A THESIS
 Presented as a Partial Fulfillment of the Requirements to Obtain The Bachelor Degree in Accounting Department

Department of Accounting International Program
Faculty of Economics
Islamic University of Indonesia
Yogyakarta
2005

THE IMPACT OF LOSSES AND CASH FLOWS ON DIVIDEND

A BACHELOR DEGREE THESIS

BY

RISTIONO

Defended before the Board of Examiner on April 30, 2005 and Declared

Acceptable

Board of Examiner

Examiner 2:
April 30, 2005

April 30, 2005

Yogyakarta, April 30, 2005
International Program
Faculty of Economics

PAGE OF DEDICATION

Bukankafi Kami tefafi Capangkan dadamu wafiai Mufiamad. Dan kami tefafi memyingkirkan bebanmu, Bebar yarg memberatkar punggungmu, Calu Kami angkat martabatmu.

 Sunggufi Gersama kesukaran pasti ada kemudafian. Dan bersama kesukaran pasti ada kemudafian. Karena itu, Gila selesai suatu urusan, mulailaf tugas yang lain dengan sunggufi-sunggufi.Hanya kepada Tufianmu fiendaknya kau berfiarap
(QS: A(Insyirafi)

Dedicated to my beloved family

ACKNOWLEDGEMENT

First and foremost , I would like to express my praise to Allah SWT for all the strength, health, and blessing given to me. It was very hard work in doing and finishing this thesis, so without bless from Allah SWT, it is impossible for me to accomplish anything in my life.

My sincere appreciation goes to Mr. Hadri Kusuma, Dr., MBA my content advisor, for helpful, comment, advise, guidance, patient and insight during my thesis writing. He makes everything become easy and understandable. Then I must address my thanks to Ms. Sari Hidayati, my language advisor, for her encouragement and assistance. She gave more view about writing.

I would like to extend my appreciation to Mr. Asma'i Ishak, Drs., M.Bus., Ph.D., as Director of International Program. Mr. Sahabudin Sidiq, Drs, M.A., as Vice Director for Academic Affair. Mr. Erwanto, Mr. Ony, Ms. Fanny, Ms. Ilham as academic staff of International Program, for all support and cooperation during my study in International Program. My deep gratitude also goes to all International Program Lecturers for having transferred their extensive knowledge during the time of my study.

I wish to express much gratitude to the following best friends for their friendships, supports, and understanding up till now. They are:

- Titis, Iin, Sekar (SA Music Studio), Dandit "Mr. Doz" for critic and suggestion, Mr. and Mrs. Taufik for always reminding me to finish my thesis,
- N'Come (Ichoen, U'u, Q-Noy, Final, Ocha, Aam, Nurul, Iman) real Hip-Hop Band for joy and their time to share for 'hangin out', Kontra (Kohol, David, Paddy, Zain), Vourtorico (Zurip, Dea, Gatot Guruh etc),
- Jimmy 'Stress' for entertainment and fun during my work, Agus and Dewi Rental disc for Stress medication, my lovely fish Junior and ' M ' for accompanying me in my boarding house,
- My lovely and cute sisters Emma Beauty and Etha; Lia'Oi', Erna, Ida, Ratih for help and support during my work and in finishing my thesis,
-96 Community (Andre'Akong', Nugie'Jumphes', Indie, Badra, Idris 'Kermit', Ashari etc) for their friendships during my study in International Program, -Ex Anggajaya (Frans, Chandra, U'un, Mr.Ed, Hisa, Gundul etc) 104 B boarding house for brotherhood, madnes, unforgetten experience in my life,
-Ex Gandaria 108 (Dedi'Marcel', Anas'Buncit', Ade, Dewa, Baenk'Betawi') for friendships and brotherhood,
-My Gangs (Safiq'Tong_Ab', Hari 'Mbets', Hary'Buel', Andys'Jabrique', Noki'Bokir', Wiwit 'Congky'Rizqueu, Tyo Bdg, Alfi, Cipluk, Ky, Anne, Eka'Enti', Lisa, Yani, Uut) for the greatest experience in my life,
- Great thank to Mr. and Mrs. Bambang B family for giving me comfort place to live.

Last but not least, my great and deepest thanks go to my beloved Mother and Father for taking care of me all of this time. Thanks a lot for supporting me and always praying for me day and night. You are the best thing in my whole life.

I also send my big thanks to my beloved sisters; Ristiyanti and Kristiani, and beloved brother; Kristianto. Thanks a lot to my Grandma, Aunty, and uncle. My big family, thanks for all love, afffection, spirit, and support devoted to me. I dedicate this thesis to you.

TABLE OF CONTENT

Page of Title i
Approval Page ii
Legalization Page iii
Page of Dedication iv
Acknowledgement v
Table of Content viii
List of Tables x
List of Appendices xi
Abstract xiii
Abstrak xiv
CHAPTER I: INTRODUCTION
1.1 Study Background 1
1.2 Problem Identification. 2
1.3 Problem formulation 3
1.4 Limitation of Research Area 3
1.5 Research Objective 4
1.6 Research Benefit 4
1.7 Definition of Terms 4

CHAPTER II: REVIEW OF RELATED LITERATURE

2.1. Review of Related Literature 6
2.1.1. Statement of Cash Flows 6
2.1.2. Purpose of Statement of Cash Flows 8
2.1.3. Classification of Cash Flow 9
2.1.4. Dividends 10
2.2. Previous Study 13
2.3. Theoretical Framework and Hypothesis Formulation 14
CHAPTER III: RESEARCH METHOD
3.1. Research Method 19
3.2. Research Subject 19
3.3. Research Setting 19
3.4. Research Instrument 19
3.5. Research Variable 20
3.6. Research Procedure 20
3.7. Technique of Data Analysis 23
3.7.1. Population and Sample 23
3.7.2. Analysis Method 24

CHAPTER IV: RESEARCH FINDING, DISSCUSION AND IMPLICATION

4.1. Research Description 29
4.2. Research Findings, Discussions, and Implication 30
4.2.1. Test of Association of Dividend Changes with Losses, Earnings and Cash Flows 30
A. Test of Hypothesis 30
4.2.2. Test of Information Content of Dividend Reduction, Earnings, and Cash Flows as Predictor of Future Earnings 33
A. Test of Hypothesis 34
CHAPTER V: CONCUSION AND RECOMMENDATION
5.1. Conclusion 36
5.2. Recommendation 37
BIBLIOGRAPHY 38
APPENDICCES 42

LIST OF TABLES

Table 4.1. Descriptive Statistic 29
Table 4.2. Regression Result. 31
Table 4.3. Regression Result 34

LIST OF APPENDICES

1. APPENDIX 1:

- Cash Dividend. 42
- Earnings 44
- Cash Flows from Operating activities 46
- Stock Price 48
- Amount of Share 50
- Market Value of Equity. 52

2. APPENDIX 2:

- Regression Result 54

Abstract

Ristiono (2005), The Impact of Losses and Cash Flows on Dividend.Yogyakarta. Accounting Department. Economic Faculty. Islamic University of Indonesia.

The objective of the research is to examine the impact of cash flows, earnings, and losses in setting dividend policy. More specifically; i) earnings, cash flows, and annual losses are posited to be associated with dividend changes in firms with established earnings and dividend record and ii) dividend reductions, current operating earnings and cash flow have information in predicting future earnings.

As much as 60 manufacturing companies listed on Jakarta Stock Exchange within 1997-2002 of fiscal year were taken as a sample of the research. Data from audited financial statement were taken from Jakarta Stock Exchange. The statistical method used to test the hypothesis is a linear regression model. Twenty two models are considered in this research. The $1^{\text {st }}$ until $15^{\text {th }}$ models are used to examine the association of earnings, cash flows, and losses with dividend changes. The $16^{\text {th }}$ until $22^{\text {nd }}$ are used to examine that dividend reduction, current operating earnings, and cash flows have information in predicting future earnings.

The result of the research reveals that there is an association between earnings, cash flows, and losses with dividend changes. Result also indicates that dividend reductions, current operating earnings and cash flows have an information to predict future earnings.

ABSTRAK

Ristiono (2005), The Impact of Losses and Cash Flows on Dividend.Yogyakarta. Jurusan Akuntansi. Fakultas Ekonomi. Universitas Islam Indonesia.

Tujuan dari penelitian ini adalah untuk meguji pengaruh dari cash flow, earnings dan losses dalam menetapkan kebijakan pada dividen. Lebih spesifik lagi; i) earnings, cash flows, and annual losses berhubungan secara positif dengan perubahan pada dividen,ii) perubahan pada dividen, current earning dari operasi dan cash flow mempunyai informasi untuk memprediksikan earnings di masa yang akan datang.

Sebanyak 60 perusahaan manufaktur yang terdaftar di Bursa Efek Jakarta (BEJ) dengan menggunakan 1997-2002 periode keuangan digunakan sebagai sample dalam penelitian. Data merupakan laporan keuangan yang sudah diaudit yang di ambil dari Bursa Efek Jakarta (BEJ). Metode statistik yang digunakan adalah model linear regresi. Sebanyak duapuluh dua model digunakan dalam oenelitian ini. Model 1 sampai 15 di gunakan untuk menguji asosiasi earnings, cash flows, dan losses dengan perubahan pada dividen. Model 16 sampai 22 digunakan untuk menguji perubahan pada dividen, current earnings dari operasi dan cash flow memiliki informasi dalam memprediksikan earnings di masa depan.

Hasil dari penelitian menunjukkan bahwa ada asosiasi antara earnings, cash flows, dan losses dengan perubahan pada dividen. Hasil penelitian juga menunjukkan bahwa perubahan pada dividen, current earnings dari operasi dan cash flow memiliki informasi untuk memprediksi earnings di masa depan.

CHAPTER I

INTRODUCTION

1.1 Study Background

A fundamental question in corporate finance is whether changes in dividend policy convey information about firm performance to capital markets. Not only are there well-documented price reactions to announcement of changes in dividend policy, but dividends have also been established as a mechanism whereby information related to the operations and future plans of a firm can be communicated (Benartzi et al., 1997; Michaely et al., 1995). As a result, the magnitude of information effects of dividends has increased the need for the prediction of dividend changes. Commencing with Lintner (1956), several other researchers examined the association between earnings and dividend changes.

More recent studies have focused on the impact losses on dividend changes (De Angelo and De Angelo et el., 1990; De Angelo et al., 1992), as well as on the effect of cash flow on dividend policy (Simons, 1994; Charitou and Vafeas, 1998). De Angelo and De Angelo documented a high incidence of dividend reduction by firm with persistent losses, but provided no similar evidence for firm with transitory losses. De Angelo et al. Concluded that an annual loss is necessary condition for dividend reductions in firm with established earnings and dividend record. So far as the impact of cash flow on dividend policy is concerned, no research to date has established an association between cash flows and dividend changes, given earning. Nevertheless, a positive association is
hypothesized for two reasons: i) cash flows are more direct liquidity measure than earnings (Charitou and Vafeas, 1998) and ii) managers may manipulate earnings to maximize bonuses or meet debt covenant. For these reasons, then cash flow is expected more reliable indicator of firm performance than earning (Healy, 1985).

Finally, the simultaneous effect on dividend policy of cash flows and losses has not yet been considered. And in this thesis, the researcher wishes to test whether or not there is an association of dividend changes with losses (that company reduce or omit dividend when they loss), earnings, and cash flows and the information content of dividend reductions, earnings, and cash flows as predictors of future earnings. The purpose of this research is to get empirical evidence about the association of dividend changes with losses, earnings, and cash flows and the information content of dividend reductions, earning, and cash flow as predictor of future earning. The researcher takes some companies listed in Jakarta Stock Exchange as research object. The research is entitled:
"The Impact of Losses and Cash Flows on Dividends"

1.2 Problem Identification

Dividend policy plays an important role in the value of a firm. Stockholders see dividends as signals of the firm's ability to generate future income, and hence, use it in the valuation of firms. Dividends can be used to measure the performance and the condition of the company; therefore, management should have a good knowledge about factors that affect dividend.

The researcher tries to conduct research which is focusing on the examination of the impact of cash flows, earnings, and losses in setting dividend policy.

1.3 Problem Formulation

Based on the explanation above, the main problem of this research are:

1. Whether there is any association between earnings measure (losses, level and changes in operating earnings) and dividend changes,
2. Whether there is any association between cash flow measure and dividend changes, given earnings,
3. Whether there is any association between dividend increases and future earnings, given current earnings and cash flow.

1.4 Limitation Of Research Area

The research is limited into the following areas:

1. The object of this research is sixty manufacturing company listed in Jakarta Stock Exchange (Bursa Efek Jakarta),
2. Availability of data to calculate the level and changes in operating earnings, the level and changes in operating cash flows, and the return on equity. All firms that met above criteria were included in the initial sample and subsequently categorized as loss firms and non-loss sample,
3. Availability of yearly dividends and dividends per share,
4. Availability of the market value of equity at fiscal year end,
5. Financial institutions and utilities were excluded from the sample.

1.5 Research Objective

The research is aimed :

1. To test whether there is any association between earnings measure (losses, level and changes in operating earnings) and dividend changes,
2. To test whether there is any association between cash flow measure and dividend changes, given earnings,
3. To test whether there is any association between dividend increases and future earnings, given current earnings and cash flow.

1.6 Research Benefit

This research hopefully will give some contribution to:

1. Offer insight and guidance regarding the usefulness of cash flow information in dividend policy,
2. Improve our understanding of the role of earnings, cash flows and annual losses in explaining dividend changes and future earnings,
3. As reference to next researcher (s).

1.7 Definition of Term

Definition of term is needed to make readers understand about the meaning of the main term in this thesis.

1. Earnings

Earnings are the change in equity (net asset) of an entity during given period that result from transaction and other events and circumstances from non owner sources except the effect of certain accounting adjustment of earlier periods that are recognized in the current period and certain other changes in net asset (Zahroh Naimah, 2000).

2. Cash Flows

It is defined as the amount of money, which move into and out of a business at a particular point of time (Tuck and Ashley, 1993: 78).
3. Losses

The name given to the difference between revenues and expenses when expenses exceed revenues.
4. Cash Dividend

Distribution of profit of the corporation to shareholder.
5. Capital Market

The institutions that provides a channel for the borrowing and landing of long-term periods (over one year).

REVIEW OF RELATED LITERATURE

2.1. Review of Related Literature

2.1.1 Statement of Cash Flows

The evolution of the statement of cash flows provides an interesting example of how the needs of financial statement users eventually are meet. The statement was originated years ago in a simple analysis called the "Where-Got and Where-Gone Statement," which consisted of nothing more than a listing of the increases or decreases in the company's balance sheet items. After some years, the title of this statement was changed into "the fund statement." In 1961, the AICPA, recognizing the significance of this statement, sponsored research in this area that resulted in the publication of Accounting Research Study No 2, entitled "Cash Flow Analysis and the Funds Statement" (Perry Mason: New York: AICPA, 1961). This study recommended that the funds statement should be included in all annual reports to stockholders and that it should be covered by auditor's opinion

In 1963, $A P B$ Opinion No. 3 was issued to standardize the preparation and presentation of funds statement. The board recommended that the name should be changed to "Statement of Source and Application of Funds" and the statement should be presented as supplementary information in financial reports. The inclusion of such information was not mandatory, and its coverage by auditor's report was optional (New York: AICPA, 1963).

The business community, the stock exchange, and the SEC embraced APB Opinion No.3. As a result, the number of companies presenting funds statement increased sharply. In 1971, APB Opinion No. 19 made mandatory that a "statement of changes in financial position" should be presented as an integral part of the financial statements and that it should be covered by auditor's opinion. The Board concludes that
...information concerning the financing and investing activities of a business enterprise and the changes in its financial position for a period is essential for financial statement users, particularly owners and creditor, in making economic decision. When financial statements purporting to present both financial position (balance sheet) and results of operations (statement of income and retain earnings) are issued, a statement summarizing changes in financial position should also presented as a basic financial statement for each period for which an income statement is presented (New York: AICPA, 1971).

The Board recommended that the new title was "Statement of Changes in Financial Position." This title was used exclusively from 1972 through 1987.

Through the 1960s and 1970s, the statement presented the change in working capital as an adequate approximation for cash flow. In early1980s, however, the financial reporting environment changed dramatically as companies began taking on increasing amount of debt. In 1981, the Financial Executives Institute recommended that companies use a cash (or cash and cash equivalents) basis instead of a working capital basis in preparing this statement (Morrison, N . J., 1984). In addition, many practitioners and academicians argued for a stronger cash basis orientation to the statement of changes in financial position. In its Concepts Statement No. 5 (1984), the FASB strongly supported the inclusion in the primary financial statement of statement of cash flows that reflect an entity's
cash receipts classified by major sources and its cash payment classified by major uses. In November 1987, the FASB issued Standard No. 95, "Statement of Cash Flows," which became effective for annual financial statement for fiscal years ending after July $15,1998$.

2.1.2 Purpose of the Statement of Cash Flows

The primary purpose of the statement of cash flows is to provide information about an entity's cash receipts and cash payments during a period. A secondary objective is to provide information on a cash basis about its operating, investing, and financing activities. According to the FASB, the information provided in a statement of cash flows, if used with related disclosures and the other financial statement, should help investors, creditors, and others to:

1. Asses the enterprise's ability to generate positive future net cash flows,
2. Asses the enterprise's ability to meet its obligation, its ability to pay dividends, and its needs for external financing,
3. Asses the reasons for difference between net income and associated cash receipts and payments,
4. Asses the effect on enterprise's financial position of both its cash and non cash investing and financing transaction during a period.

The statement of cash flows report cash receipts, cash payments, and net change in cash resulting from operating, investing, and financing activities of an enterprise during a period, in a format that reconciles the beginning and ending cash balances.

The statement of cash flows provides information, which is not available in other financial statement. For example, it helps to indicate how it is possible for a company to report a net loss and still make large capital expenditure or pay dividends. It can tell whether the company issued or retired debt or common stock or both during a period.

Reporting the net increase or decrease in cash is considered useful because investors, creditors, and other interested parties want to know and can generally comprehend what is happening to a company's most liquid resource-its cash. A statement of cash flows is useful because it provides answer to the simple but important questions about the enterprise as follows:

1. Where did the cash come from during the period?
2. What was the cash use for during the period?
3. What was the change in the cash balance during the period?

2.1.3. Classification of Cash Flows

The statement of cash flows classifies cash receipts and cash payments in terms of operating, investing, and financing activities. Transactions and other events characteristic of each kind of activity are explained as follows:

1. Operating activities involve the cash effects of transaction that enter into the determination of net income, such as cash receipts from sales of goods and services and cash payments to suppliers and employees for acquisitions of inventory and expenses.
2. Investing activities generally involve long-term assets and include (a) making and collecting loans, and (b) acquiring and disposing of investments and productive long-live assets.
3. Financing activities involve liability and stockholders' equity items and include (a) obtaining cash from creditors and repaying the amounts borrowed and (b) obtaining capital from owners and providing them with a return on, and return of, their investment.

2.1.4. Dividends

The term dividend usually refers to a cash distribution of earnings. If a distribution is made from sources other than current or accumulated retained earnings, the term distribution rather than dividend is used. However, it is acceptable to refer to a distribution from earnings as a dividend and a distribution from capital as a liquidating dividend. More generally, any direct payment by the corporation to the shareholders may be considered part of dividend policy.

Forms of dividends:

- Regular cash dividend: Usually paid quarterly, these are direct payments of cash from the firm to the shareholder and are made in the regular course of business.
- Extra/Special dividend: These are in addition to the regular dividend. Typically these are unlikely to be repeated. For e.g., a firm which sells off a division and has no plans to invest the cash in other projects may decide to declare an extra/special dividend.
- Liquidating dividend: When the firm decides to wind up, it sells all its assets and declares the whole amount as liquidating dividend.

While liquidating dividends may reduce the paid-in capital, all other dividends reduce the firm's cash and retained earnings.

Two other special forms of dividend distribution are

- Stock dividends
- Share repurchases

Stock dividends

A stock dividend is not a true dividend because it is not paid in cash. The firm increases the number of shares outstanding by allotting additional shares to each shareholder. A 5\% stock dividend means that each shareholder receives 5\% of shares currently owned as dividend i.e. if he/she owns 100 shares, in a 5% stock dividend, he/she will get 5 additional shares.

A stock split is essentially the same (there are differences in the method of accounting), except that the split is expressed as a ratio rather than as a percentage. A two-for-one stock split means that each old share is split into 2 new shares.

Share Repurchases

Share repurchases are an alternate means by which firms distribute cash. The firm uses cash to buy back its own shares. This leads to a reduction in shares outstanding and also alters the firm's capital structure. Common in industries where cash resources exceed the amount of positive NPV investments. e.g., the
banking industry in the early '90s. Firms do not have to necessarily increase their dividends per share due to lesser number of shares outstanding.

There are three types of repurchases:

1. Open-market repurchases: The firm is just like any other investor - it purchases stock in the open market.
2. Tender repurchases: The firm makes an offer to either all or to a subset of shareholders (for e.g., those holding less than 500 shares) to buy a pre-specified number of shares. Usually the offer price is higher than the prevailing market price.
3. Target repurchases (green mail): The firm buys back shares from some block holders (one who holds a substantial stake in the firm). The block holder could be an unsuccessful bidder of a takeover attempt.

Dividend Payment: A chronology

June 19 July 2 July 6 July 20
Declaration Ex-dividend Record Payment
date date date date

1. Declaration Date: The board of directors declares a payment of dividends.
2. Record Date: The declared dividends are distributable to shareholders of record on a specific date.
3. Ex-dividends Date: a share of stock becomes ex-dividend on the date the seller is entitled to keep dividend.
4. Payment Date: The dividend checks are mailed to shareholders of record.

2.2. Previous Study

Lintner (1956) posits that the main determinants of dividend changes are current earnings and previous year dividends. Specifically, Lintner argued that management's decision to change dividend is based on current earning level, in conjunction with a target payout rate from current earnings. Importantly, adjustments towards the payout target each year are only partial. This result in management's reluctance to reduce dividends. This study has not been successful in linking dividend changes to cash flows empirically.

Using Lintner's autoregressive dividend policy model and alternative asset-flow proxies, Fama and Babiak (1968), Hagerman and Huefner (1980) conclude that historical cost income is better predictor of dividend changes than cash flows. Specifically, these studies show that earning and prior year dividends are useful in explaining dividend changes. Meanwhile, cash flows are found to be significant in predicting dividend changes.

These studies define cash flow as income plus depreciation. This measure was shown to be a profitability proxy and not a liquidity measure (Largay and Stickney; 1980; Gombola and Ketz, 1983; and Bowan etal, 1986) Hence, based on these finding, it is plausible to argue that the Fama and Bubiak (1986) and Hagerman and Huether (1980) studies do not conclusively preclude the ability of cash flows to incrementally predict dividend changes, given earnings.

2.3. Theoretical Framework and Hypothesis Formulation

1. The association of dividend changes with annual losses and earnings (levels and changes)

Dividend is policy considered one of the most crucial issues for management decision because it seems an important way for companies to communicate with market participants. Investor cannot always trust manager to provide unbiased information about their companies' prospects, but dividend signal are relatively reliable because they require cash payments and cash cannot be easily manipulated.

Other factors that may explain the investors' preference for dividends are as follows: i) Dividends represent present-value cash inflow to the investors that cannot be lost if the firm later experience difficulties. This fact makes dividends less risky than capital gains, ii) Dividends reveal liquidity, so that the payment of cash dividends carries information that the firm is strong and healthy, iii) Cash dividends provide current income to investors who require shares from their investments, iv) Dividends provide prediction to investors regarding future earnings and future cash flows of a company (Hampton, 1989).

Dividends changes showed that capital market react favorably to 'good news' announcements (dividend increases) and adversely to 'bad news' announcement (dividend decrease), which supports the opinion that dividend changes play significant rule in giving information.

Test of how dividend changes are significant showed that capital markets react favorably to 'good news' announcements (dividend increase) and adversely
to 'bad news' announcements (dividend decrease), supporting the view that dividend changes have an information that can affect capital market (Michaely et al. 1995).

The present study will analyze:
Hypothesis 1: There is an association between earnings measure (losses, level and changes in operating earnings) and dividend changes

Based on this hypothesis, the slope coefficient of earnings and losses is expected to be positive and statistically significant, signifying the incremental importance of earnings and losses in explaining dividend changes. In other words, it is expected that firms reporting losses would reduce dividends in the loss year.

There are two possible explanations for these dividend reductions in the year of initial losses. First, to avoid violation of debt covenants, and second, because an operating loss reveals deterioration in the firm's profitability, reduced dividends can provide the funds required for the firm's normal operations and to meet their legal obligations (De Angelo, 1990).
2. The association of dividend changes and cash flows, given annual losses and earnings

Although earnings are considered the dominant measure of performance in the market place, the existence of information asymmetries between management and the suppliers of capital has led to the demand for other measures of performance, especially cash flows. Earnings can be criticized because i) management has some discretion over the recognition of certain accruals, which
can be used to convey private information or manipulate earnings; and ii) earnings do not fully capture the firm's liquidity position.

These limitations make accrual earnings a less reliable determinant of dividend policy. Lawson $(1996,1997)$ contend that dividend policies based on accrual earnings are inconsistent with ex ante shareholder value creation (SVC) model, i.e., to maximize firm value, organization should invest in project with positive net present values while simultaneously considering firm liquidity (cash flow). Dividend policies based on accrual earnings can result in: i) deterioration of a firm's liquidity and solvency, ii) dividend payments that cannot be internally financed, iii) external borrowing to partially finance dividend, and iv) increased financing cost leading to a transfer of shareholder wealth to lender.

This occurs whenever funds must be raised through debt, and ultimately increases the firm's risk (Lawson and Stark, 1981, Whittington and Meeks, 1976). Proponents of cash flow reported also argue that cash flows are not affected by arbitrary allocation and cannot be easily manipulated by management (Lee 1978, 1981; Lawson, 1981). Since dividends must pay in cash, firm reporting insufficient cash may force to reduce dividends. Thus, it is expected that firms would reduce dividends in years of insufficient liquidity. Furthermore, research indicates that i) higher dividend payout ratio corresponds to a larger cash flows, and ii) firms that persistently generate more operating cash flow than earnings are likely to have higher dividend payout ratios (Ingram and Lee, 1997).

On the other hand, cash flows are an insufficient and noisy measure of performance in so far as they influenced by timing and matching problem
(Dechow, 1994). Thus, due to their inherent limitations, neither cash flow nor earnings can be used in isolation to explain dividend policy choices. Furthermore, there is evidence suggesting that dividend reduction is the result of deterioration in both the profitability and the liquidity of a firm (Jensen and Johnson, 1995). Thus the lack of any established association between cash flows and dividend policy, given earnings; the contradictory research on the usefulness of cash flows in setting dividend policy; the inherent limitation of earnings as a reliable determinant of dividend policy and the scant empirical evidence linking cash flows and annual losses with dividend changes using Indonesian data, point to:

Hypothesis 2: there is an association between cash flow measure and dividend changes, given earnings

According to this hypothesis, the slope coefficient of cash flow measures is expected to be positive and statistically significant, signifying the importance of cash flows in explaining dividend changes. Specifically, firms with cash flow deficiencies are more likely to reduce dividends because of the need to repay debt obligations to raise cash for the firm's normal operations.

3. The Information Content of Dividend Reduction, Earnings and Cash

 Flows as Predictors Of Future Earnings.Miller and Modigliani (1961) showed that management's superior assessment of the firm's prospect could be inferred from dividend changes, with dividend increases (decreases) predicting good (or bad) news about future earnings. DeAngelo et al. (1992) have also argued that dividend and current
earnings are likely substitutes for forecasting future earnings and that the information content of dividend will vary depending on the characteristic of current earnings.

Dividend are expected to have low (or high) explanatory power in random (nonrandom) samples because current earnings are expected to be more (less) reliable. Existing evidence on the information content of dividends is consistent with the above argument. Watts (1973) and Bernartzi et al. (1997) observed a weak association between unexpected earnings and dividend change for randomly selected firm. Using nonrandom samples, De Angelo et al. (1992), Healy, and Palepu (1998) indicate that dividend reductions have incremental information content in predicting future earnings, and given current earnings.

Cash flow are also expected to be statistically significant in forecasting future earnings in nonrandom samples because loss firms generally experience earnings reversion after the initial loss, suggesting current earnings will be less useful in future earnings than in normal circumstances where earnings follow a random walk (De Angelo et al. 1992). These contentions suggest:

Hypothesis 3: There is an association between dividend increases and future earnings, given current earnings and cash flow

According to this hypothesis, the slope coefficients of dividend changes, earnings and cash flow variables are expected to be positive and statistically significant. A positive sign for the dividend changes variable implies that the decreases or increases in current dividends will lead to decreases or increases in future earnings.

CHAPTER III

RESEARCH METHOD

3.1. Research Method

This thesis makes use of the quantitative analysis method. The Quantitative analysis is a characteristic of variables when the value is stated on numerical form. The characteristic of the measurement variables makes the value being place in interval.

3.2. Research Subject

The subject of this research is the companies listed on the Jakarta Stock Exchange from the period of 1997-2002 that has the following information: a) the level and changes in operating earnings, the level and changes in operating cash flows, and return on equity; b) yearly dividends and dividends per share; c) the market value of equity at fiscal year end.

3.3. Research Setting

This research was conducted in manufacturing companies listed on Jakarta Stock Exchange and was done between 1997-2002.

3.4. Research Instrument

Data collections were executed by seeking the secondary data that was available and quoting properly from data sources in the Faculty of Economic library of Universitas Islam Indonesia Yogyakarta and the JSX corner. Data collection and the sources of data are described as follows:
a) Manufacturing companies, which were listed on the Jakarta Stock Exchange,
b) The information of dividends per share,
c) The information of the level of and changes in operating earnings, the level and changes in operating cash flows, and the return on equity,
d) The information of the market value of equity at fiscal year end.

3.5. Research Variable

Variables used in this study were dividends, loss, earnings, and cash flows. Those variables were measured as follows:
a) Dividends was measured from distribution of profit of the corporation to shareholder,
b) Loss was measured as the difference between revenues and expenses when expenses exceed revenues,
c) Operating earnings was measured as the difference between income and expenses of the company that resulted from company's activities,
d) Operating cash flows was measured as the difference between cash inflow and cash outflow came from all company's activities.

3.6. Research Procedure

In order to answer the research problems, it is imperative to construct research procedures arranged as follows:

1) Formulating the research problems and determining the research objective

The first step, which is important in doing a research, is formulating the problem, because the research problem is a basis in formulating the conceptual framework. Moreover, the problem in detail is explained by formulating research objectives.
2) Determining the concept and Hypothesis of the thesis

A hypothesis is the nature of a tentative solution. It is the most reasonable explanation that can be found to account for the data that are previously stimulated to recognize the problem. Thus, the importance in setting the hypothesis is making ability to establish definite boundaries around the research effort.
3) Selection of Sample

The purpose of sampling is to provide sufficient information so that inferences are made based on the characteristic of the population, whereas the goals in sampling is to select a portion of the population, which is maximally representative of the characteristic of the population. If a judgment on a population from the sample results made, then the sample results must be representative to the population.

The following paragraph elaborates some of the major advantages of samplings:
a) Cost

Any data gathering effort will require money expenditure for such thing as mailing, interviewing, and tabulating of data. The more data to be handled, the higher the costs will if sampling is needed.
b) Time

It will require too much time if census is used rather than a sampling.
c) Accuracy of sample Result

Sample is the representative of the population characteristic so that the result of sample provide information that is almost accurate.

From the explanation above, it has been emphasized that a sample should be a representative of the population. The more representative a sample is, the more confident the estimation. Varieties of method exist because there is no best method. The nature of the population and the skill of the researcher determine an appropriate method for sample selection. Any sample based on someone's expertise about the population is known as a judgment or purposive sample. In the purposive sampling method, researcher decides which element are going to be the sample from whole population, how to draw the sample, and how the needed information will be calculated and used. In this method researcher made borders or restriction based on the characteristic of the subject that was to be a research sample.
4) Data collection

There are some steps that must be followed after the sample is selected, they are:
a) Checking all the information related to data collected which must be in concordance with the planning that was made,
b) Collecting the data, the data was gathered from library and other places, directly or indirectly.

5) Data Processing

The data processing is an important part of the research procedure, because it is useful for several reasons. First, it can lead to get information and a new insight. Then, it can help to avoid erroneous judgment and conclusions as well as to provide a background to help interpret and understand analysis conducted by others. Inappropriate data processing or analysis can suggest judgment and conclusions that are unclear, incomplete, and it can lead a wrong decision.

3.7. Technique of Data Analysis

3.7.1. Population and Sample

Populations of this study were the companies running in manufacturing industry and were already listed in Jakarta Stock Exchange. Meanwhile, the samples were taken using random and non-random sampling technique and must fulfill these conditions:
a) Being listed in Jakarta Stock Exchange,
b) Reported at least one annual loss during the period 1997-2002, reported positive dividends and positive operating earnings for all five years immediately prior to their first annual loss,
c) Reported only earnings (no losses) during the period 1997-2002, reported positive dividends and positive operating earnings for all five years immediately prior to their first earnings decline, and also reported a decline in operating earnings for at least one year during the period 19972002.

3.7.2. Analysis Method

The empirical model used to test the research hypotheses relate to a) the association of dividend changes with earnings, losses and cash flows, and b) dividend reduction as predictors of future earnings and cash flows.
a. The association of dividend changes with earnings, losses and cash flows The association of dividend changes ($\triangle \mathrm{DIV}$) with loss dummy (loss dum), the level and changes of operating earnings $(\mathrm{E}, \Delta \mathrm{E})$ and the level and changes in operating cash flows (CFO, $\triangle \mathrm{CFO}$) were tested using empirical models:

Univariate analysis:

$$
\begin{align*}
& \Delta \mathrm{DIV}=\mathrm{b}_{0}+\mathrm{b}_{2} \mathrm{E} \tag{3.1}\\
& \Delta \mathrm{DIV}=\mathrm{b}_{0}+\mathrm{b}_{3} \Delta \mathrm{E} \tag{3.2}\\
& \Delta \mathrm{DIV}=\mathrm{b}_{0}+\mathrm{b}_{4} \text { lossdum } \tag{3.3}
\end{align*}
$$

$$
\begin{align*}
& \Delta \mathrm{DIV}=\mathrm{b}_{0}+\mathrm{b}_{4} \mathrm{CFO} \tag{3.4}\\
& \Delta \mathrm{DIV}=\mathrm{b}_{0}+\mathrm{b}_{5} \Delta \mathrm{CFO} \tag{3.5}
\end{align*}
$$

Multivariate Analysis

$$
\begin{align*}
& \Delta \mathrm{DIV}=\mathrm{b}_{0}+\mathrm{b}_{1} \text { lossdum }+\mathrm{b}_{2} \mathrm{E} \tag{3.6}\\
& \Delta \mathrm{DIV}=\mathrm{b}_{0}+\mathrm{b}_{1} \text { lossdum }+\mathrm{b}_{3} \Delta \mathrm{E} \tag{3.7}\\
& \Delta \mathrm{DIV}=\mathrm{b}_{0}+\mathrm{b}_{1} \text { lossdum }+\mathrm{b}_{4} \mathrm{CFO} \tag{3.8}\\
& \Delta \mathrm{DIV}=\mathrm{b}_{0}+\mathrm{b}_{1} \text { lossdum }+\mathrm{b}_{5} \Delta \mathrm{CFO} \tag{3.9}\\
& \Delta \mathrm{DIV}=\mathrm{b}_{0}+\mathrm{b}_{2} \mathrm{E}+\mathrm{b}_{3} \Delta \mathrm{E} \tag{3.10}\\
& \Delta \mathrm{DIV}=\mathrm{b}_{0}+\mathrm{b}_{1} \text { lossdum }+\mathrm{b}_{2} \mathrm{E}+\mathrm{b}_{3} \Delta \mathrm{E} \tag{3.11}\\
& \Delta \mathrm{DIV}=\mathrm{b}_{0}+\mathrm{b}_{4} \mathrm{CFO}+\mathrm{b}_{5} \Delta \mathrm{CFO} \tag{3.12}\\
& \Delta \mathrm{DIV}=\mathrm{b}_{0}+\mathrm{b}_{1} \text { lossdum }+\mathrm{b}_{4} \mathrm{CFO}+\mathrm{b}_{5} \Delta \mathrm{CFO} \tag{3.13}\\
& \Delta \mathrm{DIV}=b_{0}+b_{2} \mathrm{E}+\mathrm{b}_{3} \mathrm{D} \Delta \mathrm{E}+\mathrm{b}_{4} \mathrm{CFO}+\mathrm{b}_{5} \Delta \mathrm{CFO} \tag{3.14}\\
& \Delta \mathrm{DIV}=b_{0}+\mathrm{b}_{1} \text { lossdum }+\mathrm{b}_{2} \mathrm{E}+\mathrm{b}_{3} \Delta \mathrm{E}+\mathrm{b}_{4} \mathrm{CFO}+\mathrm{B}_{5} \Delta \mathrm{CFO} \tag{3.15}
\end{align*}
$$

Where:

$\triangle \mathrm{DIV}$	$=$ change in cash dividends
Lossdum	$=$ lossdummy
E	$=$ operating earnings
$\Delta \mathrm{E}$	$=$ change in operating earnings
CFO	$=$ cash flows from operation
$\triangle \mathrm{CFO}$	$=$ change in cash flows from operation

In all models tested the earnings ($\mathrm{E}, \triangle \mathrm{E}$) and cash flow (CFO ,
$\triangle \mathrm{CFO}$) explanatory variables deflated by the market value of equity at the
beginning of the fiscal year. The coefficient of the earnings and cash flow variables are expected to be positive and statistically significant showing incremental importance of earnings, losses and cash flows in explaining dividend changes.
b. Dividend reduction as predictors of future earnings

The following models are used to test the effect of dividend reductions $\left(\Delta \mathrm{Div}_{\mathrm{t}}\right)$, current cash flows $\left(\mathrm{CFO}_{\mathrm{t}}\right)$ and current earnings $\left(\mathrm{E}_{\mathrm{t}}\right)$ as predictors of future earnings $\left(\mathrm{E}_{\uparrow+1}\right)$:
$E_{t+1}=b_{0}+b_{1} E_{t}$
$\mathrm{E}_{\mathrm{t}+1}=\mathrm{b}_{0}+\mathrm{b}_{1} \mathrm{CFO}_{\mathrm{t}}$
$\mathrm{E}_{\mathrm{t}+1}=\mathrm{b}_{0}+\mathrm{b}_{2} \Delta \mathrm{Div}_{\mathrm{t}}$
$\mathrm{E}_{\mathrm{t}+1=}=\mathrm{b}_{0}+\mathrm{b}_{1} \mathrm{CFO}_{\mathrm{t}}+\mathrm{b}_{2} \mathrm{E}_{\mathrm{t}}$
$E_{t+1}=b_{0}+b_{1} E+b_{2} \Delta \operatorname{Div}_{t}$
$\mathrm{E}_{\mathrm{t}+1}=\mathrm{b}_{0}+\mathrm{b}_{1} \mathrm{CFO}_{\mathrm{t}}+\mathrm{b}_{2} \Delta \mathrm{Div}_{\mathrm{t}}$
$E_{t+1}=b_{0}+b_{1} C F O_{t}+b_{2} \Delta \mathrm{Div}_{t}+b_{1} E_{t}$

Where:
E = operating earnings
CFO = cash flow from operations
$\Delta \mathrm{DIV}=$ change in cash dividends (dummy)
t = year of first annual loss (event year)
Earnings (E) and cash flows (CFO) are deflated by the market value of equity at the beginning of the fiscal year.

The coefficient dividend reduction, current earnings and current cash flows variables with future earnings are expected to be positive and statistically significant showing the incremental importance of dividend reductions, current earnings, and current cash flows as predictors of future earnings.
c. Descriptive Statistic

Descriptive Statistic is also used to test the variable to find the correlation between variables.
d. Sensivity analysis

Additional statistical tests performed to ascertain the robustness of the result. First, a new non-loss sample of firms with increasing, positive earnings employed. Second, regression analysis was use to examined the linear relationship between dividend changes and earnings, losses and cash flows.
a. Sample of firms with increasing, positive earnings

Two sub-samples of firms were used in the regression: Loss sample of firms with losses in at least one year during the period 1997-2002, and a non-loss of firms with established earnings and dividend records and with declining earnings recorded in at least one year during the period 1997-2002.
b. Linear relationship between dividend changes and earnings losses, cash flows

To examine the robustness of the logistic regression results, the analysis repeated using a linear regression approach. The same sample of loss and non-loss firms are employed.

CHAPTER IV

RESEARCH FINDING, DISCUSSION, IMPLICATION

4.1 Research Description

In this research, data used by researcher is secondary data that is audited financial statement of data companies listed in Jakarta Stock Exchange (BEJ) and categorized as manufacturing companies. Financial statement data in this research was taken from Jakarta stock exchange file.

The sample used in this research is sixty manufacturing companies listed in Jakarta Stock Exchange (BEJ). Financial statement data used in this research is audited financial statement for the year 1997 until 2002. Data was analyzed to know the association between loss and cash flow with dividend and information content of dividend reduction, earnings and cash flow as predictor of future earnings.

Table 4.1
Descriptive Statistic

\left.| VARIABLE | mean | median | St.deviation | Minimum | Maximum |
| :--- | :--- | :--- | :--- | :--- | :--- |
| CFO | 0.332300 | 0.211000 | 0.645600 | -1.590000 | 4.940000 |
| ChCFO | 0.181800 | - | 0.005700 | 1.956080 | -11.560000 |$\right] 17.410000 \quad$| ChE |
| :--- |
| E |

Source appendix 2

Compared to earnings, mean and median of the level of cash flow is greater. This result is consistent what is expected.

There are three equation level models used in this research. Those are as follows :
a. To test first and second hypothesis, the researcher used first and second model of equation that are stated in chapter three from equation 3.1 until 3.15
b. To test the third hypothesis, the researcher used third model of equation stated in chapter three from equation 3.16 until 3.22.

4.2 Research Findings, Discussion and Implication

4.2.1 Test of Association of Dividend Changes with Losses, Earnings and Cash Flow

A. Test of Hypothesis

The result of the hypothesis testing for hypothesis one and two was completed using linear regression model. This test is used to analyze the level of significance of the association of dividend changes with losses, earnings and cash flows. The result of the test for all sampling is described in table 4.2.

Table 4.2
Regression analysis Result

MODEL	constant	E	ChE	Dloss	CFO	ChCFO	$\begin{aligned} & \hline \text { Adjusted } \\ & R^{2} \end{aligned}$
1	-0.00184	0.0018580					0.01800
	0.00400	.043**					
2	-0.00108		0.0011590				0.02000
	0.06900		.039**				
3	-0.00180			0.00489			0.01800
	0.074*			.041**			
4	-0.00080				0.00844		0.12600
	0.49800	,			.000***		
5	-0.00094					0.00122	0.02300
	$0.008^{* *}$	\pm				.033**	
6	-0.00053	0.0032560		0.00246			0.17200
	0.21700	.008*		.031**			
7	-0.00021		0.0008151	0.00539			0.24400
	0.61000	-	.001***	. $000{ }^{* * *}$			
8	0.00014			0.00580	0.00145		0.23200
	0.75300			. $000{ }^{* * *}$.041**		
9	-0.00029			0.00586		0.00086	0.22200
	0.48500			.000***		.010**	
10	-0.00117	0.0022140	0.0008281				0.19900
	$0.003^{* *}$. 0000 ***	.001***		-		
11	-0.00050	0.0013800	0.0006569	0.00392			0.28900
	0.20800	.013**	.004**	.000***			
12	-0.00018		418	-	0.00291	0.00146	0.05800
	0.69900		-	-	.001***	.021**	
13	0.00018			0.00431	0.00184	0.00118	0.17100
	0.68000			. $000{ }^{\text {*** }}$.033**	.046**	
14	-0.00045	0.0020330	0.0004811		0.00199	0.00103	0.16000
	0.31100	. $0000{ }^{* * *}$.097*		.019**	.097*	
15	-0.00012	0.0011380	0.0002732	0.00293	0.00155	0.00106	0.18600
	0.78300	.048**	0.3380000	.009*	.071*	080*	

Coefficient, and p-value ; first and second line, respectively,*,**,***, significant at the $0.10,0.05,0.01$

Source appendix 2

Analysis result shows :
a. Univariate Analysis

Univariate analysis (1-5 table 4.2) result indicates that annual losses, earnings (level and changes) and cash flow level (CFO) are positively associated with dividend changes (all statistically significant). The coefficient of the earnings (level and changes), change in cash flow and lossdum is significant at $5 \% ~(a=$ $0.05)$ and for the cash flow variable is significant at $1 \%(a=0.01)$. The presence or obscene of cash flow has the highest explanatory power (adjusted $\mathrm{R}^{2}=12.6 \%$). b. Multivariate Analysis

There is an association between earnings measure (losses, level and changes in operating earnings) and dividend changes

Multivariate analysis result shows that annual losses (LossDum) and earnings (E or Ch E or both) are statistically significant in explaining dividend changes (model 6,7,10,11 in table 4.2).Comparison of model 10 and 11 confirms that the explanatory power of annual losses beyond earnings (level and changes) is substantial (adjusted $\mathrm{R}^{2}=0.199$ and 0.289 , respectively). These results substantiate earlier US and Japan evidence (Charitou, 1999) indicating the importance of annual losses in explaining dividend reduction. Multivariate model result support hypothesis one, i.e., a positive and statistically significant association exist between dividend changes and earnings (losses, level and changes).

There is an association between cash flow measure and dividend changes, given earnings

Model 8,9,12-15 (table 4.2) illustrates multivariate analysis result of the association between dividend changes and cash flows (level and changes), given earnings and losses. Model $8,9,13$ (table 4.2) indicate that cash flow (level) are associated with dividend changes, given earnings and losses. As hypothesized, the coefficient of cash flow is positive and significant at $5 \%(a=0.05)$, the coefficient of cash flow change is marginally significant $(a=0.10)$. The result also indicates that annual losses and earnings are positively associated with dividend changes. This multivariate model result support hypothesis two, i.e., there is a positive and statistically significant association between dividend changes and cash flow, given earnings and losses.

4.2.2 Test of Information Content of Dividend Reduction, Earnings and Cash Flows as Predictor of Future Earnings

A. Test of Hypothesis

The test for the third hypothesis was done by identifying the significant coefficient level of an information content of dividend reduction, earnings and cash flows as a predictor of future earnings. The result is displayed in table 4.3.
Source appendix 2

The Analysis result shows :
Univariate analysis result (model 17 table 4.3) shows that cash flow has positive and significant association with future earnings (see model 17 table 4.3, adjusted $\mathrm{R}^{2}=$ 1.2%) and significant level at $\mathrm{a}=0.01$. Multivariate regression analysis result (model 19,21,22 table 4.3) indicates an association between current cash flows and future earnings, given earnings and losses (adjusted $\mathrm{R}^{2}=7.8 \%, 5 \%$, and 7%, respectively) with significant level at $a=0.01$. The dividend reduction variable remains significant and positively related to future earnings at $\mathrm{a}=0.01$ (see model 22 , table 4.3), irrespective of the presence of earnings and /or current cash flows in the model. The same conclusion can be drawn for the cash flows variable, i.e, positively associated with future earnings given current earnings and dividend changes. This result supports hypothesis three that stating there is an association between dividend increases and future earnings, given current earnings and cash flow. This result is consistent with prior study done in US and Japan (Charitou, 1999).

CHAPTER V

CONCLUSION AND RECOMMENDATION

5.1 CONCLUSION

Based on the analysis result and the test of hypothesis, the researcher concludes that :

1. Earnings measure (losses, level and changes in operating earnings) has a positive and significant association with dividend changes. It means earnings measure (losses, level and changes in operating earnings) has information in explaining changes in dividend.
2. Cash flows, given annual losses and earnings has positive and significant relationship with dividend changes. It means cash flows has information in explaining dividend changes.
3. There is an association between dividend increases and future earnings, given current earnings and cash flows. The result of analysis indicates a positive and significant association between dividend increases with future earnings, given current earnings and cash flow. This leads to conclusion that the information contain of dividend changes, earnings and cash flows as a predictor of future earnings.

As a whole, the result of this research is consistent to prior research in U.S and Japan (Charitou, 1999).

5.2 RECOMMENDATION

The result of this research hopefully will give some potential contribution. First, the result of this research may offer insight and guidance regarding the use of cash flow information in setting dividend policy. Second, this study encourages further research that may improve understanding of the role of earnings, cash flows and annual losses in explaining dividend changes and future earnings.

Since no other work has examined the combined effect of cash flows and annual losses to explain dividend changes, the result encourages further research in this area to strengthen confidence in the evidence. The present result may also be useful in evaluating empirical model on the association of dividend changes with earnings, cash flows and losses.

However, this research has some limitations. First, the sample used is just taken from manufacturing companies so the result can not be generalized. Second, this research is limited to sixty manufacturing companies listed on Jakarta Stock Exchange (BEJ) and 1997-2002 of fiscal year. Therefore, the next researcher is highly suggested to add the number of sample and the period of the fiscal year. The earnings and cash flow variables used can only partially explain dividend changes primarily because there also are other financial and macroeconomic factors that can possibly explain dividend changes.

BIBLIOGRAPHY

Aharony J., and I. Swary, 'Quaterly Dividend and Earnings Announcement and Stockholder Returns: An Empirical Analysis', Journal of Finance 35, 1980

Baker, H. K., G. E. Farrely and R. B. Eldeman, ‘A Survey of Management Views on Dividend Policy', Financial Management, Autumn 1985

Bernatzi S., R. Michaely and R. Thaler, 'Do Changes in Dividends Signal the Future or the Past',. Journal of Finance, Vol. LII, No 3, July 1997

Bowen, R., D Burgstahler and L. Daley,' Evidence on the Relationship Between Earnings and Various Measures of Cash Flow', Accounting Review 61, 1986

Brigham E., and L. Gapenski, Financial Management: Theory and Practice, $7^{\text {th }}$ ed., Dryden, 1994

Chan L., Y. Hamao and J. Lakonishok, 'Can Fundamentals Predict Japanese Stock Returns?' Journal of Finance December 1993

Charitou A., and C. Clubb, 'Earnings, Cash Flows and Security Return Over Long Return Intervals: Analysis and U. K evidence', Journal of Business Finance and Accounting, March/April, 1999

Charitou A., and N. Vafeas, 'The Association Between Operating Cash Flows and Dividend Changes: An Empirical Investigation', Journal of Business Finance and Accounting, Jan-Mar, 1998

Charitou A., and E. Ketz,'An Empirical Examination of Cash Flow Measures', Abacus 27, March, 1991

Choi, F., H. Nino, S. Nam, and A. Stonehill,' Analyzing Foreign Financial Statements: The Use and Misuse of International Ratio Analysis', Journal of International Business Studies, Spring, 1983

Cooke T., 'The Impact of Accounting Princioles on Profits: The US Versus Japan', Accounting and Business Research, Vol. 23, No. 92, 1993

DeAngelo H., and L. DeAngelo, 'Dividend Policy and Financial distress: An Empirical investigation of troubled in NYSE firms', Journal of Finance 5, December 1990

DeAngelo H., and L. DeAngelo and D. J. Skinner, 'Dividend and Losses', Journal of Finance, December 1992

DeAngelo H., and L. DeAngelo and D. J. Skinner, 'Reversal of Fortune, Dividend Signaling and the Disappearence of Sustained Earnings Growth', Journal of Financial Economic, 1996

Dechow M.P., 'Accounting Earnings and Cash Flow as Measure of Firm Performance: The Role of Accounting Accrual', Journal of Accounting and Economics 18, 1994

Fama F. and H. Babiak, 'Dividend Policy: An Empirical Analysis', Journal of American Statistical Association, December 1968

Gerald R. J. and J. M. Johnson, The Dynamics of Corporate Dividend Reduction', Financial Management, Winter 1995

Gordon M. J., Corporate Finance Under The M.M Thoerems', Financial Management, Summer 1989

Hagerman, R. L and R. J. Huefner, 'Earnings Number and Dividend Prediction', Review of Business and Economic Research, Spring 1980

Hair, G. F., Rolph G. R., Anderson E., Tatham R. L., Black W. C., Multivariate Data Analysis With Readings, 1997

Hakanssan, N. A., 'To Pay or not to Pay Dividend', Journal of Finance 2, May 1982
Haskin M., K. Ferris and T. Selling, International Financial Reporting and Analysis: A Contextual Emphasis, Irwin, 1996

Heqaly, P., 'The of Bonus Scheme on the Selection of Accounting Principles', Journal of Accounting and Economics 7, 1985

Healy P, K. Palepu, 'Earnings Information Conveyed by Dividend Initiations and Omission', Journal of Finance Economics 21, 1998

Ingram, R ., and T. Lee, 'Information Provided by Accrual and Cash Flow Measures of Operating Activities', Abacus, vol. 33.2, 1997

Jensen G., and J., Johnson, 'The Dynamics of Corporate Dividend Reduction', Financial Management, Vol. 24, No. 4, Winter 1995

Kalay, A and U. Lowenstein, Predictable Events and Excess Returns: The Case of Dividend Announcement', Journal of Financial Economics, September 1985

Kormendi R., and P. Zarowin, 'Dividend Policy and Permanence of Earnings', Review of Accounting Studies, Vol. 1, 1996

Lawrence S., International Accounting, Thompson Press, 1996
Lawson, G., Aspect of the economic implications of accounting, Garland Publishing, 1997

Lawson, G., studies in cash flow accounting and analysis, Garland Publishing, 1997
Lawson, G., 'The Measurement of the Economic Performance of the US Nonfinancial Corporate Business Sector 1946-90: An Application of the Shareholder Vvalue Creation Concept', European Accounting Review, 1981

Lawson, G., 'The Cash Flow Performance of U.K Companies', in Essay in British Accounting Research, London., 1981

Lawson, G., and A. Stark, 'Equity Values and Inflation: Dividends and Debt Financing', Lloyds Bank Reviw, 1981

Lee, T. A., 'Funds Statements and Cash Flow Analysis', Investment Analyst, 1983, pp. 13-21., 'Cash Flow Accounting and Corporate Financial Reporting', In Essay in British Accounting Research, London., 1981
'The Cash Flow Accounting Alternative For Corporate Ffinancial Reporting', in C. van Dam (ed.) Trends in Managerial and Financial Accounting (Martinus Nijhoff), 1978

Lev, B., 'On the Usefulness of Earnings and Earnings Research: Lessons and Directions from Two Decades of Empirical Research', Journal of Accounting Research, 27, Supplement 1989

Litner J., 'Distribution of Income of Corporation Among Dividends, Retained Earnings and Taxes', American Economic Review 46, May 1956

Livnat J., and P. Zarowin, 'The Incremantal Information Content of Cash Flow Components', Journal of Accounting and Economics, 1990

Michaely, R., R. Thaler and K. Womack, 'Price Treaction to Dividend Initiations and Omissions: Overreaction or Drift?', Journal of Finance, Vold. L., No. 2, june 1995

March and Mertons, 'Dividend Behaviour for the Aggregate Stock Market', Journal of Finance, May 1987

Miler and F. Modigliani, 'Dividend policy, Growth and the Valuation of Shares', Journal of Business 34, 1961

Modigliani and Miller, 'The Cost of Capital, Corporation Finance, and Theory of Investment: Replay', American Economic Review, 49, 1959

Nobes C and R. Parker, Comparative International Accounting, $4^{\text {th }}$ ed., Prentice Hall, 1995

Radebaugh L., and S. Gray, International Accounting and Multinational Enterprise, $4^{\text {th }}$ ed., Wiley, 1996

Simons K., 'The Relationship Between Dividend Changes and Cash Flow: An Empirical Analysis', Journal of Business, Finance and Accounting, 1994

Thomson and Watson, 'Historic Cost Earnings, Current Cost Earnings and Dividend Decision', Financial Management, 1989

Watts, R., 'The Information Content of Dividend', Journal of Business 46, 1973
Whittington G., and G. Meecks, 'The financing of qouted companies in the U.K', Royal Commission on the distribution of income and wealth, Background Paper 1, HMSO, London, 1876

COMPANY	1997 CASH DIVIDEND					
1 AALI, Astra Argo lestari	1997	1998	1999	2000	2001	
2 ADES. Ades alfindo	18,998,000,000	122,026,000,000	31,450,000,000	67,932,000,000	10,567,000,000	${ }^{2} 2002$
AKRA, Aneka Kimia Raya Tbk	10,400,000,000	0	0	760,000,000	70,567,000,000	15,268,000,000
AMFG, Asahimas Flat Glass	8,680,000,000	0	0	0	760,000,000	
ANTM, Aneka Tambang (Persero) Tbk	16,987,039,000	27,806,760,000 0	3,472,000,000	6,944,000,000	0	
AQUA, Aqua Golden Mississipi	16,970,500,000	27,806,760,000 0	127,839,471,000	90,075,227,000	191,577,481,000	
AUTO, Astra Otoparts Tbk	8,436,628,500	0	3,948,741,900	5,264,989,200	6,581.236,500	$\frac{179,077,671,000}{8,226,545,635}$
BATA, Sepatu bata	0.4 $6.62,500$	0	0	0	0	8,226,545,635
BATI, BAT Indonesia	264,000,000	150,000,000	16,900,000,000	43,550,000,000	$46.150,000,000$	48,745,000,000
10 BAYU, Bayu Buana Travel	3,927,273,000		0	16,500,000,000	102,300,000,000	405,600,000,000
11 BLTA, Berlian Laju Tanker	3,586,400,000	6,879,600,000	0	0	0	105,600,000,000
12 BNBR. Bakrie and Brother	67,813, 200,000	6,879,600,000 0	0	4,586,463,800	7,689,067,950	23,206,505,850
13 BRAM, Branta Mulia tbk	36,450,000,000	0	0	0	0	23,200,505,050
14 BRNA, Berlina Tbk	86,405,000,000	805,000,000	138000	0	0	0
15 BRPT, Barilo Pasific Timber	77,000,000,000		1,380,000,000	6,900,000,000	20,700,000,000	0
16 BUDI, Budi Acid Jaya	10,000,000,000	0	0	0	0	
17 CEKA, Cahaya Kalbar Tbk	5,355,000,000	0	0	21,500,000,000	0	
18 CTBN, Citra Tubindo	4,500,000,000	18,367,350,000	0	0	0	
19 DAVO, Davomas Abadi	11,074,742,250	10,367,350,000 0	90,000,000,000	40,000,000,000	0	20,000,000,000
20 DLTA, Delta Djakarta	7,005,767,000	0	0	851,903,250	0	, 0
21 DNKS, Dankos Laboratories	3,930,250,000	0	0	5,604,613,000	4,803,954,000	6,405,272,000,000
22 DPNS, Duta Pertiwi Nusantara Tbk	5,190,075,000	1,903,027,500	00	638,875,000	17,860,500,000	17,860,500,000
23 DSUC, Daya Sakti Unggul Corp. Tbk		1,903,027,500	8,073,450,000	5,247,742,500	6,297,291,000	3,148,645,500
24 DUTI, Duta Pertiwi	27,750,000,000	11,100,000,000	9,000,000,000	12,500,000,000	0	3,140,645,500 0
25 DVLA, Darya-Varia Laboratoria Tbk	8,400,000,000	11.100,000,000	0	0	0	0
26 DYNA, Dynaplast Tbk	6,515,640,000		147.000,000	-1, 0	0	
27. EKAD, Ekadharma Tape Industries	670,824,000		147,000,000	13,487,422,000	0	15,129,722,000
28 ERTX, Eratex Djaja Lid. Tbk	982,360,000	0	3,913,140,000	4,472,160,000	3,354,120,000	4,024,944,000
29 ESTI, Ever Shine Textile Industry	14,927,472,000		4,911,800,000	4,420,620,000	2,455.900,000	1,473,540,000
30 ETWA, Eterindo Wahanatama Tbk		0	0	14,927,472,000	0	0
31 GGRM, Gudang Garam	288,613,200,000	230,890,560,000	500,263,000,000	0	0	0
32 HDTX, Panasia Indosyntec	7,980,000,000	230,690,560,000	500,263,000,000	1,924,088,000,000	0	577,227,000,000
33 HMSP, HM Sampoerna	135,000,000,000	0	0	0	0	0
34 INDF, Indofood Sukses Makmur Tbk	71,722,000,000	0	0	464,000,000,000	315,000,000,000	112,074,000,000
5 INTD. Inter Delta		0	0	$\square 0$	164,808,000,000	222,937,950,000
6 INTP, Indocement Tunggal Prakarsa Tbk	169,011,732,400	0	0	0	\square	0
37 LMSH, Lion Mesh Prima	-240,000,000	96,000,000	0	0	0	0
38 LTLS, Lautan Luas Tbk	8,450,000,000	18,750,000,000	12,870,000,000	0	0	0
39 MDRN, Modern Photo Film Co. Tbk	13,338,495,000	-70,00,000		14,040,000,000	5,460,000,000	12,090,000,000
40. MEDC, Medco Energi Corporation Tbk	10,342,800,000	0	0	2,667,699,000	0	0
41 MERK, Merck Indonesia	8,680,000,000	280,000,000	4,480,000,000	39,959,417,000	285,547,890,000	364,276,000,000
42 MLBI, Multi Bintang Indonesia	25,810,750,000	0	4,480,000,000	25,760,000,000	25,760,000,000	15,680,000,000
43 MLIA, Mulia Industrindo	33,075,000,000	2,646,000,000	0	126,335,720,000	37,019,990,000	94,035,410,000
44 MYRX, Hanson Industri Ulama Tbk	308,000,000	2, 0	0	0	0	0
45 PBRX, Pan Btother Tex Tbk	9,004,491	768,000,000	3,840,000,000	2688,000,000	20, 0	-1, 0
			3,840,000,000	2.688,000,000	2,688,000,000	3,840,000.000

10,752,000,000	21,504000	0	0	0
10,752,000,000 0	21,504,000,000	9,071,930,000	4,535,965,000	0
4,061,171,000	15,837,380,000	3,456,000,000	0	0
0	15,037,360,000 0	15,715,554,000	30,456.500,000	30,456,500,000
0	0	0	0	0
1,836,000,000	0	0	16,446,672,000	6,167,502,000
0	0	0	0	0
0	0	5,040,000,000	0	0
0	0	0	0	0
93,018,097,000	80,111,109,000	96,232,980,000	137,101,152,000	0
10,035,168,000	25,973,376,000	8,051,746,560	14,804,824,320	158,733,407,000
0	0	28,900,000	0	23,376,038,400
5,229,418,750	3,346,828,000	4,183,535,000	0	2.510 .121000
5,7,00,000,000	8,075,000,000	10,450,000,000	0	2,510,121,000 0
3,900,000,000	11,700,000,000	31,200,000,000	23,400,000,000	19,500,000,000
0	28,830,000,000	4,650,000,000	23,400,00,000	19,500,000,000 0
61,232,850,000	6,747,550,000	17,495,100,000	74,354,175,000	8,747,550,000
71,089,000,000	205,889,000,000	124,501,000,000	119,715,000,000	12.500,000,000
0	0	0	0	0
0	11,250,000,000	22.500,000,000	112.500,000,000	135,000,000,000
0	0	429,345,000	0	11,405,448,000
0	0	0	0	0
0	0	0	0	0

COMPANY		STOCK PRICE					
		1997	1998	1999	2000	2001	2002
1	AALI, Astra Argo lestari	3,850	2,425	1,950	975	925	1,550
2	ADES, Ades alfindo	650	400	1,025	2,300	1,125	800
3	AKRA, Áneka Kimia Raya Tbk	1,200	200	550	260	625	600
4	AMFG, Asahimas Flat Glass	325	525	1.150	700	1,250	1,325
5	ANTM, Aneka Tambang (Persero) Tbk	1,325	1,625	1,400	900	800	600
6	AQUA, Aqua Golden Mississipi	3,225	2,700	8,000	14,000	35,000	37,500
7	AUTO, Astra Otoparts Tbk		375	2,150	1,825	1,225	1,400
8	BATA, Sepatu bata	1,100	1,300	13,550	12,200	14,000	15,000
9	BATI, BAT Indonesia	26,000	15,000	57,000	12,100	6,300	8,950
10	BAYU, Bayu Buana Travel	150	75	500	230	160	60
11	BLTA, Berlian Laju Tanker	1,700	1,250	1,125	1,075	1,775	485
12	BNBR. Bakrie and Brother	425	225	300	60	50	15
13	BRAM, Branta Mulia tbk	700	200	1,500	650	525	450
14	BRNA, Berlina Tbk	875	300	1,350	1,025	975	1,375
15	BRPT, Barito Pasific Timber	1,575	350	625	130	50	90
16	BUDI, Budi Acid Jaya	850	1,700	675	400	110	105
17	CEKA, Cahaya Kalbar Tbk	1,500	1,950	1,075	270	160	235
18	CTBN, Citra Tubindo	5,500	21,500	14,200	9,600	7,900	8,000
19	DAVO, Davomas Abadi	1,000	400	675	285	525	90
20	DLTA, Delta Djakarta	10,000	2,000	9,900	7,400	7,600	8,200
21	DNKS, Dankos Laboratories	1,250	250	1,300	550	460	400
22	DPNS, Duta Pertiwi Nusantara Tbk	200	175	1,400	575	400	220
23	DSUC, Daya Sakti Unggul Corp. Tbk	475	675	625	250	125	120
24	DUTI, Duta Pertiwi	200	475	1,400	550	255	325
25	DVLA, Darya-Varia Laboratoria Tbk	450	275	1,825	525	435	460
26	DYNA, Dynaplast Tbk	450	525	1,450	750	490	850
27	EKAD, Ekadharma Tape Industries	1,825	1,250	1,125	700	450	500
28	ERTX, Eratex Djaja Ltd. Tbk	150	400	850	425	420	200
29	ESTI, Ever Shine Textile Industry	450	300	1.000	250	320	300
30	ETWA, Eterindo Wahanatama Tbk	875	425	825	460	80	75
31	GGRM, Gudang Garam	8,375	11,650	16,725	13,000	8,650	8,300
32	HDTX, Panasia Indosyntec	250	175	675	825	205	200
33	HMSP, HM Sampoerna	4,150	5,275	17,775	14,900	3,200	3,700
34	INDF, Indofood Sukses Makmur Tbk	1,800	4,050	8,750	775	625	600
35	INTD, Inter Delta	350	325	725	220	260	210
36	INTP, Indocement Tunggal Prakarsa Tbk	1,800	3,175	3,100	1,600	700	675
37	LMSH, Lion Mesh Prima	1.675	900	1,100	575	850	350
38	LTLS, Lautan Luas Tbk	900	2,000	825	405	240	180
39	MDRN, Modern Photo Film Company Tbk	1,600	500	2,745	975	475	405
40	MEDC, Medco Energi Corporation Tbk	6,725	1.475	4,700	1,000	1,500	1,350
41	MERK, Merck Indonesia	9,000	19,000	7.725	7,450	10,500	10,000
42	MLEBI, Multi Bintang Indonesia	34,500	40,000	40,000	34,000	21,000	27,500
43	MLIA, Mulia Industrindo	625	375	575	355	135	125
44	MYRX, Hanson Industri Utama Tbk	4,350	50	275	90	30	50
45	PBRX, Pan Btother Tex Tbk	175	375	975	1,300	950	2,000
46	PSDN, Prashida Aneka Niaga	500	175	475	160	95	125
47	RDTX, Roda Vivatex	550	950	1,425	1,050	1,175	1,000
48	RICY, Ricky Putra Globalindo Tbk		225	500	340	170	40
49	RIGS, Rig Tenders Indonesia	850	1,350	3,200	2,800	3,025	3,500
50	SAIP. Surabaya Agung Industry Pulp	300	325	625	135	80	65
51	SCCO, Supreme Cable Manufacturing Co,	275	225	700	1,000	1,000	1,025
52	SCPI, Schering- Plough Indonesia	5,250	10,500	9,000	12,000	25,000	8,000
53	SKLT, Sekar Laut	200	125	550	550	400	400

54	SMAR, Smart Corporation Tbk	475	1,825	3,950	2,800	800	700
55	SMCB, Semen Cibinong	250	300	500	435	385	145
56	SMGR, Semen Gresik (Persero) Tbk	3,225	8,300	11,075	5,800	5,500	8,150
57	SMSM, Selamat Sempurna Tbk	700	800	1,125	2,000	1,800	1,450
58	SRSN, Sarasa Nugraha	150	250	600	925	60	45
59	SSTM, Sunson Textile Manufacturer Tbk	300	350	600	465	340	90
60	STIP, Siantar TOP Tbk	975	2,025	3,950	1,450	270	260
61	TCID, Tancho Indonesia	1,475	1,500	5,000	2,900	2,100	1,500
62	TFCO, Tifico (Teijin Indonesia Fiber Corp.	1,500	875	925	525	250	240
63	TGKA, Tigaraksa Satria	3,400	1,100	3,500	3,000	4,000	2,900
64	TINS, Tambang Timah Tbk	5,900	5,375	4,875	1,375	430	340
65	TIRA, Tira Austenite Tbk	2,150	2,250	1,800	1,700	1,800	2,000
66	TSPC, Tempo Scan Pasific	425	425	5,900	3,075	3,250	4,125
67	UNIC, Unggul Indah Cahaya Tbk	1,325	950	3,500	1,200	1,400	1,350
68	UNTR, United Tractors	650	500	6,900	425	360	305
69	VOKS, Voksel Elektrik Tbk	275	200	550	290	200	130

COMPANY		AMOUNT OF SHARE					
		1997	1998	1999	2000	2001	2002
1	AALI, Astra Argo lestari	1,258,000,000	1,258,000,000	1,509,000,000	1,521,605,000	1,527,470,000	1,527,002,000
2	ADES, Ades alfindo	76,000,000	76,000,000	76,000,000	76,000,000	76,000,000	76,000,000
3	AKRA, Aneka Kimia Raya Tbk	208,000,000	208,000,000	208,000,000	208,000,000	208,000,000	208,000,000
5	AMFG, Asahimas Flat Glass	287,000,000.	287,000,000	287,000,000	434,000,000	434,000,000	434,000,000
5	ANTM, Aneka Tambang (Persero) Tbk	1,230,769,000	1,230,769,000	1,230,769,000	1,230,769,000	1,230,769,000	1,907,691,950
6	AQUA, Aqua Golden Mississipi	13,162,473	13,162,473	13,162,473	13,162,473	13,162,473	13.162.473
7	AUTO, Astra Otoparts Tbk	0	749,930,280	749,930,280	749,930,280	749,930,280	749,930,280
8	BATA, Sepatu bata	4.550,000	4,550,000	4,550,000	13,000,000	13,000,000	14,9,900, ${ }^{\text {a }}$
9	BATI, BAT Indonesia	6,600,000	6,600,000	6,600,000	66,000,000	66,000,000	66,000,000
10	BAYU, Bayu Buana Travel	299,220,780	299,220,780	299,220,780	299,220,780	299,220,780	353,220,780
11	BLTA, Berlian Laju Tanker	152,880,000	458,640,000	458,646,260	458,646,260	512,791,292	2,061,560,468
12	BNBR. Bakrie and Brother	1,937,520,000	1,937,520,000	1,937,520,000	1,937,520,000	3,875,040,000	38,750,400,000
13	BRAM, Branta Mulia tbk	450,000,000	450,000,000	450,000,000	450,000,000	450,000,000	450,000,000
14	BRNA, Berlina Tbk	23,000,000	69,000,000	69,000,000	69,000,000	69,000,000	69,000,000
15	BRPT, Barito Pasific Timber	1,400,000,000	1,400,000,000	1,400,000,000	1,400,000,000	1,400,000,000	1,400,000,000
16	BUDI, Budi Acld Jaya	250,000,000	250,000,000	1,050,000,000	1,050,000,000	1,050,000,000	1,050,000,000
17	CEKA, Cahaya Kalbar Tbk	119,000,000	297,500,000	297,500,000	297,500,000	1,297,500,000	297,500,000
18	CTBN, Citra Tubindo	45,000,000	45,000,000	80,000,000	80,000,000	80,000,000	80,000,000
19	DAVO, Davomas Abadi	170,380,650	170,380,650	170,380,650	170,380,650	454,348,400	1,240,371,132
20	DLTA, Delta Djakarta	2,940,819	2,940,819	3,361,166	16,013,181	16,013,181	16,031,181
21	DNKS, Dankos Laboratories	127,575,000	127,575,000	637,785,000	893,025,000	893,025,000	893,025,000
22	DPNS. Duta Pertiwi Nusantara Tbk	34,600,500	80,734,500	104,954,850	125,945,820	125,945,820	125,945,820
23	DSUC, Daya Sakti Unggul Corp. Tbk	200,000,000	200,000,000	500,000,000	500,000,000	500,000,000	500,090,000
24	DUTI, Duta Pertiwi	1,387,500,000	1,387,500,000	1,387,500,000	1,387,500,000	1,387,500,000	1,387,500,000
25	DVLA, Darya-Varia Laboratoria Tbk	140,000,000	560,000,000	560,000,000	560,000,000	1,560,000,000	560,000,000
26	DYNA, Dynaplast Tbk	299,719,440	299,719,440	299,719,440	299,719,440	299,719,440	302,594,440
27	EKAD, Ekadharma Tape Industries	11,180,000	11,180,000	44,721,600	44,721,600	44,721,600	44,721,600
28.	ERTX, Eratex Diaja Ltd. Tbk	49,118,000	49,118,000	49,118,000	98,236,000	98,236,000	48,23,000
29	ESTI, Ever Shine Textile industry	298,549,440	298,549,440	298,549,440	2,015,208,720	2,015,208,720	2,015,208,720
30	ETWA, Eterindo Wahanatama Tbk	688,927,000	688,927,000	968,297,000	968,297,000	968,297,000	968,297,000
31	GGRM, Gudang Garam	1,924,088,000	1,924,088,000	1,924,088.000	1,924,088,000	1,924,088,000	1,924,088,000
32	HDTX, Panasia Indosyntec	532,000,000	532,000,000	532,000,000	532,000,000	532,000,000	532,000,000
33	HMSP. HM Sampoema	900,000,000	900,000,000	928,000,000	928,000,000	4,500,000,000	4,500,000,000
34	INDF, Indofood Sukses Makmur Tbk	1,831,200,000	1,831,200,000	1,831,200,000	9,156,000,000	9,156,000,000	9,384,900,000
35	INTD, Inter Delta.	30,177,600	30,177,600	30,177,600	30,177,600	30,177,600	30,177,600
36	INTP, Indocement Tunggal Prakarsa Tbk	2,414,453,320	2,414,453,320	2,414,453,320	2,414,453,320	3,681,223,519	3,681,223,519
37	LMSH, Lion Mesh Prima	9,600,000	9,600,000	9,600,000	9,600,000	9,600,000	9,600,000
38	LTLS, Lautan Luas Tbk	150,000,000	150,000,000	780,000,000	780,000,000	780,000,000	780,000,000
39	MDRN, Modern Photo Film Company Tbk	266,769,900	266,769,900	266,769,900	266,769,900	266,769,900	266,769,900
40	MEDC, Medco Energi Corporation Tbk	172,380,000	344,760,000	666,490,290	3,332,450,450	3,3,32,450,450	3,332,450,451
41	MERK, Merck Indonesia	1,680,000	1,680,000	18,480,000	22,400,000	22,400,000	22,400,000
42	MLBI, Multi Bintang Indonesia	3,520,012	3,520,012	3,520,012	3,520,012	21,070,000	21,070,000
43	MLIA, Mulia Industrindo	1,323,000,000	1,323,000,000	1,323,000,000	1,323,000,000	1,323,000,000	1,323,000,000
44	MYRX, Hanson Industri Utama Tbk	107,800,000	215,600,000	700,700,000	700,700,000	700,700,000	700,700,000
45	PBRX, Pan Blother Tex Tbk	76,800,000	76,800,000	78,800,000	76,800,000	76,800,000	384,000,000
46	PSDN, Prashida Aneka Niaga	360,000,000	360,000,000	360,000,000.	360,000,000	360,000,000	360,000,000

Descriptive

Statistics

		DDIV	DCFO	DE	LOSSDUM	E	CFO
N	Valid	182	182	182	182	182	182
	Missing	0	0	0	0	0	0
Mean		.2317	.1818	-.2900	.1758	.0321	.3323
Median	-.0112	-.0057	-.0127	.0000	.1091	.2110	
Std. Deviation	3.61467	1.95608	2.10299	.38172	.89827	.64560	
Minimum	-.97	-11.56	-16.81	.00	-5.40	-1.59	
Maximum		48.69	17.41	7.09	1.00	3.32	4.94

Regression

Variables Entered/Removed

Model	Variables Entered	Variables Removed	Method
1	E^{a}		Enter

a. All requested variables entered.
b. Dependent Variable: DDIV

Model Summary ${ }^{\text {b }}$

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	$.155^{\text {a }}$.024	.018	.08370

a. Predictors: (Constant), E
b. Dependent Variable: DDIV

ANOVA ${ }^{\text {b }}$

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	.029	1	.029	4.176	$.043^{\mathrm{a}}$
	Residual	1.191	170	.007		
	Total	1.220	171			

a. Predictors: (Constant), E
b. Dependent Variable: DDIV

Coefficients ${ }^{\text {a }}$

		Unstandardized Coefficients		Standardized Coefficients		
Model		B	Std. Error	Beta	\mathbf{t}	Sig.
1	(Constant)	$-1.842 \mathrm{E}-02$.006		-2.882	.004
	E	$1.858 \mathrm{E}-02$.009		.155	2.044

a. Dependent Variable: DDIV

Regression

Variables Entered/Removed

Model	Variables Entered	Variables Removed	Method
1	DE $^{\mathrm{a}}$		Enter

a. All requested variables entered.
b. Dependent Variable: DDIV

Model Summary ${ }^{\text {b }}$

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	$.160^{\mathrm{a}}$.026	.020	.07453

a. Predictors: (Constant), DE
b. Dependent Variable: DDIV

ANOVA ${ }^{\text {b }}$

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	.024	1	.024	4.319	$.039^{\mathrm{a}}$
	Residual	.917	165	.006		
	Total	.941	166			

a. Predictors: (Constant), DE
b. Dependent Variable: DDIV

Coefficients ${ }^{\text {a }}$

Model		Unstandardized Coefficients		Standardized Coefficients		
	B	Std. Error	Beta	t	Sig.	
	(Constant)	$-1.076 \mathrm{E}-02$.006			.069
	DE	$1.159 \mathrm{E}-02$.006		.160	2.078

a. Dependent Variable: DDIV

Regression

Variables Entered/Removed

Model	Variables Entered	Variables Removed	Method
1	LQSSDU M		Enter

a. All requested variables entered.
b. Dependent Variable: DDIV

Model Summary				
Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	$.153^{\text {a }}$.023	.018	.12171

a. Predictors: (Constant), LOSSDUM
b. Dependent Variable: DDIV

ANOVA ${ }^{b}$

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	.063	1	.063	4.247	$.041^{\mathrm{a}}$
	Residual	2.622	177	.015		
	Total	2.685	178			

a. Predictors: (Constant), LOSSDUM
b. Dependent Variable: DDIV

Coefficients ${ }^{\text {a }}$

Model		Unstandardized Coefficients		Standardized Coefficients Beta	t	Sig.
		B	Std. Error			
1	(Constant)	-1.803E-02	. 010		-1.796	. 074
	LOSSDUM	-4.893E-02	. 024	-. 153	-2.061	. 041

a. Dependent Variable: DDIV

Regression

Variables Entered/Removed

Model	Variables Entered	Variables Removed	Method
l	CFO $^{\text {a }}$		Enter

a. All requested variables entered.
b. Dependent Variable: DDIV

Model Summary ${ }^{\text {b }}$

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	$.362^{\mathrm{a}}$.131	.126	.14111

a. Predictors: (Constant), CFO
b. Dependent Variable: DDIV

a. Predictors: (Constant), CFO
b. Dependent Variable: DDIV

Coefficients ${ }^{\text {a }}$

Model		Unstandardized Coefficients		Standardized Coefficients	t	Sig.
		B	Std. Error	Beta		
1	(Constant)	-8.010E-03	. 012		-. 679	. 498
	CFO	-8.440E-02	. 016	-. 362	-5.195	. 000

a. Dependent Variable: DDIV

Regression

Variables Entered/Removed

Model	Variables Entered	Variables Removed	Method
1	DCFO $^{\mathbf{a}}$		Enter

a. All requested variables entered.
b. Dependent Variable: DDIV

Model Summary ${ }^{\text {b }}$

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	$.172^{\mathrm{a}}$.030	.023	.04348

a. Predictors: (Constant), DCFO
b. Dependent Variable: DDIV

ANOVA ${ }^{\text {b }}$

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	.009	1	.009	4.654	$.033^{a}$
	Residual	.287	152	.002		
	Total	.296	153			

a. Predictors: (Constant), DCFO
b. Dependent Variable: DDIV

Coefficients ${ }^{\text {® }}$

		Unstandardized Coefficients		Standardized Coefficients		
Model	B	Std. Error	Beta	\mathbf{t}	Sig.	
1	(Constant)	$-9.447 \mathrm{E}-03$.004			.008
	DCFO	$-1.211 \mathrm{E}-02$.006	-.172	-2.157	.033

a. Dependent Variable: DDIV

Regression

Variables Entered/Removed

Model	Variables Entered	Variables Removed	Method
1	E, LOSSDU M		Enter

a. All requested variables entered.
b. Dependent Variable: DDIV

Model Summary ${ }^{\text {b }}$

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	$.427^{\mathrm{a}}$.182	.172	.04284

a. Predictors: (Constant), E, LOSSDUM
b. Dependent Variable: DDIV

ANOVA ${ }^{b}$

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	.063	2	.032	17.176	$.000^{\mathrm{a}}$
	Residual	.283	154	.002		
	Total	.346	156			

a. Predictors: (Constant), E, LOSSDUM
b. Dependent Variable: DDIV

Coefficients ${ }^{\text {a }}$

Model		Unstandardized Coefficients		Standardized Coefficients Beta	t	Sig.
		B	Std. Error			
1	(Constant)	-5.338E-03	. 004		-1.239	. 217
	LOSSDUM	-3.256E-02	. 012	-. 258	-2.669	. 008
	E	$2.460 \mathrm{E}-02$. 011	. 211	2.181	. 031

a. Dependent Variable: DDIV

Regression

Variables Entered/Removed

Model	Variables Entered	Variables Removed	Method
1	DE, LOSSDU M^{2}		Enter

a. All requested variables entered.
b. Dependent Variable: DDIV

Model Summary ${ }^{\text {b }}$

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	$.503^{\mathrm{a}}$.253	.244	.04667

a. Predictors: (Constant), DE, LOSSDUM
b. Dependent Variable: DDIV

ANOVA ${ }^{\text {b }}$

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	.117	2	.059	26.914	$.000^{\mathrm{a}}$
	Residual	.346	159	.002		
	Total	.464	161			

a. Predictors: (Constant), DE, LOSSDUM
b. Dependent Variable: DDIV

Coefficients ${ }^{\text {a }}$

		Unstandardized 		Standardized Coefficients		
	B		Std. Error	Beta	t	Sig.
1	(Constant)	$-2.067 \mathrm{E}-03$.004		-.511	
	LOSSDUM	$-5.392 \mathrm{E}-02$.010	-.386	-5.467	.000
	DE	$8.151 \mathrm{E}-03$.002	.241	3.408	.001

a. Dependent Variable: DDIV

Regression

Variables Entered/Removed

Model	Variables Entered	Variables Removed	Method
l	CFO, LOSSDU M		Enter

a. All requested variables entered.
b. Dependent Variable: DDIV

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	$.491^{\mathrm{a}}$.242	.232	.04484

a. Predictors: (Constant), CFO, LOSSDUM

ANOVA ${ }^{\text {b }}$

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	.101	2	.050	24.994	$.000^{2}$
	Residual	.316	157	.002		
	Total	.416	159			

a. Predictors: (Constant), CFO, LOSSDUM
b. Dependent Variable: DDIV

Coefficients ${ }^{3}$

		Unstandardized Coefficients		Standardized Coefficients		
Model		B		Std. Error	Beta	t

a. Dependent Variable: DDIV

Regression

Variables Entered/Removed

Model	Variables Entered	Variables Removed	Method
1	DCFO, LQSSDU M		Enter

a. All requested variables entered.
b. Dependent Variable: DDIV

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	$.481^{\mathrm{a}}$.231	.222	.04735

a. Predictors: (Constant), DCFO, LOSSDUM

ANOVA ${ }^{\text {b }}$

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	.107	2	.054	23.905	$.000^{\mathrm{a}}$
	Residual	.356	159	.002		
	Total	.464	161			

a. Predictors: (Constant), DCFO, LOSSDUM
b. Dependent Variable: DDIV

Coefficients ${ }^{\text {a }}$

		Unstandardized Coefficients		Standardized Coefficients		
Model		B	Std. Error	Beta	t	Sig.
1	(Constant)	$-2.876 \mathrm{E}-03$.004		-.700	.485
	LOSSDUM	$-5.861 \mathrm{E}-02$.010	-.420	-5.982	.000
	DCFO	$8.564 \mathrm{E}-03$.003	.183	2.606	.010

a. Dependent Variable: DDIV

Regression

Variables Entered/Removed

Model	Variables Entered	Variables Removed	Method
1	${\mathrm{DE}, \mathrm{E}^{\mathrm{A}}}$		Enter

a. All requested variables entered.
b. Dependent Variable: DDIV

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	$.457^{\mathrm{a}}$.208	.199	.04804

a. Predictors: (Constant), DE, E

ANOVA ${ }^{b}$

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	.097	2	.048	20.938	$.000^{\mathrm{a}}$
	Residual	.367	159	.002		
	Total	.464	161			

a. Predictors: (Constant), DE, E
b. Dependent Variable: DDIV

Coefficients ${ }^{\text {a }}$

		Unstandardized Coefficients		Standardized Coefficients		
Model	B	Std. Error	Beta	t	Sig.	
1	(Constant)	$-1.171 \mathrm{E}-02$.004		-3.067	.003
	E	$2.214 \mathrm{E}-02$.005	.323	4.391	.000
	DE	$8.281 \mathrm{E}-03$.002	.245	3.330	.001

a. Dependent Variable: DDIV

Regression

Variables Entered/Removed

Model	Variables Entered	Variables Removed	Method
1	DE, LOSSSDU M, E		Enter

a. All requested variables entered.
b. Dependent Variable: DDIV

Model Summary ${ }^{\text {b }}$

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	$.550^{\mathrm{a}}$.302	.289	.04315

a. Predictors: (Constant), DE, LOSSDUM, E
b. Dependent Variable: DDIV

ANOVA ${ }^{\text {b }}$

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	.126	3	.042	22.498	$.000^{\mathrm{a}}$
	Residual	.290	156	.002		
	Total	.416	159			

a. Predictors: (Constant), DE, LOSSDUM, E
b. Dependent Variable: DDIV

Coefficients ${ }^{\text {a }}$

Model		Unstandardized Coefficients		Standardized Coefficients	t	Sig.
		B	Std. Error	Beta		
1	(Constant)	-4.985E-03	. 004	O	-1.263	. 208
	LOSSDUM	-3.920E-02	. 011	-. 296	-3.569	. 000
	E	$1.380 \mathrm{E}-02$. 006	. 211	2.510	. 013
	DE	$6.569 \mathrm{E}-03$. 002	. 205	2.913	. 004

a. Dependent Variable: DDIV

Regression

Variables Entered/Removed ${ }^{\text {² }}$

Model	Variables Entered	Variables Removed	Method
1	DCFO, CFO		Enter

a. All requested variables entered.
b. Dependent Variable: DDIV

Model Summary ${ }^{\text {b }}$

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	$.265^{2}$.070	.058	.04529

a. Predictors: (Constant), DCFO, CFO
b. Dependent Variable: DDIV

$$
\text { ANOVA }{ }^{\text {b }}
$$

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	.024	2	.012	5.874	$.003^{\mathrm{a}}$
	Residual	.318	155	.002		
	Total	.342	157			

a. Predictors: (Constant), DCFO, CFO
b. Dependent Variable: DDIV

Coefficients ${ }^{\text {a }}$

		Unstandardized Coefficients		Standardized Coefficients		
Model	B	Std. Error	Beta	t	Sig.	
1	(Constant)	$-1.766 \mathrm{E}-03$.005		-.388	.699
	CFO	$-2.910 \mathrm{E}-02$.009	-.320	-3.394	.001
	DCFO	$-1.460 \mathrm{E}-02$.006	-.220	-2.332	.021

a. Dependent Variable: DDIV

Regression

Variables Entered/Removed

Model	Variables Entered	Variables Removed	Method
1	DCFO, LOSSDU M, CFO		Enter

a. All requested variables entered.
b. Dependent Variable: DDIV

Model Summary ${ }^{\text {b }}$

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	$.433^{\mathrm{a}}$.187	.171	.04097

a. Predictors: (Constant), DCFO, LOSSDUM, CFO
b. Dependent Variable: DDIV

ANOVA ${ }^{b}$

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	.058	3	.019	11.520	$.000^{\mathrm{a}}$
	Residual	.252	150	.002		
	Total	.310	153			

a. Predictors: (Constant), DCFO, LOSSDUM, CFO
b. Dependent Variable: DDIV

Coefficients ${ }^{\text {a }}$

		Unstandardized Coefficients		Standardized Coefficients		
Model		B	Std. Error	Beta	t	Sig.
1	(Constant)	$1.772 \mathrm{E}-03$.004		.413	.680
	LOSSDUM	$-4.306 \mathrm{E}-02$.009	-.354	-4.685	.000
	CFO	$-1.835 \mathrm{E}-02$.009	-.185	-2.154	.033
	DCFO	$-1.179 \mathrm{E}-02$.006	-.170	-2.015	.046

a. Dependent Variable: DDIV

Regression

Variables Entered/Removed

Model	Variables Entered	Variables Removed	Method
1	DCFO, E		
	DE, CFO		

a. All requested variables entered.
b. Dependent Variable: DDIV

Model Summary

Mode!	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	$.425^{\mathrm{a}}$.181	.160	.04279

a. Predictors: (Constant), DCFO, E, DE, CFO

ANOVA ${ }^{\text {b }}$

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	.062	4	.015	8.456	$.000^{\mathrm{a}}$
	Residual	.280	153	.002		
	Total	.342	157			

a. Predictors: (Constant), DCFO, E, DE, CFO
b. Dependent Variable: DDIV

Coefficients ${ }^{\text {a }}$

		Unstandardized Coefficients		Standardized Coefficients		
Model		B	Std. Error	Beta	\mathbf{t}	Sig.
1	(Constant)	$-4.455 \mathrm{E}-03$.004		-1.017	.311
	E	$2.033 \mathrm{E}-02$.005	.313	4.109	.000
	DE	$4.811 \mathrm{E}-03$.003	.128	1.668	.097
	CFO	$-1.989 \mathrm{E}-02$.008	-.219	-2.377	.019
	DCFO	$-1.025 \mathrm{E}-02$.006	-.154	-1.670	.097

[^0]
Regression

Variables Entered/Removed

Model	Variables Entered	Variables Removed	Method
1	DCFO, LOSSDU M, DE, CFO,		

a. All requested variables entered.
b. Dependent Variable: DDIV

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	$.461^{\mathrm{a}}$.213	.186	.04059

a. Predictors: (Constant), DCFO, LOSSDUM, DE, CFO, E

ANOVA ${ }^{b}$

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	.066	5	.013	8.004	$.000^{\mathrm{a}}$
	Residual	.244	148	.002		
	Total	.310	153			

a. Predictors: (Constant), DCFO, LOSSDUM, DE, CFO, E
b. Dependent Variable: DDIV

Coefficients ${ }^{\text {a }}$

Model		Unstandardized Coefficients		Standardized Coefficients	t	Sig.
		B	Std. Error	Beta		
1	(Constant)	-1.246E-03	. 005		-. 276	. 783
	LOSSDUM	-2.929E-02	. 011	-. 241	-2.630	. 009
	E	1.138E-02	. 006	. 183	1.998	. 048
	DE	$2.732 \mathrm{E}-03$. 003	. 075	. 962	. 338
	CFO	-1.554E-02	. 009	-. 156	-1.817	. 071
	DCFO	-1.061E-02	. 006	-. 154	-1.761	. 080

a. Dependent Variable: DDIV

Regression

Variables Entered/Removed

Mode!	Variables Entered	Variables Removed	Method
1	E^{a}		.

a. All requested variables entered.
b. Dependent Variable: E $t+1$

Model Summary ${ }^{\text {b }}$

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	$.224^{\mathrm{a}}$.050	.047	3.05333

a. Predictors: (Constant), Et
b. Dependent Variable: Et+1

ANOVA $^{\text {b }}$						
Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	134.561	1	134.561	14.433	$.000^{\mathrm{a}}$
	Residual	2554.462	274	9.323		
	Total	2689.023	275			

a. Predictors: (Constant), Et
b. Dependent Variable: $\mathrm{E}+1$

Coefficients ${ }^{\text {a }}$

		Unstandardized Coefficients		Standardized Coefficients		
Model		B	Std. Error	Beta	t	Sig.
1	(Constant)	-.329	.187		-1.761	.079
	Et	.186	.049		.224	3.799

a. Dependent Variable: $\mathrm{Et}+1$

Regression

Variables Entered/Removed

Model	Variables Entered	Variables Removed	Method
1	CFOt 2		.

a. All requested variables entered.
b. Dependent Variable: Et+1

Model Summary ${ }^{\text {b }}$

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	$.127^{\mathrm{a}}$.016	.012	.37905

a. Predictors: (Constant), CFOt
b. Dependent Variable: Et+1

ANOVA ${ }^{\text {b }}$

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	.567	1	.567	3.943	$.048^{\mathrm{a}}$
	Residual	34.483	240	.144		
	Total	35.049	241			

a. Predictors: (Constant), CFOt
b. Dependent Variable: Et+1

Coefficients*

Model		Unstandardized Coefficients		Standardized Coefficients	t	Sig.
		B	Std. Error	Beta		
1	(Constant)	$8.524 \mathrm{E}-02$. 027		3.136	. 002
	CFOt	$5.480 \mathrm{E}-02$. 028	. 127	1.986	. 048

a. Dependent Variable: $\mathrm{Et}+1$

Regression

Variables Entered/Removed

Model	Variables Entered	Variables Removed	Method
1	DDIVt $^{\text {a }}$		Enter

a. All requested variables entered.
b. Dependent Variable: Et

Model Summary ${ }^{\text {b }}$

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	$.133^{\mathrm{a}}$.018	.014	1.23788

a. Predictors: (Constant), DDIVt
b. Dependent Variable: Et

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	6.933	1	6.933	4.524	$.034^{\mathrm{a}}$
	Residual	387.682	253	1.532		
	Total	394.615	254			

a. Predictors: (Constant), DDIVt
b. Dependent Variable: Et

Coefficients ${ }^{\text {a }}$

Model	Unstandardized Coefficients		Standardized Coefficients	t	Sig.
	B	Std. Error	Beta		
1 (Constant)	-. 143	. 078		-1.849	. 066
DDIVt	1.256	. 591	. 133	2.127	. 034

a. Dependent Variable: Et

Regression

Variables Entered/Removed

Model	Variables Entered	Variables Removed	Method
1	Et, CFOl $^{\text {a }}$		Enter

a. All requested variables entered.
b. Dependent Variable: Et+1

Model Summary ${ }^{\text {b }}$

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	$.293^{\mathrm{a}}$.086	.078	.26536

a. Predictors: (Constant), Et, CFOt
b. Dependent Variable: Et+1

ANOVA ${ }^{b}$

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	1.549	2	.774	10.996	$.000^{\mathrm{a}}$
	Residual	16.477	234	.070		
	Total	18.026	236			

a. Predictors: (Constant), Et, CFOt
b. Dependent Variable: Et+1

Coefficients ${ }^{\text {n }}$

		Unstandardized Coefficients		Standardized Coefficients		
Model		B	Std. Error	Beta	\mathbf{t}	
1	(Constant)	$8.957 \mathrm{E}-02$.019		4.629	.000
	CFOt	$7.154 \mathrm{E}-02$.020	.231	3.643	.000
	Et	$-2.201 \mathrm{E}-02$.006	-.222	-3.499	.001

a. Dependent Variable: $\mathrm{Et}+1$

Regression

Variables Entered/Removed

Model	Variables Entered	Variables Removed	Method
1	DDIVt, Et $^{\text {a }}$.

a. All requested variables entered.
b. Dependent Variable: Et+1

Model Summary ${ }^{\text {b }}$

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	$.343^{\text {a }}$.117	.109	.16993

a. Predictors: (Constant), DDIVt, Et
b. Dependent Variable: $\mathrm{E}+1$

ANOVA $^{\text {b }}$						
Model		Sum of Squares	df	Mean Square	F	
1	Regression	.818	2	.409	14.159	
	Residual	6.151	213	.029		
	Total	6.968	215		$.000^{2}$	

a. Predictors: (Constant), DDIVt, Et
b. Dependent Variable: $\mathrm{Et}+1$

Coefficients ${ }^{2}$

		Unstandardized Coefficients		Standardized Coefficients		
Model		B	Std. Error	Beta	t	Sig.
1	(Constant)	.124	.012		10.644	
	Et	$4.270 \mathrm{E}-02$.008	.336	5.208	.000
	DDIVt	$6.163 \mathrm{E}-02$.076	.052	.806	.421

a. Dependent Variable: $\mathrm{Et}+1$

Regression

Variables Entered/Removed

Model	Variables Entered	Variables Removed	Method
1	DDIVt, CFOt		Enter

a. All requested variables entered.
b. Dependent Variable: Et+1

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	$.245^{\mathrm{a}}$.060	.051	.18336

a. Predictors: (Constant), DDIVt, CFOt

ANOVA ${ }^{\text {b }}$

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	.466	2	.233	6.932	$.001^{\mathrm{a}}$
	Residual	7.329	218	.034		
	Total	7.795	220			

a. Predictors: (Constant), DDIVt, CFOt
b. Dependent Variable: Et+1

Coefficients ${ }^{\text {a }}$

		Unstandardized Coefficients		Standardized Coefficients		
Model		B	Std. Error	Beta	t	
1	(Constant)	.117	.014		8.541	.000
	CFOt	$4.844 \mathrm{E}-02$.014	.234	3.562	.000
	DDIVt	.109	.082	.087	1.323	.187

a. Dependent Variable: $\mathrm{Et}+1$

Regression

Variables Entered/Removed

Model	Variables Entered	Variables Removed	Method
1	Et, DPIVt, CFOt		Enter

a. All requested variables entered.
b. Dependent Variable: Et+1

Model Summary ${ }^{\text {b }}$

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	$.288^{\mathrm{a}}$.083	.070	.17896

a. Predictors: (Constant), Et, DDIVt, CFOt
b. Dependent Variable: $\mathrm{Et}+1$

ANOVA ${ }^{\text {b }}$

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	.624	3	.208	6.495	$.000^{\mathrm{a}}$
	Residual	6.917	216	.032		
	Total	7.542	219			

a. Predictors: (Constant), Et, DDIVt, CFOt
b. Dependent Variable: Et+1

Coefficients ${ }^{\text {a }}$

		Unstandardized Coefficients		Standardized Coefficients		
Model		B	Std. Error	Beta	t	Sig.
1	(Constant)	.117	.013		8.725	.000
	CFOt	$4.228 \mathrm{E}-02$.013	.208	3.132	.002
	DDIVt	$9.776 \mathrm{E}-02$.081	.079	1.212	.227
	Et	$1.474 \mathrm{E}-02$.006	.151	2.281	.024

a. Dependent Variable: Et+1

[^0]: a. Dependent Variable: DDIV

