.	Genkzhi Leather	Bantul
11.	IKM Yanto Kulit	Bantul
12.	IKM Kulit Pak	Bantul
	Gandoeng	

4.1.2 Identifikasi Kebutuhan Sistem

Berikut adalah kebutuhan input admin dan *user* pada sistem perhitungan kinerja rantai pasok yang dibuat berdasarkan perhitungan model SCOR dapat dilihat pada tabel berikut.

Tabel 4. 2 Kebutuhan *Input*

No.	Admin	User
1	Data Admin	Data <i>User</i>
2	Daftar <i>User</i>	Data Plan
3	Data Nilai Akhir	Data Source
4		Data Make
5		Data Deliver
6		Data Enable
7	ISLAI	Data Return

Untuk kebutuhan proses admin dan *user* dari sistem pengukuran kinerja rantai pasok sebagai berikut.

Tabel 4. 3 Kebutuhan Proses

No.	Status	Proses	Keterangan
		Manajemen Akun	Dapat melihat, merubah atau mengedit dan
			menghapus semua data akun User.
1	Admin	Manajemen Sistem	Dapat melihat, merubah atau mengedit, dan
		Perhitungan	menghapus semua data perhitungan baik input dan
			output user.
		Manajemen Akun	Dapat melihat, merubah atau mengedit data akun
			user.
2	User	Manajemen Sistem	Dapat melihat hasil perhitungan dari sistem
		Perhitungan	meliputi nilai kinerja rantai pasok berdasarkan
			proses dan performance.

Dan berikut merupakan kebutuhan *output*, dimana saat *user* melakukan peng-*inputan* ke sistem, sistem akan menjalankan proses yang ada dan menampilkan hasil dari proses yang berlangsung pada sistem.

Tabel 4. 4 Kebutuhan *Output*

No.	Admin	User		
	Data nilai akhir kinerja rantai pasok	Data nilai akhir kinerja rantai pasok		
1	semua user yang ada berdasarkan proses	<i>user</i> berdasarkan proses dan		
	dan performance.	performance.		
2.	Data input-an user			

4.1.3 Data Perhitungan SCOR

Data perhitungan SCOR yang digunakan untuk data awal adalah data perhitungan SCOR dari penelitian sebelumnya yang dilakukan di IKM Kulit Sleman Yogyakarta. Data ini yang nantinya akan digunakan sebagai acuan untuk melakukan perhitungan. Pada tahap ini peneliti menganalisa perhitungan dari metode SCOR untuk nantinya diterapkan pada sistem.

Tabel 4. 5 Nilai Kinerja IKM Kulit Sleman Yogyakarta.

IKM	Plan	Sour ce	Ma ke	Deliv er	Retu rn	Enab le	Nila i	Keterang an
CV. Kay Nusa	50.5	61.11	54.0	98.89	0 1	61.88	54.4	Average
Bihaka	6	51.11	1	70.07	10	01.00	1	
Kingswood	52.5	54.08	67.3	100	56.55	52.09	63.7	Average
	32.3	31.00	3	100	30.33	32.07	6	
M.A.R.S Genuine	70	28.08	56.1	35	26.64	69.87	47.6	Marginal
Leather		السيسيكار		الالتنك	SON		2	
Mario Rubini	48.8	60.62	72.3	84.23	57.21	44.85	61.3	Average
THE TOTAL STATE OF THE STATE OF	9	00.02	7	0 1.25	S7.21		6	
Fanri Collection	30	56.79	82.1	97.84	_	83.86	58.4	Average
Taini Concetion	30	30.17	4	J1.0 1	_	05.00	4	
Daniela Art	10	44.17	43.5	97.92		51.59	41.2	Marginal
Daniela Alt	10	44.1/	1	91.94		31.39	0	

4.2 System and Software Design

1.2.1 Perancangan Sistem

1.2.1.1 Perancangan Pengguna

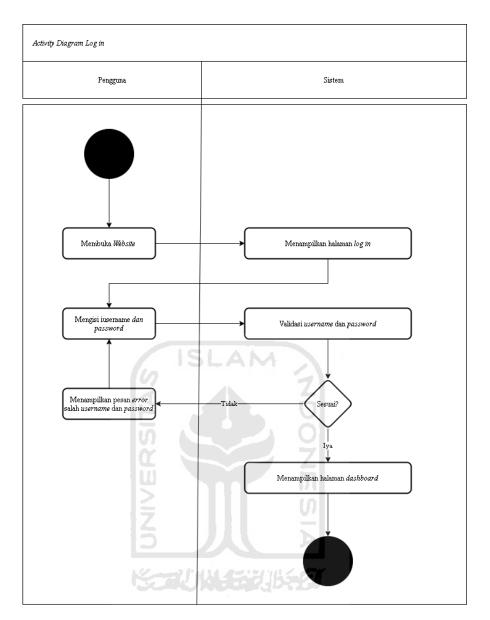
Dalam perancangan sistem ini peneliti ingin menjelaskan bagaimana sistem akan dibentuk. Dimana terdapat dua tipe pengguna yaitu admin dan *user* biasa dalam hal ini terkait sistem informasi.

1. Admin

Fungsi dari admin adalah untuk mengubah informasi dan data. Serta mengelola sistem yang dibuat.

2. User

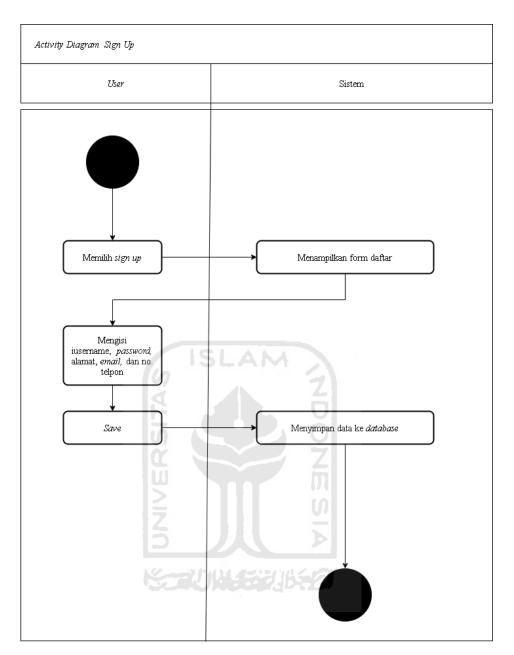
Pengguna adalah perusahaan atau pemilik IKM yang nantinya akan menggunakan sistem informasi.


1.2.1.2 Activity Diagram

Pembuatan *activity diagram* bertujuan untuk menggambarkan aktivitas- aktivitas dari sistem dari proses awal hingga akhir atau *workflow* agar mempermudah dalam perancangan sistem pada sistem informasi.

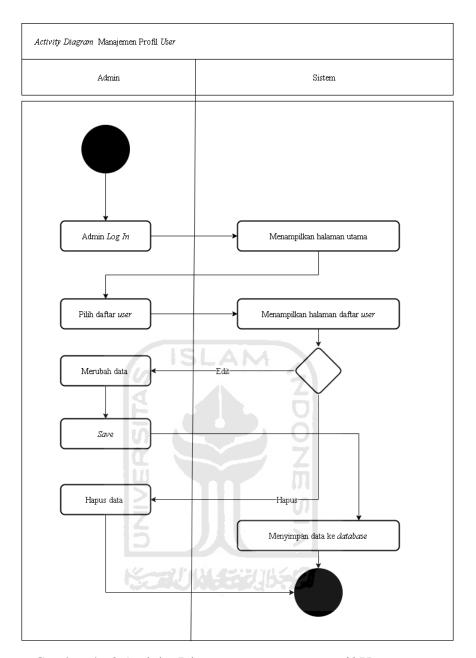
a. Activity diagram login

Pada diagram ini akan menjelaskan bagaimana aktifitas dari admin dan *user* untuk masuk ke dalam sistem yang dibuat. Dimana dalam aktifitas ini akan memuat *username* dan *password* dari pengguna. Berikut perancangan *activity diagram* dalam proses *log in* dapat dilihat pada gambar 4.1.



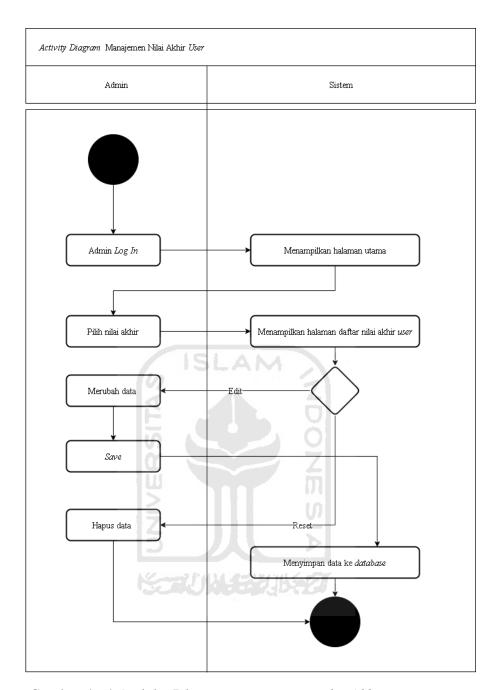
Gambar 4. 1 Activity Diagram Log In

b. Activity diagram sign up


Pada diagram ini menjelaskan proses pendaftaran pengguna baru ke sistem. *User* yang belum memiliki akun atau akses masuk ke sistem dapat mendaftar. Berikut perancangan *activity diagram sign up* dapat dilihat pada gambar 4.2.

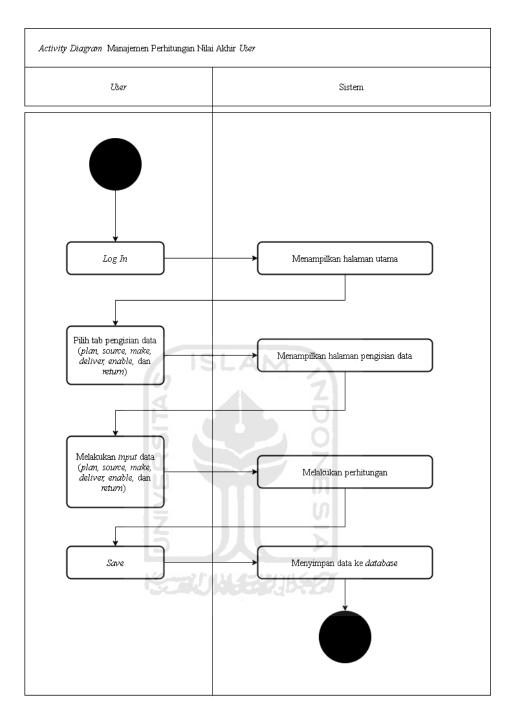
Gambar 4. 2 Activity Diagram Sign Up

c. Activity diagram manajemen profil user


Pada diagram ini akan menjelaskan bagaimana admin dapat melihat, menambah, merubah, dan menghapus data profil *user*. Berikut perancangan *activity diagram* manajemen profil *user* dapat dilihat pada gambar 4.3.

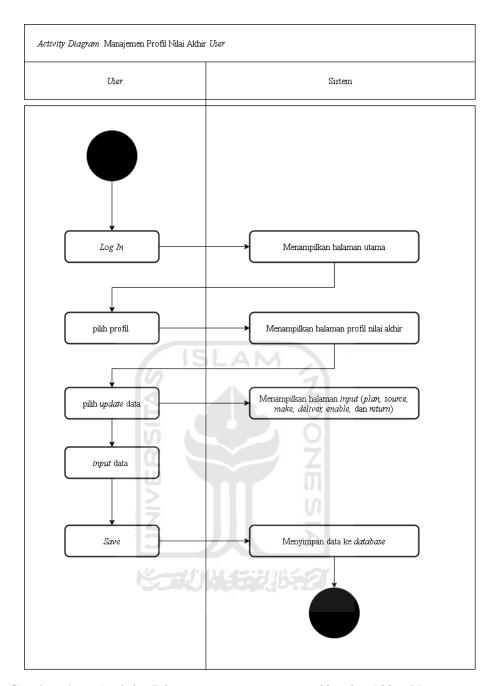
Gambar 4. 3 Activity Diagram Manajemen Profil User.

d. Activity diagram manajemen nilai akhir


Pada diagram ini akan menjelaskan bagaimana admin dapat melihat, menambah, dan mereset data nilai akhir dari *user*. Berikut perancangan *activity diagram* manajemen nilai akhir dapat dilihat pada gambar 4.3.

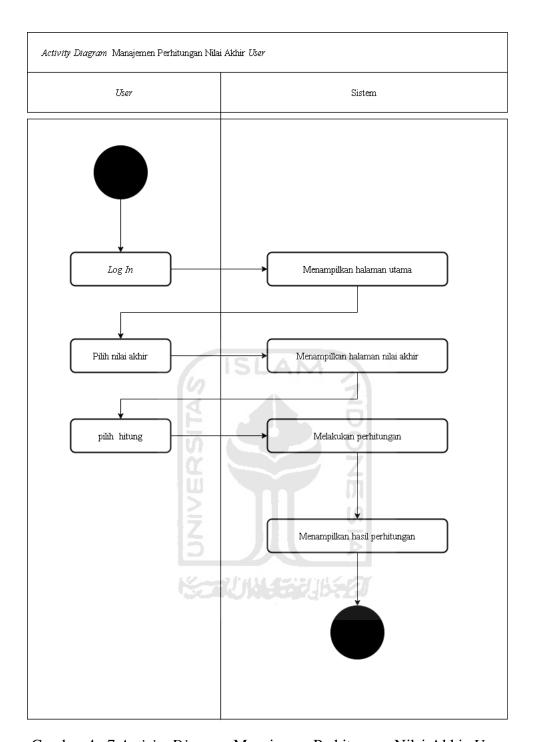
Gambar 4. 4 Activity Diagram Manajemen Nilai Akhir User.

e. Activity diagram manajemen input nilai akhir


Pada diagram ini akan menjelaskan bagai mana *user* mendapatkan nilai kinerja rantai pasok berdasarkan data yang sudah di inputkan. Berikut perancangan *activity diagram* manajemen nilai akhir *user* dapat dilihat pada gambar 4.4.

Gambar 4. 5 Activity Diagram Manajemen Perhitungan Nilai Akhir User.

f. Activity diagram manajemen profil nilai akhir user.


Pada diagram ini akan menjelaskan bagaimana *user* dapat melihat dan mengupdate hasil perhitungan nilai akhir kinerja rantai pasok. Berikut *activity diagram* manajemen profil nilai akhir *user* dapat dilihat pada gambar 4.4.

Gambar 4. 6 Activity Diagram Manajemen Profil Nilai Akhir User.

g. Activity diagram manajemen perhitungan nilai akhir user.

Pada diagram ini akan menjelaskan bagaimana *user* dapat melihat hasil nilai akhir kinerja rantai pasok. Berikut perancangan *activity diagram* manajemen perhitungan nilai akhir *user* dapat dilihat pada gambar 4.5.

Gambar 4. 7 Activity Diagram Manajemen Perhitungan Nilai Akhir User

1.2.2 Perancangan Basisdata

Perancangan basisdata dilakukan untuk membantu dalam mengelola kumpulan informasi dan data yang diperlukan sistem agar terstruktur dengan baik dan meminimalkan *error* pada sistem.

1.2.2.1 Struktur Tabel

Basisdata dalam sistem sistem informasi perhitungan kinerja rantai pasok ini terdiri dari beberapa tabel yaitu, tabel *user*, tabel sub kriteria, tabel snorm, tabel nilai, tabel kriteria, dan tabel akhir yang akan diperjelas sebagai berikut:

1. Tabel user

Pada tabel ini berisikan data- data pengguna yang digunakan untuk masuk kedalam sistem. Berikut struktur tabel dari *user* dapat dilihat pada tabel 4.6.

Nama Jenis Deskripsi Id_user Int(10) Primary key Username_user Varchar(100) Varchar(50) Password_user Nama user Varchar(100) Email_user Varchar(50) Nohp_user Varchar(15) Text Alamat_user

Varchar(20)

Tabel 4. 6 Tabel User

2. Tabel sub kriteria

Level_user

Pada tabel ini berisikan data-data sub kriteria atau proses elemen dari perhitungan model SCOR 12.0 yang akan diisi oleh *user*. Berikut struktur tabel sub kriteria dapat dilihat pada tabel 4.7.

Tabel 4. 7 Tabel Sub Kriteria

Nama	Jenis	Deskripsi
Id_subkriteria	Int(10)	Primary key
Nama_subkriteria	Varchar(100)	
Id_kriteria	Int(10)	

3. Tabel snorm

Pada tabel ini berisikan data-data yang akan digunakan dalam perhitungan akhir model SCOR. Berikut struktur tabel snorm dapat dilihat pada tabel 4.8.

Tabel 4. 8 Tabel Snorm

Nama	Jenis	Deskripsi
Id_snorm	Int(10)	Primary key
Id_user	Int(10)	
Id_kriteria	Int(10)	
Id_nilai	Int(10)	
Id_kinerja	Int(10)	
Nilai_snorm	Decimal(10,2)	

4. Tabel Nilai

Pada tabel ini berisikan data-data hasil perhitungan dari sub kriteria yang nantinya data tersebut akan digunakan untuk perhitungan snorm. Berikut struktur tabel nilai dapat dilihat pada tabel 4.9.

Tabel 4. 9 Tabel Nilai

Nama	Jenis	Deskripsi
Id_nilai	Int(10)	Primary key
Id_user	Int(10)	
Id_kriteria	Int(10)	
Id_subkriteria	Int(10)	
nilai_nilai	Int(10)	D

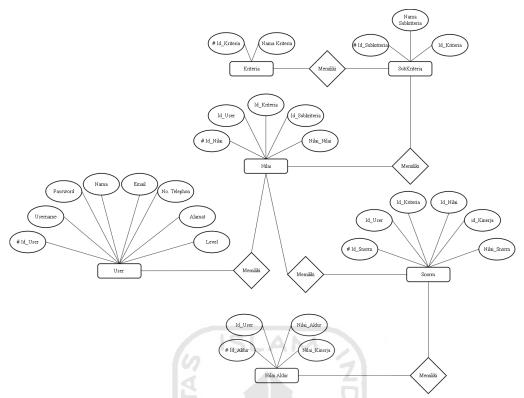
5. Tabel Kriteria

Pada tabel ini berisikan data- data kriteria atau proses model SCOR yaitu, *plan, source, make, deliver, enable,* dan *return.* Berikut struktur tabel kriteria dapat dilihat pada tabel 4.10.

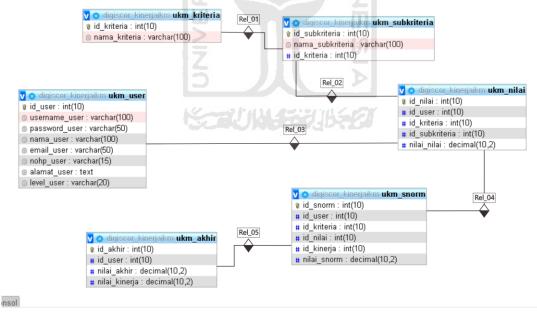
Tabel 4. 10 Tabel Kriteria

Nama	Jenis	Deskripsi
Id_kriteria	Int(10)	Primary key
Nama_kriteria	Varchar(100)	

6. Tabel akhir


Pada tabel ini berisikan data-data snorm yang akan digunakan untuk perhitungan nilai akhir kinerja rantai pasok berdasarkan proses dan *performance*. Berikut struktur tabel akhir dapat dilihat pada tabel 4.11.

Tabel 4. 11 Tabel Akhir


Nama	Jenis	Deskripsi
Id_akhir	Int(10)	Primary key
Id_user	Int(10)	
Nilai_akhir	Decimal(10,2)	
Nilai_kinerja	Decimal(10,2)	

1.2.2.2 Entity Relationship Diagram (ERD)

Dalam penelitian ini terdapat 6 entitas yang digunakan untuk mengelompokkan data untuk disimpan dalam sistem. ERD dibuat untuk membantu menggambarkan jalanya database. Pada entitas *User* terdapat 8 atribut, kriteria memiliki 2 atribut, sbkriteria memiliki 3 atribut, nilai memiliki 5 atribut, Snorm memiliki 6 atribut, dan nilai akhir memiliki 4 atribut. Berikut merupakan rancangan ERD dalam sistem informasi DIGISCOR yang dibuat.

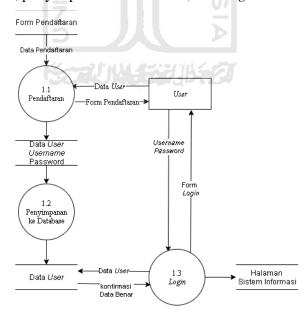
Gambar 4. 8 Entity Relationship Diagram.

Gambar 4. 9 Relasi

1.2.2.3 Data Flow Diagram (DFD)

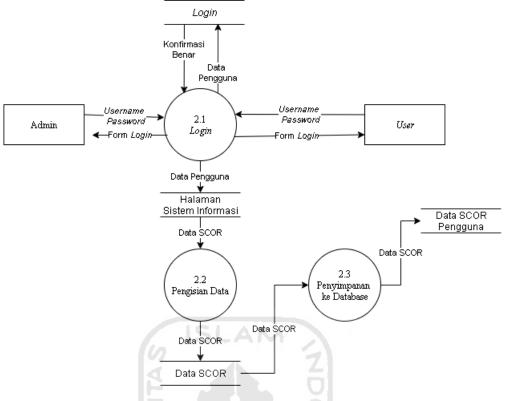
Untuk menggambarkan aliran data dan memudahkan dalam membat database dari sistem yang dibuat peneliti membuat DFD. Dimana terdapat 3 level dari mulai level 0, level 1, dan level 2. Berikut adalah *data flow diagram* dari sistem.

1. DFD Level 0


Pada DFD ini menggambarkan sistem paling global dan menjadi level teratas yang biasanya berfungsi sebagai sistem masukan dan memiliki hubungan para pengguna. Dalam sistem didapatkan bahwa terdapat 2 macam pengguna dari sistem yaitu Admin dan *User* dan dapat dilihat pada gambar berikut.

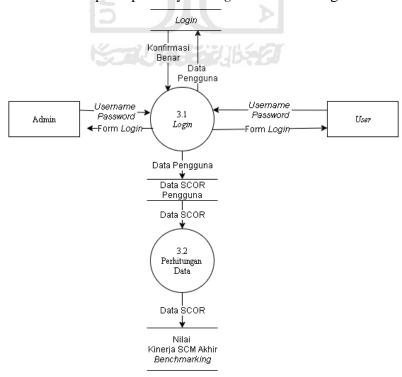
Gambar 4. 10 DFD Level 0

2. DFD Level 1


Pada DFD ini merupakan turunan dari level pertama dimana terdapat 3 proses yaitu, Pendaftaran, penyimpanan ke database, dan *Login*..

Gambar 4. 11 DFD Level 1

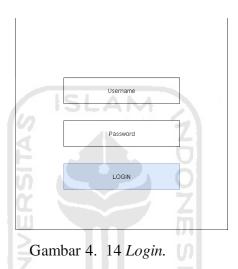
3. DFD Level 2


Pada DFD ini merupakan turunan dari level sebelumnya dimana terdapat 3 proses yaitu, *Login*, pengisian data, dan penyimpanan data..

Gambar 4. 12 DFD Level 2

4. DFD Level 3

Berikut merupakan DFD lever terakhir yang memuat proses perhitungan dalam sistem informasi. Terdapat 2 proses yaitu *login* dan Perhitungan data.


Gambar 4. 13 DFD Level 3

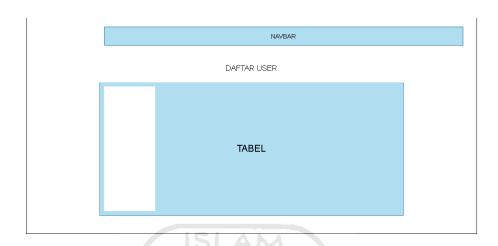
1.2.3 Perancangan *Interface*

Perancangan *interface* merupakan rancangan tampilan dari sistem informasi yang dibuat oleh peneliti untuk memvisualisasikan sistem yang memuat proses dalam sistem dan database. Berikut merupakan perancangan *interface* dari DIGISCOR.

1. Perancangan interface halaman login.

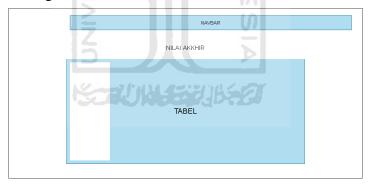
Pada bagian ini merupakan halaman yang akan muncul pertamakali setelah pengguna mengakses <u>www.digiscor.xyz</u>. Pengguna akan disuruh untuk memasukkan *username* dan *password*.

2. Perancangan interface halaman utama.


Pada bagian ini merupakan halaman utama setelah pengguna berhasil *login*. Terdapat beberapa menu pada navbar yang akan mengelompokkan kategori dari konsep SCOR sendiri. Terdapat menu *home, plan, source, make, deliver, return, enable,* dan profil.

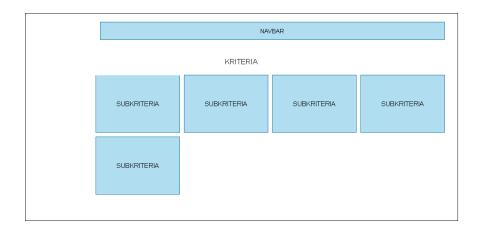
Gambar 4. 15 Home

3. Perancangan interface halaman admin daftar user.


Pada bagian ini merupakan halaman daftar *user* yang dapat diakses oleh admin. Berisikan daftar dari semua *user* berupa nama, email, dan alamat.

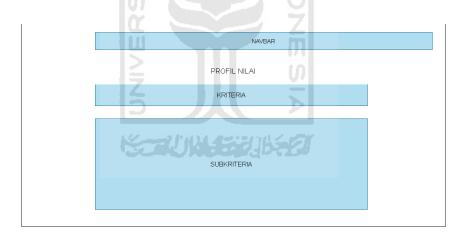
Gambar 4. 16 Daftar User.

4. Perancangan interface halaman admin nilai akhir.


Pada bagian ini merupakan halaman nilai akhir, dimana memuat semua data nilai akhir dari perhitungan sistem dari semua *user*.

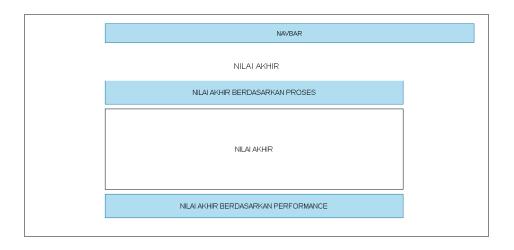
Gambar 4. 17 Nilai Akhir.

5. Perancangan interface halaman pengisian data kriteria dan subkriteria.


Pada bagian ini merupakan halaman pengisian data berdasarkan kriteria dan subkriteria. Pengguna nantinya akan diarahkan untuk mengisi data berdasarkan aspek – aspek yang sudah disediakan. Setelah semua form pengisian sudah diisi maka aka nada perintah simpan data dan setelah berhasil sistem akan melakukan perhitungan.

Gambar 4. 18 Pengisian Data.

6. Perancangan interface halaman profil nilai user.


Pada bagian ini merupakan tampilan halaman data hasil dari perhitungan sistem bagi pengguna berdasarkan perhitungan setiap kriteria dan subkriteria. Terdapat menu *update* data yang digunakan untuk memperbarui data yang sudah dimasukkan sebelumnya.

Gambar 4. 19 Profil Nilai.

7. Perancangan interface halaman nilai akhir user.

Pada bagian ini merupakan halaman nilai akhir dimana akan menampilkan hasil perhitungan nilai akhir berdasarkan proses dan *performance*. Pengguna bisa melihat hasil perhitungan dan dapat melihat hasil dari pengguna lainnya sehingga dapat dilakukan *benchmarking*.

Gambar 4. 20 Nilai Akhir User.

1.3 Implementation and Unit Testing

1.3.1 Implementasi Sistem

Setelah perancangan selanjutnya dilakukan implementasi. Dalam implementasi sistem dilakukan digunakan beberapa aplikasi yaitu, *Sublime Text* yang digunakan untuk mengedit skrip, *XAMPP – control*, dan *Google Chrome* sebagai aplikasi *browser* dengan bahasa pemrograman PHP *native*..

Gambar 4. 21 Tools

Logika dari sistem disusun berdasarkan cara kerja dari perhitungan model SCOR dan ditransformasikan dalam bentuk skrip atau *pseudocode* dari mulai *login* kemudian perhitungan setiap kriteria dan subkriteria hingga perhitungan nilai akhir. Berikut merupakan beberapa skrip yang sudah dibuat.

```
    Start
    Inisialisasi $user = $_POST["inUssername"], $pass = $_POST["inPassword"] dan $_SESSION["gagal"]
    Input Username && Input Password
    If $user == True && $pass == True
    Alert 'Berhasil Masuk'
    If $user == False && $pass == False
    $_SESSION['Login Gagal'
    Echo 3-$_SESSION['Username atau Password and a tidak benar']
    End
```

Gambar 4. 22 Skrip Login

Skrip diatas merupakan logika dari proses *login* ke sistem informasi yang dibuat. Dimana sebelumnya pengguna sudah mendaftarkan data – data salah satunya *username* dan *password*. Skrip akan mencari data pada database apabila data *username* dan *password* ada maka akan lanjut ke halaman utama sistem informasi apabila data tidak ditemukan maka akan muncul notifikasi gagal *login*.

```
    Start
    Inisialisasi $id_nilai = $_POST['id_nilai']; $id_user = $_POST['id_user']; $id_kriteria = $_POST['id_kriteria']; $id_subkriteria = $_POST['id_subkriteria']; $periode1 = $_POST['periode1']; $periode2 = $_POST['periode2']; $periode3 = $_POST['periode3']; $id_kinerja = $_POST['id_kinerja']
    $queryTambah = mysqli_query($con, "INSERT INTO ukm_nilai(id_nilai, id_user, id_kriteria, id_subkriteria, nilai_nilai) values ('$id_nilai', '$id_user', '$id_kriteria', '$id_subkriteria', '$total')");
    $totalperiode = $periode1 + $periode2 + $periode3; $total = $totalperiode/3
    End
```


Gambar 4. 23 Skrip Perhitungan

Skrip diatas merupakan salah satu contoh perhitungan pada kriteria *plan* dengan 5 subkriterianya. Dimana dalam perhitungan setiap subkriterianya logika dari perhitungannya sama yakni nilai dari setiap periode di jumlahkan kemudian dibagi oleh jumlah periodenya. Berikut merupakan rumus perhitungan kriteria *plan* dengan subkriteria RS.3.29 *Establish Sourcing Plans Cycle Time*.

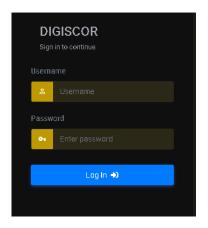
$$Rata - rata = \frac{\sum Perencanaan bahan baku}{\sum Periode}$$

1.3.2 Implementasi Basisdata

Implementasi basisdata dalam sistem menggunakan *MySQL* dan tabel – tabel yang sudah dirancang dibuat pada *PhpMyAdmin*. Dimana terdapat 6 tabel yaitu, tabel *user*, tabel kriteria, tabel subkriteria, tabel nilai, tabel snorm, dan tabel nilai akhir dengan atribut sesuai dengan perancangan.

Gambar 4. 24 PhpMyAdmin

. Berikut merupakan skrip dari mulai pengguna memasukkan data yang akan terssimpan dalam database. Dimana skrip tersebut menunjukkan bagaimana data itu masuk dan dipanggil kembali ke dalam database sesuai tabel – tabel yang dibuat.


```
    Start
    Inisialisasi $id_nilai = $_POST['id_nilai'];$id_user = $_POST['id_user']; $id_kriteria = $_POST['id_kriteria']; $id_subkriteria= $_POST['id_subkriteria']; $id_nilai = $_POST['id_nilai']; $id_snorm = $_POST['id_snorm'];$id_akhir = $_POST['id_akhir'].
    End
```

Gambar 4. 25 Skrip Database

1.3.3 Implementasi *Interface*

1. Halaman *login*.

Dalam penggunaan sistem informasi semua pengguna baik admin dan *user* diharuskan mengisi *username* dan *password* yang sudah terdaftar dalam database digunakan untuk mengisi form *login*. Berikut adalah tampilan dari halaman *login*.

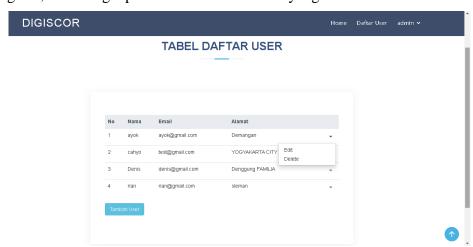
Gambar 4. 26 Login

Pada halaman *login*, setelah pengguna memasukkan *username* dan *password* sistem akan mengonfirmasi data yang sudah di *input*-kan ke *database* tabel *user* sehingga apabila data yang di *input*-kan sesuai maka pengguna akan masuk ke halaman utama sistem informasi. Apabila *username* dan *password* yang dimaskukkan salah maka akan muncul peringatan *login* gagal *username* dan *password* yang dimasukkan salah seperti gambar berikut.

Gambar 4. 27 Gagal Login

2. Halaman utama.

Pada halaman utama terdapat perbedaan antara admin dengan *user*. Pada halam utama berisikan informasi tentang sistem informasi dan penjelasan penggunaannya. Dengan tujuan untuk mempermudah, membantu dan memandu pengguna dalam mengisi data.


Gambar 4. 28 Halaman Utama Admin

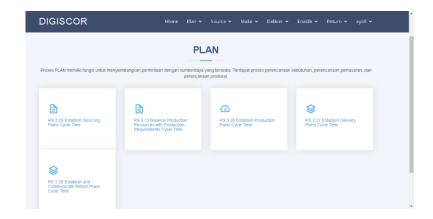
Gambar 4. 29 Halaman Utama User

3. Halaman admin daftar user.

Pada halaman admin daftar *user* menjelaskan siapa saja *user* yang sudah terdaftar dalam *database*. Halaman ini mmemungkinkan admin untuk menambah, mengedit, dan menghapus data dari semua *user* yang ada.

Gambar 4. 30 Daftar User.

4. Halaman admin nilai akhir.


Pada halaman ini menampilkan data- data nilai akhir dari *user* yang sudah dilakukan perhitungan. Berisikan data nama perusahaan, email dan alamat. Terdapat fitur reset data dan masukkan batasan. Dimana fitur reset data dignakan untuk menghapus semua data yang sudah ada di *database*. Sedangkan fitur masukkan batasan digunakan untuk meng-*input*-kan data pertama kali yang nantinya akan digunakan untuk acuan perhitungan model SCOR.

DIGISCOR				Home Daftar User	Nilai Akhir	admin 🗸
		1	NILAI AKHIR			
	No	Nama	Nilai Akhir Proses	Nilai Akhir Performance		
	1	admin	16.67	22.50		
	2	rian	0.00	0.00		
	3	rian	0.00	0.00		
	4	Vembri Noor Helia	47.73	59.67		
	5	Vembri Noor Helia	7.96	14.92		
	6	IKM Brill Leather	36.02	46.95		
	7	IKM Yanto Kulit	20.59	21.18		

Gambar 4. 31 Nilai Akhir.

5. Halaman pengisian data kriteria dan subkriteria.

Pada halam ini menampilkan data kriteria dan subkriteria. Dimana terdapat 6 kriteria yaitu *plan, source, make, deliver, enable,* dan *return.* Setiap kriteria memiliki beberapa subkriteria, untuk kriteria *plan* memiliki 5 subkriteria, *source* memiliki 13 subkriteria, *make* memiliki 7 subkriteria, *deliver* memiliki 8 subkriteria, *enable* memiliki 2 subkriteria, dan *return* memiliki 5 subkriteria. *User* nantinya akan mengisi data sesuai dengan panduannya seperti gambar berikut.

Gambar 4. 32 Pengisian Data.

6. Halaman profil nilai user.

Pada halaman ini menampilkan nilai *Snorm* yang didapat setelah *user* meng-*input*-kan data-data. Berisikan nilai *Snorm* berdasarkan prosesnya seperti, *plan, source, make, deliver, enable,* dan *return.* Dapat dilihat pada gambar 5.52 sebagai berikut.

Gambar 4. 33 Profil Nilai.

7. Halaman nilai akhir user.

Pada halaman ini menampilkan data- data perhitungan akhir dari model SCOR berdasarkan data- data yang sudah di *input*-kan oleh *user*.pada halaman ini juga

dapat mengetahui nilai kinerja rantai pasok berdasarkan proses dan performance.

1.3.4 Pengujian

Pengujian bertujuan untuk mengetahuia apakah logika sistem sudah sesuai dengan apa yang diinginkan dan sesuai dengan alur dan apabila masih terdapat kesalahan akan dilakukan perbaikan. Dalam pengujian sistem akan di gunakan Teknik pengujian Black Box. Dimana dalam Teknik ini tabel uji akan diisi oleh responden user dalam pengujiannya. Berikut adalah tabel pengujian black box dapat dilihat pada tabel 4.12.

Tabel 4. 12 Pengujian Black Box.

No.	Komponen yang diuji	Skenario uji
1.	Halaman <i>Log in</i>	Memasukan username dan password yang tidak sesuai
	Halaman Log in	dengan database.
2.	admin	Memilih menu Daftar user
3.	admin	Memilih tambah user
4.	admin	Memilih menu nilai akhir
5.	admin	Memilih reset nilai

No.	Komponen yang diuji	Skenario uji
6.	admin	Memilih masukkan batasan
7.	user	Memilih menu plan, source, make, deliver, enable, dan
7.	user	return
8.	user	Memilih menu profil
9.	user	Memilih menu akhir dan memilih tombol hitung
10.	admin dan <i>user</i>	Memilih log out

1.4 Integration and System Testing

Setelah itu sistem yang sudah dibuat dalam sistem informasi di integrasikan dengan hosting dan domain agar dapat diakses menggunakan website. Peneliti menggunakan hosting dan domain .xyz yang akan digunakan sebagai wadah dari sistem yang dibuat. Segala macam data yang ter-input pada sistem akan tersimpan pada hosting. Sehingga pengguna dapat mengakses sistem informasi melalui URL www.digiscor.xyz.

Setelah berhasil terintegrasi dengan *hosting* dilakukan pengujian sistem. Pengujian bertujuan untuk mengetahui apakah logika perhitungan pada sistem informasi sudah sesuai dengan model SCOR. Pengujian dilakukan oleh ekspert dibidangnya dan diberikan beberapa pertanyaan sebagai berikut.

Tabel 4. 13 Pengujian Ahli.

No.	Pertanyaan
1.	Apakah proses pengisian sistem informasi dari awal sampai akhir sudah sessuai
1.	dengan model SCOR?
2.	Apakah tombol- tombol berfungsi dan sesuai?
2	Apakah hasil dari perhitungan pada sistem informasi sesuai dengan model
3.	SCOR?
4	Apakah informasi penggunaan sistem informasi sudah sesuai dan membantu
4.	dalam pengissian data?
5	Apakah sistem informasi sudah memenuhi kebutuhan pengguna dalam
5.	mengukur kinerja rantai pasok?

BAB V

HASIL DAN PEMBAHASAN

5.1 Sistem Informasi

Sistem informasi yang dibuat berbasis website diharapkan dapat membantu para pelaku IKM kulit karena mayoritas pelaku IKM kulit di Yogyakarta masih menggunakan cara tradisional dalam mengukur kinerja rantai pasok yaitu dengan menghitung dengan cara manual tanpa bantuan alat dan dengan cara mengira-ngira. Dari IKM kulit yang sudah diteliti masih banyak IKM yang belum tahu tentang pengukuran kinerja rantai pasok. Dengan sistem yang dibangun para pelaku IKM kulit dapat mengukur kinerja rantai pasok dengan hanya memasukkan data yang diperlukan ke dalam sistem informasi. Hasil kinerja rantai pasok disajikan dengan data kinerja rantai pasok seluruh pengguna sistem informasi ini sehingga pelaku IKM dapat melihat hasil kenerja rantai pasok IKM kulit lainnya. Dengan adanya fiturini pelaku IKM dapat melakukan benchmarking dan sebagai gambaran untuk melakukan evaluasi.

Sistem informasi yang dibuat berbasis website, pengguna dapat menggunakan sistem informasi yang dibuat dengan cara mengakses URL www.digiscor.xyz. Karena basis website sistem informasi dapat diakses melalui gadget atau komputer. Selain itu tampilan interface dari sistem informasi sudah responsif sehingga interface akan menyesuaikan perangkat yang digunakan.

Hasil dari pengujian dari sistem informasi sudah sangat bagus karena semua scenario uji sesuai dengan hasil yang diharapkan. Ini menandakan bahwa sistem sudah sesuai dengan perancangan dan dan logika pada sistem sesuai dengan model SCOR. Dapat dilihat pada tabel berikut.

Tabel 5. 1 Hasil Pengujian Black Box.

No.	Komponen yang diuji	Skenario uji	Hasil	Hasil pengujian
1.	Halaman Log in	Memasukan <i>username</i> dan <i>password</i> yang tidak sesuai dengan <i>database</i> .	Muncul notif LOGIN GAGAL atau tidak dapat masuk	Sesuai
2.	admin	Memilih menu Daftar user	Muncul menu daftar user	Sesuai
3.	admin	Memilih tambah user	Muncul menu tambah user	Sesuai
4.	admin	Memilih menu nilai akhir	Muncul menu nilai akhir	Sesuai
5.	admin	Memilih reset nilai	Data nilai tereset	Sesuai
6.	admin	Memilih masukkan Batasan	Muncul menu batasan	Sesuai
7.	user	Memilih menu <i>plan</i> , source, make, deliver, enable, dan return	Terdapat pilihan menu Plan, source, make, deliver, return, enable Profil nilai data dan nilai	Sesuai Belum
8.	user	Memilih menu profil	SNORM serta update data	sesuai
9.	user	Memilih menu akhir dan memilih tombol hitung	Rata-rata berdasarkan proses dan berdasarkan performance beserta bobotnya	Sesuai
10.	admin dan user	Memilih log out	log out	Sesuai

Pengujian yang dilakukan memiliki 10 komponen dan scenario uji dengan hasil semuanya sesuai dan menunjukkan bahwa logika dari kommponen – komponen yang ada pada sistem informasi sudah sesuai dan tidak ditemukan kesalahan. Artinya skrip yang dibuat tidak terdapat *error*.

Untuk mengetahui apakah logika perhitungan sudah sesuai dilakukan pengujian oleh ekspert di bidangnya terutama dalam model SCOR. Untuk penguji disini adalah dosen Fakultas Teknologi Imdustri, program studi Teknik Industri Universitas Islam Indonesia yaitu ibu Vembri Noor Helia S.T., M.T.

Tabel 5. 2 Hasil Pengujian Sistem Oleh Ahli.

No.	Pertanyaan	Jawaban
1.	Apakah proses pengisian sistem informasi dari awal	Sudah sesuai
1.	sampai akhir sudah sesuai dengan model SCOR?	
2.	Apakah tombol- tombol berfungsi dan sesuai?	Untuk tombol update
۷.		data belum
3.	Apakah hasil dari perhitungan pada sistem sistem	Sesuai
3.	informasi sesuai dengan model SCOR?	
4	Apakah informasi penggunaan sistem informasi	Membantu, tetapi bisa
4.	sudah sesuai dan membantu dalam pengisian data?	lebih diperjelas
5	Apakah sistem informasi sudah memenuhi kebutuhan	Sudah memenuhi
5.	pengguna dalam mengukur kinerja rantai pasok?	

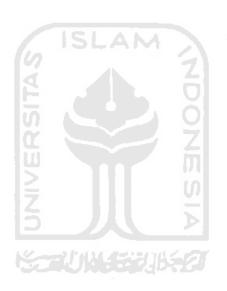
Dari hasil pengujian didapatkan bahwa dari 5 komponen yang diuji hanya 1 yang belum sesuai yaitu pada point ke 2 tentang tombol *update*. Hal ini dikarenakan data yang ada pada *database* masih belum ada sehingga ketika dilakukan *update* data tida berubah. Data akan bisa di *update* ketika sistem informasi sudah memiliki banyak pengguna sehingga data yang ada di *database* sudah banyak dan dapat dilakukan *update* data.

Sistem informasi sudah dapat berjalan dan kedepan perlu adanya *maintenance* agar kesalahan *error* yang masih belum ditemukan dapat dilakukan evaluasi. Sistem informasi ini dapat membantu IKM Kulit Yogyakarta karena sistem ini dapat membantu IKM mengetahui kinerja rantai pasok yang sebelumnya masih dilakukan dengan cara tradisional dan dapat melakukan evaluasi terhadap hasil yang sudah didapat serta dapat melakukan *benchmarking* dengan IKM Kulit di Yogyakarta. Dengan basis *website* yang dapat diakses siapa saja dimana saja dapat menambah kemudahan yang diberikan dalam penggunaannya. Namun masih terdapat kekurangan dari pembuatan sistem informasi ini seperti yang sudah dijelaskan pada batasan dan apabila tidak ada jaringan internet sistem informasi tidak bisa dipakai.

BAB VI

KESIMPULAN DAN SARAN

6.1 Kesimpulan


Dari hasil penelitian yang sudah dilakukan dapat disimpulkan bahwa perancangan sistem informasi berhasil dibuat untuk mengukur nilai kinerja rantai pasok. Dalam sistem informasi ini pengguna dapat mengetahui nilai kinerja rantai pasok dan *benchmarking* sehingga pengguna dapat melakukan evaluasi kinerja agar kinerja rantai pasok lebih optimal.

Dengan berbasis *website*, sistem informasi ini memungkinkan pengguna mudah dalam mengakses dan menggunakanya dengan adanya jaringan internet. Dari hasil pengujian *black box* yang dilakukan, sistem informasi sudah berhasil sesuai fungsional dan dapat memberikan hasil yang diharapkan.

6.2 Saran

Dari hasil penelitian yang telah dibuat masih terdapat kelemahan dan kekurangan yang masih bisa dikembangkan lebih baik lagi, semoga kedepannya sistem informasi bisa lebih baik lagi dan terdapat beberapa saran apabila sistem akan dikembangkan.

- a. Kedepan sistem informasi bisa digunakan oleh semua perusahaan untuk pengaplikasiannya tidak terbatas hanya pada IKM.
- b. Pengguna sistem informasi ini kedepan dapat memilih KPI mana saja sebagai dasar perhitngan SCOR.
- c. Untuk *input*-an pada kriteria tidak terbatas pada 3 periode saja
- d. Untuk penelitian kedepan perlu adanya Implementasi dan pengujian usabilitas.

DAFTAR PUSAKA

- Alhadi, R. (2019). Analisis Kinerja Rantai Pasok Industri Pengolahan Kulit Pada Proses Return Menggunakan Metode Supply Chain Operations Reference 12.0 (Studi Kasus: IKM Pengrajin Kulit Gandung). Universitas Islam Indonesia, Teknik Industri, Yogyakarta.
- Antonio, H., & Safriadi, N. (2012). Rancang Bangun Sistem Informasi Administrasi Informatika (SI-ADIF). 12-15.
- APICS. (2017). Supply Chain Operation Reference Model (SCOR) Version 12.0.
- APICS. (2017). Supply Chain Operations Reference Model (SCOR) Version 12.0. Chicago: APICS.
- Badan Pusat Statistik. (2018). *STATISTIK INDONESIA 2018*. (S. P. Statistik, Ed.) Jakarta, DKI Jakarta, Indonesia: Badan Pusat Statistik.
- Bodnar, George, H., & Hopwood, W. S. (2006). *Sistem Informasi Akuntansi* (Vol. 1). Jakarta: salemba empat.
- Budiman, M. A. (2019). Analisis Nilai Kinerja Rantai Pasok Menggunakan Metode Supply Chain Operations Reference (Scor) 12.0 Dengan Pendekatan Pada Atribut Proses Enable (Studi Kasus: IKM Kerajinan Kulit Brill Leather). Universitas Islam Indonesia, Teknik Industri, Yogyakarta.
- Colombus, L. (2015). Retrieved September 27, 2020, from http://www.forbes.com/sites/louiscolumbus/2015/03/15/data-analytics-dominates-enterprises-spending-plans-for-2015/
- Darojat, & Yunitasari, E. W. (2017). Pengukuran Performansi Perusahaan dengan Menggunakan Metode Supply Chain Operation Reference(SCOR). Seminar dan Konferensi Nasional IDEC.
- Gumelar, T. A. (2019). Analisis Kinerja Supply Chain Pada Proses Return Menggunakan Metode Supply Chain Operation Refrence (SCOR) 12.0 (Studi Kasus:IKM Kulit Fanri Collection). Universitas Islam Indonesia, Teknik Industri, Yogyakarta.
- Heizer, J., & Render, B. (2011). *Operations Management* (10th ed.). New Jersey: Pearson Education.
- Immawan, T., & Pratama, C. Y. (2016). Pengukuran Performansi Rantai Pasok Pada Industri Batik Tipe Produksi Make-To-Stock Dengan Menggunakan Model Scor 11.0 Dan Pembobotan Ahp. *Teknoin*, 68-79.

- Jayani, D. H. (2020, Februari 26). *Data Stories*. Retrieved September 28, 2020, from Databoks: https://databoks.katadata.co.id/datapublish/2020/02/26/indonesia-habiskan-hampir-8-jam-untuk-berinternet
- Jogiyanto, H. (2007). Sistem Informasi Keperilakuan.
- kemenpern.go.id. (2019, Desember 30). *Kemenperin Pacu Pertumbuhan IKM untuk Menjadi Tulang Punggung Perekonomian Nasional*. Retrieved April 15, 2020, from kemenperin.go.id: https://kemenperin.go.id/artikel/21335/Kemenperin-Pacu-Pertumbuhan-IKM-untuk-Menjadi-Tulang-Punggung-Perekonomian-Nasional
- Liputra, D. T., Santoso, & Susanto, N. A. (2018). Pengukuran Kinerja Rantai Pasok Dengan Model Supply Chain Operations Reference (SCOR) dan Metode Perbandingan Berpasangan. *Jurnal Rekayasa Sistem Industri*.
- Lu, D. (2011). Fundamentals of supply chain management. Bookboon.
- Muchlas, Z. (2015). Strategi Inovasi dan Daya Saing Industri Kecil Menengah (IKM) Agro Industri di Kota Batu. *Jurnal JIBEKA*, *9*, 78-91.
- Mutakin, A., & Hubeis, M. (2011). Pengukuran Kinerja Manajemen Rantai Pasokan dengan SCOR Model 9.0. *Jurnal Manajemen dan Organisasi*, 90-103.
- Nabl'a, S. F. (2019). ANALISIS HASIL PENGUKURAN KINERJA RANTAI PASOK PADA INDUSTRI KULIT MENGGUNAKAN METODE SUPPLY CHAIN OPERATIONS REFERENCE (SCOR) 12.0. Universitas Islam Indonesia, Teknik Industri, Yogyakarta.
- Nama, G. F., Hanafi, A. M., Nurfaif, M. B., & Sandikapura, M. T. (2019). *Dashboard Monitoring System Berbasis Web Sebagai Pemantau Layanan liteBIG Instant Messenger*. Lampung University, Informatics Engineering, Lampung.
- Novell. (2004). Secure enterprise dashboard: a key to business agility. Novell White Paper.
- Paul, J. (2014). Transformasi Rantai Suplai dengan Model SCOR. *PPM Manajemen*.
- Pressman, R. S. (2010). *Software Engineering A Practitioner's Approach* (7th ed.). McGraw-Hill Higher Education.
- Pujawan, I. N. (2010). Supply Chain Management (2nd ed.).
- Pujawan, N., & Mahendrawathi . (2017). Supply Chain Management Edisi 3. Yogyakarta:

 Andi.

- Rasmussen, N., Chen, C. V., & Bansal, M. (2010). *Business dashboards: mengendalikan bisnis melalui layar monitor*. Jakarta Pusat.
- Ridwan, M., Hartutiningsih, & Hatuwe, M. (2014). Pembinaan Industri Kecil dan Menengah Pada Dinas Perindustrian, Perdagangan, Koperasi dan UMKM Kota Bontang. *Jurnal Administrative Reform*, 2.
- Rustono. (2013). Pemanfaatan Teknologi Informasi Dan Pengaruhnya Terhadap Kinerja Usaha Kelompok Bisnis Entrepreneur.
- Saputro, D. A. (2019). ANALISIS KINERJA SUPPLY CHAIN (RANTAI PASOK) PADA PROSES MAKE MENGGUNAKAN METODE SUPPLY CHAIN OPERATIONS REFERENCE (SCOR) 12.0 (Studi Kasus:IKM Kulit Daniela Art). Universitas Islam Indonesia, Teknik Industri, Yogyakarta.
- Saputro, F. C., Anggraeni, W., & Mukhlason, A. (2012). Pembuatan Dashboard Berbasis Web Sebagai Sarana Evaluasi Diri Berkala untuk Persiapan Penilaian Akreditasi Berdasarkan Standar Badan Akreditasi Nasional Perguruan Tinggi. *JURNAL TEKNIK ITS*, 1, 397-402.
- Setiawan, D. Y., Hendrawan, R. A., & Tyasnurita, R. (2013). Perancangan Business Intelligence Dashboard Berbasis Web Untuk Pemantauan Tingkat Keberhasilan Pambangunan Ketenagakerjaan (Studi Kasus: Provinsi Jawa Timur). *JURNAL TEKNIK POMITS*, 2, 1-6.
- Sommerville, I. (2011). Software Engineering (9th ed.). Addison-Wesley.
- Sumaryadi. (2014). Onlinekan! Bandung: Azzahra.
- Sutabari, T. (2005). Sistem Informasi Manajemen.
- Ulfah, M., Maarif, M. S., Sukardi, & Raharja, S. (2016). Analysis and Improvement of Supply Chain Risk Management of Refined Sugar using House of Risk Approach. *Jurnal Teknologi Industri Pertanian*, 26, 87-103.
- Yogya, W. (2018). *Pengertian Website Lengkap dengan Jenis dan Manfaatnya*.

 Retrieved Juli 14, 2020, from niagahoster: https://www.niagahoster.co.id/blog/pengertian-website/
- Zagorecki, A. R. (2012). Executive Dashboard Systems For Emergency Management. *Communication Journal*, 82-89.

LAMPIRAN

Berikut adalah rumus- rumus perhitungan SCOR:

- 1. Proses Plan
 - a. RS.3.29 Establish Sourcing Plans Cycle Time

Rata- Rata = Total Perencanaan Bahan baku/ Total Periode

b. RS.3.13 Balance Production Resources with Production Requirements Cycle Time

Rata- Rata = Total Perencanaan Sumber Daya / Total Periode

c. RS.3.28 Establish Production Plans Cycle Time

Rata- Rata = Total Perencanaan Produksi / Total Periode

d. RS.3.27 Establish Delivery Plans Cycle Time

Rata- Rata = Total Perencanaan Pengiriman / Total Periode

- e. RS.3.26 Establish and Communicate Return Plans Cycle Time Rata- Rata = Total Pengembalian Produk / Total Periode
- 2. Proses Source
 - a. RL.3.27 % Schedules Changed within Supplier's Lead Time

% Schedules Changed within Supplier's Lead Time

$$= \left(\frac{\text{banyaknya perubahan jadwal yang terjadi dari pemasok}}{\text{total jadwal pengiriman yang telah disepakati}}\right) x 100\%$$

b. RL.3.18 % Orders/Lines Processed Complete

% Order/Lines Processed Complete

 $= \left(\frac{\text{banyaknya } \textit{order} \text{ atau pemesanan yang dapat diproses secara lengkap}}{\text{total } \textit{order} \text{ atau pemesanan bahan baku dari perusahaan ke pemasok}}\right) x 100\%$

c. RL.3.20 % Order/Lines Received On-Time to Demand Requirements % Orders Lines Received Ontime to Demand Req $= \left(\frac{\text{jumlah pemesanan yang dapat diterima sesuai waktu dan kuantitas}}{\text{total order atau pemesanan bahan baku dari perusahaan ke pemasok}}\right) x 100\%$

- d. RL 3.23 % Orders/ Lines Received with Correct Shipping Documents
 % Orders/ Lines Received with Correct Shipping Documents
 = $\left(\frac{\text{Jumlah pemesanan yang diterima dengan kelengkapan dokumen}}{\text{Total pemesanan bahan baku dari perusahaan ke pemasok}}\right) x 100%$
- e. RL.3.19 % Orders/ Lines Received Defect Free

 % Orders/ Lines Received Defect Free

 = \left(\frac{\text{Jumlah pemesanan yang diterima perusahaan tanpa cacat}}{\text{Total pemesanan bahan baku dari perusahaan ke pemasok}}\right) x100%
- f. RL.3.24 % Orders/ Lines Received Damage Free

 % Orders/ Lines Received Damage Free

 = (jumlah pemesanan yang diterima perusahaan tanpa rusak total pemesanan bahan baku dari perusahaan ke pemasok) x100%

 Persamaan (4.1) % Order/ Lines Received Damage Free
- g. RL.3.21 % Orders/ Lines Received with Correct Content

% Orders/Lines Received with Correct Content $= \left(\frac{\text{jumlah pemesanan yang diterima sesuai dengan spesikasi}}{\text{total jumlah pesanan bahan baku dari perusahaan ke pemasok}}\right) x 100%$

- i. RL3.26 % Product Transferred without Transaction Errors
 % Product Transferred without Transaction Errors

$$= \left(\frac{\text{banyaknya jumlah transaksi tanpa error}}{\text{total transaksi yang dilakukan antara perusahaan dan pemasok}}\right) x 100\%$$

RS3.10 Average Days per Schedule Change

=
$$\left(\frac{\text{jumlah hari yang mempengaruhi keterlambatan pengiriman}}{\text{banyaknya perubahan jadwal yang terjadi dari pemasok}}\right)$$
x100%

k. AM.3.37 Percentage Excess Inventory

$$Percentage \ Excess \ Inventory = \left(\frac{\text{nilai persediaan bahan baku yang berlebih}}{\text{total nilai persediaan bahan baku}}\right) x 100\%$$

- 3. Proses Make
- ISLAM Z a. RL.3.49 Schedule Achievement

Schedule Achievement

$$= \left(\frac{\text{jumlah produk yang dapat dibuat secara tepat waktu}}{\text{total produk yang dapat dibuat}}\right) x 100\%$$

b. RL.3.58 Yield

$$Yield = \left(rac{ ext{jumlah produk yang lolos pengujian dan pengecekan}}{ ext{total produk yang dibuat oleh perusahaan}}
ight)$$

c. RL.3.31 Compliance Documentation Accuracy

Compliance Documentation Accuracy=

$$\left(\frac{\text{produk yang dikemas dengan dokumen yang lengkap}}{\text{jumlah total produk yang dapat dibuat}}\right)$$
 x100%

d. AM.3.9 Capacity Utilization

$$Capacity \ Utilization \ Produk = \left(\frac{produk \ aktual \ yang \ dihasilkan}{kapasitas \ maksimum \ produk \ yang \ dapat \ dibuat}\right)$$

Kapasitas Sumber Daya Manusia:

Capacity Utilization Human Resource =

(jumlah tenaga kerja yang digunakan dalam proses produksi)
total tenaga kerja yang ada di perusahaan

Kapasitas Mesin:

Capacity Utilization Machine

 $= \left(\frac{\text{jumlah mesin yang digunakan dalam proses produksi}}{\text{total mesin yang terdapat di perusahaan}}\right)$

- 4. Proses Deliver
 - a. RL.3.33 Delivery Item Accuracy

Delivery Item Accuracy=

100% -
$$\left(\left(\frac{\text{Jumlah pesanan produk yang dikirim sesuai spesifikasi}}{\text{Jumlah pesanan produk yang dikirim}}\right) x 100%\right)$$

b. RL.3.34 Delivery Location Accuracy

Delivery Location Accuracy=

100% -
$$\left(\left(\frac{\text{jumlah pesanan produk yang dikirim sesuai lokasi konsumen}}{\text{Jumlah pesanan produk yang dikirim}}\right)$$
x 100% $\right)$

c. RL.3.35 Delivery Quantity Accuracy

Delivery Quantity Accuracy=

- d. RL.3.32 Customer Commit Date Achievement Time Customer Receiving

 Customer Commit Date Achievement Time Customer Receiving =

 (Jumlah pesanan yang diterima sesuai dengan waktu perjanjian total pesanan produk yang diterima) x100%
- e. RL3.50 Shipping Documentation Accuracy

Shipping Documentation Accuracy=

f. RL3.41 Orders Delivered Damage Free Conformance

Orders Delivered Damage Free Conformance =

$$\left(\frac{\text{produk tanpa kerusakan}}{\text{total produk yang dikirim}}\right) x 100\%$$

g. RL3.42 Orders Delivered Defect Free

Orders Delivered Defect Free Conformance=

- 5. Proses Return
 - a. RS.3.5 Authorized Defective Return Cycle Time

Rata- Rata = Klaim Produk / Total Periode

b. RS.3.104 Receive Defective Product Cycle Time

Rata- Rata = Persetujuan Klaim Produk / Total Periode

c. RS.3.136 Transfer Defective Product Cycle Time

Rata- Rata = Total Penerimaan produk return / Total Periode

d. CO.3.16 Cost Source to Return

Rata- Rata = Total Biaya bahan baku perbaikan produk / Total Periode

e. CO.3.17 Cost Deliver to Return

Rata- Rata = Total biaya pengiriman produk return / Total Periode

- 6. Proses Enable
 - a. Manage Supply Chain Performance
 - 1) Initiate Reporting

Hirarki	Kegiatan	Kete	rangan		Ska	la L	iker	t	Total	Rata- rata
		Ada	Tidak Ada							
sE2.1	Reporting			1	2	3	4	5		
Initiate	Requirements									
Reporting	Risk			1	2	3	4	5		
	Monitoring									
	Requirement								5	1,25
	Customer			1	2	<mark>3</mark>	4	5		
	Escalation									
	Supplier			1	2	3	4	5		
	Escalation									

2) Analyze Reports

Hirarki	Kegiatan	Kete	rangan Tidak Ada	CONTRACTO	Ska	la L	iker	t	Total	Rata- rata
sE2.2 Analyze	Weekly Reports			1)	2	3	4	5		
Reports	Quarterly Reports	THE .		1	2	3	4	5	0	0
	Daily Report			1	2	3	4	5		
	Annual Reports			1	2	3	4	5		
	Monthly Reports			1	2	3	4	5		

3) Find Root Causes

Hirarki	Kegiatan	Kete	erangan Tidak Ada	İ	Skal	la Li	iker	t	Total	Rata -rata
sE2.3 Find Root Causes	Detailed Performance Gap		Aua	1	2	3	4	5	2	2

4) Prioritize Root Causes

Hirarki	Kegiatan	Ke Ada	eterangan Tidak Ada	S	kal	a L	ike	rt	Total	Rata- rata
sE2.4 Prioritize Root Causes	Root Causes			1	2	3	4	5	2	2

5) Develop Corrective Actions

Hirarki	Kegiatan		terangan	Sk	ala	Lik	ert	To	tal	Rata- rata
		Ada	Tidak Ada							
sE2.5	Prioritized		1 U	1	2	3	4	5		
Develop	Root Cause		7	1		3	4	3		
Corrective	Skills/		Ī							
Actions	Resource			1	2	3	4	5	2	0.67
	Change		U						2	0,67
	Network		7							
	Configuration			1	2	3	4	5		
	Change	Paris.								
				Ø						

6) Approve and Launch

Hirarki	Kegiatan	Ke Ada	eterangan Tidak Ada	Sk	ala	Lik	ert	To	tal	Rata- rata
sE2.6 Approve and Launch	Corrective Action		Tituli Tituli	1	2	3	4	5	2	2

b. Manage Supply Chain Human Resources

1) Identify Skills/ Resource Requirement

Hirarki	Kegiatan	Ke	terangan	Skala Likert					Tota l	Rata -rata
		Ad	Tidak						_	
		a	Ada							
sE4.1 Identify	Sourcing Plans			1	2	3	4	5		
Skills/ Resource	Production Plans			1	2	3	4	5		
Requireme nt	Distributio n Plan			1	2	3	4	5		
ni										
	Skills/ Resource Change			1	2	3	4	5	10	1,67
	Return Plans	4		1	2	3	4	5		
	Skill/ Resource Gap		-AM	17						

2) Identify Available Skills/ Resources

Hirarki	Kegiatan	Ke Ad a	eterangan Tidak Ada			ala xert		To	ota I	Rata -rata
sE4.2 Identify Available Skills/Resource s	Request for Skills/Resourc e Data			1	2	3	4	5	2	2

3) Match Skills/ Resources

Hirarki	Kegiatan	Kete	terangan Skala Likert		t	Total	Rata- rata			
		Ada	Tidak Ada							
sE4.3 Match Skills/ Resources	List of Available Skills/ Resources			1	2	3	4	5	2	0,4
	List of Available and			1	2	3	4	5		

Hirarki	Kegiatan	Kete	rangan	Skala Likert					Total	Rata- rata
		Ada	Tidak Ada							
	Launch Skill/									
	Resources									
	Hiring Plan			1	2	3	4	5		
	Redeployment Plan			1	2	3	4	5		
	Training Plan			1	2	3	4	5		

4) Determine Hiring/Redeployment

Hirarki	Kegiatan	Keter	rangan Tidak	Skala Likert				Skala Likert Total		Rata- rata
	155		Ada	0						
sE4.4	Skill/			7						
Determine	Resource			1	2	3	4	5		
Hiring/	Gap			1/1					3	1,5
Redeployment	Budget - Salaries			1	2	3	4	5		

5) Determine Training/Education

Hirarki	Kegiatan	Kete	S	kal	a Li	iker	Total	Rata- rata		
		Ada	Tidak Ada							
sE4.5 Determine Training/	Skill/ Resource Gap			1	2	3	4	5	0	0
Education	Budget - Training			1	2	3	4	5		

6) Approve, Prioritize and Launch

Hirarki	Kegiatan	Keterangan			kala	a Li	ker	·t	Total	Rata-
		Ada	Tidak Ada							Tutt
sE4.6 Approve,	Proposed Training			1	2	3	4	5		
Prioritize	Plan			1 2 3 4 3				5	2	1
and Launch	Proposed Staffing Plan			1	2	3	4	5	2	1

