
An Analysis of the difference ability of core and non-core cash flows from operations in predicting the future cash flows

	Ву	1	
6	Name Student Number	:ANDRY KUSUM : 01312265	A ADJIE
14	Approv	ed by	
Content Advisor,			
Hadri Kusuma, Drs; M	MBA; DBA	June	2005
Language Advisor,		A	
DIOS .	WINE.	Ell-dell	
/Widayasari Listyowul	an	June	2005

STATEMENT OF FREE PLAGIARISM

Herein I declare the originality of this thesis; there is no other work which has never presented to obtain any university degree, and in my concern there is neither one else's opinion nor published written work, except acknowledgement quotation relevant to the topic of this thesis which have been stated or listed on the thesis bibliography.

If in the future this statement is not proven as it supposed to be, I am willing to accept any sanction complying to the determinate regulation for its consequence.

Acknowledgment

Bissmillahirrohmanirrohiim

Alhamdulillahirabbil'alamiin, First of all, praise to Allah SWT for all the blessings, spirit, health, protections to me and chances so that this thesis can be completed. Shalawat and salaam for the prophet Muhammad SAW, the greatest inspiration.

The researcher takes this opportunity to express sincere appreciation to individuals who have made significant contributions to the completion of this thesis writing. My sincere appreciation goes to Mr. Hadri Kusuma, Dr., MBA, my content advisor for his helpful for giving the spirit, comments and advice during my thesis writing. Thanks to make me became new student that have new knowledge from you, thanks to solve the problems appear during my thesis writing with clear explanations, so that make it easy to understand and try learnt more. Then I also present special thanks to Mbak Widayasari my language advisor for her time, suggestions, comments, and advice to make me more understand about grammar.

Also I would like to extend my appreciation to Mr. Asmai Ishak, Drs., M.Bus., as Director of International Program, Mr. Suwarsono Muhammad, as the Dean of Economics Faculty, Islamic University of Indonesia, Mrs. Yuni Nustini, and all academic staff of International Program for the cooperation they give to me during my study in International Program. I would like to extend my gratitude to all lectures in Economic Faculty Islamic University of Indonesia for the knowledge, motivation

CHAPTER II: REVIEW OF RELATED LITERATURE

2.1 Financial Statement	10
2.1.1 The Objective of Financial Statement	11
2.1.2 Users and Their Information Needs	13
2.1.3 Qualitative Characteristics of Financial Statement	15
2.1.4 Components of Financial Statement	18
2.2 Statements of Cash Flows	19
2.2.1 The Objective of Cash Flow Statement	
2.2.2 The Method of Cash Flow Reporting	26
2.3 Previous research	29
2.4 Hypothesis Formulation	32
	<u> </u>
CHAPTER III: RESEARCH METHOD	<u>"</u>
3.1 Research Design	
3.2 Data Gathering and Data Extraction	
3.3 Research Variables	37
3.4 Population and Sample	
3.5 Hypothesis Testing	39
CHAPTER IV: RESEARCH FINDINGS AND DISCUSSI	ONS
4.1 Descriptive Statistics	46

ABSTRAK

Adjie, Andry Kusuma (2005). Kemampuan Analisa kemampuan Komponen inti dan Bukan inti Pada Arus Kas Operasi dalam Memprediksi Arus Kas di Masa Datang. Yogyakarta. Fakultas Ekonomi. Universitas Islam Indonesia.

Penelitian ini mencoba untuk meneliti kemampuan arus kas operasi saat ini untuk memprediksi arus kas masa datang dan kemampuan komponen arus kas dari kegiatan operasi (komponen inti dan komponen bukan inti) untuk memprediksi arus kas masa datang pada perusahaan manufaktur yang listing di Bursa Efek Jakarta periode 1995-2002. Penelitian ini juga mencoba untuk meneliti perbedaan tingkat kelangsungan antara arus kas dari kegiatan operasi pada tahun berjalan dan komponen – komponen akrual untuk memprediksi arus kas masa datang, serta mencoba membuktikan bahwa komponen – komponen arus kas memberikan tambahan informasi melebihi komponen – komponen akrual dalam memprediksi arus kas di masa datang.

Penelitian ini mengusulkan model peramalan arus kas yang membedakan kas flow dari kegiatan operasi menjadi komponen arus kas inti dan bukan inti berdasarkan recomendasi AICPA, di Indonesia.

Studi menggunakan model regresi linear dengan kumpulan arus kas di masa datang sebagai variable terikat. Dari penelitian ini, dapat kita tarik kesimpulan yang sesuai dengan recomendasi AICPA. Penelitian ini mendapatkan bahwa kumpulan arus kas dari kegiatan operasi pada tahun berjalan memiliki kemampuan untuk memprediksi arus kas di masa datang. Dan dengan menjabarkan arus kas dari kegiatan operasi, ditemukan bahwa komponen arus kas dari kegiatan operasi memiliki kemampuan yang berbeda — beda dalam memprediksi arus kas di masa datang. Dengan menjabarkan akrual dalam model peramalan dan keseluruhan arus kas dari kegiatan operasi pada arus kas masa datang akan didapat kesimpulan bahwa keseluruhan arus kas dari kegiatan operasi memberikan tambahan informasi melebihi komponen — komponen akrual dalam memprediksi arus kas di masa datang. Dan dengan menjabarkan komponen arus kas dari kegiatan operasi dan menjabarkan komponen akrual terhadap arus kas di masa yang akan datang akan membuktikan bahwa komponen arus kas memberikan informasi melebihi komponen — komponen akrual dalam memprediksi arus kas di masa datang.

Kata Kunci: Arus Kas, Komponen Akrual, Laporan Arus Kas, Arus Kas dari Komponen Inti, Arus Kas dari Komponen Bukan Inti, Metode Langsung dalam Penyajian Arus Kas, Metode Tidak Langsung dalam Penyajian Arus Kas, Total Assets. In 1991, the AICPA formed a special Committee on Financial Reporting to address concerns about the relevance and usefulness of business reporting (AICPA). Standard-setters, regulators, and many others have devoted considerably resources to maintaining and improving the relevance reliability of financial reporting. Given the central importance of core earnings to financial statement users such as Revsine (1999); Jonas and Blanchet (2000); Wild (2000).

In Indonesia, research that related to the content of components cash flows already used by Triyono (1998), Hastuti and Sudibyo (1998), and Suadi (1998), but the research related with earnings to predict future cash flows used by Parawiyati and Baridwan (1998), the research which is mention the cash flows and earnings is good predictor in predict the future cash flows. This research indicated that earnings information and cash flows are accounting information that will be used as comparable in decision –making for the analyze, investor, and manager to know the performance of the company. This research had 288 sample financial report of manufacturing company that list in Bursa Efek Jakarta (BEJ) for period 1989-1994.

Kusuma (2001) also makes a research to compare the ability of earnings and cash flows information in predicting the future cash flows by using 2623 companies listed in Australian Stock Exchange as the sample within 1992-1997. This research uses cash flows from operation as the dependent variable and cash flows from operations and earning one or two years before as independent variable. The result is that there is no superiority between both earnings and cash flow as predictor to the future cash flow.

Chapter III : Research Method

Research method provides description about research design, variables, research period, data selection and sampling, and hypothesis testing.

Chapter IV : Analysis and Discussion

Analysis and discussion expose the result of the analysis and a mean to test the hypothesis, discussion about analysis result, qualitatively and quantitatively, and result interpretation.

Chapter V : Conclusions and Recommendation

Conclusions will be obtained from data analysis in previous chapters, Limitation and recommendation for future research will also be given.

effects of changing prices. Financial statement does not include such items as reports by directors, statements such items as reports by directors, statements by the chairman, discussion and analysis by management and similar items that may be included in a financial or annual report.

2.1.1 The Objective of Financial Statement

The overall objective of financial reporting is to provide information useful for economic and business decisions (e. g; investment and credit decisions) (IASC, 1994 para.12 and FASB, 1978 para. 9). Financial statements should conform to financial accounting standards issued by standards setting bodies. The standards are developed based on the conceptual (theoretical) framework of financial accounting. As Gaa (1988), Wolk and Tearney (1997), believes the conceptual framework embodies aspects of theory of accounting as well as of constitution. PSAK No: 1 (1998) the general purpose of financial statement is to give information's about the financial position, performance and cash flows of the company that will be useful for several users of financial statement in making economic decisions and showing the management stewardship as using of their sources that they used.

In Indonesia, the conceptual framework and the financial standards are issued by the IASC. The standards are to be used by publicly held firms that file their financial statements with the BAPEPAM (a government agency similar to the SEC). In making financial statements useful, the assumption is that the IASC's assertions

of enterprise, determine taxation policies and as the basis for national income and similar statistics.

g) Public. Enterprises affect members of the public in a variety of ways. For example, enterprises may make a substantial contribution to the local economy in many ways including the number of people they employ and their patronage of local suppliers.

2.1.3 Qualitative Characteristics of Financial Statements

PSAK No: 1 (1998) Qualitative characteristics are the attributes that make the information provided in financial statements useful to users. The four principal qualitative characteristics are relevance, understandability, reliability, comparability and materiality. The FASB Concept Statement No:2 has identified the qualitative characteristics of accounting information that distinguish better (more useful) information from inferior (less useful) information for decision making process.

a) Relevance

To make it useful, information must be relevant to the decision making needs of users. Information has the quality of relevance when it influences the economic decisions of users by helping them evaluate past, present or future events or confirming, or correcting, their past evaluations. Relevance is defined as capable of making a difference in a decision by helping users to form predictions about the outcomes of past, present, and future events or to confirm or correct expectations.

b) Understandibility

Is the quality of information that permits reasonably informed users to perceive its significance? An essential quality of the information provided in financial statements is that is readily understandable by users. For this purpose, users are assumed to have reasonable knowledge of business and economic activities and accounting and a willingness to study the information with reasonable diligence. However, information about complex matters that should be included in the financial statements because of its relevance to the economic decision making needs of users should not be excluded merely on the grounds that it may be too difficult for certain users to understand.

c) Reliability

Accounting information is reliable to the extent that it is verifiable, is a faithful representation, and is reasonably free of error and bias. Reliability is a necessity for individuals who have neither the time not the expertise to evaluate the factual content of the information. Verifiability is demonstrated when independent measurers, using the same measurement methods, obtain similar results. For examples, there are several independent auditors come to the same conclusions about a set of financial statements. If outside parties using the same measurement methods arrive at different conclusions, then the statements are not verifiable. Auditors could not render an opinion on such statements.

Cash flows statement report the cash inflow, payment of cash and net change of cash coming from operating activity, investment and financing from a company during period in a format which reconciliation of beginning balance final balance and (Keiso, 1995). Sum up the cash flow coming from operating activity for to represent the indicator determining whether from its operation company can yield the cash flow which is last for paying loan, looking after ability operate for the company, paying dividend and conduct the new investment without relying on financing source from outside. Information of concerning current element historical cash along with other information, useful in predict of operating future cash flows.

At paragraph clarification 05 PSAK No.2 gives the operation activity definition, investment activity and the following financing activity

"Operating activity is especial producer activity of company earnings (principal revenue-producing activities) and other activity representing investment activity and financing activity. Investment activity is acquirement and long-run asset release and also other investment is which do not the inclusive of equivalent of cash. Financing Activity is activity resulting the change in amount and also composition of capital and company loan".

A. Cash flows from operating activities

Cash flow coming from operating activity of the company obtained from special production activity of company earnings. Therefore, the cash flow generally comes from transaction and other event that influenced clean profit and loss balances stipulating.

There are some examples of cash flow from operating activity, those are:

Cash inflow from sale of service and goods

- Cash inflow from royalty, fee, commission, and other income
- Cash payment from supplier of goods and services
- Cash payment for the employee
- Cash inflow and cash payment by insurance company of referring to premium, claim, annuity, and other benefit insurance.
- Cash payment or cash restitution income tax except if can be identified particularly as part of financing activity and investment.
- Cash inflow and cash payment from contract which is performed for the purpose of business transaction and commerce.

Security companies have the securities to be commercialized so it will be equal to supply bought to be re-sold. Therefore, cash flow coming from purchasing and sale in transaction or the securities trading can be classified as operating activity which is the same as with the credit purchasing by financial institution. It also has to be classified as operating activity, because it is related to special income activity of the financial institution.

B. Cash flow form investment activities

Separate disclosure of cash flow coming from investment activity requires to be done because that cash flow reflects to the cash inflow and cash outflow. Referring to resources which aim to yield the earnings and future cash flow.

- Loan redemption
- Cash Payment by leysore to decreasing the obligation balance that related to rent of tenure by long lease payment.

To report cash flows statement different from the other fundamental financial statement. First, Cash flow statement is not made from the Trial Balance, but it needs detail information which deals with certain account balance change that happened among two periods. Second, cash flows statement is related to the cash inflow and cash payment, so that conception the accrual is not used in preparing cash flows. Information used for the making of cash flow comes from three sources, those are:

1. Balance from continuing period

By conducting comparative balance from two obtainable continuing periods we can get information which deals with amount of change an asset and change of obligation and capital change from early period to last period.

2. Profit loss report

This report can help the users of financial statement to determine the cash amount yielded and to run the operation company activity during one period.

3. Additional another information's

It is the additional Information including the data which is needed to determine how cash yielded or used during one period.

FASB in its statement in SFAS-95 enables the company to choose to report the cash flow operation for by using (1) indirect method or (2) direct method. Indirect giving the supplementary information at capital market. Prediction of future cash flow represents the assistive important information of decision making to all users in context theory. According to Bowen et.al. (1986b), data of accountancy accrual earns the functioning give information to: 1) predict of signs danger in the field of finance, 2) knowing risk, size measure and scheduling of credit decision, 3) predict credit rating, 4) assess company performance and, 5) present supplementary information in capital market.

Belkaoui and Jones (1996) said that all the available systems of financial reporting, cash-flow accounting is one of the most objective and understandable. It attempts to state facts in financial-accounting terms, without the accountant having to become involved in making subjective judgments as to which period the data relate. And it is expressed in terms that should be familiar to all non-accountants-cash resources and flows are things that anyone in developed economy has to administer from day to day. Thus, cash-flow reports are potentially comprehensible, a matter that increasingly concerns to accountants as the number of report users and groups increases year by year.

2.2.2 The Method of Cash Flow Reporting

PSAK No: 2 (1994), explained the reporting cash flow statements from operating activities that should use two methods which are direct and indirect. Direct method uses core components from revenue of bruto cash and cash bruto expenditures. While indirect method uses profit or loss which is adapted for

correction influence by another transaction, this method is yielded information that will be used to estimate future cash flows that can not be resulted by direct method. Right now the cash flow statement presents the information concerning cash change and equivalent of cash during one period the information can be classified pursuant for operating activity, investment and financing. From third information group presented maybe, information from operating activity represents all important factors for most this information consumer needs.

There are two methods in reporting the cash flow from operating activity, those are direct method and indirect method. At paragraph 50 it is mentioned that:

"With the direct method especial group from cash inflow of bruto and cash expenditure laid open, or indirect method of profit or net loss adapted for to correct the influence from transaction of non cash, deferral or accrual from acceptance and cash payment to operate for the past and future, and unsure of production or burden related to cash flow of activity of investment and financing."

Based on the direct method of cash flow from operating activity are the difference of between cash inflow and cash expenditure from operating activity, so that direct method referred as called as method of profit and loss report (Kieso & Weygandt, 1995:1236). While at indirect method of cash flow from operating activity obtained by adjustment of net profit with the earnings and burden of non cash and also advantage and disadvantage of non operation. PSAK No.2 does not oblige to use one of method. SFAS No.95 gives the choice to company in using the direct method or indirect method, but if company uses the direct method in reporting the operating activity operate for obliged to present the reconciliation of net profit for showing the

importance of core earnings to financial statement users Beaver (1981); Revsine et al. (1999); Jonas and Blanchet (2000); and Wild et al. (2000), and the recommendation of the AICPA Committee and Financial analyst, the distinguishment between core and non core cash flows should also be of central importance to financial statement users. This research examines the role of core and non core cash flow components in predicting future cash flows. This research focuses on a key dimension of relevance to users of financial statements whether core and non core components of cash flows significantly enhance predictive ability relative aggregate cash flows. In other words this research predicts that components of cash flows (core and non core) persist differentially in predicting future cash flows and improving cash flow predictability.

The study of Barth et al. (2001) in research Cheng and Hollie (2004) examines the association between current period cash flows and current period accrual component on future cash flows. They disaggregate accruals and show that earnings superiority for predicting future cash flows stems from disaggregating earnings into aggregate cash flows and components of accruals. They argue that various accrual components of earnings capture different information about delayed cash flows related to past transactions, which affect cash flow prediction. Their findings also reveal that the components of accruals do play a significant role in the prediction of future cash flows. This contributes to the literature by examining what role components of cash flows play in predicting future cash flows.


other expenses. Researcher defines the core and non-core cash flows in parallel with the classification in the income statement. It means that the classification has close relation with the definition income core and non core, example interest is reported as a non operating item in the income statement so researcher define cash flows related interest as non core. And also if the cash flows operation related with the core income so researcher define as core cash flow from operations. The capability of two components (core and non core) is different such as influence by the routinely the core cash flow happen, it means the core cash flow is happen more often than non core cash flow and also the core cash flow is more related with the core income. Therefore, Hypothesis 2: Cash flow components (core and non core) have different persistence level in predicting the future cash flows.

Barth, Cram, and Nelson (2001) in Cheng and Hollie research (2004) states that prove accrual components can increase the performance in predicting future cash flows. Therefore, this research extends to include accrual components in the cash prediction model. Hypothesis 3: Aggregate cash flows are incrementally informative beyond accruals components in predicting the future cash flows. Hereinafter, this research extends more with including the components of cash flows from operations (core and non core). The approach to account objectives that assumes set unknown users of financial reports has also assumed that information regarding wealth and or economic transactions of an enterprise is relevant for the many data needs of the users Hendriksen (1977). That is, if information regarding income and financial position is adequately described and presented in financial statements, it is assumed that this

information will be useful without attempting to explain what information is intended to be used for which purposes. A well-informed reader of financial statements is assumed to be able to select the information he needs and made adequate decisions from the information presented.

Recently, this general assumption of usefulness has been challenged on the grounds that accountants need to know more about what information is needed by specific users of financial statements, as well as more about who these users are and what their objectives are in using the accounting information. This changing emphasis toward the communication of information intended for specific users and for specific purposes has led to a greater refinement of the concept of relevance. SAK through it is framework for the preparation and presentation of financial statements points out that the information has the relevance quality when it influences the user's economic decisions by helping them in evaluating past, present or future events or confirming, or correcting their past evaluation. Thus, to be relevant the information presented in financial statement must fulfill certain criterias: First, The information must have predictive values, it means what is resulted from it has a basic to predict the future. Second, Feed back values, it means that the information must have value to evaluate the previous things. Third, Timeliness is the measurement of timelines when the information content still reflects economic position when the statement is presented (Hendriksen, 1977).

If the accounting information is relevant, it can predict the future activities of the company and can reduce the uncertainty about the variables in decision process, then it is important to test the ability of cash flow component, as a part of financial statement, to predict future cash flow. So that **Hypothesis 4:** from this research is Cash flows component are incrementally informative beyond accruals components in predicting the future cash flows.

Also written as: CFOt+1 =
$$\alpha + \beta \Sigma$$
CFOt + μ t

Where:

$$\Sigma CFO = \beta_1 C_SALESt + \beta_2 C_COGSt + \beta_3 C_OEt + \beta_4 C_INTt + \beta_5 C_TAXt$$

$$+ \beta_6 C_OTHERt$$

From equation above researcher decides level of significant is 5%, we can see the difference from coefficients significantly to decide criteria of rejecting Ho. If the level significant of coefficients regression are different so reject Ho, it means the ability from core cash flows components from operations are different with non-core cash flows components in predicting the future cash flows.

The variables are defined as:

- CFO = Net cash flow from operating activities less the accrual portion of extraordinary items and discounted operations reported on the statement of cash flows.
- C_SALES = cash flows from sales are calculated as sales minus change in accounts receivable.
- C_COGS = cash flow from cost of goods sold is calculated as cost of goods sold minus (change in inventory minus change in accounts payable).
- C_OE = cash flow from operating and administrative expenses are calculated as operating expenses minus change in Net Operating Working Capital excluding changes in accounts receivables, inventory, tax payable and interest payable.
- C_INT = cash flow related to interest payment.
- $C_TAX = cash flow related to tax payments.$
- C_other = cash flows related to other revenue/ expenses items including special and extraordinary items are calculated as cash flow from operations minus all other cash flow components (i,e; cash flows related to sales, COGS, operating expenses, interest and taxes).

Third hypothesis (H3) used to know the ability cash flow from operations with including accrual components to predict the future cash flows. To test the third hypothesis (H3), this research is used multiple regression approach.

CHAPTER IV

RESEARCH FINDINGS AND DISCUSSIONS

This chapter will explain about the results of data analysis based on the variables that reearcher used in this research in linear regression model. Which is explained in previous chapter, this research use one dependent variable that is future cash flows from operations and some of independent variables that is aggregate cash flows from operations in current year, components core (related with sales, cost of good sold, and operating and administration expense) and non core cash flows (related with interest payment, taxes payment, and other expense) and components accruals cash flows (account receivable, account payable, inventory, depreciation expense, amortization expense and others).

Population in this research is manufactured companies which are selected as samples in this research are obtained 395 companies that can fulfill the requirement that would become the variables in this thesis. The companies were listed in JSX at the period of 1995-2002 with the appropriate data and the completeness of the data for the research requirements. Sample deciding from this research are using purposive sampling. Since this research use pooled cross-section method, the amounts of the companies that can fulfill the criteria are not the same from one to another period. In 1995 the amount of the companies used as samples are 79 companies, 1996 the sample are 72 companies, 1997 the sample are 77 companies, 1998 the samples are 66 companies, 1999 the samples are 30 companies, 2000 the samples are 37 companies, and 2001 the samples are 34 companies.

aggregate cash flow from operation beyond the accrual components (account receivable, account payable, inventory, depreciation expense, amortization expense and other earning component). For the fourth hypothesis, it was tested by analyzing the significance of the superiority of cash flow component (core and non-core) beyond accrual component. In analyzing the first until the fourth hypotheses, this research also use the dummy variable to distinguish between the year using indirect and direct in presenting the cash flow statement. This research assigns value 0 for the year1995 and 1996 and 1 for year 1997, 1998, 1999, 2000, 2001. If the coefficient is significant (in conformity with the hypothesis alternative), the hypothesis alternative will be accepted. Testing the significance of the regression coefficient from the first until the fourth hypotheses are determined by using probability value of estimated error approach (p-value approach) to observe the significance level of the regression coefficient. The determination of accepting and rejecting Ho is based on the p-value result. If p-value of β from 3.1 until 3.4 equation is greater than the significance level 5% (α =0.05), so that Ho is failed to reject. On the other hands, if p-value is smaller than the significant level that is chosen 5% (α =0.05), so that the Null Hypothesis (Ho) is rejected. The regression analysis results for each equation are described as following section:

4.2.1 The First Hypothesis to Find the Ability of Cash Flow from Operating Activities to Predict the Future Cash Flows.

After arranging and stacking all of variables needed into one table, the test for the first hypothesis is done by identifying the significance level of aggregate cash flow from operation in the current year (CFO₁₋) on aggregate cash flow from operation in the future year (CFO₁₊₁). By using the simple regression method p-value result of first linear regression can be described as follow:

TABLE 4.2
RESULT OF THE LINEAR REGRESSION TEST EQUATION 3.1

Independent Variables	Adj. R ²	β,	ı	ρ-value	Significance level
CFOt	0.043	2,535	4,327	0.000	Significant
DUMMY	-	-50,377	-0,284	0.777	Not Significant

From table 4.2 shows that the coefficient of CFOt (β) of 2.535. The probability (p-value) is 0.000 at 5% level of significance, it means that CFOt positively affect the amount of CFO_{t-1}. And it means that an increase in one value of CFOt, it will cause the increase amount of CFO_{t+1} by 2.535, holding by other variables constant. For the result of adjusted R² which is presented in the test equation 3.1 above, 4.3% of dependent variable (CFO_{t+1}) can be explained by independent variables (CFO_t and DUMMY) and the rest will be explained by other variables that unknown

4.2.3 The Third Hypothesis to Prove that Aggregate Cash Flows Are Incrementally Informative Beyond Accruals Components in Predicting Future Cash Flows

This research was done by identifying the aggregate cash flow and accruals components on future cash flows. It means in Third Hypothesis try to include the accruals component (Account Receivable, Account Payable, Inventory, Depreciation, Amortization, and Others). The result of the testing displayed in table 4.4:

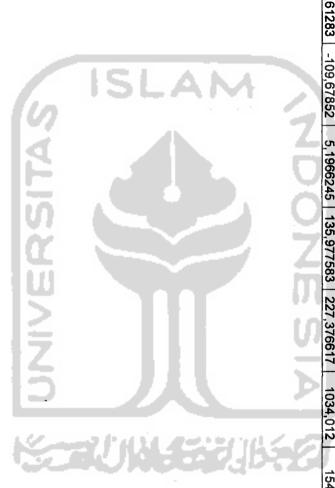
TABLE 4.4
RESULT OF THE LINEAR REGRESSION TEST EQUATION 3.3

Independent Variables	Adj. R ²	β,	-	ρ-value	Significance level
CFO	0.149	3.093	2.205	0.028	Significant
AR	W.	2.572	1.955	0.052	Not Significant
AP	5	4.160	0.244	0.807	Not Significant
INV		2.336	1.511	0.132	Not Significant
DEP	7	1.395	0.824	0.411	Not Significant
AMORT	4	2.097	4.663	0.000	Significant
OTHERS		1.439	1.150	0.251	Not Significant
DUMMY		-95.001	-2.780	0.006	Significant

Table 4.4 shows the coefficient (β ,) and p-value result of all variables. From that table, we can see that 14.9% of dependent variable can be explained by independent variables and the rest 85.1% will be explained by other variable that we do not know. This value is consistent with what of Hollie and Cheng stated in the research which they reported that an adjusted R-square of 34.27%. That table also shows that CFOt, AMORT and DUMMY are significant to the hypothesis alternative (Ha). Different with Hollie and Cheng, who found that the coefficient for CFO has

INV	3.698	2.012	0.045	Significant
DEPR	-3.378	-1.818	0.070	Not Significant
AMORT	-5.478	-2.603	0.010	Significant
OTHERS	3.663	2.006	0.046	Significant
DUMMY	-198.912	-2.423	0.016	Significant

Table 4.5 shows all components of cash flow are significant, except COGS and this is in different with the statement of Hollie and Cheng (2004). They stated only TAX are not significant but in this research tax was significant. For the component of accrual, only AR and DEPRE are not significant while the rest are significant, the coefficient (β_i) of all independent variables SALES, COGS, OE, INT. TAX, OTHER, AR, AP, INV, DEPR, AMORT, OTHERS, DUMMY respectively were 6.286, 1.283, 3.892, 4.279, 4.296, 3.773, 3.590, -3.378, -5.478, 3.663 and -198.912. The coefficients of cash flow components have different sign to those reported in equation (2) but, when we add accrual components, SALES and OE become higher and only COGS becomes smaller. For example, coefficients of the core items (SALES and OE) increase from (1.954 and 1.311) to (6.286 and 3.892) while only COGS decrease from 2.793 to 1.283. Coefficient of INT, TAX and OTHER also increase from (1.294, 1.534 and 1.704) to (4.279, 4.296 and 3.773). This is not the same with the result of Hollie and Cheng's research (2004). The result from their research shows that all cash flow components become larger when they add accrual components. They stated that by adding omitted variables it will improve the performance model and the impact on coefficients of the original variables can be either positive or negative depend on whether the significance of the original


positive signs to the future cash flows except from INT and TAX. This research implies that AICPA recommendation that firms should distinguish between the financial effects of a company's core (major or central operations) and non-core (peripheral or incidental activities) cash flows which can be implemented in Indonesia. That recommendation is based on the reason that by distinguishing cash flow into core and non-core component, it can present the best possible information in which to analyze trends in a firm without the potential distortive effects of non-core activities.

The evidence that the aggregate cash flows are incrementally informative beyond accrual component in predicting future cash flow can be proved by the equation of 3.3. CFO variable can give the positive coefficient to the dependent variable and the p-value is also significant to alternative hypothesis. Even though AP variable gives higher coefficient compare than CFO, not all accrual components can give significant value to the dependent variable. This is in accordance with Hollie and Cheng who stated that current year cash flows would persist to the next year's cash flows once effects of accrual components are controlled.

The analysis result of equation 3.4 shows that the cash flow components are incrementally informative beyond accrual components in predicting future cash flows. We can see from the p-value of significant and coefficient. From the p-value of significant, shows that almost all cash flow components are significant to dependent variable, except COGS. Meanwhile, almost all accrual components are significant to the dependent variable, except AR and DEPRE variables.

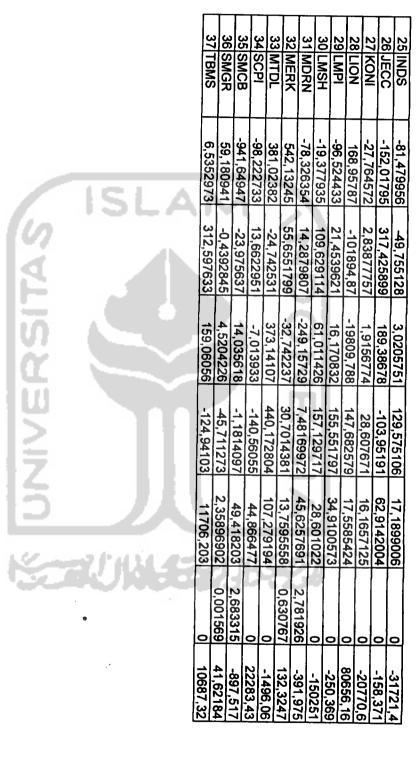
41	PT. Tira Austenite Tbk.	TIRA
42	PT. Texmaco Perkasa Engineering Tbk.	TPEN
43	PT. Tri Polyta Indonesia Tbk.	TPIA
44	PT. Muti Agro Persada Tbk (Trafindo Perkasa)	TRPK
45	PT. Tunas Ridean Tbk	TURI
46	PT. Wahana Jaya Perkasa (Ugari) Tbk.	UGAR
47	PT. Unggul Indah Cahaya Tbk.	UNIC
48	PT. United Traktor Tbk	UNTR
49	PT. Voksel Electric Tbk.	VOKS
50	PT. Ades Alfindo Putra Setia Tbk.	ADES
51	PT. Argo Pantes Tbk.	ARGO
52	PT. Century Textile Industry (Centex) Tbk.	CNTX
53	PT. Eratex Djaja Ltd Tbk.	ERTX
54	PT. Fast Food Indonesia Tbk.	FAST
55	PT. Great River International Tbk.	GRIV
56	PT. Hanjaya Mandala Sampoerna Tbk.	HMSP
57	PT. Multi Bintang Indonesia Tbk.	MLBI
58	PT. Prasidha Aneka Niaga Tbk.	PSDN
59	PT. Sari Husada Tbk.	SHDA
60	PT. Sinar Mas Agro Resources and Technology (SMART) Coorporation Tbk.	SMAR
61	PT. Tekstile Manufacturing Company (texmaco) Jaya Tbk.	TEJA
62	PT. Ultrajaya Milk Industry & Trading Company	ULTJ
63	PT. Aqua Golden Mississippi Tbk	AQUA
64	PT. BAT Indonesia Tbk.	BATI
65	PT. Davomas Abadi Tbk.	DAVO
66	PT. Evershine Textile Industry Tbk.	ESTI
67	PT. Gudang Garam Indonesia Tbk.	GGRM
68	PT. Panasia Indosyntec Tbk (Hadtex)	HDTX
69	PT. Indofood Sukses Makmur Tbk.	INDF
70	PT. Miwon Indonesia Tbk.	MWON
71	PT. APAC Centertex Corporation Tbk.	MYTX
72	PT. Roda Vivatex Tbk.	RDTX
73	PT. Sekar Laut Tbk.	SKLT
74	PT. Suba Indah Tbk.	SUBA
75	PT. Teijin Indonesia Fiber Corporation (TIFICO) Tbk.	TFCO
76	PT. Asahimas Flat Glass Co.	AMFG
77	PT. Branta Mulia Tbk	BRAM
78	PT. Budi Acid Jaya Tbk	BUDI
79	PT. Dankos Laboratories Tbk	DNKS
80	PT. Ekadarma Tape Industries Tbk	EKAD
81	PT. Alakasa IndustrindoTbk	ALKA

1961,388 1223,5626 63 502,1092 26,904913 16	1,388	502	54,024796 13171,429	1510,539371 1448,219405	144,50768 475,36592	146,4843	MERK	61 60
0	ŏ	56957,88	1700,7283	9981,119906	1310,2516	-81,256	LMSH	59
0,37 0	0,37	17110,37	44,251706	1876,070297	49,394206	27,17954	LMPI	58
162002,3	002,3	162	1408,6616	5739,910159	1,5956998	-189,091	LION	57
45223,72 0	23,72	452	1231,9873	3022,68989	442,0676	49,3607	KONI	85
,947 0	,947	4500,947	194,61621	1637,394147	2347,7746	157,8824	KOMI	55
977 0	977	5613,977	62,315798	5152,835565	783,82077	-13,0027	KICI	54
,982 0	,982	5389,982	3950,957	326,8249702	12550,692	30,66591	KIAS	53
659 0	659	3080,659	940,47555	71,50975511	112,91875	176,9589	KBLM	52
3215 0	3215	342,8215	92,979163	516,5855864	18643,078	-225,341	KBLI	51
7,08 0	7,08	11817,08	3911,0421	106535,0264	1893,4503	1855,443	JPRS	50
021 0	021	70,48021	2936,2456	10743,08457	312,74673	-53,9195	JECC	49
,491 0	,491	5785,491	4120,4	11746,43978	-782,07971	170,4804	ITMA	48
216 0	216	49,81216	8,1213333	480,4706765	6389468	5,971701	INTP	47
958 0	958	208,5958	1460,0743	1447,277556	-14,049906	-121,328	INTD	45
0	5,12	1049	-49201,49	7162,215225	-1597,2331	-179,791	ATNI	45
-7514,1 12377,544 28	14,1	-75	2887,8307	77188,87033	806,78119	632,3045	INDS	44
4286 0	4286	594,4286	-9603,853	46288,74784	112,97256	477,2203	INC:	43
6532 0	6532	815,6532	1305,3575	7242,578644	116,13412	-133,602	INA I	42
143 0	143	1181,143	366,05912	2000,781949	-67,040473	241,5406	KB B	41
445 0	445	2721,445	709,68899	218,8019027	669,73799	194,0726	IGAR	40
,735 0	,735	1094,735	2378,747	8247,128657	294,40992	-91,664	HEXA	39
477 0	477	23,13477	1,8345742	279,6628895	1275,9445	11,89295	GJTL	38
73 0	73	2597,73	1,2954168	2539,433954	49,939536	-155,39	EPMT	37
2,98 0	2,98	13862,98	1459,691	1122,322958	2254,0328	803,0867	EKAD	36
542 0	542	5685,542	492,47814	10098,9567	396,69984	1572,897	DYNA	35
1780,288 0),288	1780	124,88749	1958,216382	9,2850972	514,2834	DVLA	34
3645 0	3645	100,8645	3890,1645	5328,636939	19556,803	5523,989	DPNS	33
864 0	864	162,6864	3205,6123	4468,285121	124,57001	-938,688	BYSP	32
0	49	348,3449	-965,3117	1342,505495	16,833245	106,4289	BUDI	31
-	788	473,788	874,4585	1073,043735	137,98969	54,05548	BRAM	30
281 1012,0805 88	8	4852,281	1059,2982	2004,090295	61,562047	97,46168	ASGR	29

79	78	77	76	75
SXCV	UNTR	UGAR	76 TURI	TRPK
287 61283	389,5211	0,8299115	551,52327	425,87577
79 VOKS 287 61283 -109 67852 5 1966245 135 977583 227 376617 1034 012 1540 395	78 UNTR 389,5211 -39,750325 42,646166 -91,807797 447,248796 43,81076	77 UGAR 0,8299115 2,20986977 -0,629176 0,41617259 0,62676397 0,026045	551,52327 -38,47106 -433,46426 -86,157348 585,839899 42,91196	75 TRPK 425,87577 -54,795284 468,04992 -148,95455 1561,72145 53,55771
5 1966245	42,646166	-0,629176	-433,46426	468,04992
135.977583	-91,807797	0,41617259	-86,157348	-148,95455
227 376617	447,248796	0,62676397	585,839899	1561,72145
1034.012	43,81076	0,026045	42,91196	53,55771
1540 395	1080,944	4,94021	1020,887	2805,559

-54,0525 3116,0337 5616,598429 4155,7719 203,721 0 1,34915 15141,04 1233,73684 960,72714 2755,748 0 0 0 0 33779,58 3224,698 72,223647 4895,150186 2207,9482 1565,277 0 33779,58 156,89079 3131,4416 490,348609 -263,23 -211,22 0 7,123405 48,49178 1159,9148 4490,690205 3258,9402 62,65984 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-14841,7	0	0	641,8943	6535,0685	7839,569643	508,12896	1/4,/913	N C	0
-54,0525 3116,033 5616,598429 415,7719 203,721 0 0 0 1,54915 15141,04 1233,736945 2207,9482 1565,748 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-1880,22	0	0	1512,845	391,59104	573,6632169	4,1513/88	29/,8/8/	NI T	3 2
-54,0925 3116,033 5616,59429 415,7719 203,721 0 0 0 1 15441,04 1233,73945 960,72174 2755,748 0 0 0 0 0 0 1 1541,04 1233,73945 960,72174 2755,748 0 0 0 0 0 0 1 155,978 1 1514,041 159,9148 196,348609 -263,223 -211,22 0 7,123405 158,9079 3131,4416 490,348609 -263,223 -211,22 0 7,123405 174,0936 94,321646 830,776,3418 591,17178 99,35316 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-272,039	0	0	18,8519	98,246299	151,3730725	32,530878	-3,56//4	MLX	2 8
.54,0925 3116,0337 5616,599429 4155,7719 203,721 0 0 0 1 1549115 15141,144 1233,73644 960,727174 2755,748 0 0 0 0 0 0 1 1549148 172,223647 4695,151086 2207,9482 1565,272 0 33779,58 168,9079 3131,4416 490,3486809 -263,23 -211,22 0 7,123405 174,49936 -94,321464 830,7763418 591,17178 99,35316 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-2558,89	87,9304	439,6646	-603,394	-442,2858	1357,384303	-3,0/0/846	95,771	MEXA	3 8
-54,0925 3116,033 5616,598429 4155,7719 203,721 0 0 5 3224,698 72,223647 4695,150186 2207,9482 1565,27 0 33779,58 5 -51488 1071,5348 513,5334987 2870,1958 850,0072 0 33779,58 5 -51488 1071,5348 513,5334987 2870,1958 850,0072 0 33779,58 6 -51488 1071,5348 513,5334987 2870,1958 850,0072 0 0 0 7 14310,21 266,50598 168,5493315 1448,6792 193,3292 0 0 0 7 14310,21 266,50598 168,5493315 1448,6792 193,3292 0 0 0 7 1444,975 86,4197124 687,3634 79,31513 0 48521,91 1448,975 1844,924 1633,977099 1465,422 105,6665 0 0 0 20075 19468 3147,8945 73,52688 <td< td=""><td>-52207</td><td>33579,21</td><td>16961,438</td><td>116,3572</td><td>683,57882</td><td>896,7167895</td><td>2142,8216</td><td>30,34831</td><td>MUNIN</td><td>5 8</td></td<>	-52207	33579,21	16961,438	116,3572	683,57882	896,7167895	2142,8216	30,34831	MUNIN	5 8
-54,0525 3116,033 5616,598429 415,7719 203,721 0 0 1,354915 15141,04 1233,786945 96,77174 2755,748 0 0 0 3379,58 5 3224,698 72,223647 4695,150186 2207,9482 1565,27 0 3379,58 1071,5348 513,5334987 2870,1958 850,072 0 3379,58 1071,5348 513,5334987 2870,1958 850,072 0 0 3379,58 158,9079 3131,4416 490,590205 3258,9402 62,65984 0 0 0 0 0 0 79,49936 -94,321646 830,7763418 591,17178 99,35316 0 0 0 0 0 1 14310,21 266,50598 168,5493315 1458,6792 193,3292 0 0 0 0 0 1 14310,21 266,50598 168,5493715 1458,6792 193,3292 0 0 0 0 0 2 14,0205 566,83643 501,4991493 -371,0051 124,5948 0 0 0 0 0 0 3041,351 1444,4975 856,4197124 687,3634 79,31513 0 48521,91 997,265 1844,5924 1633,977099 1465,422 105,6665 0 0 41488,97 3035,9897 486,9932044 -342,1145 -517,832 17929,281 3656,897 2 -88,6884 191,73667 106,8744955 73,572638 13,74332 0 0 0 0 0 128,5224 73,985662 235,7019451 135,49768 2,073,735 0 0 0 0 0 0 128,5224 73,985662 235,7019451 135,49768 2,073,7245 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-13282,2	0	0	5678,645	653,05143	813,0075818	-141,34995	-013/,45	LMOI	2 0
-54,0525 3116,0337 5616,598429 4155,7719 203,721 0 0 1,354915 15141,04 1233,786945 960,72174 2755,748 0 0 0 33779,58 5 3224,698 72,223647 4695,150186 2207,9482 1565,27 0 33779,58 5 -51488 1071,5348 513,5334987 2870,1948 850,072 0 0 33779,58 7 158,9079 3131,4416 490,3486809 -263,23 -211,22 0 7,123405 7 94,9936 -94,321646 830,7763418 591,17178 99,36316 0 0 0 7 94,9936 -94,321646 830,7763418 591,17178 99,36316 0 0 0 7 94,9936 -94,321646 830,7763418 591,17178 99,36316 0 0 0 7 94,9936 -94,321646 830,7763418 591,17178 99,36316 0 0 0 0 7 0,4623 349,75521 170,0955895 128,03129 12,29474 0 0 0 0 2 14,0205 566,83643 501,4991493 -371,0051 124,5948 0 0 0 0 2 24,0205 1844,4975 856,4197124 867,3634 79,31513 0 48521,91 997,265 1844,5924 1633,977099 1465,4222 105,6665 0 0 0 329,0675 -512,32659 537,1016374 3444,4073 113,5424 0 0 0 0 41488,97 3035,9897 486,9932044 -342,1145 -517,832 17929,281 3656,897 128,5224 73,985662 235,7019451 135,49768 2,073671 0 0 0 91,9878 31477,899 42,8835636 36,552953 38,27245 0 0 0 0 0 307,7906 375,8168 776,1634402 673,87823 62,57972 0 0 0 0 307,7905 375,8168 776,1634402 673,87823 62,57972 0 0 0 0 0 11658,8 -2689,9028 496,6017453 459,76443 453,4447 0 0 0 0 0 169,704222 -5642,7499 117,1392615 87,993313 37,27077 0 0 0 0 169,704222 -5642,7499 117,1392615 87,993313 37,27077 0 0 0 0 169,7045,8 -27,946491 5815,85286 1090,9744 1090,974 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	441,3316	0	0	-30,9808	-223,7471	303,5492139	2895,1965	490, 1529	LME	2 8
1,34,0525 3116,0337 5616,598429 4155,7719 203,721 0 0 0 1,344915 1,5141,04 1233,738945 980,72174 2755,748 0 0 0 0 3274,698 72,223467 4695,150186 2207,9482 1,565,27 0 33779,58 324,698 1071,5348 513,5334987 2870,1958 850,0072 0 0 0 0 158,9079 3131,4416 490,3486809 -263,23 -211,22 0 7,123405 93,46178 1159,9148 4490,690205 3258,9402 62,65984 0 0 0 0 0 0 0 0 0	-5775,62	0	0	1352,184	3377,6031	4983,49593	866,13386	3937,665	בו כא	n 8
-54,0525 3116,0337 5616,598429 4155,7719 203,721 0 0 1,354915 15141,04 1233,738945 980,72174 2755,748 0 0 0 3224,698 72,223487 499,5150186 2207,9482 1565,27 0 33779,58 -51488 1071,5348 513,5334987 2267,0482 1565,27 0 33779,58 -51488 1071,5348 513,5334987 2267,023 -21122 0 7,123405 158,9079 3131,4416 490,3486809 -263,23 -21122 0 7,123405 93,46178 1159,9148 4490,690205 3258,9402 62,65984 0 0 0 194,9936 -94,321646 830,763418 591,17178 99,36316 0 0 0 14310,21 266,50598 168,5493315 1458,6792 193,3292 0 0 0 214,0205 566,83643 501,4991493 -371,0051 124,5948 0 0 0	-9363,62	0	0	1090,974	1090,9744	5815,85286	-22,946491	-1365,82		n ç
-54,0525 3116,0337 5616,598429 4155,7719 203,721 0 0 5 3224,698 72,223647 4695,150186 2207,9482 1565,27 0 33779,58 5 3224,698 72,223647 4695,150186 2207,9482 1565,27 0 33779,58 5 3224,698 72,223647 4695,150186 2207,9482 1565,27 0 33779,58 5 3224,698 1071,5348 513,5334987 2870,1958 850,0072 0 0 158,9079 3131,441 490,3486809 -263,23 -211,22 0 7,123405 93,46178 1159,9148 4490,9580505 3258,9402 62,65884 0 0 0 79,49936 -94,321646 830,7763418 591,1778 99,35316 0 0 0 -14310,21 266,53643 501,4991493 -37,0051 124,5948 0 0 0 214,0205 566,83643 501,4991493 -37,0051 124,5948 0	-171226	0	0	476,0379	420,03922	603,8695449	37,151664	-169726	NAG.	2 2
-54,0525 3116,0337 5616,598429 4155,7719 203,721 0 0 5 3224,698 72,223647 4895,150186 2207,9482 1565,27 0 33779,58 5 3224,698 72,223647 4895,150186 2207,9482 1565,27 0 33779,58 6 3224,698 72,223647 4895,150186 2207,9482 1565,27 0 33779,58 7 1458,9079 3131,4416 499,3486809 -263,23 -211,22 0 7,123405 93,46178 1159,9148 4490,690205 3258,9402 62,65984 0 0 0 193,49936 -94,321646 830,7763418 591,17178 99,35316 0 7,123405 193,49936 -94,321646 830,7763418 591,7178 99,35316 0 0 0 10,49938 -94,321646 830,7763418 591,7178 99,35316 0 0 0 214,0205 566,83643 5101,499133 -128,03129 122,5948	-195,367	0	0	37,27707	87,993313	117,1392615	-5642,7499	47,04222	KIAS	3 8
-54,0525 3116,0337 5616,598429 4155,7719 203,721 0 0 1,354915 15141,04 1233,736945 960,72174 2755,748 0 0 0 3 3224,698 72,223647 4695,150186 2207,9482 1565,27 0 33779,58 3 -51488 1071,5348 513,5334987 2870,1958 850,0072 0 0 158,9079 3131,4416 490,3486809 -263,23 -211,22 0 7,123405 4 93,46178 1159,9148 4490,690205 3258,9402 62,55984 0 0 7,123405 1 93,46178 1159,9148 4490,690205 3258,9402 62,55984 0 0 7,123405 1 14310,21 266,50598 168,5493315 1458,6792 193,3292 0 0 0 -0,4623 349,75521 170,0955895 128,03129 12,29474 0 0 0 1,24,0205 566,83643 501,4991493 -37	34985.5	0	0	314,2955	420,20081	481,5890521	5787,2376	36201,58	KBLM	5 5
-54,0525 3116,0337 5616,598429 4155,7719 203,721 0 0 1,354915 15141,04 1233,736945 960,72174 2755,748 0 0 0 3 3224,698 72,223647 4695,150186 2207,9482 1565,27 0 33779,58 5 -51488 1071,5348 513,5334987 2870,1958 850,0072 0 0 158,9079 3131,4416 490,3486809 -263,23 -211,22 0 7,123405 0 79,49936 -94,321646 830,7763418 591,17178 99,35316 0 0 7,123405 14310,21 266,50598 168,5493315 1458,6792 193,3292 0 0 0 -0,4623 349,75521 170,0955895 128,03129 12,29474 0 0 0 214,0205 566,83643 501,4991493 -37,0051 124,5948 0 0 0 297,265 1844,5924 1633,977099 1465,422 105,6665 <t< td=""><td>-511.754</td><td>0</td><td>0</td><td>225,9168</td><td>144,82635</td><td>150,5887693</td><td>-37,200949</td><td>9,57774</td><td>BL</td><td>50</td></t<>	-511.754	0	0	225,9168	144,82635	150,5887693	-37,200949	9,57774	BL	50
-54,0525 3116,0337 5616,598429 4155,7719 203,721 0 0 1,354915 15141,04 1233,736945 960,72174 2755,748 0 0 0 3224,698 72,223647 4695,150186 2207,9482 1565,27 0 33779,58 -51488 1071,5348 513,5334987 2870,1958 850,0072 0 0 158,9079 3131,4416 490,3486809 -263,23 -211,22 0 7,123405 93,46178 1159,9148 4490,690205 3258,9402 62,65984 0 0 0 194,9936 -94,321646 830,7763418 591,17178 99,35316 0 0 0 14310,21 266,50598 168,5493315 1458,6792 193,3292 0 0 0 214,0205 566,83643 501,4991493 -371,0051 124,5948 0 0 0 3041,351 1444,4975 856,4197124 687,3634 79,31513 0 48521,91	-17206	0	0	453,4447	4597,6443	496,6017453	-2689,9028	-11658,8	JPRS	49
-54,0525 3116,0337 5616,598429 4155,7719 203,721 0 0 1,354915 15141,04 1233,736945 960,72174 2755,748 0 0 0 3224,698 72,223647 4695,150186 2207,9482 1565,27 0 33779,58 -51488 1071,5348 513,5334987 2870,1958 850,0072 0 0 158,9079 3131,4416 490,3486809 -263,23 -211,22 0 7,123405 93,46178 1159,9148 4490,690205 3258,9402 62,65984 0 0 0 14310,21 266,50598 168,5493315 1458,6792 193,3292 0 0 0 214,0205 566,83643 501,4991493 -371,0051 124,5948 0 0 0 3041,351 1444,4975 856,4197124 687,3634 79,31513 0 48521,91 997,265 1844,5924 1633,977099 1465,422 105,6665 0 0 0 <t< td=""><td>-1204 83</td><td>0</td><td>0</td><td>62,57972</td><td>673,87823</td><td>776,1634402</td><td>375,8168</td><td>307,7906</td><td>JECC</td><td>48</td></t<>	-1204 83	0	0	62,57972	673,87823	776,1634402	375,8168	307,7906	JECC	48
-54,0525 3116,0337 5616,598429 4155,7719 203,721 0 0 1,354915 15141,04 1233,736945 960,72174 2755,748 0 0 0 3224,698 72,223647 4695,150186 2207,9482 1565,27 0 33779,58 -51488 1071,5348 513,5334987 2870,1958 850,0072 0 0 158,9079 3131,4416 490,3486809 -263,23 -211,22 0 7,123405 93,46178 1159,9148 4490,690205 3258,9402 62,65984 0 0 14310,21 266,50598 168,5493315 1458,6792 193,3292 0 0 1440,0205 566,83643 501,4991493 -371,0051 124,5948 0 0 214,0205 566,83643 501,4991493 -371,0051 124,5948 0 0 3041,351 1444,4975 856,4197124 687,3634 79,31513 0 48521,91 997,265 1844,5924 1633,97709	-25 7211	0	0	38.27245	36,552953	42,8835636	31477,899	91,98788	ITMA	47
-54,0525 3116,0337 5616,598429 4155,7719 203,721 0 0 1,354915 15141,04 1233,736945 960,72174 2755,748 0 0 0 3224,698 72,223647 4695,150186 2207,9482 1565,27 0 33779,58 -51488 1071,5348 513,5334987 2870,1958 850,0072 0 0 158,9079 3131,4416 490,3486809 -263,23 -211,22 0 7,123405 93,46178 1159,9148 4490,690205 3258,9402 62,65984 0 0 79,49936 -94,321646 830,7763418 591,17178 99,35316 0 0 14310,21 266,50598 168,5493315 1458,6792 193,3292 0 0 214,0205 566,83643 501,4991493 -371,0051 124,5948 0 0 329,0675 1844,4975 856,4197124 687,3634 79,31513 0 48521,91 97,265 1844,5924 1633,97709	-244 751	0	0	2,073671	135,49768	235,7019451	73,985662	128,5224	INTP	45
-54,0525 3116,0337 5616,598429 4155,7719 203,721 0 0 1,354915 15141,04 1233,736945 960,72174 2755,748 0 0 0 3224,698 72,223647 4695,150186 2207,9482 1565,27 0 33779,58 -51488 1071,5348 513,5334987 2870,1958 850,0072 0 0 158,9079 3131,4416 490,3486809 -263,23 -211,22 0 7,123405 93,46178 1159,9148 4490,690205 3258,9402 62,65984 0 0 0 79,49936 -94,321646 830,7763418 591,17178 99,35316 0 0 0 14310,21 266,50598 168,5493315 1458,6792 193,3292 0 0 0 -0,4623 349,75521 170,0955895 128,03129 12,29474 0 0 0 214,0205 566,83643 501,4991493 -371,0051 124,5948 0 0 0 3041,351 1444,4975 856,4197124 687,3634 79,31513 0 48521,91 997,265 1844,5924 1633,977099 1465,422 105,6665 0 0 0	-8681 60	0	0	396,0547	1596,0828	2023,226048	611,02693	4666,33	INTD	45
-54,0525 3116,0337 5616,598429 4155,7719 203,721 0 0 1,354915 15141,04 1233,736945 960,72174 2755,748 0 0 0 3224,698 72,223647 4695,150186 2207,9482 1565,27 0 33779,58 -51488 1071,5348 513,5334987 2870,1958 850,0072 0 0 158,9079 3131,4416 490,3486809 -263,23 -211,22 0 7,123405 93,46178 1159,9148 4490,690205 3258,9402 62,65984 0 0 0 79,49936 -94,321646 830,7763418 591,17178 99,35316 0 0 0 14310,21 266,50598 168,5493315 1458,6792 193,3292 0 0 0 -0,4623 349,75521 170,0955895 128,03129 12,29474 0 0 0 214,0205 566,83643 501,4991493 -371,0051 124,5948 0 0 0 997,265 1844,5924 1633,977099 1465,422 105,6665 0 <td>-281 870</td> <td></td> <td></td> <td>13.74332</td> <td>73,572638</td> <td>105,8744955</td> <td>191,73667</td> <td>-88,6884</td> <td>INTA</td> <td>4</td>	-281 870			13.74332	73,572638	105,8744955	191,73667	-88,6884	INTA	4
-54,0525 3116,0337 5616,598429 4155,7719 203,721 0 0 1,354915 15141,04 1233,736945 960,72174 2755,748 0 0 0 3224,698 72,223647 4695,150186 2207,9482 1565,27 0 33779,58 -51488 1071,5348 513,5334987 2870,1958 850,0072 0 0 158,9079 3131,4416 490,3486809 -263,23 -211,22 0 7,123405 93,46178 1159,9148 4490,690205 3258,9402 62,65984 0 0 0 79,49936 -94,321646 830,7763418 591,17178 99,35316 0 0 0 14310,21 266,50598 168,5493315 1458,6792 193,3292 0 0 0 -0,4623 349,75521 170,0955895 128,03129 12,29474 0 0 0 214,0205 566,83643 501,4991493 -371,0051 124,5948 0 0 0 997,265 1844,5924 1633,977099 1465,422 105,6665 0 <td>20255 75</td> <td>56.89</td> <td>17929.281</td> <td>-517,832</td> <td>-342,1145</td> <td>486,9932044</td> <td>3035,9897</td> <td>41468,97</td> <td>INDS</td> <td>43</td>	20255 75	56.89	17929.281	-517,832	-342,1145	486,9932044	3035,9897	41468,97	INDS	43
-54,0525 3116,0337 5616,598429 4155,7719 203,721 0 0 1,354915 15141,04 1233,736945 960,72174 2755,748 0 0 0 3224,698 72,223647 4695,150186 2207,9482 1565,27 0 33779,58 -51488 1071,5348 513,5334987 2870,1958 850,0072 0 0 0 158,9079 3131,4416 490,3486809 -263,23 -211,22 0 7,123405 93,46178 1159,9148 4490,690205 3258,9402 62,65984 0 0 0 14310,21 266,50598 168,5493315 1458,6792 193,3292 0 0 0 144,0205 566,83643 501,4991493 -371,0051 124,5948 0 0 0 204,3255 1844,4975 856,4197124 687,3634 79,31513 0 48521,91	-3765 Q	0	0	113,5424	3444,4073	537,1016374	-512,32659	329,0675	INC!	43
-54,0525 3116,0337 5616,598429 4155,7719 203,721 0 0 1,354915 15141,04 1233,736945 960,72174 2755,748 0 0 0 3224,698 72,223647 4695,150186 2207,9482 1565,27 0 33779,58 -51488 1071,5348 513,5334987 2870,1958 850,0072 0 0 0 158,9079 3131,4416 490,3486809 -263,23 -211,22 0 7,123405 0 0 93,46178 1159,9148 4490,690205 3258,9402 62,65984 0 0 0 79,49936 -94,321646 830,7763418 591,17178 99,35316 0 0 0 14310,21 266,50598 168,5493315 1458,6792 193,3292 0 0 0 -0,4623 349,75521 170,0955895 128,03129 12,29474 0 0 0 214,0205 566,83643 501,4991493 -371,0051 124,5948 0 0 48521,91 3041,351 1444,4975 856,4197124	2207	0	0	105,6665	1465,422	1633,977099	1844,5924	997,265	KB!	4
-54,0525 3116,0337 5616,598429 4155,7719 203,721 0 0 1,354915 15141,04 1233,736945 960,72174 2755,748 0 0 0 3224,698 72,223647 4695,150186 2207,9482 1565,27 0 33779,58 -51488 1071,5348 513,5334987 2870,1958 850,0072 0 0 0 158,9079 3131,4416 490,3486809 -263,23 -211,22 0 7,123405 93,46178 1159,9148 4490,690205 3258,9402 62,65984 0 0 0 79,49936 -94,321646 830,7763418 591,17178 99,35316 0 0 0 14310,21 266,50598 168,5493315 1458,6792 193,3292 0 0 0 -0,4623 349,75521 170,0955895 128,03129 12,29474 0 0 0 214,0205 566,83643 501,4991493 -371,0051 124,5948 0 0 0	47103	48521.91	0	79,31513	687,3634	856,4197124	1444,4975	3041,351	IGAR	46
-54,0525 3116,0337 5616,598429 4155,7719 203,721 0 0 1,354915 15141,04 1233,736945 960,72174 2755,748 0 0 0 3224,698 72,223647 4695,150186 2207,9482 1565,27 0 33779,58 -51488 1071,5348 513,5334987 2870,1958 850,0072 0 0 158,9079 3131,4416 490,3486809 -263,23 -211,22 0 7,123405 93,46178 1159,9148 4490,690205 3258,9402 62,65984 0 0 0 79,49936 -94,321646 830,7763418 591,17178 99,35316 0 0 0 14310,21 266,50598 168,5493315 1458,6792 193,3292 0 0 0 -0,4623 349,75521 170,0955895 128,03129 12,29474 0 0 0	41 068	0	0	124.5948	-371,0051	501,4991493	566,83643	214,0205	HEXA	39
-54,0525 3116,0337 5616,598429 4155,7719 203,721 0 0 1,354915 15141,04 1233,736945 960,72174 2755,748 0 0 0 3224,698 72,223647 4695,150186 2207,9482 1565,27 0 33779,58 -51488 1071,5348 513,5334987 2870,1958 850,0072 0 0 158,9079 3131,4416 490,3486809 -263,23 -211,22 0 7,123405 93,46178 1159,9148 4490,690205 3258,9402 62,65984 0 0 79,49936 -94,321646 830,7763418 591,17178 99,35316 0 0 14310,21 266,50598 168,5493315 1458,6792 193,3292 0 0	-310 88	0	0	12,29474	128,03129	170,0955895	349,75521	-0,4623	GJT.	38
-54,0525 3116,0337 5616,598429 4155,7719 203,721 0 0 1,354915 15141,04 1233,736945 960,72174 2755,748 0 0 0 3224,698 72,223647 4695,150186 2207,9482 1565,27 0 33779,58 -51488 1071,5348 513,5334987 2870,1958 850,0072 0 0 158,9079 3131,4416 490,3486809 -263,23 -211,22 0 7,123405 93,46178 1159,9148 4490,690205 3258,9402 62,65984 0 0 79,49936 -94,321646 830,7763418 591,17178 99,35316 0 0	12489 66	0	0	193,3292	1458,6792	168,5493315	266,50598	14310,21	EPMT	37
-54,0525 3116,0337 5616,598429 4155,7719 203,721 0 0 1,354915 15141,04 1233,736945 960,72174 2755,748 0 0 3224,698 72,223647 4695,150186 2207,9482 1565,27 0 33779,58 -51488 1071,5348 513,5334987 2870,1958 850,0072 0 0 158,9079 3131,4416 490,3486809 -263,23 -211,22 0 7,123405 93,46178 1159,9148 4490,690205 3258,9402 62,65984 0 0 0	-1441 5	0	0	99,35316	591,17178	830,7763418	-94,321646	79,49936	EKAD	36
-54,0525 3116,0337 5616,598429 4155,7719 203,721 0 0 1,354915 15141,04 1233,736945 960,72174 2755,748 0 0 3224,698 72,223647 4695,150186 2207,9482 1565,27 0 33779,58 -51488 1071,5348 513,5334987 2870,1958 850,0072 0 0 158,9079 3131,4416 490,3486809 -263,23 -211,22 0 7 123405	-7718 B		0	62.65984	3258,9402	4490,690205	1159,9148	93,46178	DYNA	35
-54,0525 3116,0337 5616,598429 4155,7719 203,721 0 0 1,354915 15141,04 1233,736945 960,72174 2755,748 0 0 3224,698 72,223647 4695,150186 2207,9482 1565,27 0 33779,58 -51488 1071,5348 513,5334987 2870,1958 850,0072 0 0	135 885	12340	0	-211,22	-263,23	490,3486809	3131,4416	158,9079	DVLA	2
-54,0525 3116,0337 5616,598429 4155,7719 203,721 0 0 1,354915 15141,04 1233,736945 960,72174 2755,748 0 0 3224,698 72,223647 4695,150186 2207,9482 1565,27 0 33779 58	-55721		0	850,0072	2870,1958	513,5334987	1071,5348	-51488	DPNS	33
-54,0525 3116,0337 5616,598429 4155,7719 203,721 0 0 1,354915 15141,04 1233,736945 960,72174 2755,748 0 0 0	-39023		0	1565,27	2207,9482	4695,150186	72,223647	3224,698	DNKS	32
-54,0525 3116,0337 5616,598429 4155,7719 203,721 0 0	4948 8	0	 o	2755,748	960,72174	1233,736945	15141,04	1,354915	BYSP	3
	-10030	0	0	203,721	4155,7719	5616,598429	3116,0337	-54,0525	BUDI	- 2 မ

45	45	4	43	42	41	40	39	38	37	36	35	2	33	32	3	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14
INTP	INTD	INTA	INDS	INCI	KB!	IGAR	HEXA	GJTL	EPMT	EKAD	DYNA	DVLA	DPNS	DNKS	BYSP	BUDI	BRAM	ASGR	AMFG	AKPI	ULTJ	TFCO	SKLT		SMAR	RDTX	PSDN	MYTX	MYRX	MOW	MLBI	INDF
-56,640955	-361,73045	11,188044	192,55688	201,84399	-2495,6722	1942,3206	-64,994463	-3,9743881	-90,007013	476,61135	56,083616	-59,706095	116,16149	98,748797	5,6875706	-256,82203	16,798804	-47,338627	-16,293698	-27,880798	44,602931	-22,828906	-451,42722	1742,4189	-0,5208336	36,500444	-65,561747	-298,85227	-1132,0217	-46,100596	13,61824	-1,5186325
8,21251947	373,750561	-24,014091	-3345,0599	-1724,1	4 550,528	134,655986	-34,621396	-23,779813	-154,02333	1554,90686	-42,58082	7,20629822	-220,02691	-608,74628	-3158,1351	-1092,1159	-450,37478	-1179,3637	-12,585257	-381,14306	-1648,6066	-29,016135	609,220983	-1613,5894	-41,356796	120,592692	-1483,4391	-289,44913	-549,15841	-370,21963	-33,870364	-55,869612
18,892193	-34,990649	66,672065	1786,5639	203,47528	235,02704	13595,221	72,214752	5,2535512	143,03084	98631,779	60,224845	-11,534882	12278,754	-747,15224	701,35398	682,34312	196,77706	122,55819	-5,6833424	716,38002	1643,414	453,32662	-31063,703	3823,2869	5,0546182	10818,3	54,767469	248,73523	809,1892	794,59963	-2,7857755	17,447542
-9,1428083	146,787412	-276,24338	-235,73278	-339,342	68339,2892	-54567,972	-162,67192	-20,759822	-144,7553	7691,56534	-347,60264	-56,934429	-6279,6553	-10659,517	-562,79933	-5149,9734	-398,28876	-652,05911	-3,9047075	-92,941521	-791,80672	-35,207637	-2851,1181	574,364638	-4,4963543	-1459,9267	-484,94268	-458,48013	324,662614	-427,54612	-30,474617	-15,42965
43,5593437	26,2745192	17,953858	1880,98135	3748,1041	5882,50351	5981,58157	1077,67922	15,8591407	165,551381	272,608924	46,0724573	12,2236896	16487,8786	2821,05121	147,634298	39,12858	258,097971	137,204561	39,5512299	32,2618164	9781,88937	133,837726	593,051027	537,526508	33,4737371	884,814882	96,8107424	232,534202	196,909979	271,445526	36,6939489	27,395623
0	0	22,3771	1760,191	556,7575	0	4428,029	204,8164	0	165,5514	0	39,99074	3,486436	2076,288	2252,228	147,6343	21,35878	93,67142	137,2046	2,440047	1772,15	298,9056	608,1562	224,0776	453,3635	33,47374	-626,334	34,56723	15,66678	57,6198	33,66439	0	27,39562
-121,782	3775,346	507,1369	-32267.9	6444.555	-61164.2	77339,12	1272,989	62,14024	-13627,3	90055,03	499,0933	-164.711	88946.72	12468.44	4721.89	6782,15	1184,815	31697.37	4.678247	3442,17	13736	616,8784	-28550.3			12365,23	2251,258	969,0424	258,9435	1803,87	12,933	38,326


4667 53	0	0	505,1676	5432,0103 505,1676	28,778279 622,1424289	1	1891,789	66 VOKS	66
-7548,33	0	0	315,2515	4102,6215 315,2515	5082,075683	1	1951,619	TPIA	65
577,6968	44,47375	87,1811 432,78393 44,	87,1811	343,73448	7237,0668 606,7209419	7237,0668	2092,591	1010	
-7089,34	0	0	1766,425	4483,8148	913,59543 835,6332011	913,59543	-3,46513	TIRA	ဌဌ

DATA ACCRUALS COMPONENTS 1998

RDTX SHDA SKLT TFCO TEJA AKPI ALKA	RDTX SHDA 4 SKLT -6 TFCO 1 TEJA -1	RDTX SHDA 4 SKLT -6 SKLT -6 TFCO 1	RDTX SHDA 4 SKLT -6 TFCO 1	RDTX SHDA 4	RDTX SHDA 4	ROTX		16 PSDN -2813 8545	15 MYTX -179,57763	14 MYRX -169,28012	13 MWON -210,23278	12 MLBI 64,815773	11 INDF 13,549218	10 HMSP 89,840291	9 HDTX -203,5878	8 GRIV -107,4193	7 FAST -147,48198	6 ERTX 621,45654	5 DAVO -96,168296	4 BATI 39,407414	3 ARGO -267,88288	2 AQUA 108,48419	1 ADES -2729,0086	No CODE EARN
 	622		491	1	636	135	┼	├	-	-			218)291	5878	-	3198	5654	3296	7414	3288	8419	-	
44,9830411		23,459971	178,57555	-23,212615	721,70334	452,15473	28,0124861	133,805311	22,3751921	210,567706	298,066019	38,3363282	-216,7929	-7,3242395	-29,914517	767,802379	-2,0672259	-716,60768	-40,107559	-2,2078857	-15,908971	-139,48927	38,1105556	A AR
-/0,014040	70 51 1016	-36,840641	113,79868	44,04485	12500,605	-14420,909	-16822,732	-25,95115	36,270918	80,605461	180,27587	-1,0034426	-39,803867	2,9701659	-273,81256	197,09571	-2,0672259	624,13831	-35,446743	29,007306	60,736655	-9,1649965	-47,458911	A AP
70,001004	53 661330A	-24,268626	-511,07542	-235,39698	-38626,225	-705,15068	-409,21591	-205,45176	-52,965247	19,6085008	-936,23343	-55,38053	-50,299375	-46,367323	-20,106296	-126,44381	-57,260049	-2071,5072	-58,996747	-105,00962	-31,256728	-3933,9622	-258,47598	A INV
	25.2296279	61,5862692	380,514382	1706,05508	739,91334	479,29489	763,183844	166,609339	21,6187834	_	410,072753			- 1	33,9015672	340,21613	39,8040132	1693,04216	62,9157242	15,3015647	13,3478965	110912,118	94,1601849	DEPRE
	8.972824	3,37228	622,8092	28,91598	1552,079	1422,132	-501,596	391,9787	1153,473	471,4453 43,92308	851,9116	-15,4633	2,535804	2,488698	9,676265	117,4567	88,77025		1909.386	1,526439	0	66,64561	2459.983	AMORT
	-1108.39	-151,693	1418,219	1989,451	50863.32	-10986.9	-17589	-2253.11	849,9982	43,92308	59,35976	-160.333	235.4707	32.69003	-35,3963	-291,299	-25.928	5491.426	1236.697	142.4384	-231.574	114034.5	-2943.58	OTHERS

-1493,95	540,1626	-136,3057 -107,71652 -240,10417 27,2092394 540,1626	-240,10417	-107,71652	1	438,22175	VOKS	8
-2306,27	0	241,240031	-188,47009 241,240031	139,91203	648,91014	-275,36469	TPIA	65
-1441,59	0	528,748959	365,81917 -277,04723 528,748959	365,81917	41,11323	-561,72495	1010	2
-897,299	0	16428,5838	2992,64751	-3784,8231 2992,64751	-7079,9192 3471,95806	-7079,9192	TIRA	63
82,33814	0	683,30873 103,400185		865,37383	192,938462	197,39449	TBMS	හු
-56,7528	0,048876	-65,355026 16,4686696 0,048876	-65,355026	1,00074	-3,4653206	-112,70274	SOBI	61
100,4737	1,850866	36,499587	-47,652929	11,144614	-13,341829	42,590284	60 SMGR	8
15,6015 10,74368	15,6015	-13,894312 25,9051681		-3,5357612	-22,951804 -3,5357612	-24,596782	SMCB	59
0 111860,8	0	-64440,523 33174,8605	1	18534,344	-326,95065	-2376,7683	58 SCPI	58

Coefficients

	U	Unstandardized Coefficients		dardi ed ficien s	
Model	B	Std.	Error Be	ta t	Sig.
1 (Cons		,168 5	2,439	5,953	
SALE	- 0,2.00	E-02	,018 1	,211 3,404	,001
COGS	1,283	Ξ-02	,023	,058 ,556	
OE	3,892	Ξ-02 │	,018	,625 2,209	,028
INT	4,279	E-02	,021	,254 2,084	
TAX	4,296	E-02	,019	,320 2,264	
OTHE	R 3,773	E-02	,018 1	,507 2,056	
AR	3,590	-02	,019	,980 1,935	
AP	-3,92	-02	,018 -1	,489 -2,144	1
INV	3,6988	-02	,018 1	671 2,012	,045
DEP	-3,38E	-02	,019 -	,557 -1,818	,070
AMOR	-5,48E	-02		255 -2,603	,010
OTHR	S 3,663E	-02		325 2,006	,046
DUMN	IY -198,	912 82	,080 -,	123 -2,423	,016

a. Dependent Variable: CFOTP1

