MANAGEMENT OF EARNINGS THROUGH THE MANIPULATION OF REAL ACTIVITIES THAT AFFECT CASH FLOW FROM OPERATIONS

A THESIS

Presented as Partial Fulfillment of the Requirements to Obtain the Bachelor Degree in Accounting Department

Student number: 02312180

> DEPARTEMENT OF ACCOUNTING INTERNATIONAL PROGRAM
> FACULTY OF ECONOMICS
> ISLAMIC UNIVERSITY OF INDONESIA
> YOGYAKARTA
> 2006

MANAGEMENT OF EARNINGS THROUGH THE MANIPULATION OF

 REAL ACTIVITIES THAT AFFECT CASH FLOW FROM OPERATIONS

Languagg Advisor,

Katarina Widiastuti, SS
December 9,2006

MANAGEMENT OF EARNINGS THROUGH THE MANIPULATION OF REAL ACTIVITIES THAT AFFECT CASH FLOW FROM OPERATIONS

A BACHELOR DEGREE THESIS

By

DINI MULYA ASRINA

Student Number: 02312180

Yogyakarta, December 23, 2006

ACKNOLEDGMENT

"Alhamdulilah, I finally did it! Hurray.....! Hurray....!" First of all, I would like to express my praise to ALLAH. Dear Lovely God, thank You so much for the spirit, strength, health, love, care, and every single thing You gave, You gives, You have given and will be given to me. Please stay with me until the time of my last breath (amien..). I really love You! You know I do! For AL - FATIHAH. Thank You for bring lucky into my life.. Then let me share my luck to those who gave contribution to the completion of my thesis writing and my study.

My sincere appreciation goes to Mr. Hadri Kusuma, Dr., MBA, my content advisor for his helpful, comments, joke, and advice during my thesis writing. What was that? I am a very slow working person?! Hahaha ($\wedge \wedge$) I guess I never thought to be that person $\operatorname{Sir}=$) Then I also present a bunch of special thanks to Mba Katarina, my language advisor, for her suggestion, comments, chit chat and time to read my thesis carefully. Thank you mba.

My wonderful thanks goes to Mrs. Yuni Nustini Dra., MAFIS., Ak for her understanding during my tutorial - while - writing - thesis problem =) Thank you Ma'am! I would like to extend my gratitude to all lectures and staff, especially Mas Deni in journal room, in Economic Faculty of Islamic University of Indonesia for the knowledge, motivation and experience they give to me during my study in this faculty.

My deepest gratitudes go to all people around me that always give me inspiration, spirits, prayer, and motivation, share time and experience together:

1. My lovely parents. Almarhum daddy and my amazing Mom. My deepest thanks for the prayer, endlessly care, and a chance to be your daughter.
2. My two wonderful sisters mba Rahma and tia, also my wanted alive brother dimaz! Thank you guys for the supports and destructions during my writing and please NEVER EVER bug my life anymore! Hahaha! Hey, I mean it!
3. Billions of thanks to my complement Dony Firmansyah! The - best - worst - thing - ever - happen - to - me! Hahaha.. Thanks for every crazy things we've done. Thanks for understanding me during my hard day. Thanks for making me understand the meaning of 'commitment'. Helping me reach my self-confidence
higher, making me feel alive each and everyday of my life! (Hopefully, everything will be better for our future....amien). L.U. \& H.U.S.M! =)
4. My friends in International Program, especially Accounting Department 2002; Duwwii, Mba Cta, Redta, Heldi, Ella, Ricka, Titin. Mb Puti, Richa, Adot, Aldi, et all (^_^) I will remember all those time we joy and laugh together. Loph you guys!
5. Big thanks to Pak Wahyu, SE. (Thanks for everything $y a$ Wahyu...).
6. My friends in regular class 2002: Mbit, Ayi, Sil Wul Wul, Evit, Mey, Teuku etc. Thanks for your supports guys!
7. My golden ticket, Tria! What can I say.. I am blind without you girl! Thank you.. thank you.. thank you..
8. My lovely Jauza sistas! We are crazy!! How about swimming in my room? Hahaha...Nuruuuul, my partner in bed =p thanks dear for listening my stories eventhough I know you are the busiest girl in the world.. It such a relief u know! Mb Errrrrwin! My funky sista! My partner in dancing "sukurimaho.. sukurimasho...." Hehe.. Keep on rockin girl! Dinda and Naning, miss busy but happy \Rightarrow) and City, my fav banana fried maker! You guys should try it! It's so tasty! My cute Lilis, welcome to college world hunny! Be brave ok?!
9. My cute student of IP 2006 and PAM class.. you guys such a wonderful class.. cayyo.. cayyo.

The last but not least I would also say thanks for all of my friends that not mentioned in this acknowledgement. I am hoping the result of my thesis will bring a different view for those who interested in Management of Earnings through the Manipulation of Real Activities that Affect Cash Flow from operation.

TABLE OF CONTENT

Page

Page of Title i
Approval Page ii
Legalization Page iii
Acknowledgements iv
Table of Contents vi
List of Tables x
List of Appendices xi
Abstract (in English) xii
Abstract (in Indonesia) xiii
Statement of Free Plagiarism xiv
CHAPTER I: INTRODUCTION
1.1 Background of the Study 1
1.2 Problem Formulation 3
1.3 Problem Limitation 3
1.4 Research Objectives 3
1.5 Research Contributions 4
1.6 Definition of Terms 4

CHAPTER II: REVIEW OF RELATED LITERATURE

2.1 Financial Statement 5
2.2 Earnings 6
2.3 Earnings Management 6
2.3.1 Definitions of Earnings Management 6
2.3.2 Classifications of Earnings Management 9
2.3.3 Targets of Earnings Management 9
2.3.4 Motivations of Earnings Management 9
2.3.5 Patterns of Earnings Management 12
2.4 Statement of Cash Flow 14
2.5 Cash Flows from Operations 16
2.6 Agency Theory 17
2.7 Previous Study 18
2.7.1 Management of Earnings through the Real Activities Manipulation 19
2.8 Hypotheses Formulation 20
2.8.1 Main Hypotheses 20
2.8.1.1 Sales Manipulation 21
2.8.1.2 Reduction of Discretionary Expenses 22
2.8.1.3 Overproduction 22
2.8.2 Hypotheses on cross-sectional variation 24
2.8.2.1 Accrual Manipulation Flexibility. 24
2.8.2.2 Presence of debt 27
2.8.2.3 Short-term Suppliers 27

CHAPTER III: RESEARCH METHOD

3.1 Population and Sample 29
3.2 Research Variables 31
3.3 Formulated Hypothesis 31
3.4 Statistical Tool 33
3.5 Hypothesis Testing 35
CHAPTER IV: RESEARCH FINDINGS, DISCUSSION, AND IMPLICATIONS
4.1 Research Description 41
4.2 Descriptive Statistics 42
4.3 Hypothesis Testing. 45
4.3.1 Suspect firm-years exhibit either unusually low cash flow from operations (CFO) or unusually low discretionary expenses or both 45
4.3.2 Suspect firm-years exhibit unusually high production costs, controlling for the level of sales. 48
4.3.3 Suspect firm-years with a low level of current assets as a percentage of total assets, that is low accounting flexibility, have abnormally high cost of goods sold (COGS) and abnormally low discretionary expenses, when compared to other suspect firm-years 50
4.3.4 Suspect firm-years with debt outstanding have abnormally low CFO, abnormally high production costs and abnormally low discretionary expenses compared to other suspect firm-years 54
4.3.5 Suspect firm-years with high current liabilities as a percentage of total assetshave abnormally low CFO, abnormally high production costs and abnormallylow discretionary expenses compared to other suspect firm-years.................. 61
4.4 Classical Assumption Test 67
4.4.1 Multicollinearity Test. 67
4.4.2 Autocorrelation Test 67
4.4.3 Heteroscedasticity Test 68
4.5 Research Implication 68
CHAPTER V: CONCLUSIONS AND RECOMENDATIONS
5.1 Conclusions 70
5.2 Limitations 74
5.3 Recommendations 74
LIST OF REFERENCES 75

LIST OF TABLES

Page

Table 4.1 Descriptive Statistics for Independent Variables and
\qquad Dependent Variables 42

Table 4.2-4.5 Result of multiple regression test equation 3.5 .45-46

Table 4.6-4.7 Result of multiple regression test equation 3.6 .48

Table 4.8-4.11 Result of multiple regression test equation 3.750-52
Table 4.12-4.17 Result of multiple regression test equation 3.855-58
Table 4.18-4.23 Result of multiple regression test equation 3.9 61-65

LIST OF APPENDICES

Page
Appendix - 1 Manufacture Firms Year 2001 76
Appendix - 2 Manufacture Firms Year 2002 88
Appendix - 3 Manufacture Firms Year 2003 97
Appendix - 4 Manufacture Firms Year 2004 106
Appendix - 5 Suspect Firm-Years 115
Appendix - 6 Output Regressions of Test Equation 3.5 119
Appendix - 7 Output Regressions of Test Equation 3.6 126
Appendix - 8 Output Regressions of Test Equation 3.7 130
Appendix - 9 Output Regressions of Test Equation 3.8 136
Appendix - 10 Output Regressions of Test Equation 3.9 145

Abstract

Asrina, Dini Mulya (2006). Management of Earnings Through The Manipulation of Real Activities That Affect Cash Flows From Operation. Yogyakarta. Faculty of Economics. Islamic University of Indonesia.

This study tries to investigate whether there is any evidence of firm managers engaged in management of earning through the manipulation of real activities that affect cash flow from operation in reference to market value. This study concentrates on firm called "suspect firm-years". Suspect firm-years are firm years reporting small annual earnings and small annual earnings changes. Suspect firm-years have net income scaled by market value that is greater than or equal to zero but less than 0.005

This study uses secondary data which is taken from the financial statement of manufacture companies listed on Jakarta Stock Exchange (JSX) from 2001 until 2004. This study uses 319 samples, including suspect firm years. The amounts of suspect firm years are 15 companies.

This study analyzed data using multiple regressions which was developed by Sugata Roychowdhury (2004), involving four dependent variables and ten independent variables. In this study the writer failed to give empirical evidence whether there is any evidence of firm managers that engaged in management of earning through the manipulation of real activities that affect cash flow from operation in reference to market value. In order to make a different, the writer is replacing total asset at the beginning of year, the denominator for dependent variables, with market value at the beginning of year. But the results do not appear as the writer expected. None of independent variables are related significant to dependent variables. It also explains why the results of regression analysis are not consistent with the previous research done by Roychowdhury (2004).

Key Words: Earnings. Earnings Management. Cash Flow from Operation.

Abstract

ABSTRAK

Asrina, Dini Mulya (2006). Manajemen Laba Melalui Manipulasi Aktivitas Riil yang Mempunyai Dampak Pada Arus Kas Operasi".

Studi ini mencoba untuk menemukan apakah terdapat bukti adanya manajemen laba yang dilakukan oleh manajer perusahaan melalui manipulasi aktivitas riil yang mempunyai dampak pada arus kas operasi yang berkenaan pada harga pasar. Studi ini dipusatkan pada perusahaan yang disebut dengan "suspect firm years". Termasuk dalam kategori suspect firm-years yaitu perusahaan yang pada tahun tersebut melaporkan laba tahunan yang kecil dan perubahan laba tahunan yang kecil. Suspect firm years adalah perusahaan yang melaporkan laba sebelum item luar biasa per total asset awal tahun antara 0 hingga 0,005 .

Data yang digunakan dalam studi ini merupakan data sekunder yang diambil dari laporan keuangan perusahaan manufaktur yang terdaftar di Bursa Efek Jakarta selama periode 2001-2004. Jumlah sampel perusahaan manufaktur yang digunakan dalam studi ini adalah 319 perusahaan. Jumlah suspect firm year adalah 15 perusahaan.

Selanjutnya data yang diperoleh dianalisis regressi berganda yang telah dikembangkan oleh Sugata Roychowdhury (2004) yang melibatkan empat varibel terikat dan sepuluh variabel bebas. Dalam studi ini penulis tidak berhasil mendapatkan bukti empiris adanya manajemen laba yang dilakukan oleh manajer perusahaan melalui manipulasi aktivitas riil yang mempunyai dampak pada arus kas operasi yang berkenaan pada harga pasar. Untuk membuat perbedaan dengan penelitian sebelumnya, penulis mengganti total asset awal tahun dengan harga pasar awal tahun. Tetapi hasilnya tidak sesuai dengan harapan penulis. Tidak ada satupun variable bebas yang mempunyai hubungan yang signifikan dengan variable terikat. Ini dapat menjelaskan bagaimana hasil dari analisa regresi penulis tidak konsisten dengan penelitian sebelumnya yang dilakukan oleh Sugata Roychowdhury (2004).

Kata Kunci: Laba. Menejemen Laba. Arus Kas Operasi.

STATEMENT OF FREE PLAGIARISM

Herein I declare the originality of this thesis; there is no other work which has ever presented to obtain any university degree, and in my concern there is neither one else's opinion nor published written work, except acknowledge quotation relevant to the topic of this thesis which have been stated or listed on the thesis bibliography.

If in the future this statement is not proven as it supposed to be, I am willing to accept any sanction complying to the determinated regulation for its consequence.

Yogyakarta, December ,2006

Dini Mulya Asrina

CHAPTER I

INTRODUCTION

1.1 Background of the Study

Financial Accounting Standard Board (FASB) Statement of Financial Accounting Concept No. 1 stated that the primary focus of financial reporting is information about an enterprise's performance provided by measure of earnings that provide important information for investment decisions for investors.

Management has direct access to accounting information about the firm and has the ability to use their discretionary power in the financial reporting in an attempt to affect earnings, for his/her own and/or company's benefits. Management, which is monitored by investors, directors, customers, and suppliers-acting in self-interest and at times for shareholders, have strong incentives to manage earnings.

Earnings, synonymous with profit which is also called income, are perhaps the single most studied number in a company's financial statements because they show a company's profitability and also one of the most important measures of a company's performance.

Earnings Management is the choice by a manager of accounting policies so as to achieve some specific objective (Scott, 2000). Managers are engaged in earnings management these activities because they perceive private benefits to meet certain earnings target or reporting goals. Manipulation of real activities during the year is one way to meet certain earnings target. This real activities manipulation, such as price discounts and reduction of discretionary expenses, are possibly optimal action given the
economic circumstances of the firm. This real activity manipulation affects cash flows from operations (CFO).

The information obtained in cash flows is intended to show all of the cash inflows and outflows of the firm during the period. The statement of cash flow is one of the financial reports which show the effect from operating activities, financing activities, and investing activities of the firms towards cash flows within certain period of accounting by reconcile beginning balance and ending balance of cash.

PSAK No. 2 described cash flow from operating activities as amount which are collected from the operating activities that can be used as an indicator to determine whether the company can produce the sufficient cash flow to settle a debt, maintain the company ability in operations, pay dividend and to make a new investment. Cash flow from operation generally comes from other transactions and event, which is influence earning or net loss. Particularly, cash flow from operating activities resulted from the main activity which produces earning in the company. Such as, cash revenue from sales; cash revenue from royalty, fees; cash payment for supplier; salary or wages for the employees; payment for tax; etc.

Based on above explanation, the writer is interested to investigate the management of earning through the manipulation of real activities that affect cash flow from operation. According to the background, the writer entitled this thesis "Management of Earning through the Manipulation of Real Activities That Affect Cash Flow from Operation"

1.2 Problem Formulation

To elaborate the focus of this research thoroughly and deeply, the writer wants to formulate the following problem as "Whether there is any evidence of firm managers engaged in management of earning through the manipulation of real activities that affect cash flow from operation in reference to market value"

1.3 Problem Limitation

To avoid misunderstanding and misappropriates in this study, the writer will restrict the scope and size of proposed study as follows;

1. This study will obtain the data from the manufacturing companies, which are listed in Jakarta Stock Exchange (ISX) from 2001 until 2004.
2. The writer concentrates on firm called "suspect firm-years". Suspect firm-years are firm-years reporting small annual earnings and small annual earnings changes. Suspect firm-years have net income scaled by market value that is greater than or equal to zero but less than 0.005 .
3. In this study the writer does not investigate whether earnings management is considered as financial fraud or not.
4. In this study the writer does not explain detail about market value beside only wants to make different from the previous research done by Sugata Roychowdhury (2004).

1.4 Research Objectives

The objectives of this research is to give empirical evidence whether there is any evidence of firm managers engaged in management of earning through the manipulation of real activities that affect cash flow from operation in reference to market value"

1.5 Research Contributions

The benefit or advantage of the research is relevant for the management of the firm and financial statement users to determine whether it is appropriate or not to choose the nature and extent of real activities manipulation as a way of management of earning that could affect cash flow from operation.

1.6 Definition of Term

Definition of term given in order to make readers understand what they are going to read as the main term on this thesis:

Earning Management is a purposeful intervention by managers in the external financial reporting process for his/her own and/or company's benefit.

Cash flow is a cash or cash equivalent inflow and outflows.
Statement of Cash flow is a part of financial statement which provides relevant information about the cash receipts and cash payments of an enterprise during a period. Statement of cash flows classify cash receipt and cash payment into three different activities; operating, investing, and financing activities. Operating activities involve the cash effects of transactions that enter into the determination of net income. (Kieso\&Weygandt; 10th Ed.).

CHAPTER II

REVIEW OF RELATED LITERATURE

This section is about the review of related literature that will give explanations about the relevant theories used in conducting this research and the previous studies. This chapter explains about financial statements, earnings, earnings management, statement of cash flow, cash flow from operations, and agency theory. This chapter also explains more about review of related research which explains about some previous studies, theoretical framework that covers the theoretical assumption used as basis for the research. The hypothesis will also be explained in this chapter.

2.1 Financial Statement

SAK year 2002 stated that the objective of financial statement is to provide the information about the financial position, performance and changes in financial position of an enterprise that is useful to a wide range of users in making economic decisions.

The financial statements which most frequently provided are:
(1) The balance sheet; shows the financial condition of the enterprise at the end of a period.
(2) Income statement; which measures the results of operations during the period.
(3) Statement of cash flows; which reports the cash provided and used by operating, investing and financing activities during the period.
(4) The statement of retained earnings; which reconciles the balance of retained earnings account from the beginning to the end of the period. (Kieso \& Weygandt; $10^{\text {th }}$ Ed.).

2.2 Earnings

Earnings, synonymous with profit which is also called income, are perhaps the single most studied number in a company's financial statements because they show a company's profitability and also one of the most important measures of a company's performance.

Earning has two major components, cash and accounting adjustments called accruals. Since the determination of the signs and sizes of accruals requires managers' judgment and estimation, accruals are more vulnerable to manipulation. But not all accruals are the result of earnings manipulation ($\mathrm{Yu}, 2005$).

Earnings are important since they are used as a summary measure of firm performance by a wide rage of users. Earnings typically refer to after-tax net income. Ultimately, a business's earnings are the main determinant of its share price, because earnings and the circumstances relating to them can indicate whether the business will be profitable and successful in the long run.

2.3 Earnings Management

Earnings management occurs when managers use their discretionary power in the financial reporting process and in structuring transactions. Earnings management is the choice by a manager of accounting policies so as to achieve some specific objective (Scott, 2000)

2.3.1 Definitions of Earnings Management

Healy and Wahlen (1999), define earnings management as the alteration of firms' reported economic performance by insiders to either mislead some stakeholders or to influence contractual outcomes.

Schipper (1989) describes earnings management as "a purposeful intervention in the external financial reporting process, with the intention of obtaining some private gain...a minor extension of this definition would encompass "real" earnings management, accomplished by timing investment or financing decision to alter reported earnings or some subset of it."

According to academic literature the definition of earning management:
Schipper (1989) in Dechow and Skinner (2000): "...purposeful intervention in the external financial reporting process, with the intent of obtaining some private gain (as opposed to, say, merely facilitating the neutral operation of the process)"
Healy and Wahlen (1999): "Earnings management occurs when managers use judgment in financial reporting and in structuring transactions to alter financial reports to either mislead some stakeholders about the underlying economic performance of the company or to influence contractual outcomes that depend on reported accounting numbers"

Turning to the professional literature, clear definitions of "earnings management" are difficult to discern from pronouncements and/or and statements and speeches by regulators, although an extreme form of earnings management, financial fraud, is welldefined (again in terms of managerial intent) as:
...the deliberate misrepresentation of the financial condition of an enterprise accomplished through the intentional misstatement or omission of amounts or disclosures in the financial statements to deceive financial statement users. (Certified Fraud Examiners, 1993) in Dechow and Skinner (2000).

Leuz et al. (2003), define earnings management as the alteration of firms' reported economic performance by insiders to either mislead some stakeholders or to influence contractual outcomes. They argue that incentives to misrepresent firm performance through earnings management arise, in part, from a conflict of interest between firms' insiders and outsiders. Insiders, such as controlling owners or managers,
can use their control over the firm to benefit themselves at the expense of other stakeholders. Managers and controlling owners have incentives to manage reported earnings in order to mask true firm performance and to conceal their private control benefits from outsiders. For example, insiders can use their financial reporting discretion to overstate earnings and conceal unfavorable earnings realizations (i.e., losses) that would prompt outsider interference. Insiders can also use their accounting discretion to create reserves for future periods by understating earnings in years of good performance, effectively making reported earnings less variable than the firm's true economic performance. In essence, insiders mask their private control benefits and hence reduce the likelihood of outside intervention by managing the level and variability of reported earnings.

According to Roychowdhury (2004) there is substantial evidence that executives engage in earnings management. One means of managing earnings is by manipulation of accruals with no direct cash flow consequences, hereafter referred to as accrual manipulation. Examples include under-provisioning for bad debt expenses and delaying of asset write-offs. Managers also have incentives to manipulate real activities during the year to meet certain earnings targets. Real activity manipulation affects cash flows and in some cases, accruals as well. Managers engage in these activities either because they perceive private benefits to meeting the reporting goals or because they are acting as agents in value-transfers amongst stakeholders. An example of the latter would be earnings management to avoid debt covenant violation or to avoid governmental intervention.

2.3.2 Classification of Earnings Management

Earnings management can be classified into three categories:

1. Fraudulent accounting.

Fraudulent accounting involves accounting choices that violate GAAP.
2. Accruals management.

Accruals management involves within-GAAP choices that try to "obscure" or "mask" true economic performance (Dechow and Skinner, 2000).
3. Real earnings management.

Real earnings management (RM) occurs when managers undertake actions that deviate from the first best practice to increase reported earnings

2.3.3 Targets of Earnings Management

Magnan and Cormier (1997) in Gumanti (2000) stated that there are three targets that are reachable by manager related to earnings management practice:

1. Political cost minimization
2. Manager wealth maximization
3. Minimization of financing costs.

2.3.4 Motivations of Earnings Management

Manager may engage in earnings management for variety reasons, for example as stated by Scott (2000:352-364):

1. Bonus Purpose

Managers have inside information on the firm's net income before earnings management. Since outside parties, including the Board itself, may be unable to learn
what this number is, Healy predicted that managers would opportunistically manage net income so as to maximize their bonuses under their firm's compensation plans.

2. Other contractual motivations

There are other contractual motivations for earnings management. An important case arises from long-term lending contrast, which typically contains covenants to protect the lenders against actions by managers that are against the lenders' best interest, such as excessive dividends, additional borrowing, or letting working capital or shareholders' equity fall below specified levels, all of which dilute the security of existing lenders.

3. Political motivations

Many firms are quite politically visible. Such firms may want to manage earnings to reduce their visibility. This would entail, for example, accounting practices and procedures to minimize reported net income, particularly during periods of high prosperity. Otherwise, public pressure may arise for the government to step in with increased regulation or other means to lower profitability.

4. Taxation motivations

Income taxation is perhaps the most obvious motivation for earnings management. However, taxation authorities tend to impose their own accounting rulers for calculation of taxable income, thereby reducing firms' room to maneuver. Consequently, taxation should not play a major role in earnings management decisions in general.

5. Changes of CEO

A variety of income management motivations exist around the time of a change of CEO. For example, the bonus plan hypothesis predicts that CEOs approaching retirement would be particularly likely to engage in a strategy of income maximization, to increase their bonuses. Similarly, CEOs of poorly performing firms may income-maximize to prevent, or postpone, being fired. This motivation also applies to new CEOs, especially if large write-offs can be blamed on the previous CEO.

6. Initial public offerings

By definition, firms making initial public offerings (IPOs) do not have an established market price. This raises the question of how to value the shares of such firms. Presumably, financial accounting information included in the prospectus is a useful information source.

7. To communicate information to investors

The use of earnings management to communicate information to investors may seem questionable in view of efficient securities market theory. Investors will look through firms' accounting policy choices when evaluating and comparing earnings performance. Recall, however, that we define market efficiency relative to publicly available information. If earnings management can reveal inside information, it can actually improve the informative ness of financial reporting.

Earnings management occurs when managers use their discretionary power in the financial reporting process and in structuring transactions. By smoothing earnings over time, managers convey private information to stakeholders about the underlying
economic performance of the company or attempt to influence contractual outcomes that depend on the reported accounting numbers (Agarwal et al., 2003).

Petrovits (2004) reported evidence that manager manipulated earnings by strategically timing paying to their corporate foundations. Prior earnings management studies predict managers will, contingent on their position within bonus boundaries, increase earnings in order to: (a) increase their compensation via formal and informal compensation plans, (b) reduce the likelihood of debt covenant violation and (c) reduce the likelihood of job loss.

2.3.5 Patterns of Earnings Management

Scott (2000:365) tried to collect and briefly summarized some earnings management patterns:

1. Taking a bath

This can take place during of organizational stress or reorganization, including the hiring of new CEO. If a firm must report a loss, management may feel compelled to report a large one; it has little to lose at this point. Consequently, it will write off assets, provides for excepted future costs, and generally "clear the decks". This will enhance the probability of future reported profits. Healy (1985), also mentions that managers whose net income is below the bogey of the bonus plan may also take a bath, for a similar reason-it will enhance the probability of future bonuses. In effect, the recording of large write offs puts future earnings "in the bank".

2. Income minimization

This is similar to taking a bath, but less extreme. Such a pattern may be chosen by politically visible firm during periods of high profitability. Policies that suggest income minimization include rapid write offs of capital assets and intangibles,
expensing of advertising and R\&D expenditures, successful-efforts accounting for oil and gas exploration costs, and so on. Income taxation, such as for LIFO inventory, provides another set of motivations for this pattern, as does enhancement of arguments for relief from foreign competition.

3. Income maximization

As seen in Healy's study, managers may engage in pattern of maximization of reported net income for bonus purpose, providing this does not put them above the cap. Firms that are close to debt covenant violations may also maximize income.

4. Income smoothing

This is perhaps the most interesting earnings management pattern. Healy suggest that managers have an incentive to smooth income sufficiently that it remains between the bogey and cap. Otherwise, earnings may be temporally or permanently lost for bonus purpose. Furthermore, if managers are risk-averse, they will prefer a less variable bonus stream, and hence may want to smooth net income.

Arya et al. (1998) stated that two of the better known forms of earnings management are "smoothing" and "big bath." For example, in estimating their bad debt allowance, companies might be tempted to provide a generous allowance in good years and skimp in lean years in order to smooth the stream of reported earnings. In contrast, the big bath hypothesis suggests that managers undertake income decreasing discretionary accruals in lean years. Perhaps managers believe that one very poor performance report is not as harmful as several mediocre performance reports. It has been suggested that big baths often occur under the guise of restructuring charges and may coincide with top management transition.

2.4 Statement of Cash Flow

Cash flow statement is financial report which shows the effect from operating activities, financing activities; investing activities of the firms towards cash flows within certain period of accounting by reconcile beginning balance and ending balance of cash.

Based on PSAK No. 2 year 2002 statement of cash flows must reported cash flow within certain period and classified based on the operating activities, investment activities, and funding activities.

The main purpose of the statement of cash flows is to provide information about cash receipts and cash payments from one entity in certain period of accounting. Besides explaining information about operating activities, investing, and financing from one entity in certain period of accounting, statement of cash flows can supply some information that may possible for the customer to evaluate changes in firm's net assets, financial structure and the ability to influence the amount and time of cash flows to adapt with the new or different situation and business opportunity.

Statement of cash flows is useful for both internal party (management) and external party (investor and creditor). Management use the statement of cash flows to appraise liquidity, determine the dividend policy, and evaluate the impact of the decision relate to the main policy in investing and financing activities. External parties use the statement of cash flows as the basic to evaluate the firm's ability in producing cash and cash equivalent.

There are eight advantages of cash flows that are set out below:

1. Cash-flow accounting would rely on the price/discounted flow ration as more reliable investment indicator than the present price/earning ratio, because of the
arbitrary allocations which are used to compute the present accrual earnings per share figure and the international differences in the computation of earning per share.
2. In contrast to accrual-based earnings, cash-flow accounting retains money as the unit of measurement, which is familiar and not confusing to people.
3. If the investor's interest is in the survival of the firm, together with their ability to provide a stream of dividend, then cash-flow accounting will prove more useful by providing accounting information about the current and anticipated cash positions of the firm. Liquidity assessment is a critical aspect of performance evaluation in the sense that cash flow and net profit are the end result of a firm's activities.
4. Cash flow does not require price-level adjustments (which can distort reported profit figures if inflation adjustments are not made), because cash transactions reflect prices of the period in which they occur. It is however; appropriate to the note that some general price level adjustment is needed for cash plans occurring in different periods.
5. Cash flow information fits as an important variable in the decision models of various users because of the concerns associated with the firm's ability to pay dividends to investors, interest and capital to lenders and bankers, amount due to suppliers, wages and other benefits to employees, rectification and maintenance services for customers, and taxation to the governments.
6. Cash flow information is argued to be more objective and relevant than the accrual-based information.
7. There is the suspicion that the popularity of the all-embracing measures of performance such as accrual-based profit may well have caused firms to underestimate the importance of performance measures such as market domination, productivity, and quality of products and services.
8. Cash flow accounting is the ideal system to correct the gaps in practice between the way in which an investment is made (generally based on cash flows) and the ways the results are evaluated (generally based on earnings).

2.5 Cash Flows from Operations

The reported number of cash flows from operations is an indicator to determine whether from their operating activities company can produce sufficient cash flows to settle a debt, maintain the firm's ability in company operations, pay dividend and make a new investment. The examples of cash flows from operations are:

1. Revenue from sales or services.
2. Revenue from royalty, fees, commissions and other revenue.
3. Cash Payment to the supplier.
4. Cash payment to the employee.
5. Revenue and payment by the insurance company in connecting with insurance premium, claim, annuity and other benefit of insurances.
6. Cash disbursement or cash receipt (restitution) of income tax except if it can be specifically identify as a part of financing activity and investing activity.
7. Cash receive and cash payment from contract which is held for business transaction and trading.

2.6. Agency Theory

Agency theory is a theory of the relationship between principals and an agent of the principals. Managers are empowered by the owners of the firm, the shareholders, to make decisions. However managers may have personal goals that compete with shareholders wealth maximization and such potential conflicts of interest are addressed by agency theory.

According to Brigham and Daves (2001) an agency relationship arises whenever one or more individuals, called principals, (1) hires another individual or organization, called an agent, to perform some service and (2) then delegates decision-making authority to that agent. Within the financial management context, the primary agency relationships are those (1) between stockholders and managers, (2) between managers and debt holders, and (3) between managers, stockholders and debt holders in times of financial distress.

The separation of ownership and management has clear advantages. It allows share ownership to change without interfering with the operation of the business. It allows the firm to hire professional managers. But it also brings problems if the managers' and owners' objectives differ. Rather than attending to the wishes of shareholders, managers may seek a more leisurely or luxurious working lifestyle. Such conflicts create principal-agent problems. The shareholders are the principals, the manager are their agents

According to Brealey and Myers (2002) agency costs are incurred when:

- Managers do not attempt to maximize firm value.
- Shareholders incur costs to monitor the managers and influence their actions.

2.7 Previous Study

A number of studies have discussed the possibility that managerial intervention in the reporting process can occur not only via accounting estimates and methods, but also operational decisions. Healy and Palepu (1990), Fudenberg and Tirole (1995) and Dechow and Skinner (2000) point to acceleration of sales, alterations in shipment schedules and delaying of $R \& D$ and maintenance expenditures as earnings management methods available to managers.

According to Roychowdhury (2004), certain real activities management methods, such as price discounts and reduction of discretionary expenses, are possibly optimal actions given the economic circumstances of the firm. Roychowdhury (2004) characterized real activities manipulation by two features: (a) departures from normal operational practices - these departures are, by themselves, potentially detrimental to firm value and (b) a desire to mislead at least some stakeholders into believing certain financial reporting goals have been met in the normal course of operations.

In consistent with Graham, Harvey and Rajgopal's (2004) survey of 401 financial executives' finds (a) respondents attach a high importance to meeting earnings targets such as zero and previous period's earnings and (b) they are willing to manipulate real activities to meet these targets, even though the manipulation potentially reduces firm value.

A number of papers have used the distribution of frequency of firm-years to argue that firm executives manage earnings to avoid reporting losses. Specifically, on grouping
firm-years into earnings intervals, and plotting the frequency of firm years in each earnings interval, they find that the distribution shifts sharply upwards immediately to the right of zero. This is consistent with Roychowdhury (2004) firms managing earnings up to exceed the zero thresholds. Similar evidence exists with other earnings thresholds, for example, previous year's earnings and analyst forecasts.

The zero earnings threshold is particularly interesting because there is initial evidence that executives manage the cash flow component of earnings to meet the threshold. Burgstahler and Dichev (1997) plot the $25^{\text {th }}, 50^{\text {th }}$ and $75^{\text {th }}$ percentiles of unscaled CFO for each earnings interval and find that the distribution of CFO shifts upwards in the first interval to the right of zero. However, this preliminary evidence does not conclusively indicate real activities manipulation. Burgstahler and Dichev (1997) do not analyze the underlying activities behind the patterns in CFO and accruals, nor test whether the shifts are statistically significant. There no controls for the level of operations, or for firm performance.

2.7.1 Management of Earnings through the Real Activities Manipulation

Most of the evidence on real activities management centers on the opportunistic reduction of R\&D expenses. Bens, Nagar and Wong (2002) and Bens, Nagar, Skinner and Wong (2002) report that managers repurchase stock to avoid EPS dilution from employee stock option exercises or grants. Managers partially finance these repurchases by reducing R\&D. Dechow and Sloan (1991) find CEOs in their final years reduce spending on R\&D to increase short-term earnings.

Baber,Fairfield\&Hagard(1991)\&Bushee(1998)also find evidence consistent with reduction of R\&D expenses to meet earnings benchmarks. Anecdotal evidence exists on
firms engaging in a whole range of activities in addition to just $R \& D$ expense reduction for example, providing limited time discounts to increase sales towards the end of the year and building up excess inventory to lower reported cost of goods sold (overproduction). Revsine, Collins and Johnson (1998) report that, in 1992-93, Bausch and Lomb shipped finished products out to their dealers and booked sales. The dealers were left with large unsold inventories due to declining demand. In 1995, Duracraft suffered a stock price drop on reporting better-than-expected first quarter earnings, because financial analysts suspected managers of overproducing (Marcial 1995).

Systematic evidence on management of real activities other than R\&D reduction is limited. In Graham, Harvey and Rajgopal's (2004) survey, a larger number of respondents admit to reducing discretionary expenses and/or capital investments than other manipulation methods to meet earnings targets. Barton (2001) and Pincus and Rajagopal (2002) provide evidence that managers smoothing earnings invest in derivatives to smooth the underlying cash flows, instead of relying solely on accrual manipulation. Bartov (1993) shows that firms with negative earnings changes report higher profits from asset sales. Thomas and Zhang (2002) report evidence consistent with overproduction, but are unable to rule out adverse economic conditions as alternative explanations for their results.

2.8 Hypotheses Formulation

2.8.1 Main Hypotheses

In this study, the writer develops stronger tests of real activities manipulation and applies them to firm-years reporting small annual earnings and small annual earnings changes called the "suspect firm-years".

To detect real activities manipulation, the writer focuses on the following three manipulation methods and their effects on abnormal CFO:

1. Sales manipulation, which is, accelerating the timing of sales and/or generating additional unsustainable sales through increased price discounts or more lenient credit terms.
2. Decreasing discretionary expenses
3. Reporting lower cost of goods sold by increasing production

2.8.1.1 Sales Manipulation

Sales manipulation define as managers' attempt to temporarily increase sales during the year by offering price discounts or more lenient credit terms. Managers probably undertake such actions even in the normal course of business. Whether such activities are more extensive than normal among firms trying to meet earnings targets is an empirical question.

One way managers can generate additional sales or accelerate sales from the next fiscal year into the current year is by offering 'limited-time' price discounts. The increased sales volumes generated are likely to disappear when the firm re-establishes the old prices. The cash inflow per sale net of discounts from these additional sales is now lower, though earnings in the current period increase as the sales are booked, assuming positive margins.

A firm may also offer more lenient terms of credit. For example, retailers and automobile manufacturers often offer lower interest rates (zero-percent financing) towards the end of their fiscal years. These are all essentially price discounts and lead to lower cash inflow over the life of the sales, as long as the suppliers do not offer matching
discounts. In general, the writer expects sales management activities to lead to lower current-period CFO than what is normal given the sales level. If the firm generates additional credit sales with its modified terms and a higher amount than normal of these credit sales is outstanding at the end of the year, then the firm should also exhibit an abnormal growth in receivables for a given growth in sales.

2.8.1.2 Reduction of Discretionary Expenses

Firms can also increase earnings by reducing discretionary expenses. This research focus on advertising expenses, research and development expenses (R\&D) and selling, general and administrative expenses (SG\&A). The first two are largely discretionary items and managers can temporarily increase earnings by reducing outlays on advertising and $\mathrm{R} \& D$ below what is normal given their sales levels. Some items usually classified as SG\&A, for example, employee training expenses, maintenance and travel, are also likely to be discretionary. If these outlays are generally in the form of cash, the effect on abnormal operational cash flows in the current period is positive, possibly at the risk of lower cash flows in the future as long-term competitiveness and profitability are adversely affected. If some of these expenses are also incurred on account and are usually outstanding at the end of the year, then a decrease in these expenses towards the year-end should lower accounts payable below what is normal and lead to positive abnormal accruals.

2.8.1.3 Overproduction

Managers of manufacturing firms can also overproduce (produce more goods than necessary to meet expected demand) to manage earnings upwards. With higher production levels, fixed overhead costs are spread over a larger number of units. As long
as the reduction in fixed costs per unit is not offset by any increase in marginal cost per unit, average unit cost declines. This implies that cost of goods sold (COGS) is lower and the firm reports better operating margins. Nevertheless, the firm incurs costs on the overproduced items that are not recovered in the same period through sales. As a result, cash flows from operations are lower than normal given sales levels.

Overproduction causes higher inventories than normal at the year-end. Presumably, managers indulge in overproduction only if the reduction in reported product costs offsets the inventory holding costs that the firm has to recognize in the current period. The higher inventories at year-end imply that the partial effect of overproduction on accruals is positive.

The partial effect on accruals of each real activities manipulation method is positive. However, positive abnormal accruals are not sufficient evidence of real activities manipulation, because they are also caused by accrual manipulation. Hence, to concentrate on the effects of real activities, this research focuses on abnormal CFO; instead of accruals. A problem with examining abnormal CFO is that managers probably undertake more than one kind of manipulation at the same time. Recall that offering price discounts and overproduction have a negative effect on abnormal CFO, while reduction of discretionary expenses has a positive effect. Consequently, if suspect firm-years engage in the above three kinds of real activities manipulation, they should exhibit at least one of the following: unusually low CFO or unusually low discretionary expenses.

The first hypothesis is formally presented below (in alternate form):
H1: After controlling for sales levels, suspect firm-years exhibit either unusually low cash flow from operations (CFO) or unusually low discretionary expenses or both.

Another way to detect price discounts or overproduction is to examine production costs relative to sales. Production costs are defined as the sum of COGS and change in inventory during the period. Overproduction leads to unusually high production costs for a given level of sales. If the firm gives discounts to increase sales, this also implies unusually high production costs relative to sales, as long as the firm is unable to procure corresponding discounts from its suppliers.

Therefore, the second hypothesis is:
H2: Suspect firm-years exhibit unusually high production costs, controlling for the level of sales.

Analyzing production costs relative to sales, instead of COGS, has an additional benefit. Any accrual manipulation to lower reported COGS, for instance, by postponing write-offs of obsolete inventory, should not affect production costs, because change in inventories is correspondingly higher.

2.8.2 Hypotheses on cross-sectional variation

This section develops hypotheses on cross-sectional variation in abnormal CFO, abnormal production costs, abnormal COGS and abnormal discretionary expenses among suspect firm-years. For the sources of cross-sectional variation, the writer focus on (a) flexibility to engage in accrual manipulation, (b) industry membership and (c) incentives to meet zero earnings, including the presence of debt and short-term creditors.

2.8.2.1 Accrual manipulation flexibility

Flexibility in accounting allows it to keep pace with busins innovation. Abuses such as earning management occur when people exploit this pliancy. Trickery is employed to obscure actual financial violatility. This in turn, masks the true consequences of management's decisions. (Chairman Levitt, 1998) in Dechow and Skinner (2000).

How managers decide between alternate methods of managing earnings has been an important issue in earnings management. Real activities manipulation is costly. Cash flows in future periods are possibly affected negatively by the actions taken this period to increase earnings. For example, price discounts offered in any period to temporarily increase earnings can lead customers to expect such discounts in future periods as well. Another problem is uncertainty regarding the extent of manipulation required, as all real activities have to be undertaken prior to year-end, before managers observe the shortfall between pre-managed earnings and the earnings target.

Relying on accrual manipulation alone, on the other hand, entails the risk that the realized shortfall at year-end exceeds the amount by which earnings can be managed upwards. If that happens, reported income falls below zero, as real activities cannot be manipulated at year-end. Also, accrual manipulation is more likely to draw auditor or regulator scrutiny than real decisions. These problems with accrual manipulation are more severe when the flexibility to manage accruals (henceforth, accounting flexibility) is lower, either because of the inherent asset-liability structure of the firm or because of accrual management in prior years [see Barton and Simko (2002), Choy (2003)]. Interestingly, respondents to Graham, Harvey and Rajgopal's (2004) survey of financial executives indicate a higher willingness to manipulate earnings through real activities than accruals.

Accrual manipulation and real activities manipulation can be used as substitutes, to accomplish a given level of earnings management. It is also possible that they are used as complements. For example, managers offer price discounts during the year to increase earnings and also manage reported earnings more precisely through accruals at the year-
end. It is expected that managers use accrual and real manipulation methods as complements when the firm's stock of current assets is high. Burgstahler and Dichev (1997) argue that firms with a high stock of current assets are expected to have high capacity to overstate working capital accruals and hence possess higher accounting flexibility. At the same time, these firms also have higher flexibility to manage earnings through real activities that affect working capital, for example, through overproduction.

Firms with a traditionally low stock of current assets are likely to manipulate specific real activities more aggressively to compensate for their inability to manage working capital accruals. For example, firms that have no credit sales (and hence, no accounts receivable outstanding at the year-end) cannot increase earnings by reducing provisions for bad debts. Similarly, firms that maintain low inventories have less discretion to manipulate inventory upwards, either through inventory-obsolescence writeoffs or through overproduction, without attracting the attention of auditors or investors. If managers in low-current-asset firms manage earnings upwards, they can do so only by offering price discounts to increase sales or reducing discretionary expenses. Thus, it is expected that suspect firm-years with low current assets to be more aggressive at offering price discounts and reducing discretionary expenses.

The ability of low-current-asset firms to lower reported cost of goods sold via overproduction is limited. Thus, while abnormal production costs are not necessarily high for suspect firm-years with low current assets, their COGS relative to sales should be abnormally high.

H3: Suspect firm-years with a low level of current assets as a percentage of total assets, that is low accounting flexibility, have abnormally high cost of goods sold (COGS)
and abnormally low discretionary expenses, when compared to other suspect firmyears.

2.8.2.2 Presence of debt

In a preliminary investigation of why zero earnings are an important threshold, Roychowdury (2004) considered the possibility that debt contracts include covenants that become tighter when firms incur losses. There is no systematic evidence on the prevalence of debt covenants that explicitly mention zero earnings. But debt contracts routinely have minimum tangible net worth requirements that are ratcheted upwards every year when the firm makes profits, but not when it reports losses [see Dichev and Skinner (2002)]. At the very least, losses would make these covenants more binding.

The tests whether suspect firm-years that have debt outstanding engage in real activities management to a greater degree than suspect firm-years who do not. The existence of debt is a proxy for the presence of debt covenants that make zero earnings an important threshold.

H4: Suspect firm-years with debt outstanding have abnormally low CFO, abnormally high production costs and abnormally low discretionary expenses compared to other suspect firm-years.

2.8.2.3 Short-term suppliers

Discussed by Graham, Harvey and Rajgopal (2004) and Burgstahler and Dichev (1997), a second possible reason for zero earnings being an important threshold is that there are stakeholders of the firm who use heuristic cut-offs at zero to evaluate the performance of a firm. Among the stakeholders that these studies identify are suppliers,
lenders, employees and customers worried about future services. If the firm's earnings performance falls below a certain threshold like zero, the firm's ability to pay suppliers in time and its potential as a future buyer are in doubt. This leads suppliers to tighten terms of credit and other terms. Managers are more likely to worry about the negative reaction of suppliers if they have more trade credit and other short-term liabilities outstanding. Therefore, the extent of real activities manipulation should vary positively with current liabilities at the beginning of the year.

H5: Suspect firm-years with high current liabilities as a percentage of total assets have abnormally low CFO, abnormally high production costs and abnormally low discretionary expenses compared to other suspect firm-years.

CHAPTER III

RESEARCH METHOD

3.1. Population and Sample

Population is a group of comprehensive elements that usually in the form of people, object, transaction or event where we are interest to learn or to become the research object (Kuncoro, 2001). The population used in this research is financial reports of the manufacture company that already go public within period from 2001 until 2004.

Sample is a part collection from unit population. The companies that are chosen as the sample of this research are Manufacture Company that listed at the Jakarta Stock Exchange in the period of 2001-2004. The method used in this research is purposive sampling. Purposive sampling method is a technique to collect the sample based on certain criteria that is in accordance with the purpose of research (Kuncoro; 2003). In this method, the samples are found based on the variables exist in this research.

This chapter will explain about the outlines procedures that are used to gather and analyze the data. The explanation will include the hypothesis formulation. The reason behind is that even though the hypotheses or research problems have been formulated in the form of question, they need to rewritten into statistical hypotheses. This chapter also determines the null and alternative hypotheses that are developed from the theoretical basis.

Companies, in which the financial report is chosen as sample, are companies that can fulfill the following criteria:

1. Manufacturing firms which are listed in Jakarta Stock Exchange (JSX) from 2001 until 2004.
2. The writer concentrates on firm called "suspect firm-years". Suspect firm-years are that firm-years reporting small annual earnings and small annual earnings changes. Suspect firm-years have net income scaled by market value that is greater than or equal to zero but less than 0.005 .

3.2. Research Variables

The variables used in this research are as follows:

a. Dependent variables:

- Abnormal CFO

Abnormal CFO measured as deviations from the predicted values from the regression:
$\mathrm{CFO}_{\mathrm{t}} / \mathrm{Mvt} \mathrm{t}=\alpha^{*}(1 / \mathrm{Mvt}-1)+\beta_{1}{ }^{*}\left(\mathrm{~S}_{\mathrm{t}} / \mathrm{Mvt} \mathrm{t}\right)+\beta_{2}{ }^{*}\left(\Delta \mathrm{~S}_{\mathrm{t}} / \mathrm{Mvt} \mathrm{t}-1\right)+\varepsilon_{\mathrm{t}}$,
Where:
CFO = Cash flow from operations
Mv t-1 = Market value of Equity year $\mathrm{t}-1$
$=$ stock price x number of outstanding share at balance sheet date
$S_{t} \quad=$ sales during year t,
$\Delta \mathrm{St}=$ change in sales during year t .

- Abnormal discretionary expenses

Abnormal discretionary expenses measured as deviations from the predicted values from the regression:

Disexp $_{\mathrm{t}} / \mathrm{Mvt} \mathrm{t}=\alpha^{*}(1 / \mathrm{Mvt} \mathrm{t} 1)+\beta^{*}\left(\mathrm{~S}_{\mathrm{f}} / \mathrm{Mvt} \mathrm{t} 1\right)+\varepsilon_{\mathrm{v}}$,
Where:
Disexp $=$ Discretionary expenses

$$
=\text { R\&D + Advertising }+ \text { Selling, General and Administrative expenses }
$$

$\mathrm{Mvt} \mathrm{t}=$ stock price x number of outstanding share at balance sheet date year $\mathrm{t}-1$
$S_{t} \quad=$ sales during year t,

- Abnormal Production Cost

Abnormal Production Cost measured as deviations from the predicted values from the regression:

PRODt $/ \mathrm{Mvt}-1=\alpha^{*}(1 / \mathrm{Mvt}-1)+\beta 1^{*}(\mathrm{St} / \mathrm{Mvt}-1)+\beta 2^{*}(\Delta \mathrm{St} / \mathrm{Mvt}-1)+$ $\beta 3^{*}(\Delta \mathrm{St}-1 / \mathrm{Mvt} \mathrm{t})+\varepsilon \mathrm{t}$

Where:
PROD $=$ Production costs
$=$ Cost of goods sold + Change in inventory
$\mathrm{Mvt} \mathrm{t}=$ stock price x number of outstanding share at balance sheet date year $\mathrm{t}-1$
$\mathrm{S}_{\mathrm{t}} \quad=$ sales during year t .
$\Delta S t \quad=$ change in sales during year t .

- Abnormal COGS

Abnormal COGS measured as deviations from the predicted values from the regression:

COGSt $/ \mathrm{Mvt}-1=\alpha^{*}(1 / \mathrm{Mvt}-11)+\beta^{*}(\mathrm{St} / \mathrm{Mvt}-1)+\varepsilon \mathrm{t}$
Where:
COGS $_{t}=$ cost of goods sold in period t
$\mathrm{Mvt-1}=$ stock price x number of outstanding share at balance sheet date year $\mathrm{t}-1$
$S_{t} \quad=$ sales during year t .

b. Independent variable

- SIZE: measured as logarithm of the market value of equity, expressed as deviation from the corresponding industry-year mean.
- Market- to- book - ratio (MTB): The ratio of market value of equity to the book value of equity.
- Net income: income before extraordinary items scaled by lagged market value.
- SUSPECT_NI: An indicator variable that is set equal to one if change in income before extraordinary items, scaled by lagged market value is between 0 and 0.005 , and is set equal to zero otherwise.
- LoCA: is an indicator variable that is set equal to one if the firm belongs to the lowest quartile of CA/A and is set equal to zero otherwise. LoCA: Firms are divided every year into quartiles based on the level of lagged current assets (CA) as a percentage of market value.
- DEBT: An indicator variable set equal to one if there is long-term or short-term debt outstanding at the beginning of the year or at the end of the year.
- CL, Current liabilities excluding short-term debt, scaled by market value.
- LoCA*SUSPECT_NI
- DEBT*SUSPECT_NI
- CL*SUSPECT_NI

3.3. Formulated Hypothesis

In this study, the writer develops stronger tests of real activities manipulation and applies them to firm-years reporting small annual earnings and small annual earnings changes called the "suspect firm-years".

Certain real activities management methods, such as price discounts and reduction of discretionary expenses, are possibly optimal actions given the economic circumstances of the firm. In this study, the writer interested in whether managers engage in these
activities more extensively in the presence of an earnings target, even when compared to firms in similar economic circumstances. It is this behaviour that the writer refers to as real activities manipulation. Thus, real activities manipulation is characterized by two features: (a) departures from normal operational practices - these departures are, by themselves, potentially detrimental to firm value and (b) a desire to mislead at least some stakeholders into believing certain financial reporting goals have been met in the normal course of operations.

To detect real activities manipulation, the writer focuses on the following three manipulation methods and their effects on abnormal CFO:

1. Sales manipulation that is, accelerating the timing of sales and/or generating additional unsustainable sales through increased price discounts or more lenient credit terms.
2. Decreasing discretionary expenses
3. Reporting lower cost of goods sold by increasing production

3.4. Statistical Tool

Based on the problem statements and the review of the related literature, so that the alternative hypotheses that are proposed in this research are:
$H o_{1}$: After controlling for sales levels, suspect firm-years do not exhibit either unusually low cash flow from operations (CFO) or unusually low discretionary expenses or both $H a_{1}$: After controlling for sales levels, suspect firm-years exhibit either unusually low cash flow from operations (CFO) or unusually low discretionary expenses or both Ho_{2} : Suspect firm-years do not exhibit unusually high production costs, controlling for the level of sales
$H a_{2}$: Suspect firm-years exhibit unusually high production costs, controlling for the level of sales
Ho_{3} : Suspect firm-years with a low level of current assets as a percentage of total assets that is low accounting flexibility, do not have abnormally high cost of goods sold (COGS) and abnormally low discretionary expenses, when compared to other suspect firm-years.
$H a_{3}$: Suspect firm-years with a low level of current assets as a percentage of total assets, that is low accounting flexibility, have abnormally high cost of goods sold (COGS) and abnormally low discretionary expenses, when compared to other suspect firm-years. Ho_{4} : Suspect firm-years with debt outstanding do not have abnormally low CFO, abnormally high production costs and abnormally low discretionary expenses compared to other suspect firm-years
$H a_{4}$: Suspect firm-years with debt outstanding have abnormally low CFO, abnormally high production costs and abnormally low discretionary expenses compared to other suspect firm-years.
$H o_{5}$: Suspect firm-years with high current liabilities as a percentage of total assets do not have abnormally low CFO, abnormally high production costs and abnormally low discretionary expenses compared to other suspect firm-years
$H a_{5}$: Suspect firm-years with high current liabilities as a percentage of total assets have abnormally low CFO, abnormally high production costs and abnormally low discretionary expenses compared to other suspect firm-years.

3.5. Hypothesis Testing

The first hypothesis (H1) is use to detect whether after controlling for sales levels, suspect firm-years exhibit either unusually low cash flow from operations (CFO) or unusually low discretionary expenses or both.
$H o_{1}$: After controlling for sales levels, suspect firm-years do not exhibit either unusually low cash flow from operations (CFO) or unusually low discretionary expenses or both $H a_{1}$: After controlling for sales levels, suspect firm-years exhibit either unusually low cash flow from operations (CFO) or unusually low discretionary expenses or both

To test the first hypothesis (H1) the writer uses multiple regression approach by the following equation:
$\mathrm{Yt}=\alpha+\beta 1^{*}($ SIZE $) \mathrm{t}-1+\beta 2^{*}($ Market-to-book-ratio $) \mathrm{t}-1+\beta 3^{*}($ Net income $)+$
(SUSPECT_NI) $\mathrm{t}+\varepsilon \mathrm{t}$

Dependent variable (Yt) at the first hypothesis (H1) is abnormal CFO and abnormal discretionary expense, while the independent variable is SIZE, Market-to-book- ratio, Net income and SUSPECT_NI.

From the equation above, the writer estimate significant at the 5% level. And then determine the criterion of rejected Ho based on the level of significant and regression coefficient.

Ho is rejected when:

- Regression coefficient SUSPECT_NI ($\beta 4$) is significantly negative, when the dependent variable is abnormal CFO, or
- Regression coefficient SUSPECT_NI ($\beta 4$) is significantly negative, when the dependent variable is abnormal discretionary expense, or
- Regression coefficient SUSPECT_NI ($\beta 4$) is significantly negative when the dependent variables are abnormal CFO and abnormal discretionary expense.

The second hypothesis (H2) is use to detect whether suspect firm-years exhibit unusually high production costs after controlling for the level of sales
Ho_{2} : Suspect firm-years do not exhibit unusually high production costs, controlling for the level of sales
$H a_{2}$: Suspect firm-years exhibit unusually high production costs, controlling for the level of sales

To test the second hypothesis $(\mathrm{H} 2)$ the researcher uses multiple regression approach by the following equation:

$$
\begin{align*}
\mathrm{Yt}= & \underset{ }{\alpha}+\beta 1^{*}(\text { SIZE }) \mathrm{t}-1+\beta 2^{*}(\text { Market-to-book-ratio }) \mathrm{t}-1+\beta 3^{*}(\text { Net income })+ \\
& +3.6 \text { SUSPECT }^{*} \mathrm{t}+\varepsilon \mathrm{t} \tag{3.6}
\end{align*}
$$

Dependent variable (Yt) on second hypothesis (H2) is abnormal production cost, on the other hand, the independent variable is SIZE, Market-to- book- ratio, Net income and SUSPECT_NI.

From the equation above, the writer estimate significant at the 5% level. And then determine the criterion of rejected Ho based on the level of significant and regression coefficient. Ho is rejected if regression coefficient SUSPECT_NI ($\beta 4$) is significantly positive.

The third hypothesis (H3) is use to detect whether suspect firm-years with a low level of current assets as a percentage of total assets that is low accounting flexibility,
have abnormally high cost of goods sold (COGS) and abnormally low discretionary expenses, when compared to other suspect firm-years.
$H o_{3}$: Suspect firm-years with a low level of current assets as a percentage of total assets that is low accounting flexibility, do not have abnormally high cost of goods sold (COGS) and abnormally low discretionary expenses, when compared to other suspect firm-years.
$H a_{3}$: Suspect firm-years with a low level of current assets as a percentage of total assets, that is low accounting flexibility, have abnormally high cost of goods sold (COGS) and abnormally low discretionary expenses, when compared to other suspect firm-years.

To test the third hypothesis $(\mathrm{H} 3)$ the writer uses multiple regression approach by the following equation:

$$
\begin{aligned}
& \mathrm{Yt}=\alpha+\beta 1^{*}(\text { SIZE }) \mathrm{t}-1+\beta 2^{*} \text { (Market-to-book-ratio)t-1 }+\beta 3^{*}(\text { Net income })+ \\
& \beta 4^{*}(\text { SUSPECT_NI }) t+\beta 5^{*}(\mathrm{LoCA}) \mathrm{t}+\beta 6^{*}(\mathrm{DEBT})+\beta 7^{*}(\mathrm{CL})+ \\
& \beta 8\left(\mathrm{LoCA}^{*} \text { SUSPECT_NI }+\quad \beta 9\left(\mathrm{DEBT}^{*} \text { SUSPECT_NI }^{+}+\right.\right. \\
& \beta 10\left(\mathrm{CL}^{*} \mathrm{SUSPECT}_{-} \mathrm{NI}\right) \mathrm{t}+\varepsilon
\end{aligned}
$$

Dependent variable on the third hypothesis (H3) is abnormal COGS and abnormal discretionary expense, on the other hand, independent variables are Size, Market-to-book-ratio, Net income, SUSPECT_NI, LoCA, DEBT, CL, LoCA*SUSPECT_NI, DEBT*SUSPECT NI, CL*SUSPECT_NI.

From the equation above, the writer estimate significant at the 5% level. And then determine the criterion of rejected Ho based on the level of significant and regression coefficient. Ho is rejected if regression coefficient LoCA*SUSPECT_NI ($\beta 8$) is significantly positive when the dependent variable is abnormal COGS and significantly negative if the dependent variable is abnormal discretionary expense.

The fourth hypothesis (H4) is use to detect whether suspect firm-years with debt outstanding have abnormally low CFO, abnormally high production costs and abnormally low discretionary expenses compared to other suspect firm-years.
Ho_{4} : Suspect firm-years with debt outstanding do not have abnormally low CFO, abnormally high production costs and abnormally low discretionary expenses compared to other suspect firm-years.
$H a_{4}$: Suspect firm-years with debt outstanding have abnormally low CFO, abnormally high production costs and abnormally low discretionary expenses compared to other suspect firm-years

To test the fourth hypothesis (H4) the researcher uses multiple regression approach by the following equation:

$$
\begin{align*}
& \text { Yt }=\alpha+\beta 1^{*}(\text { SIZE }) \text { t-1 }+\quad \beta 2^{*} \text { (Market-to-book-ratio)t-1 }+\quad \beta 3^{*} \text { (Net income) }+ \\
& \beta 4^{*} \text { (SUSPECT_NI) } \quad t \quad+\quad \beta 5^{*}(\text { LoCA }) t+\quad \beta 6^{*}(\text { DEBT })+\quad \beta 7^{*}(\mathrm{CL})+ \\
& \beta 8\left(\mathrm{LoCA}^{*} \mathrm{SUSPECT} \text { NI) }+\quad \beta 9\left(\mathrm{DEBT}^{2} \text { SUSPECT_NI) }+\right.\right. \\
& \beta 10\left(\text { CL }^{*} \text { SUSPECT_NI }\right) t+\varepsilon \tag{3.8}\\
& \text { Dependent variable on fourth hypothesis (H4) is abnormal CFO, abnormal }
\end{align*}
$$ production cost and abnormal discretionary, on the other hand, independent variable is Size, Market-to-book-ratio, Net income, SUSPECT_NI, LoCA, DEBT, CL, LoCA*SUSPECT_NI, DEBT*SUSPECT_NI, CL*SUSPECT_NI

From the equation above, the writer estimate significant at the 5% level. And then determine the criterion of rejected Ho based on the level of significant and regression coefficient. Ho is rejected if regression coefficient DEBT*SUSPECT_NI ($\beta 9$) is significantly negative when the dependent variable is abnormal CFO and significantly
positive if the dependent variable is abnormal production cost and significantly negative if the dependent variable is abnormal discretionary expense.

The fifth hypothesis (H5) is use to detect whether suspect firm-years with high current liabilities as a percentage of total assets have abnormally low CFO, abnormally high production costs and abnormally low discretionary expenses compared to other suspect firm-years.
Ho_{5} : Suspect firm-years with high current liabilities as a percentage of total assets do not have abnormally low CFO, abnormally high production costs and abnormally low discretionary expenses compared to other suspect firm-years
$H a_{5}$: Suspect firm-years with high current liabilities as a percentage of total assets have abnormally low CFO, abnormally high production costs and abnormally low discretionary expenses compared to other suspect firm-years.

To test the fifth hypothesis (H5) the writer uses multiple regression approach by the following equation:

$$
\begin{align*}
& \mathrm{Yt}=\alpha+\quad \beta 1^{*}(\text { SIZE }) \mathrm{t}-1+\quad \beta 2^{*} \text { (Market-to-book-ratio)t-1+ } \quad \beta 3^{*} \text { (Net } \quad \text { income) }+ \\
& \beta 4^{*} \text { (SUSPECT_NI) } \mathrm{t} \quad+\quad \beta 5^{*}(\mathrm{LoCA}) \mathrm{t}+\quad \beta 6^{*}(\mathrm{DEBT})+\quad \beta 7^{*}(\mathrm{CL})+ \\
& \beta 8\left(\text { LoCA }^{*} \text { SUSPECCT_NI) }+\right. \\
& \beta 10(\text { CL*SUSPECT_NI }) t+\varepsilon \tag{3.9}\\
& \beta 9\left(\mathrm{DEBT}^{*} \text { SUSPECT_NI }^{+}+\right.
\end{align*}
$$

The dependent variable on fifth hypothesis (H5) is abnormal CFO, abnormal production cost and abnormal discretionary, on the other hand independent variable is Size, Market-to-book-ratio, Net income, SUSPECT_NI, LoCADEBT, CL, LoCA*SUSPECT_NI, DEBT*SUSPECT_NI, CL*SUSPECT_NI.

From the equation above, the writer estimate significant at the 5% level. And then determine the criterion of rejected Ho based on the level of significant and
regression coefficient. Ho is rejected if regression coefficient CL*SUSPECT_NI ($\beta 10$) is significantly negative when the dependent variable is abnormal CFO and significantly positive if the dependent variable is abnormal production cost and significantly negative if the dependent variable is abnormal discretionary expense.

CHAPTER IV

REASEARCH FINDINGS, DISCUSSION, AND IMPLICATIONS

4.1 Research Description

The sample selection in this research is based on company consistency in publishing the annual financial statement and data completion by manufacturing companies listed on Jakarta Stock Exchange during 2001-2004. The data used are secondary data taken from the Jakarta Stock Exchange (JSX) corner in the Economic Faculty of Islamic University of Indonesia, libraries and internet.

Samples are collected from secondary data and further analysis by using multiple regressions which was developed by Sugata Roychowdhury (2004). As explained before, this research involved four dependent variables and ten independent variables. The dependent variables are abnormal CFO, abnormal production costs, abnormal COGS and abnormal discretionary expenses. While the independent variables are SIZE, Market- tobook - ratio (MTB), Net income, SUSPECT_NI, LoCA, DEBT, CL, CL*SUSPECT_NI, DEBT*SUSPECT_NI, LoCA*SUSPECT_NI.

Based on the criteria explained in the previous chapter, the observation and the selection to the manufacture companies listed on Jakarta Stock Exchange during 20012004 are 319 samples, including suspect firm years, namely firm-years reporting small annual earnings and small annual earnings changes. Suspect firm-years have net income scaled by market value that is greater than or equal to zero but less than 0.005 . The amounts of suspect firm years are 15 companies.

The hypothesis testing is done by statistical testing method, for the measurement of variable. Microsoft Excel is used and the data are processed by using SPSS 13.0 for the statistical calculation.

4.2 Descriptive Statistics

The objective of the descriptive statistics is to observe the sample characteristics used in this research. In detail, the characteristics of sample are shown in table 4.1. From the table we find the amount of sample, minimum and maximum value, mean and the standard deviation of each variable that are used.

As we can see from table 4.1, the amount of sample, which is used in this research, is 319.

Table 4.1
Descriptive Statistics for Independent Variables and Dependent Variables
Descriptive Statistics

	N	Minimum	Maximum	Mean	Std. Deviation
Abcfo	319	-1.39399	.03016	.0000003	.07834183
Abdisexp	319	-.02651	.00846	.0000001	.00206400
Abprod	319	-.02139	.02362	-.0000003	.00282395
Abcogs	319	-.01002	.04004	.0000000	.00320230
size	319	7.37034	11.71875	8.7182568	.67311895
mtb	319	.00094	193.30558	2.8226499	11.60521227
ni	319	-.77238	.72990	.0556797	.12752350
cl	319	.00000	.05806	.0027156	.00690843
locasus	319	.00000	1.00000	.0282132	.16584149
debtsus	319	.00000	1.00000	.0282132	.16584149
clsus	319	.00000	.04067	.0002364	.00248612
Valid N (listwise)	319				

Table 4.1 reports descriptive statistics for the independent variables. $\mathrm{N}=319$, this number represents the amount of valid data to be process is 319 samples.

- The minimum value of Abnormal CFO is -1.39399 , while the maximum is 0.03016. The mean level or the average of Abnormal CFO is 0.0000003 . The standard deviation of Abnormal CFO is 0.07834183 . The standard deviation is used to estimate the dispersion of sample's average.
- The minimum value of abnormal discretionary expense is -0.02651 , while the maximum is 0.00846 . The mean level or the average is 0.0000001 . The standard deviation is 0.00206400 . The standard deviation is used to estimate the dispersion of sample's average.
- The minimum value of abnormal production costs is -0.02139 , while the maximum is 0.02362 . The mean level or the average is -0.0000003 . The standard deviation is 0.00282395 . The standard deviation is used to estimate the dispersion of sample's average.
- The minimum value of Abnormal COGS is -0.01002 , while the maximum is 0.04004 . The mean level or the average is 0.0000000 . The standard deviation is used to estimate the dispersion of sample's average. The standard deviation is 0.00320230 .
- The minimum value of SIZE is 7.37034 , while the maximum is 11.71875 . The mean level or the average is 8.7182568 . The standard deviation is 0.67311895 . The standard deviation is used to estimate the dispersion of sample's average.
- The minimum value of Market- to- book - ratio (mtb) is 0.00094 , while the maximum is 193.30558 . The mean level or the average is 2.8226499 .

The standard deviation is 11.60521227 . The standard deviation is used to estimate the dispersion of sample's average.

- The minimum value of net income (ni) is -0.77238 , while the maximum is -0.72990 . The mean level or the average is 0.0556797 . The standard deviation is 0.12752350 . The standard deviation is used to estimate the dispersion of sample's average.
- The minimum value of current liability (cl) is -0.00000 , while the maximum is 0.05806 . The mean level or the average is 0.0027156 . The standard deviation is 0.00690843 . The standard deviation is used to estimate the dispersion of sample's average.
- The minimum value of LoCA*SUSPECT_NI (locasus) is -0.00000 , while the maximum is 1.00000 . The mean level or the average is 0.0282132 . The standard deviation is 0.16584149 . The standard deviation is used to estimate the dispersion of sample's average.
- The minimum value of DEBT*SUSPECT_NI (debtsus) is -0.00000 , while the maximum is 1.00000 . The mean level or the average is 0.0282132 . The standard deviation is 0.16584149 . The standard deviation is used to estimate the dispersion of sample's average.
- The minimum value of CL*SUSPECT_NI (clsus) is -0.00000 , while the maximum is 0.04067 . The mean level or the average is 0.0002364 . The standard deviation is 0.00248612 . The standard deviation is used to estimate the dispersion of sample's average.

4.3 Hypothesis Testing

4.3.1 Suspect firm-years exhibit either unusually low cash flow from operations
 (CFO) or unusually low discretionary expenses or both.

The first hypothesis is uses multiple regressions as in equation 3.5. In this case α is the constant, meanwhile β is coefficient regression. Dependent variables (Yt) in the first hypothesis (HI) are abnormal CFO (table 4.2 and table 4.3) and abnormal discretionary expense (table 4.4 and table 4.5), meanwhile the independent variables are SIZE, Market-to-book-ratio, Net income, SUSPECT_NI and the rest, ε t is error. From data analyses by using spss 13.0 by multiple regressions, the findings are:

Table 4.2 result of multiple regression test equation 3.5

a. Dependent Variable: abcfo

Table 4.3 result of multiple regression test equation 3.5

Model Summary $^{\text {b }}$						
Model	R	R Square	Adjusted R Square	Std. Error of the Estimate	Durbin- Watson	
1	, 087^{a}	, 008	,- 005	, 07853686	2,007	

a. Predictors: (Constant), sus, mtb, size, ni
b. Dependent Variable: abcfo

Based on the table 4.2, with abnormal CFO as the dependent variable:

- Regression coefficient SIZE is 0.009 , with standard error 0.007 and sig 0.200 .
- Regression coefficient Market-to-book-ratio is $3.79 \mathrm{E}-0.005$, with standard error 0.000 and $\operatorname{sig} 0.921$.
- Regression coefficient Net income is 0.022 with standard error 0.035 and sig 0.532 .
- Regression coefficient SUSPECT_NI is 0.005 , with standard error 0.021 and sig 0.802 .

Table 4.4 result of the multiple regression test equation 3.5

Coefficients ${ }^{\text {a }}$

Model		Unstandardized Coefficients		Standardized Coefficients Beta	t	Sig.	Collinearity Statistics	
		B	Std. Error				Tolerance	VIF
1	(Constant)	, 001	, 002		. 546	,585		
	size	, 000	,000	-,034	-,588	, 557	,974	1,027
	mtb	-8.7E-007	,000	-,005	-,087	,931	,996	1,004
	ni	,001	,001	, 064	1,122	,263	,968	1,033
	sus	,000	. 001	, 024	,429	,668	, 987	1,013

a. Dependent Variable: abdiexp

Table 4.5 result of the multiple regression test equation 3.5

Model Summary ${ }^{\text {b }}$

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate	Durbin- Watson
1	, 070^{2}	, 005	,- 008	, 00207203	1,967

a. Predictors: (Constant), sus, mtb, size, ni
b. Dependent Variable: abdiexp

Based on the table 4.4 and table 4.5 above, with abnormal discretionary expense as the dependent variable:

- Regression coefficient SIZE is 0.000 , with standard error 0.000 and $\operatorname{sig} 0.557$.
- Regression coefficient Market-to-book-ratio is $-8.7 \mathrm{E}-007$, with standard error 0.000 and sig 0.931 .
- Regression coefficient Net income is 0.001 with standard error 0.001 and sig 0.263 .
- Regression coefficient SUSPECT_NI is 0.000 , with standard error 0.001 and sig 0.668 .

The result of the regression indicates that suspect firm-years do not exhibit as the writer expected. Suspect firm-years do not exhibit neither unusually low cash flow from operations (CFO) or unusually low discretionary expenses or both. Based on the table 4.2, when the dependent variable is abnormal CFO, the coefficient on SUSPECT_NI as an indicator variable is positive (0.005) is not significant at the 5% level (see Sig $0.802>$ 0.05). The indicator variable did not indicate negative as the writer expected. The coefficient indicates positive correlation between dependent variable abnormal CFO and independent variable SUSPECT_NI, this means that an increase of SUSPECT_NI followed by an increase of abnormal CFO, while the rest of the independent variables remain the same.

When the dependent variable is abnormal discretionary expenses the coefficient on SUSPECT_NI as an indicator variable is positive (0.000) and not significant at the 5% level (see Sig $0.668>0.05$). The indicator variable did not indicate negative as the writer expected. The coefficient indicates positive correlation between dependent variable abnormal discretionary expenses and independent variable SUSPECT_NI, this means that an increase of SUSPECT_NI followed by an increase of abnormal discretionary expenses, while the rest of the independent variables remain the same.

From the regression analysis above indicates that H 0 is failed to reject, and does not proved the first hypothesis. This is not consistent with the previous research done by

Roychowdhury (2004) indicated that suspect firm-years who engage in real activities manipulation would lead to lower current-period CFO than what is normal given the sales level to meet zero earnings and Firms can also increase earnings by reducing discretionary expenses.

4.3.2 Suspect firm-years exhibit unusually high production costs, controlling for the

level of sales.
The second hypothesis is uses multiple regressions as in equation 3.6. In this case α is the constant, meanwhile β is coefficient regression. Dependent variable (Yt) in the first hypothesis (HI) is abnormal production cost (table 4.6 and table 4.7), meanwhile the independent variables are SIZE, Market-to-book-ratio, Net income, SUSPECT_NI and the rest, ε et is error. From data analyses by using spss 13.0 by multiple regressions, the findings are:

Table 4.6 result of the multiple regression test equation 3.6

Model	Unstandardized Coefficients		Standardized Coefficients	t	Sig.	Collinearity Statistics	
	B	Std. Error	Beta			Tolerance	VIF
1 (Constant)	-,003	,002		-1,546	,123		
size	,000	,000	,093	1,651	,100	,974	1,027
mtb	8,56E-006	,000	,035	,635	. 526	,996	1,004
ni	-,004	. 001	-, 189	-3,360	,001	,968	1,033
sus	,000	,001	-, 025	$-.448$,654	. 987	1,013

a. Dependent Variable: Abprod

Table 4.7 result of the multiple regression test equation 3.6
Model Summary ${ }^{\text {b }}$

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate	Durbin- Watson
1	, 200^{a}	, 040	, 028	, 00278463	1,957

a. Predictors: (Constant), sus, mtb, size, ni
b. Dependent Variable: Abprod

Based on the table 4.6, with abnormal production cost as the dependent variable:

- Regression coefficient SIZE is 0.000 , with standard error 0.000 and sig 0.100 .
- Regression coefficient Market-to-book-ratio is $8.56 \mathrm{E}-0.006$, with standard error 0.000 and sig 0.526 .
- Regression coefficient Net income is -0.004 with standard error 0.001 and sig 0.001 .
- Regression coefficient SUSPECT_NI is 0.000 , with standard error 0.001 and sig 0.654 .

The result of the regression indicates that suspect firm-years do not exhibit as what the writer expected. Suspect firm-years do not exhibit unusually high production costs as percentage of sales level. When the dependent variable is abnormal production cost (table 4.6), the coefficient on SUSPECT_NI as an indicator variable is positive (0.000). The indicator variable indeed indicate positive, but it is not significant at the 5% level (see Sig $0.654>0.05$). The coefficient indicates positive correlation between dependent variable abnormal production cost and independent variable SUSPECT_NI, this means that an increase of SUSPECT NI followed by an increase of abnormal production cost, while the rest of the independent variables remain the same. Based on table 4.7, the coefficient determination (Adjusted R^{2}) is 0.028 which means that around 2.8% of the variation on abnormal production variable can be explained by 4 independent variables in the model, where as the residual of 97.2% is explained by other factors outside the model.

From the regression analysis above indicates that H 0 is failed to reject, and it does not prove the first hypothesis. This is consistent with the previous research done by

Roychowdhury (2004) indicated that suspect firm-years who engage in real activities manipulation pass through overproduction leads to unusually high production costs for a given level of sales.

4.3.3 Suspect firm-years with a low level of current assets as a percentage of total

 assets, that is low accounting flexibility, have abnormally high cost of goods sold (COGS) and abnormally low discretionary expenses, when compared to other
suspect firm-years

The third hypothesis is uses multiple regressions as in equation 3.7 In this case α is the constant, meanwhile β is coefficient regression. Dependent variables (Yt) in the first hypothesis (HI) are abnormal COGS (table 4.8 and table 4.9) and abnormal discretionary expense (table 4.10 and table 4.11), meanwhile the independent variables are SIZE, Market-to-book-ratio, Net income, SUSPECT_NI, LoCA, DEBT, CL, LoCA*SUSPECT_NI, DEBT*SUSPECT_NI, CL*SUSPECT_NI and the rest, ε et is error. From data analyses by using spss 13.0 by multiple regressions, the findings are:

Table 4.8 result of the multiple regression test equation 3.7

Model		Unstandardized Coefficients		Standardized Coefficients Beta	t	Sig.	Collinearity Statistics	
		B	Std. Error				Tolerance	VIF
1	(Constant)	-. 002	. 002		- - -698	. 486		
	size	. 000	. 000	. 029	. 519	. 604	859	1.164
	mtb	$1.55 \mathrm{E}-005$. 000	. 056	1.082	. 280	. 989	1.011
	ni	-. 003	. 001	-. 120	-2.115	. 035	. 830	1.205
	Sus	-. 001	. 002	-. 034	-. 321	. 749	. 235	4.247
	loca	. 000	. 000	-. 062	-1.051	. 294	. 776	1.289
	Debt	. 000	. 000	. 048	. 853	. 394	. 845	1.184
	cl	. 190	. 026	. 410	7.393	. 000	. 872	1.146
	locasus	. 001	. 002	. 035	. 359	. 719	. 276	3.625
	debtsus	-. 001	. 002	-. 028	-. 306	. 760	. 331	3.018
	clsus	-. 089	. 093	-. 069	-. 960	. 338	. 514	1.945

[^0]Table 4.9 result of the multiple regression test equation 3.7

Model Summary ${ }^{\text {b }}$

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate	Durbin- Watson
1	$.419^{a}$.175	.148	.00295505	1.995

a. Predictors: (Constant), clsus, size, mtb, locasus, ni, Debt, cl, loca, debtsus, Sus
b. Dependent Variable: Abcogs

Based on the table 4.8, with abnormal COGS as the dependent variable:

- Regression coefficient SIZE is 0.000 , with standard error 0.000 and $\operatorname{sig} 0.604$.
- Regression coefficient Market-to-book-ratio is $1.55 \mathrm{E}-005$, with standard error 0.000 and $\operatorname{sig} 0.280$.
- Regression coefficient Net income is -0.003 with standard error 0.001 and sig 0.035 .
- Regression coefficient SUSPECT_NI is -0.001 , with standard error 0.002 and sig 0.749 .
- Regression coefficient LoCA is 0.000 , with standard error 0.000 and sig 0.294 .
- Regression coefficient DEBT is 0.000 , with standard error 0.000 and sig 0.394 .
- Regression coefficient CL is 0.190 with standard error 0.026 and $\operatorname{sig} 0.000$.
- Regression coefficient LoCA*SUSPECT_NI is 0.001 , with standard error 0.002 and $\operatorname{sig} 0.719$.
- Regression coefficient DEBT*SUSPECT_NI is -0.001, with standard error 0.002 and $\operatorname{sig} 0.760$.
- Regression coefficient CL*SUSPECT_NI is -0.089 , with standard error 0.093 and sig 0.338 .

Table 4.10 result of the multiple regression test equation 3.7

Model	Unstandardized Coefficients		Standardized Coefficients Beta	1	Sig.	Collinearity Statistics	
	B	Std. Error				Tolerance	VIF
1 (Constant)	. 001	. 002		. 640	. 523		
size	-7.6E-005	. 000	-. 025	-. 428	. 669	. 859	1.164
mtb	-3.3E-006	. 000	-. 018	-. 340	. 734	. 989	1.011
ni	. 001	. 001	. 043	. 735	. 463	830	1.205
Sus	. 000	. 001	. 012	. 108	. 914	. 235	4.247
loca	. 000	. 000	. 055	. 894	. 372	776	1.289
Debt	. 000	. 000	-. 074	-1.264	. 207	. 845	1.184
cl	-. 102	. 017	-. 342	-5.948	. 000	. 872	1.146
locasus	. 000	. 001	-. 028	-. 274	. 784	. 276	3.625
debtsus	. 000	. 001	. 027	. 287	. 774	. 331	3.018
clsus	. 062	. 062	. 075	. 998	. 319	. 514	1.945

a. Dependent Variable: Abdisexp

Table 4.11 result of the multiple regression test equation 3.7

Model Summary ${ }^{\text {b }}$

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate	Durbin- Watson
1	$.335^{2}$.112	.084	.00197590	2.034

a. Predictors: (Constant), clsus, size, mtb, locasus, ni, Debt, cl, loca, debtsus, Sus
b. Dependent Variable: Abdisexp

Based on the table 4.10, with abnormal discretionary expense as the dependent variable:

- Regression coefficient SIZE is $-7.6 \mathrm{E}-005$, with standard error 0.000 and sig 0.669 .
- Regression coefficient Market-to-book-ratio is -3.3E-006, with standard error 0.000 and $\operatorname{sig} 0.734$.
- Regression coefficient Net income is 0.001 with standard error 0.001 and sig 0.463 .
- Regression coefficient SUSPECT_NI is 0.000 , with standard error 0.001 and sig 0.914 .
- Regression coefficient LoCA is 0.000 , with standard error 0.000 and sig 0.372 .
- Regression coefficient DEBT is 0.000 , with standard error 0.000 and $\operatorname{sig} 0.207$.
- Regression coefficient CL is -0.102 with standard error 0.017 and sig 0.000 .
- Regression coefficient LoCA*SUSPECT_NI is 0.000 , with standard error 0.001 and $\operatorname{sig} 0.784$.
- Regression coefficient DEBT*SUSPECT_NI is 0.000 , with standard error 0.001 and sig 0.774.
- Regression coefficient CL*SUSPECT_NI is 0.062 , with standard error 0.062 and sig 0.319.

The result of the regression indicates that suspect firm-years do not exhibit as what the writer expected. The result of regressions do not indicate that suspect firm-years with a low level of current assets as a percentage of total assets, that is low accounting flexibility, have abnormally high cost of goods sold (COGS) abnormally low discretionary expenses. Based on the table 4.8 , when the dependent variable is abnormal COGS, the coefficient on LoCA*SUSPECT_NI as an indicator variable is positive (0.001). The indicator variable indeed indicate positive, but it is not significant at the 5% level (see $\operatorname{Sig} 0.719>0.05$). The coefficient indicates positive correlation between dependent variable abnormal COGS and independent variable LoCA*SUSPECT_NI, this means that an increase of LOCA*SUSPECT NI followed by an increase of abnormal COGS, while the rest of the independent variables remain the same. Based on table 4.10, the coefficient determination (Adjusted R^{2}) is 0.148 which means that around 14.8% of the variation on abnormal COGS variable can be explained by 10 independent variables in the model, where as the residual of 85.2% is explained by other factors outside the model.

When the dependent variable is abnormal discretionary expenses (see table 4.11) the coefficient on LoCA*SUSPECT_NI as an indicator variable is positive (0.000) and not significant at the 5% level (see $\operatorname{Sig} 0.784>0.05$). The indicator variable did not indicate negative as the writer expected. The coefficient indicates positive correlation between dependent variable abnormal discretionary expenses and independent variable LoCA*SUSPECT_NI, this means that an increase of LoCA*SUSPECT_NI followed by an increase of abnormal discretionary expenses, while the rest of the independent variables remain the same. Table 4.12 shows the coefficient determination (Adjusted R^{2}) is 0.084 which means that around 8.4% of the variation on abnormal discretionary expense variable can be explained by 10 independent variables in the model, where as the residual of 91.6% is explained by other factors outside the model.

From the regression analysis above indicates that H0 failed to reject, and does not proved the first hypothesis. This is not consistent with the previous research done by Roychowdhury (2004) indicated how managers choose between manipulation methods and how suspect-firms years with low levels of current assets, or low accounting flexibility are most likely to offer price discounts and reduce discretionary expenses.

4.3.4 Suspect firm-years with debt outstanding have abnormally low CFO, abnormally high production costs and abnormally low discretionary expenses compared to other suspect firm-years.

The fourth hypothesis is uses multiple regressions as in equation 3.8 In this case α is the constant, meanwhile β is coefficient regression. Dependent variables on first hypothesis (HI) are abnormal CFO (table 4.12 and table 4.13), abnormal production cost (table 4.14 and table 4.15) and abnormal discretionary expenses (table 4.16 and table
4.17), on the other hand, independent variables are Size, Market-to-book-ratio, Net income, SUSPECT_NI, LoCA, DEBT, CL, LoCA*SUSPECT_NI, DEBT*SUSPECT_NI, CL*SUSPECT_NI, and the rest, ε t is error. From data analyses by using spss 13.0 by multiple regressions, the findings are:

Table 4.12 result of the multiple regression test equation 3.8

Model	Unstandardized Coefficients		Standardized Coefficients Beta	t	Sig.	Collinearity Statistics	
	B	Std. Error				Tolerance	VIF
1 (Constant)	-. 004	. 002		-2.047	. 042		
size	. 000	. 000	. 117	2.034	. 043	. 859	1.164
mtb	1.25E-005	. 000	. 051	. 964	. 336	. 989	1.011
ni	. 004	. 001	-. 187	-3.211	. 001	. 830	1.205
Sus	-. 001	. 001	-. 048	-. 443	. 658	. 235	4.247
loca	. 000	. 000	-. 077	-1.283	. 200	. 776	1.289
Debt	. 000	. 000	-. 020	-. 348	. 728	. 845	1.184
cl	. 117	. 023	. 287	5.051	. 000	. 872	1.146
locasus	. 000	. 002	. 020	. 194	. 846	. 276	3.625
debtsus	. 000	. 002	-. 015	-. 162	. 871	. 331	3.018
cisus	. 029	. 084	. 025	. 340	. 734	. 514	1.945

a. Dependent Variable: Abprod

Table 4.13 result of the multiple regression test equation 3.8

> Model Summaryb

Model	R	R Rquare	Adjusted R Square	Std. Error of the Estimate	Durbin- Watson
1	$.362^{\mathrm{a}}$.131	.103	.00267474	1.949

a. Predictors: (Constant), clsus, size, mtb, locasus, ni, Debt, cl, loca, debtsus, Sus
b. Dependent Variable: Abprod

Based on the table 4.12, with abnormal production as the dependent variable:

- Regression coefficient SIZE is 0.000 , with standard error 0.000 and sig 0.043 .
- Regression coefficient Market-to-book-ratio is $1.25 \mathrm{E}-005$, with standard error 0.000 and $\operatorname{sig} 0.336$.
- Regression coefficient Net income is -0.004 with standard error 0.001 and sig 0.001 .
- Regression coefficient SUSPECT_NI is -0.001 , with standard error 0.001 and sig 0.658 .
- Regression coefficient LoCA is 0.000 , with standard error 0.000 and $\operatorname{sig} 0.200$.
- Regression coefficient DEBT is 0.000 , with standard error 0.000 and $\operatorname{sig} 0.728$.
- Regression coefficient CL is 0.117 with standard error 0.023 and sig 0.000 .
- Regression coefficient LoCA*SUSPECT_NI is 0.000 , with standard error 0.002 and sig 0.846
- Regression coefficient DEBT*SUSPECT_NI is 0.000 , with standard error 0.002 and sig 0.871 .
- Regression coefficient CL*SUSPECT_NI is 0.029 , with standard error 0.084 and $\operatorname{sig} 0.734$.

Table 4.14 result of the multiple regression test equation 3.8

Model		Unstandardized Coefficients		Standardized Coefficients	t	Sig.	Collinearity Statistics	
		B	Std. Error	Beta			Tolerance	VIF
1	(Constant)	- - 065	. 060		-1.071	. 285		
	size	. 007	. 007	057	. 933	. 351	859	1.164
	mtb	1.33E-005	. 000	. 002	. 035	. 972	. 989	1.011
	ni	. 033	038	. 054	. 864	. 388	. 830	1.205
	Sus	C $\quad .014$	- / 1.043	$-.037$	+ 1.317	. 751	. 235	4.247
	loca	2. 008	. 011	-. 046	. 709	. 479	. 776	1.289
	Debt	. 005	. 010	. 030	. 490	. 625	. 845	1.184
	cl	. 028	. 688	. 002	. 041	. 968	. 872	1.146
	locasus	-. 013	. 051	-. 027	-. 250	. 803	. 276	3.625
	debtsus	-. 004	. 047	-. 008	-. 085	. 933	. 331	3.018
	clsus	-. 159	2.491	-. 005	-. 064	. 949	. 514	1.945

a. Dependent Variable: Abcfo

Table 4.15 result of the multiple regression test equation 3.8

Model Summary ${ }^{\text {b }}$

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate	Durbin- Watson
1	$.102^{\text {a }}$.010	-.022	.07918824	2.002

a. Predictors: (Constant), clsus, size, mtb, locasus, ni, Debt, cl, loca, debtsus, Sus
b. Dependent Variable: Abcfo

Based on the table 4.14, with abnormal CFO as the dependent variable:

- Regression coefficient SIZE is 0.007 with standard error 0.007 and $\operatorname{sig} 0.351$.
- Regression coefficient Market-to-book-ratio is $1.33 \mathrm{E}-005$, with standard error 0.000 and $\operatorname{sig} 0.972$.
- Regression coefficient Net income is 0.033 with standard error 0.038 and sig 0.388 .
- Regression coefficient SUSPECT_NI is 0.014 , with standard error 0.043 and sig 0.751 .
- Regression coefficient LoCA is 0.008 , with standard error 0.011 and sig 0.479.
- Regression coefficient DEBT is 0.005 , with standard error 0.010 and $\operatorname{sig} 0.625$.
- Regression coefficient CL is 0.028 with standard error 0.688 and sig 0.968 .
- Regression coefficient LoCA*SUSPECT_NI is -0.013 , with standard error 0.051 and sig 0.803
- Regression coefficient DEBT*SUSPECT_NI is -0.004 , with standard error 0.047 and sig 0.933.
- Regression coefficient CL*SUSPECT_NI is -0.159 , with standard error 2.491 and sig 0.949.

Table 4.16 result of the multiple regression test equation 3.8

Model	Unstandardized Coefficients		Standardized Coefficients Beta	t	Sig.	Collinearity Statistics	
	B	Std. Error				Tolerance	VIF
1 (Constant)	. 001	. 002		. 640	. 523		
size	-7.6E-005	. 000	-. 025	-. 428	. 669	. 859	1.164
mtb	-3.3E-006	. 000	-. 018	-. 340	. 734	. 989	1.011
ni	. 001	. 001	. 043	. 735	. 463	. 830	1.205
Sus	. 000	. 001	. 012	. 108	. 914	. 235	4.247
loca	. 000	. 000	. 055	. 894	. 372	. 776	1.289
Debt	. 000	. 000	-. 074	-1.264	. 207	. 845	1.184
cl	-. 102	. 017	-. 342	-5.948	. 000	. 872	1.146
locasus	. 000	. 001	-. 028	-. 274	. 784	. 276	3.625
debtsus	. 000	. 001	. 027	. 287	. 774	. 331	3.018
clsus	. 062	. 062	. 075	. 998	. 319	. 514	1.945

a. Dependent Variable: Abdisexp

Table 4.17 result of the multiple regression test equation 3.8

Model Summaryb

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate	Durbin- Watson
1	$.335^{2}$.112	.084	.00197590	2.034

a. Predictors: (Constant), clsus, size, mtb, locasus, ni, Debt, cl, loca, debtsus, Sus
b. Dependent Variable: Abdisexp

Based on the table 4.16, with abnormal discretionary expense as the dependent variable:

- Regression coefficient SIZE is $-7.6 \mathrm{E}-005$, with standard error 0.000 and sig 0.669 .
- Regression coefficient Market-to-book-ratio is $-3.3 \mathrm{E}-006$, with standard error 0.000 and $\operatorname{sig} 0.734$.
- Regression coefficient Net income is 0.001 with standard error 0.001 and sig 0.463 .
- Regression coefficient SUSPECT_NI is 0.000 , with standard error 0.001 and sig 0.914 .
- Regression coefficient LoCA is 0.000 , with standard error 0.000 and sig 0.372 .
- Regression coefficient DEBT is 0.000 , with standard error 0.000 and $\operatorname{sig} 0.207$.
- Regression coefficient CL is -0.102 with standard error 0.017 and $\operatorname{sig} 0.000$.
- Regression coefficient LoCA*SUSPECT_NI is 0.000 , with standard error 0.001 and sig 0.784
- Regression coefficient DEBT*SUSPECT_NI is 0.000 , with standard error 0.001 and $\operatorname{sig} 0.784$.
- Regression coefficient CL*SUSPECT_NI is 0.062 , with standard error 0.062 and sig 0.319

The result of the regression indicates that suspect firm-years do not exhibit as what the writer expected. The result of regressions do not indicate that suspect firm-years with debt outstanding have abnormally low CFO, abnormally high production costs and abnormally low discretionary expenses compared to other suspect firm-years. Based on the table 4.13, when the dependent variable is abnormal production, the coefficient on DEBT*SUSPECT_NI as an indicator variable is positive (0.000). The indicator variable indeed indicate positive, but it is not significant at the 5% level (see $\operatorname{Sig} 0.871>0.05$). The coefficient indicates positive correlation between dependent variable abnormal production and independent variable DEBT*SUSPECT NI, this means that an increase of DEBT*SUSPECT_NI followed by an increase of abnormal production, while the rest of the independent variables remain the same. Table 4.14 shows the coefficient determination (Adjusted R^{2}) is 0.103 which means that around 10.3% of the variation on abnormal production variable can be explained by 10 independent variables in the model, where as the residual of 89.7% is explained by other factors outside the model.

When the dependent variable is abnormal CFO (see table 4.15), the coefficient on DEBT*SUSPECT_NI as an indicator variable is negative (-0.004). As the writer expected, the indicator variable indeed indicate negative, but it is not significant at the 5% level (see Sig $0.933>0.05$). The coefficient indicates negative correlation between dependent variable abnormal CFO and independent variable DEBT*SUSPECT_NI, this means that an increase of DEBT*SUSPECT_NI followed by a decrease of abnormal CFO, while the rest of the independent variables remain the same.

When the dependent variable is abnormal discretionary expenses (see table 4.17) the coefficient on DEBT*SUSPECT_NI as an indicator variable is positive (0.000) and not significant at the 5% level (see $\operatorname{sig} 0.774>0.05$). The indicator variable did not indicate negative as the writer expected. The coefficient indicates positive correlation between dependent variable abnormal discretionary expenses and independent variable DEBT*SUSPECT_NI, this means that an increase of DEBT*SUSPECT_NI followed by an increase of abnormal discretionary expenses, while the rest of the independent variables remain the same. Table 4.18 shows the coefficient determination (Adjusted R^{2}) is 0.084 which means that around 8.4% of the variation on abnormal discretionary expense variable can be explained by 10 independent variables in the model, where as the residual of 91.6% is explained by other factors outside the model.

From the regression analysis above indicates that H 0 failed to reject and does not prove the first hypothesis. This is consistent with the previous research done by Roychowdhury (2004) indicated suspect firm-years with debt outstanding have abnormally low CFO, abnormally high production costs and abnormally low discretionary expenses compared to other suspect firm-years.

4.3.5 Suspect firm-years with high current liabilities as a percentage of total assets

 have abnormally low CFO, abnormally high production costs and abnormally low discretionary expenses compared to other suspect firm-years.The fifth hypothesis is uses multiple regressions as in equation 3.9 In this case α is the constant, meanwhile β is coefficient regression. The dependent variables on first hypothesis (HI) are abnormal CFO (table 4.18 and table 4.19), abnormal production cost (table 4.20 and table 4.21) and abnormal discretionary expenses (table 4.22 and table 4.23), while the independent variables are Size, Market-to-book-ratio, Net income, SUSPECT_NI, LoCADEBT, CL, LoCA*SUSPECT_NI, DEBT*SUSPECT_NI, CL*SUSPECT_NI, and the rest, ε t is error. From data analyses by using spss 13.0 by multiple regressions, the findings are:

Table 4.18 result of the multiple regression test equation 3.9

Model		Unstandardized Coefficients		Standardized Coefficients Beta	t	Sig.	Collinearity Statistics	
		B	Std. Error				Tolerance	VIF
1	(Constant)	-. 065	. 060		-1.071	285		
	size	. 007	. 007	057	. 933	351	. 859	1.164
	mtb	1.33E-005	. 000	. 002	. 035	. 972	989	1.011
	ni	. 033	. 038	054	. 864	. 388	. 830	1.205
	Sus	. 014	. 043	. 037	. 317	. 751	. 235	4.247
	loca	. 008	. 011	. 046	$\pm \quad .709$. 479	. 776	1.289
	Debt	005	. 010	. 030	. 490	. 625	. 845	1.184
	cl	. 028	. 688	. 002	. 041	. 968	872	1.146
	locasus	-. 013	. 051	-. 027	-. 250	. 803	276	3.625
	debtsus	-. 004	. 047	-. 008	-. 085	. 933	331	3.018
	cisus	-. 159	2.491	-. 005	-. 064	. 949	. 514	1.945

a. Dependent Variable: Abcfo

Table 4.19 result of the multiple regression test equation 3.9

Model Summary ${ }^{\text {b }}$

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate	Durbin- Watson
1	$.102^{\text {a }}$.010	-.022	.07918824	2.002

a. Predictors: (Constant), clsus, size, mtb, locasus, ni, Debt, cl, loca, debtsus, Sus
b. Dependent Variable: Abcfo

Based on the table 4.18, with abnormal CFO as the dependent variable:

- Regression coefficient SIZE is 0.007 with standard error 0.007 and $\operatorname{sig} 0.351$.
- Regression coefficient Market-to-book-ratio is $1.33 \mathrm{E}-005$, with standard error 0.000 and $\operatorname{sig} 0.972$.
- Regression coefficient Net income is 0.033 with standard error 0.038 and sig 0.388 .
- Regression coefficient SUSPECT_NI is 0.014 , with standard error 0.043 and sig 0.751 .
- Regression coefficient LoCA is 0.008 , with standard error 0.011 and sig 0.479.
- Regression coefficient DEBT is 0.005 , with standard error 0.010 and sig 0.625 .
- Regression coefficient CL is 0.028 with standard error 0.688 and sig 0.968 .
- Regression coefficient LoCA*SUSPECT_NI is -0.013, with standard error 0.051 and sig 0.803
- Regression coefficient DEBT*SUSPECT_NI is -0.004 , with standard error 0.047 and $\operatorname{sig} 0.933$.
- Regression coefficient CL*SUSPECT_NI is -0.159 , with standard error 2.491 and $\operatorname{sig} 0.949$.

Table 4.20 result of the multiple regression test equation 3.9

Model	Unstandardized Coefficients		Standardized Coefficients Beta	1	Sig.	Collinearity Statistics	
	B	Std. Error				Tolerance	VIF
1 (Constant)	-. 004	. 002		-2.047	. 042		
size	. 000	. 000	. 117	2.034	. 043	. 859	1.164
mtb	1.25E-005	. 000	. 051	. 964	. 336	. 989	1.011
ni	-. 004	. 001	-. 187	-3.211	. 001	. 830	1.205
Sus	-. 001	. 001	. 048	-. 443	. 658	. 235	4.247
loca	. 000	. 000	-. 077	-1.283	. 200	. 776	1.289
Debt	. 000	. 000	-. 020	-. 348	. 728	. 845	1.184
cl	. 117	. 023	. 287	5.051	. 000	. 872	1.146
locasus	. 000	. 002	. 020	. 194	. 846	. 276	3.625
debtsus	. 000	. 002	-. 015	-. 162	. 871	. 331	3.018
clsus	. 029	. 084	. 025	. 340	. 734	. 514	1.945

a. Dependent Variable: Abprod

Table 4.21 result of the multiple regression test equation 3.9

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate	DurbinWatson
1	$362^{\text {a }}$. 131	103	. 00267474	1.949

a. Predictors: (Constant), cisus, size, mtb, locasus, ni, Debt, cl, loca, debtsus, Sus
b. Dependent Variable: Abprod

Based on the table 4.20, with abnormal production as the dependent variable:

- Regression coefficient SIZE is 0.000 , with standard error 0.000 and $\operatorname{sig} 0.043$.
- Regression coefficient Market-to-book-ratio is $1.25 \mathrm{E}-005$, with standard error 0.000 and $\operatorname{sig} 0.336$.
- Regression coefficient Net income is -0.004 with standard error 0.001 and sig 0.001 .
- Regression coefficient SUSPECT_NI is -0.001 , with standard error 0.001 and sig 0.658 .
- Regression coefficient LoCA is 0.000 , with standard error 0.000 and sig 0.200 .
- Regression coefficient DEBT is 0.000 , with standard error 0.000 and sig 0.728 .
- Regression coefficient CL is 0.117 with standard error 0.023 and sig 0.000 .
- Regression coefficient LoCA*SUSPECT_NI is 0.000 , with standard error 0.002 and sig 0.846
- Regression coefficient DEBT*SUSPECT_NI is 0.000 , with standard error 0.002 and sig 0.871 .
- Regression coefficient CL*SUSPECT_NI is 0.029 , with standard error 0.084 and sig 0.734 .

Table 4.22 result of the multiple regression test equation 3.9

Coefficients ${ }^{\text {a }}$

Model		Unstandardized Coefficients		Standardized Coefficients Beta	t	Sig.	Collinearity Statistics	
		B	Std. Error				Tolerance	VIF
1	(Constant)	. 001	. 002		. 640	523		
	size	-7.6E-005	. 000	-. 025	-. 428	669	. 859	1.164
	mtb	-3.3E-006	. 000	-. 018	-. 340	. 734	. 989	1.011
	ni	. 001	. 001	. 043	. 735	. 463	. 830	1.205
	Sus	. 000	. 001	. 012	. 108	. 914	. 235	4.247
	loca	. 000	. 000	. 055	. 894	. 372	. 776	1.289
	Debt	. 000	000	-. 074	-1.264	. 207	845	1.184
	cl	- 102	. 017	-. 342	-5.948	. 000	. 872	1.146
	locasus	. 000	. 001	-. 028	-. 274	. 784	. 276	3.625
	debtsus	. 000	. 001	. 027	. 287	. 774	. 331	3.018
	clsus	. 062	. 062	. 075	. 998	. 319	. 514	1.945

a. Dependent Variable: Abdisexp

Table 4.23 result of the multiple regression test equation 3.9
Model Summary ${ }^{\text {b }}$

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate	Durbin- Watson
1	$.335^{\mathrm{a}}$.112	.084	.00197590	2.034

a. Predictors: (Constant), clsus, size, mtb, locasus, ni, Debt, cl, loca, debtsus, Sus
b. Dependent Variable: Abdisexp

Based on the table 4.22, with abnormal discretionary expense as the dependent variable:

- Regression coefficient SIZE is $-7.6 \mathrm{E}-005$, with standard error 0.000 and $\operatorname{sig} 0.669$.
- Regression coefficient Market-to-book-ratio is $-3.3 \mathrm{E}-006$, with standard error 0.000 and sig 0.734 .
- Regression coefficient Net income is 0.001 with standard error 0.001 and sig 0.463 .
- Regression coefficient SUSPECT NI is 0.000 , with standard error 0.001 and sig 0.914.
- Regression coefficient LoCA is 0.000 , with standard error 0.000 and sig 0.372 .
- Regression coefficient DEBT is 0.000 , with standard error 0.000 and sig 0.207.
- Regression coefficient CL is -0.102 with standard error 0.017 and sig 0.000 .
- Regression coefficient LoCA*SUSPECT_NI is 0.000 , with standard error 0.001 and $\operatorname{sig} 0.784$
- Regression coefficient DEBT*SUSPECT_NI is 0.000 , with standard error 0.001 and $\operatorname{sig} 0.784$.
- Regression coefficient CL*SUSPECT_NI is 0.062 , with standard error 0.062 and sig 0.319

The result of the regression indicates that suspect firm-years do not exhibit as what the writer expected. The result of regressions do not indicate that suspect firm-years with high current liabilities as a percentage of total assets have abnormally low CFO, abnormally high production costs and abnormally low discretionary expenses compared to other suspect firm-years. Based on the table 4.18, when the dependent variable is abnormal CFO, the coefficient on CL*SUSPECT_NI as an indicator variable is negative
(-0.159). The indicator variable indeed indicate negative, but it is not significant at the 5% level (see $\operatorname{Sig} 0.949>0.05$). The coefficient indicates negative correlation between dependent variable abnormal CFO and independent variable CL*SUSPECT_NI, this means that an increase of CL*SUSPECT_NI followed by a decrease of abnormal CFO, while the rest of the independent variables remain the same.

When the dependent variable is abnormal production (see table 4.20), the coefficient on CL*SUSPECT_NI as an indicator variable is positive (0.029). The indicator variable indeed indicate positive, but it is not significant at the 5\% level (see Sig $0.734>0.05$). The coefficient indicates positive correlation between dependent variable abnormal production and independent variable CL*SUSPECT_NI, this means that an increase of CL*SUSPECT NI followed by an increase of abnormal production, while the rest of the independent variables remain the same. Based on table 4.21 the coefficient determination (Adjusted R^{2}) is 0.103 which means that around 10.3% of the variation on abnormal production variable can be explained by 10 independent variables in the model, where as the residual of 89.7% is explained by other factors outside the model.

When the dependent variable is abnormal discretionary expenses (see table 4.22) the coefficient on CL*SUSPECT_NI as an indicator variable is positive (0.062) and not significant at the 5% level (see Sig $0.319>0.05$). The indicator variable did not indicate negative as the writer expected. The coefficient indicates positive correlation between dependent variable abnormal discretionary expenses and independent variable CL*SUSPECT_NI, this means that an increase of CL*SUSPECT_NI followed by an increase of abnormal discretionary expenses, while the rest of the independent variables remain the same. Table 4.23 shows the coefficient determination (Adjusted R^{2}) is 0.084
which means that around 8.4% of the variation on abnormal discretionary expense variable can be explained by 10 independent variables in the model, where as the residual of 91.6% is explained by other factors outside the model.

From the regression analysis above indicates that H 0 failed to reject and it does not prove the first hypothesis. This is not consistent with the previous research done by Roychowdhury (2004) indicated suspect firm-years with high current liabilities as a percentage of total assets have abnormally low CFO, abnormally high production costs and abnormally low discretionary expenses compared to other suspect firm-years.

4.4 Classical Assumption Tests

4.4.1 Multicollinearity Test

The term multicollinearity means the existence of a "perfect" or exact, linear relationship among some or all explanatory variables of a regression model. The existence of multicollinearity causes in appropriate estimation result (Gujarati, 1995). According to Gujarati (1995), as a rule of thumb, if the VIF (Variance Inflation Factor) of variable exceeds 10 and value of tolerance is closed to 0 , variable is said to be highly collinear.

Multicollinearity happens when variance inflation factor (VIF) is more than 10 or tolerance less than 0.1 . From the table 4.3 until table 4.23 shows that there is no multicollinearity among independent variables in this research. Because VIF is less than 10 and tolerance value of each variable is more than 0.1 .

4.4.2 Autocorrelation Test

To test whether there is autocorrelation, the Durbin Watson (D-W) table statistics is used. In the table of Durbin Watson the number must be closed to 2 or approximately
around 2 at the level of significance 5%. From the table 4.3 until table 4.23 the numbers in the table of Durbin Watson are closed to 2 or approximately around 2, it shows that there is no autocorrelation among independent variables in this research.

4.4.3 Heteroscedasticity Test

The heteroscedasticity symptom will appear when the residual has the difference variance from one observation to another. The existence of heteroscedasticity causes the regression coefficient estimation becomes inefficient.

The detection of the presence of heteroscedasticity in this research is conducted by analyzing Scatterplot graphic from the regression analysis. As it can be seen in Scatter plot graphic on each regression result per hyphoteses, dots spread randomly and do not form any clear patterns. It can be concluded that the result of this test shows that heterocedasticity does not exist. This result proves that the data was valid and it will give a reliable estimated model parameter.

4.5 Research Implications

In this study, formely, the writer wants to give empirical evidence whether there is any evidence of firm managers that engaged in management of earning through the manipulation of real activities that affect cash flow from operation. In order to make a different, the writer is replacing total asset at the beginning of year, the denominator for dependent variables, with market value at the beginning of year. But the results do not appear as the writer expected. None of independent variables are related significant to dependent variables. This is also explaining why the results of regression analysis are not consistent with the previous rescarch done by Roychowdhury (2004).

Although the results do not appear as what the writer expected, still the writer suggest the management of the firm to be wise in determining whether it is appropriate or not to choose the nature and extent of real activities manipulation as a way of management of earning that could affect cash flow from operation. For the financial statement users, they should look for more details about the company, and not just judge a book (a company) by its cover (the number of reported earnings).

CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

In this study the writer failed to give empirical evidence whether there is any evidence of firm managers that engaged in management of earning through the manipulation of real activities that affect cash flow from operation in reference to market value. In order to make a different, the writer is replacing total asset at the beginning of year, the denominator for dependent variables, with market value at the beginning of year. But the results do not appear as the writer expected. None of independent variables are related significant to dependent variables. It also explains why the results of regression analysis are not consistent with the previous research done by Roychowdhury (2004).

The other reasons why the results of regression analysis are not consistent with the previous research done by Roychowdhury (2004) possibly caused by the period of sample which are only four years (2001-2004), and the type of industry that is only restricted to manufacturing firms.

It is concluded that Suspect firm-years is not proved engage in management of earning through the manipulation of real activities that affect cash flow from operation. Suspect firm-years are firm-years reporting small annual earnings and small annual earnings changes. Suspect firm-years have net income scaled by market value that is greater than or equal to zero but less than 0.005 .

Based on the results of regression analysis in chapter IV, it can be conclude as follow:

1. Suspect firm-years do not significantly exhibit either unusually low cash flow from operations (CFO) or unusually low discretionary expenses or both. The first hypotheses analysis indicates that suspect firm-years do not proved engage in real activities manipulation that would lead to lower current-period CFO than what is normal given the sales level to meet zero earnings. This is possibly because firms do not engage either in sales manipulation or in decreasing discretionary expenses that would lead to decreasing of cash flow. For example if a firm engage in sales manipulation by offering price discount, this would lead to decreasing of cash flow yet increasing the earnings in appropriate with sales order. Decreasing discretionary expenses also lead to decreasing of cash flow yet increasing earnings.
2. Suspect firm-years do not significantly exhibit unusually high production costs, controlling for the level of sales. The first hypotheses analysis indicates that suspect firm-years do not proved engage in real activities manipulation pass through overproduction leads to unusually high production costs for a given level of sales. This is possibly because firms do not engage in overproduction Overproduction would lead to unusually high production cost for the level of sales. Overproduce (produce more goods than necessary to meet expected demand) to manage earnings upwards. With higher production levels, fixed overhead costs are spread over a larger number of units. As long as the reduction in fixed costs per unit is not offset by any increase in marginal cost per unit, average unit cost declines. This implies that cost of goods sold (COGS) is lower
and the firm reports better operating margins. Nevertheless, the firm incurs costs on the over-produced items that are not recovered in the same period through sales. As a result, cash flows from operations are lower than normal given sales levels.
3. Suspect firm-years with a low level of current assets as a percentage of total assets, that is low accounting flexibility, do not significantly have abnormally high cost of goods sold (COGS) and abnormally low discretionary expenses, when compared to other suspect firm-years. The first hypotheses analysis do not proved suspect firm-years with low levels of current assets manage earnings upwards, they can do so only by offering price discounts to increase sales or reducing discretionary expenses. Offering price discount would lead to would lead to unusually high production cost for the level of sales. With higher sales levels, cash flow from operation would manage upwards. Increasing earnings also can be done by decreasing discretionary expenses that would decline the cash flow from operation.
4. Suspect firm-years with debt outstanding do not significantly have abnormally low CFO, abnormally high production costs and abnormally low discretionary expenses compared to other suspect firm-years. The first hypotheses analysis do not proved suspect firm-years with debt outstanding engage in earnings management through real activities manipulation, such as sales manipulation, overproduction, decreasing discretionary expenses that affect cash flow from operation. Sales manipulation attempt to increase sales in order to increase earnings. Overproduction would lead to unusually high production cost for the
level of sales. Overproduce (produce more goods than necessary to meet expected demand) to manage earnings upwards. Decreasing discretionary expenses would lead to low discretionary expenses to manage earnings upward.
5. Suspect firm-years with high current liabilities as a percentage of total assets do not significantly have abnormally low CFO, abnormally high production costs and abnormally low discretionary expenses compared to other suspect firm-years. This is possibly because suspect firm-years with high current liabilities do not engage in activities that would lead to high production costs and low discretionary expenses. Manager my concern about the high current liabilities would lead the firm to lose its ability to do overproduction that has effect on high production cost which managers are more likely to worry about the firm's ability to pay the outstanding debt or probably it would lead to a greater number of outstanding debts.

In this study the writer failed to give empirical evidence whether there is any evidence of firm managers that engaged in management of earning through the manipulation of real activities that affect cash flow from operation in refers to market value. In order to make a different, the writer is replacing total asset at the beginning of year, the denominator for dependent variables, with market value at the beginning of year. But the results do not appear as the writer expected. None of independent variables are related significant to dependent variables. This is also explaining why the results of regression analysis are not consistent with the previous research done by Roychowdhury (2004).

The other reasons why the results of regression analysis are not consistent with the previous research done by Roychowdhury (2004) possibly caused by the period of sample which are only four years (2001-2004), and the type of industry that is only restricted to manufacturing firms.

5.2 Limitations

The limitations that may influence this study are:

1. The samples are only restricted to manufacturing firms.
2. The period of study is only four years (2001-2004).
3. In this study the writer only focus management of earnings through real activities.

5.3 Recommendations

From the limitation that may influence this research, the researcher suggests:
4. Hopefully the companies used as samples for future study can be added by other types of industry, not only restricted to manufacturing firms. So the result may be significant.
5. The period of study consideration for the same study hopefully can be conducted over a longer period, in this study it is only four years (2001-2004). The longer period hopefully may lead to significant result.
6. For further study may analyze the different between management of earnings through real activities and accrual manipulation. This is because, in this study the writer only focus management of earnings through real activities.

REFERENCES

Baber, W.R., P.M. Fairfield and J.A. Haggard, "The effect of concern about reported income on discretionary spending decisions: the case of research and development", Accounting Review 66, 1991,818-829
Barton, Jan and Simko, Paul J. "The Balance Sheet as an Earnings Management Constraint". The Accounting Review, Vol. 77, Supplement 2002, pp. 1-27.
Bens, D., V. Nagar, and M.H. Franco Wong, 2002, "Real investment implications of employee stock option exercises", Journal of Accounting Research 40, 359-393
Burgstahler, D. and I. Dichev, 1997, "Earnings management to avoid earnings decreases and losses", Journal of Accounting and Economics 24, 99-126
Bushee, B., 1998, "The influence of institutional investors on myopic R\&D investment behavior", Accounting Review 73, 305-333
Dechow, P. M and D. J. Skinner."Earning Management: Reconciling the Views of Accounting Academics, Practitioners, and Regulator". Accounting Horizons, Vol. 14, June 2000.

Dichev, I., and D.J. Skinner, 2002, "Large-sample evidence on the debt covenant hypothesis", Journal of Accounting Research 40, 1091-1123
Fudenberg, D. and J. Tirole, 1995, "A theory of income and dividend smoothing based on incumbency rents", Journal of Political Economy 103, 75-93
Gumanti, Ary. "Earnings Management: Suatu Telaah Pustaka". Jurnal Akuntansi dan Keuangan, Vol. 2, No. 2, November 2000, pp. 104-115.
Healy, Paul and James Wahlen. "A Review of Earnings Management Literature and Its Implication for Standard Setting". Accounting Horizons, Vol. 13., 1999.
Indonesian Capital Market Directory (ICMD)
Kieso, Donald E., and Weygand, Jerry J. Intermediate Accounting. $10^{\text {th }}$ Edition. USA: John Willey and Sons. 1995
Kuncoro, Mudrajat, Metode Riset untuk Bisnis dan Ekonomi: Bagaimana Meneliti dan Menulis Thesis?, Erlangga, Jakarta, 2003
Revsine, L., D. W. Collins and W.B. Johnson, 1998, Financial Reporting and Analysis, 335

Roychowdhury, S., "Management of earnings through the manipulation of real activities that affect cash flow from operations", University of Rochester, 2004.
Scott, William R. Financial Accounting Theory, $2^{\text {nd }}$ edition, Canada: Prentice Hall Inc., 2000.

Yu, Frank. "Analyst Coverage and Earnings Management'. Working Paper, School of Business, University of Chicago, 2005.

09000＇0	ع90918000＇0	$9 \mathrm{blE000}$	000＇000＇GLZ＇ 29	5¢ノt91000．0	
$169990100^{\circ} 0$	1ヵ\＆G620000	2892000	000＇000＇009＇89	9808 210000	Y9 \perp pl70う eu！peg \perp d
عL6ヤLZ00＇0	LE9ZSL100＇0	Z 280100	000＇000＇0ヤ8＇てLL	－ $1+085969000$	
S0－ヨャ190L＇	6LLLELOOO＇0	8Lt0000	000＇000＇000＇09	C0－3LZ 000 E	Yqı $\perp 1700$ sseig leig semiues $\forall 1 d$
9عLZLS000＇0	1くヤ2000＇0	8952000	000＇000＇009＇891		Yaı Jnuxew opuldul ekins 1 d
L0－3L81 290 ＇t	622602100＇0	LLLL000	$000^{\prime} 0000^{\prime} 000^{\prime} \mathrm{L8L}$	8で七6910000	Yqı eleg niedos 1 d
		LLLOOO 0	000＇000＇000＇s8E	80－398L90 6	Y91 eyejonn eseres 1 d
ゅ9てをち¢000＇0	90－318696＇6	86S500＇0	000＇000＇096＇8ヶ		Yqı euesnq！p \forall əueky 1 d
SZS10100＇0	Lったとを9000＇0	Lャ6E00＇0	000＇000＇096＇2L	89922Z000\％	Yq． 1 opu！！eqolo edind Kxply 1 d
EStS9S000＇0	LLZ1820000－	219800°	000＇080＇198＇†を	110E6E0000	Yq \perp x $2 \perp$ sjaylong ued \perp d
L0－36516．1	9عこ8を6レ100	6E6L100	S $\angle \nabla^{\prime} 9 \angle \nabla^{\prime} 660^{\prime} 8 \angle Z$	と¢ヶ¢¢1000＇0	Yqı elsouopul \｜әMEY 1 d
¢ELLZLOO0＇0－	918EL0000	66t00＇0	000＇000＇${ }^{\prime} 900^{\prime}$ ¢9	Z0L281000\％－	Yqı sonpjuKS ewesopul 1 d
9909890000	を $\downarrow 26010000$	$620800^{\circ} 0$	000＇000＇ヤヤヤち＇として	90－ヨZ8てE8＇t	YaL emetn ！ 1 snpul uosueh 1 d
LL6LEZOOO＇0	L00L9Z000＇0	8951000	000＇000＇000＇8ちて	LS6ESZ000．0	
S0－ヨャレヤてO＇9	90－3LOGLZ＇6－	2280000	00ヶ＇06L＇998＇ャャ9	－E8LOL0000	
8t8çs000＇0－	801－200100＇0	LLOLOOO		S0－ $368189^{\circ} \mathrm{E}$	
¢ヶ819L00000－	8888 $20100{ }^{\circ}$	801000	000＇00て＇19＇${ }^{\text {ctr9＇91 }}$		Yqı eujoodues ejepuew erelueh 1 d
L \angle ¢6EE0000－	乙¢98E00000－	$\angle L \angle 100 \cdot 0$	000＇000＇008＇sit	80010L0000	Yqı mejeg buepno 1 d
6LsZ8ヤ1000	962Z9とE000	S5EOLOO	000＇000＇00て＇9 ${ }^{\text {¢ }}$	1ヵヤヤヤてZ000＊0	¢ $49 \perp$ e！souopul $\perp \forall 8 \perp$ dd
	S0－3628Eて＇8－	LL6000＇0	000＇09て＇ZLL＇629	9009EL000＇0	Yqı Kuedmoう buipenı pue Knsnpul xilW eker edyn 1 d
でして0000	しち9¢ヵ¢000＇0	ELOLOOO	000＇000＇009＇621	288081000＇0	Y $¢ 1$ 6undme7 njeg seun $\perp \perp \mathrm{d}$
8ع99 $0000^{\circ} 0^{-}$	¢8289100000－	Zs2E000	000＇000＇009＇s0L	ع288E1000＇0	
\dagger L68E000＇0	$18 \varepsilon 8680000$	8tヶl00＇0	000＇000＇091＇85ع	8288L81000＇0	
S0－ヨLSカSs＇で	8ع¢ZてE0000	S9000＇0		ع992LE1000＇0	
89029Z00000－	962LZ9100＇0	29 2 － 000	000＇80ヤ＇089＇611	9ヶ¢を¢99000	yqı epesnH ！ues 1 d
9৮GOLS000\％	عOLレ19000＇0	†EOO 0	000＇088＇90E＇Sちz	ち619ヶ20000	Yq．e！souopul 6uełu！ 9 ！nnW 1 dd
L6S10Z000＇0	Sで6Eと000＇0	695200\％	000＇000＇009＇ZZL＇s	8ヤL802000 0	Yqı पepul enokew \perp d
66L12000＇0	680s65000＇0	LLLLOOO	000＇0GL＇Et8＇Stを	909ヶくL000	Yqı 1 dnuxew sesxns poojopul $1 d$
L989Z9000＇0	E06L96000 ${ }^{\circ}$	SLSEOO＇0	009＇9 ${ }^{\text {a }}$＇00L＇して	と888ヶ02000	E！sauopulpoodisey 1 dd
2L8E6110000－		ยع1ع00＇0	$\left.000^{\prime} 000^{\prime} 009^{\prime} \angle\right\rangle$	と888VO2000	
90969900000－	8990051000	EZLLOOO		LヤOEL1000	Yqı deqाey ekryej 1 d
LLOL8E000＇0	881991000	Lヵカレ000	000＇000＇009＇s8	S¢ScLZOOO．0	Yq，！dd！
1－158	ISV	15	$1-7 \wedge N$	¢ 70 ¢J	Yqı e！pesednd opuly

0	ZS66S0Zで0	20900：0	Z0t8190	LZOLSOZOOO	8LOOSOZOO＇0	ャ6ャレてZ000＇0	
0	ナ8でSてZ000	997000	6sıZ8E＇0	8ャてヤレLZ000	カャレE8ヤて000	Sャレレレ10000	Yqı sel！
0	6029LTLO＇0	S9900＇0	86とてLで0	S $28 \angle$－ 1900°	レヤレ二8ャ90000	1690081000	Ya \perp pl7 0ว ssejo
0	19889z20＇0	98700＇0	S80ss＇98	ヤSを¢09000＇0	てヤL8をャ0000	乙Z0¢0000＇0	Yq1 dnuxew opulful ekins 1 dd
0	9e9esoc＇0	S0900＇0	L6L900＇0	ESOL8E100＇0	SZ008E100＇0	8199890000	yqı eleg niedes 1 d
0	£ระ8ะ80＇0	\checkmark ¢ヤ00＇0	てヤ¢¢Eどて	6LZLLS1000	81198ャ1000	960¢S1000＇0	Yaı eyej6nn esejes Id
0	カ0s $28 \angle 210$	865000	L6Zて9ع＇6	S0－ヨL9880．8	S0－ヨGZELて＇G		Yqı euesnq！p \forall euek $\ 1 d$
0	と8ZZ892100	$\downarrow \varepsilon$ ¢00 0	LS896L0	6ヤL996ヤ000	LZ990900＇0	690L69000＇0	Yqı opulieqolo exnd Kxoly 1 d
0	Lヤ8Z9S10	て +7000	800ヶcs ${ }^{\text {b }}$	9ャヤレをてE00＇0	9Z108ZE00 0	SLZL1ヤ000＇0	
0	－ 9881600^{-}	26500＇0	カャ¢¢9Eし	LL9EZOEOO＇0	8ヤ8でてE000	L09688000＇0	Y91 e！souopul IIəMe＞1d
0	191001900－	2000＇0－	LLLO＇	をsLZ6ZレLO＇0	S96LZ9600＇0	LLLEZL100＇0	Yq\＆s？
0	¢800E8E10－	20ヤ00＇0	290189＇2	98をャLOS00＇0	レL8L09900＇0	9ZレL9ャ0000	Yq1 emetn ！ 1 sisnpul uosueh 1 d
0	6ヵ101900＇0	6ヤャ00＇0	2062090	1068Zって00＇0	－L6LOSZ00＇0	6L6E9 0000	
0	91しくと6200	6500＇0	8ちELLでし	96Z099100＇0	ZSStSs1000	S0－36LEZ6＇1	
0	てZZLヤLEOO	$\checkmark 67000$	くヵて8L＇し	L9L9bLOOO＇0	LLZ099000＇0	S0－3と6しくガヤ	
0		ESt000	S081L9E	Z6Z208000＇0	99LZZL000＇0	L892010000	Yq．eujeodurs ejepuew ekelueH Id
0	カてヤOSZ610	Stoo 0	8S†EZL゙て	†89260000	ع0とZ18000＇0	S0－ヨャ09LE＇9	Yq \perp wejeg 6uepno 1 d
0	696696E10	29900．0	S9S180＇	LS9219000＇0	S0¢ヤ08000＇0		Yqı e！souopul $1 \forall 9 \perp d$
0	－ 21662 ¢0 0	LZOO＇0	LL6960 0	8ZS981800＇0	ELL6ZZ800＇0	268606000＇0	
0	てヤワ¢LLOO＇0－	L6ヤ000	20\＆てOL	L6L908000＇0	S0L98000＇0	S0－ヨZ6669＇t	Yqı bundme \dagger nseg seun $\perp 1 \mathrm{~d}$
0	ヤ8629900＇0	L8＞00＇0	192ヶ81．0	†LZ8L000＇0	99796L000＇0	St0zse000＇0	Mqı पepul eqns 1 d
0	1898てES1．0－	89500＇0	E2899 21	19292920000	9ヤ1889200＇0	890808000＇0	
0	LO8ELELO＇0	$18>000$	－ 2 Z96と 0	8LLEZZ1000	9とャ86レ100＇0	SLSEL000＇0	Y $9 \perp 1$
0	9896レヤレヤ0	$16 ヤ 000$	ES860LE	8レらちEE000＇0	6LOOヤEO00＇0	S0－ヨદ881．9	Yqı epesnh ！les 1d
$\underline{1}$	Esz9Z000＇0	Stro00	S96020	69ヶS9Z00＇0	カも¢ร¢920000	ゅGLZ06000＇0	Yqı e！sauopul buełulg ！finw 1 d
0	SLIELEZO＊	ESt000	6650to	ES6989200＇0	SLEEZ9Z00＇0	898998000＇0	Yq \perp पерu EлоKew 1 d
0	LS9bヤ6S0＇0	695000	LLL6t9＇	ع0ZZL61000	901E88100＇0	SOZ8000＇0	Yqı Inwxew sesyns poojopul 1 d
0	L8ZS98ELO	ع $\angle \triangleright 000$	でャワ9ド	SL6LZ8000＇0	Z0SS08000＇0	Z69828000：0	e！sauopul $\mathrm{pOO}_{\mathrm{J}} 7 \mathrm{Se}_{\mathrm{f}}$ Idd
0	8トLSclio	ع69000	て18099 0	てャ6L8E1000	ع8L982100＇0	9291590000	Yqı eprexelo eypa Id
0	－189ZL100－	167000	LZレ6で0	6Lt960ع00＇0	LEって082000	七99ヶ02000＊0	
0	ヤL6E89E10	てヤt000	＜6661を发	Z6Z8LS100＇0	Z98LOS1000	S0－ヨL8626．9	Yqı ！dd！ss！ss！w ueplos enb $\forall 1 d$
0	97S6S9ヶ0＇0	L67000	S68ャャ60	8ち¢G16000＇0	9¢ヶ9860000	9S什くS000＊0	
1 Sns	17 Omosul \ddagger ON	OfoqV	L－7 8 1 W	1 PoddV	7 S5OOV	7 dx ！${ }^{\text {d }}$－	

0	St809Z2100	†9ヶ00＇0	E6LCLS	ع90190100．0			
1	とて1861000	¢¢ヶ00 0	してヤ00で0	て6LてちらS00＇0	L8\＆GLSSOO 0	と $78675000 \cdot 0$	Yqı seupotenoqe 7 soxueg \perp d
0	ZOL $29 E \rightarrow 0$	98000	2808L60	6ZO1E\＆O10＊		L69L9L20000	Yqı exesnd un6ueg euepıod 1 d
0	¢992Z660＇0	$18+00^{\circ}$	てヤ0801．	686080 000	68をL68900＇0	L98288000＇0	Yq \perp SıO
0	899ELEOLO	96ヶ00＇0	980S09 ${ }^{\text {b }}$	1102t80000	Lヤヤヤ98000＊0	とくもをL1000＇0	yqı ueaply seun $\perp \perp d$
\downarrow	SELGGZ00\％	\＄0900 0	16LLO	915ヤ81－2000	LZOZZLLOO＇0	¢80ヶ99000＇0	Yqı eundmes jewejes 1d
0	8Z6E6ZE00－	768000	8ヤ08で・	68L016200＇0	LLS8ZLLOO＊	90698 0000	Yq，leels Kollv eulld \perp d
0	LL996LL＇0－	ع8ャ000	E86Z6s＇0	89181ヵ2000	L9ヤLLOZOO＇0	88682ヶ000．0	Yqı Ssadd！ $\mathrm{N} \perp \mathrm{d}$
0	8LL8E6Z0＇0	99100＇0	L80EEt 0	9969ャ61500	98869ヶ600＇0	298888100．0	Yqı exeje！es euldd ！inW 1 dd
0	S上ヤ09ZO＇0	12800＇0	－ $0^{\text {a }}$	199929010＇0	†8LOEOL0＇0	¢ヤ8296000\％	Yqı equed overnul 1 d
0	で8LSLOLO	tSE00＇0	9ZLSLS＇0	Z1sLsZ900＇0	6LZL88900＇0	L89 2051000	Yqı 6uldsopul 1 d
0	S00L8820 0	ZSE00＇0	1800080	SLてZ6Zヤ10＇0	LZL98Lナ100	981060100＇0	Yqı esexuad！p
0	† 9 98L \angle ¢0＇0	$\downarrow 65000$	Eszols＇0	－ 269998000	LZ9266E00＇0	196LSG000\％	
0	1096LOEO＇0	$79 \dagger 00^{\circ} 0$	と06をとて＇	LてE8L8ヤ000	ヤ02088ヤ000	LS6L99000	Yqı e！nnW equesg 1 Id
0	8ャ960とで0	ع6ヤ00＇0	$18898{ }^{\circ} \mathrm{CL}$	か0ヤ8\＆ 20000	980Z6L00000		
0	989899900	$\angle \square 000$	E1EL8＇	S910EL000＇0－	8てをでてSて000	S6をLヤヤヤ100．0	Yqı lonpodd כN！
0	LOOS08EO＇0	20020 ${ }^{-}$	8 80S10	86SL66010	99Zを¢ESO1．0	と86ร2LE00 0	
0	レレヤOOZ上卜0	89ャ00 0		SS0L69100＇0	86を£ऽを100＊0	62LSLヤ00000	Yqı ueurmes ejnnW e6equol 1 d
0	L80ELSEOO	668000	162926\％	8Z6L 299000	عદ8ร6を500＇0	6ع0\＆LZ0000	Yqı sxom letaw uoli $1 d$
0	8909ヤ8ャ1＇0	Z92000	888でを＇0	865t900＇0	てZてOZ8S000	ยยE¢18000＇0	Yaı Emild usew uoli 1 d
0	982ZZS000	Sعヤ000	898L9ち＇0	SLSSL8900＇0	69629900＇0	992L98000＇0	Yqı lerts led eker 1 d
0	S08ヤ¢ヤてO\％	89ヤ00＇0	6ZZOLO＇1	992989000＇0	8L20ヶ9000＇0	990－ヨLSEt0 8	
0	てヤヤらち8ヤ0．0	$66 \vdash 00^{\circ}$	SてZ98＇L	99608L000＇0		S0－3L999 ${ }^{\text {Sos }}$	Yqı opulqn \perp en！$\bigcirc \perp 1$ dd
0	万ZLLLEEOO	18ヤ000	91999b＇0	LZZLOL900＇0	1Sレヤで90000		Yqı le66unuew eke！uozeg Id
0	6ヤ801てヤ0＊0	$68 \triangleright 000$	9とZ090．	8ち8606000＇0	とャ69 280000	จ乞と19ヤ0000	
0	SZ6LヵS000－	6ヶ00＇0	カで96でて	9ع\＆と99000＇0	Lてヤ965000＇0	662801000＇0	
0	とちらもSを810	〉Z900 0	と9899＇1	ヤレ06ヶ\＆と00＇0		L19ヶ8200000	
0	29992をャ00	98ヤ00＇0	SL6Lts＇	6606Z1E00＇0	Lt9LZ98000	91LSLE0000	Yqı Esozues sellı \perp dd
0	ع09E1880 0	LLDOO＇0	6レてLEs0	88ャらヶL000＇0	L6ELヤL00000	かヤて801000	
0	6ヤLL8E10＇0－	98ヤ00＇0	9ヶ6L6L＇Z	8ع81800＇0	ScZELZE00＇0	ع1096ヤ0000	
0	9sıZしseo	LSヤ000		6L9S26200＇0	ヤヤEL86て00＇0	S66012000＇0	
0	L9LZとZ80＇0	$16 \bigcirc 000$	9ZLSZ9＊0	とLもZ68100＇0	七\＆868100\％0	くヵてSEZ000＇0	
7 Sns	7 Əmoうuljon	O¢0．	L－7 81W	7 POJd	＋ 5 OOOV	－ 7 dxololo	Y $1+1$ SeldeuKo 1 d

0	0	1	0	8L891で8	†6000 ${ }^{-}$			
0	0	1	1	L91をちを＇8	S2000＇0－	$\frac{981000}{12000}$	900000	Y9 1 pl7 $0 \bigcirc$ eu！μ ag \perp d
0	0	1	0	LL9LZで 6	¢8000＊${ }^{-}$	S12000－	200000	Yqı soulisnpul isejdels $\forall 1$ Id
0	0	1	0	26ヤ81を8	901000－	S8000＇0－	L5000 ${ }^{-1}$	Yqı pl7 0j ssejo peid seumyes $\forall 1 / d$
0	0	\downarrow	0	8عLLLE．8	621000－	18100＇0－	850000	Yad Inwxew opuliful ekns 1 d
0	0	0	0	Sちくカヤで8	9 10000^{-}	S9100＇0－	$88000{ }^{\circ}$	yqı eleg niedas $1 d$
0	0	1	0	600699	－2100 ${ }^{-}$	－17000－	890000	Yqı eyedinn esenes 1 d
0	0	0	0	860¢5＇8	69000\％	26000\％	8900000－	Yqı euesnq！p \forall oueky 1 d
0	0	0	0	6t9890 8	91000 ${ }^{\circ}$	SS000＇0－	90000\％	
0	0	0	1	2LL098．8	＋0000 ${ }^{-}$	L1000\％	$11000{ }^{\circ}$	
0	0	0	1	SLSL9L＇8	L $\angle 1000$	ELto00－	LEL00＇0－	
0	0	0	\downarrow	S60ZL8．8	LSLOO＇0	851000	$\frac{2610000}{}$	Yqı sonepuks emenopuld
0	0	b	\downarrow	しヤ6とてで6	2t000＇0－	$\square \rightarrow 0000^{-}$	t9000 0	
0	0	0	0	カヤ986E＇8	95000 ${ }^{-}$	$\angle \square 0000^{-}$	820000	
0	0	\downarrow	0	899ヤ06．8	80100＇0－	820000^{-}	S000＇0	Yq，elsauopul elew ounyof 1 d
0	0	1	0	989086.6	80100＇0－	$\frac{82000}{8100} 0^{-}$	\＄5000 ${ }^{\circ}$	
0	0	\downarrow	0	91980．01	80100＇0－	821000－	9 500000	Yq．emaodurs ejepuew eke！ueh \perp d
0	0	1	0	908606.8	6ع100＇0－	66000^{-}		Yqı wejeg 6uepno id
0	0	0	1		2100＇0	$18000{ }^{-}$	$\frac{2000}{} 915000^{-}$	Yq1 Kuedmos 6upen pue knsnpu eisouopul $1 \forall 8 \perp 1$
0	0	1	1	9280 26.8	26000＇0－	21000\％${ }^{-}$	9＋000\％	Yqı Kuedmos бu！pen \perp pue Kısnpul yiln eker eıfn 1 dd
0	0	0	1	LSLLLL＇8	$\rightarrow 0100{ }^{\circ}$	91100\％${ }^{-}$	¢ 10000	Yq \perp bundwe 7 njeg seun $\perp \perp d$
0	0	0	1	－LてE69＇6	Zヶ000 ${ }^{-}$	220000	21000．0	
0	0	0	0	L866くヤ・8	¢8000 ${ }^{-}$	$86000{ }^{\circ}$	عヤ000\％	
0	0	0	0	Sてらったぐ8	21000 ${ }^{-}$	LZ1000－	8¢000＇0	Yq \perp dO \perp dejue！S Id
\downarrow	1	1	\downarrow	960LE9＇8	92100＇0－	681000－	180000	yqı epesnh ！les 1 ¢
0	0	1	0	くち6LLL＇6	15000＇0－	$6 \angle 0000^{-}$	ャ1000＇0	
0	0	\downarrow	0	$8860{ }^{\circ} \mathrm{OL}$	82000＇0－	$92000^{\circ} 0^{-}$	2ع000＇0	Yal yqı yepul ejokew 1 dd
0	0	1	0	91ELLZ＇8	681000－	¢S100\％${ }^{-}$	SOL00＇0	Yq． m myew sesyns poojopul 1 dd
0	0	0	0	85998s 8	981000－	عヤ000\％${ }^{-}$	99000	e！souopul pood 7 Se」 \perp d
0	0	0	0	8ちをカヤヤ・8	81000＊－	＞OLOOO	S0000＇0	Yqı eprexela eypa 1 d
0	0	1	0	8StStS 8	69000 ${ }^{-}$	E£100 ${ }^{-}$	620000	yqı dequey ekeyej 1 d
0	0	\downarrow	1	S6レセモ゙8	$1100{ }^{\circ}{ }^{-}$	てレ100\％${ }^{-}$	$\angle 80000$	Y 1 I ！dd！
snsiqop	snsejol	＋1830	$7 \forall 0$ 이	1－7 ZZIS	s6059	posda＊	dxəs！pq＊	Yq．e！peseıınd opulf

0	¢826000\％	
0	095ヶ000\％	
0	628L200\％	Yq＋pl7 0 O sselo fely semilyes $\forall 1 d$
0	9961000 0	Y9 \perp Inuxew Opu！nul ekins 1 d
0	66£8000＇0	yq1 eleg niedes 1 d
0	عZSL000＇0	Yqı eyej6nn esejes id
0	10Z0000＇0	Yqı euesnq！p \forall ouek \mathcal{y} ¢d
0	902L200＇0	Yqı opu！jeqolo eand Kxग！ 1 Id
0	8 $286000{ }^{\circ} 0$	
0	Z99 21000	Y91 e！souopul llomiey 1 d
0	DEL6900＇0	Yqı sonjopuks emedopul Id
0	$8276010^{\circ} 0$	Yå emetn ！
0	0500000＇0	
0	$8 \vdash 60000^{\circ} 0$	Yaı E！sauopul
0	－1610000	
0	69E1000＇0	Yqı eurzodues ejepuew eke！ueh id
0	66L10000	Y 11 wejeg бuepno 1 d
0	LL09000＇0	Yq \perp elsouopul $\perp \forall 9 \perp d$
0	ZZS1E000	
0	OャS2000＇0	$y q \perp$ bundme 7 nseg seun $\perp 1 \mathrm{~d}$
0	11980000	xq \perp yepul eqns 10
0	6898800＇0	Yq\＆
0	Lヤ88000＇0	
0	51900000	Ya \perp epesnH بes \perp dd
Z92100＇0	¢ZSLL00＇0	Yqı e！seuopul 6uequig ！InW Id
0	S9E5000＇0	Y9 1 पepul ejokew 1 d
0	28501000	Yqı dnuyew sesyns poojopul $1 d$
0	sZSZ000＇0	E！seuopul $\mathrm{POO}_{\text {d }} 1 \mathrm{se}$ 」 Id
0	$19 \angle 9000{ }^{\circ}$	Yat evexelo eypa 1 d
0	650ャ100＇0	
0	LLO9000＇0	Yqı！dd！ss！ss！ N ueplo
0	S $\angle 98000{ }^{\circ}$	
snsp	± 70	sun！y 6ulntoe！nuew

0	6SL2000＇0	Yqı soluolejoqe 7 soxueg Id
LZ9000	EOLZS00＇0	yqı exesnd un6ueg eurpıod Id
0	SOZES00＇0	Yqı sıokoe \perp pejuun 1 d
0	2L＋OL00＇0	Yq \perp ueep！
0	9عE1000＇0	
6159100	$1659910^{\circ} 0$	Yqı leens Kollv eulld Id
0	£800800＇0	yqı ssaıd！ N Id
0	962をE00＇0	
0	1061900＇0	Yqı equad osenul 1 dd
0	0601 2000°	Ya 1 6uludsopul \perp d
0	$1 \angle 90900^{\circ} 0$	
0	02802000	Yq \perp e！səuopul JeaKpoos 1 dd
0	15ヤL1000	Yqı einn equedg id
0	－ $20 \angle 100{ }^{\circ}$	
0	19900000	
0	\downarrow ¢89000＇0	Yqı
0	2190850＇0	Yqı ueuewes e！nnw e6equel 1 dd
O	L6St0000	Y
0	282tE000	Yqı eulld 4 SaW U0！7 $1 d$
0	0ヶ008000	Yqı loens ued eker id
0	OLVヤ200＇0	
0	L0010000	
0	21090000	Yq\ le66unuew eke！uoteg \perp d
0	เZ6EZ000	
0	ャ9 660000	
0	て881000＇0	
0	－$\dagger 6+0000$	Yqı esozuas se！ $1 \perp 1 d$
0	0LEZOOO＇0	
0	\＄8210000	Yqı Inuyew ！uem！$\frac{1 d}{}$
0	99LE800 0	
0	0809000＇0	
0	80915000	Yq \perp lsejdeuko $1 d$
sns｜o	770	sun！y 6u！nipejnuew

1002 леә人 sum бu！
(

6 6とてヵS 10000	S62000＇0	EL969800000	1ヵ0800．0	000＇000＇009＇89	St29S 10000	
ع0S198100\％	ESLLOOO	†98L690000	LャレレOO	000＇000＇0ヶ8＇Zレレ	S12LLLOOO	Yqı pl7 0う sselo te｜J semulues $\forall 1 \mathrm{ld}$
ZZS 1000000	S0－3ヵで！	S0－3ZELLG＇1－	50－3ELZ	$000^{\circ} 000^{\circ} 000^{\circ} 000{ }^{\circ} \mathrm{G}$	90－ヨレレ8と6．9	Yqı dnuxew opuldul ekins 1d
9899EOLE10	6LE9ヤ0 0	80\＆て6ちヤ000	ヤでヤ98が0	000＇000＇568	L98299090＇0	191 eleg nıedes 1 d
－ 28 Z91000＇0	60 21000	Sヤ8ZLZ00000－	8\＆ャ1000	000＇000＇000＇ 281	Eblol0000	Yqı eyejonn eseres id
¢0－32	50－389＇ε	90－39ちら㫙9－	901000＇0	000＇000＇000＇98\＆	90－ヨしをけをち9	
2000 $2000 \cdot 0$	50－3L6＇6	ZL900800000－	86Lb00＇0	000＇000＇096＇8t	96SEZZ000＇0	
\rightarrow ¢OS 700000	عと9000＇0	ع6E991000＇0	とレレヤO0＇0	000＇000＇096＇ZL		
9ELLOZ000＇0	$182000{ }^{\circ}$	ャ0001E100＇0－	20EzO0＇0	000＇080＇198＇ஏ¢て	S0－ヨLEtS＇${ }^{-1}$	
	8861600	Z885ヶ2100＇0－	－610100		90－قS	Yqı sonjpuks emesopu 1 d
90－3¢ ${ }^{\text {¢ }}$	90－382＇6－	¢SELL000＇0－	98ャ100 0	000＇000＇000＇8ちて	S0－ヨL9E29＇Z	Y91 E！sauopul
ヵてELL1000＇0	Lع000＇0	E9LLLて000＊0－	$198000{ }^{\circ}$	00＇ $180^{\prime} 99 \varepsilon^{\prime \prime} \downarrow 8$	90－3g92LL6	Yq $\perp 1$
8816210000	L960000	S0－3E09LE＇L	LSOLOO	000＇000＇000＇00ャ＇tl	Gヶ89210000	Yq＾e！sauopul plyjo nKorg 1d
S0－378L9で8	620100 0	L988L1000＇0	8921000	000＇00て＇${ }^{\prime} 9 \varepsilon^{\prime}$＇$\downarrow 9^{\prime} 91$	8عLEE10000	yal ureseg buepno 1 dd
1806950000	S8800000－	S0－3988LL	682100＇0	000＇000＇008＇S ${ }^{\text {¢ }}$	†をャZOLOOO＇0－	
てLEヤEヤ1000	ZSEE00＇0	88990S $100{ }^{\circ}$	878800 0	000＇000＇00て＇9b	962989000＇0	Y $1+$ Kuedmog 6u！ped \perp pue Kısnpul Yiliw eker entin 1 d
6トヤレE10000	S01000 ${ }^{\circ}$	S0－36\＆ $298 . 乙$	とLZ100＇0	000＇08が切し＇Z6ゅ	90－3レ6で8＇9	
6L0999000\％	1690000	LS980ャ000＊＊－	8ع 21000	000＇000＇008＇เ9	$18 \angle 8980000$	Yqı 4epul eqns \perp d
96てL9Z000＇0	LL9000＇0	S0－ヨع6＜96＇	SOEE00＇0	S99＇6LS＇280＇868	50－3899ャて	Yal emnpodd perels 1 d
とてヤ 201000	LLOZOO	SZStS100＇0	－ $28800{ }^{\circ}$	000＇000＇0ヤL＇0L	LてZレレE000＊	Ya 1 dO 1 delue！ S 1 d
S0－386てしがL	とてE000＊0	S0－ヨLELEZ＇S	Z09000＇0	000＇レカヒ＇689＇L69＇レ	50－ヨ8ててし6．8	Y 91 epesnH ！MeS $1 d$
9898ELてO0＇0	92t000＊	8860L1000＇0	6ヶ0ヶ00＇0	000＇0ヤヤ＇SbL＇6E	106ヶ0ヶ5000	
8ع6ヶ¢08000＇0	$68+000{ }^{\circ}$	S0－ヨトてしてZ＇9－	92Z1000	000＇000＇02ヤ＇でヤ	190ヤをZ000＊0	Yad e！seuopu｜6uełulg ！inn 1 Id
96S86ヶ000＇0	L－19000＇0	S160L90000	－LOt00\％	000＇088＇90と＇Sヶて	9962Lヤ000＊0	Ya \perp पepul ejokew 1 d
8ヤてZ8E00000	6 6£000＇0	8عE8LE000＇0	LL8200＇0	000＇000＇009＇てZL＇S	50－36668＇ャ－	
1L2Z60100＇0	S6ヶ000＇0	て180sع00000	8902000	000＇09L＇Eヤ8＇SヤE	ヶ9ZZZ000＇0	
	8560000^{-}	999EE20000－	1827000	009＇S ${ }^{\text {a }}$＇00L＇してL	عLE6ちをZ00＇0	Yaı eyexe！a etpa 1 d
S0－ヨ $26800^{\circ} \mathrm{L}$	829000＇0	6809EOL00＇0	ع12900＇0	0¢でレヤ8＇6切68	Z8999L100＇0	Yqı ！peqv semoneg \perp d
9ヶ080Z000．0	Sعヤ000＇0－	192LOg0000	†¢98000	$00{ }^{\prime} 000{ }^{\prime} 009^{\prime} \angle b$	S8ZZ18000＇0	Yqı Jeqley ekeye） 1 d
S0－3ZLSLS 8	LOSLOOO	SヤS6ヤ000\％	81てZ000	000＇¢Sc＇989＇09t	tヶ9らヶL000＊	Yqı ！dd！ss！ss！W Uәplo
$\frac{\text { 20L2L } 20000}{\text { dxa！0］}}$	991000＇0	てZES620000	9ELLOO＇0	000＇000＇009＇s8	ع86¢98000＇0	
$7 \mathrm{dxa!} \mathrm{P}$	L－158	4SV	15	L－7 ${ }^{\text {N }}$	10.5	

SLLLLE0000	ZSEE00＇0	SZZLLE000＊0－	8982100		ZS6E6E1000	
ヶ08918000＇0	9160000	ع68662000＇0	68LLOO＇0	000＇000＇¢ 28^{\prime} ¢1を	6ヶ8とてS0000－	
عくったてL000＇0	عと1000\％	S0－399ャ81＇8	162100＇0	000＇891＇02S＇ $29 \downarrow$	296L9Z00000	$\frac{\text { Yq } \perp \text { ueap！}}{\text { y }}$ seun $\perp \perp \mathrm{dd}$
てOtを19000＇0	9ع20000	ESZS19000＇0	$88600{ }^{\circ}$	000＇000＇02s＇0z	L9ZをE00000	Yqı eundmas jewejas 1 d
£ย์ 186000°	LZ1000	98てヤヤして000	จてLLIOO	000＇000＇009＇01	9ZSLESZ00＇0	
9L6を68000＇0	21000＇0	1E09120000－	8LLてOOO	000＇009＇ $286^{\prime} \mathrm{S}$ b	$66 \angle \varepsilon \angle \vdash 000{ }^{\circ}$	
89¢ヤを¢ヤて000	－ヵてS000	¢S6E80100＊－	て8ャレレ00	000＇000 ${ }^{\circ} 005^{\prime}$ ¢ \downarrow	90－ヨャレヤヤ9 ${ }^{\text {－}}$	
LOLEとて100＇0	96Z\＆00＇0	8906ES $100^{\circ} 0$	681510＇0	000＇00s＇290＇ャl	8ELEL000＇0－	Yqı Du！ 1 dsopul 1 d
¢G8981000＇0	S8E000＇0	8288ャ10000－	LE9800 0	000＇000＇008＇8G	S0－39LE88＇て－	
G9918L000＇0	909000	891621000＊－	LZS900\％	000000006002	L90L61000＇0	
と0ヶSカ200000	90－390 ${ }^{\text {－}}$	S0－38 $1969{ }^{\circ} \mathrm{E}$	9力てZ00＊0	000＇ $865^{\prime} \downarrow 99^{\prime} 816$		Yqı e！nw equerg id
1800LL000＇0	LヵEOOO＇0	915EL10000	$961900{ }^{\circ}$		Lع9E80000	Yqı suedolo ents $\forall 1 d$
90－ヨZLE66．9	S0－3EL＇Z	S0－39606L	S0－3E1＇6	000＇sLで6レ1＇90ヤ＇し		Yqı feuoljeujełul ens $\forall \perp$ dd
8Lヤしゃく0000	2000	981899000 ${ }^{-}$	1980000	000＇000＇008＇001	90－ヨ9E990＇	
LZZESS000＇0	8ヵ20000	七てLSE9000\％0	LL9ZOO＇0	000＇009＇602＇LE	90101ヤ000＊0	
88080ヤ000＇0	8060000	とて9L88000＇0	2ヶ02000	000＇000＇091＇8	90－398010\％	
9266860000	8982000－	S18カレL110＇0	と■ 28100	$000{ }^{\circ} 000^{\circ} 009^{\prime} \mathrm{E}$ L	LLTLOLOOO	Yq1 eulld 4 sew uoli 1 d
S0－3GLtャ9＇L	6090000	S0－ヨ661 ${ }^{\text {cos }}$	969000 0	000＇000＇000＇2¢9	90－396919＇9	Yqı leats ！led eker 1 d
S0－3L916でL	S0－362＇8	S0－ヨLES66．6	976000＇0	000＇000＇009＇レZ	9658ャを000 0^{-}	
LLL295000\％	ZS10000	60ヤレてZ1000－	$618900{ }^{\circ}$	000＇000＇09ヤ＇ZS1	とદてしをย0000	
L600L20000	$9 \mathrm{CEO00} 0$	9888S1000＇0	L8S100\％	000＇000＇98 ${ }^{\prime}$＇292＇ε	808G9Z000＇0	
6ZLZLZ1000	8981000	عモSEャOL00\％	ャャ8L100	000＇000＇060＇ 291	88LLL8000＇0	
SLSEか1000＇0	680000	St0 $661000{ }^{\circ}$	ZESL000		ヤ86L8ヤ000＇0	
L8\＆ヤOLOOO＇O	1690000	S0－ヨャレャレでで	8LZ100\％	000＇00ヤ＇066＇6ャレ	いとくヤ1000＊	Yqı esexjad eरer eueye M Id
9ヶ8てZ\＆000：0	SIZ1000	8\＆ヤ801000\％	928ヤ00＇0	000＇000＇000＇ 291	LLZとEと1000	Yqı esolues sell 11 d
S0－3Et8GL＇S	てZLOOOO－	LLLもS10000－	6120000	000＇000＇SLL＇LLL	S0－ヨZ098E＇L	
LS66880000	682000＇0	Z9LELE000＇0	959000		しってZてZ000＊0	
Lヤ8LLE000＇0	ャてヤ000＇0	99と 2 ¢9000＇0	عとLヤO00	000＇000＇009＇ャ6		
S0－32909L＇Z	S0－ヨャ¢	S0－388580＇1	とヤ000\％	000＇000＇S6t＇ZOS	S0－381081．6	
8660LE000＇0	9150000	てL09Zヤ6000	8ع08000	009＇¢Z¢＇Z98＇9ャレ	SSE8990000	Yq $1+5 \mathrm{sej}$ deuko 1 d
－ 1 dxa！${ }^{\text {d }}$	S18000 0	と891して00000	$898 \varepsilon 000$	000＇000＇sLZ＇29	†869890000	
	－is	＋SV	15	L－INW	10 ± 3	swund ¢ulumpe！nuew

0	L806900＇0	0	0	1	0	カレSOL8＇6	Yqı SJOtoed \perp pet！un 1 d
0	EOLOLOO＇0	0	0	1	0	8679ヶ0＊6	Yq \perp ueaply seun $\perp 1$ d
0	90ZL000＇0	0	0	0	0	ヤて98らL．8	Yq，eunduas jemejes 1 d
0	¢¢ヤてを00＇0	0	0	1	1	900をて，8	Yqı leats Koilv emis 1 ¢d
0		0	0	0	0	9891ヶ0 8	Yqı ssadd！ N Id
0	ZZ68ZOO＇0	0	0	0	0	しぃ8レて8＇L	
0	98995000	0	0	1	0	ヤてヤを¢8＊8	Yqı equed osenul 1 d
0	6915800 0	0	0	0	0	としったちゃ「8	Yq\＆6u！dsopu \perp d
0	9661500＇0	0	0	0	0	6LヤSSL｀8	
0	8LEt000\％	0	0	0	0	くヤレ169 8	Yq \perp e！sauopul deakpoos 1 d
0	EL6ZL00＇0	0	0	\downarrow	1	9LSLSで6	yqı e！nWW equejg 1 d
0	L99ち000＇0	0	0	\downarrow	0	Sヤくヤで6	Yqı Spedolo ens \forall คd
0	ャヵ981000	0	0	\downarrow	1	SちヤてがO1	
0	ع600000\％	0	0	0	0	とわてLE1「8	
0	6088000°	0	0	\downarrow	0	829L28．L	
0	66980000	0	0	b	0	\＆ヤ000 8	Yq．s》」OM letaw uoll $1 d$
0	－2692000	0	0	0	0	ZL6E69＇L	Ya \perp em！ld usaw uoli $1 d$
0	てEL6E000	0	0	1	0	Lع0EL6 ${ }^{\circ}$	Yqı loers
0	StLLOOOO	0	0	1	0	SLEtS8．8	Yqı opulqn \perp e\＃！
0	ヤ0¢10000	0	0	0	1	9ZSLLSL	Yqı le66unuew ekeluoleg \perp d
0	£Z992000	0	0	0	\downarrow	66LOZO＇6	Yq＋Kısnpul
0	七て¢S000＇0	0	0	1	1	LS9で6 6	
0	1レL91000	0	0	1	1	ゅて19LL6	Yqı 6uoula！uames 1d
0	GLEZO00＇0	0	0	\downarrow	，	¢992001	
826000＇0	LLL6000＇0	1	\downarrow	\downarrow	\downarrow	ع88992＇6	Yqı esexjad eker eueye M Id
0	89LLZOO＇0	0	0	1	\downarrow	ヤ＜0981．6	Yqı esofues se！ 11 Id
0	£9LZ000＇0	0	0	1	\downarrow	9LSELE8	Yqı enuaqupul fseldy
0	9986Z10＇0	0	0	0	1	61602L 8	
0	Lレヤヤ0000	0	0	1	0	GLL86E8	
0	－160000＇0	0	0	，	1	$\downarrow \downarrow$ ¢E9E8	Yqı ！！ 1 snpu｜esnN opu！｜odente \pm Id
0	OLL8000＇0	0	0	，	1	عL8189＇8	Yqı 1 sejdeuko 1 d
0	$169 \angle 000{ }^{\circ}$	0	0	\downarrow	0	とヤ9¢Zと＇8	Y 91 P 7700 eu！｜jag \perp dd
snsp	± 70	snsłqəp	snsejol	11930	$1 \forall 3$ O｜	$1-7$ ZZIS	sun！$\sqrt{\text { бu！unjofnuew }}$

400000	800000^{-}	200000	0	861 ZOGO 0^{-}	99＋00＇0	St9sozio	1レ6\％ 000	Z00800＇0	
2000 ${ }^{-}$	－1000 ${ }^{-}$	S000＇0－	0		ع6ヶ00＇0	8956180	StG 000	LSヤLOO 0	Yq．pl7 $0 \bigcirc$ ssejo fela seulues $\forall 1 d$
ZZ100＇0－	301000^{-}	L9000 0	0	てん：082000	S6ヶ00＇0	992Z80＇${ }^{\text {8 }}$	S0－E $\frac{3}{3 ¢}$	－s0－ヨレくて	
20010 ${ }^{-}$	$30200{ }^{-}$	82000	0	9「 691で0	$89800{ }^{\circ}$	8LLS ${ }^{\text {ck }}$		68989Z0	
$69000{ }^{-}$	三2000 ${ }^{-}$	9ヶ000＇0	0	عL： $6060^{\circ} 0^{-}$	86ヶ00．0	S96tヤ0＇1	$6 \varepsilon \varepsilon 1000$	8ฤ¢ ${ }^{\text {do }}$	
22100＇0－	$30100{ }^{-}$	890000	0	ヤL LESSE0＇0	t6ヶ00＇0	\＆6と $\dagger \rightarrow 0$	901C 000	S0－ヨャ89	
S000＇0	$\frac{301000}{300000}$	10000	0	91：9100－	† 2 ¢00 0	て18ャ6LO	ヤOtc 0	91ヶヤ 000	Yqı opu！jeqols eand Kxग！y id
L2000＇0－	$\underline{36000} 0$	L20000	0	が18LLOLO	†てち00＇0	とてEャレら＇Z		عと00\％	
$\angle 81000$	30000	LLL00＇0－	0	t0：${ }^{\text {S } 89000}$	967000	カでSガて	8610000	ZSIZOOO	Y9 1 E！sauopul｜lemuey Id
90000^{-}	380000^{-}	ع000＇0	0	Z6 Scto ${ }^{\circ}$	8 $2 \rightarrow 000$		829800	E188000	
$86000{ }^{-}$	E2000 ${ }^{-}$	¢S000＇0	1	90： 10200	9000	966とから＇	629600	00	Yqı elseuopul ejew aunu0 $\frac{1 d}{}$
$96000{ }^{-}$	10000－	9S000＇0	0		LOS00\％	18069＇89	Z8LC000	90000	
$60100{ }^{-}$	こ1000－	ZS000＇0	0	9くいSt9L10	67000	L68000 ${ }^{\text {\％}}$	SELCOOO		
$46000{ }^{-}$	315000^{-}	てヤ0000	0	8618LSE10	S8ヤ000	Z86Lヤ6．	S86000＇0	O	Yq．emeodues ejepuew ekelueh $1 d$
$2 \rightarrow 1000^{-}$	ELL00＇0－	L2000 0	0	91． 691910	LSち00＇0	66ャ9ャレ	ع18000＇0	ع18000＇0	yqı mexeg бuepno \perp d
＜－0000－	320000	ヤ2000 ${ }^{-}$	0	59： $2 ⿰ ㇒ ⿻ 土 一$ 6L0 0	585000	LLS6Lでて	L90900＇0	LZ0900\％	yqı e！sauopul $1 \forall 8 \perp \mathrm{~d}$
$16000{ }^{-}$	$39000{ }^{-}$	L 00000	0	て91でカナt00	9＜t000	LESt $2{ }^{\circ} 0$	\downarrow OLOO 0	6EOLO0\％	1 pue Kısnpul yilw eker enin Id
L6000 ${ }^{-}$	St000 ${ }^{-}$	8L000＇0	0	L6ULOEO ${ }^{-}$	895000	S92EZ1\％0	でヤレ000	8عZL00\％	yq \perp bundue \dagger nseg seun $\perp 1 d$ yq \dagger yepulegns $1 d$
$\underline{1}$	$60000{ }^{-}$	$\angle 00000$	0	L9．${ }^{\text {S9950 }}{ }^{-}$	Sち00 0	て19ャEL	－t82000	2L62000	\％91 yepul eqns id
t（）200＇0	60000	90000－	0	ャで： $06 \square 100$	$¢$ ¢ 000	し08ャでが1	S20800＇0	挬 0000	d
E：L000－	81500\％	65000＇0	0	と6゙589てZで0	ع6ャ00＇0	EOLL＇Z	9ヶ¢0000		191 epesnH ！ues Id
L）ZOO ${ }^{-}$	981000－	－ 21000	0	ヤ8ら1てLLO＊	Lع800＇0	260t6L9	68＋100	จ6ャ＋1000	
Li＇1000 ${ }^{-}$	S11000－	S9000＇0	0	tS092t91．0	ZOSOO＇0	ヤ6L870	900000	9b90000	Yqı e！sauopu｜6uequ！g ！InW 1 d
9：0000－	L8000 ${ }^{-}$	600000	0	18181060＇0	$\dagger 9 \downarrow 00^{\circ} 0$	してャ9が0	L88200＇0	\＆962000	Yqı पepul eiokew 1 dd
$8: 30000^{-}$	$89000{ }^{-}$	620000	0	しゃ0ヶ8190＇0	－$\dagger 00^{\circ} 0$	とZOL8S＇1	ELZZO0＇0	L912000	Yaı Inwxew sesyns poojopul 1 d
S＇il000－	99100 ${ }^{-}$	2Z1000	0	91E906LLO	LLDOO		S980000	9680000	E！souopulpoodrse \ddagger Id
$5: 1000$	$89000{ }^{-}$	2L0000	0	Sとしゃャ6で0	$\bigcirc 0 \angle 00^{\circ} 0$	9z9sco	Sl1000	LS．1000	
－ 21000	290000	801000－	0	と£gz68200	StS00＇0	て666をで0	E8500＇0	ع9\％9000	Yqı ！peq＊semoner 1 d
0	10000	80000°	0	86ヶt02EOO	6St00＇0	6LLてE0	992E000	99：＇¢00＇0	Yqı Jeq｜ey ekeyej id
$\varepsilon^{\prime} 30000^{-}$	$100{ }^{-}$	$\angle 1000{ }^{\circ}$	0	961く8で0	ع9ヶ00＇0	とャ $66 \underbrace{\circ} \mathrm{Z}$	9ヶ61000	6ヶ6ib000	
$8{ }^{\text {8 }}$－ 1000^{-}	LILOOO－	ع60000	0	6ち8t9SEOO	L6ヶ00＇0	こと69＊）	SILLOO＇0	SZ．1000	Yqı eljosełtnd opuyb sap \forall Id
360397	posdq \downarrow	dxas！pq \forall	7 SnS	\ddagger 2uOoul fon	Ofoqv	1－78． 1 W	\dagger Podd $\overline{\text { d }}$	＋50008	suı！」 6u！njoe！nuew

LIELIL000\％	612601000＇0	$98200^{\circ} 0$	000＇000＇0GO＇SLS	L99を6Z000＊0	
ZELLSL000\％${ }^{-}$	81ヶL90000＇0－	9120000	000＇000＇000＇009	S0－ヨャGEャレ＇で	
S0－3L9976＇1	S0－ヨZ8ZS9＇1－	1602000	000＇000＇000＇${ }^{\text {c } 61}$	ヶもち6らZ000＊	Yqı Inuxew opulfu ekins id
－LESIS000＇0－	88LE8t000＇0－	ととてZ000	000＇000＇000＇66	SLL6Z10000	Yqı ereg medos id
L9Z88800000－	88レヤヤ6ヤ0000－	L600 0	000＇008＇091＇Z	9 － 2 C9E00 0	Yqı eyejonn esedes 1 d
1とちてOけE00年－	ヤ10＜9とて00＊－	t208100	000＇000＇02s＇レL	¢885621000	d
S0－399E06 2	8L9をとて000＊${ }^{-}$	Z 21000	000＇000＇009＇$¢$ ¢	Lヵ1801000\％	
8ャレㄴ6ヶ100\％${ }^{-}$	S0－ヨしLS09 ${ }^{-}$	SSS2000	000＇Sヤャ＇EOS＇s0Z	S0－ $360990{ }^{\circ}$	
68887910000－	SZL06S000＇0	8120100	OS1＇89て＇8らが切	90－3980LL＇	Yq \perp sonjotuKS eweıopul 1 d
Z99692000＊－	L29961000＇0	とカレレ000	00で89で02L＇09Z	S0－ヨヤLL6か8	Yqı emern ！ 4 snpul uosueh Id
－668ち0100 ${ }^{-1}$	18600ヤ0000	98E200 0	000＇000＇ttr＇とLZ	－ $0-\exists$－	
S0－Э9 ${ }^{\text {cos }}$		¢ ¢ 2900000	000＇000＇000＇882		Yqı E！souopu plew zunjog 1 d
LE6E9SE000－	L69とZ 20000^{-}	8152EO0		S0－ヨ8LLEL	
S0－3L26LE＇9	S0－396とてLで	1880000	000＇000＇000＇099＇91		
688981000\％	ZS9LE10000	6tt 1000	000＇00 ${ }^{\prime} 0$ E6＇$^{\prime} 696^{\prime} \mathrm{Sl}$	Z8ZZE10000	Yqı emoodmes ejepuew ekefueh Id
S0－3tS990＇s	LSt89Z000＊－	L00100\％	000＇000＇002＇06S	－L6G620000	Yqı meseg buepno id
S0－ヨし6ヤZ09－	S0－Э8EE80＇L	SZち000\％	000＇008＇ZSE＇SSI＇L	60－Эヤヤて6ャを	
LS980ャ0000－	LSOOO	888900\％	000＇000＇008＇ャ9	9Zて0とてZ00＊	（1）
S0－328Lレナ9	Z6S908100＇0－	E8LL00＇0		90－38ヶ7001－8－	
LE60ZE00000	LLZSLZ000＇0	8S0Z000	000＇000＇009＇0ヶ¢	S0－ヨLE\＆86 ${ }^{-}$	xqı dOı Jejue！ 1 Id
S0－ヨSE0ZL̇カ	S0－ヨャ09sよ \downarrow	†890000		8018910000	Yqı epesnH UeS Id
S0－قLS¢SI＇9	S0－3Sャ906．9－	6881000	000＇000＇ャ0ャ＇011	ELDLSL000\％	
S0－3t $209 \angle t$	S0－ヨヤLOES＇	1－260000	000＇000＇Gてか＇6L9	ع0Z681000\％	
186ャ9S000\％0	ち091980000	6LE00＇0	000＇0Z6＇L0E＇16Z	Z016880000	Yq．पepul eıokeW 1 d
†LSEZE0000	6ES6ヵ200000	¢ 218000	000＇000＇0ヶ6＇089＇s	ZSS9LZ00000	Yqı dnuxew sesxns poojopul 1 d
880Z0E00000	七\＆6610000	861000	000＇000＇sZ9＇10力	七20¢81000\％	E！sauopul poodlsey 1 d
8960ع $2610{ }^{\circ}{ }^{-}$	S90\＆SELL000	$86660{ }^{\circ} 0$	06で981＇レカガレ	LILE91500	
Z0E8000＇0	6Lヤ6LZZOOO	699L00＇0		9ャ968L1000	Yqı ！ $\mathrm{peq} \%$ semoneg 1 d
ャ8てしった0000	90LLOL0000	Z892000	000＇009＇Zし6＇69	$8160 \downarrow$ て0000	Yqı Jeqjey eरreyej 1 d
でて9ヶ0000	280211000\％	Z812000		ع908L10000	
8Sて8St000＇0	8891LE00000	990800＇0	000＇000＇001＇ऽS	9L6ZLL0000	Yqı e！eneseind opuly
1－158	ISV	15	$1-7 / \mathrm{W}$	7 O 3	sunty 6ulunpejnuew

ع00Z נеә人 swu！бu！n！

LLt992000	－29EL0010＊0－	Z8Lっ000		ヤ0256000 ${ }^{\circ}$	
68って82000＇0	とOZしてとて00＇0	S $26600{ }^{\circ}$	000＇000＇09E＇99	S90ヶ6 $6100{ }^{\circ}$	
280L91000 ${ }^{-}$	LSLEャL000\％	LOEEOOO	000＇000＇096＇8Ll	6LLLEZ000＇0	Yq1 eseyıad！p \forall opu！xə $1 d$
LOL8ヤZ00000－	S6EIEZ000\％	ع98 2000	000＇000＇0ヶ9＇82	90せをLLOO0＇0	
9690910000－	てく90ヶ¢000＊－	1019000	$000^{\prime} 000{ }^{\circ} 009^{\prime} \mathrm{ZOZ}$	1996E9000\％	
S0－ヨ89ャをでと－	S0－728288：8	6 OZOO 0	000＇Z6£＇Z06＇6ヶ0＇	90－382199＇8	Yq1 e！enn equerg 1 d
G0－ヨLStr89	LLLOOLOOO 0	988E00 0	009＇990＇レレฟ＇SIで8	1600L2000＊0	相 spedolo ens $\forall 1 \mathrm{~d}$
S0－385096．9－	S0－36S8t6 ${ }^{\text {c }}$	¢68000\％	000＇000＇008＇198	S0－3ES99＊${ }^{\text {¢ }}$	
982109000＊${ }^{-}$	S621891000	900200 0	000＇000＇000＇マレ	688980000	eıpueपว ！पp $\forall 1 d$
SL89Z9Z00＇0－	608さEOZ00\％	t98080 0	000＇009＇090＇${ }^{\prime}$ ¢	619261000－	
6608てヤ000＊0	SLEカLI000\％	99とZ00\％	000＇000＇Z10＇6E	SZSL6Z000＊0	
9Zてャを0Z000	SLZZOO 0	LLE6100	000＇000＇091＇ε	と66ヤIL100＊0	Yqı s＊0M Ietaw uoln id
9920118000	カG1ヶ92000＊－	こしくて100	000＇000＇009＇6b	6980EL000\％	Yq，euldd पsew uoll 1 d
†OLLLLZ 200^{-}	L81861100\％	Esトワレ00	000＊000＇9 ${ }^{\text {a }}$＇乙て	S6ヶ972000＊0－	\％qıI loals بed eker 1 d
S0－360し18＊	ZOLSLE0000	\＆96000＇0	000＇000＇000＇0ヶ9	90－389ヤ8．8	Mısnpul un！upunj＊⿺epul 1 d
S0－ヨع966 L	S0－ヨャ0 ${ }^{\text {cos }}$	L89000 0	$000^{\circ} 000^{\circ} 0000^{\prime} \angle Z$	60－ヨレヤく0が8	Yqı opulqn 1 en！
829006800 ${ }^{-}$	6してカカレス000	七てとで00	000＇000＇0ヶL＇L	20－Эャレて0くて	Yqı 1e6bunuew ekeluoleg 1 d
七ZZLOLOOO＇0	S0－ヨャヤ6をS「9	921し000	000＇008＇881＇t¢8＇ゅ	9906ZZ000＊0	
9Z69S10000	9ZZSEZ000\％	9102000	000＇009＇0で＇レレ！	をャ66LZ000＊0	
8S1661000\％	S0－ヨG1Lてカ8	ع 291000	SてE＇SL8＇SZ8＇ャ8がて	LSE8SS000＇0	
S0－ヨャ0ヤ8L゙ \dagger	S0－ヨャをて0でを	1912000	000＇000＇002＇ 198	90ع0 280000	
LZOZ91000\％${ }^{-}$	七七S861000＇0	》S6000 0	000＇000＇sZ8＇z91	80－ヨ $28686^{\circ} \mathrm{L}$	Yal enuaqııul
8819170000－	で¢62Z10000－	80LE00＇0	$000^{\circ} 00 \mathrm{~S}^{\prime} \angle 80^{\prime} 81$	LS60E 20000	Yqı enuequetul lsejchimums 1 d
عと6ヶ9900000	8ヤ6て1000－	LLSE00＇0	000＇000＇000＇s	66Zと69000\％	Yqı Jnwyew ！uem！$\frac{1 d}{}$
S0－ヨZZ16L＇Z	8SレーLZ000＊	Z 270000	000＇レt9＇EOL＇ャてし	90－ヨてIとで9	y）Yqı eıodıoう e！s \forall uled \perp do
SZL690000	てZ8ZE1000	E895100	SLZ＇0ZS＇S8s＇si	GZ6ZLZL0000	Yq1 leuouneweyu opulde7
StヶS8900000	8156LZ0000－	L60t00\％	000＇000＇09て＇68	9ヶL88ち000＊0	（eke
S0－396291．L	S0－ヨヤ8ELL゙か－	S0－Э	000＇000＇000＇ヤてZ	S0－ヨャヤで61	Yqı opulseld ekier uepu qu Id
¢0－ヨャ60てZて	Z098050000－	S915000	000＇000＇Eしで 6 L	ELE8G1000\％	Yad ！insmpuj esnn opulodentef Id
ヤ8てをちて00000	Slt9sc000\％	162 O00 0		Stヶ0¢E000\％	
EOLOSL0000	9180Z100000－	19ZZ000	000＇000＇SL8＇ャ6	LEOOS0000	
1عZLь90000	LLZZLZOOO＇0－	Z0ZS000	000＇000＇009＇乙と	L0－ヨ9ャ8を6．1	Yal sounsnpuliseldels $\forall 10$
1－158	ISV	15	L－7／N	10 ± 0	sumf buuntoe！nuew

S0－3696レでL	S0－ヨレレて86	S89000＇0	000＇000＇009＇988＇${ }^{\prime}$	S0－396L0 6	Yqı e！səuopul dəлə｜！uก 1 d
6ヶ¢で9000＊0	と\＆Zて09000＇0－	996500＇0	000＇000＇02s＇88	£S6ャ68000＇0	Yqı miey exn！snw Id
๑ESSEZ000＊0	عเSZEZ000＇0	EZLZOO＇0	000＇000＇000＇ャع	St09820000	Yqı E！szuopul mopuew 1 d
S0－ヨ8Lも8E\％	S0－ヨ8レヤく8．8	カヤレレ00＇0	000＇000＇09Z＇998＇1	90－3cssel＇t	
12S0620000	¢9L0920000	8LOち00＇0	000＇000＇008＇8Z	SL8ZOE000＊	Yqı E！sauopul प6nold 6uloups 1 d
S0－ヨ68ャレでと－	S0－ヨ8 29 E8	1610000		80－ヨら966でて	
S0－ヨE680t ${ }^{\text {－}}$	91998E0000	£てE1000		ヤヤ8L8て000＊0	Yaı YכJew Id
90－399120 ¢－	くヶ981E00000	8921000	000＇000＇067＇ $220^{\prime} 1$	LZ90E000＇0	
を什し9ヶ00000	てヤ669100000－	L89200＇0	000＇000＇02L＇91L＇	6SLちSt000\％	Yqı emsed 2 qiey 1 dd
LZLEか10000	L6S19000＇0－	SLSLOOO	000＇000＇009＇ LGZ	Z69E920000	
9く8ちヤ800000	LIEZSE0000	SعEE00＇0	000＇000＇01て＇$\angle 9 \varepsilon$	81L6Sち0000	yqı selujejeqe7 soxued Id
68988620000	65962000＇0－	LSE6100	000＇000＇902＇01	ELZ910200＊0	
S0－ヨレStLで1	S0－ヨZ9LLE6	S18000	009 ${ }^{\text {¢ }}$ ¢ $20{ }^{\prime} \downarrow 69^{\prime} 0$ L	90－ヨ	Yaı eyesnd unbueg euepıad Id
Z68815000＊0－	S18S0S1000－	1899100		L0－3E81EL゙し－	Yq．Kuedwoう wilf 아으d wepow Id
6てもヤく8000＊－	S0－ヨE6SZ6－－	6LSか100	000＇000＇80か＇$\angle \downarrow$	て£Sち91000	Yqı SAOpe」 \perp peltun 1 d
8SL9EZ00000		Z62900 0		S9SELヤ000＊＊－	Yqı ueaply seun $\perp 1 d$
S0－3SE0tril	S0－396828	8890000	000＇000＇000＇ャレ	S0－ЭャZSOS＇1	
ع09101000\％	S0－3ャ6680 6	E69100＇0	000＇ZS6＇EL9＇9LE	9ヶL \dagger S1000＊	Yqı ewndwas lewejes \perp d
L8890L000＇0	600ヤレLL00	L161200	000＇000＇098＇ LL	SESOSIL000	Yq，ləəıS Kollv emild \perp d
881 20$\rangle 1000$	S0－ヨGL898 ${ }^{\text {－}}$	9192000	000＇000＇000＇91	9088LEL00\％	Yqı ssajd！ N Id
6800LZ000＇0－	8118St00000－	か9ZZ000	000＇000＇0SL＇Zし	L0－3989 ${ }^{\text {c }}$－	Yqı ejelelos eulld ！inW 1 d
61．6て1．000－	950990000－	662ILOO	000＇000＇09ぐしゅ	S0－ヨらとなって	
816L88000\％	9501000＇0	6988000	000＇000＇S L $^{\prime} \downarrow \downarrow$	Z8S8EZ0000	
L－15V	158	15	L－\AN	10 ± 3	

2 70000	0	ZLLEZLLLI＇0	L8500\％	92680ヶ＇	109100\％	ELS 1000	Z0ZELE000＇0	
ع900000	0	－L8688tS「＇0－	$16+000$	t019s8＇	ع0ZOOO 0	992000 0	ヤSちS100000	נnuxew opunul ekins Id
๑L000\％	0	9してをEOLく100	165000	9S68てZ＇1	9621000	9 21500	ع\＆L6L9000＇0	d
50000	0	8LLでら9ャで0－	167000	1E1レく9＇Z	9ZOZOO 0	982Z00\％	ャてt91E00000	Yqı eyej6mn esenes id
89100＇0	0	Z8t98099で0－	9 28000	S8ZOZで0	ELOち00＇0	97¢8000		
จ11000－	0	66巾LS8EL000	$t+6000$	い6してでて	SE6ャ100	ELOSLOO	6L6196Z00＇0	Yqı opu！teqolv espnd Kxply Id
て 70000	0	カレS9EとLヤ000	88500%	91て666＊	99ヤ1000	89ヵ1000	88£ヶ0Z000＊0	Yqı $\times 21$ sjarposg ued Id
820000	0	てとってL065000－	¢St000	61て69ャ＇	EOZZOO－0	Zと£Z000	9158LZ0000	
21000－	0	6L16ヤち8000	七\＆ 2000	t920く10	812600＇0	\＆ャ06000	†660ع8000＇0	Yqı sэṇəuks emejopul $1 d$
－ 900000°	0	810ZEZLZO＊	185000	ヤレ9ヤてで0	8601000	L20100＇0	S0－36しったL゙6	Yq\＆emein ！ 1 snpul uosueh 1 d
9000\％	0	G16LSt10＊0	$6 t+000$	Z60ZLE＇0	切1000	LSt1000	6281990000	
Z C 900000	0	L16LZEL910－	88t000	く18してぐ0	8ヤレレ000	L61L000	S0－ヨع1800＇Z	
G9000＇0	0	LS6Lヤ9tヤ00－	Z6t000	Lャ6 ${ }^{\text {cto }}$	\＆ャ9000\％	Lt9000 0	S0－39E191＊	
－1900\％${ }^{-}$	0	LOLELてもた0＇0－	± 60000	と91しで0	6ヤOEO＇0	LLLOEOO	と6008200＇0	
LS000＇0	0	988SOEとかしo	96700\％	ZLSZELE	699000＇0	190000	S16LZ10000	Xqı eusaodues ejepuew eke！ueh Id
$680000^{\circ} 0$	0	カャレL8681．0	ع8t000	と66ヶ69＇Z	SLLLOOO	991．000	¢0－360¢96．6	Yal mejeg 6uepno Id
6 2900000	0	8909980L0 0	81500\％	LLSLてE＇	9bt0000	1670000	6LL18E000＇0	Yqı E！souopul $1 \forall 8 \perp$ dd
E9000＇0	0	SZLZSELOO＇0	98t000	S69 $261{ }^{\text {c }}$	てZと000\％	L82000 0	S0－ヨ96ZLE．9	
乙ヶ000 ${ }^{\text {90－}}$	0	L008EStS10－	L9500＇0	6ZL8Z10	6089000	Z8E9000	ELZ61L0000	Ya 1 yepul eqns 1 d
90000－	0	－1L0861600－	ヤでャ00．0	カてLSE6．	S8900＇0	E82L000	6t9 2810000	Yqı $20 n \mathrm{nodd}$ pejels 1 dd
$98000 \cdot 0$	0	8ع60829900	195000	189ャ9で	9891000	9891000	89692Z000＇0	
290000	0	898ZZ8SEZ＇0	Z05000	888ヤでて	6820000	G08000\％	－29001000 0	Yqı epesnh ！les $1 d$
1－1L000	0	9098199000－	ع65000	しもをしヤじカ	LLS000＇0	8150000	288908000＇0	
L 20000	0	6Sts $6681^{\circ} 0$	666000	S98Lヤ0＇Z	E0S000＇0	LOS000\％	£98L82000\％	Yqı E！sauopul 6uejulg ！min Id
810000	0	L6E80SE90＇0	ヤLS000	L96168\％	Z882000	ع9LZ000	16LILS00000	Ya 1 पepul eıokew 1 d
LZOOOO	0	L6S899680＇0	$\angle \pm 000$	SLELES＇	L8ZZ00＇0	18\＆Z000	98ع9をャ000\％	Yqı נnuyew sesyns poojopul 1 d
とZLOO＇0	0	とLL9St8t100	$6 \angle 5000$	80ZLE6 C	86L0000	96L0000	ع09080100\％	E！seuopul $\mathrm{pOO}_{-1} 1 \mathrm{Se}_{\mathrm{J}}$ Id
¢6 $2000^{\circ} 0$	0	8ヶ966とZOL＇0	208100－	9809000	L6SLILO	6001レ0	LE8t162900	Yqı eprexta elpa 1 d
82100＊	0	S091L291．0	LEヤ000	88とてで0	Z169000	9199000	S0－ヨE08しゃ	Yqı ！peq \forall semoneg 1 d
S10000	0	E9LL9S0100	6Lt00＇0	896 $0 \chi^{\circ} 0$	E8SZ00\％	\downarrow－${ }^{\text {coo }} 0$	696LS1000\％	
SL000＇0	0	LLZEZ8LLIO	Z $2700{ }^{\circ}$		9961000	S96100\％	S0－ヨE6ヤ8LS	Yq＋！dd！ss！ss！ N uәplos enbb 1d
SEL00\％	0	618900 $10^{\circ} 0$	LSt00 0	6してヤと9＊0	†S6100\％	± 61000	SL888ヤ100 0	
dxas！pq ${ }^{\text {d }}$	7SnS	7 2mosul lon	Ofoq＊	1－7 81W	$7{ }^{\text {POJd }}$ dV	7 \＄900］	7 dx ！ 0 －	sunty 6ulnłoennuew

L0000＇0	0	でSELLLZO＊	S¢900＊0	EZSOS＇Z	889800\％	¢980000	2Zヤ090000	
$87000{ }^{-}$	0	6LStS9990\％	t9b00＇0	してとヤく80	669 2000	92＜1000	C2F090000	Yq \perp leuonewełul sesyns liqomopul 1 d
200000	0	LOLSOLZ 50	29b00 0	てZ6Z ${ }^{\text {LCO }} 0$	66926000	9C2L000	8ع268ヤ1000	
25000＇0－	0	9LLE000 200	SSt00＇0	t99E9E6	812900＊0	2999000	CヶGlて 680000	Yqı E！sauopul jeakpoos 1d
S1000＇0－	0	6189095000	ع8เ00＇0	ヤ626ヶt90	LL6ち00\％	L999000	9876880000	Yqı 1e66un \perp पere⿹ 1 d
880000	0	2982692LI0	Z2t00＇0	乙ع£S00＇1	9 g 91000	12891000	Z699ヶ200000	Yqı E！nnw equesg Id
810000	0	ヤ8tS¢8891＊0	99t00\％	Lع6L9Z＇Z	82000	1062000	86997CO000	Yqı spuedolo ełs $\forall \perp 1 \mathrm{~d}$
$9000{ }^{\circ}$	0	128L91LOLO	26ヶ00\％	カャ9ででと	8ε 8000＇0	LZE000＇0	89－380190 ε	
$18000{ }^{\circ} 0$	\downarrow	98E998000	10900\％	Z886010	と8เレ00\％	LSLLOOO	6890－3801900 \＆	
9t900 ${ }^{-}$	0	96L286EL0 0	96100\％${ }^{-}$	てtG1くEO	6LE820 0	81－2620 0	とヤS8てヤ010000	Yqı
90000	0		$68+00{ }^{\circ}$	9ちてら6t＊	GLLLOOO	¢821000	とく1ヶて5000\％	Yqı ueuemes e！nW e6equel 1 d
LャE00＇0－	0	LOLZてZ9ャ0．0	992000	Lレセ69が0	109 100	289 2100	L2998600000	Yqı syom letaw uoil 1 d
80200＇0－	0	と6Lヤ9をち600	88ع00\％	てz9L80	SLILIOO	ع86010\％	¢09986000	Y9 1 emul
9100＇0－	0	L699S0ZE10－	827000	しゅ6てとで0	S6LZ100	SZZと100	と2008ヤ1000	YqL leols yed eker id
LS0000	0	80160s120 0	L 2000	6LZ681＇	9880000	6S8000\％	¢20－39s9cto 6	
SS000＇0	1	L186902000	$\angle 85000$	Et 2699 －	8090000	6ع9000\％	S0－3c815t	Yq\＆opulqn \perp en！$\bigcirc \perp d$
$\angle 68000^{-}$	0	88\＆8LZLE0＇0－	$\angle 15000$	L9LZ810	2960ZO 0	¢ع60Z0＇0	90969Z10000	Yqı
890000	0	ZSOャOZャSOO	5000	てらち0カャワ	80L000＇0	ç2000 0	¢S0200000	
S8000\％	0	LIZLSCZO 0	28500＇0	98LLEZ	9z81000	－18100\％		Y91（osasiad）y！sang uamas id
9ヶ000\％	0	てLもカ098900	t25000	9ヵ0ヶ¢0\％	¢ヤOL00\％	LLLL000	6EOtEZ00000	
92000\％	0	LLOS991LIO	S00\％	6298060	8LLL000	ヤ891000	S989SL000－0	
$8 \vdash 0000$	0	928826800＇0	S $\angle 7000$	LZSLZ゙	868000\％	6L8000\％	90－3ヶ8961．9	Yq\＆esozues seup Id
10000	0	60LZ969980－	615000	8ヤL68で0	SSOE00＇0	6862000	てع90ヶ000＊0	
$80000^{\circ} 0^{-}$	0		EtS00\％	L09892\％	L66200＇0	†6£ 000	を£๕て61000＊0	Yqı Jnuyew ！uem！S Id
890000	0	LTS691LOO	8ャ00．0	SゅE80ャワ	18ヤ0000	ヤعヤ000\％	¢0－ヨ゙らてかて8て	d）$\times 9 \downarrow 1$ ejodjoj e！s \forall uled Id
ع100＇0－	0	ع986196 ${ }^{\circ} 0^{-}$	298000	686しが0	Z6E\＆100	G9EEL00	616LLIZ0000	
600000^{-}	0	L9696LL90＇0	$\checkmark 66000$	t9t910．	826Z000	ヤOZと000	と0LL1E000\％	Y $\perp \perp \mathrm{pl}_{7} 7 \mathrm{~K}$
990000	0	8016S 28100	96500\％	¢68990	S0－3t6．9	¢0－ $3699^{\circ} \mathrm{L}$	90－Э6Z6を8 $\frac{1}{}$	
$85000{ }^{\circ}$	0	St6てらSャレ00－	60500\％	9¢カワワくで0	ZOLL000	¢60100\％	90Z61L00000	Yq＿opulseld ekiey uepul
عと0000	0	とLヵSL6EOLO	8 2 －00 0	19909で1	$\angle \square \angle L 0000$	L 291000	St899Z00000	Yqı ！insnpul esnn opu！lodene \rfloor Id
$18000{ }^{\circ}$	0	L6L96LIEOO	91500\％	LScE890	Lt9100\％	七891000	12868200000	Y $1+1$ seldeuko 1 d
9ヶ000＇0－	1	ャ880260000	\＆ャ000	$98660{ }^{\circ} 0$	989ャ000	LStt00\％	6915ちZ0000	
dxəs！pq ${ }^{\text {d }}$	＋SnS	7 OMOSUI 7 ON	O¢フロ	l－7 81w	$7{ }^{\text {POJdV }}$	7 SЭOご	6915てZ0000	Yq \perp selnsnpul \ddagger se｜de！s $\forall \perp d$

$\angle 000 \cdot 0$	0	12096と6しが0	E6ヶ000	L8199＇EL	1620000	1820000	ZZLLLL0000	
82L00＇0	0	て8tヤレEくE000	$69+000$	LOZSLLO	S6を2000	999200\％	66Ez892000	
ع9000＇0	0	9960ちLELLO	$8 \angle 5000$	とて080で	979100＇0	LS91000	L10189000＊	Yal mey explisnw Id
$69000{ }^{\circ}$	0		9 $2+000$	SLEELL＇	ع9000\％	£290000	1609180000	Yqı e！sauopul mopuew 1 dd
980000	0	9とZ6ャ068000	9700\％	90S109 6	ヤ9¢200＊0	LZSZ000	8988921000	
عLOOO＇0	0	Sでャ28800 0	16 ± 000	9E\＆Zしく0	S0－38E＇L	50－381\％	598901000\％	
ع8000＇0	0	9で96ちを6で0	ヶ6ヶ00＇0	ヤ0ヤレOガて	6Z5000\％	LLS0000	tSSLOS000＇0	Yq \perp Y
990000	0		67000	LSOZZLI	912L000	七てL000	て88Lちヤ0000	
เ600000	0	8Lヤ86L0910	609000	L929t Cl	900L000	Eとよ1000	L10206000＇0	
860000	0	ع96L990SLO	8LS00\％		ZZ5000\％	66ヶ0000	L801－2000＇0	
$6000{ }^{\circ} \mathrm{O} 100^{\circ} 0$	0	ع096t66810	ع8t000	9LELS8＇	t091000	ヵ191000	ع08901L00＇0	Yq．soluoteroqe 7 soxuea 1 d
6ヤ10000	0	686Lくレレで0	St00 0	L82L860	LEELO0＇0	£Ъ¢800\％	LOヤレヤ6900\％	Yqı E！souopul qqunbs sfokw－lolsug Id
ع90000 ${ }^{\text {800 }}$	0	90860ZS100	$\angle \angle 5000$	Eャレ69L0	ع0L000＇0	† 290000	10ヤLL1000\％	yqı eyesnd un6ueg euepıad 1 d
8000＇0－	1	LS9L9LE00＇0	LZと000	SZLLSLO	90L2100	こZLZLOO	8LLヤ892000	
ZZZOO ${ }^{\text {S }}$	0	9L68L9LS0＇0	955000	Lt9 ${ }^{\text {cha }}$	61．100	8ヵてZ100	としてヤL600000	Yq \perp SIOpoe」 \perp pepuu 1 d
S8000＇0－	0	ZS066862LO	$68 \varepsilon 00{ }^{\circ}$	してヤヤ660	LEL900＇0	てZ90000	9とZLLZ00000	Yq \perp ueaply seun $\perp 1$ dd
LS000＇0	0	869ESEZZ000	285000	ヤOLZS＇$¢$	ISS000＇0	ELS0000	S0－398\＆6Z＇s	
$\frac{\square 000 \%}{}+$	0	しゃS69028000	ع8t500	S96Lヤ80	Z6E1000	†821000	LLLOLL0000	Yqı eundmes łewepes Id
S0t00＇0－	0	と8t6 2 ¢680＇0	98000 ${ }^{-}$	LL920LO	ع916100	Z816100	عOZE801000	Yq．loals Kolly emild 1 d
$\frac{29000}{}{ }^{-1}$	0	S929692Z00	Z 25000	9028090	ES09000	$1+9000$	S289L90000	Yq \perp ssadil $\mathrm{N} \perp \mathrm{d}$
EL000 ${ }^{-}$	0	L6セち8Lt000－	LLヤ00＇0	S6ャ9 ${ }^{\text {a }}$	1891000	8981000	8091 290000	
ELOOO ${ }^{-}$	0	1LOちt8SL00	\＄9E000	6いこでっ	ع67800＇0	£S8800＇0	99888Lて000	Yal elued osenul 1 d
dxes！pq＊	7 SOS		Oj09	L－l 8ıW	7	G8L2000	9929760000	Yqı \perp 6updsopu \perp dd

0	28L6000 0	0	0						
0	七2095300	0	0	0	0		90000	\＄8900＇0	Y91｜euonemejul sasyns lyqomopul 1 d
0	Lع670000	0	0	0	0	DGES08 8	160000	20000 ${ }^{-}$	
0	180L2000	0	0	1	0	918ち80 8	80，000	210000	Yqı e！souopul jeakpoo૭ 1 d
0	LE6E1J0	0	0	1	0	LZマZS1Z 6	201000	91000	
0	659ヶC000	0	0	1	0	6082926	C2L00000	L1L000	Yqı ElnW ejuerg 1 d
0	11ヶ600000	0	0	\downarrow	\downarrow	9081ヶ01	2200000－	25000 ${ }^{-}$	Y9 1 suedolo ens $\forall 1 d$
0	عs $\dagger 00000$	0	0	0	0		ELL00－0－	ع000 ${ }^{-}$	
$67000 \cdot 0$	L68かCOO 0	\downarrow	1	1	1	Z99988	2100＇0－	－ 660000^{-}	
0	1．62E100	0	0	\downarrow	0	61ESGL＇8	21100	S6100 ${ }^{-}$	
0	LLちEOOCO	0	0	\downarrow	0	8tヤを0＇8	L2100 ${ }^{-}$	21L100	
0	S0t88000	0	0	0	0	ヤてZちら＇L	6S9000	S2L00＇0－	
0	8957i00 0	0	0	1	L	SLZSO1－8	ع9200	ELtoo 0	
0	610ヤ6E0\％	0	0	0	1	－ $26 \angle L$－8	90ヤ00＇0	－8100	Yal leals ued eker 1 d
0	950Z000＇0	0	0	\downarrow	0	9E19288	160000^{-}	Csp00 0	Yqı Kıs
S0－ヨャ8 t	\＄8t0000＇0	0	1	0	1	LLOOOT－L	86000 ${ }^{-}$	1000^{-}	Yqı opulan \perp en！$\bigcirc \perp d$
0	1Sを¢800\％	0	0	0	0	ELS686．8	$2 \angle 000$	988000 ${ }^{-1}$	Yq \perp leb6unuew EReluoleg 1 d
0	0888000＇0	0	0	\downarrow	l	S01LE86	－1．000－	$98800{ }^{\circ}$	
0	29120000	0	0	\downarrow	\downarrow	892L886	950000－	$601000^{-} 0^{-}$	
0	6S18000\％	0	0	\downarrow	1	£ع85001	90100\％${ }^{-}$	$6 \mathrm{~L} 01000^{-}$	Yq1 6uoulq！o uamas 1d
0	S080100\％	0	0	\downarrow	1	9192816	920000^{-}	t＞000 ${ }^{-}$	Yqı esexu2d le66un \perp quameวopul \perp d
0	91Lヤ000\％	0	0	\downarrow	\downarrow	8LZSIて8	6800000－	62000 ${ }^{-}$	Yqı esozues seun 1 ¢d
0	とャZ900000	0	0	1	\downarrow	てLIZ06	Z800000－	62000 ${ }^{\circ}$	
0	686E100\％	0	0	0	0	てャ6816	910000	98000	Yq．Jnuxew ！uem！S Id
0	20110000	0	0	0	0	SE6Lbs ${ }^{\circ}$	901000^{-}	$90100{ }^{-}$	eld 1 d$)$ Yqı enodıoう e！s \forall uled 1 d
0	LoIZLE00	0	0	0	1	66920L8	SعE00＇0	LEEOO 0	Yqı leuouneujeju opule 11 d
0	Sl－Lt000＇0	0	0	1	0	†089LE8	280000－	¢1000\％	Yq． 1 p 77 Knsnpul y
0	SZS0000\％	0	0	1		9GLGLLL	21000－	910000－	
0	t9Z6000＇0	0	0	1	\downarrow	StL08E8	$61000^{\circ}{ }^{-}$	901000－	Yqı opuiseld ehney yepul nul 1 d
0	5916000＇0	0	0	1	1	98912L 8	t80000－	960000－	
0	こと08000＇0	0	0	\downarrow	1	して8としが8	28000＇0－	¢60000－	Yq \perp 7seldeuKo 1 d
8682000	SL6EZOO＇0	\downarrow	1	\downarrow	1	E8S0St8	ع000＇0	－ 506000^{-}	Y $9 \perp$ P P7 $0 \bigcirc$ eu！ 1 2eg 1 d
snsp	170	snsıqəp	snsejol	11890	$7 \forall 5$ 이	1－7 3Z1S	s6039		yqı seunsnpul iselde！s $\forall \perp d$
								posdq ${ }^{\text {d }}$	sun！－6ulnyoefnuew

0	L68000000	0	0 －	0	0	6して06ャ6	82100 ${ }^{-}$	81100\％${ }^{-}$	
0	LEL8600＇0	0	0	0	0	でくt9t－8	10200＊${ }^{-}$	2ヤ100 ${ }^{-}$	Yqı mey exils
0	10710000	0	0	0	0	6StLSc゙8	1い10000－	90100 ${ }^{-}$	Ya 1 e！seuopu mopuew 1d
0	89510000	0	0	0	0		S2100\％${ }^{-}$	ELL00\％	Yqı 1 msed ues odur 1 Id
0	S1．18100\％	0	0	0	0	6ヶレL8LL	66000 ${ }^{-}$	ع8000 ${ }^{-}$	
0	1LS00000	0	0	0	\downarrow	SSEt8 2	L2100 ${ }^{-}$	ELL00＊0－	
0	16L1000＇0	0	0	0	0	9LE9とで8	9ヤ100 ${ }^{-}$	Lヤ100＊＊－	Yqı YJJOW $1 d$
0	LLS90000	0	0	\downarrow	0	SZち910 6	86000 ${ }^{-}$	$66000{ }^{-}$	
0	LTLOLOOO	0	0	\downarrow	0	L6Eャ0と 6	SS100\％${ }^{-}$	681000^{-}	Yqı eunej aqiey id
0	02820000	0	0	0	0	86060¢ 8	891000－	๑6000＊0－	
0	89150000	0	0	1	0	8910288	6b100 ${ }^{-}$	ع9100\％${ }^{-}$	Yqı seunjenoqe 7 soxura 1 d
0	ES998000	0	0	0	0	888と21．8	ESE00 ${ }^{-}$	$19800{ }^{-}$	Yqı E！səuopul qqunbs ssakw－107sug Id
0	－1670000	0	0	0	0	－19008 L	ZOLOO ${ }^{-}$	$88000{ }^{\circ}{ }^{-}$	yqı exesnd unbueg eueprad id
L90b0＇0	00＜90ヶ0＇0	1	0	\downarrow	0	LOLLOO 6	LLZOOO	$66 \vdash 000$	Y9 \perp Kueduoう Mi！ Oloud uepow Id
0	てZSLLOOO	0	0	\downarrow	0	Z8LELL 6	S8200＇0	S9800\％	
0	ع®85000＇0	0	0	\downarrow	0	8185ヶ0 6	811000	ヤ1．000	Yq \perp ueaply seun $\perp \perp 1 \mathrm{~d}$
0	ع0L1000＇0	0	0	0	0	EOSE9LL	S0100 ${ }^{-}$	$98000{ }^{-}$	Yqı epesıədewes ！ 6 S 1 ¢d
0	†9とZ0000	0	0	0	0	Sع199L8	6000＇0－	99000 ${ }^{-}$	Yqı eunduas pewejas 1 d
0	てOZZ8000	0	0	1	0	68518t 8	29900＇0	S8000 ${ }^{-}$	Yq．leas Kolv emild 1 d
0	98EGZ0000	0	0	0	0	ESSLZ0 8	160000	S8000\％	Yqı ssadd！ N Id
0	$18 \angle 98000$	0	0	0	\downarrow	189ャ60＊8	ع9000\％${ }^{-}$	$12000{ }^{\circ}$	Yqı ejele！as euld ！！nW 1 dd
0	てOヤ08000	0	0	1	0	Sعャ928．8	62100＇0	292000	Yq．equed ojequ｜ 1 d
0	てったLZ000	0	0	0	0	LE80St＇8	8S100＇0	1L200＇0	Yal buildsopul 1 d
snsp	170	snsıqep	snsejol	11930	$1 \forall 0$ O	1－7 ヨZIS	s6009	posdq ${ }^{\text {b }}$	

2100020000	LS892ヶ000＊0－	86196 S 1000	てLES00＇0	000＇000＇009＇sp	LS000 ${ }^{-}$	
S0LE9Z000＇0	S0－316098．L	98991L0000	LLOO\％	000＇000＇091＇LS8	8980000	
ヤSLS61000\％	L60Ss1000\％	しع9ャレて0000	686100\％	000＇000＇000＇927	LLLOOO 0	Yqı Kıisnpul ewild ekiey eubiv Id
S0－ヨ986LEE	969 LZLO00\％	S0－ヨZELES＇9	－1ヶ000＇0	000＇000＇000＇sZZ		
عLL80L0000	S0－3ZE89L゙し－	L89081000＇0	SOtZOO＊	000＇000＇008＇ 81	282000 0	H91 eleg njedos 1 d
¢0－ヨع8\＆ち6．9	と916ZZ00000－	E0E9EE000：	LZLOOO 0	000＇000＇000＇602	S0－38＇て－	Yqı eyenonn esejes 1 d
99689ヶ0000	8888860000^{-}	80291ヤ1000	七てS000＇0	000＇009＇LSL＇EL	920000－	
S9sczz1000	2EL098000 ${ }^{-}$	L9S19ヤ000＇0	910200＇0	000＇000＇089＇Lع	921000＇0	Ya \perp opu！
¢ヵS0ヶて00000		ELt62000．0	$180200{ }^{\circ}$	000＊000＇0ヶ8＇ LbL	$90-38^{\prime} \square^{-}$	Yqı $\times 2 \perp$ sfoulogg ued \perp d
608102000＇0	S0－ヨ8926ヶ9－	カレとてかて0000	とてってO00	000＇L09＇ZEL＇0ヤて	¢81000＇0	
S0－39L8Sち＇8	8でてZ990000－	Z8ZE\＆S $100{ }^{\circ}$	SZZ1000		6ゅ9000＇0	Yqı ssinepuks eweiopul Id
LLEち0と000＇0	160Z990000	£88898000＇0	699ヶ00＊	09ャ＇LLO＇91で8L	627000%	Yaı emetn ！nsmpul uosueh Id
¢0－ヨદ¢ヶてでて	66L16ヶ0000－	ZZLE8L100＇0	－82000＇0	000＇000＇000＇ャャレ	1210000	Yqı E！sauopul
とャ6てZ10000	S0sE91000\％－	69E0tヤ000＇0	9861000	000＇060＇ 106^{\prime} LGZ	6ャ10000	
LLZOEL0000	S0－ヨレてZsでで		928000＇0	000＇000＇009＇LEL＇OZ	EヶL000＇0	Yqı euroodmes elepuew ekelueh id
S0－3S0ZてE＊	S0－ヨZ800ヤ＊	S0－ヨャていげ	826000 0	000＇008＇969＇ 191 ＇9Z		Yqı wejeg 6uepno 1 d
L186Z90000	ZLSS8Z000＇0－	S0－ヨ8ヤてZどと－	ELOLOOO	000＇000＇009＇৮¢¢	LLIOOO\％	Yqı E！səuopul $\perp \forall 8 \perp$ dd
S0－ヨZ1609＊L	S0－38\＆と80	S0－ヨLヤOZ8＇ャ	ELヵ000＇0	000＇008＇ZSE＇SS1＇L	S0－380 $\frac{1}{}$	
9ヤ8LSS000＇0	15000	ع01LZ000 ${ }^{-}$	L29900＇0	000＇000＇008＇ャ9	82000 ${ }^{-}$	Ya \perp yepul eqnS $\perp d$
てレL896000＇0	Z6scoeloo ${ }^{-}$	EゅS 2951000	1586000	099＇LOE＇LSL＇ヤナ1	S0－381＇Z	Y $1 \perp$ esnpodd peatels 1 d
S0－399999＇9	LLCSL20000	S0－ヨะ60LĖ\＆	Z60200＇0	000＇000＇009＇0ヶ¢	S0－ヨでて	Yq $\perp \mathrm{dO} \mathrm{\perp}$ deque！ $\mathrm{S}_{\text {Id }}$
Z6ヶ0 L1000＇0	S0－ヨャ0991＇ャ	S0－3689L	9590000		七¢10000	Yqı epesnH ！les 1 d
8696180000	S0－ヨSt906．9－	S0－ヨı8t91．9	St100＇0	000＇000＇เ0ャ＇0レL	8L1000＇0	
て8でS 20000	S0－ヨャLOES＇${ }^{\text {cos }}$	LZSSSZ000＇0	LZZ1000	000＇000＇sZヤ＇6LS	6920000	Yqı e！sauopul 6uetu！g ！in W \perp d
LELZLOOO＇0	カ09198000＇0	20ヤしヤ60000	LELヤ000	000＇026＇10¢＇162	9980000	Yqı पepul ejokew Id
80¢Stヤ000＇0	6ES6ちZ000＇0	90－ヨレレS9を8	2818000	000＇000＇0ヶ6 ${ }^{\prime} 0$ ¢9＇S	LZE000 0	Ya \perp Inuxew sas ${ }^{\text {n }}$ S poojopul 1 d
281912100\％	† ¢661000＇0	$18 \varepsilon \downarrow$ ¢ 0000	SlZZ000	000＇000＇sZ9＇10t	$\angle \triangleright 20000$	
86L8LZLO 0	S90ESELLOO	6L9ZLZSE00	LLZStで0	06で981＇レカナ＇	S81020 0	
S0－ヨしE969 ${ }^{\text {c }}$	6Lヤ6LZZ00＇0	8عヤ $\angle 891000$	9ヶ26000	088＇レ0カ＇Eと9＇レレレ	2LIZO00	Yqı ！peq \forall semosed \perp d
ZLO6E1000＇0	90LLOLO00＇0	てعャ81000＇0－	L6EZ000	000＇009＇Z16＇69	カレヤ000\％	Yqı Jeqıey ekeyeo 1 d
S0－360t0L＇s	Z80ZL10000	S6ヶ8 $50000^{\circ} 0$	LOLZ000		1210000	
8LIZL91000	8891／8000＇0	ZعEL8LO00＇0－	6LZZOO＇0	000＇000＇001＇ss	8000＇0－	
\ddagger dxa！av	L－ISV	758	15	$\underline{-1}$ NW	10」0	su！！ 6 6u！inperjnuew

L66769000＇0	9ヤてL1000＊－	S0－J6\＆ELS ${ }^{\text {c }}$	LELO0\％	000＇000＇081＇98	815000\％	Yqı e！seuopul senəl！un 1 d
Z90LZS000\％		6989ヶt 0000	\＄812000	000＇000＇009＇998	LZ2000＇0	Yqı ņey exlls W Id
Z69LS20000	S0－ヨレヤヤOで9	S0－ヨャ6くLE6	868000\％	000＇000＇000＇${ }^{\circ} \mathrm{SG} 9^{\prime} \mathrm{Z}$	9210000	Yal oilsed uess odmel 1 dd
ZS80LS100\％	SでSヤZ0000	－S \downarrow LLLO00 0^{-}	998000	000＇000＇009＇0¢	S0－36．9－	
عOLLZヤO00＇0	SZO1LZ100\％	L189S10000	¢6L000＇0	000＇00ャ＇908＇で	9010000	Yqı ewne」 wepli $K_{\text {d }}$ Id
Sl86SE000＇0	S8EOLZ000＇0	206ヶL20000	2ヶ01000	000＇000＇00ヤ＇898	6E2000\％	Yqı YOJON 1 d
¢OS $\angle t \rightarrow 000^{\circ} 0$	L 108 CO O－3000	S0－ヨヤL6と6	1991000	01て＇000＇0ヶを＇991＇	S0－ヨャワ9－	
¢tS6ヶL0000		S0－39S0st 9	Zヤ000\％	000＇000＇009＇レで＇8	S0－ヨ®で9	Yqı eune \ddagger əq｜ey 1 dd
LعZ92ヶ00000	てヤ0¢510000	S0－39986E8	ع86000＇0		821000＊	
8ヵ1920000	S0－3601 ${ }^{\text {－}}$	Lヵ8ヤLZ000＊	LZSZ0000	000＇000＇Z69＇ 28	LSCOOOO	yqı seluojenoqe 7 soxueg $1 d$
91896900000	190L28000 0	S0－ヨॄLLDでく	ヤ\＆6Z00\％	000＇000＇0ヶ1＇02	¢896\％${ }^{\text {¢－}}$	Yqı e！sauopul qqunbs ssakW－101s！ug 1 d
1 $1982 \angle 1000$	89L9L6000 ${ }^{-}$	ャ660Zを000 ${ }^{-}$	Lヵ8600\％	009＇ 18 l＇$^{\circ} \mathrm{EL} \mathrm{\prime}$＇991	L9000＇0	
9\＆St0E0000		ャ6L8201000	－ 2 ¢ 5000	000＇GLE＇tャG＇996＇	6701000	Yqı Siopoed \perp peltu 1 1d
8¢6Z0Z0000	S0－36ヤくヤ6．6	81عLLZOO0＇0	ャてレてO00	000＇Zとて＇Lヤし＇ヤヤ¢	とャ1000\％	Yq．eundmes łemejos Id
680Z0LOOO＇0	てLS6E95000	80ヶ6¢Zっか0	ャSES100	000＇000＇08で¢	－ 20000^{-}	Yqı loens Kollv eulld Id
Z60200Z00＇0	99ャてLL000 ${ }^{-}$	－て60SE900＇0	1 OEZ ${ }^{\circ}$	000＇000＇00＇ 2	612000	Yqı ssard！ $\mathrm{N} \perp \mathrm{d}$
1 ＋dxə！${ }^{\text {¢ }}$	L－1SV	ISV	15	L－7NW	10.30	sunty 6ulumpejnuew

$\square 90000$	95000＇0	ES000 ${ }^{-}$	0	SOZOESZO＊－	S1E00＇0	EOヤOLEO	LLES000	678700＊0	Yqı sounsmpul fse｜de！s \forall Id
11000^{-}	$96000{ }^{\circ}$	$67000{ }^{\circ}$	0	StSt016E10	EOS00\％	6689660	E601000	7801000	
－ 20000^{-}	$95000{ }^{\circ} 0^{-}$	\checkmark ¢000＇0	1	669668ャ000	Z $\angle \triangleright 00{ }^{\circ}$	SILSL8 0	6ЪLl00 0	1．9100\％	Yqı
901000－	880000^{-}	9000\％	0	て68Zャ6900－	ャ6ヶ00\％	t¢E6s9 ${ }^{\text {c }}$	698000 0	t000\％	Maı Inuxew opulqu ekins id
121000^{-}	90100 ${ }^{-}$	GLOOO＇0	0	6ZZZ960S10	ャ8ヤ00\％	6L9b61．	ع981000	8981000	Yqı ejeg nıedas Id
68000 ${ }^{-}$	850000^{-}	GS000＇0	0	とちを8ャ6レヤ0－	Z6ヶ00＇0	S099 29 ¢	650000	9ャ 10000	Yqı eyenfonn eseres id
78000 ${ }^{-}$	22000＇0－	1000	0	866LEとで0－	†OS00＇0	1LEL8で0	10000－	690000	
20000^{-}	99000\％	ヶ0000＇0	0	296ャレSEOLO	＋00＇0	18980 ¢ 1	tSZS00＇0	t96t00\％	xqı opu！eqolo exnd Kx？
290000－	$6 \pm 000{ }^{\circ}$	980000	0	9L1 2919200	9stoo 0	t99ヶ66．	\＆28100＇0	E8LL000	
6ヶ000 ${ }^{-}$	L2000＇0－	ع20000	1	61Z980100＇0	$1 \angle \triangleright 00^{\circ} 0$	8tLSI9	86ZZ000	S602000	
$18000{ }^{-}$	ع9L10＇0	\＆+0000	0	Z9ELLL600＇0	LLLOOO	6ES6SIO	ع16E100	9011000	Yqı sonjuks eweıopul Id
920000	98000\％	920000－	\downarrow	ZZO9LOち00＇0	9ャワ000	ャ91くレで0	LSSt000	1上	Yaı emein unsnpul uosueh Id
101000^{-}	28000＇0	290000	0	ヶ9ZL6ELE＇0－	LSS00＇0	8819160	2810000	S880000	
$85000{ }^{-}$	$8 \vdash 000{ }^{-}$	820000	0	S08LLSEO ${ }^{-}$	69ヶ00＇0	99200L0	ES81000	1781000	
－1100\％${ }^{-}$	tOLOO＇0－	L90000	0	6ヵをてZES610	Z6ヶ00＇0	6Z99E\＆0	6690000	8890000	Yqı emzodues ejepuew eke！ueh Id
LOLOO ${ }^{-}$	$9 \vdash 0000^{-}$	50000	0	9ع18ヵてEO10	ع8ャ000	98LS8\＆＇Z	6SLLOOO	$\square \square L 0000$	Yqı weses 6uepns id
SZ10000－	610000^{-}	260000	0	てZ2869200－	26ヶ000	と9く19で	9581000	9850000	Yqı E！sauopul $1 \forall 9$ Id
815000－	LOLOO＇0－	290000	1	S62986800 0	68t00\％	ててャャてで1	LZE000\％	ZZ\＆0000	Yqı Kuedwos 6upped \perp pue Kısnpul Yi！W eker emin id
ع92000	9 COOO 0	ES0000－	0	60عZ9110－	ع 8000	カレて6ャャて	LE6L000	LLS 2000	Yq \perp yepu eqns $1 d$
$\bigcirc 2000$	292000	98000 ${ }^{-}$	0	208S6Lて10－	81800＇0	9ヶ00＜0 0	－1600＇0	288000	Yqı 2 enpodd perels 1 d
L9000＇0－	$\dagger 5000{ }^{\circ}$	610000	0	698ャ 2 S9S00	997000	LSちEEL1	9891000	98LL000	
S2100\％${ }^{-}$	115000^{-}	$29000{ }^{\circ}$	0	ヤ6とเこて910	96ヶ00\％	と8ะ628．	Z88000\％	£sع000＇0	Yqı epesnH
ES1000－	$1 \mathrm{ELOO} 0^{-}$	1L1000	0	ヤLSOL88100－	6ち00＇0	てLS61E゙ヤ	1 ¢ 0000	ELS000＇0	
ع2100\％${ }^{-}$	61500\％${ }^{-}$	20000	0	LGZL998L10	S67000	ヶ96S「でて	ع1L000＇0	เ690000	Yqı e！səuopul buequ！g ！innw Id
عと000 ${ }^{-}$	St000 ${ }^{-}$	S1000＇0	0	でらでて $990{ }^{\circ} 0$	S¢ヤ0000	819ヤヤ¢＇0	L9LE00\％	¢sce00 0	Yqı पерul ejokew Id
S9000 ${ }^{-}$	$8 \mathrm{COOO} 0^{-}$	820000	0	LSZS69tCo 0	Z8ヤ0000	8レヤ88G＇1	8LEZ00\％	998Z000	Yqı Inuxyew sasxns poojopul Id
$6 \mathrm{Sl00} 0^{-}$	9S100 ${ }^{-}$	ع100＇0	0	89St18Lて10	18ヤ000	6てZしでて	S98000\％	628000＇0	E！souopul pooylsey Id
†9900＊＊－	6と1200－	9ヤ8000	0	ZOZL102600	91080\％	68tャ000	EL60E10	1802E10	
121000	てZ0000	$\angle 1000^{-}$	0	98LZ890150	\downarrow ¢ $00^{\circ} 0$	£Z0001＇Z	9Z9L00＇0	七Z9LOO 0	Yqı！peq＊semose］Id
91000 ${ }^{-}$	600000^{-}	810000	0	6LLLG8L0＇0－	80900\％	89LS0 ${ }^{\circ} 0$	ていIZ000	レレヤZ000	Yq．Jequey ekeyej id
Eع000 ${ }^{-}$	＋00000－	100000	1	61LGLL0000	8St000	$\downarrow \square 60000$	StヤZ000	EレヤZO0＇0	Yqı ！dd！ss！ss！ W Uәplo
LS000 ${ }^{-}$	110000	891000	0	しをヤ8とてLL0－	LSt000	LOEヤLLE	†68100 0	†¢6100\％	Yqı enəosełnd opuly sep $\forall \perp d$
s6039 ${ }^{\text {d }}$	poddq ${ }^{\text {d }}$	dxəs！pg	7SnS	† อwosul fon	OjP9＊	－l 1 ¢	7 poddV	7 ¢50つ『	sunty

SS000 ${ }^{-}$	St000 0^{-}	29000°	0	6192192000－					
S8200＇0	$8 \angle 8000$	LLOOO ${ }^{-}$	0	とんL6けE8000	8S200＇0	くヤ8L2レ0		LSEZ000	Yq＋erejelos ew！d ！inw id
Z10000	－LLLOOO	$81000{ }^{-}$	0	と6Z8102000－	858000	とでくでった	L6ヤC100	8G50100	Yqı equed osenu｜ $1 d$
0	EعL00＇0－	$62000{ }^{-}$	0	Z8S00t9sto	82ヶ00\％	LOblsLo	2¢ 2 ¢ $\dagger 000$	1928000	Yqı leuonewełul sesxns l！qouopul 1 d
$t 0000$	S00000	ZE000 0^{-}	0	૪860LE9000	$1+000$	80Z9 ${ }^{\text {co }}$	SOSt000	¢ $¢ 8 \downarrow$ ¢ 0000	Yq 1 esey
$91000{ }^{-}$	$97000{ }^{-}$	110000^{-}	0	EL8LZ6E0＇0	SSt00 0	Stoz6e	ESOE00\％		Yq \perp e！sauopul jeakpoos 1 d
ع 60000^{-}	LE000 ${ }^{-}$	ع1000＇0	0		69ャ00 0	LE889s＇0	Z08Z000		Yq 1 1e66un \perp पe！eo 1 d
29000＇0－	690000^{-}	620000	0	L00E10ヤL゙0	St 600	8GLZ680	ャعLてO0＇0		Yq1 E！pnW Ejuejg Id
$82000{ }^{\circ}$	68000 ${ }^{-}$	98000＇0	0	8ZZOSZ26100	$9 \vdash 00^{\circ} 0$	16E86ちゃ	92100＇0		Yqı suedouo ens \forall 1d
12100\％${ }^{-1}$	100：0－	850000	0	ZOZE0Z8ELO	¢8ャ00 0	6¢9LZ1．	88ヤ000＇0		Y $9 \perp 1$ leuoneujul enfs $\forall 1 d$
L1500＇0－	ヤヤ000－0－	60000	0	LZ6ELL6E00	$\angle S 00^{\circ} 0$	9ع0セ¢8＊0	¢		
ELLLOO	299000	๑EOLO ${ }^{-}$	0	LL8ヤ6900＇0－	51900\％${ }^{\circ}$	S†E6ヤを\％	6ャらヶヤ0＇0		Yqı el！uelsn \forall e！！$\perp \perp d$
＜ 50000^{-}	て $\downarrow 000{ }^{-}$	ع000\％	0	LLLSヤ8100－	61t00\％	9S9896 ${ }^{\circ}$	てع6เ00＇0		Yqı ueuemes ejnnw e6equo 1 Id
Zと100\％	ع6000 ${ }^{-}$	七S000＇0	0	とtt9szs610	LSt00\％	9009ど0	ヤて81000		Yq1 opulue
$\rightarrow \angle 800^{\circ} 0$	981000	80800 ${ }^{-}$	0	9ャ0レヤレレ910	ssz00\％0	69ZZとャ＊	ES6ヶ100	2lerooo	Ya 1 syom letaw uol 1 Id
920000	S 20000	\＄8000 ${ }^{-}$	0	9LL6SbLLT0	Z6Z000	てZさSL80	9899000		Yq／emild usew uoli Id
L89000	8500\％	七七\＆00 ${ }^{-}$	0	عと\＆ $21 E \angle 00^{\circ}$	St000 ${ }^{-}$	L686880	Z8LIZO		Yqı leots le ${ }_{\text {d }}$ eKer 1 d
616000－	99000 ${ }^{-}$	990000	0	ヤちてL090200	bてS00．0	90Z6をでし	S0－ヨ£6．	101000\％	Yq＾Kısnpul un！u！unlv Iepul \perp dd
6L000＇0－	LLL00\％	880000	0	と8ヤOLS6600	6St5000	E189＇1	として1000	261．00\％	
$9 \mathrm{~b} 00^{\circ} 0$	96S00＇0	Z1E00 ${ }^{-}$	0	9Z9968SEOO	102000	て882レで0	とてS9100	SEEs10\％	Yq \perp leb6unuew ekeluoteg 1 d
898100	S8E00＇0	81800\％${ }^{-}$	0	SLSLLITLOO	¢Sb00\％${ }^{-}$	91L60＇01	てくもち¢0\％		
L8000＇0－	650000	160000	0	ヶ95゙888800	$8 \square 9000$		ع68000 0	98000＇0	Yqı opu！\ddagger snpu｜esexe｜$\forall \perp d$
S6000 ${ }^{-}$	18000 ${ }^{-}$	S9000＇0	0	891レL69000	98ヶ000	S10891．	EL0000	802000＇0	
L1200＇0－	${ }^{\text {t9000 }}{ }^{-}$	190000	0	L6E9をャレレ0＇0	6L500\％	EScZL＇	9680000	96800	Yq1 6uoulq！U umes 1d
SLOOO ${ }^{-}$	L8000 ${ }^{-}$	98000＇0	0		$\square \angle \downarrow 000$	9とくもで「	8عE100\％		
81000＊－	†0000 ${ }^{-}$	七00000	0	10LZ6Z6E0＊0	と¢ヤ00＇0	8Lt8L＇G	6ع£と000	とをとし000	
$86000{ }^{\circ}{ }^{-}$	ZOLOO ${ }^{-}$	25000＇0	0	でE6Z00	S $\angle 7000$	LOSOS9 6	9990000	6ع90	Yqı inuyew ！uem！S Id
812000	ZSE000	$9000{ }^{\circ}$	0	L8L621010－	L®¢00＇0		2966000	90ヶ600\％	xqı jeuoileuezul opulde 1 Id
S000＇0－	0	S1000＇0	0	602t99601＊0	St000	98L0ヶ9\％	LZヤて000	90ヶ600	77 Klisnpul y！seld dnuyew 6ua66ue7 Id
$\downarrow 9000{ }^{\circ}{ }^{-}$	Z20000－	8七000＇0	0	1ع588080 ${ }^{\circ}$	$\angle \pm 00^{\circ} 0$	LZS8080	90ヶ1000	SLELOOO	
ع8000 ${ }^{-}$	28000 ${ }^{-}$	$68000{ }^{\circ}$	0	18てレレレ2900	6700%	จ 2980°－	18ヤ1000	SLEL000	
$8000{ }^{\circ}{ }^{-}$	180000^{-}	ع000\％	0	829¢91090＇0	LLt000	91ZOZLO	S18100\％	88L2000	Y 91 7seldeuka 1 d
s603q ${ }^{\text {b }}$	posdq＊	dxas！pq \forall	7 Sns	7 อسosul 1 N	O¢aq＊	レ－ł 81W	7 PoddV	$\frac{882000}{7-5007}$	

0	66192700	0	0	0	0	S16060＇8	Yqı ejere！es emud ！inw 1 d
0	900てZ000	0	0	0	0	696818＇8	Yqı Equed ojenul Id
0	$8 \vdash 08000{ }^{\circ}$	0	0	1	0	6988ャワ6	
0	$10 \angle 8100^{\circ} 0$	0	0	0	0	E6L99L8	
0	LヵL 20000°	0	0	0	0	LLSE65＇8	Yq1 e！sauopul Jeakpooo 1 d
0	$8 \vdash t+000^{\circ}$	0	0	1	1	L৮¢8001	
0	2L92000 0	0	0	\downarrow	0	6ヤ881．6	
0	06150000	0	0	1	0	89916で6	Yqı syedoło ens \forall Id
0	89890000	0	0	1	0	28LEが01	Yqı leuoupeutuu ens $\forall 1 d$
0	－LS00000	0	0		0	\＄86691．8	
0	LS69000＇0	0	0	1	1	と0ごちらか8	
0	EL692000	0	0	\downarrow	0	かて69ャL゙8	Yq，ueuemes e！nnw ebequel 1 dd
0	†8L91000	0	0	1	0	LOZてレが8	
0	0¢Zヤ0000	0	0	0	0	レもヤ180゙8	
0	LZLSE00＇0	0	0	0	0	LSSEES＇L	Yqı eumd ysaw uoli id
0	SヤE81000	0	0	1	0	688911．8	
0	†てZL900＇0	0	0	0	0	8ャ600s 8	
0	LLEL000＇0	0	0	1	0	ELSSZ88	Yq \perp opulan \perp en！ 1 Id
0	99ヤ10000	0	0	0	0	で¢0＜${ }^{\circ} \mathrm{L}$	Yqı IEб6unuew eke！
0	86009000	0	0	0	0	SEsE00 6	Yq．Kısnpul Ietaw $246!7$ Opulumply id
0	0てtoc00\％	0	0	0	0	SゅC0E8 ${ }^{\circ}$	Yq＋opulizsinpul eseyel $\forall 1 d$
0	S6980000	0	0	1	0	Z8てZ8．6	
0	6ELLO00\％	0	0	1	\downarrow	8Z9E88． 6	Yqı 6uoulq！
0	OtヤL000\％	0	0	1	\downarrow	S2900 Ot	
0	8LLE000＇0	0	0	1	1	S89てLZ 8	Y91 enueqəıul
0	8 B ¢ 0000	0	0	1	0	6LOLZLL	
0	8LELOOOO	0	0	0	0	\checkmark 206S 2	Yqı
0	8ャカ9てZ0＊0	0	0	0	1	ャ800028	
0	9098000＇0	0	0	\downarrow	0	198ELE8	
0	8891L00	0	0	1	\downarrow	SLS9SS 8	Yqı！！nsnpul esnn opulodente $\frac{1 d}{}$
0	て¢LLO00＇0	0	0	1	\downarrow	9¢ 2 ¢888	
0	ZS95000＇0	0	0	\downarrow	0	68LSで8	
snsjo	170	snsıqəp	snseool	11830	$7 \forall 0$ O｜	$1-7$ ZZIS	sun！y buinnjejnuew

ャ00Z леәд suגy Guиn!oejnuew

S0－3601Lで6－	Lも8ャLZ000＊0	LZSZ00＇0	000＇000＇ $269^{\prime} \angle 8$	9عZ6S90000		Yqı E！səuopul qq！nbs sıəKW－107s！ 1 dd
L609s10000－	1E9ヤレて0000	6861000	000＇000＇000＇9Lt	LSELLL0000		
S0－38926ヶ9－	ヤレとてヤて00000	とてってO00	09t＇LLO＇91で8L	LZLE810000		Yq\＆e！səuopul｜lәmey 1d
160Z99000＇0	ع88898000＇0	699ャ000	09がLLO＇91て＇8L	しعと6てヤ0000		
S0－ヨ8をと80＇L	S0－ヨLヤ028 \downarrow	ELb000\％	000＇008＇Z9E＇GG1．	90－ЭZ\＆080\％	Yqı Kued	
Z802110000	9678L90000	LOLZOOO	009＇LEL＇${ }^{\prime} 6 \mathrm{~S}^{\prime}$＇ 6 ¢	ととヤレLLOO0＇0		yq1 ！dd！ss！ss！W ueplos enb $\forall 1 d$
Z68819000＇0－	S18909100 ${ }^{-}$	1899100	009＇608＇レヤO＇801	LO－ヨE8LEL゙レ－		Yqı Kuedwo m min oloud uxepow id
982109000 ${ }^{-}$	S6L189100＇0	9002000	000＇000＇000＇で，	68898000＇0		
S0－ヨع966 ${ }^{\circ}$		$\angle 890000$	000＇000＇000＇LZ	60－ヨレヤLOヤ＊		Yqı ⿺辶б6unuew ekeluoleg 1 d
LEZLャ9000＇0	LLZZLZ000＊＊	Z0Z9000	000＇000＇009＇Zと	L0－ヨ9ャ8を6．1		
LE80690000	S0－ヨャレヤレでで	8LZレ000	000＇00ヤ＇066＇6ャレ	レレELヤ10000		Yad eseydadener eueueM Id
90－ヨLOGLZ ${ }^{-}$	ャSELLOOO ${ }^{-}$	8ャ9000＇0	00ヤ＇064＇998＇ャャ9	90－ヨ992LL6		
とをZGZ60000	6189190000－	29LL000	000＇000＇09ヤ＇9	GL8919000 0		yqı exesnd un6ueg euepıed 1 d
ZEZSL60000	LL69EZ000＇0	七928000	000＇000＇029＇0Z	L6L96EZ000		Y $1+1$ loels Kollv eulld 1 d
890292000＊＊－	962Lて9100＇0	29Lb00 0	000＇80t＇089＇6LL	9†ع¢99000＇0		Yqı e！souopul 6ueju！g ！InW \perp d
1－7SV	ISV	15	$1-7 / N W$	10 J		sux！\ddagger 6uluntoe，

Syヲヨ入 wપyly $10 \exists d S \cap s$

0	0	0	6698Lで8	691000－	S100\％${ }^{-}$	\angle		
1	1	1	ヤ902EL 6	－ 20000^{-}	9ヶ000 ${ }^{-}$	－22000	$\underline{209000}$	Yqı elsauopul qq！nbs sjokW－10，sula \perp d
0	0	0	19LG198	6ヶ000 ${ }^{-}$	L1000＇0－	を¢0000	CLD00 0	$49 \perp$ Kısnpul emidd ekiey eubl $\forall 1 \mathrm{~d}$
\downarrow	0	1	6SカレE88	92000 0	980000	22000 ${ }^{\text {¢ }}$	$\underline{9 \vdash \vdash 000}$	
b	1	1	8ヵ¢6ヤ0．6	81100 ${ }^{-1}$	LOLOO＇0－	290000	68ヤ000	
b	0	\downarrow	SL8LLLL	عと000 ${ }^{-}$	ヤ000＊－	$10000 \cdot 0$	885000	
0	1	0	LOLLOO 6	LLZOO＇0	66ヶ00＇0	8000 ${ }^{-1}$	L28000	Yq\ ！dd！ss！ss！W ueplos enb $\forall \perp d$
\downarrow	\downarrow	1	29998.8	21000 ${ }^{-}$	96100 ${ }^{-}$	180000	109000	Yq\＆Kuedwo mily oloud urepow 1 d
\downarrow	0	\downarrow	L2000t 2	$86000^{\circ}{ }^{-}$	$18000{ }^{\circ}{ }^{-}$	950000	$\angle 8 \vdash 000$	Yqı $\operatorname{\text {2l！uetsn}\forall \text {e}!+\perp \perp d}$
\downarrow	1	\downarrow	E8S0St＇8	10000	101000	97000＊＊－	\＆ 5000	yqı é6бunuew ekeluofeg \perp d
1	1	\downarrow	ع88992＇6	97000 ${ }^{-}$	S8000＊0－	ヤち000＇0	Z6ヤ00 0	
0	1	0	レレ6698＊	$86000{ }^{\circ}$	EL000＇0－	tG000 0	900	Yqı eseyded eker eueue $M 1 d$
0	0	0	8ع9E28 ${ }^{\circ}$	$10000^{\circ}{ }^{-}$	L000\％	8ع000＇0	ESt00 0	
0	1	0	LZ9989 8	860000	E100\％	80100＇0－	†0900＇0	隹
1	\downarrow	L	960LE9 8	92100 ${ }^{-}$	681000－	180000	Sbt0000	Yqı［əols Kolly emud 1 d
snsejol	71830	$7 \forall O$ 이	1－7 ヨZIS	s603q ${ }^{\text {b }}$	posdq＊	dxes！pq ${ }^{\text {d }}$	Ojoq४	

LS9000＇0	9999000＇0	0	
$9 \mathrm{Sc} 000{ }^{\circ}$	9SZS000＇0	1	Yqı Knsnpul emud e\sex eubiv Id
L181000	99181000	0	
$818800{ }^{\circ}$	9818800．0	0	
S0－39L2	9LLO000＇0	1	
$\square \angle 1000{ }^{\circ}$	1ヵLL0000	0	
$\angle 90700^{\circ}$	00290t0＇0	\downarrow	Yqı Kuedmos wily
670000	L687000＇0	1	Yqı Ә！
¢0－ヨャ8 \downarrow	－870000＇0	0	Yqı le66unuew eke！
$868200{ }^{\circ}$	9L6E200＇0	1	
$8 \angle 6000{ }^{\circ}$	LLL6000＇0	1	Yqı eseyad eरer eueye M Id
ELE000＇0	9ZLE0000	1	Y $¢ \perp$ Kı
$\angle Z 900^{\circ}$	EOLZS00\％	0	Ya \perp exesnd unбurg euepıod Id
6199100	L6Ls9100	1	
Zg 21000	－29 21000	\downarrow	
snsp	170	snstqap	Sulutreinuew

Appendix 6

Output Regressions of Test Equation 3.5

Regression abnormal CFO

Descriptive Statistics

	Mean	Std. Deviation	N
abcfo	, 0000003	, 07834183	319
size	8,7182568	, 67311895	319
mtb	2,8226499	11,60521227	319
ni	, 0556797	, 12752350	319
sus	, 05	, 212	319

Correlations

		abcfo	size	mtb	ni	sus
Pearson Correlation		1,000	,079	, 010	, 045	,013
	size	,079	1,000	, 050	, 147	,037
	mtb	, 010	, 050	1,000	. 029	-,034
	ni	. 045	, 147	, 029	1,000	-,093
	sus	. 013	. 037	-,034	-,093	1,000
Sig. (1-tailed)	abcfo		,079	, 430	, 210	, 406
	size	, 079		, 184	-,004	, 252
	mtb	, 430	, 184		, 301	,272
	ni	,210	,004	, 301		,048
	sus	, 406	, 252	,272	. 048	
N	abcfo	319	319	319	319	319
	size	319	319	319	319	319
	mtb	319	319	319	319	319
	ni	319	319	319	319	319
	sus	319	319	319	319	319

Variables Entered/Removed

Model	Variables Entered	Variables Removed	Method
1	sus, mtt, size, ni		Enter

a. All requested variables entered.
b. Dependent Variable: abcfo

Model Summary ${ }^{\text {b }}$

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate	Durbin- Watson
1	, 087^{a}	, 008	,- 005	, 07853686	2,007

a. Predictors: (Constant), sus, mtb, size, ni
b. Dependent Variable: abcfo

ANOVA ${ }^{\text {b }}$

Model		Sum of Squares	df	Mean Square	F	Sig.
$\mathbf{1}$	Regression	, 015	4	, 004	, 606	, 659^{a}
	Residual	1,937	314	, 006		
	Total	1,952	318			

a. Predictors: (Constant), sus, mtb, size, ni
b. Dependent Variable: abcfo

Coefficients ${ }^{\text {a }}$

a. Dependent Variable: abcfo

Collinearity Diagnostics

Model	Dimension	Eigenvalue	Condition Index	Variance Proportions				
				(Constant)	size	mtb	ni	sus
1	1	2,408	1,000	- ,00	,00	,02	, 05	,01
	2	1,014	1,541	,00	,00	, 13	, 10	, 68
	3	,903	1,633	,00	, 00	, 80	. 15	. 05
	4	,673	1,892	,00	, 00	, 05	,68	, 25
	5	,003	28,823	1,00	1,00	,00	. 02	,00

a. Dependent Variable: abcfo

Residuals Statistics ${ }^{\text {a }}$

	Minimum	Maximum	Mean	Std. Deviation	N
Predicted Value	,- 0221091	, 0291988	, 0000003	, 00685487	319
Std. Predicted Value	$-3,225$	4,260	, 000	1,000	319
Standard Error of	, 005	, 073	, 008	, 006	319
Predicted Value	,- 0263968	, 0907991	, 0002365	.00864173	319
Adjusted Predicted Value	-1.38348	, 03060381	, 0000000	, 07804136	319
Residual	$-17,616$, 390	, 000	, 994	319
Std. Residual	$-17,709$, 390	,- 001	, 999	319
Stud. Residual	-1.39820	, 03096684	-.000236	, 07903114	319
Deleted Residual	$-504,170$, 390	$-1,526$	28,231	319
Stud. Deleted Residual	, 073	270,172	3,987	16,015	319
Mahal. Distance	, 000	, 667	, 003	, 039	319
Cook's Distance	, 000	, 850	, 013	, 050	319
Centered Leverage Value					

a. Dependent Variable: abcfo

Charts

Normal P-P Plot of Regression Standardized Residual

Nonparametric Correlations

Correlations

| | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

*. Correlation is significant at the 0.05 level (2-tailed)
${ }^{* *}$. Correlation is significant at the 0.01 level (2 -tailed)

Regression abnormal discretionary expenses

Descriptive Statistics

	Mean	Std. Deviation	\mathbf{N}
abdiexp	, 0000001	, 00206400	319
size	8,7182568	, 67311895	319
mtb	2,8226499	11,60521227	319
ni	, 0556797	, 12752350	319
sus	, 05	, 212	319

Correlations

		abdiexp	size	mtb	ni	sus
Pearson Correlation	abdiexp	1,000	-,023	-,006	,057	,017
	size	-,023	1,000	,050	,147	,037
	$m \mathrm{tb}$	-,006	,050	1,000	,029	-,034
	ni	- 1-057	. 147	-,029	1,000	-,093
	sus	, 017	, 037	-,.034	-,093	1,000
Sig. (1-tailed)	abdiexp		,338	, 461	,156	,380
	size	, 338		,184	,004	,252
	mtb	, 461	,184	.	,301	,272
	ni	,156	,004	,301	.	,048
	sus	,380	,252	, 272	,048	
N	abdiexp	319	319	319	319	319
	size	319	319	319	319	319
	mtb	319	319	319	319	319
	ni	319	319	319	319	319
	sus	319	319	319	319	319

Variables Entered/Removed

Model	Variables Entered	Variables Removed	Method
1	sus, mtb, size, ni		Enter

a. All requested variables entered.
b. Dependent Variable: abdiexp

Model Summary ${ }^{\text {b }}$

Model	\mathbf{R}	R Square	Adjusted R Square	Std. Error of the Estimate	Durbin- Watson
1	, 070^{a}	, 005	,- 008	, 00207203	1,967

a. Predictors: (Constant), sus, mtb, size, ni
b. Dependent Variable: abdiexp

a. Predictors: (Constant), sus, mtb, size, ni
b. Dependent Variable: abdiexp

Coefficients ${ }^{2}$

Model	Unstandardized Coefficients		Standardized Coefficients	t	Sig.	Collinearity Statistics	
	B	Std. Error	Beta			Tolerance	VIF
1 (Constant)	, 001	,002		,546	, 585		
size	,000	,000	-,034	-,588	, 557	,974	1,027
mtb	-8.7E-007	, 000	-,005	-,087	, 931	,996	1,004
ni	,001	, 001	,064	1,122	. .263	,968	1,033
sus	,000	. 001	. 024	. 429	,668	, 987	1,013

a. Dependent Variable: abdiexp

Collinearity Diagnostics

Model	Dimension	Eigenvalue	Condition Index	Variance Proportions				
				(Constant)	size	mtb	ni	sus
1	1	2,408	1,000	,00	, 00	,02	,05	, 01
	2	1,014	1,541	,00	,00	,13	,10	,68
	3	,903	1,633	,00	,00	, 80	,15	, 05
	4	. 673	1,892	,00	, 00	, 05	,68	,25
	5	, 003	28,823	1,00	1,00	, 00	, 02	. 00

a. Dependent Variable: abdiexp

Residuals Statistics ${ }^{\text {a }}$

	Minimum	Maximum	Mean	Std. Deviation	N
Predicted Value	,- 0008272	, 0006572	, 0000001	, 00014420	319
Std. Predicted Value	$-5,737$	4,556	, 000	1,000	319
Standard Error of	, 000	, 002	, 000	, 000	319
Predicted Value	,- 0012301	, 0051538	, 0000149	, 00032847	319
Adjusted Predicted Value	-.026483	, 00841353	, 00000000	, 00205896	319
Residual	$-12,781$	4,061	, 000	, 994	319
Std. Residual	$-12,803$	4,069	,- 002	, 999	319
Stud. Residual	-.026575	, 00844665	-.000015	, 00210154	319
Deleted Residual	$-18,491$	4,174	,- 020	1,254	319
Stud. Deleted Residual	, 073	270,172	3,987	16,015	319
Mahal. Distance	, 000	1,599	, 006	, 090	319
Cook's Distance	, 000	, 850	, 013	, 050	319
Centered Leverage Value					

a. Dependent Variable: abdiexp

Charts

Normal P-P Plot of Regression Standardized Residual

Dependent Variable: abdiexp

Scatterplot

Dependent Variable: abdiexp

Nonparametric Correlations

Correlations

[^1]
Appendix 7

Output Regressions of Test Equation 3.6

Regression abnormal production

Descriptive Statistics

	Mean	Std. Deviation	N
Abprod	,- 0000003	, 00282395	319
size	8,7182568	, 67311895	319
mtb	2,8226499	11,60521227	319
ni	, 0556797	, 12752350	319
sus	, 05	, 212	319

Correlations

		Abprod	size	mtb	ni	sus
Pearson Correlation	Abprod	1,000	,066	, 035	-, 172	-,005
	size	,066	1,000	,050	, 147	,037
	mtb	,035	,050	1,000	,029	-,034
	ni	-, 172	. 147	, 029	1,000	-,093
	sus	-, 005	, 037	-,034	-,093	1,000
Sig. (1-tailed)	Abprod		, 121	,266	,001	,464
	size	, 121		,184	, 004	,252
	mtb	,266	, 184		, 301	,272
	ni	,001	,004	,301		,048
	sus	,464	, 252	, 272	, 048	
N	Abprod	319	319	319	319	319
	size	319	319	319	319	319
	mtb	319	319	319	319	319
	ni	319	319	319	319	319
	sus	319	319	319	319	319

Variables Entered/Removed

Model	Variables Entered	Variables Removed	Method
1	sus, mtb, size, ni		Enter

a. All requested variables entered.
b. Dependent Variable: Abprod

Model Summary ${ }^{\text {b }}$

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate	Durbin- Watson
1	, 200^{a}	, 040	, 028	, 00278463	1,957

a. Predictors: (Constant), sus, mtb, size, ni
b. Dependent Variable: Abprod

a. Predictors: (Constant), sus, mtb, size, ni
b. Dependent Variable: Abprod

Coefficients ${ }^{\text {a }}$

a. Dependent Variable: Abprod

Collinearity Diagnostics

Model	Dimension	Eigenvalue	Condition Index	Variance Proportions				
				(Constant)	size	mtb	ni	sus
1	1	2,408	1,000	,00	,00	,02	,05	,01
	2	1,014	1,541	,00	,00	, 13	, 10	,68
	3	,903	1,633	,00	,00	, 80	,15	,05
	4	,673	1,892	,00	,00	,05	,68	,25
	5	,003	28,823	1,00	1,00	,00	,02	,00

a. Dependent Variable: Abprod

Residuals Statistics ${ }^{\text {a }}$

	Minimum	Maximum	Mean	Std. Deviation	N
Predicted Value	,- 0026920	, 0033166	,- 0000003	, 00056394	319
Std. Predicted Value	$-4,773$	5,882	, 000	1,000	319
Standard Error of	, 000	, 003	, 000	, 000	319
Predicted Value					
Adjusted Predicted Value	,- 0075168	, 0038320	,- 0000278	, 00071313	319
Residual	-.021163	, 02355068	, 0000000	, 00276706	319
Std. Residual	$-7,600$	8,457	, 000	, 994	319
Stud. Residual	$-7,615$	8,472	, 003	1,001	319
Deleted Residual	-.021246	, 02363224	, 00002748	, 00285929	319
Stud. Deleted Residual	$-8,420$	9,630	, 007	1,066	319
Mahal. Distance	, 073	270,172	3,987	16,015	319
Cook's Distance	, 000	2,703	, 010	, 151	319
Centered Leverage Value	, 000	, 850	, 013	, 050	319

a. Dependent Variable: Abprod

Charts

Normal P-P Plot of Regression Standardized Residual

Scatterplot

Dependent Variable: Abprod

Nonparametric Correlations

			size	mtb	ni	sus	Standardized Residual
Spearman's rho	size	Correlation Coefficient	1,000	. 026	,136*	,032	-,111*
		Sig. (2-tailed)	.	,649	, 015	,567	,048
		N	319	319	319	319	319
	mtb	Correlation Coefficient	, 026	1,000	, 234**	-,113*	-,262**
		Sig. (2-tailed)	,649		,000	,043	,000
		N	319	319	319	319	319
	ni	Correlation Coefficient	,136*	.234**	1,000	-,200**	,011
		Sig. (2-tailed)	, 015	,000		,000	,839
		N	319	319	319	319	319
	sus	Correlation Coefficient	,032	-,113*	-,200**	1,000	,014
		Sig. (2-tailed)	. 567	,043	,000		,806
		N	319	319	319	319	319
	Stand	Correlation Coefficient	-,111*	$-, 262^{*+}$,011	,014	1,000
		Sig. (2-tailed)	. 048	,000	,839	,806	
		N	319	319	319	319	319

[^2]**. Correlation is significant at the 0.01 level (2-tailed).

Appendix 8

Output Regressions of Test Equation 3.7

Regression abnormal discretionary expenses

a. Predictors: (Constant), clsus, size, mtb, locasus, ni, Debt, cl, loca, debtsus, Sus
b. Dependent Variable: Abdisexp

ANOVA ${ }^{\text {b }}$

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	.000	10	.000	3.899	$.000^{\text {a }}$
	Residual	.001	308	.000		
	Total	.001	318			

a. Predictors: (Constant), clsus, size, mtb, locasus, ni, Debt, cl, loca, debtsus, Sus
b. Dependent Variable: Abdisexp

Coefficients ${ }^{\text {a }}$

Model		Unstandardized Coefficients		Standardized Coefficients Beta	t	Sig.	Collinearity Statistics	
		B	Std. Error				Tolerance	VIF
1	(Constant)	. 001	. 002		. 640	. 523	Tolerance	
	size	-7.6E-005	. 000	-. 025	-. 428	. 669	. 859	1.164
	mtb	-3.3E-006	. 000	-. 018	-. 340	. 734	. 989	1.011
	ni	. 001	. 001	. 043	. 735	. 463	. 830	1.205
	Sus	. 000	. 001	. 012	. 108	. 914	235	4.247
	loca	. 000	. 000	. 055	. 894	372	776	1.289
	Debt	. 000	. 000	-. 074	-1.264	. 207	. 845	1.184
	cl	-. 102	. 017	-. 342	-5.948	. 000	. 872	1.146
	locasus	. 000	. 001	-. 028	-. 274	. 784	. 276	3.625
	debtsus	. 000	. 001	. 027	. 287	. 774	. 331	3.018
	clsus	. 062	. 062	. 075	. 998	. 319	. 514	1.945

a. Dependent Variable: Abdisexp

Model	Dimension	Eigenvalue	Condition Index	Variance Proportions										
				(Constant)	size	mtb	ni	Sus	loca	Debt	d	locasus	debtsus	clsus
1	1	3.862	1.000	. 00	. 00	00	. 00	. 01	. 02	. 02	01	. 00	. 01	. 00
	2	2.272	1.304	. 00	. 00	01	. 02	. 02	. 00	. 01	. 00	. 02	. 03	. 02
	3	1.200	1.794	00	. 00	. 01	. 00	. 00	. 03	. 00	. 22	. 04	. 00	. 17
	4	1.025	1.942	. 00	. 00	. 00	. 42	. 00	. 14	. 00	. 06	. 00	. 00	00
	5	. 912	2.058	. 00	. 00	94	01	. 00	. 00	. 00	. 00	. 00	. 00	. 02
	6	610	2.515	. 00	. 00	03	. 03	. 00	. 01	. 13	. 54	. 05	. 01	. 18
	7	416	3.048	. 00	. 00	. 00	15	. 00	. 47	. 41	. 05	. 00	03	. 12
	8	. 346	3.339	. 00	. 00	. 00	31	03	. 27	. 20	. 10	. 00	03	. 12
	9	. 220	4.186	00	. 00	. 00	. 00	. 13	. 00	. 17	. 00	. 11	. 90	. 12
	10	. 135	5.351	. 00	00	. 00	. 02	. 80	. 04	. 00	. 01	. 77	00	37
	11	003	38.355	1.00	1.00	. 00	. 03	. 00	. 01	. 06	. 00	. 00	00	00

Residuals Statistics ${ }^{\text {a }}$

	Minimum	Maximum	Mean	Std. Deviation	N
Predicted Value	-.0059101	.0006686	.0000001	.00069187	319
Std. Predicted Value	-8.542	.966	.000	1.000	319
Standard Error of	.000	.002	.000		.000
Predicted Value			319		
Adjusted Predicted Value	-.0076042	.0030516	.0000063	.00079020	319
Residual	-.020600	.01321268	.00000000	.00194459	319
Std. Residual	-10.426	6.687	.000	.984	319
Stud. Residual	-12.000	7.373	-.001	1.066	319
Deleted Residual	-.027292	.01606418	-.000006	.00230851	319
Stud. Deleted Residual	-16.418	8.112	-.013	1.262	319
Mahal. Distance	1.277	276.155	9.969	26.585	319
Cook's Distance	.000	4.253	.021	.247	319
Centered Leverage Value	.004	.868	.031	.084	319

a. Dependent Variable: Abdisexp

Normal P-P Plot of Regression Standardized Residual

Dependent Variable: Abdisexp

Scatterplot

Dependent Variable: Abdisexp

Variables Entered/Removed

Model	Variables Entered	Variables Removed	Method
1	clsus, size, mtb, locasus, ni, Debt, cl, loca, debtsus, Sus		

a. All requested variables entered.
b. Dependent Variable: Abcogs

Model Summary ${ }^{b}$

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate	Durbin- Watson
1	$.419^{\mathrm{a}}$.175	.148	.00295505	1.995

a. Predictors: (Constant), clsus, size, mtb, locasus, ni, Debt, cl, loca, debtsus, Sus
b. Dependent Variable: Abcogs

ANOVA ${ }^{\text {b }}$

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	.001	10	.000	6.544	$.000^{\circ}$
	Residual	.003	308	.000		
	Total	.003	318			

a. Predictors: (Constant), clsus, size, mtb, locasus, ni, Debt, cl, loca, debtsus, Sus
b. Dependent Variable: Abcogs

Coefficients ${ }^{\text {a }}$

Model		Unstandardized Coefficients		StandardizedCoefficients	t	Sig.	Collinearity Statistics	
		B	Std. Error				Tolerance	VIF
1	(Constant)	-. 002	. 002		-. 698	. 486		
	size	. 000	. 000	. 029	. 519	. 604	. 859	1.164
	mtb	$1.55 \mathrm{E}-005$. 000	. 056	1.082	. 280	. 989	1.011
	ni	-. 003	. 001	-. 120	-2.115	. 035	. 830	1.205
	Sus	-. 001	. 002	-. 034	-. 321	. 749	235	4.247
	loca	. 000	. 000	-. 062	-1.051	- 294	. 776	1.289
	Debt	. 000	. 000	. 048	. 853	- 394	. 845	1.184
	cl	. 190	. 026	. 410	7.393	T 000	. 872	1.146
	locasus	. 001	. 002	. 035	. 359	. 719	. 276	3.625
	debtsus	-. 001	. 002	-. 028	-. 306	. 760	. 331	3.018
	clsus	-. 089	. 093	-. 069	-. 960	. 338	. 514	1.945

a. Dependent Variable: Abcogs

Collinearity Dlagnostics

Model	Dimension	Eigenvalue	Condition Index	Vaniance Proportions										
				(Constant)	size	mit	ni	Sus	loca	Debt	cl	locasus	deblsus	clsus
1	1	3.862	1.000	. 00	. 00	. 00	. 00	. 01	. 02	. 02	01	00	01	. 00
	2	2.272	1.304	. 00	. 00	. 01	. 02	. 02	. 00	. 01	00	. 02	. 03	. 02
	3	1.200	1.794	. 00	. 00	. 01	. 00	. 00	. 03	. 00	22	. 04	. 00	. 17
	4	1.025	1.942	00	00	. 00	. 42	. 00	. 14	. 00	. 06	. 00	. 00	. 00
	5	. 912	2.058	. 00	. 00	. 94	. 01	. 00	. 00	. 00	. 00	. 00	00	. 02
	6	. 610	2.515	. 00	. 00	. 03	. 03	. 00	. 01	. 13	54	. 05	01	. 18
	7	. 416	3.048	. 00	. 00	. 00	. 15	. 00	. 47	. 41	. 05	. 00	. 03	. 12
	8	. 346	3.339	. 00	00	. 00	.31	. 03	. 27	. 20	. 10	. 00	. 03	. 00
	9	220	4.186	. 00	. 00	. 00	. 00	. 13	. 00	. 17	. 00	. 11	. 90	12
	10	. 135	5.351	. 00	. 00	. 00	. 02	. 80	. 04	. 00	. 01	. 77	00	. 37
	11	. 003	38.355	1.00	1.00	. 00	. 03	.00	. 01	. 06	00	. 00	00	. 00

a. Dependent Variable: Abcogs

Residuals Statistics ${ }^{\text {a }}$

	Minimum	Maximum	Mean	Std. Deviation	N
Predicted Value	-.0020926	.0108611	.0000000	.00134053	319
Std. Predicted Value	-1.561	8.102	.000	1.000	319
Standard Error of	.000	.003	.000	.000	319
Predicted Value				.00141692	319
Adjusted Predicted Value	-.0047414	.0121816	-.0000205	.000	319
Residual	-.017389	.02917893	.00000000	.00290821	.984
Std. Residual	-5.885	9.874	.000	319	
Stud. Residual	-6.369	11.365	.002	1.060	319
Deleted Residual	-.020369	.03865756	.00002054	.00342140	319
Stud. Deleted Residual	-6.824	14.892	.012	1.211	319
Mahal. Distance	1.277	276.155	9.969	26.585	319
Cook's Distance	.000	3.815	.020	.223	319
Centered Leverage Value	.004	.868	.031	.084	319

a. Dependent Variable: Abcogs

Normal P-P Plot of Regression Standardized Residual

Scatterplot

Appendix 9
Output Regressions of Test Equation 3.8

Regression abnormal CFO

Variables Entered/Removed ${ }^{\text {P }}$

Model	Variables Entered	Variables Removed	Method
1	clsus, size, mtb, locasus, ni, Debt, cl, loca, debtsus, Sus		

a. All requested variables entered.
b. Dependent Variable: Abcfo

> Model Summaryb

Model	\mathbf{R}	R Square	Adjusted R Square	Std. Error of the Estimate	Durbin- Watson
1	$.102^{\mathrm{a}}$.010	-.022	.07918824	2.002

a. Predictors: (Constant), clsus, size, mtb, locasus, ni, Debt, cl, loca, debtsus, Sus
b. Dependent Variable: Abcfo

Coefficients ${ }^{\text {a }}$

Model		Unstandardized Coefficients		Standardized Coefficients	t	Sig.	Collinearity Statistics	
		B	Std. Error	Beta			Tolerance	VIF
1	(Constant)	-. 065	. 060		-1.071	285		
	size	. 007	. 007	. 057	. 933	. 351	. 859	1.164
	mtb	1.33E-005	. 000	. 002	. 035	. 972	. 989	1.011
	ni	. 033	. 038	. 054	. 864	- 388	830	1.205
	Sus	. 014	. 043	. 037	. 317	. 751	. 235	4.247
	loca	. 008	. 011	. 046	. 709	. 479	. 776	1.289
	Debt	. 005	. 010	. 030	. 490	. 625	. 845	1.184
	cl	. 028	. 688	. 002	. 041	. 968	. 872	1.146
	locasus	-. 013	. 051	-. 027	-. 250	. 803	. 276	3.625
	debtsus	-. 004	. 047	-. 008	-. 085	. 933	. 331	3.018
	clsus	-. 159	2.491	-. 005	-. 064	. 949	. 514	1.945

a. Dependent Variable: Abcfo

ANOVA ${ }^{\text {b }}$

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	.020	10	.002	.324	$.975^{a}$
	Residual	1.931	308	.006		
	Total	1.952	318			

a. Predictors: (Constant), clsus, size, mtb, locasus, ni, Debt, cl, loca, debtsus, Sus
b. Dependent Variable: Abcfo

Collinearity Diagnostics

Model	Dimension	Eigenvalue	ConditionIndex	Variance Proportions										
				(Constant)	size	mitb	ni	Sus	loca	Debt	cl	locasus	debisus	clsus
1	1	3.862	1.000	. 00	. 00	00	00	01	02	. 02	. 01	00	. 01	00
	2	2.272	1.304	. 00	00	. 01	. 02	. 02	. 00	. 01	. 00	. 02	. 03	. 02
	3	1.200	1.794	. 00	00	. 01	. 00	. 00	. 03	. 00	. 22	. 04	. 00	. 17
	4	1.025	1.942	. 00	00	. 00	. 42	. 00	. 14	. 00	. 06	00	00	. 00
	5	. 912	2.058	. 00	$\bigcirc .00$. 94	01	. 00	. 00	. 00	. 00	. 00	. 00	. 02
	6	. 610	2.515	00	. 00	. 03	. 03	. 00	. 01	. 13	. 54	. 05	. 01	. 18
	7	. 416	3.048	. 00	. 00	. 00	. 15	. 00	. 47	. 41	05	. 00	. 03	. 12
	8	. 346	3.339	00	.00	. 00	. 31	. 03	. 27	. 20	. 10	. 00	. 03	. 00
	9	. 220	4.186	. 00	. 00	. 00	. 00	. 13	. 00	. 17	. 00	11	. 90	. 12
	10	. 135	5.351	00	. 00	00	02	. 80	0.04	00	. 01	77	. 00	. 37
	11	. 003	38.355	1.00	1.00	. 00	. 03	. 00	. 01	. 08	. 00	. 00	. 00	. 00

a. Dependent Variable: Abcfo

Residuals Statistics

	Minimum	Maximum	Mean	Std. Deviation	N
Predicted Value	-.0224641	.0243567	.0000003	.00799119	319
Std. Predicted Value	-2.811	3.048	.000	1.000	319
Standard Error of	.007	.074	.012	.008	319
Predicted Value	-0270933	.1035871	.0002963	.01010450	319
Adjusted Predicted Value	-1.37965	.03300693	.00000000	.07793320	319
Residual	-17.422	.417	.000	.984	319
Std. Residual	-17.540	.460	-.001	.991	319
Stud. Residual	-1.39839	.04013033	-.000296	.07922757	319
Deleted Residual	-529.277	.459	-1.605	29.637	319
Stud. Deleted Residual	1.277	276.155	9.969	26.585	319
Mahal. Distance	.000	.380	.002	.022	319
Cook's Distance	.004	.868	.031	.084	319
Centered Leverage Value	.0				

a. Dependent Variable: Abcfo

Normal P-P Plot of Regression Standardized Residual

Regression abnormal discretionary expenses

Variables Entered/Removed ${ }^{\text {P }}$

Model	Variables Entered	Variables Removed	Method
1	clsus, size, mtb, locasus, ni, Debt, cl, loca, debtsus, Sus		

a. All requested variables entered.
b. Dependent Variable: Abdisexp

Model Summary ${ }^{\text {b }}$

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate	Durbin- Watson
1	$.335^{a}$.112	.084	.00197590	2.034

a. Predictors: (Constant), clsus, size, mtb, locasus, ni, Debt, cl, loca, debtsus, Sus
b. Dependent Variable: Abdisexp

a. Predictors: (Constant), clsus, size, mtb, locasus, ni, Debt, cl, loca, debtsus, Sus
b. Dependent Variable: Abdisexp

Coefficients ${ }^{\mathbf{a}}$

Model	Unstandardized Coefficients		Standardized Coefficients Beta	t	Sig.	Collinearity Statistics	
	B	Std. Error				Tolerance	VIF
1 (Constant)	. 001	. 002		. 640	. 523		
size	-7.6E-005	. 000	-. 025	-. 428	. 669	. 859	1.164
mtb	-3.3E-006	. 000	-. 018	-. 340	. 734	. 989	1.011
ni	. 001	. 001	. 043	. 735	. 463	. 830	1.205
Sus	. 000	. 001	. 012	. 108	. 914	. 235	4.247
loca	. 000	. 000	. 055	. 894	. 372	. 776	1.289
Debt	. 000	. 000	-. 074	-1.264	. 207	. 845	1.184
cl	-. 102	. 017	-. 342	-5.948	. 000	. 872	1.146
locasus	. 000	. 001	-. 028	-. 274	. 784	. 276	3.625
debtsus	. 000	. 001	. 027	. 287	. 774	. 331	3.018
clsus	. 062	. 062	. 075	. 998	. 319	. 514	1.945

a. Dependent Variable: Abdisexp

Model	Dimension	Eigenvalue	Condition Index	Variance Proportions										
				(Constant)	size	mtb	ni	Sus	loca	Debt	cl	locasus	debtsus	clsus
1	1	3.862	1.000	. 00	. 00	. 00	. 00	. 01	. 02	02	. 01	. 00	. 01	00
	2	2.272	1.304	. 00	. 00	. 01	. 02	. 02	. 00	. 01	. 00	. 02	. 03	. 02
	3	1.200	1.794	. 00	. 00	- 01	. 00	. 00	. 03	00	22	. 04	. 00	17
	4	1.025	1.942	. 00	00	00	42	. 00	14	00	06	00	00	00
	5	. 912	2.058	. 00	. 00	. 94	. 01	. 00	. 00	. 00	. 00	. 00	. 00	02
	6	. 610	2.515	. 00	. 00	. 03	. 03	. 00	. 01	.13	. 54	. 05	. 01	. 18
	7	. 416	3.048	. 00	00	. 00	15	. 00	. 47	41	. 05	. 00	. 03	12
	8	. 346	3.339	. 00	. 00	. 00	.31	. 03	27	20	10	00	03	00
	9	. 220	4.186	. 00	. 00	. 00	. 00	. 13	. 00	17	. 00	. 11	. 90	12
	10	. 135	5.351	. 00	. 00	. 00	. 02	. 80	. 04	. 00	. 01	. 77	. 00	37
	11	. 003	38.355	1.00	1.00	. 00	. 03	. 00	. 01	. 06	. 00	. 00	. 00	. 00

a. Dependent Variable: Abdisexp

Residuals Statistics

	Minimum	Maximum	Mean	Std. Deviation	N
Predicted Value	-.0059101	.0006686	.0000001	.00069187	319
Std. Predicted Value	-8.542	.966	.000	1.000	319
Standard Error of	.000	.002	.000	.000	319
Predicted Value					
Adjusted Predicted Value	-.0076042	.0030516	.0000063	.00079020	319
Residual	-.020600	.01321268	.00000000	.00194459	319
Std. Residual	-10.426	6.687	.000	.984	319
Stud. Residual	-12.000	7.373	-.001	1.066	319
Deleted Residual	-.027292	.01606418	-.000006	.00230851	319
Stud. Deleted Residual	-16.418	8.112	-.013	1.262	319
Mahal. Distance	1.277	276.155	9.969	26.585	319
Cook's Distance	.000	4.253	.021	.247	319
Centered Leverage Value	.004	.868	.031	.084	319

a. Dependent Variable: Abdisexp

Normal P-P Plot of Regression Standardized Residual

Regression abnormal production

Variables Entered/Removed ${ }^{\text {P }}$

Model	Variables Entered	Variables Removed	Method
1	clsus, size, mtb, locasus, ni, Debt, cl, loca, debtsus, Sus		

a. All requested variables entered.
b. Dependent Variable: Abprod

Model Summaryb

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate	Durbin- Watson
1	$.362^{\text {a }}$.131	.103	.00267474	1.949

a. Predictors: (Constant), clsus, size, mtb, locasus, ni, Debt, cl, loca, debtsus, Sus
b. Dependent Variable: Abprod

ANOVA ${ }^{\text {b }}$

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	.000	10	.000	4.647	$.000^{\text {a }}$
	Residual	.002	308	.000		
	Total	.003	318			

a. Predictors: (Constant), clsus, size, mtb, locasus, ni, Debt, cl, loca, debtsus, Sus
b. Dependent Variable: Abprod

Coefficients ${ }^{\text {a }}$

Model	Unstandardized Coefficients		Standardized Coefficients Beta	t	Sig.	Collinearity Statistics	
	B	Std. Error				Tolerance	VIF
1 (Constant)	-. 004	. 002		-2.047	. 042		
size	. 000	. 000	. 117	2.034	. 043	. 859	1.164
mtb	1.25E-005	. 000	. 051	. 964	. 336	. 989	1.011
ni	-. 004	. 001	-. 187	-3.211	. 001	. 830	1.205
Sus	-. 001	. 001	-. 048	-. 443	. 658	. 235	4.247
loca	. 000	. 000	-. 077	-1.283	. 200	. 776	1.289
Debt	. 000	. 000	-. 020	-. 348	. 728	. 845	1.184
cl	. 117	. 023	. 287	5.051	. 000	. 872	1.146
locasus	. 000	. 002	. 020	. 194	. 846	. 276	3.625
debtsus	. 000	5.002	-. 015	-. 162	. 871	. 331	3.018
clsus	. 029	- 084	. 025	. 340	. 734	. 514	1.945

a. Dependent Variable: Abprod

Colinnearty Diagnostice

Model	Dimension	Eigenvalue	Condition Index	Variance Proportions										
				(Constant)	size	mtb	ni	Sus	loca	Debt	cl	łocasus	debtsus	clsus
1	1	3.862	1.000	. 00	.00	00	. 00	. 01	. 02	. 02	. 01	00	. 01	. 00
	2	2.272	1.304	00	. 00	01	. 02	. 02	. 00	. 01	. 00	. 02	. 03	. 02
	3	1.200	1.794	. 00	. 00	.01	. 00	. 00	. 03	. 00	. 22	. 04	. 00	. 17
	4	1.025	1.942	. 00	. 00	. 00	. 42	. 00	. 14	. 00	. 06	. 00	. 00	. 00
	5	. 912	2.058	. 00	. 00	. 94	. 01	. 00	. 00	. 00	. 00	. 00	. 00	. 02
	6	. 610	2.515	. 00	. 00	. 03	. 03	. 00	. 01	. 13	. 54	. 05	. 01	. 18
	7	. 416	3.048	. 00	. 00	. 00	. 15	. 00	. 47	41	. 05	. 00	. 03	. 12
	8	. 346	3.339	. 00	. 00	. 00	. 31	. 03	. 27	. 20	. 10	. 00	. 03	. 00
	9	. 220	4.186	. 00	. 00	. 00	. 00	. 13	1.00	. 17	. 00	. 11	90	12
	10	. 135	5.351	. 00	. 00	. 00	. 02	. 80	. 04	. 00	. 01	. 77	00	. 37
	11	003	38.355	1.00	1.00	00	. 03	00	. 01	. 06	00	. 00	00	. 00

a. Dependent Variable: Abprod

Residuals Statistics

	Minimum	Maximum	Mean	Std. Deviation	N
Predicted Value	-.0028037	.0066474	-.0000003	.00102244	319
Std. Predicted Value	-2.742	6.502	.000	1.000	319
Standard Error of	.000	.002	.000	.000	319
Predicted Value					
Adjusted Predicted Value	-.0053040	.0113423	-.0000170	.00117343	319
Residual	-.026922	.01697255	.00000000	.00263235	319
Std. Residual	-10.065	6.345	.000	.984	319
Stud. Residual	-11.098	7.304	.001	1.048	319
Deleted Residual	-.032732	.02248600	.00001669	.00302854	319
Stud. Deleted Residual	-14.304	8.019	-.004	1.190	319
Mahal. Distance	1.277	276.155	9.969	26.585	319
Cook's Distance	.000	2.417	.017	.168	319
Centered Leverage Value	.004	.868	.031	.084	319

a. Dependent Variable: Abprod

Normal P-P Plot of Regression Standardized Residual

Appendix 10

Output Regressions of Test Equation 3.9

Regression abnormal CFO

Variables Entered/Removed ${ }^{p}$

Model	Variables Entered	Variables Removed	Method
1	clsus, size, mtb, locasus, ni, Debt, cl, loca, debtsus, Sus		

a. All requested variables entered.
b. Dependent Variable: Abcfo

Model Summary ${ }^{\text {b }}$

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate	Durbin- Watson
1	$.102^{\text {a }}$.010	-.022	.07918824	2.002

a. Predictors: (Constant), clsus, size, mtb, locasus, ni, Debt, cl, loca, debtsus, Sus
b. Dependent Variable: Abcfo

a. Predictors: (Constant), clsus, size, mtb, locasus, ni, Debt, cl, loca, debtsus, Sus
b. Dependent Variable: Abcfo

Coefficients ${ }^{\text {a }}$

Model		Unstandardized Coefficients		$\begin{gathered} \text { Standardized } \\ \text { Coefficients } \\ \hline \text { Beta } \\ \hline \end{gathered}$	t	Sig.	Collinearity Statistics	
		B	Std. Error				Tolerance	VIF
1	(Constant)	-. 065	. 060		-1.071	. 285		
	size	. 007	. 007	. 057	. 933	. 351	. 859	1.164
	mtb	1.33E-005	. 000	. 002	. 035	. 972	. 989	1.011
	ni	. 033	. 038	. 054	. 864	. 388	. 830	1.205
	Sus	. 014	. 043	. 037	. 317	. 751	. 235	4.247
	loca	. 008	. 011	. 046	. 709	. 479	. 776	1.289
	Debt	. 005	. 010	. 030	. 490	. 625	. 845	1.184
	cl	. 028	. 688	. 002	. 041	. 968	. 872	1.146
	locasus	-. 013	. 051	-. 027	-. 250	. 803	. 276	3.625
	debtsus	-. 004	$\square .047$	-. 008	-. 085	. 933	. 331	3.018
	clsus	-. 159	2.491	-. 005	-. 064	. 949	. 514	1.945

a. Dependent Variable: Abcfo

Residuals Statistics

	Minimum	Maximum	Mean	Std. Deviation	N
Predicted Value	-.0224641	.0243567	.0000003	.00799119	319
Std. Predicted Value	-2.811	3.048	.000	1.000	319
Standard Error of	.007	.074	.012	.008	319
Predicted Value					319
Adjusted Predicted Value	-.0270933	.1035871	.0002963	.01010450	319
Residual	-1.37965	.03300693	.00000000	.07793320	319
Std. Residual	-17.422	.417	.000	.984	319
Stud. Residual	-17.540	.460	-.001	.991	319
Deleted Residual	-1.39839	.04013033	-.000296	.07922757	319
Stud. Deleted Residual	-529.277	.459	-1.605	29.637	319
Mahal. Distance	1.277	276.155	9.969	26.585	319
Cook's Distance	.000	.380	.002	.022	319
Centered Leverage Value	.004	.868	.031	.084	319

a. Dependent Variable: Abcfo

Normal P-P Plot of Regression Standardized Residual

Regression abnormal discretionary expenses

Variables Entered/Removed ${ }^{\text {P }}$

Model	Variables Entered	Variables Removed	Method
1	llsus, size, mtb, locasus, ni, Debt, cl, loca, debtsus, Sus		

a. All requested variables entered.
b. Dependent Variable: Abdisexp

Model Summary ${ }^{b}$

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate	Durbin- Watson
1	$.335^{\text {a }}$.112	.084	.00197590	2.034

a. Predictors: (Constant), clsus, size, mtb, locasus, ni, Debt, cl, loca, debtsus, Sus
b. Dependent Variable: Abdisexp

Model		Sum of Squares	df	Mean Square	F	Sig.
$\mathbf{1}$	Regression	.000	10	.000	3.899	$.000^{a}$
	Residual	.001	308	.000		
	Total	.001	318			

a. Predictors: (Constant), clsus, size, mtb, locasus, ni, Debt, cl , loca, debtsus, Sus
b. Dependent Variable: Abdisexp

Coefficients ${ }^{\text {a }}$

Model	Unstandardized Coefficients		Standardized Coefficients Beta	t	Sig.	Collinearity Statistics	
	B	Std. Error				Tolerance	VIF
1 (Constant)	. 001	. 002		. 640	. 523		
size	-7.6E-005	. 000	-. 025	-. 428	. 669	. 859	1.164
mtb	-3.3E-006	. 000	-. 018	-. 340	. 734	. 989	1.011
ni	. 001	. 001	. 043	. 735	. 463	. 830	1.205
Sus	. 000	. 001	. 012	. 108	. 914	. 235	4.247
loca	. 000	. 000	. 055	. 894	. 372	. 776	1.289
Debt	. 000	. 000	-. 074	-1.264	. 207	. 845	1.184
cl	-. 102	. 017	-. 342	-5.948	. 000	. 872	1.146
locasus	. 000	. 001	-. 028	-. 274	. 784	. 276	3.625
debtsus	. 000	- . 001	. 027	. 287	. 774	. 331	3.018
clsus	. 062	. 062	. 075	. 998	. 319	. 514	1.945

a. Dependent Variable: Abdisexp

	Minimum	Maximum	Mean	Std. Deviation	\mathbf{N}
Predicted Value	-.0059101	.0006686	.0000001	.00069187	319
Std. Predicted Value	-8.542	.966	.000	1.000	319
Standard Error of	.000	.002	.000	.000	319
Predicted Value	-0				
Adjusted Predicted Value	-.0076042	.0030516	.0000063	.00079020	319
Residual	-.020600	.01321268	.00000000	.00194459	319
Std. Residual	-10.426	6.687	.000	.984	319
Stud. Residual	-12.000	7.373	-.001	1.066	319
Deleted Residual	-.027292	.01606418	-.000006	.00230851	319
Stud. Deleted Residual	-16.418	8.112	-.013	1.262	319
Mahal. Distance	1.277	276.155	9.969	26.585	319
Cook's Distance	.000	4.253	.021	.247	319
Centered Leverage Value	.004	.868	.031	.084	319

a. Dependent Variable: Abdisexp

Normal P-P Plot of Regression Standardized Residual

Regression abnormal production

Variables Entered/Removed ${ }^{\text {P }}$

Model	Variables Entered	Variables Removed	Method
1	clsus, size, mtb, locasus, ni, Debt, cl, loca, debtsus, Sus		

a. All requested variables entered.
b. Dependent Variable: Abprod

Model Summary ${ }^{\text {b }}$

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate	Durbin- Watson
1	$.362^{\text {a }}$.131	.103	.00267474	1.949

a. Predictors: (Constant), clsus, size, mtb, locasus, ni, Debt, cl, loca, debtsus, Sus
b. Dependent Variable: Abprod

ANOVA ${ }^{\text {b }}$

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	.000	10	.000	4.647	$.000^{\text {a }}$
	Residual	.002	308	.000		
	Total	.003	318			

a. Predictors: (Constant), clsus, size, mtb, locasus, ni, Debt, cl, loca, debtsus, Sus
b. Dependent Variable: Abprod

Coefficients ${ }^{\text {a }}$

a. Dependent Variable: Abprod

Model	Dimension	Eigenvalue	Condition Index	(Constant)	size	m
-	1	3.862	1.000	. 00	. 00	
	2	2.272	1.304	. 00	. 00	
	3	1.200	1.794	. 00	. 00	
	4	1.025	1.942	. 00	. 00	
	5	. 912	2.058	. 00	. 00	
	6	. 610	2.515	. 00	. 00	
	7	. 416	3.048	. 00	. 00	
	8	. 346	3.339	. 00	. 00	
	9	. 220	4.186	. 00	. 00	
	10	. 135	5.351	. 00	. 00	
	11	. 003	38.355	1.00	1.00	
a. Dependent Variable: Abprod						

	Minimum	Maximum	Mean	Std. Deviation	N
Predicted Value	-.0028037	.0066474	-.0000003	.00102244	319
Std. Predicted Value	-2.742	6.502	.000	1.000	319
Standard Error of	.000	.002	.000	.000	319
Predicted Value	-0053040	.0113423	-.0000170	.00117343	319
Adjusted Predicted Value	-.026922	.01697255	.00000000	.00263235	319
Residual	-10.065	6.345	.000	.984	319
Std. Residual	-11.098	7.304	.001	1.048	319
Stud. Residual	-.032732	.02248600	.00001669	.00302854	319
Deleted Residual	-14.304	8.019	-004	1.190	319
Stud. Deleted Residual	1.277	276.155	9.969	26.585	319
Mahal. Distance	.000	2.417	.017	.168	319
Cook's Distance	.868	.031	.084	319	
Centered Leverage Value	.004	.868			

a. Dependent Variable: Abprod

Charts

Normal P-P Plot of Regression Standardized Residual

[^0]: a. Dependent Variable: Abcogs

[^1]: *. Correlation is significant at the 0.05 level (2-tailed).
 **. Correlation is significant at the 0.01 level (2-tailed)

[^2]: *. Correlation is significant at the 0.05 level (2-tailed).

