BAB V

HASIL PENELITIAN DAN PEMBAHASAN

5.1. Uji Kuat Tarik Baja dan Kuat Geser Baut

Pengujian kuat tarik baja dan kuat geser baut yang dilakukan di Laboratorium BKT Fakultas Teknik Sipil dan Perencanaan, Universitas Islam Indonesia dengan menggunakan alat *Universal Testing Material* (UTM). Pembebanan dilakukan secara bertahap dengan kenaikan sebesar 100 kg (1 KN), pada setiap tahap pembebanan dicatat sampai baja mengalami putus. Hasil pengujian kuat tarik baja dan kuat geser baut dicantumkan pada Tabel 5.1 dan Tabel 5.2.

Tabel 5.1. Hasil pengujian kuat tarik baja

Sampel	Kuat leleh (Fy)	Kuat tarik (Fu)	
Sampel I	321,4 Mpa	417,9 Mpa	
Sampel II	314,7 Mpa	410 Mpa	
Rata-rata	318,05 Mpa	413.95 Mpa	
	Sampel Sampel I Sampel II Rata-rata	SampelKuat leleh (Fy)Sampel I321,4 MpaSampel II314,7 MpaRata-rata318,05 Mpa	

Tabel 5.2. Hasil pengujian kuat geser baut

No	Sampel	Kuat geser $(\sigma_{_{grs}})$
1	Sampel I	300,8 Mpa
2	Sampel II	327,3 Mpa
	Rata-rata	314,05 Mpa

5.2. Uji Kuat Lentur Rangka Jembatan

Pengujian kuat lentur rangka jembatan dilakukan dengan menggunakan alat *Loading Frame* di Laboratorium Strutur, Fakultas Teknik Sipil dan Perencanaan, Universitas Islam Indonesia. Pembebanan diberikan pada batang atas dengan menggunakan Loading Frame kemudian ditransfer ke dua join pada tengah bentang dengan kenaikan sebesar 500 kg pada setiap tahap pembebanan, kemudian dicatat lendutan yang terjadi. Dari hasil pengujian ini akan didapat data beban dan lendutan, sehingga dapat dicari momen dan kelengkungan.

5.2.1. Hubungan Beban Lendutan Hasil Pengujian

Pada pengujian kuat lentur rangka jembatan , diperoleh data beban lendutan seperti pada Tabel 5.3 dan 5.4

a. Ramgka jembatan Single Warren

Tabel 5.3. Hubungan beban lendutan hasil pengujian rangka jembatan Single Warren.

Beban (kg)	Lendutan I Dial 1 (mm)	Lendutan II Dial 2 (mm)	Lendutan III Dial 3 (mm)
0	0	0	0
500	1,02	1,23	0,9
1000	1,69	2,09	1,48
1500	2,63	3,27	2,32
2000	3,39	4,24	2,95
2500	4,46	5,59	3,83
3000	5,1	6,44	4,4
3500	6,33	8,07	5,47
4000	7,08	9,08	6,22

Tabel 5.3.Lanjutan

Beban (kg)	Lendutan I Dial 1 (mm)	Lendutan II Dial 2 (mm)	Lendutan III Dial 3 (mm)
4500	8,35	10,92	7,52
5000	9,3	12,32	8,03
5500	10,05	13,59	8,75
6000	11,12	14,94	9,6
6500	12,25	16,96	10,71
7000	13,85	18,92	12,01

b. Rangka jembatan Callender Hamilton

Tabel 5.4 Hubungan beban lendutan hasil pengujian rangka jembatan Callender Hamilton.

Beban	Lendutan I Dial 1 (mm)	Lendutan II Dial 2 (mm)	Lendutan III Dial 3 (mm)
(Kg)		Dial 2 (min)	Diar 5 (mini)
0	0	0	0
500	0,82	0,96	0,68
1000	1,96	2,36	1,79
1500	3,03	3,7	2,9
2000	4,08	5,09	3,94
2500	4,66	5,8	4,54
3000	5,41	6,85	5,33
3500	6,4	8,13	6,42
4000	7,05	9,05	7,09
4500	7,82	10,1	7,84
5000	8,55	11,2	8,67
5500	9,27	12,2	9,36
6000	10,03	13,25	10,18
6500	10,1	14,3	10,92
7000	10,5	15,5	11,12
7500	11,1	17,23	12,13
8000	12,8	19,73	14,39

Dari data hubungan beban lendutan pada tabel 5.3 dan 5.4 disajikan dalam bentuk grafik hubungan beban dan lendutan seperti terlihat pada gambar 5.1, 5.2. dan 5.3.

Gambar 5.2. Grafik hubungan beban dan lendutan hasil pengujian rangka jembatan Callender Hamilton

Gambar 5.3. Grafik hubungan beban lendutan hasil pengujian rangka jembatan Single Warren dan Callender Hamilton

5.2.2. Hubungan Momen Kelengkungan Hasil Pengujian

Dari data hubungan beban (P) dan lendutan (Δ) dapat dicari momen (M) dan kelengkungan (ϕ), seperti contoh perhitungan berikut ini : data yang digunakan adalah pembebanan 500 kg (5 KN) pada bentang 5,6 m

1. Rangka Single Warren

dengan sambungan baut

lendutan yang terjadi pada dial 1 = 0,00102 m, lendutan pada dial 2 = 0,00123 m, lendutan pada dial 3 = 0,0009 m, dengan jarak antar dial 1,4 m, maka dengan menggunakan persamaan 3.55. nilai kelengkungan dapat dihitung :

$$\Phi = \frac{y_{i+1} - 2y_i + y_{i-1}}{(\Delta x)^2}$$

$$\Phi = \frac{0,00102 - (2x0,00123) + 0,0009}{1,4^2} = 0,000276 \frac{1}{m}$$

momen dapat dicari dengan menggunakan persamaan :

$$M = \frac{7}{16} P.L$$

M = 7/16 .($\frac{1}{2} \ge 500$) 5,6 = 612,5 kg m.

2. Rangka Callender Hamilton

lendutan yang terjadi pada dial 1 = 0,00082 m, lendutan pada dial 2 = 0,00096 m, lendutan pada dial 3 = 0,00068 m, dengan jarak antar dial 1,4 m, maka dengan menggunakan persamaan 3.26. nilai kelengkungan dapat dihitung :

$$\Phi = \frac{y_{i+1} - 2y_i + y_{i-1}}{(\Delta x)^2}$$
$$\Phi = \frac{0,00082 - (2x0,00096) + 0,00068}{1,4^2} = 0,000214 \text{ }\frac{1}{m}$$

momen dapat dicari dengan menggunakan persamaan :

$$M = \frac{3}{8}P.L$$

M = 3/8 .($\frac{1}{2} \ge 500$) 5,6 = 525 kg m.

Dari contoh perhitungan diatas dapat diperlihatkan hubungan momen dan

kelengkungan seperti tampak pada tabel 5.5 dan 5.6.

a. Rangka jembatan Single Warren

Tabel 5.5. Hubun	an momen	dan ke	lengkungan
------------------	----------	--------	------------

Beban	Lendutan I	Lendutan II	Lendutan III	Momen	Kelengkungan
(kg)	Dial 1 (mm)	Dial 2 (mm)	Dial 3 (mm)	(kg.m)	(1/m)
0	0	0	0	0	0
500	1,02	1,23	0,9	612,5	0,00027551
1000	1,69	2,09	1,48	1225	0,000515306
1500	2,63	3,27	2,32	1837,5	0,000811224
2000	3,39	4,24	2,95	2450	0,001091837
2500	4,46	5,59	3,83	3062,5	0,00147449
3000	5,1	6,44	4,4	3675	0,00172449
3500	6,33	8,07	5,47	4287,5	0,002214286
4000	7,08	9,08	6,22	4900	0,002479592
4500	8,35	10,92	7,52	5512,5	0,003045918
5000	9,3	12,32	8,03	6125	0,003729592
5500	10,05	13,59	8,75	6737,5	0,00427551
6000	11,12	14,94	9,6	7350	0,004673469
6500	12,25	16,96	10,71	7962,5	0,005591837
7000	13,85	18,92	12,01	8575	0,006112245

b. Rangka jembatan Callender Hamilton

Ī

Tabel 5.6. Hubungan momen dan kelengkungan

Beban	Lendutan I	Lendutan II	Lendutan III	Momen	Kelengkungan
(kg)	Dial 1 (mm)	Dial 2 (mm)	Dial 3 (mm)	(kg.m)	(1/m)
0	0	0	0	0	0
500	0,82	0,96	0,68	525	0,000214286
1000	1,96	2,36	1,79	1050	0,000494898
1500	3,03	3,7	2,9	1575	0,00075
2000	4,08	5,09	3,94	2100	0,001102041
2500	4,66	5,8	4,54	2625	0,00122449
3000	5,41	6,85	5,33	3150	0,001510204
3500	6,4	8,13	6,42	3675	0,001755102
4000	7,05	9,05	7,09	4200	0,002020408
4500	7,82	10,1	7,84	4725	0,002316327

Tabel 5.6. Lanjutan

Beban (kg)	Lendutan I Dial 1 (mm)	Lendutan II Dial 2 (mm)	Lendutan III Dial 3 (mm)	Momen (kg.m)	Kelengkungan (1/m)
5000	8,55	11,2	8,67	5250	0,002642857
5500	9,27	12,2	9,36	5775	0,002943878
6000	10,03	13,25	10,18	6300	0,003209184
6500	10,1	14,3	10,92	6825	0,003867347
7000	10,5	15,5	11,12	7350	0,004785714
7500	11,1	17,23	12,13	7875	0,005729592
8000	12,8	19,73	14,39	8400	0,006260204
8000	12,8	19,73	14,39	8400	0,00626020

Dari data hubungan momen dan kelengkungan pada tabel 5.5 dan 5.6 disajikan dalam bentuk grafik hubungan momen kelengkungan seperti terlihat pada gambar 5.4, 5.5 dan 5.6.

100

Gambar 5.4. Grafik hubungan momen dan kelengkungan hasil pengujian rangka jembatan Single Warren

Gambar 5.6. Grafik hubungan momen - kelengkungan hasil pengujian rangka Single Warren dan Callender Hamilton

5.3. Grafik Hubungan Beban dan Lendutan Hasil Analisa Komputer

Dari analisa komputer yaitu pembebanan pada rangka Single Warren dan rangka Callender Hamilton didapatkan data lendutan, yang kemudian ditampilkan dalam bentuk grafik beban dan lendutan, seperti ditunjukkan pada Gambar 5.7.

Beban diambil 7 ton untuk rangka Single Warren dan 8 ton untuk rangka Callender Hamilton, yaitu beban maksimum dari pengujian. Dari analisa komputer didapatkan defleksi sebesar 14,92 mm untuk rangka Single Warren dan 9,79 mm untuk rangka Callender Hamilton.

Gambar 5.7. Grafik hubungan beban-lendutan hasil analisis SAP90 rangka Single Warren dan Callender Hamilton

5.4. Grafik Hubungan Beban - Lendutan Hasil Pengujian dan Hasil Analisa

Komputer

Dari grafik gabungan hasil pengujian dan analisa komputer didapat hasil seperti pada Gambar 5.8 dan 5.9.

Gambar 5.9. Grafik hubungan beban- lendutan hasil pengujian dan hasil SAP 90 rangka jembatan Callender Hamilton

5.5. Grafik Hubungan Momen dan Kelengkungan Hasil Analisa Komputer

Dari analisa komputer yaitu pembebanan pada rangka Single Warren dan rangka Callender Hamilton didapatkan data lendutan. Dari data hubungan beban dan lendutan dapat dicari momen dan kelengkungan, yang kemudian ditampilkan dalam bentuk grafik momen dan kelengkungan, seperti ditunjukkan pada Gambar

Gambar 5.10. Grafik hubungan momen-kelengkungan hasil analisis SAP90 rangka Single Warren dan Callender Hamilton

5.6.Grafik Hubungan Momen dan Kelengkungan Hasil Pengujian dan Analisa Komputer

Dari grafik gabungan hasil pengujian dan analisa komputer didapat hasil seperti pada Gambar 5.11 dan 5.12.

5000

Gambar 5.12. Grafik hubungan momen – kelengkungan hasil pengujian dan hasil SAP 90 rangka jembatan Callender Hamilton

5.7. Tinjauan Analitis

Dari hasil pengujian pembebanan di laboratorium, beban maksimum yang didapat kemudian dimasukkan kedalam SAP 90, sehingga didapat gaya batang dari beban maksimum hasil pengujian laboratorium (P_{eks}) dibandingkan dengan P_{er} hasil analitis.

Tegangan tekuk pelat :

$$F_{cr} = k \cdot \frac{\pi^2 \cdot E}{12 \cdot (1 - \mu^2)(b/t)^2} = 1,277 \cdot \frac{\pi^2 \cdot 2 \cdot 10^6}{12 \cdot (1 - 0,3^2)(3,68/t-0,26)^2} = 11510,84 \, Kg/t \, cm^2$$

Beban kritis

 $P_{cr} = F_{cr}.A = 11510,84.1,846 = 21249,01Kg$

Gambar 5.14 Elemen-elemen rangka batang Callender Hamilton

Perhitungan beban kritis

* Analisis terhadap tekuk lokal

Batang tekan (A3-A4):

Profil 2L 50x50x5

 $A = 3,473 \text{ cm}^2$

b = 4,76 cm

t = 0,38 cm

 $E = 2.10^{6} \text{ Kg/cm}^{2}$

 $Fy = 3180,05 \text{ Kg/cm}^2$

Tegangan tekuk pelat :

$$F_{cr} = k \cdot \frac{\pi^2 \cdot E}{12 \cdot (1 - \mu^2)(b - t)^2} = 1,277 \cdot \frac{\pi^2 \cdot 2 \cdot 10^6}{12 \cdot (1 - 0,3^2)(4,76/0,38)^2} = 14696,25 \, Kg/ \ cm^2$$

Beban kritis

$$P_{cr} = F_{cr}.A = 14696,25.3,473 = 51157,63Kg$$

1.00.0

 $P_{eks} = 11172,319 \text{ Kg} < P_{er}$ tidak terjadi tekuk lokal

Untuk selanjutnya perhitungan benda uji rangka Single Warren dan Callender Hamilton ditabelkan dalam tabel 5.6 dan 5.7.

Elemen	Profil	Fcr (kg/cm2)	Pcr (kg)	P eks (Kg)	Keterangan
A1=A7	2L 40x40x4	11510,847	21249,01	3.263.630	P eks < Pcr
A2=A6	2L 40x40x4	11510,847	21249,01	6.527.113	P eks < Pcr
A3=A5	2L 40x40x4	11510,847	21249,01	9.788.152	P eks < Pcr
A4	2L 40x40x4	11510,847	21249,01	11.417.254	P eks < Pcr
D1=D16	2L 40x40x4	11510,847	21249,01	3.853.351	P eks < Pcr
D3=D14	2L 40x40x4	11510,847	21249,01	3.837.098	Peks < Pcr
D5=D12	2L 40x40x4	11510,847	21249,01	3.839.812	P eks < Pcr
D7=D10	2L 40x40x4	11510,847	21249,01	3.839.944	P eks < Pcr
D8=D9	2L 40x40x4	11510,847	21249,01	6.337	P eks < Pcr
	13			612-66	0

Tabel 5.6. Kekuatan batang tekan rangka Single Warren akibat tekuk lokal

Tabel 5.7.Kekuatan batang tekan rangka Callender Hamilton akibat tekuk Lokal

Elemen	Profil	Fcr (kg/cm2)	Pcr (kg)	P eks (Kg)	Keterangan
D1=D2	2L 40x40x4	14696,25	51157,63	5.462.133	P eks < Pcr
d3=d4	2L 40x40x4	14696,25	51157,63	5.411.408	P eks < Pcr
d2=d5	2L 40x40x4	14696,25	51157,63	8.255	P eks < Pcr
d9=d10	2L 40x40x4	14696,25	51157,63	5.398.803	P eks < Pcr
S4=S9	2L 30x30x3	14696,25	51157,63	68.705	P eks < Pcr
S5=S8	2L 30x30x3	14696,25	51157,63	49.830	P eks < Pcr
A1=A6	2L 50x50x5	14696,25	51157,63	7.406.788	P eks < Pcr
A2=A5	2L 50x50x5	14696,25	51157,63	7.486.697	P eks < Pcr
A3=A4	2L 50x50x5	14696,25	51157,63	11.172.319	P eks < Pcr

Berdasarkan perbandingan gaya batang hasil analisa menggunakan SAP" 90 (P_{eks}) dengan beban kritis dari batang (P_{er}) hasil analisis terhadap tekuk lokal dan tekuk puntir, elemen struktur rangka aman terhadap tekuk lokal ($P_{eks} < P_{er}$). 2. Analisis tekuk puntir rangka

a. Rangka Single Warren

Gambar 5.15. Potongan tampang melintang rangka Single Warren

* Menghitung inertia terhadap sumbu y (ly)

inertia untuk tampang segi empat = $l = \frac{1}{12}.b.h^3 + b.h.s^2$

Dengan b = lebar tampang; h = tinggi tampang; s = jarak antara titik berat tampang terhadap garis netral profil. Karena garis netral terhadap sumbu-y ditengah profil, maka s = 0.

$$I_{I} = \frac{1}{12} \cdot 2,6.78,6^{3} = 105210mm^{4}$$
$$I_{II} = \frac{1}{12} \cdot 34,2.10,2^{3} = 0,3020mm^{4}$$

$$I_{total} = 2.I_1 + 2.I_2 = 210470 mm^4$$

Momen kritis rangka dihitung dengan rumus : $M_{cr} = \frac{\pi^2 E}{L^2} \sqrt{C_w I_y}$

$$C_w = \frac{H^2 I_v}{4} = \frac{(75 - 0.26)^2 \cdot 21.047}{4} = 29392.49 cm^3$$

$$M_{cr} = \frac{\pi^2 2.10^6}{140^2} \sqrt{29392,49.21,047} = 792112,686 Kg.cm$$

Momen akibat beban pengujian (M_{eks}) = $\frac{7}{16}P.L = \frac{7}{16}.3500.560 = 857500Kg.cm$

Dari analisis terhadap tekuk puntir maka rangka Single Warren terjadi tekuk puntir akibat beban sebesar 7000 Kg, karena momen hasil pengujian lebih besar dari momen kritis rangka ($M_{eks} > M_{er}$).

• Cek panjang tak berpenopang (L_p) $L_p = \frac{300}{\sqrt{F_y}} r_y$ $r_y = \sqrt{\frac{I_y}{A}} = \sqrt{\frac{210470}{737,2}} = 16,90mm$ $L_p = \frac{300}{\sqrt{46}} .0,665 = 747mm < Lb = 1400 mm$

panjang tak berpenopang $L_{\rm p}$ tidak memenuhi persyaratan seperti yang ditetapkan ($L_{\rm b} < L_{\rm p}).$

b. Rangka Callender Hamilton

Gambar 5.16. Potongan tampang melintang rangka Callender Hamilton

* Menghitung inertia terhadap sumbu y (ly)

$$I_{I} = \frac{1}{12} \cdot 3,8 \cdot 100,2^{3} = 318570 mm^{4}$$

$$I_{II} = \frac{1}{12} \cdot 43,8 \cdot 12,6^{3} = 7300 mm^{4}$$

$$I_{III} = \frac{1}{12} \cdot 34,2 \cdot 10,2^{3} = 3020 mm^{4}$$

$$I_{IV} = \frac{1}{12} \cdot 2,6 \cdot 78,6^{3} = 105210 mm^{4}$$

$$I_{Iotal} = \cdot I_{I} + \cdot I_{2} + I_{3} + I_{4} = 434110 mm^{4}$$

Momen kritis rangka dihitung dengan rumus : $M_{cr} = \frac{\pi^2 E}{L^2} \sqrt{C_w I_y}$

$$C_{w} = \frac{H^2 I_{y}}{4} = \frac{(74,680)^2 .43,411}{4} = 60526,898 cm^6$$

$$M_{cr} = \frac{\pi^2 2.10^6}{140^2} \sqrt{60526,989.43,411} = 1630826,089 Kg.cm$$

Momen akibat beban pengujian (M_{eks}) = $\frac{7}{8}P.L = \frac{7}{8}.4000.560 = 840000 Kg.cm$

Dari analisis terhadap tekuk puntir maka rangka Callender Hamilton tidak terjadi tekuk puntir, karena momen hasil pengujian lebih kecil dari momen kritis rangka (M_{eks} < M_{er}).

• Cek panjang tak berpenopang (L_p)

$$L_p = \frac{300}{\sqrt{F_y}} r_y$$

$$r_y = \sqrt{\frac{I_y}{A}} = \sqrt{\frac{434110}{954,6}} = 21,27mm$$

$$L_p = \frac{300}{\sqrt{46}} .0,837 = 1062,99mm < Lb = 1400 mm$$
panjang tak berpenopang L_p tidak memenuhi persyarata

panjang tak berpenopang L_p tidak memenuhi persyaratan seperti yang ditetapkan ($L_b \le L_p$).

5.8. Pembahasar

Berdasarkan hasil pengujian rangka jembatan Single Warren dan Callender Hamilton di laboratorium beban maksimum yang dapat didukung sebesar 7000 kg untuk rangka jembatan Single Warren dan 8000 kg untuk rangka jembatan Callender Hamilton. Kerusakan terjadi pada batang tekan untuk rangka Single Warren dan rangka Callender Hamilton karena mengalami tekuk puntir lateral. Kegagalan tekuk puntir lateral tersebut antara lain disebabkan oleh :

- 1. Beban pengujian tidak sentris.
- 2. Pengaku lataral kurang baik.

laboratorium.

3. Bentang terlalu panjang, sehingga terjadi pelengkungan awal pada saat pembuatan maupun pengangkutan sampel dari tempat pembuatan ke

ISLAM

5.8.1. Kekakuan rangka jembatan ditinjau dari hubungan beban-lendutan

Dari grafik hubungan beban lendutan hasil pengujian kuat lentur rangka jembatan dapat dilihat bahwa kuat lentur rangka jembatan Callender Hamilton dan Single Warren mempunyai perilaku yang hampir sama. Hal ini dapat dilihat pola grafik beban lendutan yang diperoleh dari data hasil pengujian.

Dengan menggunakan persamaan (3.45), dimana kekakuan (k) = P/Δ akan diketahui nilai kekakuan masing benda uji. Hasil perhitungan kekakuan dapat dilihat pada tabel 5.8.

Benda Uji	Beban (P) Kg	Δ mm	Kekakuan (P/∆) Kg/mm
Single Warren	7000	18,97	369,004
Callender Hamilton	8000	19,73	404,474

Tabel 5.8. nilai k	kakuan benda uji 🥒 🔤 👘
--------------------	------------------------

Dari data beban lendutan akan diketahui bahwa pada rangka Callender Hamilton mempunyai nilai kekakuan (P/Δ) yang lebih tinggi dari rangka Single Warren. Kerusakan terjadi pada elemen rangka, karena elemen rangka tersebut mengalami tekuk puntir.

5.8.2. Kekakuan rangka jembatan ditinjau dari hubungan momen dan kelengkungan

Dengan mrnggunakan persamaan (3.56), dimana kekakuan (k) = M/Φ akan diketahui nilai kekakuan masing-masing benda uji. Hasil perhitungan kekauan dapat dilihat pada table 5.9.

Benda Uji	Momen Kg.m	Ф 1/m	Kekakuan (Μ/Φ) Kg/mm
Single Warren	8575	0,006112245	1402921,512
Callender Hamilton	7350	0,004785714	1535820,987

Tabel 5.9. ni	lai kekakuan benda	uji
---------------	--------------------	-----

Dari data momen kelengkunagan akan diketahui bahwa pada rangka Callender Hamilton mempunyai nilai kekakuan (P/Δ) yang lebih tinggi dari rangka Single Warren.

