SUPERVISOR VALIDATION PAGE

APPLICATION OF DISTRIBUTED COMPUTING
WITH OPENMOSIX
ON COMPLEX NUMERICAL METHOD PROBLEM

FINAL PROJECT REPORT

VIS INOAND

(7
=
0
14
W
2
Z
2

&

o
!

Name : Yantisa Akhadi
Student Number : 00523 240

Yogyakarta, March 16, 2006

Supervisor 1 Supervisor I1

Sl

(Fathul Wahid, ST. M.Sc) (Waw#n Indarto, ST)

il

GENUINENESS STATEMENT
OF FINAL PROJECT REPORT RESULT PAGE

Hereby the undersigned,
Name . Yantisa Akhadi
Student Number : 00523240

State that all component and content in this Final Project Report is my own work.
If in other day proved that some part of my work is not my own work, then i will
ready to accept all risk and any consequences.

That 1s how my statement are made, i hope it can be used as it is.

Yogyakarta, March 15, 2006

7N

_(¥antisa Akhadi)

iii

EXAMINER VALIDATION PAGE

APPLICATION OF DISTRIBUTED COMPUTING
WITH OPENMOSIX
ON COMPLEX NUMERICAL METHOD PROBLEM

FINAL PROJECT REPORT
By:

Name : Yantisa Akhadi
Student Number : 00523 240

Was Defended Before the Board of Examiners as Partial Fulfillment of the
Requirements to Obtain the Bachelor’s Degree in Department of Informatics
Faculty of Industrial Technology Universitas Islam Indonesia

Yogyakarta, March 25, 2006
Examiner Team k/\é@%g @%
Fathul Wahid, ST., M. Sc
Chief ‘
g ‘ / —
Taufiq Hidavat, ST.. M.S T ,
Member I v 7
~7
Wawan Indarto, ST /

Member I " /

Acknowledge,
) ty of Industrial Technology
uv‘v&

DEDICATION

To My Lovely Mother and Father,
Jor all the understanding, forgiveness and caring

To My Lovely Sister, Brother in Law, and Nephew,
Jor their support and care

To those who teach me lesson of life and knowledge,
may Allah repent you greatly

To my future wife, whoever you are,
1 miss you a lot before i meet you dear

To all who appreciate knowledge,
let's spread what we know

MOTTO

B Lyl S L
Tuhanmu tiada meninggalkan kamu dan tiada (pula) benci kepadamu
(0S. 93:3)

Kutinggalkan untukmu dua buah perkara, kamu tidak akan tersesat
selama kamu berpegang kepada keduanya, Kitabullah dan Sunnah
Rasul
(HR. Muslim)

Vi

ACKNOWLEDGMENT

Assalamu’ alaykum warrahmatullahi wabarakatuh

Praise to Allah SWT, for His mercy and blessing, so the compiler could

finally finish this report. Shalawat and Salam to our beloved prophet Muhammad
SAW, his family and his friends, who gives a lot of knowledge that guide us into
the light.

On the making and finishing this report, compiler would give appreciation

to the following person, although they may not read this:

1.

9.

Mr. Ir. H. Bachrun Sutrisno, M.Sc, as the Dean of Faculty of Industrial
Technology, Universitas Islam Indonesia Yogyakarta, who allowed the
compiler to do this research and compile it.

Mr. Wawan Indarto, ST., as the Supervisor an the Head of Network
Laboratory, for the critics, patience, and guidance while this report is still
in idea until it finally come complete.

Mr. Fathul Wahid, ST., as the Supervisor, for comments and critics to
improve the content of the research, especially during progress report
session.

Mr. Yudi Prayudi, ST, as the Head of Informatics Departement, Faculty of
Industrial Technology, Universitas Islam Indonesia, Yogyakarta, who gave
ease to compiler during this research report compilation.

Mr. Supriyono, Mr. Erwin, and Mrs. Lizda for their support during the
making of this report.

All my comrades+ on Pandega Karya 3C, Gesit, Doyo, Zaki, Agil, Anto
and mas Indra, hope you all can passed soon.

All my colleagues at Computer Network Laboratory, Dini, Tetra, Jarwo,
AP, Ryan, Nanda, Urip, Al, Iwell, Arif, and Yuda, finish your study guys,
now 1'm allowed to say that :p.

All my friends at Debating World, my teammate and soulmate Iponk,
Adit, Nanang, Adjib, Adib, Wulan, Titis, Yuke, Umi, Aldi, Dilla, Ninus,
Dhini, Adiz, Nisa-chan, Angga, Nunung, Tia, Kiki, Ade, Ratih, Yurisch,
Rani, Qisthi, Dida, Rina, Tiara, Desi, Prima, Ester, Santi and Windi, not to
forget all people who join JDF and Indodebaters.

All of my kids at Muhi, Delayota and PP Sunan Pandanaran, El, Nella,
Chacha, Yayang, Icha, Winda, Asdi, Dewi, Dina, Agung, thanks honey

10. All my friends at KPLI Jogja, special to Iwan, Ryan, Willy SR, Jaya,

Fathir, Yagus.

vii

11. All my colleagues at Pasifik Satelit Nusantara, Wisnu, Daffe, mas Miko,
mbak Ani, Mr. Zai, Mr. Iman, Mr. Iwan, Mr. Sutri, and more.
12. Everyone who support the compiler that cannot be mentioned one by one.

May Allah repent all of your kindness in this life and afterlife. Further
contact can be delivered to iyan31@yahoo.com.

Yogyakarta, March 15, 2006

Yantisa Akhadi

viil

ABSTRACT

Numerical method is being widely used in almost every major engineering
field. But its use also increase the demand for faster computation power. Few
solution to those power is supercomputer. But the price of supercomputer creates
big burden. Other alternatives come in from distributed computing world. Where
cluster can be built using commodity hardware.

One of known implementation is using openMosix, a load balancing
cluster, that even can be implemented on a live CD. This research tries to answer
how is the performance on this cluster on complex problem of numerical method,
especially on the field of big linear equation system, where there are millions or
even billions of operation needed to be done.

The results of the research reveals that on heterogeneous environment,
where there are computers with better specification would significantly reduce
time needed to solve the problem compare to single computer and homogeneous
environment.

Keywords : distributed computing, numerical methods, linux, openMosix, load
balancing cluster.

1X

TABLE OF CONTENTS

THIE PARE... ettt ettt e ee s e st s s e e see s s aae s b assbtaans i
Supervisor Validation Page.........vvvriireniinnesrc s snss s ssesesessssnessnens i
GENUINE STACINETIL.. ..o e veiieieieaereesiaasseeessessssesenssssessssasssessssessssasssassnssssserseasasseesnsanse iii
Examiner Validation Page.........ccocviiiiiiiiiiiiiiniinincnenieensin e seseeessecsssnneeennee iv
DEAICAIION. .1 cviseiririe e cessissessssse e s sress e ssbssnas s sbsssnensb sbsssasbanssesrsasonsessossessessasrbssns v
MO0 PAZE......ooeiiiiiiieieteie st ssas e st ecete st st s snsn e stanesate e snecnnsnceessensenseaesncan vi
ACKNOWIECAZIMENT. ...ttt et e e vii
ADSIIACT. ..t cieii ettt sttt sttt bt sstsesnss e ssaavssseessassesrasbessanasassassasssssare sl K
Table Of COMENL.......eiiieiiicriceeie et cestenssesttreteaesaseateesasneseieassenesssasasassessansanans X
LISt Of TabDIES. ... ittt et e et e e st et e e eteeseeestesseensaensaennessensaas Xiil
LSt O FIUIES....coreiirirereeecoeenecieseessesstesaeece e seassssasssnsaensesnsssnsesssassssstansseessssesnes Xiv
CHAPTER I PREFACE 1
1.1 BaCKGIOUNd.....ccoeiieinieiiriteseestesestten et isenesaresesssesseeass s babassbestesse s sessessanannan 1
1.2 Problem DefInition.........cocvisissmnnervsrnrsssssssssses sesnssressessssssss sssnsssssssrssnesses 2
1.3 SCOPC....e ittt cseeterreeiresecssesesesnesaesaese st e sseasansssssesansansessesssnesnsensessenseseensases 2
1.4 ODJECHIVES...cueeitteereterieereeesieteteststesrasssestessaatnaseesssesssesaessssesssasesassasassenseeses 2
LS BENETIS.cvineeiiiiiiiic st bbb s s e e en e 3
1.6 HYPONESIS e ccriiuieiieueeeerineeretenieessa st e aesasssssaneesasssassansessensentessessesseseensesenns 3
1.7 MethOAOIOZY.. .. ciimiimieinieeeiese sttt ce et e st er e esa s srae st e st su s st an e st na s eans 3
1.7.1 Collecting Dat.......ccceevrivsiiiiniinssisssinisessnsessssssessssssesssnsssssssssssssssanses 3

17,2 DIESIEMcciiiiiiiciiciiiiteneceeesestessese e e e sesessastasasassasssessssnassasssessassesssessassessasen 4

1.7.3 IMPIEIMEREALION. ... cueeiurreseasieseessrrsaestranseesaessesssessesssessssssssninnenssessessesreens 4

1.7.4 Testing] M. ¥ ERTNodF W 3 I F R 4

1.8 REPOIt OULHNE....cevereeree ettt cre et cre st e et estese e e e sessreseessessanaens 5
CHAPTER Il THEORY. 6
2.1 Numerical Method......cccovvevireeiiiiinertie e cee s te e eeerne e e ere e bereeneenes 7
2.1.1 General INIrOGUCHON........cceucveereeecreeeree e et e cvrreterercascesrssesesnsaeseens 7

2. 1.2 DEfIMIION. c..cveuie et ettetete e e et cve e e st ab e e st ssae e e e etsernneersenennan 8
2.1.3 Characteristic of Numerical Method..........ccoeeeiivviriiresiiciiiess i 8
2.1.4 Application of Numerical MethOd...........cccoeeiueeveenereecerecsee v 10
2.1.5 Area Of StUAY.....cccviicviiiiiiirte ettt et 11
2.1.6 Computational Complexity Theory........coveeveerecenecieneeeerr e rreseeenes 15

2.2 Distributed COMPULINE......cccverirrriereirtreientieeeeseessessesressssessesessssessesssennes 16

2.3 COMPULET CIUSLET.....ccvevereeemererereisisanrerenssasssasssasisssssse st sssenssstssisssissssssssssanas 20

2.3.1 Types of Computer CIUSLET.......cueeemriienrnrirense s eseinesncsninssssnesneneseas 20

2.3.2 Cluster and SUPEICOMPULCT.......covvvviirvirnisrerernirnssrissssmsesnssmsresneses 22

2.4 OPENMOSIX..cceeiinieiineririsin et se s er e st st s s s st sr s bbb st 22
24,1 OVEIVIEW..uiiiviririenerenraesanssaeseressaesisssesstessassnssssssasansssssessssesssssssssarssassnes 22

2.4.2 Component of 0pENMOSIX....ccvvireiirrisnisrenmnis s 23

2.4.3 openMosix INErNal.. ..o iiiiienirienen e 24

2.4.4 Pros and Cons using OpenMOSIX.....ccooeierrarenimnssennesecesssenstosinssnsissnens 25

2.4.5 Linux Distribution with 0penMOoOSIX......coceniiiinimiin e, 27
CHAPTER III SOFTWARE REQUIREMENT 29
3.1 Analysis Method.. ..ot e 29
3.2 Analysis RESUIL ..ccvvveeriirnniene i 29
3.2.1 Data ARALYSIS....cccoveriieriveinieiniuninisnissesseasn s siessssnesstasasss senesassnssaianens 29

3.2.2 SOftware REQUITCMENL. ..cccceureureeenrisieieiar eniestennnessnssncostscscssnssssesasas 30

3.2.3 Hardware REqUITEIMIENE. cvueriserissmsssnssineranisnssssssinissnssssssssssnsssssssssssnssns 31
CHAPTER IV SOFTWARE DESIGN 32
4.1 Design Method........cccoociiueiiiimnn it s eeesssss s e sseas 32
4.2 DeSiZN RESUILucoviiirrireer st sassasassnens 32
4.2.1 Network DESIZN......covreeurirrsiressesesersssessereaesesssiosessssnssesserstsssmsssssssssssss 32
Figures 4.1 Network Design.......cureiinneirisnieecinntisistiinsesn s stiscciisisanenies 33

4.,2.2 SOftWare DESIZN.....vvriiriireinesssiesissesssenie s ssssssnssess 33
4.2.2.1 Big Linear Equation System using Matrix Inverse.........ccccoveenne. 33

4.2.2.2 Big Linear Equation System using Backslash Division............... 35
CHAPTER V SOFTWARE IMPLEMENTATION 37
5.1 SCOPE e etereiereeeeieentterenteeereeee st st s er e e h s R e st gttt en e e eneneaes 37
5.2 TIPIEMENTALION. c.iiiuiiiiiuiesieistssecares e seessestesssnsnnsisssnssnssses b ssas soaseesssasesstessases 37
5.2.1 Hardware Implementation.............cociviivsiimenessniniiniinsis e 37
5.2.2 Software Implementation........oueiiiiiiiiiinenniinnnis st ssssssese 40
5.2.2.1 openMosix Implementation..........cccouvvereemreeiniinnsnnrcieese e 40

5.2.2.1 Numerical Method Software Implementaioncccceevvvvvinnnes 43
CHAPTER VI SOFTWARE TEST & ANALYSIS 45
6.1 Performance TeSh....uiccirneeercnrnrrecects s itsiste e et sebe s e s sss e s e assnanane 45
6.2 ReSult and ANALYSiS.....cccecceeeimevereisiinieninisniiienesenteesssae s s st saeescsseesseneas 45
6.2.1 Base SYStem Test....oeeerereecercceirrintiininsennennannesresie s cas e sassesesssesees 46
6.2.2 Homogeneous SYStem TeSt.. . i scnsnsene e 48

6.2.3 Heterogeneous SYSLET TESL....uueirmriisims e sisesiessasssssssinns 50

X1

CHAPTER VII CONCLUDING REMARK 56

7.1 CONCIUSIONS......ccccteeeirireicieecesteasieeesssseesesenssesensesssssassssssensessrnsessossnssssrannses 56
7.2 SUZZESHOMNS....eeerseissesisieesiisse it srnsssnssrnesrrssnssanresasssassssssrssaresssnsssnasns 57
REFERENCES 59

X1

LIST OF TABLES

Table 6.1 Inverse Matrices on Base System

Table 6.2 Backslash Division on Base System

Table 6.3 Inverse Matrices on Homogeneous System
Table 6.4 Backslash Division on Homogeneous System
Table 6.5 Inverse Matrices on Heterogeneous System

Table 6.6 Backslash Division on Heterogeneous System

Xii1

LIST OF FIGURES

Figures 4.1 Network Design

Figures 5.1 openMosix on Quantian Linux

Figures 6.1 KSysGuard Applet

Figures 6.2 Process Migration on Homogeneous System
Figures 6.3 Process Migration on Heterogeneous System
Figures 6.4 Overall Comparison on Inverse Matrices

Figures 6.5 Overall Comparison on Backslash Division

X1V

CHAPTER
PREFACE

1.1 Background

Numerical method nowadays gains its popularity as a quick way to solve
various problems in almost every aspect of science. From engineering, medics,
chemistry and many more. This development is mainly supported by limitation of
analytical method which is hard or near impossible to solve a complex problem,
others aspect such as the growth of processing power of a computers also give
significant contribution toward this.

But then, also known that special characteristic on solving mathematic
problem using numerical method is there are many arithmetic operation and it is
done repeatedly (over and over again). The more complex the problem that we are
going to solve then the more operation needed thus more time will be sacrificed,

due to limitation of a computer processing power, even in present day.

There is one quick way of solving the problem is by using super computer.
But this way gives another problem which is how expensive a super computer can

be, and even if available, still only limited number of people allowed to access it.

1.2 Problem Definition

From those background stated above we can take two major problems,
which are :
1. A complex numerical method problem needs a lot of computer processing

power and results a long time to solve a problem.

2. There is possibility of solving a complex numerical method problem using
super computer to make faster execution but it gives another problem on cost

and opportunity to use a such kind of machine.

1.3 Scope

The scope of this research are :
1. The process of computation is focused on complex numerical method
problem, in this case to solve big linear equation systems
2. The optimization is done on the process of computation not on algorithm or

source code of the program.

1.4 Objectives

The main objectives of this research is usage of distributed computing
system with openMosix to reduce the time needed to solve complex numerical

method problems.

1.5 Benefits

There are several benefits that can be gained from this research which is :
1. To give understanding on how actually powerful computation can be gained
from group of regular computers.
2. To give overview on a method to accelerate computation process especially on
complex numerical methods problem.
3. To show comparison of benefits between using single computation and

distributed computing ones.

1.6 Hypothesis

This research tries to prove assumption that process of solving complex
numerical method problems can be accelerated using distributed computing

system, in this case openMosix.

1.7 Methodology

1.7.1 Collecting Data

Literature study is used as a method to search matter related to distributed

computing and numerical method, these literature not only limited to printed

material but also from Internet where matter still in a digital form.

1.7.2 Design

On design, observation used as a method of knowing the environment
where the implementation will be possibly used. These design then used as a basis
for implementation, which produce requirements for the hardware and software .
This design also used as a benchmark of distributed computing using openMosix

to solve complex numerical method problems.

1.7.3 Implementation

Direct experiment is used a method of implementing a design that already
produced from previous phase. Here, research directly involve with required

hardware and software then configure it so it will works as intended.

1.7.4 Testing

Testing methods is using time comparison between those problems solved
without openMosix and compared to problems solved using openMosix. From

this result, the advantages of using openMosix can be seen.

1.8 Report Outline

The report outline of this research are presented below :

1. CHAPTER I Preface

This chapter gives overview on the background of the research, problems
definition, what is the objectives of the research, benefits, hypothesis and how the

research will be done.

2. CHAPTER I Theory
This chapter mainly discuss the ground theory that used in this research, from the
perspective of numerical method and distributed computing itself, especially on

openMosix technology that will be used.

3. CHAPTER II Software Requirement
This chapter discuss the analysis method on knowing the requirement to build the

distributed computing system, from the perspective of software and hardware.

4. CHAPTER IV Software Design
On this chapter, focus is upon how software and network being designed, what
kind of method is used, and how is the result of the design so that it can be

starting point for the implementation to work.

5. CHAPTER V Software Implementation

Here, the chapter talks about how those design being implemented to build
distributed computing environment using openMosix and also discuss on how the
numerical method program run.

6. CHAPTER VI Software Test and Analysis

This chapter discuss what kind of test being chosen, how the implementation
being tested and compared, between those environment without distributed
computing and those with distributed computing. Then, the result of the test
analyzed so the detailed comparison can be seen.

7. CHAPTER VII Conclusion and Suggestion

This chapter gives conclusions on the research which already performed, then
discuss some suggestion for similar research or those interested doing further
research. Other things, such as limitation, problems when performing the research

also presented in this chapter.

5. CHAPTER V Software Implementation

Here, the chapter talks about how those design being implemented to build
distributed computing environment using openMosix and also discuss on how the
numerical method program run.

6. CHAPTER VI Software Test and Analysis

This chapter discuss what kind of test being chosen, how the implementation
being tested and compared, between those environment without distributed
computing and those with distributed computing. Then, the result of the test
analyzed so the detailed comparison can be seen.

7. CHAPTER VII Conclusion and Suggestion

This chapter gives conclusions on the research which already performed, then
discuss some suggestion for similar research or those interested doing further
research. Other things, such as limitation, problems when performing the research

also presented in this chapter.

CHAPTER I
THEORY

2.1 Numerical Method

2.1.1 General Introduction

There are problems in mathematic world which cannot be solved or needs

a long and hard way to be solved using analytical methods for example :
a) Finding the integral of exp(—xz) or also called error function

b) Solving linear equation system on a matrix consist of thousand rows and

column.

¢) Solving a general polynomial equation of degree five or higher, the Abel-
Ruffini theorem states that there is no general solution in radicals to

polynomial equations of degree five or higher.

Therefore alternatives methods should be used instead. At least there two

alternatives known by mathematician[WIK06a] :

1. Using asymptotic analysis, which is a method of classifying limiting

behavior, by concentrating on some trend.

2. Using numerical solution

This number two alternatives going to be further discussed in this research, since
it is already used widespread to solve mathematical problem when analytical

method is not enough.

2.1.2 Definition

Numerical method is a technique to solve problems which mathematically
formulated using basic arithmetic operation, such as addition, division, and others.
It is a fact that cannot be neglected that the goiden era of numerical method
started as PC(Personal Computers) widely spread and easy to use and get.
Numerous scientist then begin to harness the cheap computation power of PC by
using it in various field of science.

But important to be noticed that this method already used long ago before
computer was found, as we can see from few names of its method, for example
Newton's method, Gaussian elimination, and Euler's method, but the presence of
computer, as a powerful arithmetic tools, accelerate the use of numerical methods

greatly.

2.1.3 Characteristic of Numerical Method

There are several characteristic of Numerical Method :

® Direct and Iterative method

Some problems can be solved directly using algorithm that automates
various task that usually solved manually in a long manner. This algorithm
called direct method. Some examples are Gaussian elimination for solving

systems of linear equations and simplex method in linear programming.

But most problem cannot be solved using direct method, in this case we
use iterative method. Iterative method starts from a guess and finds

successive approximation that hopefully converge to the solution.

® Discretization

In numerical method continuous problems must sometimes be replaced by
a discrete problem whose solution is known to approximate that of the
continuous problem, this process is called discretization. For example the
solution of differential equation is a function. This function must be
represented by a finite amount of data, for instance by its value at a finite
number of points at its domain, even though this domain is a

continuum|{ WIKO06a].

10

® The Generation and Propagation of Errors

Errors on numerical method holds important values due the nature of
numerical methods itself, in a way it use approximation and digital
computers. The first errors that likely happen is round-off errors. This is
happen because it is impossible to represent all real number in digital
computers. The second errors is truncation errors which committed when
an iterative method is terminated and the approximate solution differs
from the exact solution. The third and last error, discretization errors
happen because the solution of the discrete problem does not coincide with

the solution of the continuous problem.

If one of those errors above happen, it will generally propagate through the
calculation. This effect also called error propagation. And it leads to the
notion of numerical stability. An algorithm is numerically stable if an
€rror, once it is generated, does not give much impact during the

calculation.

2.1.4 Application of Nuamerical Method

Numerical mettiod aever monopolized to be only used by mathematician,

11

the application of this method range from various field. Some examples are in
civil engineering it helps the design of structure like bridges and building. In
electronics engineering it helps to calculate the amount of current on a electronic
scheme. Even in economy it can help to find solution for dynamic equilibrium

economies.

2.1.5 Area of Study

The field of numerical analysis is divided in different disciplines according

to the problem that is to be solved

e® Computing values of functions

One of the simplest problems is the evaluation of a function at a given
point. But even evaluating a polynomial is not straightforward: the Horner
scheme is often more efficient than the obvious method. Generally, it is
important to estimate and control round-off errors arising from the use of

floating point arithmetic.

e Interpolation, extrapolation and regression

Interpolation solves the following problem: given the value of some
unknown function at a number of points, what value does that function

have at some other point between the given points? A very simple method

12

is to use linear interpolation, which assumes that the unknown function is
linear between every pair of successive points. This can be generalized to
polynomial interpolation, which is sometimes more accurate but suffers
from Runge's phenomenon. Other interpolation methods use localized

functions like splines or wavelets.

Extrapolation is very similar to interpolation, except that now we want to
find the value of the unknown function at a point which is outside the

given points.

Regression is also similar, but it takes into account that the data is
imprecise. Given some points, and a measurement of the value of some
function at these points (with an error), we want to determine the unknown

function. The least squares-method is one popular way to achieve this.

Solving equations and systems of equations

Another fundamental problem is computing the solution of some given
equation. Two cases are commonly distinguished, depending on whether

the equation is linear or not.

Much effort has been put in the development of methods for solving

systems of linear equations. Standard methods are Gauss-Jordan

13

elimination and LU-factorization. Iterative methods such as the conjugate

gradient method are usually preferred for large systems.

Root-finding algorithms are used to solve nonlinear equations (they are so
named since a root of a function is an argument for which the function
yields zero). If the function is differentiable and the derivative is known,
then Newton's method is a popular choice. Linearization is another

technique for solving nonlinear equations.

Optimization

Optimization problems ask for the point at which a given function is
maximized (or minimized). Often, the point also has to satisfy some

constraints.

The field of optimization is further split in several subfields, depending on
the form of the objective function and the constraint. For instance, linear
programming deals with the case that both the objective function and the
constraints are linear. A famous method in linear programming is the

simplex method.

The method of Lagrange multipliers can be used to reduce optimization

problems with constraints to unconstrained optimization problems.

14

® Evaluating integrals

Numerical integration, in some instances also known as numerical
quadrature, asks for the value of a definite integral. Popular methods use
one of the Newton-Cotes formulas (like the midpoint rule or Simpson’s
rule) or Gaussian quadrature. These methods rely on a "divide and
conquer" strategy, whereby an integral on a relatively large set is broken
down into integrals on smaller sets. In higher dimensions, where these
methods become prohibitively expensive in terms of computational effort,
one may use Monte Carlo or quasi-Monte Carlo methods, or, in modestly

large dimensions, the method of sparse grids.
® Differential equations

Numerical analysis is also concerned with computing (in an approximate
way) the solution of differential equations, both ordinary differential

equations and partial differential equations.

Partial differential equations are solved by first discretizing the equation,
bringing it into a finite-dimensional subspace. This can be done by a finite
element method, a finite difference method, or (particularly in

enginegring) a finite volume method. The theoretical justification of these

15

methods often involves theorems from functional analysis. This reduces

the problem to the solution of an algebraic equation] WIK06a]
2.1.6 Computational Complexity Theory

In computer science, computational complexity theory is the branch of the
theory of computation that studies the resources, or cost, of the computation
required to soive a given problem. This cost is usually measured in terms of
abstract parameters such as time and space. Time represents the number of steps it
takes to solve a problem and space represents the quantity of information storage
required or how much memory it takes. There are often trade offs between time
and space that have to be considered when trying to solve a computational
problem. It often turns out that an alternative algorithm will require less time but
more space (or vice versa) to solve a given problem. Time requirements
sometimes must be amortized to determine the time cost for a well defined
average case. Space requirements can be profiled over time, too, especially in

consideration of a multi-user computer system.

The time complexity of a problem is the number of steps that it takes to
solve an instance of the problem as a function of the size of the input (usually

measured in bits), using the most efficient algorithm. To understand this

16

intuitively, consider the example of an instance that is n bits long that can be
solved in n? steps. In this example we say the problem has a time complexity of
n?. Of course, the exact number of steps will depend on exactly what machine or
language is being used. To avoid that problem, we generally use Big O notation.
If a problem has time complexity O(r2) on one typical computer, then it will also
have complexity O(n?p(n)) on most other computers for some polynomial p(n), so
this notation ailows us to generalize away from the details of a particular

computer{ WIK06d]

2.2 Distributed Computing

Distributed computing is a science which solves a large problem by giving
small parts of the problem to many computers to solve and then combining the
solutions for the parts into a solution for the problem[KIP06]. Distributed
computing was developed with a goal of sharing computation power among
computers. By this method, pmceés tends to solve quicker compare to single
process.

There are various hardware and software architectures which is used for

distributed computing. At the hardware level, all of processor must be connected

17

on the same network, this network can be in a form of separated devices or being

printed onto a circuit board. And on the software level, there will be system which
manage those process running using some sort of communication system.
Below are types of distributed computing architectures| WIK06b] :

® (lient-server — Smart client code contacts the server for data, then

formats and displays it to the user. Input at the client is committed back to

the server when it represents a permanent change.

® 3-tier architecture — Three tier systems move the client intelligence to a
middie tier so that stateless clients can be used. This simplifies application
deployment. Most web applications are 3-Tier.

® N-tier architecture — N-Tier refers typically to web applications which
further forward their requests to other enterprise services. This type of
application is the one most responsible for the success of application
Servers.

® Tightly coupled (clustered) — refers typically to a set of highly integrated
machines that run the same process in parallel, subdividing the task in
parts that are made individually by each one, and then put dack together to

make the final result.

18

® Peer-to-peer — an architecture where there is no special machine or
machines that provide a service or manage the network resources. Instead
all responsibilities are uniformly divided among all machines, known as

peers.

® Service oriented — Where system is organized as a set of highly reusable

services that could be offered through a standardized interfaces.

® Mobile code — Based on the architecture principle of moving processing

closest to source of data

® Replicated repository — Where repository is replicated among distributed
system to support online / offline processing provided this lag in data

update is acceptable.

There are broad example where this system implemented and used
nowadays, from medics, security to not so important ones, here are some
currently active projects :

® Fight AIDS @Home (http://fightaidsathome.scripps.edu/)

The objective of this project is to discover new drugs for AIDS by trying

to find candidate drugs that have the right shape and chemical

characteristic to block HIV protease. This project completed Phase T on

19

May 21%, 2003 where almost 60.000 computers completed 1.400 years of
computing to process over 9 million tasks.

Einstein@Home (http://einsteinathome.org/)

In 1916, Albert Einstein in his General Theory of Relativity predict the
existence of gravitational waves, but this wave cannot be detected at that
time due to engineering limitation. Based on that, this project searches for
spinning neutron stars(also called pulsars), which are likely to emit
gravitational waves, using data from LIGO (Laser Interferometer
Gravitational Wave Observatory, located in USA) and GEO gravitational
wave detector. Currently, there are more than 160.000 host joined this
project.

Project RCS (http://www1.distributed.net/rc5/)

This interesting project is coordinating and maintaining the RC5 servers
that are needed to distribute key blocks to all of the participating client
programs, this key block is trying to be solved through the use of brute
force attack. On 19 October 1997, this project found the correct solution
for the RSA Labs 56-bit secret-key challenge, and it took 250 day to found
it. Then, on 14 July 2002, this project found the winning key for the RSA

Labs 64-bit secret-key challenge, where it took 1.757 days and more than

20

300.000 individual to locate. As of 3 December 2002, the project working

on 72-bit RSA Labs secret-key challenge.

2.3 Computer Cluster

A computer cluster is a group of loosely coupled computers that work
together closely so that in many respects it can be viewed as though it were a
single computerf WIKO06c¢]. It is known that there is a lot of idle processor 1oad on
computers nowadays, on the other side sometimes processor load can be so high,
for example when compiling hundreds line of C++ code or encoding movies from
a handy cam to MPEG-4 format. This is where the idea of cluster is, which to
spread loads among all available computers, using the resources that are free on

the other machines.

2.3.1 Types of Computer Cluster

There are three types of cluster commonily know today, which is :

® Fail-over cluster
Also known as high-availability cluster, this cluster consist two or more
network connected computers which are backup each other, so that if one

of the computers is fail or down, the other computers will replace that

21

computers. This redundant action is done to improve availability and
eliminate a single point of failure, especially on a condition where 99,99%
uptime is crucial. On Linux OS, Linux-HA(http://linux-ha.org) is a
software project which provide such availability.

Load balancing cluster

As for the name, this cluster manages workloads, distribute it into nodes
which is least busy compare to others. This cluster main goal is to improve
performance, although sometimes it is combine with fail-over cluster, so
that two benefits, improved availability and improved performance can be
gain. There are some implementation of load balancing cluster,
commercial one such as Moab cluster suite or Maui Cluster Scheduler and
free software such as openMosix or Linux Virtual Server.

High Performance Computing Cluster

This type of cluster splitting a computational task across many different
nodes. Machines which join in this kind of cluster are configured specially
to provide extreme performance by running custom program to maximize
parallelism in this cluster. Usually those custom program use library for
example PVM(Parallel Virtual Machine), MPI(Message Passing

Interface), or AFAPI(Aggregate Function API).

22

2.3.2 Cluster and Supercomputer

Supercomputers are usually built by a selected number of vendors, such as
Cray, IBM and Fujitsu, and only certain company and organization afford to buy
such machine due to the price which are very expensive. On the other hand, lots
of universities, organization and institution also need high performance machine.
One of the best alternatives is to build cluster of computers, where its hardware
are available everywhere. Nowadays, even some of these cluster able to compete
with supercomputer on TOP500, a project to list 500 most powerful computer

system in the world.

2.4 openMosix

24.1 Overview

openMosix 1s a software package that turns networked computers running
GNU/Linux into a cluster. It will automatically balance the load between different
nodes of cluster, and nodes can join or leave the running cluster without
disruption of service. The load is spread out among nodes according to their

connection and CPU speeds.

23

openMosix come in a form of Linux-kernel patch, so that it can easily
integrated into system who use the Linux-kernel, especially 2.4 version, while 26
version is actively developed. As it is part of kernel a user’s program, files, setting

and other resources will work without any further changes.

2.4.2 Component of openMosix

There are three main component that formed openMosix :

1. Process Migration
Using openMosix, process which migrate can be seen, because each
process has its own Unique Home Node(UHN) where it gets created.
Migration here means that a process is splitted in two parts, user part and a
system part. The user part will be moved to a remote node while the
systemn part will stay on the UHN. This system-part is somgtimes called
the deputy process: this process takes care of resolving most of the system
calls.

2. The openMosix File System(oMFS)
oMFS is a feature of openMosix which allows adminjstrator to access
remote filesystems in a cluster as if they were locally mounted. The

filesystems in the other nodes can be mounted on /mfs.

24

3. Direct File System Access(DFSA)
Both Mosix and openMosix provide a cluster-wide file-system (MFS) with
the DFSA-option (Direct File-System Access). It provides access to all
local and remote file-systems of the nodes in a Mosix or openMosix

cluster.

2.4.3 openMosix Internal

openMosix consists of a mechanism called Preemptive Process Migration
(PPM) which is a set of algorithms for adaptive resource sharing. openMosix
works in a decentralized way, where there is no central control or master/slave
relationship between the nodes. Scalability is achieved by randomness in the
system control algorithm, where each node does not attempt to determine the
overall state of the cluster or any particular node. Each node sends information
about its available resources to a randomly chosen subset of other nodes. So one
node know the status of some neighbors not all of them.

But the interesting point is the mathematical model for scheduling
algorithm comes from the fields of economics research. As it is known that every
nodes usually heterogeneous one, where there are differences in use of memory,

CPU, network latency, and others, then openMosix try to see those differences

25

into single homogeneous “cost”. From here jobs are then assigned to the machine

where they have the lowest cost, just like a market-oriented economy. [KRB05]

2.4.4 Pros and Cons using openMosix

Despite of many benefits when we use openMosix, there are also some

weaknesses on using openMosix, below are comparison pros and cons using

openMosix.

Pros of openMosix :

No extra packages are required.

No code changes to your application are required.

Simple to install/configure.

On a Red-Hat based system/distro, installing openMosix is as simple as
typing: # rpm -Uvh openMosix*.rpm

Well integrated with openAFS.

Port to IA-64

OoMFS has been improved much since plain MFS.

It is a clustering platform with more than 10 products based on it:
openMosixView, openMosixWebView, openMosixApplet, RxLinux,

PlumpOS, K12LTSP, LTSP and many others.

26

® openMosix is a product developed by the users themselves so it's more
close to the user by definition.

® Node autodiscovery/fail-over dacmon already implemented in the user
land tools via multicast messaging.

® Aliases for hosts with multiple interfaces.

® Basic routing available (in the rare case where true multicast routing is
undesirable).

® Cluster Mask allows to specify to which nodes a given process can

migrate.

Cons of openMosix :

® Kernel dependent.

® Shared memory issues.

® Security issues.

® There are issues with Multiple Threads not gaining performance.

#® Performance would not be gained when running one single process such as
web browser on an openMosix Cluster: the process won't spread itself
over the cluster. Except of course the process will migrate to a better

performance machine.

27

2.4.5 Linux Distribution with openMosix

There are several Linux distribution that already includes openMosix in
their kernel. This Linux distribution is designed so that we can harness the ability
of openMosix right after boot-up in a form of Live CD or installable distribution.
Here 1s the list :

® ClusterKnoppix (http://bofh.be/clusterknoppix/)

As known from its name, this distribution is developed based on famous

Knoppix project. It has several features such as terminal server, so it can

use PXE, DHCP and tftp to boot linux clients via network, includes

Cluster Management tools, and new nodes can automatically join the

cluster. Unfortunately, this project which started by Wim Vandersmissen,

stopped its development on 2004, since its latest release was version 3.6

on 31™ August, 2004.

® Quantian (http://dirk.eddelbuettel.com/quantian.html)

Quantian is an extension of Knoppix and ClusterKnoppix, where its

provide some features from both distribution. What make this distribution

different from both distribution above is there a large number of programs

of interest to applied or theoretical workers in quantitative or data-driven

28

fields. Some example are R, Octave, GSL(GNU Scientific Library),
Quantlib, Scientific and Numeric Python and Maxima. The most recent
version is 0.7.9.1, which released on December 11, 2005 in a form of
DVD.

CHAOS (http://midnightcode.org/projects/chaos/)

The objective of this project is to create platform capable of large-scale ad-
hoc cluster deployment and to be the fastest, most compact, secure and
straight-forward openMosix cluster. There are some security improvement
that differs with another distribution by included IPSEC tunnels for all
cluster communications, state aware packet filtering for each node, and
others.

Gary's openMosix Floppy (GoMF) (http://gomf.sourceforge.net)

This distribution is a single floppy openMosix Linux mini-distro designed
to quickly add CPU/Memory resources to an openMosix cluster. It is
includes the auto discovery daemon and some user tools like mosctl,

mosrun, mosmon, mps, setpc

CHAPTER 11T
SOFTWARE REQUIREMENT

3.1 Analysis Method

The method used to analyze the software requirement is mainly based on
literature study ranging from the software how-to written by the author of the
software, various article in internet which explain how to implement the software
until some tutorial written based on other people experience. The reason why the
compiler choose this method because this is commodity software that built by
other people or group and not something that built from scratch to fulfill certain
needs.

The compiler also used simple observation to some network in offices and
computer laboratory in environment common in Indonesia, where this kind of

environment is the target of where the research will be implemented.

3.2 Analysis Result

3.2.1 Data Analysis

As already become common fact that numerical methods are used mostly

in university, especially in those university that taught engineering study, and

29

30

some research institution nowadays. Other fact from simple observation is almost
every institution stated above have networked computers in a form of Local Area
Network(LLAN) in a form of office computers or computer laboratory for teaching
purposes.

Based on those two fact, openMosix is design to be implemented on a
LAN. So the requirement is built from general knowledge of where people will

use numerical methods and common topology exist in that area.

3.2.2 Software Requirement

The minimum requirement so that the research can be fully running as
expected are :
® Linux kernel 2.4.26 with openMosix patch, all node must run openMosix
with the exact version.
® KDE 3.2, as a user-friendly environment desktop.
® Openmosixview
® GNU Octave 2.1
Due to the matter of practicality, all of software required above are already
available on Quantian Linux Distribution version 0.5.9.2, it is the latest CD

version released on July 2004, since start from that version all Quantian

31

distribution are released in DVD format. While nowadays, the use of DVD is still

not as much as CD.

3.2.3 Hardware Requirement

There are minimum requirements that must be fulfilled so that openMosix
can be implemented which are :
® A PC with Pentium II or Celeron Processor 700 MHz, 128 MB RAM, 8
MB VGA, Bootabie CDROM drive and a Monitor.
® Network Interface Card 10/100 Mbps
® 5 or 8 port 10/100 switch
Those hardware mentioned above are minimum standard that owned by

most of universities and institution in Indonesia.

CHAPTER 1V
SOFTWARE DESIGN

4.1 Design Method

On this chapter, there are two things that will be discussed, on how the
numerical method software being developed and how are the network diagram for
the system itself being designed. On the point of numerical method software, the
process of design will focus more on giving analysis of the software that will be
used in testing the openMosix system, since the focus of this research is on

implementing openMosix system.

4.2 Design Result

4.2.1 Network Design

On this sub chapter, focus will be on topology used in implementation of
openMosix. As it is known that openMosix does not have dependency to a certain
topology, so any topology as far as it can connect few nodes then it is alright for
openMosix to use it.

Most of Local Area Network(LAN) in Indonesia are using star topology

nowadays, the use of bus topology is deprecated, as on star topology it 1s more

32

33

easier to build. Based on this openMosix will be using this topology with the
assumption of five nodes on each LAN, because this is the minimum amount of
port that is common in a network switch.

And so the diagram of network will be like this :

Figures 4.1 Network Design
4.2.2 Software Design

There are two numerical method software that is going to be used to test
the openMosix environment. Both are used to solve big linear equation systems.
The methods that is used is data flow oriented, because the software that
are going to be built is expected to have large data stream to be processed by

openMosix system.

4.2.2.1 Big Linear Equation System using Matrix Inverse

For n x n matrix, the inverse matrices can be found using Gauss-Jordan
elimination methods, where :

[A17] -- Gauss-Jordan elimination --> [71 A"]

34

For a clearer explanation, see example on how to get inverse matrices from the

matrix below :

11 2
A= [0 1 2
2 1 1

Solution :

112]100 1 1 2|1 00 R-R,
012|010 0 1 210 10
2110 0 1} R=2R |0 -1 =3 |~-1 0 1I R+R,
10 0|1 =10 100'1—10
01 2|0 1 0 R-2R, 01 0] -4 3 2
00 —-1' -2 1 1} -—K 00 1b2 -1 =1

By using the inverse matrices, linear equation systems can be solved
through characteristics of matrix. One of matrix characteristic is that A times A™
will result identity matrix.

AAT=AA=1

Other characteristic of matrix is if a matrix A times I will result matrix A
itseif, as shown below

Al=71A=A

35

Based on those two characteristic, linear equation system Ax=B, can be

solved using the following way :

Ax=0b
A'Ax=A"b
Ix=A"
x=A"D

4.2.2.2 Big Linear Equation System using Backslash Division

Instead of using inverse matrices, matlab/octave also provide faster and
more accurate way, which is using backslash division or matrix left division.
According to Matlab manual, it is stated that backslash division is computed using
Gaussian elimination. The reason why this method provide faster way because it

is reduce the process to produce the inverse matrices first, and directly process the

matrix.

Gaussian elimination is implemented to solve linear equation systems by
forming upper triangle, where all of coefficients below main diagonal are zero,
and then solve it using backward substitution. To form those triangle, Gaussian

elimination methods use some elementary row operation, which are :
1. Switching position between row of equation

2. Change an equation by multiplying a row of equation

36

3. Muitiply an equation with non zero constant

Let see an example below, on how it is implemented. Suppose there are

three equation :

3X1 + 4)(72 + 3X3 =20 (A)
X1+ 5x2 — X3 = 8 (B)
6x1 + 3x2 + 7X3 =33 (C)

1. Eliminate x, from equation (B) and equation (C) :

3%, + 4%+ 3x3= 20 (A)

(B) - . (A)=> - X — 2x03= 2 (D)
3 3 3

©)-2) = Sy +x3=-7 (E)

i. Eliminate x, from (E) equation :

36, + 4x, + 3x; =20 (A)
11 4

? X, —2x; = g (D)

(E) + 2 D) e X3 == 4 F)
11 11 11

2. Calculate x;, x,, and x; using backward substitution -

From (F) we get x; = 3. Insert x; value into (D) and we get 11/3x; = 4/3+6
= 22/3. So we get x, = 2. Insert x; and x, value into (A) to get x, value: 3x,

=20 -8 - 9 =3, x,=1. So, the the answer for the linear equation system

above is (1,2,3).

CHAPTER V
SOFTWARE IMPLEMENTATION

5.1 Scope

On this chapter, all of previous design will be implemented and then
compared based on the time consumed and computer configuration used. But

there are few scope of the implementation :

1. Test will be conducted and monitored based on time consumed to solve

complex numerical methods problems

2. All operating systems parameters, openMosix configuration, network
configuration will be kept default. No interference in term of load
balancing process. Few changes, if there any, will be number of computers

join the computation node.

5.2 Implementation

Here, the previous design implemented in a form of environment suitable
to test various hardware configuration and different complexity of software.
5.2.1 Hardware Implementation

There are few configuration that implemented to form different scenario

for testing, which are :

37

i.

38

Base System Configuration

This configuration is implemented as a benchmark for the other test. As a
tool of comparison, this configuration implemented on the minimum
requirement available at the test environment. And this configuration only
used on single stand alone computer. Here is the specification for the

configuration :

« Processor : Intel Celeron 800 MHz, 128 KB 1.2 Cache
« Memory : 128 MB SDRAM

» Graphic Card : Trio 3D/2X 8 MB

« Monitor : GTC 15~

» CDROM:: 52X CDROM Drive

Hard disk is not necessarily installed because all testing configuration will

be using linux live CD, Quantian.

Homogeneous Cluster Configuration

On this configuration, there are five computers connected through a
switch. Each computers have almost exact same configuration. The

specification for each computers is

« Processor : Intel Celeron 800 MHz, 128 KB L2 Cache
« Memory : 128 MB SDRAM

39

» Graphic Card : Trio 3D/2X 8 MB
» Monitor : GTC 15”

»+ CDROM : 52X CDROM Drive

- NIC: 10/100 MBps

Additional peripheral :

» 16 port switch

This configuration also does not need hard disk.

. Heterogeneous Cluster Configuration

While on this configuration there are few hardware specification
differences, since it try to simulate an environment with various hardware
configuration. There are five computers, where two computers are having

different specification. Three computers using same spectfication which is

» Processor : Intel Celeron 800 MHz, 128 KB L2 Cache
» Memory : 128 MB SDRAM

» Graphic Card : Trio 3D/2X 8 MB

+ Monitor : GTC 15

» CDROM : 52X CDROM Drive

+ NIC: 10/100 MBps

The fourth computer using specification below

« Processor : Intel Pentium 4 2.26 GHz

40

- Memory : 128 MB DDR RAM (96 MB available)
« Graphic Card : Shared 32 MB

e Monitor : GTC 157

- CDROM : 52X CDROM Drive

- NIC : 10/100 MBps

And finally the fifth computer having the best specification as mentioned

below

« Processor : Intel Pentium 3 866 MHz
- Memory : 128 MB SDRAM

» Graphic Card : Trio 3D/2X 8 MB

- Monitor : GTC 15”

« CDROM : 52X CDROM Drive

- NIC: 10/100 MBps

Additional peripheral :

- 16 port switch

5.2.2 Software Implementation
5.2.2.1 openMosix Implementation

These are steps needed to implement all the software to form the environment for

the testing :

1. Boot the computer using Quantian Linux Live CD

41

. When boot already done, there will be a boot prompt. On this boot prompt
type the following command

boot : knoppix vsync=60

The above command will set vertical refresh rate manually into 60 Hz, and
allowed unrecognized monitor, which is used in this testing to maximize
its screen resolution until 1024 x 768, otherwise, it will only give 800 x

600 screen resolution.

. The next step is open a terminal console and become super user by typing

$ su

. Then set the network address using following command

ifconfig eth0 162.168.0.1 netmask 255.255.255.0

On the other node the range of IP will start from 192.168.0.2 until

192.168.0.5 with the same netmask.

. And then make the openMosix auto discovery daemon listen on the
network interface, so that one node will antomatically found other node,
by typing

omdisc -1 ethO

. Run Octave by typing octave on the terminal console

octave

42

7. Start the openmosixview by click openmosixview icon on the left side of

icon bar.

8. On the openmosixview window, click the openmosixmigmon icon, so that

the migration process able to be seen

9. Also start KSysGuard applet to monitor cpu load and memory usage.

10. Last but not least also start KSnapshot to take entire screen snapshot.

If all of those step successfully entered, it should give appearance below :

S,
ek S 3 & spentanzocoiiscinn stabe

ing efficiency . overaitioad. - overal used sesary 3l membry. - all cpu
e B 635 Mal s

o 19216802]
f 19216603

i
L
=]
i
H

Figures 5.1 openMosix on Quantian Linux

43

The upper right windows show openmosixview, a tools to give monitor on

load of every node connected on a openMosix systems, it also show openMosix-
speed of each node, number of memory provide, and number of CPU on each

node.

While the big window on the left is openmosixmigmon, used as sign if
there is any migration process that happen, between home node into another node.
Home node shown by the picture of penguin in the middle and the other node
shown by other penguins around it. The black dot around the home node are the
representation of each process in home node, that might will migrate if the load in
home node are too big.
5.2.2.1 Numerical Method Software Implementation

The source code to solve big linear equation systems using matrix inverse

in .m programming language is presented below :

ti-cputime{); % Start the tlmer baseﬂ on cputlme
n»agea» : . ol e ‘% Ratrx.x size

A~£3.oor{rand§n}*li)} % Ra.n&amly create matrixa
b—fle@r{rand{n, }*133, % Raademly Ccreate matrix result b
x=inv{a)*b; A % Solve it using inverse ﬁlV‘lSiQﬂ
t2=cputime{): % Record cputime when it already cezzg}ntﬁd
time=t2-t1 ﬁ % Print how much time needed to solve ‘

While the source code to solve big linear equation systems using backslash
division is presented below :

tl=cputimei); ; % Start the timer based on cputime

n~2008~ L : % Matrix size ‘

A—uﬂocr(rand{n)*lﬁ), % Randomly create matrix- a

b—ﬂoer{rami{n,l}*le} ; % Randomly create matrix result b

x=A\b; . % Solve it using backslash division
t2=cputime(); % Record cputime when it already computed

time=t2-t1 % Print how much tlme needed to solve

Here is the analysis for the source code above. First we start the counter by
putting the start time, which is the cputime into variable t1. And the we set the
matrix size on a variable n. The function rand() is used to generate matrix A
which is a 7 x n matrix, but because the generated value is between 0 and 1, so it
is multiplied by 10 and rounded using floor () function, in order to get random
integer between 0 and 9. Similar step happen on matrix b, only in this matrix the

size is n x 1. Next, matrix x is calculated using backslash division.

CHAPTER VI
SOFTWARE TEST & ANALYSIS

6.1 Performance Test

After all implementation is set, then the testing procedure will be started.
This will become black-box testing, because it will be more focus upon
functionality of software, whether it will run as expected or not. This testing
procedure is using five size of elements based on the matrix size, which are 100,
500, 1000, 2000 and 3000. The code that will be used is as what already
mentioned on previous chapter. And three different configuration also will be
tested, to gain better understanding on openMosix implementation, and its impact

toward complex numerical method problems.

The only measurement in this test is how long does a test can be solved,
using configuration provided. To increase the accuracy of the result each test are

repeated five times, then average time needed to solve a process also presented.

6.2 Result and Analysis

Below are the result of entire test and also the analysis of the test

45

46
6.2.1 Base System Test

This test only executed on a single computer, with the specification
already mentioned on chapter V page 38, and used as benchmark or comparison

purposes. The result is shown in table 6.1 below.

Table 6.1 Inverse matrices on base system

MSize | ESize
100 | 10000 0050/ 0010/ 0010/ 0020, 0010, 0.02
500 | 250000/ 1.130, 0930 0920 0900/ 0910 0.9
1000 | 1.000.000] 6500 6460| 6.150| 5650, 6270| 621
2000 | 4.000.000| 42.480| 40.710| 42.160| 42.190| 42360 41.98
3000 | 9.000.000| 134.870 135.040| 134540 132.990| 133.740| 134.24

At matrix with the size of 100 and 500 the process goes very quick, on the
1000, where computer must process 1.000.000 element and do a lot more
repetition, also shows no significant difficulties. But when the size of matrix
increase two times to 2000 the time needed to solve those linear equation system
increase more than seven times. On the matrix size of 3000, the times needed to

solve increase more than three times compare to previous size.

47

Table 6.2 Backslash division on base system

MSize | ESize S e e N e
100 10.000{ 0.110; 0.020; 0.020; 0.020/ 0.020 0.04
500 250.000; 0.690| 0450, 0450/ 0430; 0.430 0.49
1000 | 1.000.000 2.410; 2390 2.400] 2.420] 2400 2.4
2000 14.000.000{ 15.400; 14970, 15.070; 15.290| 15.380 15.22
3000 {9.000.000 46.190| 46.940| 47.230] 47.640 45870, 46.77

Same thing also happen on backslash division method. Other fact that can
be shown in those table is as the size of matrix grown in a step of thousands, the
times needed to compute all the element are grown exponentially. The table also
shown that backslash division really gives more efficient solution compare to

inverse matrices methods. Picture below shown what happened on the test.

Figure 6.1 KSysGuard applet

The graphic above, a screen shot of KSysGuard, is captured after
backslash division process finished its five times testing on matrix size of 2000.
The small peak on the left shown CPU load for matrix size of 1000, the average
load needed are slight above 50%, and five higher peak on the right shows that for

a moment for each test the CPU load have reach 100%.

6.2.2 Homogeneous System Test

The result is shown in table 6.3 below.

Table 6.3 Inverse matrices on homogeneous system

48

100 10.000 0.150 0.020 0.020 0.020 0.020 0.05
500 250.000 1.010 0.930 0.920 0.900 0.900 0.93
1000 | 1.000.000 7.530 5.840 5.970 5.970 5.980 6.26
2000 | 4.000.000| 48.160{ 43.630f 42.640; 47.130, 43.160 4494
3000 | 9.000.000! 136.100] 135.940| 135.940| 135.150| 131.840 134.99

In a contrast on what first expectation on how cluster system would make

process would go faster, this test shows how the migration also needs time tp

process the data and on communicating to the other nodes.

Edie View Confg Coliector Heip

& cpenrashToltector Stus
overall used mamoty . alimemory < all Opy

I CE
HRY: 4
Ty
P17

Figure 6.2 Process Migration on Homogeneous System
As we can see from the picture above, the black dot around the penguin is
PID(Process Identification) of process that exist in home node, and four other
penguin that surround it is another openMosix node detected. It is also shown a
process migration, where we can see one black dot moving into node number four
or top penguin. It means there is one process from home node which migrate into
node number four. At the openmosixview the load of computer number four also

increased.

Table 6.4 Backslash division on homogeneous system

50

‘MSize | ESize
100 | 10000] 0.50 0010 0020 0010 0020 004
500 | 2500000 0730 0560 0480 0450 04d0] 053
1000 | 1.000.000 2.830 2.470 2.400 2.440 2410 2.51
2000 | 4.000.000] 19.890| 15450, 15.600] 14850 15200 162
3000 | 9.000.000] 50.060{ 48.070{ 46.100 48.050{ 48.110 48.08

The same thing also happen on backslash division, there is slight increase

on the time needed to solve the equation. Although the increase is quite small

from few millisecond until few seconds but it prove longer time are needed for

openMosix on a homogeneous system in an exchange of lesser load on home

node.

6.2.3 Heterogeneous System Test

The results is shown in table 6.5.

Table 6.5 Inverse matrices on heterogeneous system

100 10.000; 0.220{ 0.020{ 0.030] 0.020, 0.020 0.06
500 250.000 1.120[0950 0.950 1.040) 0.280 0.87
1000 | 1.000.000] 7.080{ 5.850| 1.970, 1.820{ 1.870 3.72
2000 |4.000.000| 14.760) 45.140{ 14.340| 36.940| 14480, 25.13
3000 19.000.000| 147.66] 13804 146.14] 135.17| 13555 140.51

51

This test is the most interesting of all test, since it really shows the
advantages of using distributed computing, in this case openMosix. From the
matrix size of 1000, there are quite significant improvement especially on the
third test where there is dramatic decrease from 5 seconds to almost 2 seconds. It
shows that process goes 50 % faster. Compare to base system, the average times

needed decreased from 6.26 seconds to 3.72 seconds.

On the matrix size of 2000, the results sometimes fluctuate from the lowest
14.340 seconds until the highest 45.140 seconds. But on average there are
significant decrease from 41.98 seconds on base system to 25.13 seconds on

heterogeneous system.

The only lower results happen on the matrix size of 3000, not only the
average time needed slightly increase from 134.24 seconds in base system to
140.51 in heterogeneous system. Not only that, during test on the matrix size of
3000, the home system experience several times crash. It appears because the
unstable condition that result from several factor start from minimum memory
condition, because since the system is Live CD, then quite amount of memory
needed to run the process and as temporary storage. Other factor because there are

few additional application executed and adding the load on home node, such as

52

openmosixview, openmosixmigmon and KSnapshot.

Table 6.6 Backslash Division on Heterogeneous System

100 10.000 0.130 0.010 0.020 0.020 0.020 0.04
500 250.000 0.480 0.480 0.480 0.450 0.450 0.47
1000 | 1.000.000 0.790 0.800 0.770 0.810 0.810 0.8
2000 | 4.000.000! 17.750; 18.630 5.260 5.200; 12860 11.94
3000 | 9.000.000f 49.510] 47970/ 47.860/ 51.960! 50.650 49.59

The significant improvement happened on the matrix size of 1000 using

backslash division, where dramatic decrease from 2.4 seconds into 0.8 seconds, in

another word it cut times to only 30% compares to the base system.

On the matrix size of 2000, there is quite decrease on the third and fourth
test. This fluctuate result range from the lowest point 5.200 seconds into the
highest 18.630 seconds. While on base system, the lowest results are 14.970
seconds and the highest 15.400 seconds. On the average it gives slight decrease

from 15.22 seconds to 11.94 seconds.

Same behavior as inverse matrices on the matrix size of 3000 also happen
on backslash division. It gives slight increase of times. The average time of base
system is 46.77 seconds, while on heterogeneous system 49.59 seconds. It appears

although migration did happen but not the octave process, instead on other small

n
(98]

process. There is alternatives on both cases(inverse matrices and backslash
division), which is by using manual migration on process with high load, but that
is not the purpose of this research, since this research will only used default

configuration provided.

L Fiie Wiew' Config. Tolischr Help
s [§ 550 LT e U M openbusiofiscior stabse
encing efciency overallload ovetall ysed memary sl memory. Bl £pU '
: . EEEE R

127

| Piocess gravps {5 1

Figure 6.3 Process Migration on Heterogeneous System

Another interesting fact we can see from the snapshot above, which taken
on the implementation, there are four process that migrate into the fourth node,

the best node exist on the network. It also makes the load on the fourth node

increase to 66%, while other node give average load of 20%.

54

inverse Matrices Comparison

160~

140

120

100

Time (s)
&

10.000 250.000 1.000.000 4.000.000 9.000.000

Number of Elements

Figures 6.1 Overall comparison on inverse matrices

As comparison, the results of all of the research is presented on the chart,
where it shown that heterogeneous system give most advantages compares to
other methods. The best result for heterogeneous system happened on matrix size
of 2000 or where number of elements is 4.000.000. While the worst result for
heterogeneous system happened on matrix size of 3000, where the process did not

migrate to the best node.

55

Backslash Division Comparison

Time (s)

10,000 250.000 1.000.000 4,000.000 9.000.000
Number of Elements

Figures 6.2 Overall comparison on backslash division

Similar result also happen on backslash division method, as we can see
from the charts, where heterogeneous system proved to best method. Although it
gives bad result on the matrix size of 3000, where the migration not happened.
The chart also proved that backslash division is faster compare to inverse matrices
method, because time needed to solve the big linear equation is much more

efficient using backslash division.

56

CHAPTER VII
CONCLUDING REMARK

7.1 Conclusions

From all of research that already implemented there are few point of

conclusion, which are :

1. Load balancing have obvious advantages on network where exist better
specification computers compare to home node, so that the process which
need a lot of processing power can easily migrate to that better computers.
By this scenario also, the computation power of high specification in a
node can really be optimized and shared using heterogeneous system

cluster.

2. If there are two condition between single stand alone system and
homogeneous system with the same specification, the preferred choice is
single stand alone, since it would not result much advantages as it seen
from comparison from base system and homogeneous system on previous
chapter. Unless there are few process on home node that each process need

lot of computation power, then homogeneous system are more preferred.

3. Although automatic migration sometimes enough to accommodate the

57

computing need of certain node, manual migration will give better results.
Since the user know what process that reaily need computing power of
other node, and what process that enough to be computed on home node.
This is why on some test on heterogeneous system on previous chapter

some process would migrate, some other would not.

7.2 Suggestions

There are also some suggestion regarding further research on this subject,

which are :

1.

The use of live CD should only be considered if the installation of real
linux system with openMosix kernel patch not authorized or not available.
Since live CD often caused unstability that can impact on sysiem crash due
to the high usage of system memory. Other alternatives by adding more

system memory.

Other alternatives than manually migrate the process is by lower the home
node openMosix speed to the minimum. So that process tend to migrate to
other node, this will give home node more chance to process other

applications.

58

3. There also a lot of way to tune openMosix to deliver it maximum
performance, such as changing the network parameters, the use of better
form of networking hardware, and many more. This is not yet to be

explored in this research.

4. Numerical method is only one small example of openMosix
implementation, there are broad way of possibility to harness the

advantages of it, start from image processing, security and bioinformatics.

5. Try the latest version of software, since in this version of Octave there are
bugs, where Octave will crash when the matrix size is 1500 and 2500, the

true reason for this is still unknown.

[BUY04]

[MUNO3]

[PEAOG]

[PREO2]

[SAHO5]

[TRI198]

59

REFERENCES

Buytaert, K. The openMosix HOWTO.

http://howto.x—tend.bc/openMosix—HOWTO/, accessed on December

29, 2005.

Munir, R. Metode Numerik. Bandung: Informatika, 2003.

Pearson, K. Distributed Computing,
http://www.distributedcomputing.info/index.html, accessed on

January 6, 2006.

Pressman, Roger S., Rekayasa Perangkat Lunak: Pendekatan Praktisi

(Buku I). Yogyakarta: Andi Offset, 2002.

Sahid. Pengantar Komputasi Numerik dengan MA TLAB. Yogyakarta:

Andi Offset, 2005.

Triatmodjo, B. Metode Numerik. Yogyakarta: Beta Offset, 1998.

[WIKO6a] Wikipedia contributors, Numerical analysis,

http://en.wﬂdpedia.org/w/index.php‘?title:Numerical_analysis&oldid

=32955403, accessed January 6, 2006.

[WIKO6b] Wikipedia contributors, Distributed Computing,

[WIKO6c]

[WIKO6d]

60
http://en.wikipedia.org/w/index.php?title=Distributed_computing&ol-

did=33523528, accessed January 9, 2006.

Wikipedia contributors, Computer Cluster,
http://en.wikipedia.org/w/index.php?title=Computer_cluster&oldid=3

3821646, accessed January 8, 2006.

Wikipedia contributors, Computational complexity theory,
http://en.wikipedia.org/w/index.php?title=Computational complexity

theory, accessed February 15, 2006.

