RANCANG BANGUN SISTEM OTOMASI GREENHOUSE

(Studi Kasus di PT Indmira)

SKRIPSI

untuk memenuhi salah satu persyaratan mencapai derajat Sarjana S1

Bagas Dhanes Kesworo
16524035

Jurusan Teknik Elektro
Fakultas Teknologi Industri
Universitas Islam Indonesia
Yogyakarta
2020

LEMBAR PENGESAHAN

RANCANG BANGUN SISTEM OTOMASI GREENHOUSE

(Studi Kasus di PT Indmira)

TUGAS AKHIR

S L A M

Diajuk<mark>an seb</mark>agai Salah Satu Syarat untuk Me<mark>m</mark>peroleh

Gelar Sarjana Teknik
pada Program Studi Teknik Elektro
Fakultas Teknologi Industri
Universitas Islam Indonesia

Di<mark>s</mark>us<mark>u</mark>n oleh:

Bagas Dhanes Kesworo
16524035

Yog<mark>yakarta, 20 Juli 202</mark>0

Menyetujui,

Pembimbing

<u>Dwi Ana Ratna Wati S.T., M.Eng</u> 035240102

LEMBAR PENGESAHAN

SKRIPSI

RANCANG BANGUN SISTEM OTOMASI GREENHOUSE

(Studi Kasus di PT Indmira)

Dipersiapkan dan disusun oleh:

Bagas Dhanes Kesworo

16524035

Telah dipertahankan di depan dewan penguji

Pada tanggal: 12 Agustus 2020

Susunan dewan penguji

Ketua Penguji : Dwi Ana Ratna Wati S.T., M.Eng.,

Anggota Penguji 1: Alvin Sahroni S.T., M.Eng., Ph.D.,

Anggota Penguji 2: Dr. Eng. Hendra Setiawan., ST, MT.

Skripsi ini telah diterima sebagai salah satu persyaratan untuk memperoleh gelar Sarjana

Tanggal: 12 Agustus 2020

Ketua Program Studi Teknik Elektro

Yusuf Aziz Amrullah, S.T., M.Sc., Ph.D. 045240101

PERNYATAAN

Dengan ini Saya menyatakan bahwa:

- 1. Skripsi ini tidak mengandung karya yang diajukan untuk memperoleh gelar kesarjanaan di suatu Perguruan Tinggi, dan sepanjang pengetahuan Saya juga tidak mengandung karya atau pendapat yang pernah ditulis atau diterbitkan oleh orang lain, kecuali yang secara tertulis diacu dalam naskah ini dan disebutkan dalam daftar pustaka.
- 2. Informasi dan materi Skripsi yang terkait hak milik, hak intelektual, dan paten merupakan milik bersama antara tiga pihak yaitu penulis, dosen pembimbing, dan Universitas Islam Indonesia. Dalam hal penggunaan informasi dan materi Skripsi terkait paten maka akan diskusikan lebih lanjut untuk mendapatkan persetujuan dari ketiga pihak tersebut diatas.

Yogyakarta, 20 Juli 2020

Bagas Dhanes Kesworo

KATA PENGANTAR

Assalamualaikum Wr. Wb.

Alhamdulillahi Robil 'Alamin, segala puji bagi Allah SWT yang telah memberikan rahmat dan karuniaNya. Sholawat dan salam senantiasa tercurahkan kepada baginda Nabi Muhammad SAW yang kelak syafaatnya kita nantikan di yaumul qiyamah. Penyusunan skripsi yang berjudul "RANCANG BANGUN SISTEM OTOMASI *GREENHOUSE* (Studi kasus di PT. Indmira) bertujuan untuk memenuhi syarat guna mencapai gelar Sarjana Teknik Elektro di Universitas Islam Indonesia.

Sebagai penulis menyadari bahwa penulisan ini tidak dapat terselesaikan tanpa dukungan berbagai pihak baik materiil maupun moril. Oleh sebab itu penulis menyampaikan ucapan terimakasih kepada semua pihak yang telah mendukung dan membantu dalam penyusunan skripisi ini terutama kepada :

- 1. Ibu Ana Dwi Ratna Wati S.T., M.Eng., selaku dosen pembimbing yang telah mendampingi, membimbing dan memberikan bantuan pikiran serta materi sehingga penulis dapat menyelesaikan laporan tugas akhir ini.
- 2. Bapak Yusuf Aziz Amrullah, S.T., M.Eng., Ph.D, Selaku Ketua Jurusan Teknik Elektro Fakultas Teknologi Industri Universitas Islam Indonesia.
- 3. Orang tua saya, Ibu Sri Murni Kasiyati dan Ayah saya Suyoto. Yang selalu memberikan doa, dukungan, serta materi kepada saya untuk kelancaran penelitian yang saya lakukan.
- 4. Adik saya Bagus Arifari Kusworo, yang memberikan semangat dan dukungan untuk penelitian saya.
- 5. Eka Ayuningtyas, yang selama ini memberikan semangat, dukungan, dan doa untuk kelancaran penelitian ini.
- 6. Ayasi Bahifatih Priyoda dan Hasan Mubarok selaku teman seperjuangan di PT. Indmira.
- 7. Seluruh Bapak/Ibu dosen Teknik Elektro yang memberikan pengetahuan yang sangat bermanfaat selama masa perkuliahan.
- 8. Seluruh rekan-rekan Teknik Elektro, terutama angkatan 16 yang telah berjuang bersama.

Penulis menyadari bahwa skripsi ini masih jauh dari sempurna dikarenakan terbatasnya pengalaman dan pengetahuan yang dimiliki penulis. Oleh karena itu, penulis mengharapkan segala bentuk saran serta masukan bahkan kritik yang membangun dari segala pihak. Semoga skripsi ini dapat bermanfaat bagi pembacanya.

ARTI LAMBANG DAN SINGKATAN

Singkatan	Arti Singkatan
NFT	Nutrient Film Technique
DFT	Deep Flow Technique
PPM	Part Per Million
PID	Proportional Integral Derivative
HMI	Human Machine Interface
EC	Electrical Conductivity
IoT	Internet of Things
TDS	Total Dissolved Solids
PLC	Programmable Logic Controller
SMD	Surface Mount Device
DIP	Dual Inline Package
DC	Direct Current
AC	Alternating Current
RTC	Real Time Clock
SCL	Serial Clock
SDA	Serial Data
SSR	Solid State Relay
PSU	Power Supply Unit
LD	Ladder Diagram
FBD	Function Blok Diagram
IL	Instruction List
ST	Structure Text
SFC	Sequential Function
SL	Statement List
PWM	Pulse Width Modulation

ABSTRAK

Indonesia dikenal sebagai negara agraris karena sebagian besar bermatapencaharian sebagai

petani. Seiring berkembangnya zaman metode pertanian berkembang pesat salah satunya metode

pertanian hidroponik. Beberapa petani hidroponik untuk memaksimalkan hasil panennya sudah

menggunakan teknologi dalam pertaniannya. Salah satunya PT. Indmira, yang bergerak pada

bidang pertanian yang berbasis teknologi didalamnya. Di PT.Indmira memiliki beberapa

greenhouse yang digunakan sebagai tempat penelitian didalamnya. Salah satu greenhouse

membutuhkan sebuah inovasi untuk mengontrol dan memonitor greenhouse tersebut, dengan

tujuan dari inovasi tersebut dapat meningkatkan hasil panen, membantu pekerja PT. Indmira dan

dapat membantu penelitian selanjutnya. Pengontrolan yang perlu dilakukan yaitu pencampuran

nutrisi, irigasi terjadwal, dan kontrol temperatur ruangan. Sedangkan suhu dan kelembapan

ruangan termasuk dalam hal yang perlu dimonitor. Sistem otomasi dibuat menggunakan PLC

FX3U sebagai kontrollernya dan HMI (Human Machine Interface) kinco sebagai interface-nya.

Sistem yang dibuat dapat berjalan secara otomatis atau manual tergantung pengguna yang akan

memakainya. Pada hasil pengujian pencampuran nutrisi otomatis hasilnya sudah sesuai parameter

yaitu mendapatkan 1600-an PPM (Part Per Million) pada saat pencampuran pertama dan pada

pengujian sistem irigasi otomatis berjalan sesuai waktu yang ditetapkan, Hasil pengujian

temperatur dan kelembapan untuk nilai rata-rata error pembacaan temperatur masih melebihi yaitu

diatas 2% sedangkan kelembapan sudah sesuai yaitu dibawah 5%, sedangkan untuk sistem

penurunan temperatur ruangan masih belum berhasil dikarenakan kurang adanya pertukaran udara

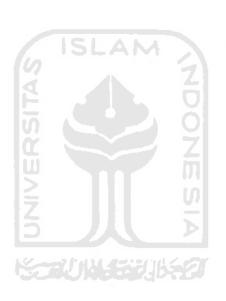
didalamnya. Dari keseluruhan sistem, untuk sistem manual dan otomatis sudah dapat dioperasikan

serta ada beberapa sistem yang perlu di kalibrasi dan diperbaiki lagi agar sesuai dengan spesifikasi

dan hasil yang diinginkan.

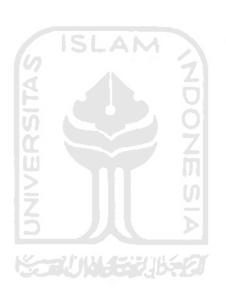
Kata Kunci: PLC FX3U, Sistem Otomasi Greenhouse.

iii


DAFTAR ISI

KATA PENGANTAR	i
ARTI LAMBANG DAN SINGKATAN	ii
ABSTRAK	iii
DAFTAR ISI	iv
DAFTAR GAMBAR	vi
DAFTAR TABEL	viii
BAB 1 PENDAHULUAN	1
1.1 Latar Belakang Masalah	1
1.2 Rumusan Masalah	2
1.3 Batasan Masalah	2
1.4 Tujuan Penelitian	2
1.5 Manfaat Penelitian	2
BAB 2 TINJAUAN PUSTAKA	
2.1 Studi Literatur	3
2.2 Hidroponik	4
2.2.1 Sistem Hidroponik Nutrient Film Technique (NFT)	
2.2.2 Sistem Hidroponik Irigasi Tetes / Drip	5
2.3 Nutrisi Hidroponik	5
2.4 PLC (Programmable Logic Controller)	6
2.5 Arduino Uno	6
2.6 Dosing Pump	7
2.7 Solenoid Valve	7
2.8 RTC (Real Time Clock) DS3231	8
2.9 Relay dan SSR (Solid State Relay)	8
2.10 Float Sensor	9
2.11 Sensor Suhu dan Kelembapan (Sensor DHT)	10

2.12 PSU (Power Supply Unit)	10
2.13 TDS Meter	11
2.14 Diagram Ladder (LD)	11
BAB 3 METODOLOGI	13
3.1 Alur Penelitian	13
3.2 Perancangan Sistem	13
3.2.1 Perancangan	14
3.2.2 Konstruksi	19
3.3 Langkah pengujian	20
BAB 4 HASIL DAN PEMBAHASAN	21
4.1 Pengujian RTC	21
4.2 Pengujian pencampuran nutrisi	
4.3 Pengujian temperatur	
4.4 Pengujian kelembapan	
4.5 Pengujian fungsi sistem pendingin otomatis	26
4.6 Pembahasan kinerja sistem keseluruhan	27
BAB 5 KESIMPULAN DAN SARAN	29
5.1 Kesimpulan	29
5.2 Saran	29
DAFTAR PUSTAKA	30
LAMPIRAN	1


DAFTAR GAMBAR

Gambar 2.1 Sistem Hidroponik NFT	4
Gambar 2.2 Sistem Hidroponik Drip	5
Gambar 2.3 Nutrisi Hidroponik AB-Mix	5
Gambar 2.4 PLC Mitsubishi FX3U	6
Gambar 2.5 Arduino Uno	7
Gambar 2.6 Dosing Pump	7
Gambar 2.7 Solenoid Valve	8
Gambar 2.8 RTC DS3231	8
Gambar 2.9 Relay	9
Gambar 2.10 SSR (Solid State Relay)	9
Gambar 2.11 Float Sensor	
Gambar 2.12 Sensor DHT	10
Gambar 2.13 PSU Siemens	11
Gambar 2.14 TDS Meter	11
Gambar 2.15 Ladder Diagram	12
Gambar 3.1 Metode Penelitian.	
Gambar 3.2 Greenhouse PT. Indmira	13
Gambar 3.3 Diagram Kendali	14
Gambar 3.4 Suhu Ruangan <i>Greenhouse</i>	14
Gambar 3.5 Desain Pencampuran Nutrisi	15
Gambar 3.6 Kadar Nutrisi Yang Biasa Digunakan PT. Indmira	16
Gambar 3.7 Flow Chart Program	17
Gambar 3.8 Wiring Diagram Perangkat	18
Gambar 3.9 Diagram Ladder Dengan Software GX Works2	19
Gambar 4.1 Grafik Selisih Waktu RTC DS3231 Dengan Laptop	22
Gambar 4.2 Hasil Pengujian 1 Otomatis	23
Gambar 4.3 Grafik Pembacaan Temperatur Sensor DHT Dan HTC 02	24
Gambar 4.4 Grafik Pembacaan Kelembapan DHT dan HTC 02	24
Gambar 4.5 Temperatur Awal Ruangan	26
Gambar 4.6 Temperatur Akhir Ruangan	26
Gambar 4.7 Greeenhouse Ketika Springkel Hidup Selama 10 Menit	26
Gambar 4.8 Pengujian Sistem Irigasi Otomatis	27
Gambar 4.9 Hasil Panen	28

DAFTAR TABEL

Tabel 3.1 Rata-Rata Dari Beberapa Pengambilan Data Debit Air <i>Dosing Pump</i>	16
Tabel 3.2 Inisialisasi Alamat PLC	19
Tabel 4.1 Hasil Pengujian RTC DS3231	21
Tabel 4.2 Hasil Pengujian Pencampuran Otomatis dan Manual	23
Tabel 4.3 Persentase <i>Error</i> Pembacaan Temperatur dan Kelembapan	25

BAB 1

PENDAHULUAN

1.1 Latar Belakang Masalah

Di Indonesia sebagian besar penduduknya memiliki mata pencaharian sebagai petani, sehigga Indonesia banyak dikenal sebagai negara agraris. Namun seiring berkembangnya zaman dan teknologi, kini lahan-lahan pertanian mulai berkurang dan berubah menjadi daerah perkotaan. Untuk memaksimalkan lahan-lahan sempit di daerah perkotaan beberapa masyarakat menggunakan cara hidroponik untuk bercocok tanam serta memanfaatkan teknologi pertanian didalamnya dalam meningkatkan hasil panennya. Dalam sistem hidroponik, banyak sekali sistem yang dapat digunakan seperti wick system, sistem NFT (Nutrient Film Technique), Drip System, Sistem DFT (Deep Flow Technique), Dutch Bucked, dan masih banyak lagi[1]. Cara bercocok tanam hidroponik ini memerlukan perawatan serta penanganan yang lebih, seperti contohnya ketika pemberian nutrisi AB-Mix (nutrisi yang sering dipakai dalam hidroponik) dan memantau kadar nutrisi tersebut. Pada umumnya di masyarakat sekarang ini masih menggunakan cara manual, sehingga kurang efisien dari segi waktu dan tenaga. Seperti untuk mengukur kadar PPM (Part Per Million), pencampuran nutrisi AB-Mix, pengecekan air dalam tandon dan sebagainya[2].

Selain nutrisi, ada juga perawatan lainnya yaitu memperhatikan cahaya, suhu dan kelembapan yang merupakan iklim mikro, kesesuaian iklim mikro sangat penting untuk pertumbuhan tanaman agar mendapatkan hasil yang optimal[3]. Intensitas cahaya sangat berkaiatan dengan suhu, ketika cahayanya lebih maka suhu akan naik. Ketika suhu ruangan terlalu tinggi maka tanaman akan layu bahkan bisa mati karena terlalu panas[4].

Di dalam perawatan terhadap tanaman hidroponik PT. Indmira yang terletak di Sleman Yogyakarta masih menggunakan cara manual, salah satunya yaitu untuk mengukur pemberian kadar PPM. Untuk mengukur dan pemberian kadar PPM dalam tandon yaitu menggunakan perhitungan 500 ml nutrisi A dan 500 ml nutrisi B dicampur dan dilarutkan kedalam air 100 liter[5]. Kemudian untuk pengecekan air dalam tandon juga membuat pegawainya harus tetap memantau walaupun dihari libur. Dari permasalahan tersebut, terciptalah sebuah ide untuk membuat sistem kontrol nutrisi otomatis pada sistem hidroponik NFT dan *Drip*. Dengan sebuah ide tersebut PT. Indmira memberikan sebuah fasilitas berupa sebuah PLC Mitsubishi FX3U, *dosing pump, solenoid valve, float sensor,* sensor temperatur dan kelembapan, dan beberapa komponen pendukung lainnya. Dengan sistem ini diharapakan dapat menambah produktivitas hasil pertanian.

1.2 Rumusan Masalah

- Bagaimana mendesain dan membuat sebuah sistem otomasi pada sebuah *greenhouse* hidroponik sesuai spesifikasi PT.Indmira.
- Bagaimana unjuk kerja sistem setelah diimplementasikan.

1.3 Batasan Masalah

- Penelitian dilakukan di PT. Indmira.
- Sistem pertanian yang digunakan hidroponik NFT dan *Drip System*.
- Menggunakan PLC Mitsubishi FX3U.
- Penelitian dilakukan di dalam greenhouse.
- HMI (*Human Machine Interface*) sudah didesain anggota tim yang lain.

1.4 Tujuan Penelitian

Tujuan dari penelitian ini adalah mendapatkan sistem otomasi *greenhouse* sesuai spesifikasi dari PT. Indmira dan dapat berfungsi dengan baik.

1.5 Manfaat Penelitian

- Mempermudah perawatan dan pengelolaan greenhouse hidroponik.
- Menjadi referensi bagi petani hidroponik lain untuk memakasimalkan hasil produksinya.
- Membantu penelitian selanjutnya pada bidang teknologi pertanian.

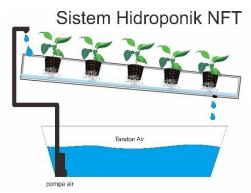
BAB 2

TINJAUAN PUSTAKA

2.1 Studi Literatur

Penelitian tentang sistem kontrol nutrisi pada hidroponik telah banyak dilakukan sebelumnya, seperti penelitian oleh Fachriel Fadhilah Dzkriansyah dkk[2]. Mereka membuat sebuah sistem kendali nutrisi tananman hidroponik yang berbasis PID dengan Arduino Uno sebagai mikrokontrolernya dan HMI sebagai tampilan antarmukanya. Dibuatnya sistem kendali tersebut bertujuan untuk membantu para petani hidroponik untuk mengurangi gagal panen akibat kesalahan dari proses pemberian pupuk yang tidak diatur dengan baik[2]. Dari perancangan sistem kendali nutrisi Fachriel Fadhilah Dzkriansyah mendapatkan hasil nilai EC dengan presentasi *error* sebesar 14,04% dan untuk pembacaan PPM memiliki presentasi error 35,58%[2]. Kemungkinan dari besarnya *error* pada pembacaan PPM disebabkan karena sensor yang digunakan yaitu buatan sendiri dan belum terkalibrasi dengan baik. Dari penelitian penelitian tersebut menunjukkan pentingnya melakukan pemberian nutrisi secara teratur dan sesuai dengan takaran agar pertumbuhan menjadi optimal.

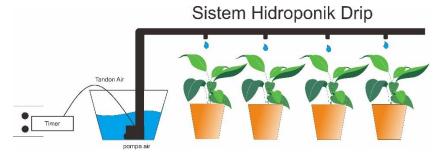
Pada tahun 2017, Vaibhav Palade dkk[6] juga melakukan penelitian tentang pembuatan sistem otomasi untuk tanaman hidroponik. Didalam sistem otomasi yang mereka buat mereka menggunakan 2 arduino UNO, 1 arduino Mega, dan Raspberry Pi sebagai mikrokontrolernya dan Domoticz sebagai tampilan antarmukanya. Sistem yang dibuat memiliki tujuan untuk mengurangi campur tangan manusia. Mereka menggunakan *internet of things* (IoT) untuk memungkinkan pemantauan dan kontrol jarak jauh jika diperlukan[6]. Dari pemantauan dan kontrol yang telah dilakukan yaitu memiliki keuntungan kendali penuh terhadap aspek-aspek yang mempengaruhi pertumbuhan tanaman.


Kemudian ada penelitian yang berjudul otomasi *greenhouse* berbasis mikrokomputer RASPBERRY PI pada tahun 2019, oleh Adi Fajaryanto Cobantoro dkk[7]. Penelitian tersebut membuat sistem otomasi untuk mengontrol dan memonitoring suhu serta kelembapan pada *greenhouse*. Dengan tanaman yang terkontrol dari sistem yang dibuat, maka pertumbuhan tanaman pada *greenhouse* bisa mendapatkan hasil yang maksimal dibandingkan dengan yang dibudidayakan di luar *greenhouse*[7].

2.2 Hidroponik

Hidroponik merupakan sebuah metode bercocok tanam tanpa menggunakan media tanah, dimana masa pembibitan hingga masa panen hanya menggunakan larutan nutrisi. Dalam hidroponik ada beberapa media tanam yang dapat digunakan seperti hidroton, cocopeat, rockwool, arang sekam, serbuk kayu, dan lain-lain. Tanaman yang dapat dibudidayakan dengan teknik hidroponik adalah tanaman holtikultura yang meliputi sayuran dan daun, buah, pertamanan, tanaman hias, dan tanaman obat-obatan[8]. Tanaman hidroponik juga memerlukan unsur hara mikro maupun makro agar dapat tumbuh dengan baik. Unsur hara makro antara lain N, P, K, Ca, S, dan Mg, sedangkan unsur hara mikro, Mn, Fe, Zn, B, Cu, Mo, Ni, dan Cl[9]. Untuk memenuhi semua unsur hara tersebut para petani hidroponik menggunakan nutrisi AB-Mix pada tanamannya. Tidak lepas dari hal tersebut cahaya matahari, suhu dan kelembapan juga berpengaruh terhadap pertumbuhan tanaman. Tanaman akan dapat tumbuh optimal pada suhu-suhu tertentu, seperti penelitian Mareli Telaumbanua dkk, yang melakukan penelitian studi pola pertumbuhan tanaman sawi pada greenhouse yang terkontrol[3]. Pada hasil penelitian, mereka menemukan pengaruh suhu terhadap laju pertumbuhan tanaman sawi. Pengujian dilakukan dengan 3 suhu yaitu 32°C. 35°C, dan 38°C. Dari ketiga suhu tersebut, suhu 35°C mendapatkan tanaman mendapatkan pertumbuhan terbaik dengan luas daun maksimal 565,41cm², suhu 32°C dengan luas 537,72 cm² dan suhu 38°C luas daun yang diperoleh 372,18 cm²[3].

2.2.1 Sistem Hidroponik Nutrient Film Technique (NFT)


Sistem NFT merupakan salah satu sistem yang populer digunakan pada sistem hidroponik. Sistem ini mengalirkan air yang tercampur nutrisi secara terus-menerus kedalam sebuah talang atau pipa PVC yang digunakan untuk tempat pertumbuhan. Air nutrisi yang sudah melewati perakaran akan kembali ke sebuah tandon, siklus tersebut terjadi secara berulang-ulang[9].

Gambar 2.1 Sistem Hidroponik NFT

2.2.2 Sistem Hidroponik Irigasi Tetes / Drip

Sistem hidroponik tetes (*drip system*) merupakan salah satu sistem hidroponik yang sederhana, karena pada prinsipnya hanya memberikan air dan nutrisi dalam bentuk tetesan. Didalam sistem irigasi tetes ini ada 2 model yang dapat digunakan, yaitu *recovery* dan *non-recovery*. Model *recovery* yaitu model dimana larutan nutrisi akan dikembalikan ke *reservoir*. Sedangkan untuk *non-recovery* larutan nutrisi dibiarkan mengalir kedalam tanah[8].

Gambar 2.2 Sistem Hidroponik *Drip*

2.3 Nutrisi Hidroponik

Salah satu hal pokok dalam bercocok tanam hidroponik yaitu terpenuhinya kebutuhan nutrisi dan kesesuaian kepekatan larutan yang akan diberikan kepada tanaman. Oleh sebab itu sangat penting untuk mengecek kadar PPM yang terlarut dalam air. TDS meter ini biasa digunakan untuk mengukur jumlah padatan yang terlarut dalam air[8]. Dalam pemberian nutrisi hidroponik dapat disesuaikan dengan takaran nutrisi AB-Mix, seperti nutrisi 500 ml nutrisi AB-Mix dapat dicampurkan dengan air 100 liter. Didalam nutrisi AB-Mix juga tedapat panduan untuk pencampurannya, untuk gambar nutrisi AB-Mix dapat dilihat pada Gambar 2.3.

Gambar 2.3 Nutrisi Hidroponik AB-Mix

2.4 PLC (Programmable Logic Controller)

PLC merupakan suatu piranti yang dapat diprogram untuk mengontrol proses atau operasi mesin. Kontrol program dari PLC yaitu menganalisa sinyal *input* kemudian mengatur keadaan *output* sesuai dengan keinginan pemakai. Keadaan input PLC digunakan dan disimpan di dalam *memory* dimana PLC melakukan instruksi logika yang diprogram pada keadaan *input*-nya. Peralatan *input* dapat berupa sensor *photoelectric*, *limit switch*, *push button* dan paralatan lainnya. Peralatan *output* bisa berupa *switch* yang menyala pada lampu indikator, *relay* yang menggerakkan motor atau peralatan lain yang dapat digerakkan oleh sinyal *output* PLC[10]. PLC memiliki banyak sekali tipe, salah satunya PLC Mitsubishi FX3U, PLC ini memiliki 24 *digital input* dan 16 *output* serta memiliki 2 *analog input* dan 2 *analog output*. Untuk komunikasi serialnya memiliki satu RS232 dan satu RS485, untuk bentuk dari PLC-nya dapat dilihat pada Gambar 2.4.

Gambar 2.4 PLC Mitsubishi FX3U

2.5 Arduino Uno

Arduino Uno merupakan mikrokontroler yang menggunakan sebuah chip ATmega328P dengan kemasan SMD atau DIP. Untuk dapat menggunakan komunikasi serial mikrokontroler ini dibekali chip ATmega16U2. Pada Arduino Uno terdapat 14 pin *input output* digital dan 6 pin *input* analog dan bekerja pada frekuensi 16MHz[11]. Arduino beroperasi pada area tegangan kerja 5V DC sampai 12V DC, untuk bentuk dari Arduino UNO dapat dilihat pada Gambar 2.5.

Gambar 2.5 Arduino Uno

2.6 Dosing Pump

Dosing pump atau metering pump adalah pompa yang bisa menginjeksikan cairan kimia dan bahan lainnya kedalam cairan pelarut lainnya yang pada umunya adalah air. Dosing pump biasanya dilengkapi dengan pengatur debit cairan yang dikeluarkan sehingga pencampuran bahan dapat sesuai dengan takaran yang diinginkan[12]. Ada banyak model dosing pump salah satunya dosing pump dengan motor stepper sebagai penggeraknya seperti pada Gambar 2.6. Dosing pump ini menggunakan motor driver sebagai pengontrol debit cairan yang dikeluarkan.

Gambar 2.6 Dosung Pump

2.7 Solenoid Valve

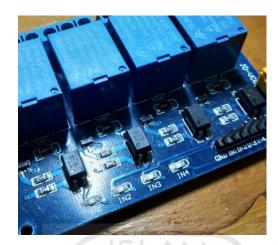
Solenoid valve merupakan sebuah elemen kontrol yang sering dipakai dalam sebuah aliran fluida. Solenoid valve memiliki fungsi untuk mengalirkan, shut off, release dan mencampurkan fluida. Mereka banyak ditemukan pada dunia industri seperti steam, oil & gas, pengolahan limbah

dan petrokimia. Cara kerja *Solenoid valve* yaitu bekerja secara *electromechanically* dimana mereka mempunyai kumparan (*coil*) sebagai penggeraknya. Saat kumpuran tersebut mendapatkan tegangan (DC atau AC) maka kumparan tersebut akan berubah menjadi magnet sehingga menggerakkan piston (*plugger*) yang berada didalamnya[13].

Gambar 2.7 Solenoid Valve

2.8 RTC (Real Time Clock) DS3231

RTC yaitu sebuah modul yang digunakan untuk mengakses data waktu seperti jam, menit, dan detik serta dapat juga mengakses kalender seperti hari, bulan dan tahun. RTC banyak sekali tipenya salah satunya DS3231. Pada antarmuka atau *interface* dalam modul ini untuk mengaksesnya menggunakan *two wire* (SCL dan SDA) atau I2c. RTC DS3231 memiliki baterai sendiri yang berfungsi sebagai *backup* apabila catu daya mati.



Gambar 2.8 RTC DS3231

2.9 Relay dan SSR (Solid State Relay)

Relai merupakan piranti elektronika berupa saklar elektrik yang dioperasikan secara listrik dan terdiri dari 2 bagian utama yaitu elektromagnet dan mekanikal. Relai ini menggunakan prinsip elektromagnetik untuk menggerakkan saklar sehingga dengan arus yang kecil dapat mengantarkan listrik yang bertegangan tinggi[14]. SSR (*solid state relay*) tidak sama seperti relai mekanis yang

menggunakan sebuah *coil*, pegas, medan magnet dan terminal kontak untuk mengalirkan listrik. Seperti halnya dengan relai mekanik, SSR juga memiliki fungsi untuk pemisahan *input output* seperti saklar dengan hambataan yang tinggi pada kondisi buka (*open*). Ketika terhubung SSR mampu mengalirkan arus yang besar dengan hambatan yang kecil[15].

Gambar 2.9 Relay

Gambar 2.10 SSR (Solid State Relay)

2.10 Float Sensor

Float sensor yaitu sebuah sensor yang digunakan untuk medeteksi ketinggian air pada suatu titik tertentu sesuai dengan posisi sensor. Prinsip kerjanya yaitu menggunakan reed switches didalam batang dan magnet didalam pelampung yang berada disekeliling batang. Saat air mengangkat pelampung maka magnet akan menonaktifkan atau mengaktifkan reed switch[16]. Untuk bentuknya dapat dilihat pada Gambar 2.11.

Gambar 2.11 Float Sensor.

2.11 Sensor Suhu dan Kelembapan (Sensor DHT)

Sensor DHT merupakan salah satu sensor yang dapat digunakan untuk mengukur suhu dan kelembapan ruangan. Sensor pada Gambar 2.12 merupakan sensor DHT yang dapat menggunakan komunikasi RS485 dan RS232. Sensor ini beroperasi pada tegangan 24V DC sehingga dapat disambungkan dengan PLC secara langsung.

Gambar 2.12 Sensor DHT

2.12 PSU (Power Supply Unit)

PSU atau catu daya adalah sebuah piranti yang dapat menyediakan sumber listrik untuk perangkat elektronika. PSU ini pada dasarnya membutuhkan energi listrik kemudian mengubah energi listrik tersebut sesuai dengan yang dibutuhkan[17]. Pada PSU yang digunakan pada

penelitian ini yaitu PSU SIEMENS dengan mengubah 220 AC menjadi 24VDC sesuai dengan tegangan yang dibutuhkan PLC.

Gambar 2.13 PSU Siemens

2.13 TDS Meter

TDS meter merupakan sebuah alat yang berfungsi untuk mengukur partikel padatan yang terlarut didalam air. Satuan yang digunakan untuk mengukur zat padat yang terlarut yaitu PPM. TDS meter ini biasa digunakan untuk mengukur kadar kemurnian dan kandungan mineral air, seperti air minum, air *pump*, air sadah, air destilasi dan air lainnya[18].

Gambar 2.14 TDS Meter

2.14 Diagram Ladder (LD)

Ladder Diagram adalah bahasa pemrograman yang umum digunakan pada PLC, namun masih ada bahasa pemrograman lain yang dapat digunkana untuk memprogram PLC diantaranya Function Block Diagram (FBD), Instruction List (IL), Structure Text (ST), Sequential Function Chart (SFC), dan Statetement List (SL)[19]. Diagram ladder merupakan sebuah tiruan logika yang

diaplikasikan langsung oleh relay. Diagram ladder berfungsi untuk mengurangi kerumitan yang dialami tekniksi untuk menyelesaikan tujuannya[19].

Gambar 2.15 Ladder Diagram

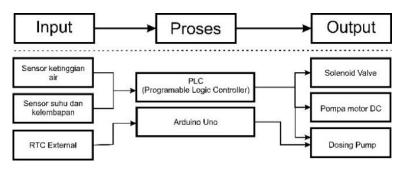
BAB3

METODOLOGI

3.1 Alur Penelitian

Gambar 3.1 Metode penelitian.

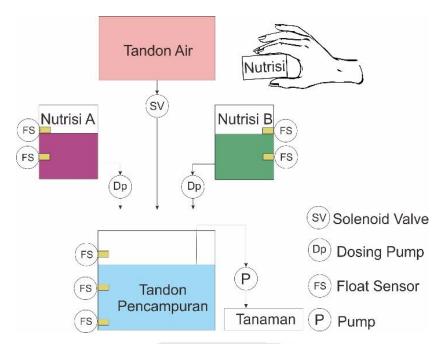
Dalam melakukan penelitian ini ada 5 tahap seperti pada Gambar 3.1. Pada tahap studi literatur yaitu mencari informasi dan mengumpulkan data terkait hidroponik di PT.Indmira, mencari referensi jurnal dan paper. Dari data yang diperoleh dapat dibuat sebagai acuan dalam perancangan dan konstruksi alat. Beberapa data yang saya buat acuan pada tahap perancangan saya cantumkan dalam lampiran, seperti pengecekan komponen dan fungsi komponen.


Tahap konstruksi yaitu merupakan proses pembuatan perangkat keras dari segi *Hardware* maupun *Software* (program). Pada tahap ini juga dilakukan kalibrasi terhadap sensor yang digunakan sehingga sesuai dengan parameter yang sudah ada. Kemudian dalam tahap pengujian, alat diimplementasikan dan diuji kedalam sistem hidroponik. Pada tahap ini semua komponen diuji untuk memastikan semua berjalan dengan normal. Selanjutnya pada tahap analisis yaitu melakukan analisa terhadap alat yang sudah diimplementasikan, dengan melihat kinerja perangkat, akurasi dan presisi perangkat.

3.2 Perancangan Sistem

Pada perancangan ini terbagi menjadi 2 yaitu perancangan dan konstruksi, pada tahap perancangan akan berfokus pada desain yang akan dibuat sedangkan konstruksi berfokus pada pembuatan *hardware* dan *software* (program). Ukuran *greenhouse* dalam perancangan ini memiliki ukuran Panjang 12 meter, lebar 9 meter, dan tinggi 6 meter untuk bentuknya dapat dilihat pada Gambar 3.2 dan diagram kendali dari sistem yang akan dibuat dapat dilihat pada Gambar 3.3.

Gambar 3.2 Greenhouse PT. Indmira


Gambar 3.3 Diagram Kendali

3.2.1 Perancangan

Didalam greenhouse yang akan dirancang sistem otomasi terdapat 3 sistem hidroponik yaitu sistem NFT, *Drip System*, dan sistem *dutch bucket*. Pada penelitian ini hanya 2 sistem yang akan dibuat otomasi karena dari pihak PT. Indmira hanya 2 sistem yang ingin diotomasi untuk pencampuran nutrisi otomatis pada hidroponik NFT dan penyiraman otomatis pada *Drip System*. Spesifikasi yang diinginkan dari sistem pencampuran ini yaitu dapat mencampurkan nutrisi A dan B sehingga mendapatkan kadar 1600-an PPM, jika PPM yang didapatkan kurang dari kadar tersebut maka dapat mempengaruhi pertumbuhan dari tanaman karenan tanaman kekurangan nutrisi pada saat pindah tanam. Untuk sistem irigasi otomatisnya yaitu dapat mengalirkan air secara otomatis ke dalam 22 tanaman pada pukul 09.00 pagi dan 15.00 sore. Jika dilihat suhu didalam greenhouse pada siang hari suhunya tercatat seperti pada Gambar 3.4 yaitu 41,3°C tepat pukul 13.53 WIB. Sehingga pada siang hari suhu ruangan tidak baik bagi tanaman karena dapat menyebabkan tanaman layu. Tanaman di dalam greenhouse saat ini sawi bakso (caisim brassica *juncea l*) yang akan tumbuh optimal pada suhu 19^{0} C – 21^{0} C. Dari keadaan tersebut perlu adanya kontrol dan pemantauan suhu kelembapan ruangan sehingga pertumbuhan dapat optimal. Spesifikasi yang diinginkan dalam kontrol suhu dan pemantauan yaitu dapat menurunkan suhu ruangan sesuai dengan keinginan pengguna dan untuk pembacaan suhu kelembapan, sensor akan di kalibrasi dengan HTC 02. Spesifikasi pembacaan sensor DHT yang diinginkan yaitu memiliki maksmial nilai rata-rata error sebesar 2% untuk pembacaan suhu dan 5% untuk pembacaan kelembapan.

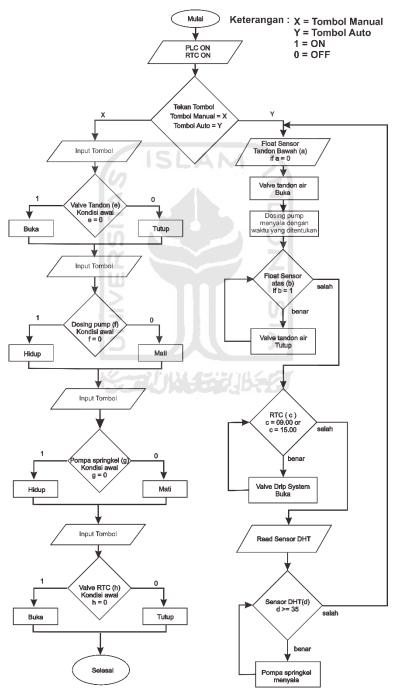
Gambar 3.4 Suhu Ruangan Greenhouse

Gambar 3.5 Desain Pencampuran Nutrisi

Dari Gambar 3.5 terdapat sebuah proses pencampuran nutrisi A dan B dicampur dengan air didalam tandon pencampuran. Proses pencampuran harus sesuai dengan takaran nutrisi yang disarankan oleh PT. Indmira. Takaran nutrisi yang disarankan yaitu air 1 liter ditambahkan 5ml nutrisi A dan B mendapatkan PPM dikisaran 1600-an PPM seperti data yang ada pada Gambar 3.6. Dari nilai yang disarankan tersebut maka dapat diubah skalanya sehingga nilainya tetap sama seperti takaran PPM yang disarankan. Untuk mengatur takaran nutrisi digunakan *dosing pump*, sehingga nutisi dalam tandon pencampurn bisa mendapatkan hasil yang sesuai. *Dosing pump* akan menyala sesuai waktu yang telah diatur berdasarkan data percobaan yang sebelumnya pernah diambil dan dapat dilihat pada Tabel 3.1. Pada penelitian ini diatur waktunya menjadi 6 menit 48 detik untuk *dosing pump* A dan 6 menit 35 detik untuk *dosing pump* B agar kadar nutrisi yang terpompa sekitar 500 ml untuk menghasilkan PPM sekitar 1600-an pada volume air 100 liter.

Cara kerja sistem pencampurannya yaitu ketika *float sensor* bawah OFF karena ketinggian air berkurang, maka *solenoid valve* tandon air bersih membuka dan *dosing pump* menyala untuk memenuhi tandon pencampuran. *Solenoid valve* akan menutup jika tandon pencampuran sudah menghidupkan *float sensor* atas, sedangkan *dosing pump* akan mati sesuai waktu yang sudah sudah diatur.

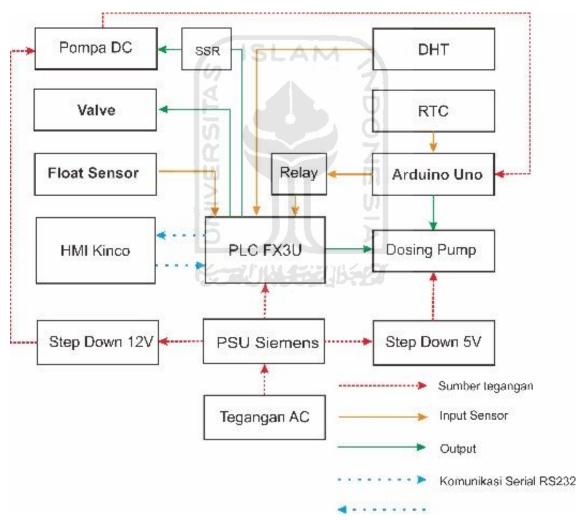
Penanggung Jawab	Budi Hageno	No:	
Hari / Tanggal	: Selaca, 28 April		
Anggota	: bought (U	iii) •	
	:	- : -	
Rincian Kegiatan			
1. Celt TDS and	+ nutrisk A		
2. Cek TOS U	+ + nutrin A+B		
4 Pilakulan	secora triplo (2x)		
Nutrisi Doc	m.		
1. 100	849 0	1660	
	8 47	1620	
	8 31	1600	
7. 107	0 31		
Opportunities			
	Such	car + A+B	
l la ?	air + A	1630	
1. (0)	813	1550	
1. 109	772	1650	
7. 107	783	1640	
	Men	petahui,	-
101	Man	CM	19
1503	T CANTOLL	A A	1. 92
Budi Haryono, S.Si	Nadia Sukmawati, S.P.	Ida Suprastiwi, S.P.	Annisa Widian
Manager R&D	Research Staff	Agronomy Staff	Administration S


Gambar 3.6 Kadar Nutrisi Yang Biasa Digunakan PT. Indmira.

Tabel 3.1 Data Debit Air *Dosing Pump* yang Telah Dirata-Rata Berdasarkan Beberapa Pengambilan.

No	Dosing Pump A		Dosing Pump B	
	waktu	vol (ml)	waktu	vol(ml)
1	1 menit 16 detik	100	1 menit 22 detik	100
2	2 menit 44 detik	200	3 menit 1 detik	200
3	4 menit 6 detik	300	4 menit 20 detik	300
4	5 menit 26 detik	400	5 menit 24 detik	400
5	6 menit 48 detik	500	6 menit 35 detik	500
6	7 menit 47 detik	600	8 menit 10 detik	600
7	9 menit 29 detik	700	9 menit 35 detik	700
8	10 menit 40 detik	800	10 menit 40 detik	800

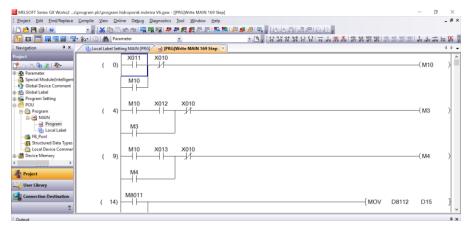
Untuk cara kerja seluruh sistem dapat dilihat pada Gambar 3.7 *flowchart* program. Jadi sistem yang dibuat memiliki 2 mode yaitu manual dan otomatis. Pada mode manual pengguna bisa bebas memberikan nutrisi, mengisi air pada tandon, menghidupkan pompa springkel dan melakukan penyiraman hidroponik pada *drip system* secara manual. Pada mode otomatis semua


perangkat berjalan secara otomatis, seperti saat tandon pencampuran nutrisi menandakan level air berada dibawah (akan habis), maka pencampuran nutrisi akan berjalan secara otomatis. Untuk irigasi pada hidroponik *drip system* diatur waktu ON pada jam 09.00 pagi dan jam 15.00 sore, pengaturan jam tersebut sesuai permintaan dari pihak PT. Indmira. Dalam sistem irigasi otomatis ini pengguna tidak dapat mengubah waktu penyiraman dikarenakan RTC *external* yang diprogram dengan Arduino Uno. Untuk pengaturan suhu bisa diubah oleh pengguna sehingga dapat menentukan kapan pompa springkel akan hidup untuk mendinginkan temperatur ruangan.

Gambar 3.7 Flow Chart Program

Perancangan selanjutnya yaitu membuat *wiring diagram* yang berfungsi untuk mempermudah konstruksi pada *hardware*. Terlebih dahulu dilakukan pengujian seluruh komponen yang sudah ada di PT. Indmira dan menemukan beberapa komponen ada yang rusak dan tidak berfungsi pada PLC, maka untuk menggantikan fungsi yang rusak perlu mengkombinasikan dengan Arduino Uno. Arduino digunakan untuk menggantikan PWM dan RTC pada PLC yang tidak berfungsi. Untuk tampilan antar muka digunakan HMI kinco yang menggunakan komunikasi serial RS232. Antar muka tersebut dirancang oleh anggota tim yang lain. Untuk lebih jelasnya *wiring diagram* dapat dilihat pada Gambar 3.8.

Dari *wiring diagram* yang sudah dibuat,maka dapat disusun sebuah inisialisasi alamat pada PLC. Sehingga nanti dalam konstruksi *hardware* tinggal memasang dan menyambungkan sesuai dengan alamat yang telah dibuat. Untuk inisialisasi alamat lebih jelasnya dapat dilihat pada tabel 3.2.


Gambar 3.8 Wiring Diagram Perangkat

Tabel 3.2 Inisilisasi Alamat PLC.

No	Input	Inisialisasi Alamat	Output	Inisialisasi Alamat
1	X001	Float tandon bawah	Y010	Pompa springkel
2	X002	Float tandon tengah	Y011	Valve tandon
3	X003	Float tandon atas	Y013	Valve RTC
4	X004	Float nutrisi bawah A	Y016	Valve nutrisi A
5	X005	Float nutrisi atas A	Y017	Valve nutrisi B
6	X006	Float nutrisi bawah B		
7	X007	Float nutrisi atas B		
8	X010	tombol OFF PLC		
9	X011	tombol ON PLC		
10	X012	tombol otomatis		
11	X013	tombol manual		
12	X014	RTC		
13	D8112	sensor DHT (Suhu)		
14	D8113	sensor DHT (Kelembapan)		

3.2.2 Konstruksi

Tahap konstruksi merupakan tahap terakhir perancangan keseluruhan sistem dengan pembuatan hardware dan software. Setelah membuat wiring diagram dan menentukan inisialisasi alamat maka perancangan bagian hardware menjadi lebih mudah dengan melihat desain yang sudah dibuat. Dari segi software (program) dapat dibuat sesuai flowchart diagram system yang telah dibuat. Pada program PLC yang digunakan yaitu diagram ladder yang merupakan bahasa pemrograman yang sering digunakan pada PLC dan software yang digunakan GX Works2, untuk bentuk programnya dapat dilihat pada gambar 3.9 dan keseluruhan programannya ada pada lampiran.

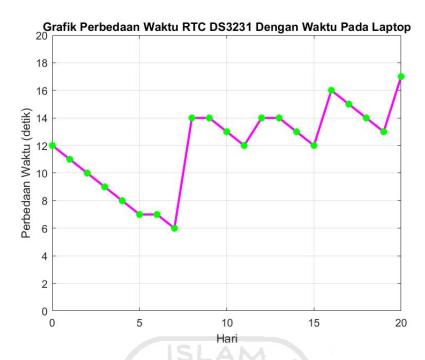
Gambar 3.9 Diagram ladder dengan software GX Works2

3.3 Langkah pengujian

Pada tahap pengujian seluruh alat yang sudah dibuat diimplementasikan kemudian diuji dengan beberapa parameter yaitu :

- Pengujian berfungsi tidaknya RTC *external* untuk sistem irigasi otomatis serta analisis karakteristik dari RTC tersebut terhadap waktu *real time*.
- Pengujian pencampuran nutrisi, apakah hasil pencampuran alat yang dibuat sudah sesuai dengan parameter dari PT. Indmira atau belum yaitu sekitar 1600-an PPM pada pencampuran pertama.
- Pengujian temperatur dan kelembapan meliputi :
 - 1. Rata-rata *error* pembacaan temperatur sudah dibawah 2% atau belum.
 - 2. Rata-rata *error* pengujian kelembapan sudah dibawah 5% atau belum.
 - 3. Pengujian penurunan temperatur dengan sistem otomatis.
- Pengujian keseluruhan sistem manual dan otomatis.

BAB 4


HASIL DAN PEMBAHASAN

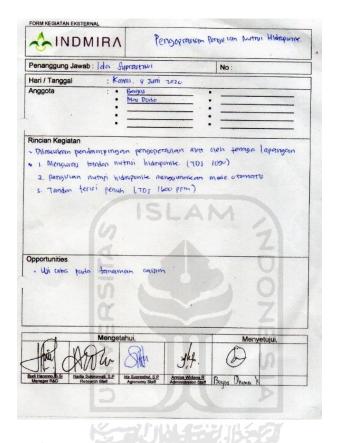
4.1 Pengujian RTC

Pengujian RTC dilakukan dengan membandingkan nilai RTC DS3231 dengan nilai jam pada laptop dan dilakukan pengamatan selama 30 hari. Pengujian ini diambil sekitar jam 21.00 malam setiap harinya. Untuk gambar pengujiannya ada pada lampiran 4 dan hasilnya dapat dilihat pada Tabel 4.1.

Tabel 4.1 Hasil Pengujian RTC DS3231.

NO	Tanggal	Data jam RTC DS3231	Data jam laptop	selisish
1	20 April 2020	21:00:10	21:00:22	12 detik
2	21 April 2020	21:17:21	21:17:32	11 detik
3	22 April 2020	21:10:30	21:10:40	10 detik
4	23 April 2020	21:14:30	21:14:39	9 detik
5	24 April 2020	21:08:40	21:08:48	8 detik
6	25 April 2020	21:37:00	21:37:07	7 detik
7	26 April 2020	21:13:00	21:13:07	7 detik
8	27 April 2020	21:04:40	21:04:46	6 detik
9	28 April 2020	21:15:10	21:15:24	14 detik
10	29 April 2020	21:09:30	21:09:44	14 detik
11	30 April 2020	21:17:30	21:30:43	13 detik
12	1 Mei 2020	21:07:10	21:07:22	12 detik
13	2 Mei 2020	21:19:20	21:19:34	14 detik
14	3 Mei 2020	21:36:20	21:36:34	14 detik
15	4 Mei 2020	21:09:30	21:09:43	13 detik
16	5 Mei 2020	21:16:30	21:16:42	12 detik
17	6 Mei 2020	22:08:10	22:08:26	16 detik
18	7 Mei 2020	21:14:30	21:14:45	15 detik
19	8 Mei 2020	21:36:10	21:36:24	14 detik
20	9 Mei 2020	21:47:40	21:47:53	13 detik
21	10 Mei 2020	21:43:40	21:43:57	17 detik
22	11 Mei 2020	21:05:20	21:05:36	16 detik
23	12 Mei 2020	21:08:20	21:05:36	16 detik
24	13 Mei 2020	21:29:00	21:29:15	15 detik
25	14 Mei 2020	21:08:00	21:08:14	14 detik
26	15 Mei 2020	21:28:50	21:28:03	13 detik
27	16 Mei 2020	22:28:30	22:28:47	17 detik
28	17 Mei 2020	21:13:00	21:13:17	17 detik
29	18 Mei 2020	21:29:00	21:29:16	16 detik
30	19 Mei 2020	19:12:00	21:12:16	16 detik
	Rata-rata selisih j	pembacaan		13,03 detik

Gambar 4.1 Grafik Selisih Waktu RTC DS3231 Dengan Laptop.

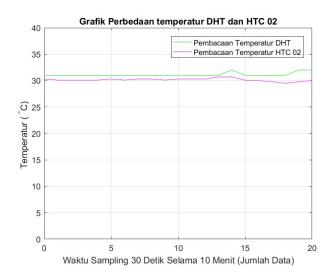

Dari grafik Gambar 4.1 tersebut terlihat RTC DS3231 (RTC *external*) mengalami perubahan waktu beberapa detik setiap harinya. Rata-rata selisih pembacaan selama 30 hari didapatkan 13,03 detik. Jika dilihat pada *data sheet* RTC DS3231 dan beberapa sumber RTC DS3231 ini memiliki akurasi 2ppm (0,0002%) dan memiliki kesalahan sekitar 1 menit[20]. Dalam penelitian lain yang dilakukan Muhammad Naufal Ghifari yang berjudul perancangan dan implementasi jam waktu salat berbasis arduino, menunjukkan selisih waktu terjadi setiap harinya dan dalam penelitian tersebut dari 25 juli sampai 15 agustus besar selisih waktu mencapai 2 menit[21]. Sehingga RTC DS3231 jika digunakan dalam waktu yang lama perlu dilakukan pengecekan dan *maintenance* agar waktunya terjaga.

4.2 Pengujian pencampuran nutrisi

Pada pengujian nutrisi ini, membandingkan hasil PPM pencampuran nutrisi secara otomatis dengan parameter PPM nutrisi yang sering digunakan di PT. Indmira yaitu sebesar 1600-an. Hasil dari pencampuran sistem otomatis yaitu 1600 PPM dengan cara menguras terlebih dahulu tandon nutrisi yang akan diuji, kemudian sistem tersebut dihidupkan secara otomatis. Hasil dari pencampuran sistem otomatis juga dibandingkan dengan sistem manual yang sering digunakan di PT. Indmira. hasilnya dapat dilihat pada Tabel 4.2 dan untuk lebih jelasnya gambar dapat dilihat pada lampiran.

Tablel 4.2 Hasil Pengujian Pencampuran Otomatis Dan Manual

No	Pengujian	Otomatis	Manual oleh PT. Indmira
1	Pengujian 1	1600 PPM	1670 PPM
2	Pengujian 2	2300 PPM	2390 PPM
3	Pengujian 3	2600 PPM	2510 PPM

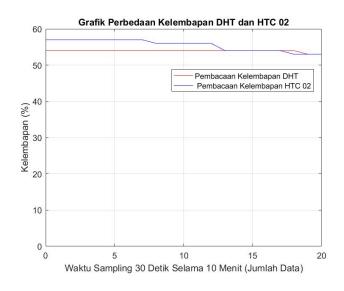


Gambar 4.2 Hasil Pengujian 1 Otomatis.

JIka dilihat dari hasil pengujian pencampurannya, pencampuran pertama sudah mendekati parameter yang sering digunakan di PT. Indmira. Pada pengujian 2 dan 3 terjadi lonjakan kadar PPM karena masih ada sisa PPM sebelumnya. Dari lonjakan PPM tersebut juga dibandingkan dengan kadar PPM pada tandon lain yang pencampurannya masih manual dari karyawan PT. Indmira dan hasilnya dari perbandingan tersebut didapatkan perbedaan yang sedikit.

4.3 Pengujian temperatur

Pada pengujian ini yaitu melihat perbandingan temperatur yang dibaca HTC 02 dengan sensor DHT yang terkoneksi dengan PLC. Pengambilan temperatur diambil dengan sampling 30 detik pada jam 10.15 sampai jam 10.25 sehingga mendapatkan hasil 21 data.



Gambar 4.3 Grafik Pembacaan Temperatur Sensor DHT Dan HTC 02.

Dari grafik pembacaan temperatur tersebut terlihat pembacaan dari DHT sudah hampir mengikuti dari pembacaan HTC 02 tetapi pada grafik tersebut pembacaan DHT selalu memiliki selisih terhadap pembacaan HTC 02. Untuk lebih jelasnya rata-rata *error* pembacaan dapat dilihat pada tabel 4.3.

4.4 Pengujian kelembapan

Untuk pengujian kelembapan sama seperti pengujian temperatur yaitu dengan membandingkan dengan HTC 02. Pada grafik kelembapan terlihat pada menit akhir nilai pembacaan DHT sama dan mendekati pembacaan HTC 02. Hasil grafik dari pembacaan kelembapan dapat dilihat pada Gambar 4.4.

Gambar 4.4 Grafik Pembacaan Kelembapan DHT Dan HTC 02.

Tabel 4.3 Persentase Error Pembacaan Temperature dan Kelembapan

No	Waktu	Temperatur DHT PLC (⁰ C)	Temperatur HTC 02 (°C)	Error relatif	Kelembapan DHT PLC	Kelembapan HTC 02	Error relatif
1	10.15.00	31	30,3	0.023102	54	57	0.052631579
2	10.15.30	31	30,1	0.0299	54	57	0.052631579
3	10.16.00	31	30,1	0.0299	54	57	0.052631579
4	10.16.30	31	30.1	0.0299	54	57	0.052631579
5	10.17.00	31	30.1	0.0299	54	57	0.052631579
6	10.17.30	31	30.3	0.023102	54	57	0.052631579
7	10.18.00	31	30.1	0.0299	54	57	0.052631579
8	10.18.30	31	30.3	0.023102	54	57	0.052631579
9	10.19.00	31	30.3	0.029703	54	56	0.035714286
10	10.19.30	31	30.1	0.0299	54	56	0.035714286
11	10.20.00	31	30.3	0.023102	54	56	0.035714286
12	10.20.30	31	30.3	0.023102	54	56	0.035714286
13	10.21.00	31	30.3	0.023102	54	56	0.035714286
14	10.21.30	31	30.7	0.009772	54	54	0
15	10.22.00	32	30.7	0.042345	54	54	0
16	10.22.30	31	30.1	0.0299	54	54	0
17	10.23.00	31	30	0.033333	54	54	0
18	10.23.30	31	29.8	0.040268	54	54	0
19	10.24.00	31	29.5	0.050847	54	53	0.018868
20	10.24.30	32	29.8	0.073826	53	53	0
21	10.25.00	32	30	0.066667	53	53	0
	Rata-rata error relatif			0.033079897	Rata-rata e	error relatif	0,029452
	Rata-rata error %			3.3%	Rata-rata	a error %	2,9%

Pada tabel 4.3 didapatkan hasil rata-rata *error* dari pembacaan temperatur ruangan sebesar 3,3% dan kelembapan sebesar 2,9%. Nilai rata-error didapatkan berdasarkan perhitungan :

$$error\ relatif = \frac{temperatur\ DHT - temperatur\ HTC\ 02}{Temperatur\ HTC\ 02} \tag{4.1}$$

$$error(\%) = error \ relatif \times 100\%$$
 (4.2)

Dari hasil yang didapatkan nilai rata-rata *error* temperatur masih cukup besar dari target yaitu 2% sedangkan nilai rata-rata *error* kelembapan sudah sesuai target yaitu dibawah 5%.

4.5 Pengujian fungsi sistem pendingin otomatis

Gambar 4.5 Temperatur Awal Ruangan.

Gambar 4.6 Temperatur Akhir Ruangan.

Gambar 4.7 Greenhouse Ketika Springkel Hidup Selama 10 Menit

Dari penurunan temperatur terlihat tidak mengalami penurunan tetapi mengalami kenaikan, hal tersebut disebabkan karena pertukaran udara dalam *greenhouse* sedikit dan tidak ada *exhaust fan* sehingga pertukaran udara kurang. Gambar 4.7 menunjukkan keadaan *greenhouse* yang sudah cukup basah karena motor springkel hidup selama 10 menit. Untuk kedepanya akan lebih baik jika pihak PT. Indmira membuatkan *exhaust fan* untuk pertukran udara di dalam *greenhouse*.

4.6 Pembahasan kinerja sistem keseluruhan

Dari keseluruhan sistem otomatis maupun sistem manual sudah dapat bekerja dengan baik dan pada sistem manual diaktifkan sesuai keinginan pengguna. Sistem irigasi otomatis berjalan sesuai waktu yang diinginkan dan dapat mengalirkan air ke dalam 22 tanaman, lebih jelasnya dapat dilihat pada Gambar 4.8. Kemudian sistem pencampuran nutrisi otomatis juga berjalan dengan baik, sedangkan untuk sistem penurunan temperatur ruangan masih belum berhasil dikarenakan pertukaran udara yang sedikit pada *greenhouse*. Sistem otomatis sudah diaplikasikan terhadap tumbuhan sawi bakso (*caisim brassica juncea l*) dan mendapatkan hasil 10,77 kg dengan 96 lubang tanam serta masa panennya 20 hari dari masa semai (pindah tanam) yang biasanya 30 hari masa semai. Untuk hasilnya dapat dilihat pada Gambar 4.9 dan untuk informasi tanamnya dapat dilihat pada gambar 4.10.

Gambar 4.8 Pengujian Sistem Irigasi Otomatis

Gambar 4.9 Hasil Panen

Gambar 4.10 Informasi Tanaman

BAB 5

KESIMPULAN DAN SARAN

5.1 Kesimpulan

- Pada pengujian RTC external (DS3231) sistem penyiraman berdasarkan waktu yang telah ditetapkan berjalan dengan normal. RTC DS3231 memiliki selisih terhadap waktu sebenarnya, yang dimana setiap satu hari ada perubahan waktu setiap detiknya.
- 2. Pada pengujian pencampuran nutrisi hidroponik hasilnya sudah sesuai dengan parameter yang digunakan di PT. Indmira.
- 3. Untuk pembacaan temperatur memiliki nilai rata-rata *error* 3,3% yang berarti masih diatas target yaitu 2 %, Sedangkan untuk pembacaan kelembapan ruangan memiliki nilai rata-rata *error* 2,9 % yang berarti sudah sesuai dengan target yaitu dibawah 5%.
- 4. Pada penurunan temperatur *greenhouse* belum berhasil karena temperatur tidak turun melainkan tetap naik. Hal tersebut dikarenakan *greenhouse* yang tidak memiliki *exhaust fan* sehingga pertukaran udara didalam kurang.
- 5. Untuk keseluruhan sistem otomatis dan manual sudah dapat bekerja dengan baik.

5.2 Saran

- 1. Untuk RTC DS3231 sebaiknya dilakukan *maintenance* setiap beberapa bulan agar pergeseran waktu tidak menjadi besar.
- 2. Pembacaan temperatur oleh DHT perlu di kalibrasi lagi agar mendapatkan nilai *error* yang lebih kecil.
- 3. Pada penurunan temperatur *greenhouse* sebaiknya *greenhouse* ditambah *exhaust fan* agar mendapat pertukaran udara yang maksimal.

DAFTAR PUSTAKA

- [1] A. D. Susila, *Sistem Hidroponik*. Bogor: Departemen Agronomi dan Holtikultura Fakultas Pertanian Institut Pertanian Bogor, 2013.
- [2] F. F. Dzikriansyah, R. Hudaya, and C. W. Nurhaeti, "Sistem Kendali Berbasis PID untuk Nutrisi Tanaman Hidroponik," *Ind. Res. Work. Natl. Semin.*, pp. 621–626, 2017.
- [3] M. Telaumbanua, B. Purwantana, L. Sutiarso, and M. A. F. Falah, "Studi Pola Pertumbuhan Tanaman Sawi (Brassica Rapa Var. Parachinensis L.) Hidroponik Di Dalam Greenhouse Terkontrol," *J. Agritech*, vol. 36, no. 01, p. 104, 2016, doi: 10.22146/agritech.10690.
- [4] L. Promratrak, "The Effect of Using Led Lighting in the Growth of Crops Hydroponics," *Int. J. Smart Grid Clean Energy*, vol. 6, no. 2, pp. 133–140, 2017, doi: 10.12720/sgce.6.2.133-140.
- [5] B. Haryono, "Wawancara Dengan R&D PT. Indmira," 2019.
- [6] V. Palande, A. Zaheer, and K. George, "Fully Automated Hydroponic System for Indoor Plant Growth," *Procedia Comput. Sci.*, vol. 129, pp. 482–488, 2018, doi: 10.1016/j.procs.2018.03.028.
- [7] A. F. Cobantoro, M. B. Setyawan, and M. A. Budi Wibowo, "Otomasi Greenhouse Berbasis Mikrokomputer RASPBERRY PI," *J. Ilm. Teknol. Inf. Asia*, vol. 13, no. 2, p. 115, 2019, doi: 10.32815/jitika.v13i2.360.
- [8] Triwanto, *Step By Step Bikin Sendiri Instalasi Hidroponik*, 3rd ed. Yogyakarta: Cakrawala, 2016.
- [9] D. Domingues, H. Takahashi, ... C. C.-... and electronics in, and U. 2012, "Automated System Developed to Control pH and Concentration of Nutrient Solution Evaluated in Hydroponic Lettuce Production," *Elsevier*.
- [10] S. Syahreza, "Rancang Bangun Pengendali Otomatik Ketinggian Fluida dan Temperatur Menggunakan Programmable Logic Controller (PLC)," vol. 9, no. 1, pp. 36–42, 2010, doi: 10.17529/jre.v9i1.175.
- [11] R. Syahban, Arduino & Proteus, Pertama. Bandung: Informatika Bandung, 2016.
- [12] Osmo Marina, "Fungsi Pompa Dosing Untuk Industri Kimia," www.osmomarina.com, 2016. [Online]. Available: https://www.osmomarina.com/news.html?id=Fungsi_Pompa_Dosing_Untuk_Industri_Kimia. [Accessed: 02-Jan-2020].
- [13] Insinyoer.com, "Prinsip Kerja Solenoid Valve," www.insinyoer.com, 2015. [Online]. Available: https://www.insinyoer.com/prinsip-kerja-solenoid-valve/. [Accessed: 02-Jan-2020].
- [14] Immersa Lab, "Pengertian Relay, Fungsi, dan Cara Kerja Relay," *immersa-lab.com*, 2018. [Online]. Available: https://www.immersa-lab.com/pengertian-relay-fungsi-dan-cara-kerja-relay.htm. [Accessed: 02-Jan-2020].
- [15] Wikikomponen, "Teori Dasar dan Pengertian Komponen Solid State Relay," www.wikikomponen.com. [Online]. Available: https://www.wikikomponen.com/teoridasar-dan-pengerti. [Accessed: 02-Jan-2020].

- [16] M. Tombeng *et al.*, "Implementasi Sistem Pengontrolan Tower Air Universitas Klabat Menggunakan Mikrokontroler Implementation of Water Tower System Control of Universitas Klabat Using Microcontroller," *Cogito Smart J.*, vol. 04, no. 01, pp. 60–71, 2018.
- [17] Dickson Kho, "Pengertian Power Supply dan Jenis-jenisnya," *teknikelektronika.com*. [Online]. Available: https://teknikelektronika.com/pengertian-power-supply-jenis-catudaya/. [Accessed: 02-Feb-2020].
- [18] Seisdigital, "Fungsi TDS Meter dan Cara Kerja TDS Meter," *seisdigital.com*, 2018. [Online]. Available: https://seisdigital.com/fungsi-tds-meter-dan-cara-kerja-tds-meter/artikel/.
- [19] E. Mekanik, "Penyederhanaan Pemahaman Ladder Diagram Untuk Pemograman PLC," *electric-mechanic.blogspot.com*, 2013. [Online]. Available: http://electric-mechanic.blogspot.com/2013/09/penyederhanaan-pemahaman-ladder-diagram.html. [Accessed: 03-Feb-2020].
- [20] DALLAS SEMICONDUCTOR, "DS3231 Datasheet," pp. 1–20, 2005.
- [21] M. N. Ghifari, "Perancangan dan Implementasi Jam Waktu Salat Berbasis Arduino," Universitas Komputer Indonesia, 2019.

LAMPIRAN

Lampiran 1 – Rincian Dari Biaya Skripsi

No	Nama Barang	Harga Satuan (Rp)	Jumlah	Total (Rp)
1	PLC MITSUBISHI FX3U	3.000.000	1	3.000.000
2	HMI KINCO	3.168.000	1	3.168.000
3	ARDUINO UNO	100.000	1	100.000
4	FLOAT SENSOR	25.000	7	175.000
5	FLOW SENSOR	80.000	1	80.000
6	ELECTRIC VALVE ½"	200.000	3	600.000
7	POMPA DINAMO AIR 12V	130.000	1	130.000
8	SELANG PE 6MM	1.300	30	39.000
9	KABEL NYAF PERDANA 1X1 5MM-KUNING	1.800	50	90.000
10	KABEL NYAF PERDANA 1X1 5MM-BIRU	1.800	47,5	85.000
11	KABEL NYF ETERNA 2X0.75 PUTIH	5.500	10	55.000
12	STOP KONTAK UTICON 6 LUBANG	25.000	1	25000
13	STEKER BULAT BROCO	11.500	1	11.000
14	PIN DERET 1X40 LURUS	2.500	2	5.000
15	PIN MOLEK KECIL 3 PIN	1.250	2	2.500
16	RESISTOR 1W 2 2K	500	10	5.000
17	SELONGSONG KABEL BAKAR 3MM	3.000	3	7.500
18	SELONGSONG KABEL BAKAR 6MM	3.750	3	11.250
19	PENYAMPUNG PIPA T ½"	3.000	7	21.000
20	PENYAMBUNG PIPA L ½"	2.500	5	12.500
21	OVERSHOK ½" – ¾"	3.000	8	24.000
22	SDL 3/4"	3.000	4	12.000
23	KEBEL TIES	28.000	1	28.000
24	SDL 1"- ¾"	3.000	4	12.000
25	PCB POLOS 20X30	22.500	1	22.500
26	JACK DC BUNTUT	2.000	1	2.000
27	T BLOK BESAR 3 PIN BIRU	2.800	8	22.400
28	T BLOK KECIL 2 PIN BIRU	2.000	10	20.000
29	SELANG	2.000	7	14.000
30	KABEL JACK DC CEWEK FEMALE BUNTU	2.500	1	2500
31	RELAY 2 CHANEL 5V OUTPUT	15.000	1	15.000
32	LM2596S DC-DC STEPDOWN	10.000	1	10.000
33	RESISITOR 1/4W 10K ohm	100	5	500
34	CAPACITOR 100uf	100	1	100
35	CAPACITOR 10uf	100	1	100
	1			

36	SPACER KUNINGAN 6MM	1.000	4	4000
37	SPACER KUNINGAN 10MM	1.300	8	10400
38	REGULATOR IC 7805	2.500	2	5000
39	WATER METER PDAM NANKAI BESI	70.000	1	70.000
40	SDD ½" – ½"	3.000	2	6.000
41	SDD ½" – ¾"	4.000	2	6.000
42	SELANG SPRAYER YMR	25.000	1	25.000
43	KONEKTOR	25.000	1	25.000
44	STEPDOWN DC XL4015	17.500	1	17.500
45	KABEL JACK DC	2.500	1	2.500
46	TOPLES VARIA 5000ml	25.000	1	25.000
47	KABEL NYAF PERDANA 1X1 5mm	2.000	30	60.000
48	RTC DS3231	30.000	1	30.000
49	SOLASI BM PUTIH	36.000	1	36.000
50	SSR DC	104.000	1	104.000
51	SOLASI KABEL	10.000	1	10.000
52	STOP KRAN ½"	18.000	3	54.000
	2	6	Total	8.299.750

Lampiran 2 – Hasil Pengecekan Komponen PLC Sebelum Digunakan

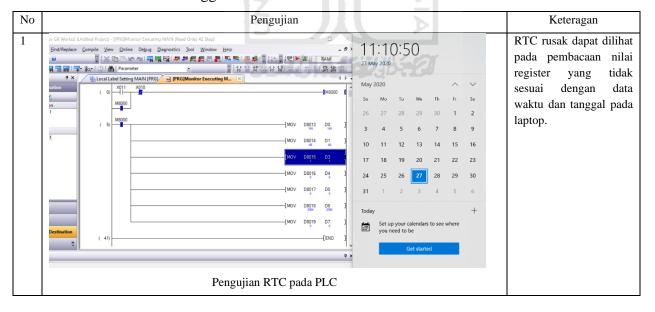
Tabel Hasil Pengecekan Input dan Output PLC

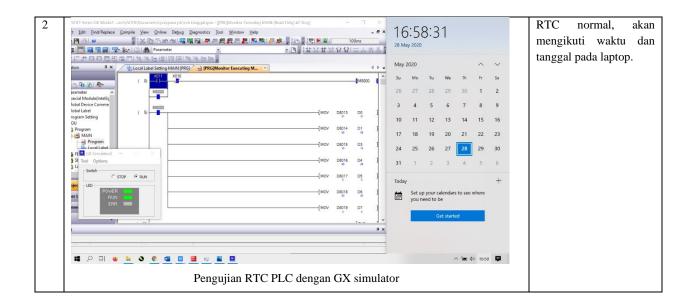
No	Input	Kondisi	Output	Kondisi
1	X000	Normal	Y000	Rusak
2	X001	Normal	Y001	Rusak
3	X002	Normal	Y002	Rusak
4	X003	Normal	Y003	Rusak
5	X004	Normal	Y004	Rusak
6	X005	Normal	Y005	Rusak
7	X006	Normal	Y006	Rusak
8	X007	Normal	Y007	Rusak
9	X010	Normal	Y010	Normal
10	X011	Normal	Y011	Normal
11	X012	Normal	Y012	Rusak
12	X013	Normal	Y013	Normal
13	X014	Normal	Y014	Rusak
14	X015	Normal	Y015	Rusak
15	X016	Normal	Y016	Normal
16	X017	Normal	T017	Normal
17	X020	Normal	// ()	
18	X021	Normal	rain personal e	or .
19	X022	Normal		8
20	X023	Normal		
21	X024	Normal		
22	X025	Normal		
23	X026	Normal		
24	X027	Normal		

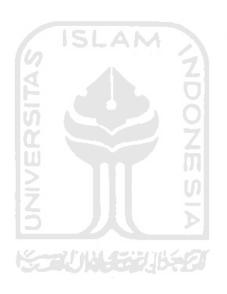
Untuk mengetahui normal tidaknya *input* PLC dapat dengan cara menghubungkan COM ke *input* PLC. Jika normal maka led *input* pada PLC akan menyala sedangkan jika rusak maka led *input* tidak menyala. Untuk mengetahui normal tidaknya *output* PLC dapat dengan cara mengecek tegangannya dengan multimeter.

Gambar pengecekan output PLC

No	Alamat	Output saat input ON	Output saat input OFF	Keterangan
1	Y000			Rusak
2	Y001	- 00.0 		Rusak
3	Y002	FOOD		Rusak
4	Y003			Rusak
5	Y004			Rusak
6	Y005			Rusak
7	Y006			Rusak


	Alamat	Output saat input ON	Output saat input OFF	
8	Y007			Rusak
9	Y010	225		Normal
10	Y011	23		Normal
11	Y012			Rusak
12	Y013			Normal
13	Y014			Rusak
14	Y015		TO DESCRIPTION OF THE PROPERTY	Rusak




Pengecekan RTC pada PLC

Untuk melakukan pengecekan RTC pada PLC dapat mencobanya dengan register khusus yang digunakan untuk memprogram data waktu dan tanggal, register yang digunakan antara lain :

- 1. D8013 → detik
- 2. D8014 → menit
- 3. D8015 → jam
- 4. D8016 → hari
- 5. D8017 → bulan
- 6. D8018 → tahun
- 7. D8019 → minggu

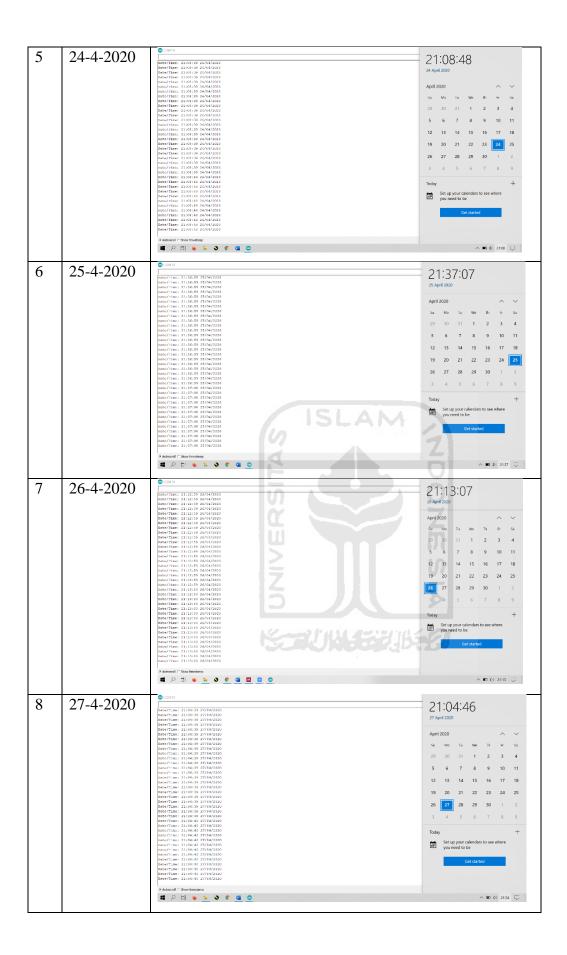
Lampiran 3 – Gambar pengujian pencampuran nutrisi

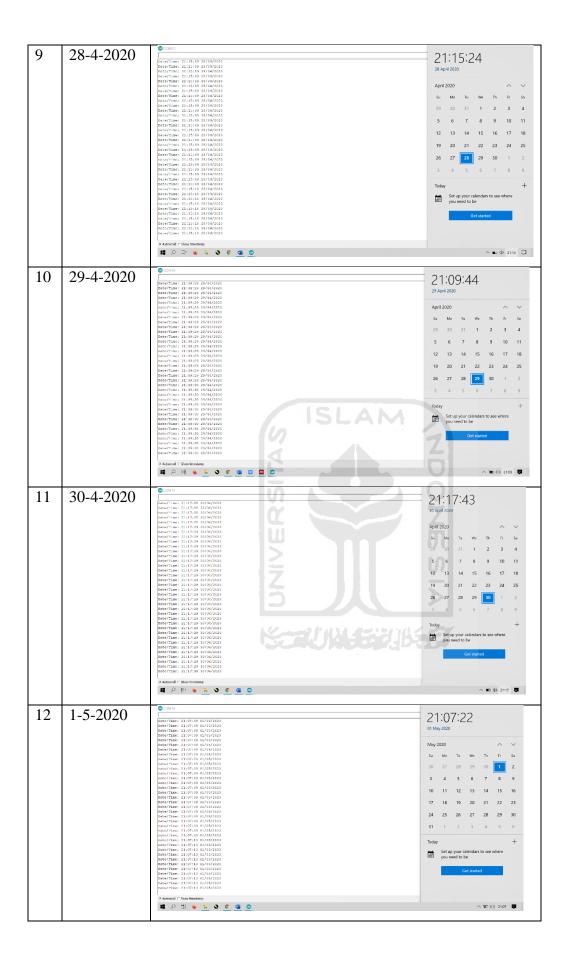
Gambar Pengujian 1 Otomatis 1600 PPM

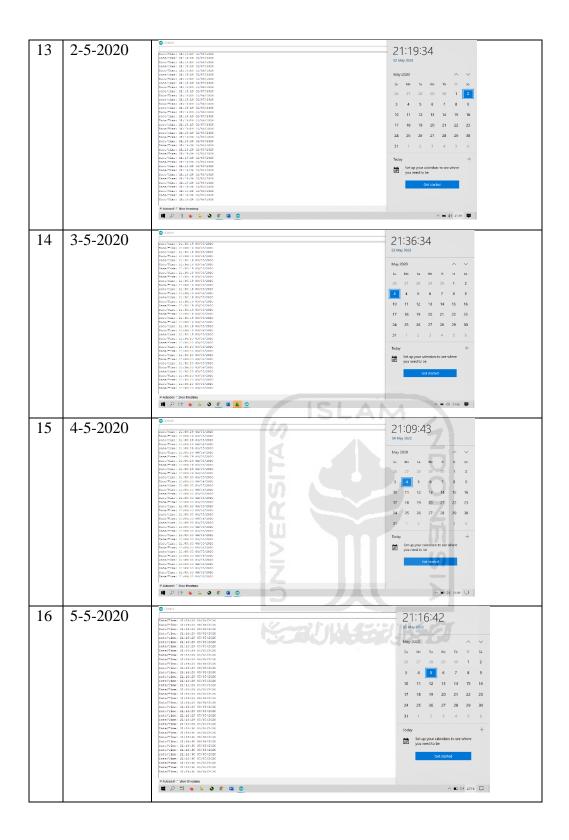
Gambar Pengujian 1 Manual 1670 PPM

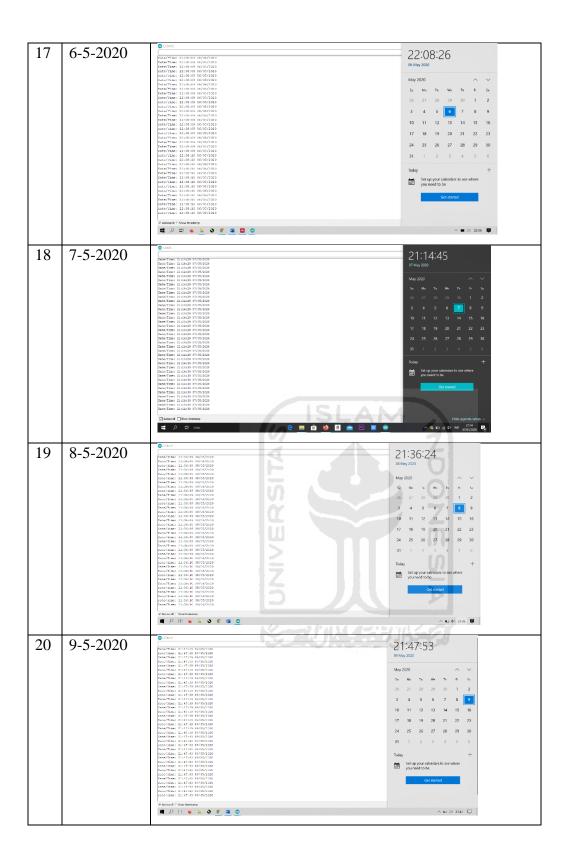
Gambar Pengujian 2 Otomatis 2300 PPM

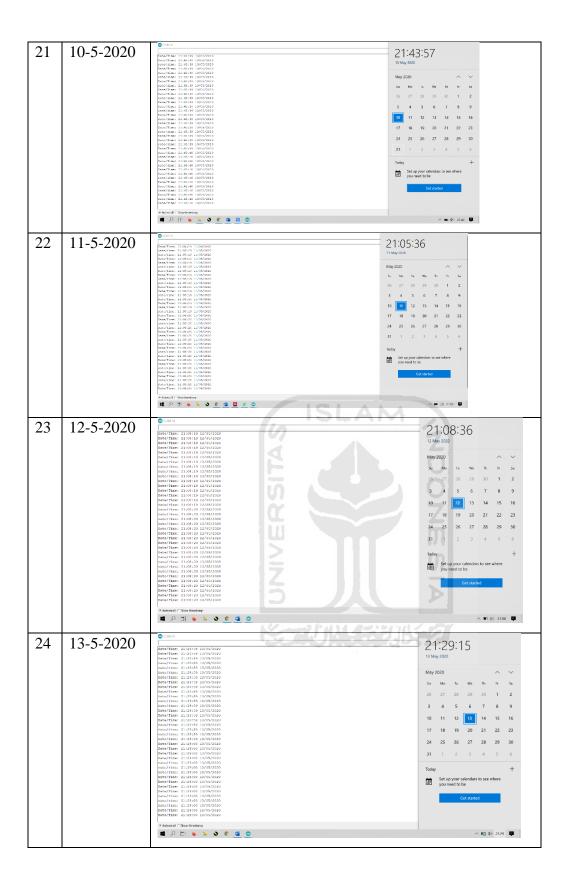
Gambar Pengujian 2 maanual 2390 PPM

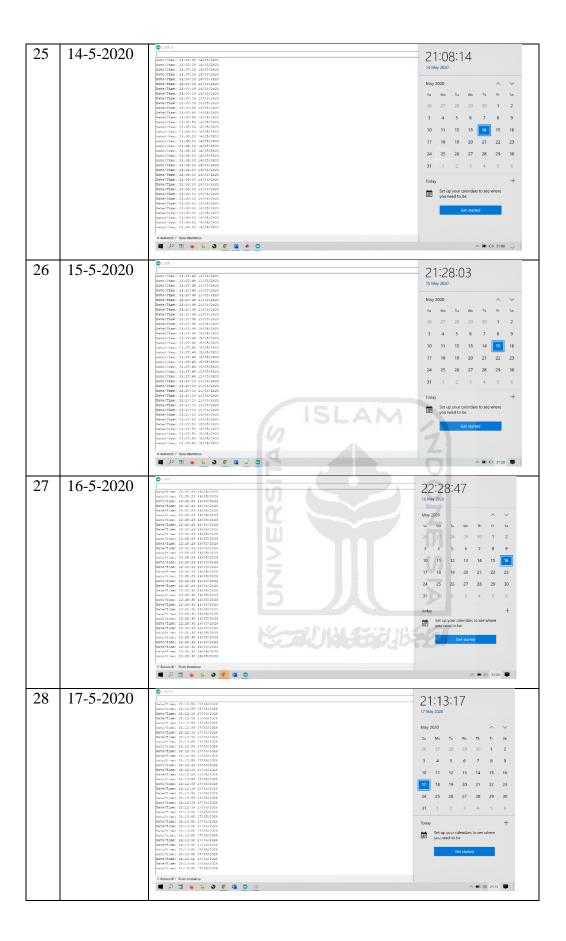

Gambar Pengujian 3 Otomatis 2600 PPM

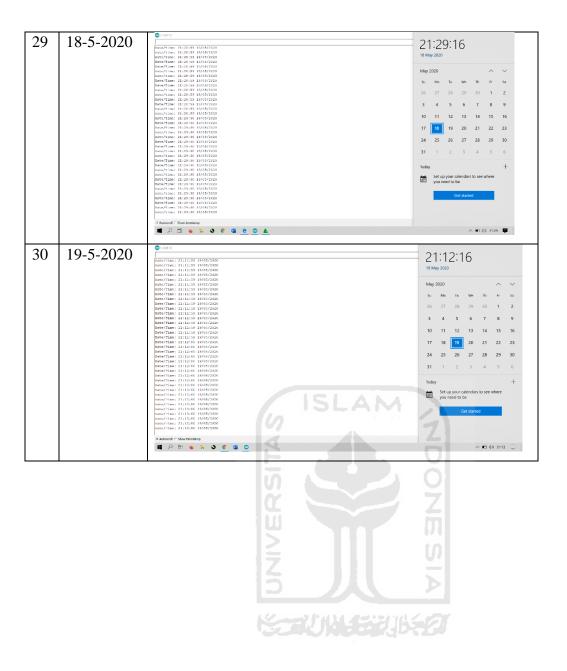


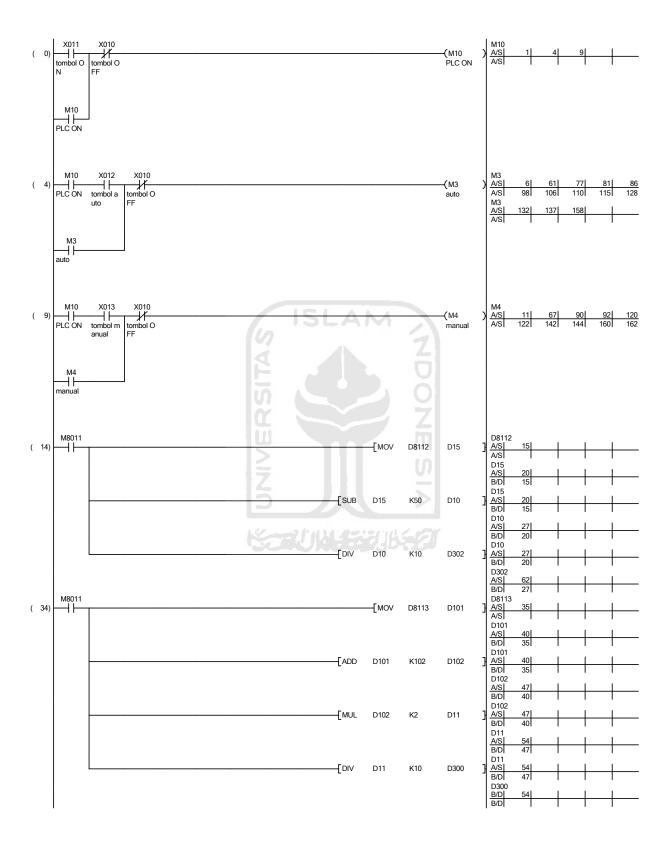

Gambar Pengujian 3 Manual 2510 PPM

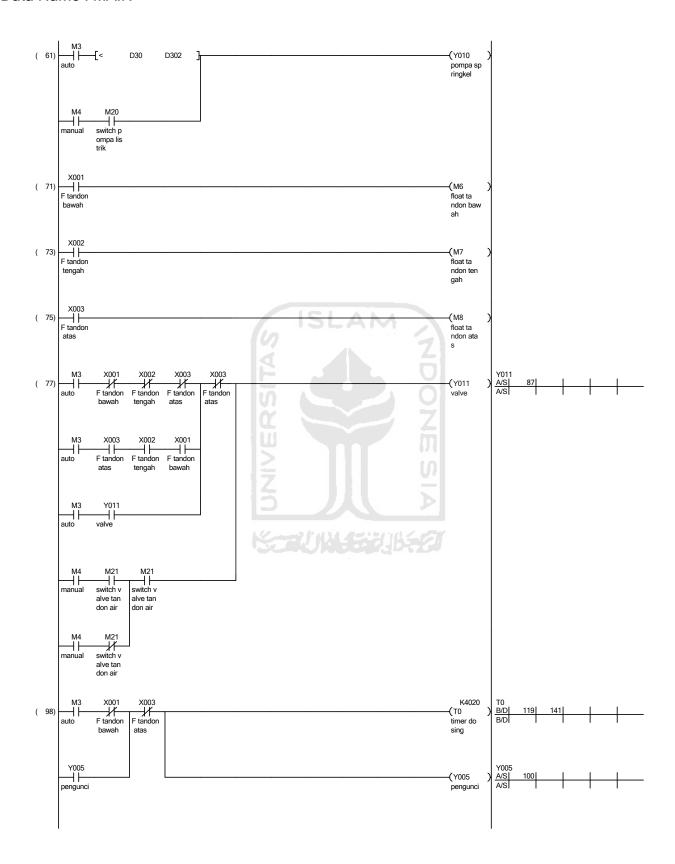

Lampiran 4 – Gambar pengujian RTC DS3231

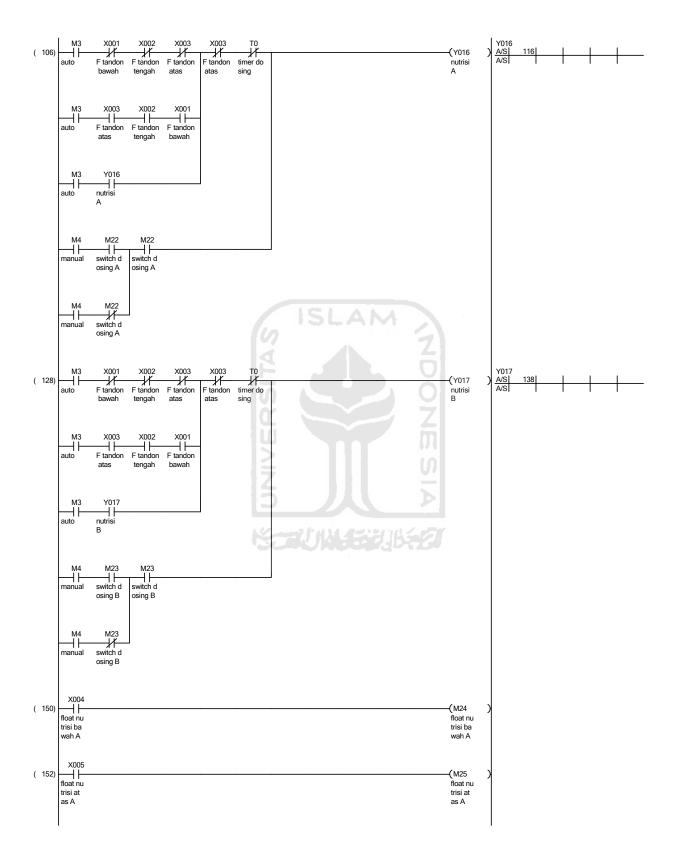

No	Tanggal	Gambar	
1	20-4-2020	COMPS	2 1:00:22 20 April 2020 April 2020 5u Mo Nu We Nh H 5o 29 30 31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 1 2 3 4 5 6 7 8 9 Today A Set up your calendars to see where you need to be Cet started A SU No Co 2100 C
2	21-4-2020	### ### ### ### ### ### ### ### ### ##	21:17:32 21 April 2020 April 2020 50 Me 10 We 11 17 5s 29 30 31 1 2 3 4 5 6 7 8 9 10 11 112 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 1 2 3 4 5 6 7 8 9 Today Today A Set o pour calendars to see where you need to be
3	22-4-2020	DESCRIPTION 111013 2274/1903	21:10:40 22 April 2000 April 2000 Su
4	23-4-2020	COMPONENT 1114195 31/34/32333	21:14:39 22 1:14:39 April 2020 5u Mo Tu We III. IF 5a 29 30 31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 21 24 25 26 27 28 29 30 1 2 3 4 5 6 7 8 9 Today Today Today Set up your calendars to see where you need to be Cet started A M 34 21:14

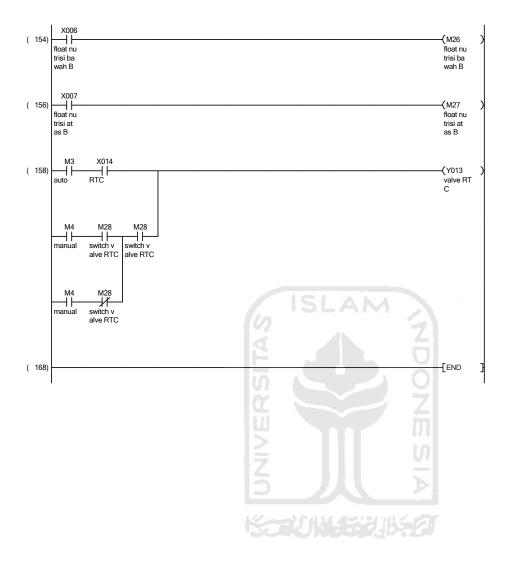











Ladder 7/20/2020

Ladder 7/20/2020

Device Comment Data Name : COMMENT

Device Name	Comment
M0	switch manual
M1	switch auto
M2	stop
M3	auto
M4	manual
M6	float tandon bawah
M7	float tandon tengah
M8	float tandon atas
M10	PLC ON
M20	switch pompa listrik
M21	switch valve tandon air
M22	switch dosing A
M23	switch dosing B
M24	float nutrisi bawah A
M25	float nutrisi atas A
M26	float nutrisi bawah B
M27	float nutrisi atas B
M28	switch valve RTC
M30	stop valve tandon
M31	stop nutrisi A
M32	stop nutrisi B
M33	stop rtc
M51	float nutrisi bawah A
M52	memory Is tengah a
M53	memory Is bawah b
M54	memory Is tengah b
M8005	DHT
X001	F tandon bawah
X002	F tandon tengah
X003	F tandon atas
X004	float nutrisi bawah A
X005	float nutrisi atas A
X006	float nutrisi bawah B
X007	float nutrisi atas B
X010	tombol OFF
X011	tombol ON
X012	tombol auto
X013	tombol manual
X014	RTC
X015	stop mode
Y000	nutrisi B
Y001 Y004	nutrisi A
Y004 Y005	enable pwm1
Y006	pengunci valve
Y007	pompa springkel
Y010	pompa springkel
Y011	valve
Y012	valve RTC
Y013	valve RTC
Y014	nutrisi A
Y015	nutrisi B
Y016	nutrisi A
Y017	nutrisi B
TO	timer dosing