THE IMPACT OF FIRM'S SPECIFIC ATTRIBUTE TO THE RELEVANCE OF

 EARNINGS AND CASH FLOWS IN EXPLAINING STOCK RETURN (STUDY IN FOOD AND BEVERAGE INDUSTRIES YEAR 1998-2004)
A THESIS

Presented as Partial Fulfillment of the Requirements To Obtain the Bachelor Degree in Accounting Department

By

ARLIN PRAMAYUNINGTYAS
Student number: 02312275

DEPARTMENT OF ACCOUNTING INTERNATIONAL PROGRAM FACULTY OF ECONOMICS UNIVERSITAS ISLAM INDONESIA YOGYAKARTA 2006

By
 ARLIN PRAMAYUNINGTYAS

Student Number: 02312275

July, 2006

Language Advisor

Kusworo, S.Pd.
July, 2006

THE IMPACT OF FIRM'S SPECIFIC ATTRIBUTE TO THE RELEVANCE OF EARNINGS AND CASH FLOWS IN EXPLAINING STOCK RETURN (STUDY IN FOOD AND BEVERAGE INDUSTRIES YEAR 1998-2004)

A BACHELOR DEGREE THESIS

	By
	: ARLIN PRAMAYUNINGTYAS
Name	: 02312275

Defended before the Board of Examiners
On
July, 252006

Examiner 2

Primanita Setyono Dra., MBA, Ak

Yogyakarta, July 25, 2006
International Program

STATEMENT OF FREE PLAGIARISM

Herein I declare the originality of this thesis; there is no other work which has ever presented to obtain any university degree, and in my concern there is neither one else's opinion nor published written work, except acknowledged quotation relevant to the topic of this thesis which have been stated or listed on the thesis bibliography.

If in the future this statement is not proven as it supposed to be, I am willing to accept any sanction complying with the determinated regulation for its consequence.

Yogyakarta,

Arlin Pramayuningtyas

ACKNOWLEDGEMENTS

Alhamdulillahirabbil'alamin is obviously the best word to express my deepest gratitude to Allah SWT, the Cherishes and Sustainer of the world, the creator and the owner of everything. Because it is only by His blessing and permission so that finally I can complete my long and difficult journey finishing this thesis and obtain the Bachelor degree in Accounting Department. I would like to use this opportunity to express my appreciation to those who gave contribution to the completion of this thesis writing and my study.

First of all, I would like to thank to Allah SWT for the opportunity given to me to live in this world Only by His blessing and compassion, I could live my life as the way I am. And atso because of His ridho and permission, I can perform this thesis although not asperfectly as I wish. My next appreciation goes to Mr. Arief Bachtiar, Drs., MSAI, Akt., my content ādvisor for his helpful, comments and advice during my thesis writing. Thanks for your nice smile at the time I had consultation and thanks for your clear explanation when I had problems during writing my thesis so it was easy to understand. T would like also to say thank you to my language advisor, Mr. Kusworo, S.Pd for correcting my grammar. Beside that, I would like to extend my gratitude to all lectures in Economic Faculty Universitas Islam Indonesia for the knowledge, motivation and experience they give to me during my study in this faculty. Great thankful also goes to International Program staffs, Mas Irwan, Pak Win, Mbak Ilham, Mbak Alfi, and Mbak Fani for helping me in doing the administration matters.

In this opportunity, I would like also to convey my heartfelt gratitude to all people around me that always give me inspiration, spirits, prayer, and motivation, share time and experience together:

1. To my beloved parents, my dad, Drs. Supriyadi, MM and my mom, Maryati, thank you for your support either in spiritual support or financial support. I'm so sorry for late to have graduation. I know both of you never stop praying for
me although I always make you sad and disappointed. I know exactly that you always love me ever and after although I always make you angry with all my stubbornness and my idealism. And once more great honor for you, for your sacrifices for taking care of me, fulfill all my needs, and your effort to give me happiness during my life in this world.
2. To my lovely brothers, Adhit and De' Dian, your existence in my life make my world become more colorful and more excited. Because of you too, I always do the best in everything I done because I want to show you the good things that should be done in this world. I believe you all can be better than
3. To my family in Solo, Mbah Sudiyono, Bik Min, Bude Ning, Pak Yanto and others, thank you very much for your attention and kindness during finishing my thesis. You have become my second family when I miss my parents.
4. To my family in Muntilān,(Mbah Kakung, Mbah Putri, and Om Wawan, thanks for your support especially financial and logistic support. It is very helpful.
5. To my best friends in accounting IP 2002 for our lovely time during study in our "nyebahi" campus. For Ula, thanks for the time we spent together, especially when we have exam (you are the best cheater!). Great greetings for your family, for their pray for me (I think we were really born to be "sarimbit"). I believe you can also accomplish our mission in UII immediately.

Ella, thank for your room and your kindness to teach me the awful accounting subject that I always hate (you are really akuntania!).

My ex-housemate, Elin cuby, thanks for your help since we had ospek until I have graduation.

My fight partner in doing thesis, Nenek Titin, Mamah Heldy, and Kiki (fiuh) finally we made it!!

Kakek Adit thanks for your family kindness. I never forget your mom's tempe and paprika juice (yaks, I never want to drink that anymore).

Anom, thanks for the "beautifil"" day that we have spent together. I'll always remember about our 1% moment.
Aldi item (come on, don't be panic!!) Mita, Nina, Ayis, Eka, Reta, Ilsa, Nurul, mpok arie, Dini Syalata, Dinot, mbak Rika, madam Intan, Dwi, mbak Sita, Johan, Fiki and Ujo (although both of you so far from here), Anung (although we only meet one year) thanks for giving me love and beautiful friendship during my study in UII.
6. All my friends in Management and Economic 2002.
7. All IP students year 1998, 1999, 2000, 2001, 2003, 2004, and finally 2005. We are not just friend, but also a big family.
8. All my friends in regular class, KSPM family, fieldwork family, Gepenk's boarding house (Embah, Eka, Caca, Arda, Vita, etc) and all friends in Jogja that I can not mention one by one.
9. My ex- high school friends, Nanda (thanks to teach me SPSS, lieur yak?), Wahjoe, Wini, Umi, especially Novi for your support during writing this
thesis, I know you still fight to be a good doctor. Good luck for your long study.
10. My friends and "families" in Bogor (Nenek, Om and Tante Dahrizal), thanks for the pray and the support during my study.
11. My beautiful moment in my past. I will never forget your advice and lesson about love and life. It really means to me. Hope, we get our own happiness in our own place. I wish we can meet in the future.
12. Prameks drivers and parking land guide in Lempuyangan (thanks to keep my motorcycle safely.
13. My lovely PC, thank you for hearing my grumble at the time I got stress of all things happens in me. You're really nice retease of my frustration. (Luv u my winamp).

The last, I would like to say thank you to all parties from my past and my present time that I can not mention butalyays'be crafted in my heart, thanks for all love, help, support, attention, and time that we spent together. Wish me luck for my next steps and God bless you all.
PAGE OF TITLE
APPROVAL PAGE ii
LEGALIZATION PAGE iii
STATEMENT OF FREE PLAGIARISM iv
ACKNOWLEDGEMENT v
TABLE OF CONTENTS ix

LIST OF FIGURE
ABSTRACT

\qquad ח................................. xiv
ABSTRAKZxv
CHAPTER I: INTRODUCTION
1.1 Background of the Study1
1.2 Problem Identification 5
1.3 Problem Formulation5
1.4 Research Objective 6
1.5 Research Scope 6
1.6 Research Purposes7
1.7 Research Contribution
1.8 Definition of Terms 8
CHAPTER II: REVIEW OF RELATED LITERATURE
2.1 Literature review and Fundamental Theory 11
2.1.1 Information of Earnings and Cash Flows 11
2.1.2 The Impact of Firm Specific Attribute to Earnings and Cash Flows 14
2.1.3 Non - Linier Relationship between Stock Return and Accounting
18
Variables
20
2.2 Theoretical Framework and Previous researches
24
24
2.3 Hypothesis Formulation, 24
2.3.1 Non Linier Hypothesis
25
25
2.3.2 Size Hypothesis.
2.3.2 Size Hypothesis.
26
26
2.3.3 Debt Hypothesis.................................
2.3.3 Debt Hypothesis................................. 27
2.3.4 Life Cycle Hypothesis........................
Siduteint
CHAPTER III: RESEARCH METHOD
3.1 Research Method 29
3.2 Research Subject (Population and Sample) 29
32
3.3 Research Variable
. 34
3.4 Research Procedure 35
3.5 Technique of Data Analysis
3.5.1 Firms' Specific Attribute Measurement 35
3.5.2 Hypothesis Testing 37
CHAPTER IV: RESEARCH FINDINGS, DISCUSSIONS ANDIMPLICATIONS
4.1 Research Preparation 40
4.1.1 Data Identification and Variable Measurement 40
4.1.2 Firm Specific Attribute Measurement 41
4.2 Research Findings and Discussions 46
4.2.1 Non Linearity Testing 46
4.2.2 Size Hypothesis Testing.
4.2.2 Size Hypothesis Testing. 48 48
53
53
4.2.3 Debt Hypothesis Testing
59
59
4.2.4 Life Cycle Hypothesis Testing.
4.2.4 Life Cycle Hypothesis Testing.
69
69
4.3 Comparison to Previous.Research
 72
CHAPTER V: CONCLUSSLONS AND RECQMMENDATIONS
20) 75
5.1 Research Conclusions
77
77
5.2 Research limitations 77
5.3 Research Recommendations

5.3 Resarch Recommand
BIBLIOGRAPHY
APPENDICES

LIST OF TABLES

Table 3.1 Samples Procedure 31
Table 4.1 Median of Asset Logarithm 43
Table 4.2 Median of Total Liabilities Ratio 44
Table 4.3 Median for book to market ratio 45
Table 4.4 Clustering Sample Data 45
Table 4.5 Linier Regression and Non Linier Test 47
Table 4.6 Linier Regression Analysis for Small Firms. 51
Table 4.7 Non Linier Regression Analysis for Small Firms 52
Table 4.8 Linier RegressionAnalysis for Large Firms. 52
Table 4.9 Non Linier Regression Analysis for Large Firms 53
Table 4.10 Linier Regression Analysis for Firmswith High Debt Level 57
Table 4.11 Non Linier Regression Analysis for firms with High Debt Level 58
Table 4.12 Linier Regression Analysis for Firms)with Low Debt Level 58
Table 4.13 Non Linier Regression Analysis for Firms with Low Debt Level 59
Table 4.14 Linier Regression Analysis for Growth Firms 63
Table 4.15 Non Linier Regression Analysis fof Growth Firms 63
Table 4.16 Linier Regression Analysis for Mature Firms 64
Table 4.17 Non Linier Regression Analysis for Mature Firms 64
Table 4.18 Hypothesis Table 65
Table 4.19 Hypothesis Testing Result 66
Table 4.20 Variable Result. 67

LIST OF FIGURES

Figure $1 \quad F$ test model for all firms 46
Figure 2 F test model 1 for small firms 48
Figure 3 F test model 1' for small firms 48
Figure $4 \quad \mathrm{~F}$ test model 1 for large firms 49
Figure $5 \quad \mathrm{~F}$ test model 1' for large firms 49
Figure $6 \quad F$ test model 2 for small firms 50
Figure 7 F test model 1 for small firms 50
Figure $8 \quad \mathrm{~F}$ test model 2 for large firms 51
Figure 9 F test model 3 for large firms.... 51
Figure 10 F test model 1 for high debt firms... Z 53
Figure 11 F test model 1 'for high debt firms 54
Figure 12 F test model 1 for low debt firms........ 55
Figure 13 F test model 1 'for low debt firms...! 55
Figure 14 F test model 2 for high debt firms 56
Figure 15 F test model 3 for high debt firms 56
Figure 16 F test model 2 for low debt firms 56
Figure 17 F test model 3 for low debt firms 57
Figure 18 F test for model 1 growth firms 60
Figure 19 F test for model l' growth firms 60
Figure 20 F test for model 1 mature firms 61
Figure 21 F test for model 1' mature firms 61
Figure 22 F test for model 2 growth firms 62
Figure 23 F test for model 3 growth firms 62
Figure 24 F test for model 2 mature firms 62
Figure 25 F test for model 3 mature firms 62

Abstract

Pramayuningtyas, Arlin (2006). The Impact of Firms' Specific Attribute to Relevance of Earnings and Cash Flows in Explaining Stock Return Case Study of Food and Beverage Industry in Indonesia 1998-2004. Yogyakarta. Faculty of Economic. Universitas Islam Indonesia.

The purpose of this study is to test whether there are linier or non linier relationship between stock returns and accounting variables (earnings and cash flows) in Indonesia and how firm - specific attributes such as size firms, debt level, and firm life cycle influence the relative relevance of earnings and cash flows in explaining stock returns.

The study uses linier and non linier model to describe the best relationship between dependent variable and independent variables. The regression result supports a linear relationship between/stock returns and accounting variables. The non linier relationship model can not increase explanatory power of earnings and cash flows to stock return compare with linier retationship model.

The regression result indicates earnings are more relevance for small and large firms than earning changing. While cash flows only give more additional information in large firms but it is not happened in small firms. The result based on debt level indicate that for firms with high debt level and low debt level, earnings are the most relevant accounting variable in explaining stock return, while the cash flows reveal a greater incremental information beyond that contain in earnings for firms with low debt level than high debt level. The regression result based on firm life cycle indicates that the most relevant accounting variable in explaining stock returry is earnings. In addition, cash flows reveal greater incremental information beyond that contained in earnings for growth firms than for mature firms.

Key Words : Non Linier, Earnings, Earning changing, Cash Flows, Cash Flows changing, Stock Return, Firm - Specific Attribute

CHAPTER 1

INTRODUCTION

1.1. Background of the Study

The major source of information used by investors in judging value of a company is the financial statement. The financial statement gives accounting information describing company's asset income earned by company and economic transactions done by the company. Balance sheet, income statement, and cash flow statement, the statement of owners or stockholders' equity and in addition note disclosures are an integral part of each financial statement. Financial statement provides information that is useful to present potential investors and creditors and other users in making rational investment, credit, and similar decisions. Users can assess the amounts, timing, and uncertainty of prospective cash flows from dividends or interest and from the sale, redemption, or maturity of securities or loans that they will receive. To make that decision users need such information to know the solvability and the profitability of the company.

Financial statement informs both a firm's position at a point in time described in the balance sheet and its operations over some past period described in the income statement and statement of cash flows. The real value of income statement lies in the fact that they can be used to help predict future earnings and dividends. All of those
are required to measure how the company's management performs their work. The success of company's performance is often measured by earnings and cash flows. Earnings show how much money that can be obtained by company. If a company has more earnings than other company, the performance of company might be better than the other. While cash flows show how the company manages its cash, how the company makes the cash out from company less than the cash which come to the company or at least there is a balance between cash out and cash in.

Investor and creditor as fund supplies for a company need some information that can help them as a consideration to make decision for spending their money. Investor and creditor must think several times to invest their money in the right place in order to gain more profit for themselves. The company which has good performance will become their target to do the investment. Beside that, the investor and creditor need to consider about the characteristics of each company financial well in order to get best description of the firm economic condition and the future prospect of company development. Every company has different financial characteristics from the other. That difference will make the relevance of the accounting number also different from the other. The size of firm, debt level, and life cycle of the firm can be used to represent the financial characteristic of the company.

Many studies have examined the relevance between earnings and cash flows as the parameter of company successful management. FASB Statement of Accounting Concept No. 1 stated that earnings could be regarded as a measurement of
management performance, estimating the future cash flows, and predicting the risk of investing. To test that statement, Anggono and Baridwan (2003) expressed the firm value as earnings and book value. According to U.S financial accounting standards and prior research, accrual-based earnings provide a better measure of firm performance than cash flow information. FASB statement of Concept No. 1, paragraph 44 states: "information about enterprise earnings and its components measured by accrual accounting generally provides a better indication of enterprise performance than information about current cash receipt and payments does." Result from prior capital market research implies that earnings are more value relevant than operating cash flows. This statement was quoted by Black in his research (1998) from Dechow (1994), Biddle, Seow, and Siegel (1995), Rayburn (1986), and Sloan (1996).

In Indonesia, Indriyana and Hartono (2005) quoted the result of Hodgson and Stevenson - Clarke (2000a) research that tested the value relevance of earnings and cash flows information by considering the size of company. Their results showed the cash flows have relative relevance only for the big size of company. Gul et al. (2000) which is mentioned in Indriyana and Hartono research, observed the impact of debt level to the relation between earnings and stock returns. His result mentioned that debt level gives negative impact to earnings and stock return relationship after controlling confounding variables such as size of firm, beta, earnings persistence, and government environment. Black (1998) investigated the value relevance of earnings and cash flows in firm by considering firms life - cycle stages. The result showed that
earnings was more relevance than cash flows for firm which is included in the category of mature stage and cash flows was more relevance for starting up company.

Atmini (2002) tested the association between firm life cycle and the Incremental value-relevance of earnings and cash flows by taken the data from the Jakarta Stock Exchange (JSX). The result of her research showed that earnings and cash flows from funding activity have value-relevance in growth stage while cash flows from investment have yalue relevance in the mature stage.

Later, the relevance of earning and cash flows were tested again to see whether they have relationship with the stock return. Stock return can be used as tool to measure the increase or deerease of company/stock price. Taryono and Jogiyanto in his previous research (2003) quoted Livnat and Zarowin (1990) that tested the contents of cash flows information component according to recommendation from SFAS No. 95. The result proved that individual cash flows component, except tax payment, has strong relationship with abnormal return. Taryono also included the research of Cheng et al. (1996) who did a research to test whether the additional information of cash flows operation will increase when earnings is transitory earnings. Generally, the result showed the transitory earnings has small marginal impact to stock return and the additional information of cash flows will increase when the permanent earnings decrease.

1.2.Problem Identification

The basic problem that the researcher would like to focus is the relationship between accounting variables (earnings and cash flows) and the stock return. If they have relationship, the researcher wants to make further investigation whether the relationship is linier or non-linier. This thesis also examines whether the non-linier relationship can give more explanatory power of earnings and cash flows to the investor and creditors. And last, the researcher want to test the impact of firm specific attribute to the relevance of earnings and cash flows in explaining stock return.

1.3 Problem Formulation

Based on the main idea and argument from the background above, the researcher proposes a formulating problem such as:

1. Will the explanatory power of accounting variables such as earnings and cash flows to explain stock return increase by using the non-linearity relationship?
2. Which accounting variables are superior to be used in the measurement of company performance after they are categorized based on their firm's specific attribute?
3. Based on firm's specific attributes, which accounting variables are superior in measuring company's performance?

1.4. Research Objectives

There were many researches previously done by several researchers to examine the relationship between accounting variable, such as earnings and cash flows and the stock return. This thesis has primary objective to examine that relationship in the implementation to the companies which has been divided into three categorizes based on their specific attribute. The company has its own characteristic that kind of characteristic will affect the financial condition of a company. So, it can make differenttypes of relationship among them.

1.5. Research Scope

For focusing to this study, the researcher makes several limitations in the investigation. The research is focused on Indonesian firms with some scope limitation, which are:

1. The companies include in food and beverage industries that were listed in Jakarta Stock Exchange (JSX), Indonesian Capital Market Directory and other available resources data from period of 1997 until 2004.
2. This study is concentrated on financial statement information especially on the total asset, total liabilities, book value, earnings per share, and cash flows per share of firms in JSX.
3. The companies must have closing stock price at announcement date and closing price at a day before announcement.

1.6 Research purposes

Based on the formulating problem, the purposes of this research are:

1. To get empiric evidence whether the explanatory power from earnings and cash flows will increase or decrease by using non-linearity relationship.
2. To see which one between two kinds of accounting variables, earnings and cash flows that is better used to measure the company's management performance based on it specific attributes such as size of firm, degree of firm debt, and firm life cycle.AM

1.7 Research Contribution

This research is expected to give many contributions to:

1. Investor

The research will give Contribution especially in making decision and providing beneficial information in the conduct trades
2. The companies

The research will give contribution to the company by giving inputs or supporting opinions and also as a consideration for making decisions in the future.

3. Academicians

The research can give some contributions for further researches especially about accounting variables such as earnings and cash flows, firm specific attribute, and stock return.
4. Researcher

The research can be a tool for the researcher to implement what has been learned during studying in this university. Beside that, the research is done as

1.8 Definition of Terms

 a requirement to have a bachelordegree.
The terms used in thir

1. Earnings

The definition of earnings in this thesis is current level of earnings per share which is stated on financial statement of a firm. Unexpected Earnings is reflected by variable of changing of earnings per share.

2. Cash Flow

Cash flow is the amount of money comes from the company's main income activity and other activities. Cash flows are classified as operating activities, investing activities, financing activities. The major operating cash flows are (1) cash received from customers, (2) cash paid to suppliers and employees, (3) interest and dividends received, (4) interest paid, and (5) income taxes
paid. These cash flows are computed by converting the income statements amounts for revenue, cost of good sold, and expenses from the accrual basis to the cash basis. This is done by adjusting the income statement amounts for changes occurring over the period in related balance sheet accounts. The cash flows that will be used as variable in this thesis are operating cash flows per listed shares. Unexpected cash flows are reflected by variable of changing of cash flows per share.
3. Stock return

Stock return is the changing of stock price during the research period. (Indriyana and Jogiyanto, 2005).
4. Firm Specific Attribute

Firm specific attribute is the reflection of firms characteristics that are divided into three categorizes, size (of firm, debt level, and life cycle/age of firms. (Indriyana and Jogiyanto, 2005).

Size of firm is divided into two firms; large firms and small firms and it is measured using logarithm total assets. Based on debt level, firms also are divided into firms with low leverage and firms with high leverage and it is reflected by the ratio of total asset and total liabilities. For life cycle of firms, firms are grouped into growth firms and mature firms, which is a proxy by book to market ratio.

5. Regression Analysis

Regression analysis is concerned with the study of the dependence of one variable, the dependent variable, on one or more other variables, the explanatory variables, with a view to estimate and/or predict the (population) mean or average value of the former in terms of the known or fixed (in repeated sampling) values of the latter.(Gujarati, 1995:16).

CHAPTER II

REVIEW OF RELATED LITERATURE

Review of related literature gives many explanations about the relevant theories to this research and to reconsider the previous studies. This chapter explains the previous studies and theories used to confirm accounting variables conveying information about stock return. Part of this chapter will elaborate more about accounting variables such as earnings and cash flows, the changing of earnings and cash flows and stock return to conclude some hypothesis derived from previous studies and theories and also to verify the impact of firms' specific attribute such as size firms, debt level, and firms' life cycle to those relation between accounting variables and stock return.

2.1 Literature review and Fundamental Theory

2.1.1 Information of Earnings and Cash Flows

Financial Statement which is resulted from accounting process is aimed to provide financial information that can be used to fulfill the needs of external parties. Investor, creditor, and other parties need that information to help them in deciding to do investment, to give credit, and other acts that related with the company. Because the financial statement is content financial information, the users of financial statement will choose the most relevance information for the decision taken.

In 1984, Financial Accounting Standard Board (FASB) published Statement of Financial Accounting Concepts (SFAC) No. 5 Recognition and Measurement in Financial Statement of Business Enterprises which state that one set financial statement in one period must show:
i. Financial position in the end of period
ii. Earnings for that period
iii. Comprehensive earnings (total capital changing that is not come from the owner)

ISLAM
iv. Cash flows for that period
v. The investment done and got by the owner

Earnings and cash flow, which is found in the financial statement, is good indicator to measure the changes of firm successful management. These changes can affect the financial policy of company, tike debt payment, investment and decision about dividend policy. The growth of the earning and cash flow can influence the investor in decision making of dividend policy, the increasing of dividend show that the earnings and cash flow increased.

Many studies have been done concerning with earnings and cash flows information especially the research that focused on the information content. That information will be used in relation with stock return. Martinez Isabel (2003) quoted the findings of Ball and Brown (1968) who were the first to find an empirical relationship between earnings and stock returns. Their results indicated that
unexpected earnings are positively related to abnormal returns. This suggests that earnings contain information used to value stocks. However, the information is already incorporated in stock prices when earnings are revealed because investors have access to various sources of information about the future projects of the firms. Rayburn (1996) that has been quoted in Indriyana and Jogiyanto (2005) research tested the relation between cash flows operation and accrual earnings with stock return. The result supported there was relationship between cash flows and accrual earnings with company's abnormal stock/ return. Indriyana and Jogiyanto also content of cash flows component in conform to SFAS No.95. The result proved that individual cash flows components had strong relationship with abnormal return.

In Indonesia, Baridwan (1997) did research to test the relationship between information content in income statement with information contents in cash flows. His result concludes that information contents in cash flows could give additional value to the financial users. Taryono (1998) tested the information content in earnings and cash flows in conformity with recommendation from SFAS (Statement of Financial Accounting Standard) No. 95 and PSAK (Pernyataan Standard Akuntansi Keuangan) No. 2 using level model and return model. His result showed that by using level model, total cash flows did not have significant relationship with stock return, but separation of cash flows into cash flows components; operating cash flows, investing cash flows, and finance cash flows, showed the significant relationship to stock
return. The other finding used return model, the changing of total cash flows, changing of cash flows components and changing of earnings do not have any significant relationship with stock return.

2.1.2 The Impact of Firm Specific Attribute to Earnings and Cash Flows

Every company has different financial characteristics from others. Those differences will make the relevance of the accounting number also different from others. The size of firm, the degree of debt, and life cycle of the firm can be used to represent the financial characteristic of the company.

1. Size of Firm

One of the measurements that show whether the company is large or small is by size of firms. Company which has high totalassets shows that the company is on the mature stage because in this stage, the company cash flows, has been positive. In this stage, company is regarded to have a good prospect in long-term period. Large company, which has been in the mature stage, reflects the stable company, which is able to gain more profit, rather than small company. The stable cash flows in large company can make the company enter the capital market easily in order to get fund from investors. That is why the large company will have small risk and their stocks will have low interest rate of return.

While on the other hand, the small company tends to work worse and less efficient than large company. Because of that, the small company tends to get less
profit than large company. It is also caused by the certain level of profit in small company which is low.

2. The Debt level

Agency problem will cause agency cost. That cost appears because of company debt and involvement of stockholders and creditor relationship. Higher uses of debt causes higher interest expense then it causes higher probability of decreasing of income. This matter can increase company's financial leverage and can cause financial distress which can affect the company's stock return. Risk level and possibility of company bankruptcy will increase and give difficulties in predicting earnings.

The term leverage is used to indicate the impact of debt financing which has on the return of the company to its owner. If the income generated by investment in assets is greater than the costof debt, the equity folder will benefit from financing on increase amount of asset through borrowing.
3. Life cycle of the firm

Corporate life cycle theory is an extension of the product life-cycle concept developed in marketing and microeconomics (Rink and Swan 1979 and Mueller 1972, quoted by Black 1998). Individual products (good and services) move through four more or less identifiable phases: start-up, growth, mature, and decline. Similarly, firms can be described as having life cycle stages that depend on their portfolios of products. Model of firms life cycle presuppose that there are regularities in corporate
development and that these regularities occur in such a way that the corporations' developmental processes lend themselves to segmentation into stages or periods of time (Black 1998 from Smit, Mitchell, and Summer 1985).

Considering the number of companies that exist in Indonesia and the condition of companies economic, Indriyana and Jogiyanto (2005) in their research made limitation to the grouping of companies in their samples. They only categorized the company into growth company and mature company. In growth level, company is still trying to get target market and only gain less income. Company spends a lot of cash to fund the main expenditures in order to develop their products, markets, and capacity expansion. In this level, company will report unstable earnings. While in mature level, company has had certain target market that has been able to gain more stable positive earnings than the growth one. For the stable companies, they usually can predict future earnings and more brave to announce high or stable dividend.

There are many empirical evidences that characteristics of the firms can influence the strength of relationship between stock return and accounting variables. Hodgson and Stevenson - Clarke (2000a) who had been quoted by Indriyana and Jogiyanto, tested the value relevance of earnings and cash flows information by considering the size of company. Their results showed the cash flows have relative relevance only for the big size of company. The cash flows in small company had higher correlation with earnings. The other finding was earnings are more relevance
for a small company in Australia than a big company because a small company is more attractive to show the transitory earning.

Jogiyanto also include his quotation of observation done by Gul et al. (2000). He observed the impact of debt level to the relation between earnings and stock returns. His result mentioned that debt level gave negative impact to earnings and stock return relationship after controlling confounding variables such as size of firm, beta, earnings persistence, and government environment. In other research, Black (1998) investigated the value refevancel of earnings and cash flows in firm by considering firms life - cycle stages. The resuit showed that earnings was more relevance than cash flows for firm which was-included in the category of mature stage and cash flows was more relevance for starting up company.

Martinez (2003) also had done research to test measurement of accounting performance by involving factors such as firm size, firm debt level, and firm life cycle. The result showed that earnings were the most relevance indicator for company, whether it is big company or small company in France while cash flows is not relevance. Based on the degree of firm debt, Martinez (2003) stated that in France, the company whether has high leverage or low leverage; both could use earnings to give additional information rather than cash flows. While based on firm life cycle, cash flows are more significant to the company which is on growth level.

In Indonesia, Habbe and Hartono (2001) like what had been quoted by Jogiyanto (2005) used life cycle theory approach to analyze the differences of
accounting performance measurement. They tested the differences of accounting performance measurement; earnings growth, sales growth, and dividend pay out that influenced by prospector and defender strategy and they also tested market reaction differences to both of strategies. They stated that company with prospector strategy was categorized as growth company, while the company using defender strategy was categorized as mature company.

The other research in Indonesia was done by Atmini (2002) who tested the association between firm life cyele and the incremental value-relevance of earnings and cash flows by taken the data from the Jakarta Stock Exchange (JSX). The result of her research showed that earnings and cash flows from funding activity had valuerelevance in growth stage while cash flows from investment have value relevance in the mature stage.

2.1.3 Non - Linier Relationship between Stock Return and Accounting Variables

Researches about relationship between earnings and cash flows to stock return are always related with investor attitude. The investor act can not be predicted certainly and it is not the same each other. In the linier test, there is coefficient which is permanent factor that can not be changed to every investor. So, if an investor has positive reaction to an event, the other investor will have positive reaction also to that event. Because the attitude of investors are different each other, several researchers
tried to use non-linier model, so that they can give description about investor attitude that more flexible.

Since the stock return and earning relationship was low, several researchers tried to apply the non-linier test for solving the misspecification problem from linier test of earnings and stock return. Jogiyanto quoted the research done by Trueman (1993) that stated non-linier model between earnings and stock return was used because there was mistake from researcher concerning with the earning expectation. This implies that the alternative of using earnings expectation can be used to test the non-linier relationship existence.

Collins and Kothari (1989) like what has been noted by Atmini (2002) found weak relationship between eamings changing and stock return in USA that is R^{2} is approximately 7\%. Jogiyanto (2005) quoted Easton and Harris (1991) research that results the range of R^{2} is between 4% until 7.7% depending on its independent variable. That weak of earnings and securities return relationship made them do innovation using non-linear relationship model between accounting variable and stock return. Jogiyanto and Indriyana (2005) also quoted the statement from Hodgson and Stevenson-Clarke (2000) who tested the additional information of earnings and cash flows by using non-linear model. The result was non-linear model could not be used to measure additional information of earnings and cash flows in order to increase the explanatory power from earnings and cash flows. This finding was in line with Ali's research (1994).

2.2 Theoretical Framework and Previous researches

The most parameter company performance that gets main attention from investor and creditor are earnings and cash flows. When they are faced to that accounting performance measurement, investor and creditor must be sure that the measurement is able to describe the economic condition of company in the future well. That is why, investor and creditor should consider about the financial characteristic of every company. The financial characteristics that different each other among the companies, causes the differences of relevancy accounting number in all companies. Those financial characteristics can be-reflected by size of company, debt level, and life cycle of company.

If earning and cash flows information dan affect investor's expectation to a company prospect, so that it can cause the investor react to purchase or to sales the stocks in order to optimize their pfofits. This actiyity will be reflected in the changing of stock price or stock return. There are several researches that have been done to test the intensity of relationship between earnings and stock return. Jogiyanto (2005) quoted the research from Collins and Cothari (1989) who found a weak relationship between earnings changing and stock return in America that was the average of R^{2} was only approximately 7%. Jogiyanto also quoted Easton and Harris (1991) who got the R^{2} was in between $4 \%-7.7 \%$ depending on the independents variable (earnings level or earnings changing that determined from previous stock price). In France,

Jogiyanto noted the research from Dumontier and Labelle (1998) that got the average R^{2} for 7.7%.

Hodgson and Stevenson - Clarke (2000a) who were quoted by Indriyana and Jogiyanto (2005), tested the value relevance of earnings and cash flows information by considering the size of company. Their results showed the cash flows have relative relevance only for the big size of company. The cash flows in small company had higher correlation with earnings. The other finding was earnings are more relevance for small companies in Australia than for big companies because small companies are more attractive to show the transitory earning. Z

Jogiyanto also includē his quotation of observation done by Gul et al. (2000) who observed the impact of debt level on the ralation between earnings and stock returns. His result mentioned that debt level gave negative impact to earnings and stock return relationship after controlling confounding variables such as size of firm, beta, earnings persistence, and government environment. In other research, Black (1998) investigated the value relevance of earnings and cash flows in firm by considering firms life - cycle stages. The result showed that earnings was more relevance than cash flows for firm which is included in the category of mature stage and cash flows was more relevance for starting up company.

The other research was done by Atmini (2002) who tested the association between firm life cycle and the Incremental value-relevance of earnings and cash flows by taking the data from the Jakarta Stock Exchange (JSX). The result of her
research showed that earnings and cash flows from funding activity had valuerelevance in growth stage while cash flows from investment had value relevance in the mature stage.

Martinez (2003) did the research in French companies that considered the French context and analyze if earnings and cash flows are relevant to explain stock returns. He tested whether the explanatory powers of accounting variables could be improved by using a nonlinear specification. He also investigated how firm-specific attributes such as size, debt leyel and firm life-eycle influence the relative relevance of accounting measures (earnings and cash flows). He highlighted the importance of conditioning the explanatofy power for stock returns of accounting variables (earnings and cash flows) on firm-specific attribates. Specifically, he found that the firms' size, the degree of debt and the life-cycle had a significant impact on the valuation importance of accounting measures. The earnings level is the most relevant indicator for small, in debt or growth firms. This result is consistent with the firms that exhibit more transitory earnings. In contrast, the earnings change reveals more information when firms are large, mature or characterized by a low degree of debt. For these firms, earnings reported were expected to be less volatile and more permanent than the reported earnings of small, high leverage or mature firms. He also found that they did not reveal additional information beyond that contained in earnings. His study also indicated that the nonlinear model improved the explanatory
power of accounting numbers and that the improvement is the greatest for firms characterized by a small size and a low degree of debt or for mature firms.

In Indonesia, Indriyana and Jogiyanto (2005) did the same research like Martinez done. They used Indonesian manufactured companies as their samples because the activities that were done by those companies were very fluctuative and attractive. They used firm specific attribute to test their impacts to the relevance of earnings and cash flows. They used three firm's specific attribute like what Martinez had been used i.e.: firm size, debt level, and firms lice cycle. In the first hypothesis, they compared the adjusted $/ \mathbb{R}^{2}$ between the linier regressions analyses result with non-linier regression. From the test, they got the number of F test less than the F table. It showed that the R^{2} in non linier model was not significant meaning that the non linier model was not able to increase the explanatory power of earnings and cash flows to the stock return rather than the linier model.

By comparing the result of R^{2} in non-linier model and in linier model, Indriyana and Jogiyanto found that earnings changes reveal more information for small firms and large firms. With regards to cash flows, they found that they did not reveal additional information beyond that contained in earnings for small firms and also for large firms. The results based on debt level indicate that for high debt firms and low debt firms, earnings change is the most relevant accounting variable in explaining stock return, while the cash flows reveal greater incremental information
beyond that contained in earnings for high debt firms than for low debt firms. The regression result based on firm life cycle indicated that the most relevant accounting variable for growth firms and mature firms was earnings change. In addition, cash flows reveal greater incremental information beyond that are contained in earnings for growth firms than for mature firms.

2.3 Hypothesis Formulation

2.3.1 Non Linier Hypothesis ISLAM
 Since the stocks return and earning have 1ow relationship, several researchers

 try to apply the non-linier test to solve the misspecification problem from linier test of earnings and stock return. Jogiyanto quoted the research done by Trueman (1993) that stated non-linier model between earnings and stock return was used because there was mistake from researcher concerning with the earning expectation. This implies that the alternative of using earnings expectation can be used to test the nonlinier relationship existence.Several researches previously showed the existence of non-linier relationship model. Das and Lev (1994) compared several non-linier models estimation (arctan, quadratic equation or absolute value, local weighted regression) and found that the three techniques could characterize well the relation between stock return and earnings. Freeman and Tse (1992) that had been quoted by Jogiyanto found the
significant increase on R^{2} and Earning Coefficient Response level when the model was linier rather than linier model.

H1 : Non-linier model can increase the explanatory power of earnings and cash flows to stock return rather than linier model.

2.3.2 Size Hypothesis

One of the measurements showing whether the company is large or small is by size of firms. Company which has high total assets shows that the company is on the mature stage because in this stage, the company cash flows has been positive. In this stage, company is regarded has a good prospect in long-term period. Large company, which has been in the mature stage, reflects the stable company, which is able to gain more profit, rather than small company. The stable cash flows in large companies can make the company enter the capital market easily in order to get fund from the investor. That is why the large company will have small risk and their stocks will have low interest rate of return.

H2a : For small company, the current level of earnings (EPS) is more relevance in explaining stock returns than current changing of earnings ($\triangle E P S$).

H 2 b : For large firms, the change of earnings ($\triangle \mathrm{EPS}$) is more relevance in explaining stock returns than the current level of earnings (EPS).

Earnings are influenced by flexible accounting technique, subjective judgment, and manipulation practice. In verse, cash flows are not infiltrated by measurement problems and present the objective measurement of liquidity. Cash flows are expected to give more additional information for large company rather than small company.

H3 : Cash flows (CFPS) reveal a greater incremental information beyond that contained in earnings for large firms than for small firms.

2.3.3 Debt Hypothesis

Martinez (2003) found evidences that for French companies with high financial leverage, the earning level is the most/relevant variable in explaining stock return. While for companies- with low financial leverage in France, the earning changing is more relevance than earnings level. Eárnings are expected more fluctuate and more permanent when the earnings level is low.

H4a : For firms with high debt level, the current earnings level (EPS) is more relevance in explaining stock return than changing of earning ($\triangle E P S$)

H4b : For firms with low debt level, changing of earning ($\triangle \mathrm{EPS}$) is more relevance in explaining stock return than current earnings level (EPS)

Cash flows are expected to contain more additional information for a company with high leverage than a company with low debt level because (1) the
probability to be bankrupt is higher, so cash flows are the most objective measurement (2) the great difficulties in predicting earnings will cause investor considers the other performance measurements.

H5 : Cash flows (CFPS) reveal greater incremental information beyond that is contained in earnings for firms with high debt level than for firms with low debt level.

2.3.4 Life Cycle Hypothesis

A company spends a lot of cash to fund the main expenditures in order to develop its products, marketş, and capacity expansion. This condition will press the short term earnings but, it is expected to gain long term earnings in the future. That is why in growth stage, the company will report unstable earnings. While in mature level, the company has had certain target market that has been able to gain more stable positive earnings than the growth one. For the stable companies, they usually can predict future earnings and more brave to announce high or stable dividend.

H6a: For growth firms, current level of earning (EPS) is more relevance in explaining stock return than changing of earnings

H6b: For mature firms, changing of earnings ($\triangle E P S$) is more relevance in explaining stock return than level of earnings.

In growth stage, the company has been succeeding to get target market but company still spends a lot of investment to develop and maintain the target market and technology. Although the profit is not stable yet, but in growth stage, the company has been able to result a cash flow from operational activities so cash flows can give additional information about the existences of the company and reflect the real company's economic condition because they act as short term solvability of company.

H7 : Cash flows (CFPS) reyeal greater incremental information beyond that one contained in earnings for growth firms than for mature firms.

CHAPTER III

RESEARCH METHOD

This chapter is aimed at giving a view of the research conducted by the researcher. This research is a study which tries to confirm whether there are linier or non linier relationship between stock returns and accounting variables (earnings and cash flows) in Indonesia and how firm specific attributes such as size, debt level, and firm life cycle influence the relative televance of earnings and cash flows in explaining stock returns.

3.1 Research Method

This research is a descriptive case study. It is to give a description about the problem and situation of research subject (described later). In general, to make description of the problem, the researcher conducts certain procedures from data collection to data analysis before making conclusions (the details will be described later in this chapter).

3.2 Research Subject

The subject of this research is whether the accounting variables (earnings and cash flows) can give information in explaining stock return in each firm's specific attribute. The population for this research is only companies listed in Jakarta Stock

Exchange (JSX) that are included in food and beverage industries. Researcher uses only one sub sector of industries because they are in the same line and tend to have high homogeneity among them. So, the character of the companies will not be much different and the fluctuation of their activities can be predicted well.

The population for this research is food and beverages companies listed on Jakarta stock exchange (JSX). While the data needed are: earning per share (EPS), cash flows from operating activities, and closing price in the end of accounting period within 7 periods from 1997 until 2004. The method to collect sample in this research is purposive sampling. Purposive sampling is a technique to collect the sample based on certain criteria that is in accordance with the purpose of research (Kuncoro, 2003). However, industries may react differently to cerfain conditions. Therefore, there are several criteria that should fülill the requirement as the sample of the research, as follow:

1. The samples are only companies listed in food and beverage industries data period 1997 - 2004. The reason to take these samples is to know government's interference, growth opportunities and firm characteristic influencing the activities of the companies and also to know stock return in longer period that reflect the attractiveness of the investor.
2. The companies should have the financial statement per $31^{\text {st }}$ December and had been doing IPO (Initialize Public Offering) since year 1997.
3. The company that has cases with missing data is deleted from the sample.
4. The companies should have closing price at the day end of accounting period and the day before it from 1997 until 2004.

TABLE 3.1
Samples Procedure

| 1. The Population | 22 |
| :--- | :--- | :--- |
| 2. Firms did not publish financial statement per $31^{\text {st }}$ December | |
| 1997 to 2004 | (2) |
| 3. Total firms with uncompleted data | (2) |
| 4. Total firms that havenot announced closing price at the end of | 0 |
| period | |
| Total Usable Samplesn | 18 |

Here is the list of the samples used in this research:

1. Ades Alfindo Putrasetia Tbk
2. Aqua Golden Mississippi Tbk
3. Asia Intiselera Tbk
4. Cahaya Kalbar Tbk
5. Davomas Abadi Tbk
6. Delta Djakarta Tbk
7. Fast Food Indonesia Tbk
8. Indoofood Sukses Makmur Tbk
9. Mayora Indah Tbk
10.Multi Bintang Tbk
10. Pioneerindo Gourmet International (CFC) Tbk
11. Prasidha Aneka Niaga Tbk
12. Sari Husada Tbk
13. Sekar Laut Tbk
14. Siantar TOP Tbk
15. Sinar Mas Agro Resources and Technology Corporation Tbk
16. Suba Indah Tbk
17. Ultra Jaya Milk Industry and Trading Company Tbk

3.3. Research Variables

The research uses two variables, independent variable and dependent variable. Independent variables consist of changing of earning per share ($\triangle \mathrm{EPSP}_{\mathrm{it}}$), changing of operating cash flows ($\triangle \mathrm{CFPS}_{\mathrm{it}}$), earnings per share ($\left.\mathrm{EPS}_{\mathrm{i}}\right)_{\text {) , operating cash flows }}$ per share $\left(\mathrm{CFPS}_{\mathrm{i}}\right)$, Unexpected earnings and unexpected cash flows are reflected by changing of earnings and changing of cash flows. Earnings used in this research are basic earning per share before extraordinary items and discontinued operations. This measurement based on the research done by Jogiyanto Hartono who quoted the statement from Ali (1994), Eheng at al. (1996), and Hodgson et al. (2000). The reason of excluding those two kind items is to eliminate the probability that might cause increasing earnings in one period that will not to happen in another period. Operating Cash flows is cash flows that are derived from company main activity and other activities instead of frominvesting activities and financing activities.

For all regression models, dependent variable is stock return (R_{t}). Stock Return is stock return changing in the observation period or

$$
\begin{equation*}
R_{i t}=\frac{\left(P_{i t}-P_{i(t-l)}\right)}{P_{i(t-l)}} \tag{3.1}
\end{equation*}
$$

Where:

$$
\mathrm{R}_{\mathrm{it}} \quad=\text { stock return }
$$

$$
P_{\text {it }} \quad=\text { stock price when announcement date at closing price }
$$

$$
\mathrm{P}_{\mathrm{i}(\mathrm{t}-1)}=\text { stock price a day befgre announcement date at closing price }
$$

$$
\begin{equation*}
\triangle \text { CFPPSS }_{i t}=\frac{\left(\text { CFPPS }_{i t}-C F P P S_{i(t-1))}\right.}{P_{i(t-1)}} \tag{3.3}
\end{equation*}
$$

Where:

$$
\begin{array}{ll}
\text { EPS }_{\text {it }} & =\text { Earnings per share of firm } \mathrm{i} \text { in year } \mathrm{t} \\
\text { CFPS }_{\mathrm{it}} & =\text { Operating Cash flows per share of firm } \mathrm{i} \text { in year } \mathrm{t}
\end{array}
$$

$\triangle E P S P_{i t}$	$\quad=$ Changing of Earning per share of firm i in year t
Δ CFPSP $_{i t}$	$=$ Changing of Operating Cash flows per share of firm in year t
EPS $_{i(t-1)}$	$=$ Earning per share of firm i in year before $(t-1)$
CFPSP $_{i(t-1)}$	$=$ Operating Cash flows per share of firm i in year before $(t-1)$
$\mathrm{P}_{\mathrm{i}(t-1)}$	$=$ Stock Price of firm i in beginning period t

3.4 Research Procedures

1. Data Collection

This research uses data colleeted from JSX corner in Universitas Islam Indonesia and Universitas Gadjah Mada for the companies' financial statement report. The data needed are total assets, total liabilities, price book value earnings per share, and operating cash flows. For the other data that can not be found on financial statement can be found on Indonesian Capital Market Directory for closing price at the end of accounting period and number of listed shares by company. Beside that, the data can also be found on Bisnis Indonesia newspaper for closing price at the day before financial statement date.

2. Data Reclassification

After collecting the data, researcher makes data classification according to the independent or dependent variables and classifies the companies based on their specific attribute. Total asset, total liabilities, price book value, and closing price are used to classify the firms' specific attribute.

Firm Specific Attribute in this research is divided into three; they are size of firms, degree of debt, and firm life cycle. Size of firm is divided into two categories, small firms and large firms that are measured by logarithm of assets. Based on degree of debt, firms are divided into firms with high financial leverage and firms with low financial leverage. The degree of debt is measured by using liabilities ratio divided by total assets. While, firms based on their life cycle, firms are grouped into growth firms and mature firms that are reflected by book to market value. High book to market value shows that the firm is on growth level and on the other hand, firms with low book to market value shows that firm is on/mature level. (Martinez, 2003). The samples are grouped based onfirm attribute done by clustering the company based on the result of median.
3. Data Analysis

The data analysis will be done in eách Company classification. Researcher uses regression analysis, either linier or non linier to compare which model that can be used to explain the relationship between accounting variables such as earnings and cash flows with stock returns. Then, researcher will cluster the data using median.

3.5 Technique of Data Analysis

3.5.1 Firms' Specific Attribute Measurement

The firms' specific attribute in this research is divided into three categorizes; firm's size, firm's debt level, and life cycle of the firm (Indriyana and Jogiyanto
2005). For firm's size, company will be classified into large firm and small firm. They will be measured by logarithm total assets. For debt level, company will be categorized into low leverage and high leverage using financial leverage that is the ratio of total liabilities to total asset.

Or we can use this following equation:
Book To Market Ratio $=$
Price Book Value

After the result is determined, portfolios are constructed by sorting firms firstly by year then by the median of the approximation of size, debt level and lifecycle. We put the result that are above median as large firms, high leverage, and mature stage and in verse, we put the number that is below median as small firms, low leverage firms, and growth firms.

3.5.2 Hypothesis Testing

To study the relative value relevance of earnings and cash flows in different context of firms, the researcher considers the value perspective of Ohlson (1995) that had been used also by Indriyana and Jogiyanto (2005) in their research. The Ohlson model offers a formal linkage between market and accounting data and provides a strong motivation for regressing accounting variables on stock prices.

The linear models are the followings:
Model 1: $R_{i t}=a+b_{1} E P S_{i t}+\varepsilon_{i t}$

Model 1': $R_{i t}=a+c 1 \triangle E P S_{i t}+\varepsilon_{i t}$
Model 2: $R_{i t}=a+b_{l} E P S_{i t}+c_{1} \Delta E P S_{i t}+\varepsilon_{i t}($

Model 3: $R_{i t}=a+d_{1} C F P S_{i t}+e 1 \triangle$ CFPS $_{i t}+\varepsilon_{i t}$
Model 4: $R_{i t}=a+b_{1} E P S_{i t}+c_{l} \Delta E P S_{i t}+d_{1} C F P S_{i t}+e_{1} \Delta C F P S_{i t}+\varepsilon_{i t}$

We use the following model to test the non-linear relationship between dependent variable (stock return) and independent variable (operating cash flows and earnings).

Model 1B: $R_{i t}=a+b_{1} E P S_{i t}+b_{2} E P S_{i t}{ }^{2}+\varepsilon_{i t}$

Model 1'B : $R_{i t}=a+c ı \Delta E P S_{i t}+c 2 \Delta E P S_{i t}{ }^{2}+\varepsilon_{i t}$

Model 2 B : $R_{i t}=a+b 1 E P S_{i t}+b_{2} E P S_{i t}{ }^{2}+c_{l} \Delta E P S_{i t}+c_{2} \Delta E P S_{i t}{ }^{2}+\varepsilon_{i t}$

$$
\begin{aligned}
\text { Model 3 B : } R_{i t}= & a+d_{1} C F P S_{i t}+d_{2} C F P S_{i t}{ }^{2}+e e_{1} \Delta C P S_{i t}+e_{2} \triangle C F P S_{i t}{ }^{2}+\varepsilon_{i t} \\
\text { Model 4 B : } R_{i t}= & a+b_{1} E P S_{i t}+b_{2} E P S_{i t}{ }^{2}+c_{1} \Delta E P S_{i t}+c_{2} \triangle E P S_{i t}{ }^{2}+d_{1} C F P S_{i t}+ \\
& d_{2} C F P S_{i t}{ }^{2}+e_{l} \Delta C P S_{i t}+e_{2} \triangle C F P S_{i t}{ }^{2}+\varepsilon_{i t}
\end{aligned}
$$

Where:
$\begin{array}{ll}R_{\text {it }} & =\text { annual stock return } \\ E P S_{i t} & =\text { Earning per share SLAM } \\ \triangle E P S_{i t} & =\text { Changing of Earnings per shareZ } \\ C F P S_{i t} & =\text { Operating Cash flows per share } \\ \triangle C F P S_{i t} & =\text { Changing of Operating cash flo per share } \\ & \\ \text { Model } 1 \text { and 1' are compared to each fitm based on its characteristics to test } \\ \mathrm{H} 2 \mathrm{a}, \mathrm{H} 2 \mathrm{~b}, \mathrm{H} 4 \mathrm{a}, \mathrm{H} 4 \mathrm{~b}, \mathrm{H} 6 \mathrm{a} \text { and } \mathrm{H} 6 \mathrm{~b} \text {. Model } 2 \text { and } 3 \text { will be compared to test } \mathrm{H} 3, \mathrm{H} 5,\end{array}$ H7. Model 3 tests the explanatory power of cash flows and the fourth will estimate the contents of incremental information from earnings and cash flows. Model 4 will support the model 3 .

To determine whether the relationship is linear model or non-linear model at this research model, we use this following formula:
$F=\frac{\left(R^{2} \text { new model }-R^{2} \text { old model }\right) / \text { total of new variables }}{\left(1-R^{2} \text { new model }\right) /(\text { number of samples }- \text { total variables })}$

After the result of regression is obtained, we compare the F in regression (Ftest) with F in statistic table (Ftable). If the result of Ftest is more than Ftable, the model used to make analysis is non linear model. But if Ftest is less than Ftable, the equation that will be used is linear model. (Gujarati, 1995)

```
Ftest \(>\) Ftable \(=\) Non Linier
Ftest \(<\) Ftable \(=\) Linier
```


ISLAM

When we get the model relationship between independent variables and dependent variable, we willcompare the R^{2} in model 1 and model 1^{\prime}, then R^{2} in model 2 and model 3 , we can conclude what independent variable that is the most significant to the dependent variable. .

CHAPTER IV

RESEARCH FINDINGS, DISCUSSION, AND IMPLICATIONS

This chapter will explain about the early process of gathering data, measurement of variables used in this research, data analysis and the interpretation of hypothesis testing, which consists of explanations about research findings, discussion and research implications.

4.1 Research Preparation

4.1.1 Data Identification andVariable Measurement

Data used in this research is quantitative data taken from all financial statement announcements of firms listed on the Indonesian Capital Market Directory (ICMD) 1997-2004, Universitas Islam Indonesia, Capital Market Data Base of JSX corner Universitas Gadjah Mada, and aiso other felevant sources.

On each firm announcement, this research retrieves earning per share (EPS) and changing of EPS (\triangle EPS), cash flows per shares and changing of cash flows per share (\triangle CFPS). The model of earnings changing and cash flows changing per share are counted using the formula as follows:

$$
\begin{aligned}
\triangle E P S P_{i t} & =\frac{\left(E P S P_{i t}-E P S P_{i(t-l))}\right.}{P_{i(t-1)}} \\
\triangle C F P P S i t & =\frac{\left(C F P P S_{i t}-C F P S P_{i(t-1))}\right.}{P_{i(t-l)}}
\end{aligned}
$$

Where:

$\mathrm{EPS}_{\text {it }}$	$=$ Earnings per share of firm i in year t
CFPS $_{\text {it }}$	$=$ Operating Cash flows per share of firm in year t
$\triangle \mathrm{EPSP}_{\text {it }}$	$=$ Changing of Earning per share of firm i in year t
\triangle CFPSP $_{\text {it }}$	$=$ Changing of Operating Cash flows per share of firm i in year t
EPS $_{\text {i(t-1) }}$	$=$ Earning per share of firm i in year before ($t-1$)
CFPS ${ }_{\text {i(t-1) }}$	$=$ Operating Cash flows per share of firm i in year before ($t-1$)
$\mathrm{P}_{\mathrm{i}(\mathrm{t}-1)}$	$=$ Stock Price of firm i in beginning period t

For stock return, this researeh uses this following model:

Where:
$\mathrm{R}_{\mathrm{it}} \quad=$ stock return
$\mathrm{P}_{\text {it }} \quad=$ stock price when announcement date at closing price
$\mathrm{P}_{\mathrm{i}(t-1)}=$ stock price a day before announcement date at closing price

4.1.2 Firm Specific Attribute Measurement

Firm Specific Attribute in this research is divided into three; they are size of firms, degree of debt, and firm life cycle. Size of firm is divided into two categories, small firms and large firms that are measured by logarithm of assets. Based on the degree of debt, firms are divided into firms with high debt level and firms with low debt level. The degree of debt is measured by using ratio of total liabilities divided by total assets.

The model is as follow:
Financial Leverage $=\frac{\text { Total Liabilities }}{\text { Total Asset }}$

While, firms based on their life cycle, firms are grouped into growth firms and mature firms that are reflected by book to market value. High book to market value shows that the firm is on growth level and the other hand, firms with low book to market value shows that firm is on mature level. (Martinez, 2003). The model is defined as follow: Book to Market Ratio =

Or we can use this following equation:

Book to Market Ratio =
1
Price Book Value

The samples are grouped based on firm attribute done by clustering the company based on the result of median by using Microsoft Excel. The hypothesis testing is done by using statistical testing method for the measurement of variables and the data is processed by using SPSS 10.0 for the statistical calculations.

Table 4.1 shows the result of median from logarithm of asset yearly. The firms which have higher asset logarithm than the median categorized as large firms. While the firms that have asset logarithm under the median are categorized as small firms. The total data for large firms is 52 and total data for small firms is 74 firms.

Table 4.1

Median of Asset Logarithm

Table 4.2 shows the result of median from total liabilities ratio yearly. The firms with higher number of liabilities ratio than the number of median are included in group of firms with high level of debt. While the firms' liabilities ratio under the number of median are categorized as firms with low level of debt. The total data with high level debt is 61 and the data for low level debt are 65 .

Table 4.2
Median of Total Liabilities Ratio

Year	Median
1998	0.729
1999	0.694
2000	0.572
2001	0.516
2002 A	0.462
2003	0.459
2004	0.582

Table 4.3 shows the median forfirms' book to market ratio yearly. The firms which have higher ratio of book to market than the result of median are grouped into firms in growth level. While the firms which have lower ratio of book to market than the median are categorized as firms in mature level. The total data for firms in growth level is 56 and the data for firms in mature level are 70.

Table 4.3
Median for book to market ratio

The total data from the result of clustering the firms based on firm's size, debt level, and firm's life cycle are shown in table 4.4.

Table 4.4
Clustering Sample Data

Firms Attribute	Large Firms	Small Firms	High Debt Level	Low Debt Level	Growth firms	Mature firms
Firms' Size	52	74				
Debt Level			61	65		
Firms' Life Cycle					56	70

4.2 Research Findings and Discussion

4.2.1 Non Linearity Testing

The first hypothesis is done by comparing the changing of adjusted R^{2} from linier regression test and non linier regression pooled data using equation 3.8. Researcher uses quadratic equation for the non linier model. To test the non linearity, the researcher uses Ramsey's RESET test that can be defined as follows:
$F=\quad\left(R^{2}\right.$ new model $-R^{2}$ old model $) /$ number of new regressor
($1-R^{2}$ new model) / (number of samples \rightarrow total parameters in new model)

Ramsey has proposed a general test of specification error called RESET (Regression Specification Error Test). This test is conducted to the new model of equation that has additional regressor to know whether the linier model still has function or not. Generally, the increase of R^{2} would suggest that the linier cost function was misspecified and replaced by nonlinearity model.

The regression result (table 4.5) obtained R^{2} new model is 0.508 and the R^{2} old model is 0.476 with total variables are 4 and number of samples are 126 samples. Using the formula, the F test can be obtained as follows:

Figure 1

$$
\begin{aligned}
F & =\frac{(0,508-0,476) / 4}{(1-0,508) /(126-9)} \\
& =\frac{(0,032) / 4}{(0,492) / 117} \\
& =\frac{0.008}{0.00421} \\
& =1.90
\end{aligned}
$$

According to Gujarati 1995, if the result of F test is more than F table (F test $>$ F table), the model used to make analysis is non linear model. But if F test is less than F table (F test $<\mathrm{F}$ table), the equation that will be used is linear model. In this matter, the F table can be found as:
F table $(0,05 ; 8 ; 117)=2,02$
Since the F table is more than F test (F test $<\mathrm{F}$ table), it shows that changing of R^{2} in non linier model is not significant. It means that non linier relationship model can not increase explanatory power of earnings and cash flows to stock return compare with linier relationship model. This test does not support the first hypothesis (H1).

		Linier Test
Parameter	$\frac{\text { Regression }}{\text { Linier }}$	Non Linier Regression
Constant	0.596	0.587
EPS	-0.267	-0.660
EPS ${ }^{2}$		0.632
\triangle EPS	0.172	0.413
$\triangle \mathrm{EPS}^{2}$		-0.784
CFPS	0.195	0.176
CFPS^{2}		-1.375
\triangle CFPS	0.184	0.255
$\triangle \mathrm{CFPS}^{2}$		-0.836
R^{2}	0.476	0.508

4.2.2 Size Hypothesis Testing

Table 4.6 and table 4.7 show the result of linier and non linier regression analysis for small firms. We can see that the R^{2} of model $1 \mathrm{~A}(0.027)$ increase to R^{2} of model $1 \mathrm{~B}(0.028)$ and R^{2} of model $1^{\prime} \mathrm{A}(0.000)$ increase to model $1^{\prime} \mathrm{B}(0.003)$. From that result, we can use the equation 3.8 to test whether the analysis used is linier or non linier. Here is the result:

Figure 2

F test model 1 for small firms

$$
\begin{aligned}
F & =\frac{(0,028-0,027) / 1}{(1-0,028) /(74-3)} \\
& =\frac{0.001}{0.014} \\
& =0.071
\end{aligned}
$$

Figure 3

F test model 1' for small firms

$$
\begin{aligned}
F & =\frac{(0,003-0,000) / 1}{(1-0,003) /(74-3)} \\
& =\frac{0.003}{0.0140} \\
& =0.214
\end{aligned}
$$

Since the F table with $\mathrm{df}_{1}=2$ and $\mathrm{df}_{2}=71$ is only 3.15 and the F test model 1 is 0.071 and F test model 1^{\prime} is 0.214 , or both of F test $<\mathrm{F}$ table, it means that the best relationship in model 1 and model 1 ' for small firms is linier. The coefficient of R^{2} model 1A is higher than coefficient of R^{2} model 1' A that is 0.027 and 0.000 . It means
that the most significant accounting variable in explaining stock return in small firms is level of earnings (EPS). This result proves the hypothesis 2a (H2a).

Table 4.8 and table 4.9 show the result of linier regression and non linier regression analysis for large firms. The result shows the increase of R^{2} model 1 A (0.036) for large firms to R^{2} model $1 \mathrm{~B}(0.049)$ and R^{2} model 1' $\mathrm{A}(0.018)$ increase to R^{2} model 1 ' $\mathrm{B}(0.021)$. The result of F test model 1 (0.670) and F test model 1 , (0.151) is less than the F table that is 3.32 or F test $<\mathrm{F}$ table, so the best model to describe the relationship is limier model. From the result, coefficient of R^{2} in model 1 A is higher than coefficient of R^{2} in model VA. It means that current level of earnings (EPS) is the most significant accounting variable in explaining stock return in large firms. This result does not support the hypothesis $2 \mathrm{~b}(\mathbf{H} 2 \mathrm{~b})$.

Figure 4
F test model 1 for large firms

$$
F=\frac{(0.049-0.036) / 1}{(1-0.049) /(52-3)}
$$

$\mathrm{F}=\underline{0.013}$
0.0194
$\mathrm{F}=0.670$

Figure 5

F test model 1' for large firms
$F=\frac{(0.021-0.018) / 1}{(1-0.021) /(52-3)}$
$\mathrm{F}=\frac{0.003}{0.0199}$
$\mathrm{F}=0.151$

Because of the F table for small firms with $\mathrm{df}_{1}=4$ and $\mathrm{df}_{2}=69$ is only 2.53 and F table for large firms is 2.69 , while the F test model 2 is 0.143 and F test model 3 is 0.105 , or both of F test $<\mathrm{F}$ table, we can conclude that the best relationship in model 2 and model 3 either for small firms or large firms is linier. The coefficient of R^{2} model 2A for small firms is higher than coefficient of R^{2} model $3 A$ that is 0.028 and 0.011 . That result shows that earnings have more explanatory power than cash flows. This thing shows that cash flows do not give additional information for investor beside earnings. While the ceefficient of R^{2} model 2 for large firms is less than its coefficient of R^{2} model 3. By this result, we obtain that cash flows can give additional information for investor for large firms. This condition supports the hypothesis 3 (H3) which mentioned that cash flows give greater incremental information beyond earnings in large firms than small firms. So, hypothesis 3 is accepted.

Figure 6
F test model 2 for small firms
$F=(0.032-0.028) / 2$
$(1-0.032) /(74-5)$
$F=\frac{0.002}{0.01403}$
$F=0.143$
Figure 7
F test model 3 for small firms
$F=(0.014-0.011) / 2$
(1-0.014)/(74-5)

$$
F=\frac{0.0015}{0.0143}
$$

$F=0.105$

Figure 8

F test model 2 for large firms

$$
\begin{aligned}
& F=\frac{(0.055-0.048) / 2}{(1-0.055) /(52-5)} \\
& F=\frac{0.0035}{0.020} \\
& F=0.175
\end{aligned}
$$

Figure 9
F test model 3 for large firms
$F=\underline{(0.066-0.059) / 2}$ (1-0.066) / (52-5)
$\mathrm{F}=\underline{0.035}$
0.0198
$\mathrm{F}=1.77$

F table $(0.05 ; 4 ; 47)=2.69$

Table 4.6
Linier Regression Analysis for Small Firms

	Model 1A	Model 1'A	Model 2A	Model 3A	Model 4A
Constant	0.033	0.062	0.034	0.043	0.047
EPS	0.163		0.155		0.268
\triangle EPS		0.940	0.741		0.758
CFPS				0.382	0.920
\triangle CFPS				0.708	0.927
R^{2}	0.027	0.000	0.028	0.011	0.029

Table 4.7
Non Linier Regression Analysis for Small Firms

Table 4.8
Linier Regression Analysis for Large Firms

	Model 1A	Model 1'A	Model 2A	Model 3A	Model 4A
Constant	0.028	0.062	0.028	0.058	0.036
EPS	0.175		0.022		0.029
\triangle EPS		0.342	0.004		0.515
CFPS				0.562	0.852
\triangle CFPS				0.093	0.016
R^{2}	0.036	0.018	0.048	0.059	0.093

Table 4.9
Non Linier Regression Analysis for Large Firms

	Model 1B	Model 1' B	Model 2B	Model 3B	Model 4B
Constant	0.041	0.010	0.053	0.087	0.015
EPS	0.019		0.032		0.018
EPS ${ }^{2}$	0.420		0.555		0.405
\triangle EPS		0.035	0.808		0.950
$\triangle \mathrm{EPS}^{2}$		0.693	0.902		0.858
CFPS		ISLA	-	0.655	0.462
CFPS 2		<	Z	0.756	0.485
\triangle CFPS		$\overline{\text { co }}$	O	0.008	0.023
\triangle CFPS 2			Z	0.538	0.931
R^{2}	0.049	≥ 0.021	0.055	0.066	0.123
4.2.3 Debt Hypothesis Testing					

Table 4.10 and table 4.11 show the result of linier and non linier regression analysis for firms with high debt level. We can see that the R^{2} of model $1 \mathrm{~A}(0.031)$ increase to R^{2} of model $1 \mathrm{~B}(0.044)$ and R^{2} of model 1'A (0.001) increase to model 1'B (0.004). From that result, we can use the equation 3.8 to test whether the analysis used is linier or non linier. Here is the result:

Figure 10
F test model 1 for high debt firms
$\mathrm{F}=(0.044-0.031) / 1$
(1-0.044) / (61-3)

$$
\begin{aligned}
& F=\underline{0.013} \\
& F=0.0165 \\
& F=0.79
\end{aligned}
$$

Figure 11 F test model 1' for high debt firms
$F=(0.004-0.001) / 1$
$\mathrm{F}=\frac{0.003}{0.0172}$
$\mathrm{F}=0.17$

The result of F test model $1(0.79)$ and F test model $1^{\prime}(0.17)$ is less than the F table with $\mathrm{df}_{1}=2 \mathrm{df}_{2}=58$ that is 3.15 , or F test $<\mathrm{F}$ table, so the best model to describe the relationship is linier model. From the result, coefficient of R^{2} in model 1 A is higher than coefficient of R^{2} in model $1^{\prime} \mathrm{A}$. It means that current level of earnings (EPS) is the most significant accounting variable in explaining stock return in firms with high debt level or in other words, this research fulfills the hypothesis $\mathbf{4 a}$ (H4a).

Table 4.12 and table 4.13 show the result of linier and non linier regression analysis for firms with low debt level. The increase of R^{2} model $1 \mathrm{~A}(0.027)$ to R^{2} model 1B (0.049) and R^{2} model 1'A (0.000) increase to R^{2} model 1' $B(0.002)$. The result from equation 3.8 shows that F test model 1 (1.4) and F test model $1^{\prime}(0.13)$ are less than the F table with $\mathrm{df}_{1}=2$ and $\mathrm{df}_{2}=62$ that is 3.15 , so the result of linier model is used to test the hypothesis 4 b . The coefficient of R^{2} model 1 A is higher than coefficient of R^{2} model 1'A. This result shows that the most significant accounting
variable to explain stock return in firms with low debt level is level of earnings (EPS). It does not in line with hypothesis 4b (H4b)

Figure 12
F test model 1 for low debt firms
$\mathrm{F}=(0.049-0.027) / 1$
(1-0.049) / (65-3)
$\mathrm{F}=\underline{0.022}$
0.0153
$\mathrm{F}=1.4$
Figure 13
F test model 1' for low debt firms
$F=(0.002-0.000) / 1$
$(1-0.002) /(65-3)$
$\mathrm{F}=\frac{0.002}{0.016}$
$\mathrm{F}=0.13$

Because of the F table for firms with high debt level is only $3.32\left(\mathrm{df}_{1}=2\right.$ and $\mathrm{df}_{2}=58$) and F table for firms with low debt level is 3.15 , while the F test model 2 is 0.47 for high debt level, 0.78 for low debt level, and F test model 3 is 0.45 for high debt, 0.36 for low debt level, or both of F test $<\mathrm{F}$ table, we can conclude that the best relationship in model 2 and model 3 either for firms with high debt or debt level is linier. The coefficient of R^{2} model 2A (0.031) for high debt firms is higher than coefficient of R^{2} model $3 \mathrm{~A}(0.014)$. That result shows that earnings have more explanatory power than cash flows. This thing shows that cash flows do not give additional information for investor instead of earnings. While the coefficient of R^{2}
model $2(0.028)$ for firms with low debt level is less than the coefficient of R^{2} model 3 (0.037). By this result, we obtain that cash flows can give additional information for investor for low debt firms. From the analysis, we know that cash flows only can give additional information for firms with low debt level, so we conclude that this research does not support the hypothesis 5 (H5) which mentions that cash flows can give additional information for firms with high debt level than for firms with low debt level.

Figure 14

Figure 15
F test model 3 for high debt firms
$\mathrm{F}=(0.029-0.014) / 2$
(1-0.029) / (61-3)
$\mathrm{F}=\underline{0.0075}$
$\mathrm{F}=0.45$

Figure 16
F test model 2 for low debt firms
$F=(0.052-0.028) / 2$
(1-0.052) / (65-3)

$$
\begin{aligned}
& F=\frac{0.012}{0.0153} \\
& F=0.78
\end{aligned}
$$

Figure 17
F test model 3 for low debt firms
$F=\frac{(0.048-0.037) / 2}{(1-0.048) /(65-3)}$ (1-0.048)/(65-3)

$$
F=\frac{0.0055}{0.0154}
$$

$$
F=0.36
$$

Linier Regression Analysis for Firms with High Debt Level

	Model 1A	Model 1'A $^{\prime}$	Model 2A	Model 3A	Model 4A
Constant	0.094	0.111	0.098	0.079	0.235
EPS	0.175		0.182		0.296
\triangle EPS			0.844	0.899	
CFPS				0.381	0.733
\triangle CFPS				0.742	0.894
R^{2}	0.031	0.001	0.031	0.014	0.034

Table 4.11
Non Linier Regression Analysis for Firms with High Debt Level

	Model 1B	Model 1"B	Model 2B	Model 3B	Model 4B
Constant	0.237	0.101	0.291	0.059	0.202
EPS	0.126		0.139		0.254
EPS ${ }^{2}$	0.382		0.738		0.598
\triangle EPS		0.942	0.382		0.642
$\triangle \mathrm{EPS}^{2}$		0.665	0.834		0.402
CFPS		$\operatorname{los} \text { ISAM }$		0.608	0.380
CFPS 2			2	0.772	0.712
\triangle CFPS		$\frac{\square}{\square}$	10	0.398	0.705
$\triangle \mathrm{CFPS}^{2}$		व	Z	0.366	0.318
R^{2}	0.044	≥ 0.004	0.046	0.029	0.067
		$20) \iint_{\text {Table }} 4.12 \mid$			

Linier Regression Analysis for Firms with Low Debt Level

	Model 1A	Model 1'A	Model 2A	Model 3A	Model 4A
Constant	0.019	0.052	0.019	0.038	0.023
EPS	0.191		0.186		0.299
Δ EPS		0.951	0.796		0.912
CFPS				0.571	0.851
Δ CFPS				0.142	0.241
R^{2}	0.027	0.000	0.028	0.037	0.054

Table 4.13
Non Linier Regression Analysis for Firms with Low Debt Level

4.2.4 Life Cycle Hypothesis Jesting

Table 4.14 and 4.15 shows the result of linier and non linier regression analysis for growth firms. There, the R^{2} of model $1 A(0.019)$ increase to R^{2} in model $1 \mathrm{~B}(0.029)$. The increase of R^{2} will be used to conduct the Ramsey Test. From the result, the F test model 1 is 0.546 and F test for model 1 ' is 1.42 . Because the F table with $\mathrm{df}_{1}=2, \mathrm{df}_{2}=53$ is 3.15 means that F test $<\mathrm{F}$ table. So, the best model to describe the relationship is linier regression. The coefficient of R^{2} in model $1 A$ is higher than coefficient of R^{2} in model 1'A. So, our conclusion here is, for firms in
growth level, the level of earning is the most significant variable to explain the stock return. This thing is in line with the hypothesis $\mathbf{6 a}(\mathrm{H} 6 \mathrm{a})$.

Figure 18

F test for model 1 growth firms

$$
F=(0.029-0.019) / 1
$$

$$
(1-0.029) /(56-3)
$$

$\mathrm{F}=\frac{0.01}{0.0183}$
$F=0.546$
Figure 19
F test for model 1' growth firms
$F=(0.030-0.004) / 1$
(1-0.030)/(56-3)
$\mathrm{F}=\underline{0.026}$
0.0183
$\mathrm{F}=1.42$

The regression result in table -4.15 and table 4.16 show that R^{2} model 1 A (0.023) in firms with mature stages increases to model $1 \mathrm{~B}(0.031)$ and R^{2} model 1' A (0.033) increases in model $1^{\prime} B$ (0.001). This increase has tested previously by equation 3.8 to see whether the non linier model can increase the explanatory power of independent variable to the dependent variable. The result shows that F test model $1(0.55)$ and F test model $1^{\prime}(2.22)$ is less than F table with $d f_{1}=2$ and $d f_{2}=67$ that is 3.15. This result shows that the best relationship for both model 1 and 1 ' is linier. From coefficient of R^{2} model 1 A which is higher than coefficient of R^{2} model 1'A shows that level of earning (EPS) is the most significant accounting variable to
explain stock return for firms in mature stage. This condition does not support the hypothesis 6b (H6b).

Figure 20

F test model 1 for mature firms

$$
\begin{aligned}
& F=\frac{(0.031-0.023) / 1}{(1-0.031) /(70-3)} \\
& F=\underline{0.008} \\
& \mathrm{~F}=0.0145
\end{aligned}
$$

Figure 21
F test model 1' for mature firms $\mathrm{F}=(0.033-0.001) / 1$ (1-0.033)/(70-3)
$\mathrm{F}=\underline{0.032}$
0.0144
$F=2.22$

The result of equation 3.8 for model 2 and model 3 either for firms in growth stage or mature stages shows the best relationship for each model is linier. The result of equation 3.8 in growth firms shows that F test model (0.995 and 1.12) is less than the F table with $\mathrm{df}_{1}=4$ and $\mathrm{df}_{2}=51$ that is 2.69 . The different between coefficient of R^{2} model $2 \mathrm{~A}(0.026)$ and coefficient of R^{2} model $3 \mathrm{~A}(0.109)$ shows that cash flows can give additional information beyond earnings for firms in growth stages. For mature firms, the equation 3.8 results the F test model 2 is 0.27 and F test model 3 is 0.13 which is less than the F table with $\mathrm{df}_{1}=4$ and $\mathrm{df}_{2}=65$ that is 2.53 . The coefficient of R^{2} model 2A (0.023) is less than the coefficient of R^{2} model 3A (0.014)
shows that the most significant accounting variable in explaining stock return for mature firms is earnings. This result support the hypothesis 7 (H7) where the cash flows reveal greater incremental information beyond that contained in earnings for growth firms than for mature firms.

Figure 22

F test for model 2 for growth firms
$F=(0.064-0.026) / 2$
(1-0.064) / (56-5)
$F=\underline{0.019}$
0.0191
$\mathrm{F}=0.995$
Figure 23
F test for model 3 for growth firms
$F=\underline{(0.148-0.109) / 2}$
(1-0.148) / (56-5)
$\mathrm{F}=\underline{0.0195}$
0.0174
$\mathrm{F}=1.12$

Figure 24
F test for model 2 mature firms
$\mathrm{F}=\frac{(0.031-0.023) / 2}{(1-0.031) /(70-5)}$
(1-0.031)/(70-5)
$F=\underline{0.004}$
$\mathrm{F}=0.27$
Figure 25
F test model 3 for mature firms
$F=\frac{(0.018-0.014) / 2}{(1-0.018) /(70-5)}$

$$
\begin{aligned}
& F=\frac{0.002}{0.015} \\
& F=0.13
\end{aligned}
$$

Table 4.14
Linier Regression Analysis for Growth Firms

	Model 1A	Model 1'A	Model 2A	Model 3A	Model 4A
Constant	0.044	0.075	0.038	0.047	0.030
EPS	0.310		0.275		0.328
\triangle EPS		0.640	0.530		0.730
CFPS		1 SLAM		0.698	0.676
Δ CFPS			2	0.011	0.035
R^{2}	0.019	0.004	0.026	0.109	0.126

Table $4.15{ }^{\text {III }}$
Non Linier Regression Analysis for Growth Firms

	Model 1B	Madel 1'B Model 2B	Model 3B	Model 4B	
Constant	0.037	Mo.051	0.021	0.091	0.031
EPS	0.293		0.252		0.118
EPS 2	0.464		0.411		0.179
\triangle EPS 2		0.341	0.444		0.533
Δ EPS 2		0.238	0.268		0.399
CFPS				0.652	0.941
CFPS 2				0.757	0.901
Δ CFPS				0.005	0.037
Δ CFPS 2				0.014	0.024
\mathbf{R}^{2}	0.029	0.030	0.064	0.148	0.208

Table 4.16
Linier Regression Analysis for Mature Firms

	Model 1A	Model 1'A	Model 2A	Model 3A	Model 4A
Constant	0.028	0.045	0.029	0.029	0.062
EPS	0.210		0.227		0.403
Δ EPS		0.755	0.915		0.921
CFPS				0.327	0.967
\triangle CFPS				0.853	0.939
R^{2}	0.023	0.001	0.023	0.014	0.023

ISLAM

Non Linier Regression Analysis for Mature Firms

	Model 1B	Model 1'B	Model 2B	Model 3B	Model 4B
Constant	0.062	0.044	0.069	0.036	0.106
EPS	0.199			0.227	
EPS 2	0.462		0.485		0.329
\triangle EPS		0.864	0.906		0.574
\triangle EPS 2		0.756	0.848		0.830
CFPS $^{\text {CFPS }}$					0.689
Δ CFPS 2				0.849	0.811
\triangle CFPS 2				0.625	0.624
R^{2}	0.031	0.033	0.031	0.018	0.038

Table 4.18
Hypothesis Table

H1	Non-linier model can increase the explanatory power of earnings and cash flows to stock return rather than linier model.
H2a H2b	For small company, the current level of earnings (EPS) is more relevance in explaining stock returns (R) than current changing of earnings (\triangle EPS). For large firms, the current change of earnings ($\triangle \mathrm{EPS}$) is more relevance in explaining stock returns (R) than the current level of earnings (EPS).
H3	Cash flows (CFPS) reveal greater incremental information beyond that contained in earnings for large firms than for small firms.
H4a H4b	For firms with high debt level, the current level of earnings (EPS) is more relevance in explaining stock return than changing of earning ($\triangle E P S$) For firms with loy debt level, changing of earning ($\triangle \mathrm{EPS}$) is more relevance in explaining stock return than current level of earnings (EPS)
H5	Cash flows (CFPS) reveal greater incremental information beyond that is contained in earnings for firms with high debt level than for firms with low debt level.
H6a H6b	For growth firms, current level of earning (EPS) is more relevance in explaining stock return than changing of earnings ($\triangle E P S$) For mature firms, changing of earnings ($\triangle \mathrm{EPS}$) is more relevance in explaining stock return than level of earnings (EPS)
H7	Cash flows (CFPS) reveal greater incremental information beyond that one contained in earnings for growth firms than for mature firms.

Table 4.19

Hypothesis Testing Result

Hypothesis	Result	Hypothesis Status
H1	F test (1.9) < F table (2.02)	Rejected
H2a	R^{2} model $1 \mathrm{~A}(0.027)>\mathrm{R}^{2}$ model 1' $\mathrm{A}(0.000)$	Accepted
H 2 b	R^{2} model 1 A (0.036) > R^{2} model 1'A (0.018)	Rejected
H3	Small firms: R^{2} model 2A $(0.028)>\mathrm{R}^{2}$ model 3A (0.011) Large Firms: \mathbf{R}^{2} model $2 \mathrm{~A}(0.048)<\mathrm{R}^{2}$ model 3A (0.059)	Accepted
H4a	R^{2} model 1 $\mathrm{A}(0.031)>\mathrm{R}^{2}$ model 1 ${ }^{2} \mathrm{~A}(0.001)$	Accepted
H4b	R^{2} model 1 $\mathrm{A}(0.027)>\mathrm{R}^{2}$ model 1 $\mathrm{C}^{\text {A }}$ (0.000)	Rejected
H5	Low Leverage R^{2} model 2A $(0.028)<\mathrm{R}^{2}$ model 3A (0.037) High leverage : R^{2} model $2 \mathrm{~A}(0.031)>R^{2}$ model $3 \mathrm{~A}(0.014)$	Rejected
H6a	R^{2} model 1A (0.019) $>\mathrm{R}^{2}$ model 1' $\mathrm{A}(0.004)$	Accepted
H6b	R^{2} model 1 $\mathrm{A}(0.023)>\mathrm{R}^{2}$ model 1'A (0.001)	Rejected
H7	Growth Firms: R^{2} model $2 \mathrm{~A}(0.026)<\mathrm{R}^{2}$ model 3A (0.109) Mature Firms : R^{2} model $2 \mathrm{~A}(0.023)>\mathrm{R}^{2}$ model 3A (0.014)	Accepted

Table 4.20
Variable Result

Group of Firms	The Most Relevance earnings variable	Additional Information impact of cash flows
Small Firms Large Firms	Level of Earning (EPS) Level of Earning (EPS)	Lower Higher
High debt Level Low debt Level	Level of Earning (EPS) Level of Earning (EPS)	Lower Higher
Growth Firms Mature Firms	Level of Eaming (EPS) Level of Earning (EPS)	Higher Lower

Table 4.19 shows the result of the best variable used by firms based on their attributes. For all firms, the researcher found that current earning level is the most relevance variable to stock return regardless what firms are. It means that investor prefer to use earnings level when they do investment without see the kind of firms. This condition might be happened because almost firms in Indonesia especially food and beverage industries have been had earnings permanence to be earned. So, the investors believe only by considering the earnings they can invest their money in a firm. Beside that, the investors want the simplest way to measure performance of a firm. This is also possible that investors do not consider at all giving attention in firms' specific attribute. They do not care about the group of firms in Indonesia. This finding is strengthen by the findings by Ball and Brown (1968) that was quoted by Martinez (2003) that is earnings have positive relationship to stock return. So, it has
been long time for investor considering the earnings to measure the performance of company.

For large firms, cash flows reveal greater information than for small firms. Researcher groups the firms based on their size using logarithm of asset. Small firms have fewer assets than large firms. This condition perhaps make investors do not give more attention in cash flows of small firms because they only have small number of asset. Cash is one of asset component. The changing in cash will affect the number of asset. That is why for small firms, cash flows information give low impact to investor attitude that will affect the stock return. In the other side, cash flows information gives high impact to stock return.

Firms with high debt level have more debt than asset. In the other word, it can be said that firms with high debt level have only little portion of asset. This is possible for them to have few of cash. The cash fluctuate is not also consider much by investor. So, the information of cash flows does not attract the investor when they do investment. That is why, cash flows information only gives low impact to stock return in firms with high debt level. But in the other hand, information of cash flows in firms with low debt level is interested by investor so it can give high impact in stock return. This condition might be appeared because the number of asset in firms with low debt level is high and the attractiveness of asset also high.

For growth firms, firms still find target market to get position. It needs a lot of cash to be spent. So, the cash outflows and cash inflows are very interesting to be
considered. The information of cash flows is also interesting for investors. May be, it makes the information of cash flows give high impact to stock return for growth firms. This condition does not happened in mature firms. The mature firms have had permanence position and they do not need spend a lot of cash to find more target market. They only concentrate in profit that can be earned. That is why, the information of cash flows does not give high impact to stock return because investor regard that firms in mature level do not use more asset especially cash than firms in growth level.

The last, other academicians can use this research as a reference to conduct next research about anotherrelationship between accounting variables and stock return.

4.3 Comparison to Previous Research

Several previous studies tested about relationship between accounting variables such as earnings and cash flows and stock return. Earnings and cash flow, which is found in the financial statement, is good indicator to measure the changes of firm successful management. These changes can effect to the financial policy of the company, like debt payment, investment and decision about dividend policy. That kind of policy can affect investor act to company's shares included the price itself. Unfortunately, investor's act can not be predicted certainly and it is not same each other. In the linier test, there is coefficient which is permanent factor that can not be
changed to every investor. So, if an investor has positive reaction to an event, the other investor will have positive reaction also to that event. Because the attitude of investors are different each other, several researchers have tried to use non-linier model, then they can give description about more flexible investor attitude.

From the result, the researcher obtain that linier is the best model to describe the relationship between accounting variables and stock return for all data of food and beverage companies. This finding is same with Jogiyanto and Indriyana research who found that the best relationship befween earnings and cash flows to stock return is linier for all manufacturing firms. But, this is not like what Martinez did previously by taking samples of all manufacturing companies in French. He tested whether the explanatory powers of accounting variables can be improved by using a nonlinear specification.

The linier relationship reflects the factors affecting the stock return. Perhaps the linier relationship shows strong relationship between accounting variables, such as earnings and cash flows and stock return. The investor and creditor attitude in this matter does not give big impact to the relationship or in the other hand investor in Indonesia tend to have similar action in responding event happened in stock exchange or investor in Indonesia have similar information about a firm.

Every company has different financial characteristics from others. Those differences will make the relevance of the accounting number also different with the other. The size of firm, the degree of debt, and life cycle of the firm can be used to
represent the financial characteristic of the company. Usually, investor considers about earning changing when they do transaction in stock exchange to compare the increasing or decreasing earnings of the firm. But in this research, the researcher found that either for small firms or large firms, earnings level is more relevance than changing of earnings to the stock return. This thing is happened may because investor want the simply way to make analysis of a firm performance so that it will easy to be compared to other firms. Different with Jogiyanto and Indriyana findings, they found that changing of earnings is more relevance to stock return than earnings level either for small or large firms.

Furthermore, the researcher found that cash flows can give greater incremental information beyend earnings in large firms than small firms. Cash are included in asset. For firms that grouped based on their size, the researcher uses asset logarithm to be compared. Because the cash is included in asset component, it may cause the cash flows are regarded as indicator to measure the performance of the firm by investor before they invest their money in that firms. But, this is not in line with what Martinez and Jogiyanto did. Both of that research found that the earnings are the most relevance indicator for company, either for large or small company while cash flows are not relevance.

For debt level, the researcher found that earnings level is more relevance to stock return than earnings changing either for high debt level or low debt level. But, this condition did not happen in Jogiyanto and Indriyana research. They found that
changing of earnings is more relevance to stock return than earnings per share for both firms with high debt level and low debt level. Researcher also found that cash flows only give incremental information for firms with low debt level. It is contradiction with Jogiyanto research that found that cash flows give incremental value for firms with high debt level. While Martinez (2003) stated that in France, the company whether it has high debt leverage or low leverage; both can use earnings to give additional information rather than cash flows.

Level of earnings is found more relevance than changing of earning to explain stock return for both growth and mature firms in this research. Differently from Jogiyanto result which mentioned that changing of earnings is more relevance for all manufactured firms. Similar With Jogiyanto and Indriyana research, reseacher found that cash flows give greater information than earnings for growth firms instead of mature firms. This result also simitar with Martinez findings who tested the manufactured firms in French.

4.4 Research Implication

The findings of the hypothesis and the relationship between accounting variables such as earnings and cash flows and stock return of food and beverages companies in Indonesia may give several contribution and implication. For researcher these findings give knowledge that the other accounting variable that can be a measurement of company's performance could be cash flows instead of earnings.

But, this condition does not happen in all companies because every company has different financial characteristic. May be in one company, the cash flows can be used to give additional information of its performance and on the other side it does not.

For the investors and creditors who want to spend their money in one or more companies' shares, they should consider many things especially the variable used in this research. Beside that, investors and creditors also should consider about the differential characteristic of financial companies that they want to join because the characteristics themselves can give influencel to the accounting variables that are used to measure the performance of the company. They should consider about size of firms, degree of debt, and how long the companies have been established. Because all that characteristics also can affect how companies; management do their duties.

From the result, investor and creditor should consider about earnings level rather than earning changing if they decide to invest their money in firms which has either small number or large number of asset because earning is more relevance to stock price than earnings changing. Beside that, they also may use cash flows to get additional information in explaining stock return better than earnings because may be cash flows is not contaminated by measurement problem and provide the most objective measurement about liquidity. Here, cash flows are expected to be able to give more additional information for large companies.

To have investment by considering the debt level of company, investor and creditor should concern about the level of earnings rather than the changing of
earning. For firms with high level of debt, the investor should give attention to earnings rather than to cash flows because earning relates directly to the debt of company. The increase of company's debt will decrease the income or earnings of company. But, for low debt level, investor can use cash flows to get more additional information about the company's performance.

By considering the age of company or company's life cycle, whether the company is in growth level or matures, the investor and creditor should concern about level of earning that more relevance to stock return than to changing of earning. Furthermore, the investor and creditor can get more additional information from cash flows than earnings for firmsin growth stage. In growth stage, companies still keep trying to get market target and only gain small income. Companies spend a lot of cash to fund the product development, market expansion, and increase the capacity of product. That is why; in this stage companies have unstable earnings. While in mature level, the companies have had strong target market, so they can earn more stable positive income than firms in growth level.

BIBLIOGRAPHY

Adfan, P. 2004. Analisis Kemampuan Laba per Lembar Saham dan Firm Size Dalam Memprediksi Komponen Arus Kas Masa Depan. Tesis. Not Published. UGM, Yogyakarta.

Ali A. 1994. The Incremental Information Content of Earnings, Working Capital from Operations and Cash Flows. Journal of Accounting Research. Vol. 32:61-74.

Ashari and Santosa, Budi. 2005. Analisis Statistik dengan Microsoft Excel dan SPSS. Penerbit Andi: Yogyakarta.

Atmini,Sari. 2002. Asosiasi Siklus Hidup Perusahaan dengan Incremental ValueRelevance InformasiLaba dan Arus Kas. Jurnal Riset Akuntansi Indonesia, vol. 5 No. 3 : 257-276.

Baridwan, Z. 1997. Analisis Nilai Tambah Informasi Laporan Arus Kas. Jurnal Ekonomi dan Bisnis Indonesia, 12. 2: 1-44.

Black E.L., 1998, Which is more value relevant: earnings or cash flows? A life cycle examination, Working paper SSRN, http://www.ssrn.com.

Cliff, Englewood. 1991. Financial Ratio Analysis. Prentice Hall.
Das S. and Lev B. 1994. Non-linearity in the returns-earnings relation: tests of alternative specifications and explanations. Contemporary Accounting Research, vol. 11, ndeg1, pp. 353-379.

Dominiak, Geraldine. 1990. Managerial Accounting, Kent Publishing Company: Boston.

Gujarati, Damodar N. 1995. Basic Econometrics. International Edition. McGraw Hill International.

Hansen. 1996. Financial Statement Analysis. International Edition. Mc.Graw Hill International.

Indriana, N.S. and Jogiyanto Hartono. 2005. Pengaruh Atribut Perusahaan Terhadap Relevansi Laba dan Arus Kas. Jurnal Riset Akuntansi Indonesia, vol.8, No. 3 : 211-234.

Indriantoro, N and Bambang Supomo. 2002. Metodologi Penelitian Bisnis Untuk Akuntansi dan Manajemen. Yogyakarta: BPFE.

Kieso and Weygandt. 2002. Accounting Principles. International Edition. John Willey and Sons, Inc.

Martinez I. 2003. The Impact of Firm-Specific Attributes on the Relevance in Earnings and Cash Flows: a Nonlinear Relationship Between stock Returns and Accounting Numbers. Review of Accounting and Finance : 16-39.

Sulaiman Wahid. 2004. Analisis Regresi Menggunakan SPSS. Penerbit Andi: Yogyakarta

Walpole, Ronald. 1993. Introduction to Statistic 3rd Edition. Gramedia Pustaka Utama.

APPENDCES 1

TOTAL ASSET (In Million Rupiah)

TOTAL LIABILITIES (in million Rupiah)

Price Book Value (PBV)

Number of Shares

No	Emiten	1997	1998	1999	2000	2001	2002	2003	2004
1	ADES	76,000,000	76,000,000	76,000,000	76,000,000	76,000,000	76,000,000	76,000,000	76,000,000
2	AQUA	13,162,473	13,162,473	13,162,473	13,162,473	13,162 A73	13,162,473	13,162,473	13,162,473
3	AISA	45,000,000	135,000,000	135,000,000	135,000,000	135,000,000	365,000,000	1,045,000,000	1,045,000,000
4	CEKA	119,000,000	297,500,000	297,500,000	297,500,000	297,500,000	297,500,000	297,500,000	297,500,000
5	DAVO	170,380,650	170,380,650	170,380,650	170,380,650	454,348,400	377,065,820	1,240,371,132	1,240,371,132
6	DLTA	2,940,819	2,940,819	3,361,166	16,013,181	$\begin{aligned} & 16,013,181 \\ & \end{aligned}$	RSIT	$16,013,181$	16,013,181
7	FAST	44,625,000	44,625,000	44,625,000	446,250,000	46,250,000	446,250,000	446,250,000	446,250,000
8	INDF	1,831,200,000	1,831,200,000	1,831,200,000	9,156,000,000	9,156,000,000	9,384,900,000	,443,269,500	944,160,000
9	MYOR	766,584,000	766,584,000	766,584,000	766,584,000	766,584,000	766,584,000	766,584,000	766,584,000
10	MLBI	3,520,012	3,520,012	3,520,012	3,520,012	,	$3,520,012$ N)	21,070,000	21,070,000
11	PTSP	124,000,000	124,000,000	124,000,000	124,000,000	220,808,000	220,808,000	220,808,000	220,808,000
12	PSDN	360,000,000	360,000,000	360,000,000	360,000,000	360,000,000	360,000,000	360,000,000	360,000,000
13	SHDA	119,355,500	176,049,363	176,049,363	183,523,172	183,523,172	188,352,433	188,352,433	188,352,433
14	SKLT	75,600,000	75,600,000	75,600,000	75,600,000	75,600,000	75,600,000	75,600,000	75,600,000
15	STTP	95,000,000	95,000,000	95,000,000	247,000,000	1,310,000,000	1,310,000,000	1,310,000,000	1,310,000,000
16	SMAR	252,000,000	252,000,000	252,000,000	252,000,000	397,360,000	397,360,000	397,360,000	397,360,000
17	SUBA	22,500,000	22,500,000	45,000,000	720,000,000	2,160,000,000	2,160,000,000	2,160,000,000	2,160,000,000
18	UTJY	220,067,200	220,067,200	385,117,600	385,117,600	1,925,588,000	1,925,588,000	1,925,588,000	1925

Operating Cash Flows (CFO)

NO	Emiten	1997	1998	1999	2000	2001	2002	2003	2004
1	ADES	(201,874,919)	87,906,161,605	6,678,474,982	14,398,708,355	23,559,135,987	31,120,572,708	9,531,000,000	(16,384,000,000)
2	AQUA	54,809,000,873	19,585,208,508	52,400,843,596	75,498,77,506	79,720,211,569	67,096,163,554	58,270,295,848	84,618,259,914
3	AISA	(50,614,338,639)	49,417,176	9,648,154,375	4,589,446,063	(785,902,674)	13,470,235,200	6,913,114,155	14,24,244,556
4	CEKA	13,731,338,348	($67,565,296,938)$	30,621,558,197	(7,492,405,802)	13,083,863,676	14,864,767,137	16,843,169,543	28,924,682,905
5	Davo	133,894,455,550	30,239,224,975	1,228,775,789	47,975,679,0,	1,219,224	157,13, ${ }^{\text {, }}$, 2,473	132,804,202,714	242,454,394,327
6	DLTA	(22,054,883,000)	62,568,401,000	56,132,841,000	$42,943,000,000$	14,903,639,000	40,546,000,000	16,762,597,000	101,149,217,000
7	FAST	23,623,615,000	8,268,118,000	40,630,475,000	$7,160,998,000$	60,351,904,000	$\text { (})$	73,506,968,000	99,236,988,000
8	INDF	818,054,809,051	1,157,239,212,206	1,897,348,588,719	$1,634,872,543,839$,194,561,086,987	$(251,784,155,137)$	1,557,249,832,251	1,838,794,101,297
9	MYOR	$(49,417,176)$	(1,263,518,058)	45,435,019,258	$26,631,301,312$	$60,393,100,515$	$116,021,872,851$	128,373,691,254	103,732,421,550
10	MLBI	40,408,619,000	128,225,689,000	124,320,001,000	$128,199,675,000$	29,389,558,000	$\mathrm{N}_{102,564,970,000}$	109,629,000,000	150,110,000,000
11	PTSP	5,301,624,000	(1,163,718,000)	1,338,428,000	17,112,876,855	16,501,803,372	20,017,324,637	17,385,682,068	19,596,822,89
12	PSDN	28,819,502,147	(30,343,903,385)	(47,488,762,705)	5,633,628,004	26,035,385,625	(30,677, 828,772)	(56,700,105,536)	18,111,532,289
13	SHDA	16,594,339,382	(9,359,081,067)	111,699,786,000	80,889,663,000	23,369,600,000	151,294,000,000	316,636,000,000	252,295,000,000
14.	SKLT	(24,045,099,263)	23,329,367,411	3,390,315,189	1,915,527,708	6,947,714,699	(3,347,737,338)	(2,845,990,458)	1,186,882,583
15	STTP	(1,162,314,822)	32,198,721,707	21,175,575,022	8,064,988,763	67,105,853,769	22,016,186,840	(27,191,367,916)	7,222,652,279
16	SMAR	275,747,914,600	92,264,950,798	449,124,589,551	85,277,286,871	97,988,744,694	175,543,260,715	184,377,578,742	282,225,801,435
17	SUBA	67,667,306	1,118,916,560	(266,418,775)	(12,731,949,471)	(23,442,286,019)	(76,948,521,840)	(144,518,663,471)	(50,426,377,298)
18	UTTY	(41,502,333,376)	22,424,077,937	11,582,301,054	3,980,161,563	10,369,179,281	31,660,614,497	4,055,042,358	35,588,548,288

ASSET LOGARITHM

NO	Emiten	1998	1999	2000	2001	2002	2003	2004
1	ADES	5.475	5.399	5.342	5.317	5.316	5.283	5.013
2	AQUA	5.246	5.321	5.533	5.711	5.730	5.719	5.827
3	AISA	5.261	5.248	5.115	5.056	5.528	5.531	5.571
4	CEKA	5.486	5.461	5.458	5.483	5.478	5.470	5.463
5	DAVO	5.634	5.762	5.778	5.883	5.899	5.951	6.198
6	DLTA	5.504	5.485	5.587	5.540	5.566	5.596	5.658
7	FAST	5.109	5.130	5.271	5.323	5.388	5.448	5.509
8	1NDF	7.045	7.027	7.099	7.117	7.088	7.185	71.95
9	MYOR	6.128	6.117	6.118	6.122	6.125	6.109	6.107
10	MLBI	5.664	5.614	5.637	5.714	$\checkmark 5.62$	N5.684	>5.747
11	PTSP	5.046	5.131	5.168	5.130	5.097	5.047	4.928
12	PSDN	5.843	5.828	5.727	5.676	5.548	5.243	5.254
13	SHDA	5.448	5.591	5.735	5.901	5.971	6.050	6.086
14	SKLT	5.288	5.249	5.149	5.106	5.081	5.046	5.051
15	STTP	5.201	5.363	5.532	5.606	5.673	5.704	5.672
16	SMAR	6.408	6.443	6.593	6.591	6.553	6.560	6.599
17	SUBA	4.816	4.722	5.777	5.870	5.948	6.052	6.004
	ULTY	5.678	5.844	5.849	5.987	6.008	6.050	6.114

TOTAL LIABILITIES / TOTAL ASSET

NO	Emiten	1998	1999	2000	2001	2002	2003	2004
1	ades	1.032	1.037	0.588	1.000	0.580	0.530	330
2	AQUA	0.624	0.615	0.637	0.679	0.578	0.473	0.461
3	AISA	0.978	1.047	1.840	2.322	1.089	0.720	0.745
4	CEKA	0.374	0.270	0.226	0.286	0.244	0.226	0.295
5	davo	0.804	0.856	1.110	0.392	0.370	0.339	0.563
6	DLTA	0.655	0.385	0.439	0.260	0.196	0.197	0.22
7	FAST	0.615	0.542	0.556	0.505	. 44	0.409	0.397
8	INDF	0.910	0.774	0.756	0.719	0.946	0.733	0.680
${ }_{9}$	MYOR	0.572	0.527	0.545	0.526	0.435	0.365	0.311
10	MLBI	0.598	0.397	0.504	0.436	0.40415	10.45	0.527
11	PTSP	1.59	1.171	1.023	0.879	0.787	0.819	0.959
12	PSDN	0.999	1.412	2.537	3.245	5.080	1.509	1.469
13	SHDA	0.128	0.151	0.157	0.146	0.105	0.128	0.161
14	SKLT	1.887	1.994	3.206	4.049	3.873	4.018	4.366
15	STTP	0.186	0.209	0.363	0.408	0.428	0.406	0.324
16	SMAR	0.845	0.829	1.003	1.154	1.094	1.070	1.088
17	SUBA	0.908	0.940	0.429	0.291	0.433	0.658	0.76
18	ULTY	0.410	0.353	0.326	0.478	0.484	0.129	0.600

Book to Market Value

No	Emiten	1998	1999	2000	2001	2002	2003	2004
1	ADES	0.314	-0.119	0.518	0.926	1.587	1.163	0.052
2	AQUA	1.852	0.769	0.671	0.358	0.446	0.429	0.562
3	AISA	-1.163	0.154	-2.703	-7.143	-0.250	0.405	0.433
4	CEKA	0.352	0.662	2.778	4.545	3.226	3.448	2.273
5	Davo	1.235	0.719	-1.370	1.961	4.545	0.232	0.556
6	DLTA	4.000	1.190	1.818	2.128	2273	NI2326	S4. 515
7	FAST	1.923	0.146	0.196	0.300	0.340	0.402	0.415
8	INDF	0.086	0.150	0.431	0.621	0.649	0.541	0.562
9	MYOR	1.754	0.847	1.408	2.564	$\underline{2.564}$	1.205	0.943
10	MLBI	0.211	0.294	0.300	0.658	0.488	0.398	0.295
11	PTSP	-2.703	-1.493	-0.147	0.408	10.0242	150.228	C0.013
12	PSDN	-0.072	-1.613	-14.286	-33.333	-33.333	-2.500	-2.632
13	SHDA	0.704	0.538	0.556	0.400	0.444	0.358	2.703
14	SKLT	-14.286	4.167	-7.692	-12.500	-11.111	-12.500	-11.111
15	STTP	0.725	0.488	0.114	0.676	0.794	1.282	1.351
16	SMAR	0.763	0.476	-0.015	-2.500	-1.613	-0.27	-0.379
17	SUBA	0.357	0.234	2.632	8.333	50.000	11.111	8.333
18	ULTY	2.000	0.235	0.211	0.376	0.455	0.645	0.658

Stock Return ($\mathbf{R}_{\mathbf{i}}$)

NO	Emiten	1998	1999	2000	2001	2002	2003	2004
1	ADES	0.875	-0.610	-0.554	1.000	0.552	-0.293	-0.568
2	AQUA	0.389	-0.663	-0.429	-0.600	-0.067	-0.215	-0.004
3	AISA	0.286	-0.563	0.333	0.500	-0.467	0.556	0.071
4	CEKA	-0.231	0.814	2.116	0.588	-0.319	0.044	-0.237
5	DAVO	1.625	-0.407	1.368	-0.288	4.833	-0.780	1.103
6	DLTA	4.000	-0.798	0.338	-0.026	-0.073	R	-0.057
7	FAST	16.333	2.286	0.188	0.357	-0.139	0.029	-0.396
8	INDF	-0.556	-0.537	10.290	0.240	0.042	-0.250	0.028
9	MYOR	0.188	-0.595	0.727	0.83	-0.158	-0.566	-0.300
10	MLBI	-0.138	0.000	0.176	0.619	-0.236	-0.141	-0.247
11	PTSP	12.143	-0.111	1.619	-0.400	-0.673	0.711	-0.059
12	PSDN	1.000	-0.632	1.969	0.684	-0.240	0.136	0.048
13	SHDA	1.532	-0.436	-0.222	-0.514	-0.075	-0.310	-0.237
14	SKLT	0.400	-0.773	0.000	0.375	0.000	0.143	-0.222
15	STTP	-0.506	-0.487	0.411	0.813	-0.614	-0.915	-0.942
16	SMAR	-0.740	-0.538	0.411	2.500	0.143	-0.772	-0.008
17	SUBA	0.133	-0.571	3.861	5.000	0.000	-0.760	0.316
18	UTJY	0.600	-0.375	-0.149	0.679	0.167	0.333	0.139

Earning Changing (\triangle EPS)

Emiten	1998	1999	2000	2001	2002	2003	2004
ADES	-1.519	2.850	1.278	-0.630	0.206	-0.070	-1.012
AQUA	0.228	0.029	0.175	0.052	0.039	-0.006	0.045
AISA	-0.898	2.097	-1.643	1.483	3.155	-0.600	0.042
CEKA	-0.223	0.171	-0.086	0.041	0.306	-0.094	-0.396
Davo	-0.424	0.738	-1.276	3.102	0.008	-0.033	0.002
dLTA	0.190	1.199	-0.143	0.086	0.002	-0.055	0.007
FAST	-0.117	0.997	-0.226	-0.001	0.034	$\mathrm{U}_{-0.003}$	VERST
INDF	0.502	0.126	-0.079	0.014	0.006	- -0.037	0.005
MYOR	0.025	0.047	-0.094	0.129	0.359	-0.121	0.001
MLBI	-0.028	0.053	0.037	0.028	-0.065	0.009	0.006
PTSP	-0.181	5.795	-1.255	0.857	-0.267	-0.168	0.145
PSDN	-1.260	-1.23	-1.541	5.156	4.158	$\underline{26.824}$	S ${ }_{20.63}$
SHDA	0.051	0.219	0.064	0.113	-0.031	0.023	-0.017
SKLT	-2.749	11.488	-3.129	1.367	3.955	-1.040	-2014
STTP	0.027	0.039	-0.071	-0.007	0.022	0.004	-0.011
Smar	1.069	0.216	-0.610	-0.060	3.708	-1.017	-0.194
SUBA	-0.635	0.616	0.066	0.039	-2.833	-14.167	0.424
ULTY	0.025	-0.002	-0.011	-0.003	-0.009	-0.010	-0.004

Operating Cash Flows per Share (CFPS)

No	EMITEN	1997	1998	1999	2000	2001	2002	2003	2004
1	ADES	-2.656	1,156.660	87.875	189.457	309.989	409.481	125.408	-215579
2	AQUA	4,164.035	1,487.958						
			1,487.938	3,981.079	5,735.911	6,056.629	5,097.535	4,427.002	6,428.751
3	AISA	-1,124.763	0.366	71.468	33.996	-5.822	36.905		
4								6.615	13.621
		115.389	-227.110	102.930	-25.185	43.979	49.966	56.616	97.226
5	DAVO	785.855	177.480	7.799	281.579	.	41673		
6	DLTA	-7,499.572				- 1	NTVER	STTAS	195.469
			21,275.842	16,700.407	2,681.728	, 930.711	2,532.039	1,046.800	6,316.622
7	FAST	529.381	185.280	910.487	159.464	135.242	172.546	164.72	222380
8	INDF	446.732	631.957	1,036.123	178.558	130.468	-26.829	164	1,947545
9	MYOR	-54.139	-1.6+8						1,947.545
				59.269	34.740	78.782	151.349	7.462	135.318
10	MLBI	11,479.682	36,427.628	35,318.062	36,420.238	$22,553.775$	[29,421,766\|	5,203.085	7124347
11	PTSP	42.755	-9.385	10.794					
					138.007	74.734	90.655	78.737	88.751
12	PSDN	80.054	-84.289	-131.913	15.649	72.321	-85.216	-157.500	
13	SHDA	139.033							50.310
			-53.162	634.480	440.760	127.339	803.250	1,681.083	1,339.484
14	SKLT	-318.057	308.590	44.845	25.338	91.901	-44.282	-37645	
15	STTP	-12.235	338.934						15.700
			338.934	222.901	32.652	51.226	16.806	-20.757	5.513
16	SMAR	1,094.238	366.131	1,782.240	338.402	246.599	441.774	464.006	
17	SUBA	3.007						464.006	710.252
18	UTIY	-188.589	-11.841	-282.932	-17.683	-10.853	-35.647	-66.907	-23.346
			101.8\%	30.075	10.335	5.385	16.412	2.095	18.482

CFPS changing (\triangle CFPS)

No	Emiten	1998	1999	2000	2001	2002	2003	2004
1	ADES	1.546	-2.672	0.099	0.052	0.088	-0.392	-0.333
2	AQUA	-0.714	0.923	0.219	0.023	-0.027	-0.018	0.042
3	AISA	5.001	0.406	-0.094	-0.133	0.267	-0.087	0.031
4	CEKA	-0.228	0.169	-0.119	0.256	0.037	0.028	0.180
5	Davo	-0.579	-0.424	0.406	-0.130	0.328		0.2
6	DLTA	2.878	-2.288	-1.416	-0.237	, 0.211	-0.181	0.606
7	FAST	-0.088	1.261	-0.791	-0.025	0.048	0.009	0.062
8	INDF	0.103	0.100	-0.098	-0.062	- 0.0	0.320	2.228
9	MYOR	0.111	0.143	-0.026	0.080	0,227	0.042	-0.037
10	MLBI	0.723	-0.028	0.028	-0.408	10.3327	IS $=0.881$	$\square 10.060$
11	PTSP	-0.023	0.101	0.463	-0.603	0.088	-0.024	0.025
12	PSDN	-0.470	-0.272	0.311	0.354	-1.658	-0.578	1.889
13	SHDA	-0.038	0.348	-0.055	-0.070	0.073	0.088	-0.024
14	SKLT	3.581	-2.110	-0.035	0.121	-0.340	0.017	0.152
15	STTP	0.351	-0.057	-0.048	0.013	-0.127	-0.144	0.146
16	SMAR	-1.533	0.776	-0.366	-0.033	0.244	0.032	0.080
17	SUBA	-0.035	-0.723	0.303	0.038	-0.826	-1.042	0.348
18	UTTY	0.290	-0.115	-0.020	-0.004	0.016	-0.024	0.036

APPENPICES2

REGRESSION RESULT

Non Linearity Hypothesis for All Firms (Hypothesis 1)

1. Linier Model (Model 4a)

Variables Entered/Removed ${ }^{\text {D }}$

Model	Variables Entered	Variables Removed	Method
1	dCFPS. CFPS, dEPS, EPS		Enter

a. All requested variables entered.

a. Predictors: (Constant), dCFPS, CFPS, dEPS, EPS

Model		Sum of Squares		Mean Square	F	$\frac{\text { Sig. }}{.004^{a}}$
1	Regression	19.952	4	4.988	3,005	
	Residual	600.397	121	4.962		
	Total	620.349	125			

a. Predictors: (Constant), dCFPS, CFPS, dEPS, EPS
b. Dependent Variable: Y (Retum)

Coefficients ${ }^{\text {a }}$

Model		Unstandardized Coefficients		$\begin{gathered} \begin{array}{c} \text { Standardized } \\ \text { Coefficients } \end{array} \\ \hline \text { Beta } \end{gathered}$	t	Sig.
		B	Std. Error			
1	(Constant)	. 596	. 212		2.810	. 006
	EPS	-,267	. 162	-. 181	-2,647	, 010
	dEPS	. 172	, 568	. 028	2,303	,008
	CFPS	, 195	, 359	. 059	2,544	,006
	dCFPS	. 184	. 227	. 076	2,812	, 004

a. Dependent Variable: Y (Return)

2. Non Linier Model (Model 4b)

Variables Entered/Removed ${ }^{\circ}$

Model	Variables Entered	Variables Removed	Method
1	dCFPS2. CFPS2, dEPS, dEPS2. EPS2, dCFPS. EPS, CFPS		Enter

a. All requested variables entered.
b. Dependent Variable: Y (Retum)

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	$.713^{\circ}$.508	.264	A2.2348

a. Predictors: (Constant), dCFPS2, CFPS2, dEPS, dEPS2, EPS2, dCFPS, EPS, CFPS

ANOVR

Model		Sum of Squares	$\underline{\text { df }}$	Mean Square	F	$\frac{\mathrm{Sig} .}{.045^{\text {a }}}$
1	Regression	35.995	D8	4.499	2.901	
	Residual	584.354	117	-1.99		
	Total	620.349	125			

a. Predictors: (Constant), dCFPS2, CFPS2, dEPS, dEPS2, EPS2, dCFPS, E
b. Dependent Variable: Y (Return)

Coofficients *

Mode!		Unstandardized Coefficients		StandardizedCoefficients $\|$Beta	t	Sig.
		B	Std. Error			
1	(Constant)	. 587	. 231		2.543	. 012
	EPS	-.660	,031	-. 448	-2.113	037
	EPS2	, 632	. 000	. 191	2,056	. 029
	dEPS	. 413	. 060	. 068	2,687	. 049
	dEPS2	-. 784	. 003	-. 027	-1,284	, 078
	CFPS	. 176	. 017	. 534	2,008	,032
	CFPS2	-1,375	. 048	-. 432	-2,910	,004
	dCFPPS	. 255	. 245	. 105	2,043	. 030
	dCFPS2	-. 836	075	. 110	-2,111	. 027

a. Dependent Variable: Y (Retum)

A. Small Firms Hypothesis

1. Model $1 \mathbf{A}$

Varlables Entered/Removed ${ }^{\circ}$

Model	Variables Entered	Variables Removed	Method
1	EPS		

a. All requested variables entered.
b. Dependent Variable: RETURN

Model Summary

Model	R	R Square	Adjusted R, Square	Std. Error of the Estimate
1	$.164^{\circ}$.027	.013	2.49314

a. Predictors: (Constant), EPS
73
a. Predictors: (Constant), EPS
b. Dependent Variable: RETURN

3

2. Model 1'A

Variables Entered/Removed

Model	Variables Entered	Variables Removed	Method
1	D_EPS	\cdot	Enter

a. All requested variables entered.
b. Dependent Variable: RETURN

a. Predictors: (Constant), D_EPS
b. Dependent Variable: RETURN

Coefficients

Model	Unstandardized Coefficients		Standardized Coefficients	t	Sig.
	B	Std. Error	Beta		
1 (Constant)	. 557	. 294		1.894	. 062
D_EPS	-. 005	. 062	-. 009	-. 075	. 940

a. Dependent Variable: RETURN

3. Model 2 A

Variables Entered/Removed

Model	Variables Entered	Variables Removed	Method
1	DEPS EPS		Enter

a. All requested variables entered.
b. Dependent Variable: RETURN

Model Summary

Model	R	R Square	R Square	Std. Error of
1	$.169^{\mathrm{a}}$.028	.001	2.50869

a. Predictors: (Constant), D_EPS, EPS

a. Predictors: (Constant), D_EPS, EPS
b. Dependent Variable: RETURN

Coefficients ${ }^{2}$

		Unstandardized Coefficients		Standardized Coefficients		
	B	Std. Error	Beta	t	Sig.	
1	Model	Constant)	.645	.298		2.165
	EPS	.000	.000	-.175	-1.439	.034
	D_EPS	$2.141 E-02$.064	.040	.332	.741

a. Dependent Variable: RETURN
4. Model 3 A

Variables Entered/Removed

Model	Variables Entered	Variables Removed	Method
1	D_CFO, CFO		Enter

a. All requested variables entered.
b. Dependent Variable: RETURN

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	$.105^{3}$.011	-.017	2.53105

a. Predictors: (Constant),

D_CFO, CFO
2.53105

a. Predictors: (Constant), D_CFO, CFO
b. Dependent Variable: RETURN

Coefficients ${ }^{3}$

		Unstandardized Coefficients		Standardized Coefficients		
Model	B	Std. Error	Beta	t	S Sig.	
1	(Constant)	.660	.321		2.057	.043
	CFO	.000	.000	-.108	-.879	.382
	D_CFO	$7.579 E-02$.202	.046	.375	.708

a. Dependent Variable: RETURN

5. Model 4 A

Varlables Entered/Removed ${ }^{\text {P }}$

Model	Variables Entered	Variables Removed	Method
1	D_CFO.		
	EPS,		Enter
	DEES.		.
	CFO		

a. All requested variables entered.
b. Dependent Variable: RETURN

a. Predictors: (Constant), D_CFO, EPS, D_EPS, CFO

Model		Sum of Squares	\sum_{df}	Mean Square	$D F$	Sig.
1	Regression Residual Total			$\begin{array}{r} 13.289 \\ \quad 6.475 \\ \hline \end{array}$	$y^{.508}$.730 ${ }^{\text {a }}$

a. Predictors: (Constant), D_CFO, EPS, D_EPS, CFO
b. Dependent Variable: RETURN

Coefficients

		Unstandardized Coefficients		Standardized Coefficients		
Model		B	Std. Error	Beta	t	Sig.
1	(Constant)	.654	.323		2.026	.047
	EPS	.000	.000	-.167	-1.117	.268
	D_EPS	$2.087 E-02$.067	.039	.310	.758
	CFO	$-3.34 E-05$.000	-.015	-.101	.920
	D_CFO	$1.956 E-02$.212	.012	.092	.927

a. Dependent Variable: RETURN

6. Model 1 B

Variables Entered/Removed

Model	Variables Entered	Variables Removed	Method
1	EPS2, EPS ${ }^{\text {a }}$.	Enter

a. All requested variables entered.
b. Dependent Variable: RETURN

Model Summary

Model	R	R Square	Adjusted	Std. Error of
1	$.169^{9}$.028	.001	72.50869

a. Predictors: (Constant),

EPS2, EPS

a. Predictors: (Constant), EPS2, EPS
b. Dependent Variable: RETURN

Coefficients ${ }^{\text {a }}$

a. Dependent Variable: RETURN

7. Model 1'B

Variables Entered/Removed

Model	Variables Entered	Variables Removed	Method
1	D_EPS2, D_EPS		Enter

a. All requested variables entered.
b. Dependent Variable: RETURN

Model Summary

Model	R	R Square	Adjusted	Std. Error of
1	$.057^{\text {a }}$	0033	-.025	7^{2}

a. Predictors: (Constant), D_EPS2, D_EPS
b. Dependent Variable: RETURN

Coefficients ${ }^{2}$

		Unstandardized Coefficients		Standardized Coefficients		
Model		B	Std. Error	Beta	t	Sig.
1	(Constant)	.589	.303		1.943	.056
	D_EPS	$3.652 E-03$.065	.007	.056	.955
	D_EPS2	-.001	.003	-.059	-.479	.634

a. Dependent Variable: RETURN

8. Model 2 B

Variables Entered/Removed ${ }^{b}$

Model	Variables Entered	Variables Removed	Method
1	D_EPS2,		
	EPS, D_EPS. EPS2		Enter

a. All requested variables entered.
b. Dependent Variable: RETURN

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	$.178^{\mathrm{a}}$.032	-.024	2.54034

a. Predictors: (Constant), D_EPS2, EPS, D_EPS, EPS2

a. Predictors: (Constant), D_EPS2, EPS, D_EPS, EPS2
b. Dependent Variable: RETURN

Coefficients ${ }^{\mathbf{a}}$

		Unstandardized Coefficients		Standardized Coefficients		
Model		B	Std. Error	Beta	Sig.	
1	(Constant)	.616	.335		1.838	.070
	EPS	-.001	.000	-.213	-1.265	.210
	EPS2	$8.846 E-08$.000	.062	.372	.711
	D_EPS	$2.745 E-02$.067	.052	.409	.684
	D_EPS2	-.001	.003	-.045	-.362	.718

a. Dependent Variable: RETURN

9. Model 3 B

Variables Entered/Removed

Model	Variables Entered	Variables Removed	Method		
1	D_CFO2,				
	CFO2,				
	DCFEO,				
CFO				$\quad . \quad .$	Enter
:---					

a. All requested variables entered.
b. Dependent Variable: RETURN

Model Summary						
Model	R	R Square	Adjusted R Square	Std. Error of the Estimate		
1	$.119^{2}$.014	-.043	2.56336		

a. Predictors: (Constant), D_CFO2, CFO2, D_CFO. CFO

a. Predictors: (Constant), D_CFO2, CFO2, D_CFO, CFO
b. Dependent Variable: RETURN

Coefficients ${ }^{\text {a }}$

		Unstandardized Coefficients		Standardized Coefficients		
Model		B	Std. Error	Beta	t	Sig.
1	(Constant)	.680	.341		1.993	.050
	CFO	.000	.001	-.124	-.375	.709
	CFO2	$1.565 E-08$.000	.034	.106	.916
	D_CFO	.200	.346	.121	.576	.566
	D_CFO2	-.021	.046	-.097	-.444	.658

a. Dependent Variable: RETURN

10. Model 4 B

Variables Entered/Removed

Model	Variabies Entered	Variables Removed	Method
7	$\begin{aligned} & \text { D_CFO2, } \\ & \text { D_EPS2, } \\ & \text { EPS, } \\ & \text { D_EPS, } \\ & \text { CFO2, } \\ & \text { EPS2, } \\ & \text { D_CFO, } \\ & \text { CFO } \end{aligned}$		Enter

a. All requested variables entered.
b. Dependert Variable: RETURN

a. Predictors: (Constant), D_CFO2, D_EPS2, EPS, D_EPS, CFO2, EPS2, D_CF CFO
b. Dependent Variable: RETURN

Coefficients *

a. Dependent Variabte: RETURN

B. Large Firms Hypothesis

1. Model 1 A

Variables Entered/Removed

Model	Variables Entered	Variables Removed	Method
1	ERS $^{\text {a }}$.

a. All requested variables entered.
b. Dependent Variable: RETURN

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	$.191^{8}$.036	.017	1.75651

a. Predictors: (Constant),

ERS

a. Predictors: (Constant), EPS
b. Dependent Variable: RETURN

Coefficients ${ }^{\text {a }}$

a. Dependent Variable: RETURN

2. Model 1' A

Varlables Entered/Removed

Model	Variables Entered	Variables Removed	Method
1	D_EPS 9		Enter

a. All requested variables entered.
b. Dependent Variable: RETURN

Model Summary

Model	R	R Square	Adjusted	Std. Error of
1	$.134^{\text {a }}$.018	-.002	the Estimate

a. Predictors: (Constant), DEPS

Model		Sum of Squares		Mean Square	F	Sig.
1	Regression	2.893	- 1	3.1 2.893	. 920	$.342^{8}$
	Residual	157210	50	2 3.144		
	Total	160.103	51			

a. Predictors: (Constant), D_EPS
b. Dependent Variable: RETURN

Coefficients ${ }^{\text {a }}$

Model	Unstandardized Coefficients		Standardized Coefficients	t	Sig.
	B	Std. Error	Beta		
1 (Constant)	. 472	. 247		1.912	062
D_EPS	-. 285	. 297	-. 134	-. 959	. 342

a. Dependent Variable: RETURN

3. Model 2 A

Variables Entered/Removed

Model	Variables Entered	Variables Removed	Method
1	DEPS, EPS		Enter

a. All requested variables entered.
b. Dependent Variable: RETURN

Model Summary

Model	R	R Square	Adjusted	Std. Error of
1	$.219^{\mathrm{a}}$.048	.009	the Estimate

a. Predictors: (Constant), DEEPS, EPS

a. Predictors: (Constant), D_EPS, EPS
b. Dependent Variable: RETURN

Coefficients ${ }^{\text {a }}$

		Unstandardized Coefficients		Standardized Coefficients		
Model	B		Std. Error	Beta	t	Sig.
1	(Constant)	.615	.271		2.267	.028
	EPS	.000	.000	-.175	-1.241	.220
	D_EPS	-.231	.299	-.109	-.771	.444

a. Dependent Variable: RETURN

4. Model 3 A

Variables Entered/Removed

Model	Variables Entered	Variables Removed	Method
1	dCFQ, CFO		Enter

a. All requested variables entered.
b. Dependent Variable: Y (Return)

Model Summary

Model	R	R Square	Adjusted	Std. Error of
1	$.240^{\circ}$.058	.019	1.7547

a. Predictors: (Constant), dCFO, CFO

a. Predictors: (Constant), dCFO, CFO
b. Dependent Variable: Y (Return)

Coefficients ${ }^{\mathbf{a}}$

		Unstandardized Coefficients		Standardized Coefficients		
Model	B		Std. Error	Beta	t	Sig.
1	(Constant)	.526	.271		1.939	.058
	CFO	-.013	.000	-.075	-.539	.592
	dCFO	.498	.292	.238	2.704	.009

a. Dependent Variable: Y (Return)

5. Model 4 A

Variables Entered/Removed ${ }^{\text {b }}$

Model	Variables Entered	Variables Removed	Method
1	dCFO, EPS, dEPS. CFO		Enter

a. All requested variables entered.
b. Dependent Variable: Y (Return)

Model Summary				
Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	. $305^{\text {a }}$. 093	016	17580

a. Predictors: (Constant), dCFO, EPS, dEPS, CFO

a. Predictors: (Constant), dCFO, EPS, dEPS, CFO
b. Dependent Variable: Y (Return)

Coefficients ${ }^{\text {a }}$

Model		Unstandardized Coefficients		$\begin{gathered} \begin{array}{c} \text { Standardized } \\ \text { Coefficients } \end{array} \\ \hline \text { Beta } \end{gathered}$	t	Sig.
		B	Std. Error			
1	(Constant)	. 601	. 278		2.159	. 036
	EPS	-. 160	. 150	-. 182	-2.066	. 029
	dEPS	-. 197	. 299	-. 093	-. 657	. 515
	CFO	. 000	. 000	. 032	. 187	. 852
	dCFO	. 429	. 297	. 205	2.443	. 016

a. Dependent Variable: Y (Return)

6. Model 1 B

Variables Entered/Removed'

Model	Variables Entered	Variables Removed	Method
1	EPS2, EPS		

a. All requested variables entered.
b. Dependent Variable: Y (Retum)

Model Summary

Model	R	R Square	Adjusted	Std. Error of
1	$.222^{2}$.049	.010	71.7625

a. Predictors: (Constant), EPS2, EPS
b. Dependent Variable: Y (Return)

Coefficients ${ }^{\text {a }}$

a. Dependent Variable: Y (Return)

7. Model 1' B

Variables Entered/Removed

Model	Variables Entered	Variables Removed	Method
1	dEPS2, dEPS		Enter

a. All requested variables entered.
b. Dependent Variable: Y (Retum)

Model Summary

Model	R	R Square	Adjusted	Std. Error of
1	$.146^{6}$.023	-019	the Estimate
1		-01.7883		

a. Predictors: (Constant), dEPS2, dEPS
b. Dependent Variable: Y (Retum)

Coefficients ${ }^{\text {a }}$

		Unstandardized Coefficients		Standardized Coefficients		
Model		B	Std. Error	Beta	t	Sig.
1	(Constant)	.439	.263		2.669	.010
	dEPS	-.407	.430	-.192	-2.948	.035
	dEPS2	.612	.154	.080	.397	.693

a. Dependent Variable: Y (Return)

8. Model 2 B

Variables Entered/Removed ${ }^{D}$

Model	Variables Entered	Variables Removed	Method
1	dEPS2, EPS, dEPS ,		Enter
EPS2			

a. All requested variables entered.
b. Dependent Variable: Y (Retum)

a. Predictors: (Constant), dEPS2, EPS, dEPS, EPS2
b. Dependent Variable: Y (Retum)

Coefficients ${ }^{\text {a }}$

Model		Unstandardized Coefficients		Standardi zed Coefficien ts	t	Sig.
		B	Std. Error	Beta		
1	(Constant)	. 602	. 303		1.987	. 053
	EPS	-. 337	. 000	-. 385	-2.997	. 032
	EPS2	. 000	. 000	. 220	. 594	. 555
	dEPS	-. 122	498	-. 057	-. 245	. 808
	dEPS2	-. 021	. 168	-. 027	-. 124	. 902

a. Dependent Variable: Y (Return)
9. Model 3 B

Variables Entered/Removed ${ }^{b}$

Model	Variables Entered	Variables Removed	Method		
1	dCFO2, CFO2,		Enter		
dCFO,					
CFO				$\quad . \quad .$	
:---					

a. All requested variables entered.
b. Dependent Variable: Y (Return)

Model Summary

Model	R	R Squaref	Adjusted R Square	Std. Error of the Estimate
1	$.256^{9}$.066	-.014	4.7840

a. Predictors: (Constant), dCFO2, CFO2, dCFO, CFO

a. Predictors: (Constant), dCFO2, CFO2, dCFO, CFO
b. Dependent Variable: Y (Return)

Coefficients ${ }^{2}$

		Unstandardized Coefficients		Standardized Coefficients		
Model		B	Sta. Error	Beta	t	Sig.
1	(Constant)	.519	.297		1.748	.087
	CFO	.000	.000	-.269	-.449	.655
	CFO2	.000	.000	.185	.312	.756
	dCFO	.546	.307	.262	2.779	.008
	dCFO2	.077	.124	.095	.621	.538

a. Dependent Variable: Y (Return)

10. Model 4 B

Variables Entered/Removed

Model	Variables Entered	Variables Removed	Method
1	dCFO2, EPS, dEPS2, dCFO, CFO2, dEPS. EPS2, CFO		Enter

a. All requested variables entered.
b. Dependent Variable: Y (Retum)

Model Summary

Model	R	R Square	Adjusted	Std. Error of
1	$.351^{1}$.123	$=.040$	1.8070

a. Predictors: (Constant), dCFO2, EPS, dEPS2, dCFO, CFO2, dEPS, EPS2, CFO

ANOVA

Model	Sum of Squares	df	Mean Square	F	Sig.
1 Regression Residual Total	$\begin{array}{r} 19.702 \\ 140.401 \\ 160.103 \end{array}$	$\begin{array}{\|r} 8 \\ \hline \end{array} \quad 43$	$\left[\begin{array}{l}2.463 \\ 3.265\end{array}\right.$. 754	. $644^{\text {a }}$

a. Predictors: (Constant), dCFO2, EPS, dEPS2, dCFO, CFO2, dEPS, EPS2, CFO
b. Dependent Variable: Y (Retum)

Coofficients a

a. Dependent Variable: Y (Retum)

C. Firms with High Debt Level Hypothesis

1. Model $1 \mathbf{A}$

Variables Entered/Removed

Model	Variables Entered	Variables Removed	Method
1	EPS $^{\text {a }}$		Enter

a. All requested variables entered.
b. Dependent Variable: Y (Return)

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	$.176^{9}$.031	.014	2.10934

a. Predictors: (Constant), EPS

a. Predictors: (Constant), EPS
b. Dependent Variable: Y (Return)

Coefficients ${ }^{\text {a }}$

		Unstandardized Coefficients		Standardized Coefficients		
Model		B		Std. Error	Beta	t
1	(Constant)	.460	.270		1.700	.094
	EPS	.000	.000	-.176	-1.372	.175

a. Dependent Variable: Y (Return)

2. Model 1' A

Variables Entered/Removed

Model	Variables Entered	Variables Removed	Method
1	dEPS $^{\natural}$.

a. All requested variables entered.
b. Dependent Variable: Y (Return)

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	$.026^{a}$.001	$\mathbf{R}^{-.016}$	2.14202

a. Predictors: (Constant), dEPS

a. Predictors: (Constant), dEPS
b. Dependent Variable: Y (Retum)

Coefficients ${ }^{2}$

		Unstandardized Coefficients		Standardized Coefficients		
Model		B		Std. Error	Beta	t
Sig.						
1	(Constant)	.444	.274		1.618	.111
	dEPS	-.010	.052	-.026	-.198	.844

a. Dependent Variable: Y (Return)

3. Model 2 A

Variables Entered/Removed

Model	Variables Entered	Variables Removed	Method
1	dEPS, EPS		.

a. All requested variables entered.
b. Dependent Variable: Y (Retum)

Model Summary

Model	R	R Square	Adjusted	Std. Error of
1	$.177^{2}$.031	Square	the Estimate

a. Predictors: (Constant), dEPS, EPS

a. Predictors: (Constant), dEPS, EPS
b. Dependent Variable: Y (Return)

Coefficients ${ }^{\text {a }}$

		Unstandardized Coefficients		Standardized Coefficients		
Model	B		Std. Error	Beta	t	Sig.
1	(Constant)	.459	.273		1.681	.098
	EPS	.000	.000	-.180	-1.352	.182
	dEPS	.007	.054	.017	.128	.899

a. Dependent Variable: Y (Return)

4. Model 3 A

Variables Entered/Removed

Model	Variables Entered	Variables Removed	Method
1	dCFQ, CFO		Enter

a. All requested variables entered.
b. Dependent Variable: Y (Return)

Model Summary

Model	R	R Square	Adjusted	Std. Error of
1	$.120^{9}$.014	-.020	2.14547

a. Predictors: (Constant), dCFO, CFO

a. Predictors: (Constant), dCFO, CFO
b. Dependent Variable: Y (Return)

Coefficients ${ }^{\text {a }}$

		Unstandardized Coefficients		Standardized Coefficients		
Model		B		Std. Error	Beta	t
1	(Constant)	.531	.297		1.789	.079
	CFO	.000	.000	-.115	-.882	.381
	dCFO	.085	.256	.043	.331	.742

a. Dependent Variable: Y (Return)

5. Model 4 A

Variables Entered/Removed ${ }^{\text {b }}$

Model	Variables Entered	Variables Removed	Method
1	dCFO. CFO, dEPS, EPS		Enter

a. All requested variables entered.
b. Dependent Variable: Y (Retum)

Model Summary

$\left.\begin{array}{|l|c|r|r|r|}\hline \text { Model } & R & \text { R Square } & \text { Adjusted } & \text { RSquare }\end{array} \begin{array}{c}\text { Std. Error of } \\ \text { R Estimate }\end{array}\right]$
a. Predictors: (Constant), dCFO, CFO, dEPS, EPS

a. Predictors: (Constant), dCFO, CFO, dEPS, EPS
b. Dependent Variable: Y (Return)

Coefficients ${ }^{\text {a }}$

		Unstandardized Coefficients		Standardized Coefficients		
Model		B	Std. Error	Beta	t	Sig.
1	(Constant)	.394	.327		1.202	.235
	EPS	.000	.000	-.244	-1.054	.296
	dEPS	.016	.060	.040	.268	.790
	CFO	.000	.000	.077	.343	.733
dCFO	.037	.276	.019	.134	.894	

a. Dependent Variable: Y (Return)

6. Model 1 B

Variables Entered/Removed

Model	Variables Entered	Variables Removed	Method		
1	EPS2, EPS		.	Enter \quad	
:---					

a. All requested variables entered.
b. Dependent Variable: Y (Retum)

Model Summary

Model	R	R Square	Adjusted	Std. Error of
1	$.209^{a}$.044	.011	2.11336

a. Predictors: (Constant), ERS2, EPS

Model		Surt of Squares	df		Mean Square	F
1	Regression	11.842	2	D	5.921	1.326
	Residual	259.045	58		Sig.	
	Total	270.887		60		

a. Predictors: (Constant), EPS2, EPS
b. Dependent Variable: Y (Return)

Coefficients ${ }^{3}$

		Unstandardized Coefficients		Standardized Coefficients		
Model		B	Std. Error	Beta	t	Sig.
1	(Constant)	.337	.305		1.106	.273
	EPS	-.001	.000	-.312	-1.553	.126
	EPS2	$7.988 E-08$.000	.177	.881	.382

a. Dependent Variable: Y (Return)

7. Model 1'B

Variables Entered/Removed

Model	Variables Entered	Variables Removed	Method
1	dEPS2, dEPS		Enter

a. All requested variables entered.
b. Dependent Variable: Y (Return)

Model Summary

| Model | R | R Square | Adjusted | RSquare |
| :--- | :---: | ---: | ---: | ---: | (the Error of | R Estimate |
| :--- |
| 1 |

a. Predictors: (Constant), dEPS2, dEPS

a. Predictors: (Constant), dEPS2, dEPS
b. Dependent Variable: Y (Return)

Coefficients ${ }^{\text {a }}$

		Unstandardized Coefficients		Standardized Coefficients		
Model		B		Std. Error	Beta	t
Sig.						
	(Constant)	.474	.285		1.665	.101
	dEPS	-.004	.055	-.010	-.073	.942
	dEPS2	-.001	.003	-.059	-.436	.665

a. Dependent Variable: Y (Return)

8. Model 2 B

Variables Entered/Removed

Model	Variables Entered	Variables Removed	Method
1	dEPS2,		
	EPS2, dEPS, EPS		Enter

a. All requested variables entered.
b. Dependent Variable: Y (Return)

Model Summary

Model	R	R	R Square	Adjusted R
1	$.214^{\mathrm{a}}$.046	-022	Std. Error of
the Estimate				

a. Predictors: (Constant), DEPS2, EPS2, dEPS, EPS

a. Predictors: (Constant), dEPS2, EPS2, dEPS, EPS
b. Dependent Variable: Y (Retum)

Coefficients ${ }^{\text {a }}$

Model		Unstandardized Coefficients		Standardized Coefficients Beta	t	Sig.
		B	Std. Error			
1	(Constant)	. 344	. 323		1.066	. 291
	EPS	-. 001	. 000	-. 324	-1.502	. 139
	dEPS	. 019	. 057	. 047	. 337	. 738
	EPS2	8.326E-08	. 000	. 184	. 882	. 382
	dEPS2	-. 001	. 003	-. 029	-. 210	. 834

a. Dependent Variable: Y (Return)

9. Model 3 B

Variables Entered/Removed ${ }^{\text {b }}$

Model	Variables Entered	Variables Removed	Method
1	dCFO2, CFO. dCFO. CFO2		

a. All requested variables entered.
b. Dependent Variable: Y (Return)

Model Summary

Model	R	R Square	R Square	Std. Error of
1	$.171^{1}$.029	-.040	$7^{2.16682}$

a. Predictors: (Constant), dCFO2, CFO, dCFO, CFO2

a. Predictors: (Constant), dCFO2, CFO, dCEO, CFO2
b. Dependent Variable: Y (Return)

Coefficients ${ }^{\text {a }}$

a. Dependent Variable: Y (Return)

10. Model 4 B

Model	Variables Entered	Variables Removed	Method
1	aCFO2. dEPS2. EPS2, dEPS, dCFO, EPS, CFO_{3} CFO		Enter

a. All requested variabtes entered.
b. Dependent Variable: Y (Return)

Model Summary

Model	R	R Square	Adjusted	Std. Error of
1	$.258^{8}$.067	-.077	the Estimate
1		2.20494		

a. Predictors: (Constant), dCFO2, dEPS2, EPS2, dEPS, dCFO, EPS, CFO2, CFO

ANOVA

Model		Sum of Squares	\sum df	Mean Square	F	Sig.
1	Regression	18.075	Z	8	2.259	.465
	Residual	252.812	\searrow	52	4.862	
	Total	270.887		60		

a. Predictors: (Constant), dCFO2 dEPS2, EPS2, dEPS, dCFO, EPS, CFO2, CFO
b. Dependent Variable: Y (Return)

Coefficients ${ }^{\text {a }}$

Model		Unstandardized Coefficients		Standardized Coefficients Beta	t	Sig.
		B	Std. Error			
1	(Constant)	. 527	408		1.292	. 202
	EPS	. 000	. 000	-. 304	-1.152	. 254
	dEPS	. 034	. 063	. 083	. 530	. 598
	CFO	. 000	. 001	-. 297	-. 468	. 642
	dCFO	. 322	. 381	. 164	. 845	. 402
	EPS2	$9.961 \mathrm{E}-08$. 000	. 221	. 885	. 380
	dEPS2	. 001	. 003	-. 057	-. 371	. 712
	CFO2	$6.390 \mathrm{E}-08$. 000	. 221	. 381	. 705
	dCFO2	-. 101	. 100	-. 177	-1.008	. 318

a. Dependent Variable: Y (Return)

D. Firms with Low Debt Level Hypothesis

1. Model 1 A

Variables Entered/Removed

Model	Variables Entered	Variables Removed	Method
1	EPS $^{\natural}$.

a. All requested variables entered.
b. Dependent Variable: Y (Return)

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	$.164^{\mathrm{a}}$.027	.012	2.32122

a. Predictors: (Constant), EPS

a. Predictors: (Constant), EPS
b. Dependent Variable: Y (Return)

Coefficients ${ }^{\text {a }}$

Model	Unstandardized Coefficients		Standardized Coefficients	t	Sig.
	B	Std. Error	Beta		
1 (Constant)	. 804	. 334		2.404	. 019
EPS	. 000	. 000	-. 164	-1.322	. 191

a. Dependent Variable: Y (Return)

2. Model 1' A

Variables Entered/Removed ${ }^{\text {P }}$

Model	Variables Entered	Variables Removed	Method
1	dEPS	Enter	

a. All requested variables entered.
b. Dependent Variable: Y (Return)

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	$.008^{a}$.000	$1.4 . .016$	2.35315

a. Predictors: (Constant), dEPS

a. Predictors: (Constant), dEPS
b. Dependent Variable: Y (Return)

Coefficients ${ }^{\text {a }}$

		Unstandardized Coefficients		Standardized Coefficients		
Model	B		Std. Error	Beta	t	Sig.
1	(Constant)	.579	.292		1.984	.052
	dEPS	.043	.701	.008	.062	.951

a. Dependent Variable: Y (Retum)

3. Model 2 A

Variables Entered/Removed

Model	Variables Entered	Variables Removed	Method
1	dEPS, EPS		Enter

a. All requested variables entered.
b. Dependent Variable: Y (Return)

Model Summary

Model	R	R Square	Adjusted	Std. Error of
1	$.168^{\mathrm{a}}$.028	-.003	2.33860

a. Predictors: (Constant), dEPS, EPS

ANOVA ${ }^{\text {b }}$

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	9.791		2	4.896	.895
	Residual	339.080	62	D	5.469	
	Total	348.872	64			

a. Predictors: (Constant), dEPS, EPS
b. Dependent Variable: Y (Return)

Coefficients ${ }^{\text {a }}$

a. Dependent Variable: Y (Return)

4. Model 3 A

Variables Entered/Removed

Model	Variables Entered	Variables Removed	Method
1	dCFO. CFO		Enter

a. All requested variables entered.
b. Dependent Variable: Y (Return)

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	$.191^{\text {a }}$.037	$1 S 1.005$	2.32840

a. Predictors: (Constant), dCFO, CFO

		Sumjof Squares	df	Mean Square	F	Sig.
Model	Regression	12.743	2	D	6.371	1.175
	Residual	336.129	62		5.421	
	Total	348.872	64			

a. Predictors: (Constant), dCFO, CFO
b. Dependent Variable: Y (Return)

Coefficients ${ }^{\text {a }}$

		Unstandardized Coefficients		Standardized Coefficients		
Model		B	Std. Error	Beta	t	Sig.
1	(Constant)	.665	.314		2.115	.038
	CFO	$-1.84 E-05$.000	-.072	-.569	.571
	dCFO	.593	.399	.187	1.487	.142

a. Dependent Variable: Y (Return)

5. Model 4 A

Variables Entered/RemovedP

Model	Variables Entered	Variables Removed	Method
1	dCFO, dEPS, CFO, EPS		Enter

a. All requested variables entered.
b. Dependent Variable: Y (Return)

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	$.232^{\mathrm{a}}$.054	-.009	2.34553

a. Predictors: (Constant), dCFO, dEPS, CFO, EPS

a. Predictors: (Constant), dCFO, dEPS, CFO, EPS
b. Dependent Variable: Y (Return)

Coefficients ${ }^{2}$

		Unstandardized Coefficients		Standardized Coefficients		
Model		B	Std. Error	Beta	t	Sig.
1	(Constant)	.794	.340		2.335	.023
	EPS	.000	.000	-.168	-1.047	.299
	dEPS	.079	.712	.014	.111	.912
	CFO	$7.726 E-06$.000	.030	.188	.851
	dCFO	.491	.415	.155	1.183	.241

a. Dependent Variable: Y (Return)

6. Model 1 B

Variables Entored/Removed

Model	Variables Entered	Variables Removed	Method
1	EPS2, EPS		Enter

a. All requested variables entered.
b. Dependent Variable: Y (Retum)

Model Summary

Model	R	R Square	Adjusted	Std. Error of
1	$.222^{2}$.049		.019

a. Predictors: (Constant), EPS2, EPS

a. Predictors: (Constant), EPS2, EPS
b. Dependent Variable: Y (Return)

Coefficients ${ }^{a}$

		Unstandardized Coefficients		Standardized Coefficients		
Model		B	Std. Error	Beta	t	Sig.
1	(Constant)	.940	.352		2.671	.010
	EPS	-.001	.001	-.548	-1.601	.114
	EPS2	$1.182 E-07$.000	.412	1.202	.234

a. Dependent Variable: Y (Retum)

7. Model 1' B

Variables Entered/RemovedP

Model	Variables Entered	Variables Removed	Method
1	dEPS2. dEPS		Enter

a. All requested variables entered.
b. Dependent Variable: Y (Retum)

Model Summary

Model	R	R Square	R Squated	Std. Error of
1	$.041^{a}$.002	-.030	2.37009

a. Predictors: (Constant), dEPS2, dEPS

		Sumiof Squares	df		Mean Square	F
1	Regression	.598		2	D	.299
	Residual	348.273	62	.053	$.948^{a}$	
	Total	348.872		64	5.617	

a. Predictors: (Constant), dEPS2, dEPS
b. Dependent Variable: Y (Return)

Coefficients ${ }^{\text {a }}$

		Unstandardized Coefficients		Standardized Coefficients		
Model		B		Std. Error	Beta	t
1	(Constant)	.603	.303		1.989	.051
	dEPS	-.202	1.043	-.036	-.194	.847
	dEPS2	-.138	.432	-.060	-.320	.750

a. Dependent Variable: Y (Return)

8. Model 2 B

Variables Entered/Removed ©

a. All requested variables entered.
b. Dependent Variable: Y (Retum)

Model Summary

Model	R	R Square	Adjusted	Std. Error of
1	$.228^{8}$	052	$\frac{011}{}$	the Estimate

a. Predictors: (Constant), dEPS2, EPS2, dEPS, EPS

a. Predictors: (Constant), dEPS2, EPS2, dEPS, EPS
b. Dependent Variable: Y (Retum)

Coefficients a

a. Dependent Variable: Y (Return)

9. Model 3 B

Variables Entered/Removed ${ }^{\text {P }}$

Model	Variables Entered	Variables Removed	Method
1	dCFO2, CFO2, dCFO, CFO		
			Enter

a. All requested variables entered.
b. Dependent Variable: Y (Return)

a. Predictors: (Constant)

a. Predictors: (Constant), dCFO2, CFO2, dCFO, CFO
b. Dependent Variable: Y (Return)

Coefficients

		Unstandardized Coefficients		Standardized Coefficients		
Model		B	Std. Error	Beta	t	Sig.
1	(Constant)	.654	.335		1.954	.055
	CFO	$-7.90 \mathrm{E}-05$.000	-.307	. .539	.592
	.733	.435	.231	1.684	.097	
	dCFO	.733	.000	.216	.385	.702
	CFO2	$1.677 \mathrm{E}-09$.125	.856	.396	

a. Dependent Variable: Y (Return)

10. Model 4 B

Variables Entered/Removed ${ }^{6}$
$\left.\begin{array}{|l|l|l|l|}\hline \text { Model } & \begin{array}{l}\text { Variables } \\ \text { Entered }\end{array} & \begin{array}{l}\text { Variables } \\ \text { Removed }\end{array} & \text { Mothod } \\ \hline 1 & \text { dCFO2, } & & \\ & \text { EPS2, } & & \\ & \text { dEPS2, } & & \text { Enter } \\ & \text { CFO2, } \\ \text { dCFO. } \\ \text { dEPS. } \\ \text { EPS, CFO }\end{array}\right]$
a. All requested variables entered
b. Dependent Variable: Y (Retum)

Model Summary

Model	R	R Square	Adjusied R Square	Std. Error of
1	$.316^{2}$.100	-.029	2.36830

a. Predictors: (Constant), dCFO2, EPS2, dEPS2, CFO2, dCFO, dEPS, EPS, CFO
efficients

		Unstandardized Coofficients		Standardized Coofficients		
Model		B	Std. Error	Beta	t	Sig.
1	(Constant)	.934	.375		2.489	.016
	EPS	-.001	.001	-.840	-1.779	.081
	dEPS	-.165	1.145	-.030	-.144	.886
	CFO	.000	.000	.856	.803	.426
	dCFO	.415	.516	.131	.803	.426
	EPS2	$1.539 E-07$.000	.536	1.451	.152
	dEPS2	-.138	.468	-.060	-.296	.769
	CFO2	$-5.48 E-09$.000	-.705	-.761	.450
	dCFO2	.032	.219	.026	.148	.883

a. Dependent Variable: Y (Retum)

E. Growth Firms Hypothesis

1. Model 1 A

Variables Entered/Removed

Model	Variables Entered	Variables Removed	Method
1	EPS $^{\text {a }}$.

a. All requested variables entered.
b. Dependent Variable: RETURN

Model Summary

Model	R	R Square	Adjusted	Std. Error of
1	$.138^{a}$.019	.001	1.33561

a. Predictors: (Constant), EPS

a. Predictors: (Constant), EPS
b. Dependent Variable: RETURN

Coefficients ${ }^{3}$

		Unstandardized Coefficients		Standardized Coefficients		
Model	B		Std. Error	Beta	t	Sig.
1	(Constant)	.420	.204		2.062	.044
	EPS	.000	.000	-.138	-1.024	.310

a. Dependent Variable: RETURN

2. Model 1' A

Variables Entered/Removed ${ }^{\text {P }}$

Model	Variables Entered	Variables Removed	Method
1	D_EPS		

a. All requested variables entered.
b. Dependent Variable: RETURN

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	$.064^{a}$.004	$1 S 1-.014$	1.34576

a. Predictors: (Constant), DJEPS
-

3. Model $2 \mathbf{A}$

Variables Entared/Removed

Model	Variables Entered	Variables Removed	Method
1	EEPS, EPS		Enter

a. All requested variables entered.
b. Dependent Variable: RETURN

Model Summary

Model	R	R	Adjusted	Std. Error of
1	$.162^{a}$	R Square	R Square	the Estimate

a. Predictors: (Constant), DIEPS, EPS

a. Predictors: (Constant), D_EPS, EPS
b. Dependent Variable: RETURN

Coefficients ${ }^{\text {a }}$

		Unstandardized Coefficients		Standardized Coefficients		
Model		B	Std. Error	Beta	t	Sig.
1	(Constant)	.441	.207		2.124	.038
	EPS	.000	.000	-.151	-1.102	.275
	D_EPS	$5.752 E-02$.091	.087	.632	.530

a. Dependent Variable: RETURN

4. Model 3 A

Variables Entered/Removed

Model	Variables Entered	Variables Removed	Method
1	D_CFO. CFO		Enter

a. All requested variabies entered.
b. Dependent Variable: RETURN

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	$.330^{8}$.109	Lt.075	1.28487

a. Predictors: (Constant), D_CFO, CFO

Model		Sumpof Squares	df	Mean Square	F	Sig.
1	Regression	10.702	2	D	5.351	3.241
	Residual	87.498	53		1.651	
	Total	98.199		55		

a. Predictors: (Constant),
b. Dependent Variable: RETURN

Coefficients ${ }^{2}$

Model		Unstandardized Coefficients		Standardized Coefficients	t	Sig.
		B	Std. Error	Beta		
1	(Constant)	. 383	. 188		2.035	. 047
	CFO	-7.05E-06	. 000	-. 051	-. 390	. 698
	D_CFO	. 550	. 216	. 334	2.546	. 014

a. Dependent Variable: RETURN

5. Model 4 A

Variables Entered/Removed

Model	Variables Entered	Variables Removed	Method
1	D_CFO,		
	EPS,		Enter
	DEPS, CFO,		

a. All requested variables entered.
b. Dependent Variable: RETURN

Model Summary				
Model	R	R Square.	Adjusted R Square	Std. Error of the Estimate
1	. $355^{\text {a }}$. 126	. 058	1.29708

a. Predictors: (Constant), D_CFO, EPS, D_EPS, CFO

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	12.396		[1)3.099 1.682	1.842	.135 ${ }^{\text {a }}$
	Residual	85.803				
	Total	98.199				

a. Predictors: (Constant), D_CFO, EPS, D_EPS, CFO
b. Dependent Variable: RETURN

Coefficients ${ }^{\text {a }}$

Model		Unstandardized Coefficients		Standardized Coefficients Beta	t	Sig.
		B	Std. Error			
1	(Constant)	. 448	. 201		2.230	030
	EPS	. 000	. 000	-. 186	-. 988	. 328
	D_EPS	3.088E-02	. 089	. 047	. 346	. 730
	CFO	1.086E-05	. 000	. 079	. 420	. 676
	D_CFO	. 491	. 226	. 299	2.170	. 035

a. Dependent Variable: RETURN

6. Model 1 B

Variables Entered/Removed

Model	Variables Entered	Variables Removed	Method
1	EPS2, EPS		

a. All requested variables entered.
b. Dependent Variable: RETURN

Model Summary

Model	R	R Square	R Sguare	Std. Error of
1	$.170^{\circ}$.029	-.008	1.34128

a. Predictors: (Constant), EPS2, EPS
b. Dependent Variable: RETURN

Coefficients

		Unstandardized Coefficients		Standardized Coefficients		
Model	B	Std. Error	Beta	t	Sig.	
1	(Constant)	.444	.207		2.143	.037
	EPS	.000	.000	-.390	-1.061	.293
	EPS2	$6.505 E-08$.000	.271	.738	.464

a. Dependent Variable: RETURN

7. Model 1' B

Variables Entered/Removed

Model	Variables Entered	Variables Removed	Method
1	D_EPS2,		Enter
	D_EPS		

a. All requested variables entered.
b. Dependent Variable: RETURN

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	$.174^{2}$.030	-.006	1.34051

a. Predictors: (Constant), D_EPS2, D_EPS

a. Predictors: (Constant), D_EPS2, D_EPS
b. Dependent Variable: RETURN

Coefficients ${ }^{\text {a }}$

Model		Unstandardized Coefficients		Standardized Coefficients Beta	t	Sig.
		B	Std. Error			
1	(Constant)	. 365	. 183		1.997	. 051
	D_EPS	-. 253	. 263	-. 381	-. 961	. 341
	D_EPS2	-. 024	. 020	-. 473	-1.193	. 238

a. Dependent Variable: RETURN

8. Model 2 B

Variables Entered/Removed

Model	Variables Entered	Variables Removed	Method
1	D_EPS2,		
	EPS2, EPS, D_EPS		Enter

a. All requested variables entered.
b. Dependent Variable: RETURN

a. Predictors: (Constant), D) EPS2, EPS2, EPS, DEPS D_{\square} EPS2,

ANOVA 0

Model		Sumpof Squares	df	Mean Square	F	Sig.	
1	Regression	6.257		4	1	1.564	.868
	Residual	91.942		51		1.803	
	Total	98.199	55				

a. Predictors: (Constant), D_EPS2, EPS2, EPS, D_EPS
b. Dependent Variable: RETURN

Coefficients ${ }^{\text {a }}$

Model		Unstandardized Coefficients		$\begin{gathered} \begin{array}{c} \text { Standardized } \\ \text { Coefficients } \end{array} \\ \hline \text { Beta } \\ \hline \end{gathered}$	t	Sig.
		B	Std. Error			
1	(Constant)	. 505	213		2.375	. 021
	EPS	. 000	. 000	-. 440	-1.159	. 252
	EPS2	7.489E-08	. 000	. 312	. 830	. 411
	D_EPS	-. 205	. 266	-. 309	-. 771	. 444
	D_EPS2	-. 022	020	-. 445	-1.119	. 268

a. Dependent Variable: RETURN

9. Model 3 B

Variables Entered/Removed

Model	Variables Entered	Variables Removed	Method
1	D_CFO2, CFO2.		
	D_CFO. CFO		Enter

a. All requested variables entered.
b. Dependent Variable: RETURN

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	$.385^{9}$.148	.081	0.28063

a. Predictors: (Constant), D_CFO2, CFO2, D_CFO CFO

a. Predictors: (Constant), D_CFO2, CFO2, D_CFO, CFO
b. Dependent Variable: RETURN

Coefficients ${ }^{2}$

		Unstandardized Coefficients		Standardized Coefficients Beta	t	Sig.
	Model	B	Std. Error			
1	(Constant)	. 338	. 196		1.723	. 091
	CFO	-4.01E-05	. 000	-. 291	-. 453	. 652
	CFO2	8.127E-10	. 000	. 196	. 311	. 757
	D_CFO	. 706	. 240	. 430	2.940	. 005
	D_CFO2	. 154	. 103	. 234	1.496	. 141

a. Dependent Variable: RETURN

10. Model 4 B

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
$\mathbf{1}$	$.456^{a}$.208	.073	1.28672

a. Predictors: (Constant), D_CFO2, D_EPS, EPS2,

D_CFO, CFO2, EPS, D_EPS2, CFO

2.

Model		Sum of Squares	df	Mean-Square	F	Sig.
1	Regression	20.384	8 $)^{2.548}$ 47 55^{2} 1.656		1.539	. 170^{8}
	Residual	77.816				
	Total	98.199				

a. Predictors: (Constant), D_CFO2, D_EPS, EPS2, D_CFO, CFO2, EPS, D_EPS2, CFO
b. Dependent Variable: RETURN

Coefficients a

Model		Unstandardized Coefficients		$\begin{gathered} \begin{array}{c} \text { Standardized } \\ \text { Coefficients } \end{array} \\ \hline \text { Beta } \\ \hline \end{gathered}$	1	Sig.
	Model	B	Std. Error			
1	(Constant)	. 447	. 209		2.137	. 038
	EPS	-. 001	. 000	-. 632	-1.594	. 118
	EPS2	1.295E-07	. 000	. 539	1.364	. 179
	D_EPS	-. 163	. 259	-. 245	-. 628	. 533
	D_EPS2	-. 017	. 020	-. 333	-. 851	. 399
	CFO	1.223E-05	. 000	. 089	. 075	. 941
	CFO2	-5.20E-10	. 000	-. 125	-. 125	. 901
	D_CFO	. 679	. 316	. 413	2.146	. 037
	D_CFO2	. 154	. 134	. 233	1.145	. 258

a. Dependent Variable: RETURN

F. Mature Firms Hypothesis

1. Model 1 A

Variables Entered/Removed

Model	Variables Entered	Variables Removed	Method
1	EPS $^{\natural}$.

a. All requested variables entered
b. Dependent Variable: RETURN

a. Predictors: (Constant), EPS

a. Predictors: (Constant), EPS
b. Dependent Variable: RETURN

Coefficients ${ }^{2}$

		Unstandardized Coefficients		Standardized Coefficients		
Model		B		Std. Error	Beta	t
1	(Constant)	.747	.332		2.250	.028
	EPS	.000	.000	-.152	-1.264	.210

a. Dependent Variable: RETURN

2. Model 1' A

Variables Entered/Removed

Model	Variables Entered	Variables Removed	Method
1	D_EPS		.

a. All requested variables entered.
b. Dependent Variable: RETURN

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	$.038^{9}$.001	Sl	-.013

a. Predictors: (Constant), D EPS

a. Predictors: (Constant), D_EPS
b. Dependent Variable: RETURN

Coefficients ${ }^{\text {a }}$

		Unstandardized Coefficients		Standardized Coefficients		
Model		B		Std. Error	Beta	t
1	Sig.					
1	Constant)	.675	.331		2.041	.045
	D_EPS	-.023	.073	-.038	-.314	.755

a. Dependent Variable: RETURN

3. Model 2 A

Variables Entered/Removed

Model	Variables Entered	Variables Removed	Method
1	DEPS,		Enter

a. All requested variables entered.
b. Dependent Variable: RETURN

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	$.152^{a}$.023	-.006	22.74919

a. Predictors: (Constant), D_EPS, EPS

a. Predictors: (Constant), D_EPS, EPS
b. Dependent Variable: RETURN

Coefficients ${ }^{\text {a }}$

		Unstandardized Coefficients		Standardized Coefficients		
Model		B		Std. Error	Beta	t
1	(Constant)	.749	.335		2.236	.029
	EPS	.000	.000	-.149	-1.220	.227
	D_EPS	-.008	.073	-.013	-.107	.915

a. Dependent Variable: RETURN

4. Model 3 A

Variables Entered/Removed

Model	Variables Entered	Variables Removed	Method
1	D_CFO, CFO		Enter

a. All requested variables entered.
b. Dependent Variable: RETURN

Model Summary

Model	R	R Square	Adjusted	Std. Error of
R Square	the Estimate			
1	$.120^{a}$.014	-.015	2.76154

a. Predictors: (Constant), D_CFO, CFO

a. Predictors: (Constant), D CFO, CFO
b. Dependent Variable: RETURN

Coefficients

		Unstandardized Coefficients		Standardized Coefficients		
Model		B	Std. Error	Beta	t	Sig.
1	(Constant)	.817	.366		2.229	.029
	CFO	.000	.000	-.121	-.986	.327
	D_CFO	$3.969 E-02$.214	.023	.186	.853

a. Dependent Variable: RETURN

5. Model 4 A

Variables Entered/Removed ${ }^{\text {b }}$

Model	Variables Entered	Variables Removed	Method
1	DCFO. DPS, DEPS, CFO		

a. All requested variables entered.
b. Dependent Variable: RETURN

Model Summary

Model	R	R Square)	Adjusted R Square	Std. Error of the Estimate
1	$.152^{2}$.023	-.037	2.79103

a. Predictors: (Constant), D_CFO, EPS, D_EPS, CFO

a. Predictors: (Constant), D_CFO, EPS, D_EPS, CFO
b. Dependent Variable: RETURN

Coefficients ${ }^{\text {a }}$

		Unstandardized Coefficients		Standardized Coefficients	t	Sig.
	Model	B	Std. Error	Beta		
1	(Constant)	. 745	. 392		1.897	. 062
	EPS	. 000	. 000	-. 158	-. 690	. 493
	D_EPS	. 008	. 079	-. 013	-. 099	. 921
	CFO	1.537E-05	. 000	. 010	. 042	. 967
	D_CFO	-. 018	. 229	-. 010	-. 077	. 939

a. Dependent Variable: RETURN

6. Model 1 B

Variabies Entered/Removed

Model	Variables Entered	Variables Removed	Method
1	EPS2, EPS		Enter

a. All requested variables entered.
b. Dependent Variable: RETURN

Model Summary

Model	R	R Square	Adjusted	Std. Error of
1	$.176^{a}$.037	.002	2.73829

a. Predictors: (Constant), EPS2, EPS

a. Predictors: (Constant), EPS2, EPS
b. Dependent Variable: RETURN

Coefficients ${ }^{\text {a }}$

		Unstandardized Coefficients		Standardized Coefficients		
Model		B	Std. Error	Beta	t	Sig.
1	(Constant)	.666	.351		1.896	.062
	EPS	-.001	.000	-.293	-1.297	.199
	EPS2	$6.052 E-08$.000	.167	.739	.462

a. Dependent Variable: RETURN

7. Model 1’ B

Variables Entered/Removed

Model	Variables Entered	Variables Removed	Method
1	D_EPS D_EPS		Enter

a. All requested variables entered.
b. Dependent Variable: RETURN

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	$.054^{\mathrm{a}}$.003		-.027

a. Predictors: (Constant), D_EPS2, D_EPS

a. Predictors: (Constant), D EPS2, D_EPS
b. Dependent Variable: RETURN

Coefficients ${ }^{\mathbf{a}}$

		Unstandardized Coefficients		Standardized Coefficients		
Model		B		Std. Error	Beta	t
1	(Constant)	.695	.339		2.050	.044
	D_EPS	-.014	.079	-.023	-.171	.864
	D_EPS2	-.001	.004	-.041	-.313	.756

a. Dependent Variable: RETURN

8. Model 2 B

Variables Entered/Removed

Model	Variables Entered	Variables Removed	Method
1	D_EPS2, 		
	DSS2, EPSS		Enter

a. All requested variables entered.
b. Dependent Variable: RETURN

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	$.177^{\text {a }}$.031	-.028	2.77923

a. Predictors: (Constant), D_EPS2, EPS2, D_EPS,EPS

a. Predictors: (Constant), D_EPS2, EPS2, D_EPS, EPS
b. Dependent Variable: RETURN

Coefficients ${ }^{\text {a }}$

Model		Unstandardized Coefficients		Standardized Coefficients Beta	t	Sig.
		B	Std. Error			
1	(Constant)	. 678	. 366		1.852	. 069
	EPS	-. 001	. 000	-. 292	-1.219	. 227
	EPS2	6.007E-08	. 000	. 166	. 702	. 485
	D_EPS	9.583E-03	. 081	. 016	. 119	. 906
	D_EPS2	-. 001	. 004	-. 026	-. 193	. 848

a. Dependent Variable: RETURN

9. Model 3 B

Variables Entered/Removedp

Model	Variables Entered	Variables Removed	Method
1	D_CFO2,		
	CFO2, D_CFO,,		Enter
	CFO		

a. All requested variables entered.
b. Dependent Variable: RETURN

Model Summary				
Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.135 ${ }^{\text {a }}$. 018	- 042	2.79822

a. Predictors: (Constant), DLCFO2, CFO2, D_CFO, CFO

a. Predictors: (Constant), D_CFO2, CFO2, D_CFO, CFO
b. Dependent Variable: RETURN

Coefficients ${ }^{\text {a }}$

Model		Unstandardized Coefficients		$\begin{gathered} \hline \begin{array}{c} \text { Standardized } \\ \text { Coefficients } \end{array} \\ \hline \text { Beta } \\ \hline \end{gathered}$	t	Sig.
		B	Std. Error			
1	(Constant)	. 858	. 401		2.143	. 036
	CFO	. 000	. 001	-. 204	-. 402	. 689
	CFO2	2.590E-08	. 000	. 095	. 191	. 849
	D_CFO	. 187	. 380	. 107	. 492	. 625
	D_CFO2	-. 022	. 050	-. 097	-. 434	. 666

a. Dependent Variable: RETURN

10. Model 4 B

Varisbles Entered/Rennoved
b

Model	Variables Entered	Variables Removed	Method
1	D_CFO2, D_EPS2, EPS2. D_EPS, D_CFO, CFO, EPS, CFO2		Enter

a. All requested variabies entered.
b. Dependent Variabie: RETURN

Model Summary

Model	R	R Square	Adiusted	R Square. Error of
1	$.195^{2}$.038	-.088	the Estimate
1	2.85937			

a. Predictors: (Constant), D_CFO2, D_EPS2, EPS2,

D_EPS, D_CFO, CFO, EPS, CFO2

a. Predictors: (Constant), D_CFO2, D_EPS2, EPS2, D_EPS, D_CFO, CFO, EPS, CFO2
b. Dependent Variable: RETURN

Coefficients *

Model		Unstandardized Coefficients		Standardized Coefficients	t	Sig.
		B	Std. Error	Beta		
1	(Constant)	. 748	. 456		1.642	. 106
	EPS	. 000	. 001	-. 287	. 984	. 329
	EPS2	$5.531 \mathrm{E}-08$. 000	. 152	. 565	. 574
	D_EPS	1.925E-02	. 089	. 032	. 216	. 830
	D_EPS2	-. 001	. 004	-. 034	-. 240	. 811
	CFO	. 000	. 001	-. 085	-. 154	. 878
	CFO2	2.484E-08	. 000	. 091	. 171	. 865
	D_CFO	. 202	. 409	. 116	. 493	. 624
	D_CFO2	-. 030	. 056	-. 135	-. 539	. 592

a. Dependent Variable: RETURN

