BAB V

ANALISIS DAN PEMBAHASAN

5.1 ESTIMASI DIMENSI STRUKTUR

Sebelum dimulainya pemodelan struktur secara lengkap, maka perlu terlebih dahulu dilakukan estimasi awal secara singkat dimensi elemen-elemen struktur tersebut.

5.1.1 Estimasi Dimensi Balok

Pada struktur bangunan yang digunakan sebagai model penelitian, digunakan dua buah jenis balok yaitu balok induk dan balok anak.

Untuk mempermudah mencari dimensi awal balok di asumsikan untuk memakai h = 1/10 - 1/12 L pada balok induk dan h = 1/12 - 1/14 L.

1. Balok Induk (B1)

Bentang balok (L) = 6 m = 6000 mm

Diambil
$$h = \frac{1}{12}L = \frac{1}{12} \times 6000 = 500 \text{ mm}$$
, dipakai $h = 500 \text{ mm}$
 $b = \frac{1}{2}h = \frac{1}{2} \times 500 = 250 \text{ mm}$, dipakai $b = 300 \text{ mm}$

2. Balok Anak (Ba1) Bentang balok (L) = 6 m = 6000 mm Diambil $h = \frac{1}{14}L = \frac{1}{14} x 6000 = 428,571 mm$, dipakai h = 300 mm $b = \frac{1}{2}h = \frac{1}{2} x 500 = 250 mm$, dipakai b = 250 mm

5.1.2 Estimasi Dimensi Kolom

Pada struktur bangunan yang digunakan sebagai model penelitian, digunakan satu jenis kolom yaitu kolom K1.

Untuk memperkirakan dimensi kolom dilakukan dengan menghitung beban aksial tekan akibat beban gravitasi.

Pu = Luas pelat x faktor gravitasi ekuivalen x jumlah lantai

- = 36 x 1,1 x 8
- = 316,8 ton

$$Ag = \frac{Pu}{\phi \ x \ 0,4 \ x \ f'c}$$

= $\frac{396}{0,65 \ x \ 0,4 \ x \ 25 \ x \ 10,2}$
= 4778,28 cm²
$$h = \sqrt{Ag}$$

= $\sqrt{4778,28}$
= 69,1251 cm

Dipakai dimensi kolom, b = h = 700 mm.

5.1.3 Estimasi Tebal Pelat Lantai dan Pelat Atap

Pada struktur bangunan yang digunakan sebagai model penelitian, digunakan dua buah jenis pelat yaitu pelat lantai dan pelat atap.

Untuk dimensi tebal pelat lantai dan pelat atap digunakan tebal minimum yaitu secara berurutan 125 mm dan 110 mm.

5.1.4 Estimasi Tebal Dinding Geser

Pada struktur bangunan yang digunakan sebagai model penelitian, digunakan satu buah jenis dinding geser. Perhitungan tebal dinding geser dilakukan menggunakan peraturan dari "Seismic Design of Reinforced Concrete and Masonry Buildings" (Paulay and Priestley, 1992) yang dijelaskan sebagai berikut.

$\mu\Delta$	= faktor daktilitas desain ≤ 5	= 4
h1	= tinggi dinding	= 4 m
hw	= tinggi total dinding	= 32 m
lw	= panjang dinding	= 6 m

Paulay and Priestley menjelaskan nilai lw dibatasi tidak lebih dari 1,6h1

lw	$= lw < 1,6 \ge hl$	= 6 < 1,6 x 4 = 6,4 m
lwpakai	= 6 m	
Ar	= hw / lw	= 32 / 6 = 5,333

Setelah mendapatkan nilai *Ar* (sumbu x), selanjutnya mencari nilai *bc/lw* (sumbu y) digunakan grafik pada Gambar 5.1 berikut ini.

Gambar 5.1 Grafik hubungan Ar dan bc/lw (Paulay and Priestley, 1992)

Didapatkan nilai bc/lw = 0,054

bc = lw x 0,054 = 32,4 cm

Nilai bc tidak boleh kurang dari h1/16

 $bc_{min} = h1/16$ = 4x100/16 = 25 cm $bc^2 = 32,4^2$ = 1049,76 cm² bc.lw/10 = 32,4.6.100/10 = 1944 cm²

Syarat $bc^2 \le A_{wb} \ge bc.lw/10$ Dicoba tebal dinding geser, bw = 35 cm

 $A_{wb} = bw^2 = 35^2 = 1225 \text{ cm}^2$ 1049,76 $\leq 1225 \leq 1944$ (memenuhi)

Sehingga tebal dinding yang digunakan adalah b = 350 mm

5.2 PERHITUNGAN PEMBEBANAN

Perhitungan beban pada pelat lantai dan pelat atap ini berdasarkan Pedoman Perencanaan Pembebanan untuk Rumah dan Gedung (SKBI-1.3.53.1987).

5.2.1 Beban Mati (DL)

Beban mati didefinisikan sebagai beban yang ditimbulkan oleh elemenelemen struktur bangunan yaitu balok, kolom dan pelat. Beban ini akan dihitung secara otomatis oleh program SAP2000 Ver.14.

5.2.2 Beban Mati Tambahan

1. Beban Mati Tambahan Balok

Beban mati tambahan yang digunakan adalah beban dinding pasangan batako 20 cm yaitu sebesar 0.2 t/m^2 .

2. Beban Mati Tambahan Pelat

ii

	Pasir	$= 0,04 \text{ m x } 1,75 \text{ t/m}^3$	$= 0,07 \text{ t/m}^2$
	Spesi	$= 0,02 \text{ m x } 1,85 \text{ t/m}^3$	$= 0,037 \text{ t/m}^2$
	Keramik	$= 0,015 \text{ t/m}^2$	$= 0,015 \text{ t/m}^2$
	Plafon	$= 0,011 \text{ t/m}^2$	$= 0,011 \text{ t/m}^2$
	Mekanikal dan elektrikal	$= 0,025 \text{ t/m}^2$	$= 0,025 \text{ t/m}^2 +$
	Qd_{lantai}		$= 0,158 \text{ t/m}^2$
b.	Pelat Atap		
	Spesi	$= 0,02 \text{ m x } 1,85 \text{ t/m}^3$	$= 0,037 \text{ t/m}^2$
	Plafon	$= 0,011 \text{ t/m}^2$	$= 0,011 \text{ t/m}^2$
	Mekanikal dan elektrikal	$= 0,025 \text{ t/m}^2$	$= 0,025 \text{ t/m}^2 +$
	Qd_{lantai}		$= 0,073 \text{ t/m}^2$

5.2.3 Beban Hidup (LL)

Beban hidup didefinisikan sebagai beban yang sifatnya membebani struktur tidak permanen, misalnya beban akibat penggunaan dari bangunan. Berdasarkan Pedoman Pembebanan untuk Rumah dan Gedung (SKBI-1.3.53.1987) dengan fungsi bangunan pada penelitian ini adalah bangunan hotel maka nilai beban hidup pelat lantai adalah $0,25 \text{ t/m}^2$ dan pelat atap adalah $0,1 \text{ t/m}^2$.

5.2.4 Beban Gempa

Bangunan hotel pada penelitian kali ini akan dibangun di Kota Yogyakarta. Pada jenis tanah sedang dengan jumlah 10 lantai dan tinggi antar lantai adalah 4 m.

Perhitungan pembebanan gempa menurut SNI 1726:2012 adalah sebagai berikut:

1. Menentukan S_s

Berdasarkan Gambar 5.2 (Gambar 9 SNI 1726:2012 hlm. 134) didapat nilai $S_s = 1, 2 - 1, 5$ g. Diambil nilai $S_s = 1, 5$ g.

Gambar 5.2 S_s , gempa maksimum yang dipertimbangkan risiko-tertarget (MCE_R), kelas situs SB

2. Menentukan S_1

Berdasarkan Gambar 5.3 (Gambar 10 SNI 1726:2012 hlm. 135) didapat nilai S_1 berkisar 0,5 – 0,6. Diambil nilai $S_1 = 0,6$.

Gambar 5.3 S_1 , gempa maksimum yang dipertimbangkan risiko-tertarget (MCE_R), kelas situs SB

3. Menentukan C_{RS}

Berdasarkan Gambar 5.4 (Gambar 12 SNI 1726:2012 hlm. 137) didapat nilai $C_{RS} = 0.95 - 1.0$ g. Diambil nilai $C_{RS} = 1.0$ g.

Gambar 5.4 C_{RS} , koefisien risiko terpetakan, perioda respons spektral 0,2 detik

4. Menentukan C_{RI}

Berdasarkan Gambar 5.5 (Gambar 12 SNI 1726:2012 hlm. 138) didapat nilai $C_{RI} = 0.95 - 1.0$ g. Diambil nilai $C_{RI} = 1.0$ g.

Gambar 5.5 C_{RI} , koefisien risiko terpetakan, perioda respons spektral 1 detik

5. Menentukan F_a

Berdasarkan Tabel 5.1 (Tabel 4 SNI 1726:2012 hlm. 22) didapat nilai koefisien situs untuk tanah sedang, $F_a = 1$.

Kelas	Parameter respons spektra percepatan gempa (MCE _R) terpetakan				
Situs	p	ada pada peri	ode pendek, 7	$\Gamma = 0,2$ detik, λ	Ss
	$S_s \leq 0,25$	$S_{s} = 0,5$	$S_s = 0,75$	$S_{s} = 1,0$	$S_s \ge 1,25$
SA	0,8	0,8	0,8	0,8	0,8
SB	1,0	1,0	1,0	1,0	1,0
SC	1,2	1,2	1,1	1,0	1,0
SD	1,6	1,4	1,2	1,1	1,0
SE	2,5	1,7	1,2	0,9	0,9
SF			SS^b		

Tabel 5.1 Faktor amplikasi percepatan pada getaran periode pendek (F_a)

6. Menentukan F_v

Berdasarkan Tabel 5.2 (Tabel 5 SNI 1726:2012 hlm. 22) didapat nilai koefisien situs untuk tanah sedang, $F_v = 1,5$.

Kelas	Parameter respons spektra percepatan gempa (MCE _R) terpetakan						
Situs		pada per	iode pendek 1	detik, S_1			
	$S_1 \leq 0, 1$	$S_{I} \le 0,1$ $S_{I} = 0,2$ $S_{I} = 0,3$ $S_{I} = 0,4$ $S_{I} \ge 0,5$					
SA	0,8	0,8	0,8	0,8	0,8		
SB	1,0	1,0	1,0	1,0	1,0		
SC	1,7	1,6	1,5	1,4	1,3		
SD	2,4	2	1,8	1,6	1,5		
SE	3,5	3,2	2,8	2,4	2,4		
SF			SS^b	•	•		

Tabel 5.2 Faktor amplikasi percepatan pada getaran periode 1 detik (F_v)

7. Menentukan parameter percepatan spektral respons pada periode pendek (S_{MS}) dan periode 1 detik (S_{MI}) berdasarkan MCE_R
Menurut SNI 1726:2012 pasal 6.2, nilai S_{MS} dan S_{MI} ditentukan sebagai berikut:

 $S_{MS} = S_s \ge F_a = 1,5 \ge 1$ $S_{MI} = S_I \ge F_v = 0,6 \ge 1,5$ = 0,9

8. Menentukan parameter percepatan spektral respons rencana pada periode pendek (S_{DS}) dan periode 1 detik (S_{DI})

Menurut SNI 1726:2012 pasal 6.3, nilai S_{DS} dan S_{DI} ditentukan sebagai berikut :

 $S_{DS} = 2/3 \times S_{MS} = 2/3 \times 1,5 = 1,0$ $S_{DI} = 2/3 \times S_{MI} = 2/3 \times 0,9 = 0,6$

9. Menentukan S_{DSr} dan S_{D1r} Nilai S_{DSr} dan S_{D1r} ditentukan sebagai berikut:

> $S_{DSr} = S_{DS} \times C_{RS} = 1,0 \times 1,0 = 1,0$ $S_{D1r} = S_{D1} \times C_{r1} = 0,6 \times 1,0 = 0,6$

10. Desain respons spektrum

Nilai T_0 dan T_s ditentukan sebagai berikut:

$$T_s = S_{DIr} / S_{DSr} = 0.6 / 1.0 = 0.6$$

$$T_0 = 0.2 \text{ x } T_s = 0.2 \text{ x } 0.6 = 0.12$$

Setelah mengetahui periode fundamental struktur tersebut maka untuk menentukan grafik desain respon spektrum menggunakan ketentuan berikut:

a. Untuk perioda yang lebih kecil dari T_o , respon spektrum percepatan desain, S_a harus diambil dari persamaan 3-6 sebagai berikut:

$$S_a = S_{DS} \left(0,4 + 0,6 \frac{T}{T_o} \right)$$

- b. Untuk periode lebih besar dari atau dengan T_o dan lebih kecil dari atau sama dengan T_s , spectrum respons percepatan desain, S_a , sama dengan S_{DS} .
- c. Untuk periode lebih besar dari T_s , spectrum respons percepatan desain, S_a , diambil berdasarkan persamaan 3-7 sebagai berikut:

$$S_a = \left(\frac{S_{D1}}{T}\right)$$

Dari ketentuan yang digunakan diatas, maka diperoleh data periode dan percepatan respon spektra pada Tabel 5.3 dan grafik respon spektrum desain pada Gambar 5.6 sebagai berikut:

Percepatan Percepatan Percepatan Periode respon Periode respon Periode respon (detik) spektra spektra (detik) spektra (detik) **(g)** (g) **(g)** Т T T Sa Sa Sa 0 0.4 0.76 0.789474 1.51 0.397351 0.02 0.5 0.81 0.740741 1.55 0.387097 0.04 0.6 0.86 0.697674 1.6 0.375 0.06 0.7 0.91 0.659341 1.65 0.363636 0.08 0.8 0.96 0.625 1.7 0.352941 0.1 0.9 0.594059 1.8 0.333333 1.01 0.12 1 1.06 0.566038 1.85 0.324324 0.2 1 1.11 0.540541 1.9 0.315789 0.3 1 1.16 0.517241 1.94 0.309278

Tabel 5.3 Hasil perhitungan respon spektrum desain

Lanjutan Tabel 5.3 Hasil perhitungan respon spektrum desain

Periode (detik)	Percepatan respon spektra (g)	Periode (detik)	Percepatan respon spektra (g)	Periode (detik)	Percepatan respon spektra (g)
Т	Sa	Т	Sa	T	Sa
0.4	1	1.21	0.495868	1.95	0.307692
0.5	1	1.26	0.47619	1.96	0.306122
0.6	1	1.31	0.458015	1.97	0.304569
0.61	0.983607	1.36	0.441176	1.98	0.30303
0.66	0.909091	1.41	0.425532	1.99	0.301508
0.71	0.84507	1.46	0.410959	2	0.3

Gambar 5.6 Grafik respon spektrum desain

11. Menentukan koefisien modifikasi respons (*R*)
Berdasarkan Tabel 5.4 (Tabel 9 SNI 1726:2012 hlm. 36) didapat nilai *R* = 8

Sistem penahan gaya sejemik	Koefisien modifikasi	Faktor kuat- lebih	Faktor pembesa ran	Batas	Batasan sistem struktur dan batasan tinggi struktur, h_n (m) ^c				
Sistem penanan-yaya seisinik	respons,	sistem,	defleksi,		Katego	ori desain seismik			
	R	Ω_0^{g}	C_d^{b}	В	С	D^{d}	E^{d}	F^{e}	
24.Dinding rangka ringan dengan panel geser dari semua material lainnya	21/2	21⁄2	21⁄2	ТВ	тв	10	тв	тв	
25.Rangka baja dengan bresing terkekang terhadap tekuk	8	21⁄2	5	ТВ	тв	48	48	30	
26.Dinding geser pelat baja khusus	7	2	6	ТВ	тв	48	48	30	
C.Sistem rangka pemikul momen									
1. Rangka baja pemikul momen khusus	8	3	51/2	TB	TB	TB	тв	TB	
2. Rangka batang baja pemikul momen khusus	7	3	51⁄2	TB	TB	48	30	TI	
3. Rangka baja pemikul momen menengah	41/2	3	4	ТВ	тв	10 ^{<i>h</i>,<i>i</i>}	TI ⁿ	Τľ	
4. Rangka baja pemikul momen biasa	31⁄2	3	3	ТВ	TB	TI ⁿ	TI ⁿ	Τl	
5. Rangka beton bertulang pemikul momen khusus	8	3	51/2	тв	тв	тв	тв	тв	
6. Rangka beton bertulang pemikul momen menengah	5	3	41⁄2	ТВ	тв	TI	TI	TI	

Tabel 5.4 Faktor *R*, C_d dan Ω_0 untuk sistem penahan gaya gempa

12. Menentukan faktor keutamaan gempa (I_e)

Berdasarkan Tabel 5.5 (Tabel 1 SNI 1726:2012 hlm. 15) untuk bangunan hotel termasuk kategori resiko II dan Tabel 5.6 (Tabel 2 SNI 1726:2012 hlm. 15) didapatkan nilai $I_e = 1$.

Tabel 5.5 Kategori risiko bangunan gedung dan non gedung untuk beban

Jenis Pemanfaatan	Kategori Risiko
Gedung dan non gedung yang memiliki risiko rendah terhadap	
jiwa manusia pada saat terjadi kegagalan, termasuk, tapi tidak	
dibatasi untuk, antara lain:	
- Fasilitas pertanian, perkebunan, perternakan, dan perikanan	Ι
- Fasilitas sementara	
- Gudang penyimpanan	
- Rumah jaga dan struktur kecil lainnya	
Semua gedung dan struktur lain, kecuali yang termasuk dalam	
kategori risiko I,III,IV, termasuk, tapi tidak dibatasi untuk:	
- Perumahan	
- Rumah toko dan rumah kantor	
- Pasar	
- Gedung perkantoran	II
- Gedung apartemen/ rumah susun	
- Pusat perbelanjaan/ mall	
- Bangunan industri	
- Fasilitas manufaktur	
- Pabrik	

gempa

Kategori Risiko	Faktor Keutamaan Gempa, <i>Ie</i>
I atau II	1,0
III	1,25
IV	1,5

Tabel 5.6 Faktor keutamaan gempa, Ie

13. Menentukan periode fundamental struktur (T_a)

Perioda fundamental pendekatan bangunan dihitung dengan cara mencari nilai C_t dan x pada tabel 5.7 (Tabel 15 SNI 1726:2012 hlm. 56) didapatkan C_t = 0,0466 dan x = 0,9.

Tabel 5.7 Nilai parameter perioda pendekatan C_t dan x

Tipe Struktur	C_t	X
Sistem rangka pemikul momen di mana rangka memikul 100 persen gaya gempa yang disyaratkan dan tidak dilingkupi atau dihubungkan dengan komponen yang lebih kaku dan akan mencegah rangka dari defleksi jika dikenai beban gempa :		
Rangka baja pemikul momen	0,0724	0,8
Rangka beton pemikul momen	0,0466	0,9
Rangka baja dengan bresing eksentris	0,0731	0,75
Rangka baja dengan bresing terkekang terhadap tekuk	0,0731	0,75
Semua sistem struktur lainnya	0,0488	0,75

Menurut SNI 1726:2012 pasal 7.8.2.1, perioda fundamental pendekatan struktur (T_a) ditentukan dengan persamaan berikut

 $T_a = C_t \cdot h_n^x = 0,0466 \cdot 32^{0.9} = 1,054 \text{ detik}$

- 14. Menentukan eksponen yang terkait dengan perioda struktur (k)
 Berdasarkan SNI 1726:2012 halaman 57 dengan interpolasi didapat nilai k = 1,2772
- 15. Menentukan koefisien respons seismik (*C_s*)Ditentukan dengan persamaan:

$$C_{sl} = S_{DSr} / (R/I_e) = 1,0/(8/1) = 0,1250$$

Nilai C_s dari persamaan diatas tidak melebihi:

$$C_{S2} = S_{D1r} / T(R/I_e) = 0.6 / 1.2772 \text{ x}(8/1) = 0.0711$$

Nilai C_s juga tidak kurang dari:

$$C_{s3} = 0,044 \ge S_{DSr} \ge I_e = 0,044 \ge 1,0 \ge 1 = 0,0440$$

Dipakai $C_s = 0,0711$

16. Menentukan gaya geser dasar seismik (V)

Sebelum menghitung gaya geser dasar seismik, berat bangunan total dan berat bangunan per lantai perlu diketahui. Selanjutnya akumulasi berat lantai diperhitungkan dengan rumus $W_{total} = W_{Dead} + 0,3W_{Live}$. Berat bangunan dapat dilihat pada Tabel 5.8 berikut ini:

Lontoi		Beban (ton)				
Lainai	Dead	Live	30% Live	(ton)		
1	992,52	243	72,9	1065,42		
2	898,44	243	72,9	971,34		
3	898,44	243	72,9	971,34		
4	898,44	243	72,9	971,34		
5	898,44	243	72,9	971,34		
6	898,44	243	72,9	971,34		
7	898,44	243	72,9	971,34		
8	659,784	97,2	29,16	688,944		
]	Fotal		7582,404		

Tabel 5.8 Berat total bangunan per lantai

Setelah mendapatkan akumulasi berat lantai dan koefisien respon seismik maka gaya geser dasar seismik dapat dihitung sebagai berikut:

$$V = C_s \times W_{total} = 0,0711 \times 7582,404 = 539,3209$$
 ton

17. Menentukan gaya horizontal gempa (F)

Gaya horizontal gempa dapat dilihat pada Tabel 5.9 berikut ini.

Lantai	Berat (W)	Tinggi (H)	ттk	XX/ TTk	C	$\mathbf{F} = \mathbf{C}_{\mathbf{vx}} \cdot \mathbf{V} \mathbf{tot}$
Lantai	Ton	(m)	п	vv.п	Cvx	Ton
1	1065,4200	4	5,874	6258,686	2,06%	11,1115
2	971,3400	8	14,238	13829,765	4,55%	24,5530
3	971,3400	12	23,897	23212,497	7,64%	41,2109
4	971,3400	16	34,508	33519,380	11,03%	59,5094
5	971,3400	20	45,888	44572,938	14,67%	79,1336
6	971,3400	24	57,920	56260,429	18,52%	99,8833
7	971,3400	28	70,524	68502,866	22,55%	121,6182
8	688,9440	32	83,638	57622,195	18,97%	102,3010
	Ju	mlah		303778,7564	100,00%	539,3209

Tabel 5.9 Distribusi gaya geser per lantai

5.3 PEMODELAN STRUKTUR

5.3.1 Definisi Material

Definisi material dimaksudkan untuk menentukan jenis material yang digunakan dalam penelitian ini.

1. Beton

Klik menu *Define > Materials > Add New Material*. Isi spesifikasi material beton yang digunakan seperti Gambar 5.7 berikut.

Material Manage and Display C	_	
material manie and Display C	Color Bet	on
Material Type	Cor	ncrete
Material Notes		Modify/Show Notes
Weight and Mass		Units
Weight per Unit Volume	2.400E-09	Tonf, mm, C
Mass per Unit Volume	2.447E-13	
sotropic Property Data		
Modulus of Elasticity, E		2.3963
Poisson's Ratio, U		0.3
Coefficient of Thermal Expar	nsion, A	1.170E-05
Shear Modulus, G		0.9217
Other Properties for Concrete	Materials	
Specified Concrete Compres	sive Strength, f'c	2.549E-03
Lightweight Concrete		
Shear Strength Reduction	on Factor	

Gambar 5.7 Spesifikasi material beton

2. Baja

Klik menu *Define > Materials > Add New Material*. Isi spesifikasi material baja yang digunakan seperti Gambar 5.8 berikut.

Material Name and Display Color	Tulangan Pokok
Material Type	Rebar
Material Notes	Modify/Show Notes
Weight and Mass	Units
Weight per Unit Volume 7.8	49E-09 Tonf, mm, C
Mass per Unit Volume	04E-13
Isotropic Property Data	
Modulus of Elasticity, E	20.389
Poisson's Ratio, U	0.3
Coefficient of Thermal Expansion, A	1.170E-05
Shear Modulus, G	7.8419
Other Properties for Rebar Materials	
Minimum Yield Stress, Fy	0.0408
Minimum Tensile Stress, Fu	0.0422
Expected Yield Stress, Fye	0.0309
	0.0464

Gambar 5.8 Spesifikasi material baja tulangan longitudinal

General Data	la com	-	_
Material Name and Display Color	Tulang	gan Bagi	
Material Type	Rebar		
Material Notes		Modify/Show Notes.	
Weight and Mass		Units	
Weight per Unit Volume 7.	849E-09	Tonf, mm,	С 🔻
Mass per Unit Volume	004E-13	1 .	
sotropic Property Data			
Modulus of Elasticity, E		20.389	
Poisson's Ratio, U		0.3	
Coefficient of Thermal Expansion, .	A	1.170E-05	
Shear Modulus, G		7.8419	
Other Properties for Rebar Materials	ı ———		
Minimum Yield Stress, Fy		0.0245	
Minimum Tensile Stress, Fu		0.0422	
Expected Yield Stress, Fye		0.0309	
Expected Tensile Stress, Fue		0.0464	

Gambar 5.9 Spesifikasi material baja tulangan transversal

5.3.2 Definisi Struktur

Definisi struktur dimaksudkan untuk memasukkan data dimensi struktur berupa balok, kolom, pelat dan dinding geser yang telah dihitung sebelumnya.

1. Balok

Klik menu *Define > Section Properties > Frame Section > Add New Property.* Pada *Rectangular Section*, isi data dimensi dan material yang digunakan. Pada *Concrete Reinforcement* masukan spesifikasi tulangan dan selimut beton seperti Gambar 5.10 dan Gambar 5.11 berikut.

ectangular Section		Reinforcement Data
Section Name Section Notes	B1 Modify/Show Notes	Rebar Material Longitudinal Bars + Tulangan Pokok • Confinement Bars (Ties) + Tulangan Bagi •
Properties Properties Section Properties	aty Modifiers Material	Design Type C Column (P-M2-M3 Design) @ Beam (M3 Design Only)
Depth (13) 50 Width (12) 30		Concrete Cover to Longitudinal Rebar Center Top 60. Bottom 60.
		Creation Control Contro Control <thcontrol< th=""> <th< td=""></th<></thcontrol<>
Concrete Reinforcement	Display Color	Bottom 0. 0.

Gambar 5.10 Frame section balok induk B1

tangular Section		Reinforcement Data
Section Name Section Notes	Ba1 Modify/Show Notes	Rebar Material Longitudinal Bars + Tulangan Pokok Confinement Bars (Ties) + Tulangan Bagi
Properties F	roperty Modifiers Material	Design Type Column (P-M2-M3 Design) G Beam (M3 Design Only)
Dimensions Depth (13) Width (12)	300.	Concrete Cover to Longitudinal Rebar Center Top [60. Bottom 60.
		Reinforcement Dverrides for Ductile Beams Left Right
	Display Color	Bottom 0. 0.
Concrete Reinforcement		Cancel

Gambar 5.11 Frame Section balok anak Bal

2. Kolom

Klik menu *Define > Section Properties > Frame Section > Add New Section*. Pada *Rectangular Section*, isi data dimensi dan material yang digunakan. Pada *Concrete Reinforcement* masukan spesifikasi tulangan dan selimut beton seperti Gambar 5.12 berikut.

tangular Section			Reinforcement Data	
Section Name	K1		, Confinement Bars (Ties)	+ Tulangan Pokok •
Section Notes		Modify/Show Notes	Design Type Column (PM2H3D	resign)
Section Properties	Set Modifiers	Haterial	Beam (M3Design U Reinforcement Conligure Rectangular Circular	tion Continement Bars
Depth (t3) Width (t2)	700.	3.	Longitudinal Bars - Recta Clear Cover for Confinen Number of Longit Bars A Number of Longit Bars A Longitudinal Bar Size	angular Configuration nent Bars [40. Jong 3-dir Face]3 Jong 2-dir Face]3
		Display Color	Confinement Bars Confinement Bar Size Longitudinal Spacing of Number of Confinement	+ #4 Confinement Bars 150 Bars in 3 dr 3
Concrete Reinforce	ement	ancel	Check/Design Check/Design Reinforcement to be Generation	Checked Cancel

Gambar 5.12 Frame section kolom K1

3. Pelat Lantai Dan Pelat Atap

Klik menu *Define > Section Properties > Area Section > Add New Property*. Isi data-data yang digunakan seperti Gambar 5.13 dan Gambar 5.14 berikut.

Section Name	Pelat Lantai
Section Notes	Modily/Show
	Display Color 📕
Туре	
G Shell Thin	
C Shell · Thick	
C Plate - Thin	
C Plate Thick	
C Membrane	
C Shell - Layered/No	onlinear
Modity	/Show Layer Definition
Modify, Material	/Show Layer Definition
Modify Material Material Name	/Show Layer Definition
Modity. Material Material Name Material Angle	+ Beton •
Material Material Name Material Angle Thickness	/Show Layer Definition
Material Material Name Material Angle Thickness Membrane	+ Beton
Material Material Name Material Angle Thickness Membrane Bending	*Show Layer Definition *Beton 0. 125. 125.
Modily Material Material Name Material Angle Thickness Membrane Bending Concrete Shell Section	Show Layer Definition Beton 125. 125. Design Parameters
Modiyy Material Material Angle Thickness Membrane Bending Concrete Shell Section Modify/Show S	Show Layer Definition Beton 125: 125: Design Parameters Shell Design Parameters
Material Material Name Material Angle Thickness Membsane Bending Concrete Shell Section Modily/Show S Stiffness Modifies	Khow Lawer Definition Show Lawer Definition [0 [125, [1

Gambar 5.13 Area section pelat lantai

Section Name	Pelat Atap
Section Notes	Modily/Show
	Display Color
Туре	
Shell - Thin	
C Shell - Thick	
C Plate - Thin	
C Plate Thick	
C Membrane	
C Shell - Layered/Ne	onlinear
Modity	/Show Layer Definition
Material	
Material Material Name	+ Beton •
Material Material Name Material Angle	_+ Beton
Material Material Name Material Angle Thickness	+ Beton •
Material Material Name Material Angle Thickness Membrane	+ Beton •
Material Material Name Material Angle Thickness Membrane Bending	+ Beton
Material Material Name Material Angle Thickness Membrane Bending Concrete Shell Section	+ Beton
Material Material Name Material Angle Thickness Membrane Bending Concrete Shell Section Modity/Show 3	+ Beton (0.)
Material Material Name Material Angle Thickness Membsane Bending Concrete Shell Section Modity/Show 3 Stiffness Modifiers	+ Beton

Gambar 5.14 Area section pelat atap

4. Dinding Geser

Klik menu *Define > Section Properties > Area Section > Add New Property*. Isi data-data yang digunakan seperti Gambar 5.15 berikut.

Section Name	Shearwall
Section Notes	Modify/Show
	Display Color
Туре	
C Shell - Thin	
Shell · Thick	
C Plate - Thin	
C Plate Thick	
C Membrane	
C Shell - Layered/N	onlinear
Modify.	/Show Layer Definition
Material	
Material Material Name	+ Beton •
Material Material Name Material Angle	+ Beton •
Material Material Name Material Angle Thickness	+ Beton •
Material Name Material Name Material Angle Thickness Membrane	+ Beton •
Material Name Material Name Material Angle Thickness Membrane Bending	+ Beton .
Material Material Name Material Angle Thickness Membrane Bending Concrete Shell Section	+ Beton
Material Material Name Material Angle Thickness Membrane Bending Concrete Shell Section Modity/Show 3	Beton 0. 350. 350. 350. Design Parameters Shell Design Parameters
Material Material Name Material Angle Thickness Membrane Bending Concrete Shell Section Modify/Show Stiffness Modifiers	Beton O

Gambar 5.15 Area section dinding geser

5.3.3 Definisi Pembebanan

Definisi pembebanan dimaksudkan untuk memberikan beban yang akan bekerja pada struktur yang akan dianalisis. Jenis beban yang digunakan berupa beban mati (*Dead Load*, DL), beban hidup (*Live Load*, LL), beban mati tambahan (*Super Imposed Dead Load*, SIDL) dan beban lateral (Q.Lateral).

1. Load Patterns

Klik menu *Define > Load Patterns*. Isi data-data beban yang digunakan seperti Gambar 5.16 berikut.

Gambar 5.16 Load patterns beban yang digunakan

Untuk beban mati (DL) digunakan *self weight multiplier* = 1 karena secara *default* program SAP2000 Ver.14 akan menghitung sendiri struktur berdasarkan info luas penampang elemen dan berat jenis material yang dipakai. Sedangkan beban hidup (LL) dan beban lateral (Q.Lateral) menggunakan *self weight multiplier* = 0 karena bebannya akan dimasukkan secara manual. Statik EQ X dan Statik EQ Y adalah beban lateral atau beban statik ekuivalen hasil perhitungan pembebanan gempa arah X dan arah Y yang akan digunakan untuk analisis *pushover*.

2. Response Spectrum

Klik menu *Define > Functions > Response Spectrum*. Pada *Choose Function Type to Add* pilih *From File* dan klik *Add New Function*. Untuk lebih jelasnya dapat dilihat pada Gambar 5.17 berikut.

Response Spectra	Choose Function Type to Add
UNIFRS	From File
	Click to:
	Add New Function
	Modify/Show Spectrum
	Delete Spectrum

Gambar 5.17 Menambahkan respon spektrum

Selanjutnya pada jendela *Response Spectrum Function Definition* isi nama fungsi RSJogja dan *Values are* pilih *Period vs Value*. Kemudian pilih file data-data respon spektrum yang telah dihitung sebelumnya dengan klik *Browse*. Untuk memperlihatkan grafik respon spektrum klik *Display Graph* dan klik *OK*. Untuk lebih jelasnya dapat dilihat pada Gambar 5.18 berikut.

Function Name	RS Jogja		Function Damping Ratio
Function File File Name [c:\users\jagoan.acer\desktop\ts.ne Header Lines to Skip	Browse	⊂ Values are:	alue
Function Graph			
	antes Carely	C 0 1001 0 0010	1.1

Gambar 5.18 Menginput grafik respon spektrum

3. Beban Statik Ekuivalen

Beban statik ekuivalen menghasilkan distribusi gaya-gaya gempa yang bekerja pada masing-masing lantai tiap tingkat pada pusat diafragma gedung arah x ataupun arah y. Pada penilitan ini beban statik ekuivalen di *input*

menggunakan Auto Lateral Load. Berikut langkah-langkah memasukkan beban gempa statik ekivalen.

a. Diafragma Lantai

Pilih semua *joint* dari struktur > klik menu *Assign* > *Joint* > *Constraints*. Pada *Choose Constraint Type to Add* pilih *Diaphragm* dan klik *Add New Constraint*. Pada *Constraint Axis* pilih *Z Axis* dan centang *Assign a different diaphragm constraint to each different selected Z level* seperti Gambar 5.19 berikut.

Constraint Name	DIAPH1
Coordinate System	GLOBAL 💌
Constraint Axis	
C X Axis	C Auto
C Y Axis	
C Z Axis	

Gambar 5.19 Diaphragm constraint

b. Pendefinisian Beban Gempa

Klik menu *Define > Load Patterns*. Pilih Statik EQ X untuk beban lateral arah x dan Statik EQ Y untuk beban lateral arah y. Selanjutnya klik *Modify Lateral Load Pattern* dan masukkan beban lateral pada Tabel 5.9. Untuk *input* beban statik ekuivalen arah x ditunjukkan Gambar 5.20 dan arah y ditunjukkan Gambar 5.21.

Gambar 5.20 Auto lateral load arah x

Gambar 5.21 Auto lateral load arah y

5.3.4 Pemodelan Struktur

Setalah memasukkan data dimensi balok, kolom, pelat dan dinding geser, selanjutnya adalah pemodelan struktur yang akan dianalisis.

1. Menggambar Elemen Frame (Balok dan Kolom)

Klik tombol *Draw Frame/Cable Element* > pilih *Section* B1, Ba1 atau K1 > klik dua titik yang akan menjadi titik awal dan titik akhir balok atau kolom > klik kanan pada *mouse* untuk mengakhirinya. Untuk lebih jelas lihat Gambar 5.22 berikut.

Gambar 5.22 Pemodelan balok dan kolom

 Menggambar Elemen Area Section (Pelat Lantai, Pelat Atap dan Shearwall) Klik tombol Quick Draw Area Element > pilih Section P.Lantai, P.Atap atau Shearwall > klik area yang akan digambar. Untuk lebih jelas lihat Gambar 5.23 dan Gambar 5.24 berikut.

Gambar 5.23 Pemodelan pelat lantai dan pelat atap

Gambar 5.24 Pemodelan *shearwall*

3. Perletakan Bagian Bawah Struktur

Untuk menentukan jenis perletakan (*restraint*) pada bagian bawah struktur, maka pilih semua *joint* yang berada dibawah kolom pada level pondasi > *Assign* > *Joint* > *Restraint*. Klik perletakan jepit seperti Gambar 5.25 berikut.

Rest	raints in Joint L	ocal Di	rections
•	Translation 1	•	Rotation about
•	Translation 2	•	Rotation about
•	Translation 3	~	Rotation about
ast	Restraints	<u>له (</u>	Cancel

Gambar 5.25 Joint restraints

5.3.5 Pembebanan Pada Struktur

Beban yang bekerja pada struktur bangunan meliputi beban mati, beban hidup, beban mati tambahan dan beban gempa. Berikut adalah pemodelan beban pada struktur.

1. Beban Mati (Dead Load, DL)

Seperti dijelaskan sebelumnya, beban mati ini akan dihitung otomatis oleh program SAP2000 Ver.14.

- 2. Beban Mati Tambahan
 - a. Beban mati tambahan pada balok

Klik balok pada sisi luar struktur > pada menu klik *Assign* > *Frame Loads* > *Distributed*. Pada *Load Pattern Name* pilih DEAD. Masukkan beban dinding batako 20 cm yaitu sebesar 0,68 t/m pada balok B1 terluar di kotak *Load* di *Uniform Load*. Untuk lebih jelas dapat dilihat pada Gambar 5.26 dan Gambar 5.27.

Load Patter	n Name —		Un	its
+ DE	AD		·] [1	°onf, m, C 🔄
Load Type -	and Direction		Options	
 Force 	s 🔿 Mom	ients	C Add to E	xisting Loads
Coord Sys	GLOBAL	-	Replace	Existing Loads
Direction	Gravity	•	C Delete E	xisting Loads
Trapezoidal	Loads1.	2.	3.	4.
Distance	0.	0.25	0.75	1.
Load	0.	0.	0.	0.
Relation Relation	ative Distance	e from End-I	C Absolute Di	stance from End-

Gambar 5.26 Input beban mati tambahan pada balok

Gambar 5.27 Pemodelan beban mati tambahan akibat beban dinding

b. Beban mati tambahan pada pelat

Pilih semua pelat lantai atau pelat atap > pada menu klik Assign > Area Loads > Uniform (Shell). Pada Load Pattern Name pilih DEAD. Masukkan bebannya yaitu sebesar $0,158 \text{ t/m}^2$ untuk pelat lantai dan $0,073 \text{ t/m}^2$ untuk pelat atap yang telah dihitung pada subbab 5.2.2 di kotak *Load* di *Uniform Load*. Untuk lebih jelas dapat dilihat pada Gambar 5.28 dan Gambar 5.29.

Area Uniform Loads Load Pattern Name + DEAD	Units
Uniform Load Load 0,158 Coord System GLOBAL Direction Gravity	Options C Add to Existing Loads C Replace Existing Loads C Delete Existing Loads
OK	Cancel

Gambar 5.28 Input beban mati tambahan pada pelat dan atap

Gambar 5.29 Pemodelan beban mati tambahan pada pelat lantai dan atap

3. Beban Hidup

Beban hidup diberikan pada pelat lantai dan pelat atap pada struktur bangunan. Klik pelat lantai atau pelat atap yang akan diberi beban > Assign > $Area\ Loads$ > $Uniform\ (Shell)$. Pada $Load\ Pattern\ Name\ pilih\ LIVE$. Selanjutnya pada kotak $Load\ pada\ Uniform\ Load\ diisi\ 0,25\ t/m^2\ untuk\ pelat\ lantai\ dan\ 0,1\ t/m^2\ untuk\ pelat\ atap.$ Untuk lebih jelas dapat dilihat pada Gambar 5.30 dan Gambar 5.31.

Load Pattern N	lame		Units
+ LIVE		•	Tonf, m, C
Uniform Load		Options _	1 L
Load	0.25	C Ado	d to Existing Loads
Coord System	GLOBAL 💌	Rep	place Existing Loads
Direction	Gravity 💌	C Del	ete Existing Loads

Gambar 5.30 Input beban hidup pada pelat lantai

Gambar 5.31 Pemodelan beban hidup pada pelat lantai

4. Beban Gempa

Beban gempa berupa beban lateral atau beban statik ekuivalen sudah dimasukkan dengan menggunakan *auto lateral load* pada *load pattern*.

5.4 ANALISIS BEBAN GEMPA

5.4.1 Analisis Beban Gempa Statik (Gaya Geser Dasar)

Gaya geser dasar akibat pembebanan gempa statik pada pemodelan struktur SAP2000 dapat dilihat dari menu *Display – Show Tables*, kemudian pada kota dialog *Choose Tables for Display* dipilih *Analysis Results – Structures Output – Base Reactions*, seperti yang ditunjukkan pada Gambar 5.32.

Gambar 5.32 Kotak dialog Choose Tables for Display

Kemudia pada kota dialog *Select Output Case*, dipilih EX dan EY. Nilai gaya geser dasar (*force base shear*) akibat beban gempa statik ekivalen dapat dilihat pada Gambar 5.33.

Base R <u>F</u> ile <u>\</u>	eactions <u>/</u> iew For <u>m</u> at-	Filter-Sort <u>S</u> e	elect <u>O</u> ptions						
Units: /	As Noted				Bas	e Reactions			•
	OutputCase	CaseType	GlobalFX	GlobalFY	GlobalFZ	GlobalMX	GlobalMY	GlobalMZ	GlobalX
	Text	Text	Tonf	Tonf	Tonf	Tonf-mm	Tonf-mm	Tonf-mm	mm
	EX	LinStatic	-539.3209	000000002322	-1.918E-13	0.000003753	-12346364	485388.81	0
	EY	LinStatic	000000002503	-539.3209	-7.745E-13	12346364	-0.00000399	-1456166.43	0
•	1								۰
Record		1)) ol	2					Add Tables	Done

Gambar 5.33 Base Shear akibat beban gempa statik ekivalen

Dari Gambar 5.33, didapat gaya geser dasar akibat beban gempa statik ekivalen untuk arah X dan arah Y berturut-turut adalah Vx=Vy=539,3209 ton.

5.4.2 Analisis Beban Gempa Dinamik (Gaya Geser Dasar)

Mengacu pada SNI 1726:2012 pasal 7.9.4 analisis gempa dengan metode respon spektrum memerlukan perhitungan beban gempa statik ekivalen untuk dapat memperhitungkan apakah gaya geser dasar yang dihasilkan respon spectral (V) sudah lebih besar dari 85% gaya geser yang dihasilkan gempa statik ekivalen (V_t), jika belum terpenuhi maka perlu ada perbesaran respon spectral dengan mengalikan $\frac{0.85 \text{ V}}{V_t}$. Gaya geser dasar akibat dari beban gempa respon spektrum dapat dilihat pada gambar 5.34 berikut ini.

Base R <u>F</u> ile \	eactions <u>V</u> iew For <u>m</u> at-	Filter-Sort Se	lect <u>O</u> ptions							
Units: 4	As Noted				Base	e Reactions				-
	OutputCase Text	CaseType Text	StepType Text	GlobalFX T onf	GlobalFY T onf	GlobalFZ T onf	GlobalMX Tonf-mm	GlobalMY Tonf-mm	GlobalMZ Tonf-mm	
	RSX	LinRespSpec	Max	307.3338	0.00003366	0.0003313	7.55	6570198.8	0.03626	
	RSY	LinRespSpec	Max	0.00002646	287.0309	0.0002088	6113695.43	1.81	0.03056	
	1									
										•
Record		2)) of	2					Add Tables	Done	

Gambar 5.34 *Base shear* akibat beban gempa dinamik

Gaya geser dasar respon spektrum dari SAP2000 :

Rsx = 307,3338 ton

Rsy = 287,0309 ton

Gaya geser dasar static ekivalen dari SAP2000 :

Fx = Fy = 539,3209 ton

Evaluasi gempa arah X :

Fx statik = 539,3209 ton

Rsx = 307,3338 ton

85% Fx statik = 458,4228 ton

Karena Rsx < 85% Fx, respon spektrum arah x perlu diperbesar $\frac{458,4228}{307,3338} = 1,49$

Evaluasi gempa arah Y :

Fy statik = 539,3209 ton

Rsy = 287,0309 ton

85% Fy statik = 458,4228 ton

Karena Rsy < 85% Fy, respon spektrum arah y perlu diperbesar $\frac{458,4228}{287,0309} = 1,59$

Selanjutnya analisis respon spektrum dilakukan lagi untuk mencari momenmomen maksimal yang terjadi pada balok dan kolom untuk mendesain tulangan yang akan digunakan. Dari hasil desain tulangan menggunakan momen maksimal pada balok dan kolom, didapatkan konfigurasi tulangan yang dipakai dapat dilihat pada Tabel 5.10 dan Tabel 5.11. Konfigurasi tulangan yang telah didesain kemudian di *input* pada program SAP2000 yang akan dilanjutkan dengan analisis *pushover*.

Dimensi Tumpuan Lapangan Tipe (mm) Bawah Sengkang Bawah Sengkang Atas Atas B1 500 x 300 9D19 5D19 D10-100 2D19 6D19 D10-150 Ba1 300 x 250 3D19 2D19 D10-100 2D19 3D19 D10-150

Tabel 5.10 Penulangan balok hasil desain

Tabel 5.11 Penulangan kolom hasil desain

Tipe	Dimensi	Tula	ngan	Seng	kang
ripe	(mm)	Tumpuan	Lapangan	Tumpuan	Lapangan
K1	700 x 700	20D19	20D19	D10-100	D10-150

5.4.3 Analisis Simpangan Total Gedung Akibat Beban Gempa Dinamik

Menurut SNI 1726:2012 pasal 7.12.1 batasan simpangan yang diijinkan untuk bangungan dengan kategori resiko I adalah 2% dari tinggi total gedung. Pada penelitian ini simpangan maksimum yang diijinkan sebesar 2% x 32 m = 0,64 m. Dari hasil analisis beban gempa dinamik didapatkan simpangan total adalah 0,0405 m untuk arah x dan 0,0468 untuk arah y yang mana kurang dari 0,64 m, sehingga

simpangan yang terjadi masih memenuhi syarat keamanan. Hasil simpangan akibat beban gempa dinamik dapat dilihat pada Gambar 5.35.

Joint	Displacements									
<u>F</u> ile	<u>V</u> iew For <u>m</u> at-	-Filter-Sort Se	lect Options							
Units:	< As Noted				Joi	nt Displacements				-
					,					
	Joint	OutputCase	CaseType	StepType	U1	U2	U3	R1	R2	
	Text	Text	Text	Text	mm	mm	mm	Radians	Radians	
	972	RSX	LinRespSpec	Max	40.524107).00000005184	0.466995	0.000002137	0.000399	
	972	RSY	LinRespSpec	Max	0.0000001049	46.781489	0.552648	0.000519	0.000002718	
•										Þ
Reco	ord: 📕 🖣	1 D I of	2					Add Tables	Done]

Gambar 5.35 Simpangan total akibat beban gempa dinamik

5.5 ANALISIS PUSHOVER

5.5.1 Pendefinisian Tahapan Analisis Pushover

Tipe pembebanan pada analisis *pushover* terdiri dari dua tahap yaitu tahap pertama analisis belum memperhitungkan kondisi non-linier dimana struktur diberi pembebanan beban mati dan beban hidup. Selanjutnya analisis dilanjutkan pada tahap kedua yaitu dengan memberikan pola beban lateral yang diberikan secara monotonik yang besarnya meningkat secara bertahap hingga struktur mengalami sendi-sendi plastis pada lokasi tertentu hingga struktur tersebut runtuh dan secara otomatis dilakukan program SAP2000.

1. Pembebanan Gravitasi

Pembebanan gravitasi dilakukan dengan memilih menu *Define – Load Case* dan pilih *Add New Load Case. Load Case Name* diberi nama GRAV, untuk *Initial Condition* dipilih *Zero Initial Condition* yaitu pembebanan yang dilakukan pada saat kondisi awal sebelum menerima beban. Pada *Load Applied* beban gravitasi yang bekeja berupa beban mati dan beban hidup dengan *scale factor* 1,0 dan 0,3, untuk lebih jelas dapat dilihat pada Gambar 5.36. Untuk *Load Application* dipilih opti *Full Load* dan *Monitored Displacement* diambil arah U3 (arah Z) di join 972 yaitu pada join atap, untuk lebih jelas dapat dilihat pada Gambar 5.37 dan Gambar 5.38.

Load Case Name		Notes	Load Case Type
GRAV	Set Def Name	Modify/Show	Static Design.
Initial Conditions			Analysis Type
 Zero Initial Condition 	s - Start from Unstresse	d State	C Linear
C Continue from State	at End of Nonlinear Ca:	se 🔽	Nonlinear
Important Note: Loa cur	ids from this previous c rent case	ase are included in the	C Nonlinear Staged Construction
Modal Load Case			Geometric Nonlinearity Parameters
All Modal Loads Applied	Use Modes from Case	MODAL 💌	None
Lands Asselled			C P-Delta
Loads Applied	Mana Casla Fa		C P-Delta plus Large Displacements
Load Patterr V DEAL			
Load Pattern DEAL			
		Dhù	
Load Pattern LIVE	0.3		
Load Pattern LIVE	0.3	Modify	
Load Pattern LIVE	0.3	Modify	
Load Pattern LIVE	0.3	Modify	
Load Pattern LIVE	0.3	Modify Delete	
Load Pattern LIVE	0.3	Modify Delete	
Coad Pattern LIVE	Eull oad	Modify Delete	
Dead Pattern LIVE	0.3	Modify Delete	<u> </u>
Used Pattern LIVE	0.3 Full Load Final State Only	Modily/Show	Cancel

Gambar 5.36 Load case untuk beban gravitasi

Load Application Control	
Full Load	
O Displacement Control	
Control Displacement	
C Use Conjugate Displacement	
C Use Monitored Displacement	
Load to a Monitored Displacemen	t Magnitude of
DOF U3	at Joint 972
C Generalized Displacement	

Gambar 5.37 Load application control for nonlinear static analysis beban gravitasi

Gambar 5.38 Joint pada atap gedung yang ditinjau

2. Pembebanan Lateral

Setelah pendefinisian beban gravitasi, selanjutnya mendefinisikan beban lateral sebagai beban *pushover*. Pada analisis ini dibuat dua macam arah pembebanan lateral yaitu arah x dan arah y. Klik *Add New Load Case* lagi untuk memasukkan *load cases* PUSH X dan PUSH Y. *Analysis case* diberi nama PUSH X untuk arah x dan PUSH Y untuk arah y. Pada *Analysis Type* pilih opsi *Nonlinear*. Pada *Initial Conditions* pilih *Continue from State at End of Nonlinear Case* : GRAV. Pada *Load* Applied, pilih *Load Pattern* pada *Load Type*, *Statik EQ X* untuk PUSH X dan *Statik EQ Y* untuk PUSH Y pada *Load Name* dan *Scale Factor* = 1. Untuk lebih jelas dapat dilihat pada Gambar 5.39 dan Gambar 5.40.

Load Case Name		Notes	Load Case Type	
Push X	Set Def Name	Modify/Show	Static	▼ Design.
Initial Conditions			Analysis Type	
C Zero Initial Condition	s - Start from Unstressed	State	C Linear	
Continue from State	at End of Nonlinear Cas	e GRAV 💌	Nonlinear	
Important Note: Loa cur	ids from this previous ca rent case	se are included in the	C Nonlinear Staged	I Construction
Modal Load Case			Geometric Nonlinearity	Parameters
All Modal Loads Applied	Use Modes from Case	MODAL 💌	None	
Landa Arabad			C P-Delta	
Loads Applied	d Name – Scale Fac	tor	C P-Delta plus Large	Displacements
Load Patterr V Statik				
Load Pattern Statik	EOX 1.			
		A00		
		Modify		
		Delete		
Other Parameters]	
Other Parameters	Displ Control	Modify/Show		
Other Parameters	Displ Control Multiple States	Modify/Show	 Car	

Gambar 5.39 Pengaturan analysis case beban lateral puhover arah x

Load Case Name		- Notes	Load Case Type	
Push Y	Set Def Name	Modify/Show	Static 💌 De	sign
Initial Conditions			Analysis Type	
C Zero Initial Conditio	ns - Start from Unstresse	d State	C Linear	
 Continue from State 	e at End of Nonlinear Ca	se GRAV 💌	Nonlinear	
Important Note: Lo	ads from this previous c urrent case	ase are included in the	C Nonlinear Staged Construction	
Modal Load Case			Geometric Nonlinearity Parameters	
All Modal Loads Applie	d Use Modes from Case	MODAL 🔻	None	
			C P-Delta	
Loads Applied	- d Norra - Coole Fe		O P-Delta plus Large Displacements	
Load Type Lo		ictor	L	
Load Pattern Stat				
	KLQT I.	Add		
		Modify		
		Delete		
Other Parameters				
Land Analisedian	Displ Control	Modify/Show		
Load Application				
Results Saved	Multiple States	Modify/Show	Cancel	

Gambar 5.40 Pengaturan analysis case beban lateral puhover arah y

Pada kotak *Load Application* dipilih *Displacement Control* dan *Use Monitored Displacement* dengan *Displacement Control* sebesar 2% dari tinggi bangunan. Untuk *Monitored Displacement* dipilih DOF arah U1 untuk arah x dan U2 untuk arah y dan masing-masing diletakkan pada titik *joint* atap. Untuk lebih jelas dapat dilihat pada Gambar 5.41 dan Gambar 5.42.

Loa	d Application Control
\odot	Full Load
œ	Displacement Control
Cor	ntrol Displacement
С	Use Conjugate Displacement
œ	Use Monitored Displacement
	o so monitored prepideement
Lo: Mor	ad to a Monitored Displacement Magnitude of 640.
Loi Mor	ad to a Monitored Displacement Magnitude of 640. nitored Displacement DDF U1 at Joint 972
Loi Mor C	ad to a Monitored Displacement Magnitude of 640. nitored Displacement DDF U1

Gambar 5.41 Pengaturan *load application control* beban lateral *pushover* arah x

gnitude of 640.	
at Joint 972	
	Ţ
	at Joint 972

Gambar 5.42 Pengaturan *load application control* beban lateral *pushover* arah y

Selanjutnya pada kotak *Results Saved* dipilih *Multiple States* dengan *Minimum Numbe of Saved States* = 100 dan *Maximum Number of Saved States* = 1000. Untuk lebih jelasnya dapat dilihat pada Gambar 5.43

Results Saved for Nonlinear Static Load Cases	
Results Saved C Final State Only © Multiple States	
For Each Stage	
Minimum Number of Saved States 100	
Maximum Number of Saved States 1000	
Save positive Displacement Increments Only	
Cancel	

Gambar 5.43 Pengaturan *results saved* beban lateral *pushover* arah x dan arah y

Kemudian untuk nilai parameter pada *Solution Control* pada kotak dialog *Nonlinear Parameters* didefinisikan seperti pada Gambar 5.44.

Gambar 5.44 Pengaturan *nonlinear parameters* beban lateral *pushover* arah x dan arah y

3. Beban Respon Spektrum

Seismic demand pada analisis pushover menggunakan beban dari respon spektrum gempa SNI 1726:2012 untuk menentukan titik kinerja (Performance Point). Pada saat pushover kondisi bangunan dianggap elastik dengan nilai reduksi beban gempa, R = 1 dan faktor keutamaan bangunan, I =1,0. Klik Define – Pushover Parameter Sets – ATC 40 Capacity Spectrum, pada kotak dialog Define Pushover Parameters for ATC40 Capacity Spectrum klik Modify/Show Parameters dan nilai Scale Factor yang harus dimasukkan pada Demand Spectrum Defenition sebesar = $\frac{l}{R}g = \frac{1,0}{1}9.81 =$ 9,81. Untuk lebih jelasnya dapat dilihat pada Gambar 5.45

Pushover Parameters Name	Units
Name A40P01	Tonf, m, C
Plot Axes	Axis Labels and Range
⊙ Sa-Sd ⊂ Sa-T ⊂ Sd-T	Set Axis Data
Demand Spectrum Definition	
Function RS Jogja	▼ SF 9.81
C User Coeffs Ca	Cv
Damping Parameters Definition	
Inherent + Additional Damping	0.05
Structural Behavior Type	C User Modify/Show
Items Visible On Plot	
Show Capacity Curve	Color
🔽 Show Family of Demand Spectra	Color 📕
Damping Ratios	
0.05 0.1	0.15
✓ Show Single Demand Spectrum ((Variable Damping)	(ADRS) Color
🔽 Show Constant Period Lines at	Color
0.5 1.	1.5 2.
Reset D	efault Colors
Unda	te Plot

Gambar 5.45 Pengaturan Parameters for ATC-40 Capacity Spectrum

5.5.2 Pendefinisian Sendi Plastis

Pendefinisian sendi plastis elemen struktur diperoleh dari *momen-curvature* atau momen rotasi yang menggambarkan kemampuan deformasi dari elemen struktur. Oleh karena itu, sebelum mendefinisikan properti sendi plastis, maka terlebih dahulu dihitung berapa kapasitas momen dan momen rotasi dari elemen struktur tersebut. Dalam tugas akhir ini *momen curvature* atau momen rotasi pada elemen struktur dihitung menggunakan bantuan program secara *auto* oleh program SAP2000 berdasarkan ketentuan dari FEMA 356 (2000).

1. Pendefinisian Sendi Plastis Pada Balok

Penempatan sendi plastis pada balok di SAP2000 dilakukan melalui menu Assign – Frame – Hinges setelah sebelumnya pilih semua balok pada struktur. Pada Hinge Property pilih Auto dan pada Relative Distance pilih 0 dan 1, klik Add. Untuk lebih jelasnya dapat dilihat pada Gambar 5.46.

	inon bata	
Hinge Pro	perty Relative Distanc	e
Auto	▼ 0.	
Auto M3	0.	bbA
Auto M3	1.	
		Modify
		Delete
uto Hinge Assignn	nent Data	
uto Hinge Assignn ype: From Table	nent Data s In FEMA 356 Concerte Rooms - Flavura) Itam	í
uto Hinge Assignn ype: From Table able: Table 6-7 () OF: M3	nent Data s In FEMA 356 Concrete Beams - Flexure) Item	i
uto Hinge Assignn ype: From Table able: Table 6-7 () OF: M3	nent Data s In FEMA 356 Concrete Beams - Flexure) Item	i

Gambar 5.46 Penentuan properti sendi dan *relative distance* balok

Klik *Modify/Show Auto Hinge Assignment Data*. Pada *Select a FEMA 356 Table* dipilih *Table 6-7 (Concrete Beams – Flexure) Item i* dan isi data seperti Gambar 5.47. Sendi plastis yang dimasukkan hanya untuk M3 saja karena pada struktur balok yang menentukan adalah kegagalan lentur.

💢 Auto Hinge Assignn	nent Data	-	×
Auto Hinge Type From Tables In FEM, Select a FEMA356 Tat Table 6-7 (Concrete Component Type © Primary © Secondary	A 356 Beams - Flexure) Item i Or Degree of Freedom Or M2 Or M3	V Value From © Case/Combo GRAV © User Value V2	•
Transverse Reinforcing	rcing is Conforming	Reinforcing Ratio (p - p') / pbalanced ☞ From Current Design ⊂ User Value	
Deformation Controlled Orops Load After F Is Extrapolated After	Hinge Load Carrying Capacity °oint E er Point E		
	ОК	Cancel	

Gambar 5.47 Properti sendi balok

Untuk melihat properti sendi plasitis pada balok yang telah di analisis oleh program SAP2000 melalui menu Define – Section Properties – Hinge

Properties. Pilih sendi plastis yang akan dilihat propertinya pada
Modify/show property – Modify/Show Hinge Property. Hasil analisis sendi
plastis pada balok ditunjukkan pada Gambar 5.48.

lacement	Control Parameters-			-	
Point E	Moment/SF -0.2 -0.2 -1.1 -1. 0. 1. 1. 1.1 0.2 0.2	Rotation/SF -0.0365 -0.0216 -0.0216 0. 0. 0. 0. 0. 0.025 0.025 0.025 0.05	Symmetric	C Moment - Rota C Moment - Curv Hinge Lengt ☑ Relative	tion ature h Length
ad Carruir	n Capacitu Beuopd	Point E]	
oad Carryin	ng Capacity Beyond To Zero apolated Moment and Rotation	Point E	Narating		
oad Carryin Drops C Is Extra caling for f	ng Capacity Beyond To Zero apolated Moment and Rotation	Point E Positive pent SE 17826.43	Negative 41387		
oad Carryin Drops Tis Extra caling for f Use Yi Use Yi (Steel	ng Capacity Beyond To Zero apolated Moment and Rotation eld Moment Mon eld Rotation Rota Dipiects Only)	Point E Positive nent SF 17826.43 ation SF 1.	Negative 41387. 1.		
Dead Carryin Drops C Is Extra caling for t Use Yit (Steel I cceptance	ng Capacity Beyond To Zero apolated Amment and Rotation eld Moment Mon eld Rotation Rota Dipiects Only) • Criteria (Plastic Rot	Point E Positive nent SF 17826.43 ation SF 1. ation/SF) Particle	Negative 41387. 1.		
ead Carryin C Drops C Is Extr. caling for 1 Use Yi (Steel I cceptance	ng Capacity Beyond To Zero apolated Aroment and Rotation eld Rotation Rot Dipiects Only) • Criteria (Plastic Rot adiate Occupancy	Point E Positive nent SF 17825.43 ation SF 1. ation/SF) Positive 0.01	Negative 41387. 1. Negative -6.6365-03		
Dead Carryin Drops Is Extra- caling for t Use Yi Use Yi (Steel I cceptance Imme Life :	ng Capacity Beyond To Zero appolated Aroment and Rotation eld Moment Mon eld Rotation Rot Dipiects Only) Criteria (Plastic Rot soliate Occupancy Safety	Point E Positive n Positive stion SF 7/326.43 stion SF 1. atlon/SF Positive 0.01 0.02	Negative 41387. 1. Negative -6.636E-03 -0.0133	ок	Cancel

Gambar 5.48 Hasil pendefinisian hinge balok

2. Pendefinisian Sendi Plastis Pada Kolom

Penempatan sendi plastis pada kolom di SAP2000 dilakukan melalui menu Assign – Frame – Hinges setelah sebelumnya pilih semua kolom pada struktur. Pada Hinge Property pilih Auto dan pada Relative Distance pilih 0 dan 1, klik Add. Untuk lebih jelasnya dapat dilihat pada Gambar 5.49.

	ment Data	
Hinge Prop	perty Relative Distance	
Auto	▼ 0.	
Auto P-M2-M3	0.	Add
Auto P-M2-M3	1.	
		Modify
		Delete
uto Hinge Assignm	ient Data	
Type: From Tables	s in FEMA 306 Concrete Columna - Elouuro) Itom	
Type: From Tables Table: Table 6-8 (I DOF: P-M2-M3	s in FEMA 306 Concrete Columns - Flexure) Item	1

Gambar 5.49 Penentuan properti sendi dan *relative distance* balok

Klik *Modify/Show Auto Hinge Assignment Data*. Pada *Select a FEMA 356 Table* dipilih *Table 6-8 (Concrete Columns – Flexure) Item i* dan isi data seperti Gambar 5.50. Data sendi plastis untuk elemen kolom adalah P-M2-M3 yang artinya terjadi sendi plastis ditentukan oleh interaksi gaya aksial kolom (P) dan momen (M) sumbu lokal 2 dan sumbu lokal 3.

Auto Hinge Type	IA 356						•
Select a FEMA356 Ta	ble Columns - Flexure) Item	i					•
Component Type	C M2 C C M3 C C M2-M3 G	°Р-М2 °Р-М3 °Р-М2-М3	P and V Values From C Case/Combo C User Value V2	GRAV V3	/		•
☐ I ransverse Heinforcin	g orcing is Conforming		Determation Controlled Hinge Orops Load After Point E C Is Extrapolated After Poir	Load Can	ying Cap	acity —	
		ОК	Cancel				

Gambar 5.50 Properti sendi kolom

Untuk melihat properti sendi plasitis pada kolom yang telah di analisis oleh program SAP2000 melalui menu *Define – Section Properties – Hinge Properties*. Pilih sendi plastis yang akan dilihat propertinya pada

Modify/show property – Modify/Show Hinge. Untuk melihat data-data momen rotasi dilakukan melalui opsi *Modify/Show Moment Rotation Curve Data*. Sedangkan untuk melihat kurva interaksi P-M2-M3 pada kolom dapat dilakukan melalui opsi *Modify/Show P-M2-M3 Interaction Surface Data – Define/Show User Interaction Surface*. Properti sendi plastis dan kurva iteraksi P-M2-M3 pada kolom hasil dari analisis ditunjukkan pada Gambar 5.51 dan Gambar 5.52.

Gambar 5.51 Moment rotation data kolom

Gambar 5.52 P-M2-M3 interaction surface pada kolom

5.6 HASIL DAN PEMBAHASAN ANALISIS PUSHOVER

Berikut adalah hasil dari analisis *pushover* yang telah dijalankan pada program SAP2000 Ver.14. Untuk menampilkan grafik *pushover*, klik menu *Display* > *Show Static Pushover Curve*.

5.6.1 Kurva Kapasitas

Salah satu hasil analisis *pushover* yang mempunyai manfaat penting adalah kurva kapasitas (*capacity curve*), yang menunjukkan hubungan antara gaya geser dasar (V) dan perpindahan lateral pada titik kontrol (D) oleh peningkatan beban statik sampai pada kondisi ultimit atau target peralihan yang diharapkan. Kurva berbentuk nonlinier yang menunjukkan peningkatan beban pasca-elastik sampai dengan kondisi plastis. Kurva kapasitas dapat disebut juga dengan kurva *pushover*. Berikut adalah salah satu contoh kurva *pushover* dari hasil analisis untuk struktur gedung tanpa dinding geser arah x dan arah y yang dapat dilihat pada Gambar 5.53 dan Gambar 5.54.

Gambar 5.53 Kurva *pushover* struktur gedung tanpa dinding geser arah x

Gambar 5.54 Kurva *pushover* struktur gedung tanpa dinding geser arah y

Perbandingan kurva *pushover* untuk struktur gedung tanpa dinding geser, model 1, model 2, model 3 dan model 4 pada arah x dan arah y dapat dilihat pada Gambar 5.55 dan Gambar 5.56.

Gambar 5.55 Perbandingan kurva pushover pada arah x

Gambar 5.56 Perbandingan kurva pushover pada arah y

Pada analisis *pushover* pembebanan arah x, analisis berhenti pada langkah (step) 89 untuk bangunan tanpa dinding geser dengan simpangan pada titik kontrol sebesar 640 mm dan gaya geser dasar sebesar 1071,21 ton, step 32 untuk model 1 dengan simpangan pada titik kontrol sebesar 174,81 mm dan gaya geser dasar

sebesar 1913,55 ton, step 30 untuk model 2 dengan simpangan pada titik kontrol sebesar 194,90 mm dan gaya geser dasar sebesar 2073,34 ton, step 31 untuk model 3 dengan simpangan pada titik kontrol sebesar 186,70 mm dan gaya geser dasar sebesar 1939,21 dan step 33 untuk model 4 dengan simpangan pada titik kontrol sebesar 193,74 mm dan gaya geser dasar sebesar 1787,29 ton.

Pada analisis *pushover* pembebanan arah y, analisis berhenti pada langkah (step) 67 untuk bangunan tanpa dinding geser dengan simpangan pada titik kontrol sebesar 485,09 mm dan gaya geser dasar sebesar 1113,69 ton, step 17 untuk model 1 dengan simpangan pada titik kontrol sebesar 88,46 mm dan gaya geser dasar sebesar 2192,13 ton, step 24 untuk model 2 dengan simpangan pada titik kontrol sebesar 123,28 mm dan gaya geser dasar sebesar 2067,35 ton, step 31 untuk model 3 dengan simpangan pada titik kontrol sebesar 180,44 mm dan gaya geser dasar sebesar 2144,69 ton dan step 33 untuk model 4 dengan simpangan pada titik kontrol sebesar 195,55 mm dan gaya geser dasar sebesar 2238,04 ton.

Analisis tidak dapat dilanjutkan lagi sampai mencapai kontrol perpindahan yang ditentukan, yaitu sebesar 640 mm. Hal ini terjadi karena telah terlampauinya kapasitas deformasi pada tiap elemen struktur yang sebelumnya telah didefinisikan pada properti sendi plastis.

Dari hasil analisis dapat dilihat bahwa penggunaan dinding geser berpengaruh terhadap hasil kurva kapasitasnya. Gedung dengan struktur dinding geser memiliki kurva yang lebih tegak yang berarti bangunan lebih kaku dibanding gedung tanpa dinding geser. Untuk pembebanan arah x, kurva kapasitas untuk struktur gedung model 1, model 2, model 3 dan model 4 tidak terpaut jauh, tetapi model 1 memberikan gaya geser dasar yang lebih besar dengan simpangan yang lebih kecil dibandingkan model struktur yang lain. Untuk pembebanan arah y, kurva kapasitas model 1 juga memberikan gaya geser dasar yang lebih besar dengan simpangan yang lebih kecil dibandingkan model struktur yang lain. Hal ini menunjukkan bahwa penempatan dinding geser pada pusat massa gedung memberikan peningkatan kapasitas struktur untuk menahan gaya lateral yang lebih baik dibanding penempatan dinding geser jauh dari pusat massa gedung. Akibat denah gedung yang berbentuk persegi panjang membuat kurva kapasitas arah x dan arah y berbeda. Perbandingan kurva kapasitas arah x dan arah y semua model gedung yang dianalisis dapat dilihat pada Gambar 5.57.

Gambar 5.57 Perbandingan kurva kapasitas struktur gedung arah x dan arah y

Dari gambar diatas dapat dilihat bahwa kurva kapasitas arah y lebih tegak dibandingkan kurva kapasitas arah x. Perbedaan kurva kapasitas yang terjadi karena denah gedung yang bukan persegi. Sumbu x gedung memiliki bentang yang lebih panjang dibandingkan sumbu arah y. Sehingga kurva kapasitas pada sumbu yang pendek lebih tegak dibandingkan kurva kapasitas yang ada pada sumbu yang panjang.

Gaya geser dasar pada saat terjadi pelelehan pada struktur (*Vy*) dan simpangan saat terjadi pelelehan pada struktur (δy) pada pembebanan arah x dan arah y didapatkan dengan menggunakan metode luas area ekivalen yang sama dengan kurva kapasitas. Berikut adalah salah satu contoh mencari nilai gaya geser dasar pada saat terjadi pelelehan pada struktur (*Vy*) dan simpangan saat terjadi pelelehan pada struktur (*Vy*) dan simpangan saat terjadi ditunjukkan Gambar 5.58 dan Gambar 5.59.

Gambar 5.58 Gaya geser dasar saat terjadi pelelehan pada struktur (Vy) gedung tanpa dinding geser arah x

Gambar 5.59 Gaya geser dasar saat terjadi pelelehan pada struktur (Vy) gedung tanpa dinding geser arah y

Nilai target peralihan (Δt) digunakan sebagai parameter peralihan ultimit (Δu) dalam perhitungan parameter daktilitas simpangan aktual struktur. Daktilitas simpangan (μ_{Δ}) adalah rasio antara simpangan ultimit (Δu) dengan simpangan pada pelelehan pertama (Δy). Secara teoritik semakin tinggi tingkat daktilitas maka akan semakin baik, baik dalam keberlanjutannya menahan beban maupun keberlanjutannya dalam disipasi energi (Widodo, 2012). Paulay dan Priestly (1992) menyajikan hubungan antara kebutuhan kekuatan akibat gempa S_E dengan levellevel dan nilai daktilitas yang ditunjukkan pada Gambar 5.60.

Gambat 5.60 Hubungan kebutuhan kekuatan dengan daktilitas (Paulay dan Priestly, 1992)

Pada gambar diatas, S_{Ee} , S_{El} dan S_{Ef} berturut-turut adalah kebutuhan kekuatan untuk struktur elastik, struktur daktilitas terbatas (*limited ductility*) dan daktilitas penuh (*fully ductility*).

Hasil perhitungan daktilitas untuk masing-masing arah pembebanan dapat dilihat pada Tabel 5.12 dan Tabel 5.13.

	Δν	Vv	$\Delta t / \Delta u$	Vt / Vu	Daktilitas		
Model Struktur	(mm)	(ton)	(mm)	(ton)	(<i>μ</i> _Δ)	Keterangan	
Tanpa Shearwall	68	342	319,477	706,209	4,698	Daktilitas Penuh	
Model 1	48	853	153,274	1756,894	3,193	Daktilitas Terbatas	
Model 2	43	756	157,517	1774,359	3,663	Daktilitas Penuh	
Model 3	42	780	158,563	1782,584	3,775	Daktilitas Penuh	
Model 4	40	710	160,77	1778,786	4,019	Daktilitas Penuh	

Tabel 5.12 Daktilitas struktur (μ) arah x

Tabel :	5.13	Dal	xtilitas	str	uktur	(μ)	a	rah y	/	
										1

1 = 10

Model Struktur	Δy	Vy	$\Delta t / \Delta u$	Vt / Vu	Daktilitas	Keterangan
	(mm)	(ton)	(mm)	(ton)	<i>(µ</i> ⊿)	
Tanpa Shearwall	53	341	228,965	687,247	4,320	Daktilitas Penuh
Model 1	31	1102	56,528	1628,987	1,823	Daktilitas Terbatas
Model 2	34	943	92,783	1708,186	2,729	Daktilitas Terbatas
Model 3	43	805	137,852	1764,033	3,206	Daktilitas Terbatas
Model 4	40	789	140,074	1755,701	3,502	Daktilitas Penuh

Daktilitas adalah kemampuan suatu struktur gedung untuk mengalami simpangan pasca-elastik yang besar secara berulang kali dan bolak-balik akibat gempa di atas beban gempa yang menyebabkan terjadinya pelelehan pertama, sambil mempertahankan kekuatan dan kekakuan yang cukup, sehingga struktur gedung tersebut tetap berdiri, walaupun sudah berada dalam kondisi di ambang keruntuhan, atau perbandingan simpangan antara simpangan maksimum rencana dengan simpangan leleh awal.

Dari hasil analisis didapatkan nilai faktor daktilitas dari setiap model struktur yang dianalisis baik arah x maupun arah y. Gedung tanpa dinding geser memiliki daktilitas penuh untuk arah x dan arah y. Gedung model 1 memiliki daktilitas terbatas untuk arah x dan arah y. Gedung model 2 memiliki daktilitas penuh untuk arah x dan daktilitas terbatas untuk arah y. Gedung model 3 memiliki daktilitas penuh untuk arah x dan daktilitas terbatas untuk arah y. Sedangkan gedung model 4 memiliki daktilitas penuh untuk arah x dan arah y.

Karena penggunaan struktur dinding geser, maka beberapa model gedung memiliki daktilitas terbatas. Hal ini berbeda dengan desain awal gedung yang menggunakan daktilitas penuh (*force reduction factor*, R = 8). Perbedaan ini terjadi karena struktur dinding geser sendiri adalah struktur yang digunakan pada gedung bertingkat untuk menambah kekakuan struktur. Sehingga untuk mencapai daktilitas penuh sesuai desain awal, maka ada beberapa cara yang dapat dilakukan, misalnya mengubah dimensi struktur (balok dan kolom) atau mengubah konfigurasi penulangan (As_{perlu}). Pada penelitian ini hanya mencari sampai nilai faktor daktilitas simpangan saja.

5.6.2 Simpangan Atap

Simpangan atap didapatkan saat titik kinerja struktur tercapai yaitu dengan menggunakan metode spektrum kapasitas ATC-40. Kurva kapasitas yang dihasilkan dari analisis *pushover* dikonversi ke dalam bentuk spektrum kapasitas dengan format ADRS (*acceleration displacement response spectrum*) yaitu hubungan pecepatan spektra S_a dan perpindahan spektra S_d .

Parameter spektrum respon yang digunakan sebagai *seismic demand* oleh program SAP2000 juga dikonversi ke dalam format ADRS sebagai *spectrum demand*. Parameter-parameter dalam metode spektrum kapasitas telah diuraikan di sub bab 5.5.1.

Spektrum kapasitas dan spektrum *demand* yang dihasilkan oleh program SAP2000 dapat dilihat melalui menu *Display – Show Static Pushover Curve* dan pilih *Plot Type* dengan ATC-40 *Capacity Spectrum*. Berikut adalah salah satu contoh kurva spektrum kapasitas dan spektrum *demand* serta simpangan atap saat titik kinerja (*performace point*) tercapai dari hasil analisis dengan metode spektrum kapasitas untuk struktur gedung tanpa dinding geser dapat dilihat pada Gambar 5.61 untuk arah x dan Gambar 5.62 untuk arah y.

Gambar 5.61 Kurva spektrum kapasitas dan spektrum *demand* serta simpangan atap saat titik kinerja (*performace point*) tercapai untuk struktur gedung tanpa dinding geser arah x

Gambar 5.62 Kurva spektrum kapasitas dan spektrum *demand* serta simpangan atap saat titik kinerja (*performace point*) tercapai untuk struktur gedung tanpa dinding geser arah y

Selanjutnya langkah-langkah tadi dilakukan untuk model struktur yang lain. Dari hasil analisis didapatkan simpangan atap saat kondisi titik kinerja tercapai dapat dilihat pada Tabel 5.14.

Model Godung	Simpangan Atap (mm)			
Model Geduing	Arah x	Arah y		
Tanpa dinding geser	319,477	228,965		
Model 1	153,274	56,528		
Model 2	157,517	92,783		
Model 3	158,563	137,852		
Model 4	160,770	140,074		

 Tabel 5.14 Simpangan atap saat kondisi titik kinerja tercapai dengan metode

 spektrum kapasitas (ATC-40)

Perbandingan simpangan atap saat titik kinerja tercapai untuk struktur gedung tanpa dinding geser, model 1, model 2, model 3 dan model 4 pada arah x dan arah y dapat dilihat pada Gambar 5.63.

Gambar 5.63 Perbandingan simpangan atap gedung saat titik kinerja tercapai

Simpangan atap yang terjadi saat kondisi titik kinerja tercapai adalah simpangan maksimum yang terjadi saat bangunan mengalami beban gempa rencana. Dari hasil analisis *pushover*, dapat dilihat bahwa penggunaan dinding geser pada bangunan tersebut berpengaruh terhadap simpangan atapnya baik arah x maupun arah y. Perbedaan simpangan atap yang terjadi menunjukkan bahwa simpangan atap arah x lebih besar dibandingkan arah y adalah karena denah gedung yang bukan persegi. Sumbu x gedung memiliki bentang yang lebih panjang dibandingkan sumbu arah y. Sehingga simpangan pada sumbu yang lebih panjang lebih besar dibandingkan sumbu yang lebih pendek.

Dari hasil analisis *pushover* diatas, menunjukkan penurunan simpangan atap yang signifikan pada gedung yang menggunakan dinding geser dibandingkan gedung tanpa dinding geser. Untuk pembebanan arah x maupun arah y, model 1 memiliki simpangan atap yang paling kecil dibandingkan dengan model struktur yang lain. Hal ini menunjukkan bahwa penempatan dinding geser pada pusat massa gedung memberikan peningkatan kekakuan yang lebih tinggi dibandingkan penempatan dinding geser jauh dari pusat massa gedung karena memiliki simpangan atap yang lebih kecil.

5.6.3 Penempatan Struktur Dinding Geser Yang Optimal Berdasarkan Kurva Kapasitas dan Simpangan Atap

Struktur gedung apabila menerima beban gempa pada tingkatan atau kondisi tertentu, akan terjadi sendi plastis (*hinge*) pada balok dan kolom. Sendi plastis merupakan bentuk ketidakmampuan elemen struktur balok dan kolom menahan gaya dalam sehingga mengakibatkan terjadinya simpangan atau *displacement*. Dinding geser berfungsi untuk menahan gaya lateral yang diakibatkan oleh gempa dengan memberikan kekakuan pada struktur gedung. Sehingga, struktur gedung yang memiliki dinding geser memiliki simpangan yang lebih kecil daripada struktur gedung tanpa dinding geser. Hal ini dapat dilihat pada Gambar 5.64 dan Gambar 5.65.

Gambar 5.64 Simpangan struktur sebelum penambahan dinding geser (a) dan setelah penambahan dinding geser (b) untuk arah x

Gambar 5.65 Simpangan struktur sebelum penambahan dinding geser (a) dan setelah penambahan dinding geser (b) untuk arah y

Kurva kapasitas adalah kurva yang menggambarkan kekuatan atau kapasitas dari suatu struktur dalam menahan gaya geser dasar yang terjadi. Sedangkan simpangan atap saat kondisi titik kinerja tercapai adalah simpangan maksimal yang terjadi saat bangunan mengalami gempa rencana. Berdasarkan kurva kapasitas dan simpangan atap yang terjadi dari hasil analisis didapatkan bahwa struktur bangunan model 1 memberikan peningkatan kapasitas struktur dan simpangan atap yang lebih kecil dibandingkan dengan model struktur yang lain. Sehingga penempatan dinding geser yang optimal adalah berada pada pusat massa gedung.

Luas bidang masif pada pusat massa gedung yang terkekang oleh dinding geser yang rapat tersebut mampu memberikan peningkatan kekakuan pada struktur yang lain dalam menahan gaya lateral yang terjadi. Semakin kaku pusat massa gedung, maka semakin kaku juga struktur yang lain.