INVENTORY CHANGE

 AND STOCK PRICES: AN EMPIRICAL INVESTIGATIONPresented as a Partial Fulfillment of the Requirements to Obtain the Bachelor Degree in Accounting Department

Student Number: 02312072

DEPARTMENT OF ACCOUNTING INTERNATIONAL PROGRAM
 FACULTY OF ECONOMICS ISLAMIC UNIVERSITY OF INDONESIA YOGYAKARTA 2006

INVENTORY CHANGE AND STOCK PRICES:

 AN EMPIRICAL INVESTIGATION

 AN EMPIRICAL INVESTIGATION}

Language Advisor,

June $3^{\text {rd }}, 2006$

INVENTORY CHANGE AND STOCK PRICES: AN EMPIRICAL INVESTIGATION

A BACHELOR DEGREE THESIS

By

NUR INTAN KEMALAHATI

Student Number: 02312072

Defended before the Board of Examiners on June, 2006
and Declared Acceptable

Board of Examiners

Examiner 1

Hadri Kusuma, Dr., MBA
Examiner 2

Yuni Nustini, Dra., MAFIS., Ak.

Yogyakarta, June $27^{\text {th }}, 2006$

Acknowledgement

Bismillahirrohmanirrohiim

Alhamdulillahirrabbil'alamiin, all praise and grateful only be to Allah S.W.T, The Cherisher and Sustainer of the World, the Creator and the Owner of everything, simply because only by His goodwill and permission, this thesis entitled "INVENTORY CHANGES AND STOCK PRICE: AN EMPIRICAL INVESTIGATION" can be completely finished. Shalawat and salaam for the Prophet Muhammad S.A.W, the great inspiration. The researcher takes this opportunity to express sincere appreciation to the individuals who have made significant contribution to this thesis:

1. My beloved Parent, Mr. Ir. H. Sudjadi and Mrs. Mardhiyah, for their support and encouragement, and who pray day and night to my success since childhood up to completing this thesis. They always remind the researcher to behave patiently, fearing to Allah, contributing to all human life and always keep optimistic with what can I do to myself, especially, and to people that I loved.
2. Mr. Hadri Kusuma, for all the patience, inspiration, support and help in guiding the researcher from the beginning until finishing this thesis and also for letting me to have a big experience as his assistant for Financial Management course for two periods. He inspires me in many ways of my life since I met him on Financial Management course.
3. Mr. Abhirama S.D.P., for the time, the opportunity, and the advice in checking the grammatical points.
4. Mr. Asma'I Ishak, as the Dean of Economics Faculty, Islamic University of Indonesia for new period, and as the director of International Program in old period.
5. Mrs. Yuni Nustini, as my thesis examiner and as my DPA.
6. My brothers and sister, Mas Adhi, Mas Adit and Mbak Dephie, for their love, understanding, and computer that have been lent to me for years to complete my needs during my time as a student of FE UII.
7. My Cats, Kushi, Boris, Sylvester, and four new little kittens, because of them, I always cheerful all the time both in good and bad.
8. My old distant friends, Mas Ditta and Tio. Thanks for the joy and happiness, and everything that has been given to me. I will never forget it. You are my inspiration. Hopefully I can meet both of you again in the future.
9. My virtual friend, Suiyanto, for supporting me during good and bad times and listening to all of my stories within these two years.
10. My neighbor, Mas Taufiq, thanks for your help in guiding me through your thesis book. Even though you were not beside me when I went through it all alone.
11. All my peers and companions from MUHI, Selvy, Moel, Rismelsy, Rini, and Finishia. Thanks for being my true friend.
12. My old classmate in junior high, Laila. Thanks for keeping our friendship and being my really true friend.
13. All my colleagues, Ella (for being my $1^{\text {st }}$ friend in UII and introduced me with some things I never had in my life); Armando (Adit kakek) for being my true friend since high school up to now; Arie, Ricka, Dhini Syalala, and Fiki, for being my listeners and friends for studying; Mita, for being my friend of shopping; Alin (budhe), Ulla, Titin, and Heldy, for being my patient fortune teller. For the twins Mela-Meli, Aldi, Ujo, Dwi, Mba Sitta, Dini Mulya, Anom, Ayis, Nina, Nurul, Johan, Ilsa and the Genk, Mas Ivan, Mba Ayoe, and all my friends in Gepenk's boarding house, thanks for everything. And I can only say "No matter how far, we will still be friends".
14. My internship friends, Mba Ima, Shinta, Mira, Rina, Mas Rossy and his viance, Mas Moki, and Mas Dedhy. Thanks for the support, togetherness, and beautiful friendship that you all have been offered to me.
15. The guys next door in Jakarta, Mas Andra, Mas Erik, Mas Adri and Mas Iman, for being my friends when I am lonely in Jakarta.

The researcher realizes that this thesis is still far from perfection, because of that, the researcher welcomes any kind of dialogues and constructive critics, so that this thesis can be one more step closer to perfection. With hard working and helping from many people, slowly but sure, I am able to completely finish one of the biggest tasks in my life. May Allah S.W.T (Glorified be Allah, The Almighty) bless us all...Amien.

The researcher,

Mom Dad.
My Brothers Sisters,
Kushi, Boris, Sylvester
For All the Pray, Support, and Courage
"O ye who believe! Seek help with patient Perseverance and prayer: For Allah is with those who patient Perserve" (Al Baqarah: 153)
"Verily, with every difficulty there is relief. Therefore, when thou art free (form thine immediate task), still labour hard. And to thy Lord turn all thy attention" (Al Insyirah: 6-8)
"Pursue knowledge, because if you are rich it will make easy on you, and if you are poor then knowledge will take care of you" (Ali bin Abi Thalib)
"We must do our part, Allah will do His Part" (M. Amien Rais)

When there's love, there's life...
When there's a will, there's a way...(Me...)

Table of Contents

Page of Title i
Approval Page ii
Legalization Page iii
Acknowledgements iv
Table of Contents.
List of Tables xv
List of Figures xx
Abstract xxi
Abstrak xxii
Chapter One: Introduction
1.1 Background of the Study 1
1.2 Problem Identification 8
1.3 Problem Formulation 8
1.4 Problem Limitation 8
1.5 Research Objectives 10
1.6 Research of Contributions 10
1.7 Definition of Terms 11
Chapter Two: Review of Related Literature
2.1 Financial Reporting 13
2.2 Stock Price Determination and Firm Valuation
Factors that Influence the Price of a Stock 15
2.3 Fundamental Information Analysis 23
2.4 Inventories 24
2.5 Sales and Earnings and the connectivity with Inventory 26
2.6 The effect on Stock Price regarding information in accruals and cash flows about the future earnings 26
2.7 Previous Studies 32
2.8 Theoretical Approach 34
2.8.1 Cumulative Abnormal Return 36
2.9 Hypotheses Formulation 38
Chapter Three: Research Method
3.1 Type of Research Method 40
3.2 Population and Sample 41
3.3 Data Collection 42
3.4 Research Variables 43
3.5 Technique of Data Analysis 44
3.5.1 The period of Observation 50
3.6 Formulated Hypothesis and Hypothesis Testing 50
3.7 Testing and Detecting the Classical Assumption on Multiple
Regression
a. The Outliers Test 53
b. The Multicollinearity Test 53
c. The Autocorrelation Test 54
d. The Heteroscedasticity Test 56
Chapter Four: Research Findings, Discussion, and Implications
4.1 Research Description
4.1.1 Research Population and Sample 57
4.1.2 Sources and Data Collection Method 59
4.2 Research Findings 59
4.2.1 Testing the Regression Coefficients for Independent
Variables
4.2.1.1 Testing the $1^{\text {st }}$ Hypothesis
The Association of Earnings with Stock Price 75
4.2.1.2 Testing the $2^{\text {nd }}$ Hypothesis:
The Association of Increase in Inventory with
Stock Price 77
4.2.1.3 Testing the $3^{\text {rd }}$ HypothesisAssociation on Earnings between Increase inInventory and Stock Price79
4.2.2 Classical Assumptions test in Multiple Regressions 83
4.2.2.1 Test of Multicollinearity 83
4.2.2.2 Test of Autocorrelation 84
4.2.2.3 Test of Heteroscedasticiy 91
4.2.3 Test of Regression Coefficients after Transforming
the Data 101
4.2.3.1 Test of Regression Coefficients in Partial
4.2.3.1.1 Test of $1^{\text {st }}$ Hypothesis 102
4.2.3.1.2 Test of $2^{\text {nd }}$ Hypothesis 105
4.2.3.1.3 Test of $3^{\text {rd }}$ Hypothesis 107
4.2.4 Interpretation on the Result of the Calculation
4.2.4.1 Determination Coefficients (Adjusted R^{2}) 112
4.2.4.2 Determination Coefficients $\left(\mathrm{R}^{2}\right)$ 116
4.2.4.3 Interpretation on the Analysis Result of
Regression 119
Chapter Five: Conclusion and Recommendations
5.1 Conclusion. 127
5.2 Limitation and Recommendation 128
Bibliography 130

Appendices

Appendix 1: Lists of First Companies' Sample and Companies that become the sample of the Research
Appendix 2: Lists of Financial Statements of Sample Companies, Stock Prices and Inventory Methods

Appendix 3: Lists of Grouping Sample Firms and Dummies for Grouping Sample Firms

Appendix 4: Lists of Dummies for Stock Price, Earnings, Gross Profit, Selling and Administrative Expense, and Inventory Method of Sample Firms

Appendix 5: Regression Result on 112 Companies from year 2003-2004
Appendix 6: Regression Result on 112 Companies after removing Outliers from year 2003-2004

Appendix 7: Regression Result after Data Transformation and Do
Heteroscedasticity Regression from year 2003-2004

List of Tables

Table 4.2 The Result of Regression Analysis on 112 Companies on Equation 3.4

Table 4.3 The Result of Regression Analysis on 112 Companies on Equation 3.5

Table 4.4 The Result of Regression Analysis on 112 Companies on Equation 3.6

Table 4.5 The Result of Regression Analysis on 112 Companies on Equation 3.9

Table 4.6 The Result of Regression Analysis on 112 Companies on Equation 3.10

Table 4.7 The Result of Regression Analysis on 112 Companies on Equation 3.11

Table 4.8 The Result of Regression Analysis on 112 Companies on Equation 3.12 with probability $\alpha=5 \%$.. 64

Table 4.9 The Result of Regression Analysis on 112 Companies on Equation 3.13

Table 4.10 The Result of Regression Analysis on 112 Companies on Equation 3.15
with probability $\alpha=5 \%$. .65

Table 4.11 The Result of Regression Analysis on 112 Companies on Equation 3.16
with probability $\alpha=5 \% \ldots \ldots . ~ 65 ~$
Table 4.12 The Result of Regression Analysis on 112 Companies on Equation 3.17
with probability $\alpha=5 \%$. 66

Table 4.13 The Result of Regression Analysis on 112 Companies on Equation 3.18
with probability $\alpha=5 \%$.
Table 4.14 The Result of Regression Analysis on 112 Companies on Equation 3.4 with probability $\alpha=5 \%$.

Table 4.15 The Result of Regression Analysis on 112 Companies on Equation 3.5 with probability $\alpha=5 \%$ 67

Table 4.16 The Result of Regression Analysis on 112 Companies on Equation 3.6 with probability $\alpha=5 \%$

Table 4.17 The Result of Regression Analysis on 112 Companies on Equation 3.9 with probability $\alpha=5 \%$ 69

Table 4.18 The Result of Regression Analysis on 112 Companies on Equation 3.10 with probability $\alpha=5 \%$. 69

Table 4.19 The Result of Regression Analysis on 112 Companies on Equation 3.11
with probability $\alpha=5 \%$.70

Table 4.20 The Result of Regression Analysis on 112 Companies on Equation 3.12
with probability $\alpha=5 \%$. 71

Table 4.21 The Result of Regression Analysis on 112 Companies on Equation 3.13
with probability $\alpha=5 \%$ 71

Table 4.22 The Result of Regression Analysis on 112 Companies on Equation 3.15
with probability $\alpha=5 \%$ 72

Table 4.23 The Result of Regression Analysis on 112 Companies on Equation 3.16
with probability $\alpha=5 \%$. .73

Table 4.24 The Result of Regression Analysis on 112 Companies on Equation 3.17
 with probability $\alpha=5 \%$

Table 4.25 The Result of Regression Analysis on 112 Companies on Equation
3.18
with probability $\alpha=5 \%$.. 74

Table 4.26 The Result of Regression Analysis after Data Transformation on Equation 3.4
 87

Table 4.27 The Result of Regression Analysis after Data Transformation on Equation 3.5 87
Table 4.28 The Result of Regression Analysis after Data Transformation on Equation 3.6 88

Table 4.29 The Result of Regression Analysis after Data Transformation
on Equation 3.10. 88
Table 4.30 The Result of Regression Analysis after Data Transformation on Equation 3.11 89
Table 4.31 The Result of Regression Analysis after Data Transformation on Equation 3.16 89
Table 4.32 The Result of Regression Analysis after Data Transformation on Equation 3.17 90
Table 4.33 The Result of Heteroscedasticity Transformation on Equation 3.4 92
Table 4.34 The Result of Heteroscedasticity Transformation on Equation 3.5 93
Table 4.35 The Result of Heteroscedasticity Transformation on Equation 3.6 94
Table 4.36 The Result of Heteroscedasticity Transformation on Equation 3.9 94
Table 4.37 The Result of Heteroscedasticity Transformation on Equation 3.10 95
Table 4.38 The Result of Heteroscedasticity Transformation on Equation 3.11 95
Table 4.39 The Result of Heteroscedasticity Transformation on Equation 3.12 96

Table 4.40 The Result of Heteroscedasticity Transformation on Equation 3.13.. 97

Table 4.41 The Result of Heteroscedasticity Transformation on Equation 3.1598

Table 4.42 The Result of Heteroscedasticity Transformation on Equation 3.16.. 98

Table 4.43 The Result of Heteroscedasticity Transformation on Equation 3.1799

Table 4.44 The Result of Heteroscedasticity Transformation on Equation 3.18 100

List of Figures

Fig. 2-1 Determining the Stock Price 16
Fig. 3-1 Durbin Watson d Statistics and Test 55

Abstract

Nur Intan Kemalahati. Inventory Changes and Stock Prices: An Empirical Investigation. International Program. Accounting Department. Economics Faculty. UII. Yogyakarta 2006.

This study examines the effect of the informativeness of change in inventory on firm valuation. A firm's change in inventory is informative if its percentage change in cost of goods sold is positively and significantly associated with its lag one percentage of production added to inventory (a measure of change in inventory). Sample firms are divided into two groups: firms with informative change in inventory and other firms without informative change in inventory. Analyses then are performed to examine the association between stock price and earnings. Results consistently show that the association is lower for firms with informative change in inventory. Thus, knowledge on the informativeness of change in inventory is useful for firm valuation. Then, the implication is that investors and analysts do not have to rely more heavily on earnings figures when analyzing firms with informativeness of change in inventory.

Key words: firm valuation, change in inventory, earnings, and stock prices.

Abstract

Abstrak

\section*{Nur Intan Kemalahati. Inventory Changes and Stock Prices: An Empirical Investigation. Program International. Jurusan Akuntansi. Fakultas Ekonomi. UII. Yogyakarta. 2006.}

Skripsi ini mempelajari tentang efek informasi dari perubahan dalam persediaan terhadap penilaian perusahaan. Perubahan persediaan dalam suatu perusahaan bersifat informatif jika persentase perubahan dalam harga pokok penjualan barang bersifat positif dan secara signifikan berhubungan dengan tingkat 1 (satu) persen dari produksi yang ditambahkan ke dalam persediaan (penentu dari perubahan dalam persediaan). Sampel perusahaan terbagi dalam 2 (dua) kelompok, yaitu: perusahaan dengan perubahan dalam persediaan yang bersifat informative, dan perusahaan dengan persediaan yang tidak bersifat informative. Analisa kemudian ditampilkan untuk memeriksa/mempelajari hubungan antara harga stok dan pendapatan. Hasilnya secara konsisten menunjukkan bahwa hubungannya rendah untuk perusahaan dengan perubahan dalam persediaan. Maka, pengetahuan akan keinformatifan dari perubahan dalam persediaan berguna untuk penilaian terhadap perusahaan. Kemudian, implikasinya yaitu para investor dan analis tidak perlu terlalu menitikberatkan pendapatan ketika sedang menganalisa perusahaan yang memiliki keinformatifan terhadap perubahan dalam persediaan

Kata kunci: penilaian perusahaan, perubahan dalam persediaan, pendapatan, dan harga stok

CHAPTER I

INTRODUCTION

1.1. Background of the Study

In running its activities, company always dealt with production activity, especially for Manufacturing Company. To keep the business run stable, it is required for the Manufacturing Company to produce inventory. From this point of view, inventory is one of the assets of a company that can be fundamental value to determine the liquidity cash of a company. Therefore, the changes of inventory would bring the information that might have effect in doing firm valuation.

Inventory plays important role in a company. It is related to the market sales. Inventory has a strong connection with supply, demand and sales. If its future demand is expected to be decreased, then it sells as much as possible its inventory now, i.e., inventory for the year is decreased. Thus, it has strong association with future sales. The changes of inventory are also determining the future earnings. If a firm's future demand is expected to be decreased, then its future earnings are also expected to be decreased. So a firm can be described as a production smoothing firm if its variance of production is smaller than its variance of sales (Blinder, 1986). And the increasing earnings would determine the welfare of the shareholders. So, the changes of inventory may convey good news to a firm and would be useful information to make firm valuation.

The objective of maximizing the welfare of the shareholders can be achieved by maximizing the present value of all the expected profits that will be
received by the shareholders in the following years. "The welfare of shareholders will automatically increase when the price of the stock they own increase" (Sartono, 1996:11). The higher the stock price, the higher the level of welfare will be for the shareholders.

In relation to the brief explanation above, a firm can also be described as stockout firm if its variance of production is higher than its variance of sales (Blinder, 1986). A decrease in inventory indicates a high frequency of stockouts, and a high level of demand. Therefore, it may also convey bad news to a firm and would become useful information to make a better inventory planning in the future.

Thus, the deeper analysis is focused on the comparison of stock priceearnings association between two sample groups. In sample firms, it is using inventory valuation methods, one of the 12 fundamental signals. That is an increase in inventory, which is measured by percentage change in inventory value minus percentage change in sales (referred to by Jiambalvo, Noreen and Shelvin (1997) as PCIS). Change in inventory which is measured by CPAI, presents useful informativeness on firm valuation when the percentage change in cost of goods sold is positively and significantly associated with its lag one percentage change of production added to inventory. Moreover, this kind of information would be an indicator for investors and analysts, so they can rely more heavily on earnings figures when analyzing firms with informative change in inventory. Then this information (increase in inventory) may either convey good or bad news to the market. Therefore, we can find out whether a firm can be described as a
production smoothing or stockout firm. This research was conducted by Nur Intan K .

The concepts in the prior studies, particularly those in Lev and Thiagarajan (1993) and Jiambalvo, Noreen, and Shelvin (1997), are reconciled to define the informativeness of change in inventory. Change in inventory should affect not only the cash component of earnings (Comiskey, Mulford and Choi, 1994/1995; Sloan, 1996; Ozanian and Fluke, 2001) but also the persistence/sustainability of earnings (Comiskey, Mulford and Choi, 1994/1995; Revsine, Collins and Johnson, 1995), i.e., it affects the quality of earnings. It is hypothesized that the association between stock price and earnings is higher for the firms in Group 1 because:

1. Besides affecting the cash component of earnings, their current inventory change is proportionate and can better support future cost of goods sold and sales (Lev and Thiagarajan, 1993), i.e., the change has a higher sustainability.
2. The quality of reported earnings derived from subtracting cost of goods sold and other expenses from sales, therefore, is also higher.

Besides, Bernard and Noel (1991) have investigated the predictive ability of inventory level on sales and earnings. Whether there is any significant relationship between future sales, future earnings, and also with stock price. Their results indicate that increase in finished goods inventory does not have any relation to future sales, but is negatively associated with future earnings. Given the overwhelming empirical evidence on the positive association between
earnings and stock price, increase in inventory most likely is also negatively associated with stock price.

Lev and Thiagarajan (1993) had made a research that had generated the 12 signals for fundamental analysis One of the signals is the increase in inventory, which is measured by percentage change in inventory value minus percentage change in sales (referred to by Jiambalvo, Noreen and Shelvin (1997) as PCIS). Their result shows that the increase in inventory is negatively associated with 12 months excess stock returns, i.e., a result that is consistent with that implied in Bernard and Noel (1991).

Jiambalvo, Noreen, and Shelvin (1997) have also studied the association between cumulative abnormal returns (CAR) over a 12 months window with the increase in inventory, measured by the change in percentage of production added to inventory (CPAI). Their result shows that CPAI is positively associated with CAR, i.e., a result seems to be inconsistent with that in Lev and Thiagarajan (1993). Jiambalvo, Noreen, and Shelvin (1997); however, they are unable to explain the inconsistency. They conclude that the measures for increase in inventory in the two studies (PCIS and CPAI) are different; PCIS is negatively associated with CAR while CPAI is positively associated with CAR, but the product moment correlation between PCIS and CPAI is positive and significant. Thus, the increase in inventory is a significant fundamental signal regardless of the different measures and the seemingly inconsistent empirical results.

Bernard and Noel (1991) have also investigated the predictive ability of work-in-process inventory under the lead time model which is different from the
production smoothing model and the stockout model. Results show that work-inprocess inventory level is positively associated with future sales, but it is not associated with future earnings. Lev and Thiagarajan (1993) call this measure a disproportionate inventory increase. As stated in Lev and Thiagarajan's (1993) in the section of the previous study, that in theory, the cost of goods sold, instead of sales, should be used. The empirical results from using cost of goods sold and sales are similar.

Percentage of production added to inventory is the increase in inventory quantity divided by production quantity. It is a measure of the percentage increase in inventory. CPAI is the change of this percentage. The results are seemingly inconsistent because Lev and Thiagarajan (1993) show that CAR is negatively and significantly associated with increase in inventory. Whereas, Jiambalvo, Noreen and Shelvin (1997) show that CAR is positively and significantly associated with increase in inventory. It is found in the two studies that the measures of increase in inventory are different.

The similar studies, in overseas, had also been done by Harry E. Merriken and Walter J. Reinhart (1990). They were studying about The Implication of Tax Reforms on Firm Valuation and Management Decisions. The purpose of this study is to develop a model and methodology to measure market reaction to firm behavior following tax law changes and to determine whether the impact is favorable or unfavorable on firm valuation. This model will allow the management of a firm to anticipate the impact of government policy decisions that alter the fundamentals of firm valuation. An important contribution of this study is
the focus on relative values rather than on share price since certain conventions such as inventory valuation produce countervailing effects. Fiscal policy measures directly linked to investment in real assets such as accelerated depreciation receives predictable market reaction. Thus the study provides a means of anticipating the impact of public policy in influencing the creation of wealth in the private sector. Thus, they had found that the implication for future changes is underscoring the importance of the tax savings of accelerated depreciation. They clearly indicate that the most reliable and consistent method for management to improve value is through the fundamental variables that affect profitability, growth in profits, and leverage. The market discounts discretionary inventory valuation and fully incorporates the impact of accelerated cost recovery system (ACRS) in the year in which the depreciation method was accelerated.

Another similar study also had been done by Wei Zhang, Qing Cao and Marc J. Schniederjans (2004). They were studying about Neural Network Earnings per Share Forecasting Model: A Comparative Analysis of Alternative Methods. This study is focused on comparison on the multivariate models to examine whether the neural network models incorporating the fundamental accounting variables can generate more accurate forecasts of future earnings than the models assuming on a linear combination of these same variables. Thus, they had found that the application of the neural network approach incorporating fundamental accounting variables results in forecasts that are more accurate than linear forecasting models. The results also reveal limitations of the forecasting
capacity of investors in the security market when compared to neural network models.

While in Indonesia, the similar studies are not yet revealed by Indonesian researcher. But there are many overseas researchers using sample firms in Indonesia. One of them is studied by Paquita Y. Davis-Friday, Li Li Eng, and Chao-Shin Liu (December 2002). They were studying about The Effect of Corporate on the Valuation of Book Value and Earnings during the Asian Financial Crisis. This study examines the value relevance of earnings and book values in four Asian countries, Indonesia, South Korea, Malaysia and Thailand, in the period surrounding the Asian financial crisis. Specifically, they examined the impact of the economic environment on the value relevance of book value and earnings, controlling for the quality of financial reporting and corporate governance mechanism. Their results indicate that the value relevance of earnings in Indonesia and Thailand was significantly reduced during the Asian financial crisis while the value relevance of book values increased. In Malaysia, the value relevance of both earnings and book value decreased during the crisis. In Korea, neither book value nor earnings was significantly impacted by the crisis. Their results indicate that the level of certain corporate governance mechanism and financial reporting quality have an impact on how the crisis affected the value relevance of earnings and book values. Specifically, the value relevance of book values decreases when the rule of law is lower, when the level of ownership concentration is higher, and when the quality of audit reports is lower. Finally, their results indicate that Korea's tax-based accounting standards help to mitigate
the effect of the financial crisis on the value relevance of book values, but not the value relevance of earnings.

1.2. Problem Identification

This study examines the effect of the informativeness of change in inventory on firm valuation. A firm's change in inventory is informative if its percentage change in cost of goods sold is significantly associated with its lag one percentage of production added to inventory (a measure of change in inventory). Sample firms are divided into two groups: firm with informative change in inventory, and other firms. Analyses then are performed to examine the association between stock price and earnings.

1.3. Problem Formulation

Based on the explanation mentioned in the study background, the main problem stated here is: Whether the informativeness of change in inventory affects stock prices.

1.4. Problem Limitation

Based on the existing opinion from Bernard and Noel, Lev and Thiagarajan; Jiambalvo, Noreen and Shelvin; Ozanian and Fluke that are being used in this research paper, so, this research, will take a sample of firms which is
basically divided into two groups: firm with informative change in inventory, and other firms, based on fundamental analysis. It would be done as knowledge on the informativeness of change in inventory, whether the effect of increasing in inventory would convey good or bad news, which will be useful for making firm valuation. In order to provide a clear description and to be able to impart useful information, the limitations of the study are indicated below:

1) They are manufacturing firm.
2) Sample that will be used for the research are only two groups, those are firms with informative change in inventory (firms with positive and significant association between percentage change in cost of goods sold and lag one percentage of production added to inventory), and other firms.
3) Fundamental analysis serves as the base of the primary approach of this research.
4) One of the 12 fundamental value drivers that would be used in this research is increase in inventory.
5) Firm group 1 is using annual and pooled regressions under both the levels and changes approaches
6) This study is using firm valuation analyses which consist of two approaches; those are the levels approach and the changes approaches (e.g., Kothari, 1992).
7) This study is investigating the association between CAR (cumulative abnormal returns) with CPAI (change in percentage of production added by inventory).
8) This study is investigating the association between PCIS (Percentage change in inventory value minus percentage change in sales) with CAR (Cumulative Abnormal Returns).
9) This study is investigating the predictive ability of inventory level on sales and earning (based on Bernard and Noel investigation) with firm value.
10) The association between change in inventory in this year and change in sales in the next year, i.e., inventory planning as the formulation for the effect of inventory change on persistency/sustainability of earnings.
11) To define the informativeness of change in inventory, focus has to be placed into two aspects of earnings quality: cash component of earnings (Comiskey, Mulford and Choi, 1994/1995; Sloan, 1996; Ozanian and Fluke, 2001) and persistency/sustainability of earnings (Comiskey, Mulford and Choi, 1994/1995; Revsine, Collins and Johnson, 1999).

1.5. Research Objectives

The objective of this research is to test the informativeness of change in inventory on stock prices from year 2003 to 2004.

1.6. Research Contributions

Research is a kind of way to acquire information about the problem on the company that concerned with it, thus this research can be used by any company as
well as writer or researcher. The benefits can be taken from this research by those stated as follows:

1. Investors and analysts can rely more heavily on earnings figures when analyzing firms with informative change in inventory.
2. Managers, as an additional consideration in making investment and financing decisions that are designed to maximizing the firm's stock price.
3. Companies, as an additional guideline to show the importance of publishing their financial statements in order to achieve stockholder wealth maximization by maximizing the price of the firm's common stock.
4. The researcher, it will increase her experience in researching and writing, improve her understanding and knowledge of that being studied and the opportunity to implement the theory that the writer studied in the university.
5. The reader, giving sequence knowledge and new a broader perspective especially to students in accounting department, particularly in analyzing how informativeness of the change in inventory will give an effect in doing firm valuation.

1.7. Definition of Terms

The author gives the definition of terms in order to make the reader understand about what they are going to read from the thesis.

- Fundamental analysis or valuation analysis is a set of methods for determining the value of an investment.
- Valuation model is the architecture for fundamental analysis that directs what's to be forecast as a payoff, what information is relevant for forecasting, and how forecasts are converted to a valuation.
- Value of the equity is the value of the payoffs a firm is expected to yield for its shareholders (its owners).
- Value of the firm (or enterprise value or unlevered value) is the value of the payoffs a firm is expected to yield for all its claimants.

CHAPTER II

REVIEW OF RELATED LITERATURE

2.1. Financial Reporting

The Statement of Financial Accounting Concepts is one of a series of publications in the Board's conceptual framework for financial accounting and reporting. Statements in the series are intended to set forth objectives and fundamentals that will serve as the basis for development of financial accounting and reporting standards. The objectives identify the goals and purposes of financial reporting. The fundamentals are the underlying concepts of financial accounting-concepts that guide the selection of transactions, events, and circumstances to be accounted for; their recognition and measurement; and the means of summarizing and communicating them to interested parties. Concepts of that type are fundamental in the sense of that other concepts flow from them and repeated reference to them will be necessary in establishing, interpreting, and applying accounting and reporting standards.

The conceptual framework is a coherent system of interrelated objectives and fundamentals that is expected to lead to consistent standards and that prescribes the nature, function, and limits of financial accounting and reporting. It is expected to serve the public interest by providing structure and direction to financial accounting and reporting to facilitate the provision of evenhanded financial and related information that helps promote the efficient allocation of
scarce resources in the economy and society, including assisting capital and other markets to function efficiently.

Establishment of objectives and identification of fundamental concepts will not directly solve financial accounting and reporting problems. Rather, objectives give direction, and concepts are tools for solving problems.

General purpose financial statements are defined in the Preface to International Financial Reporting Standards as follows:

1. IFRSs apply to all general purpose financial statements. Such financial statements are directed towards the common information needs of a wide range of users, for example, shareholders, creditors, employees and the public at large. The objective of financial statements is to provide information about the financial position, performance and cash flows of an entity that is useful to those users in making economic decisions.
2. A complete set of financial statements includes a balance sheet, an income statement, a statement showing either all changes in equity or changes in equity other than those arising from capital transactions with owners and distributions to owners, a cash flow statement, and accounting policies and explanatory notes.
3. The objective of IAS 1 Presentation of Financial Statements is to prescribe the basis for the presentation of general purpose financial statements, to ensure comparability both with the entity's financial statements of previous periods and with the financial statements of other entities. IAS 1
specifies the purpose of financial statements and the components of a complete set of financial statements are as follows:

Financial statements are a structured representation of the financial position and financial performance of an entity. The objective of general purpose financial statements is to provide information about the financial position, financial performance and cash flows of an entity that is useful to a wide range of users in making economic decisions. Financial statements also show the results of management's stewardship of the resources entrusted to it. To meet this objective, financial statements provide information about an entity's:
(a) Assets;
(b) Liabilities;
(c) Equity;
(d) Income and expenses, including gains and losses;
(e) Other changes in equity; and
(f) Cash flows

This information, along with other information in the notes, assists users of financial statements in predicting the entity's future cash flows and, in particular, their timing and certainty.

2.2. Stock Price Determination and Firm Valuation

Factors that Influence the Price of a Stock

Stock as one of the securities that is traded on the stock exchange is "the proportionate share in the ownership held by an individual stockholder" (Webster,
1996). Investors are willing to pay a certain price for certain stock based on the valuation and that they are expecting to receive higher returns than what they have paid for. "Basically, stock price is determined by the interaction between supply and demand of those stocks" (Sartono 1996:46). The stock price implied here is as big as the present value of the expected cash flows that will be received. In figure 2.1, we can see the interaction between supply and demand of a stock, which influences the stock price.

Figure 2.1
Determining the Stock Price

Q_{0}
$Q_{1} \quad$ Total Shares of Stock
Source: Sartono, Agus R., 1996, Manajemen Keuangan, BPFE, Yogyakarta.

The price of P is the beginning price for some stocks of Q that is shown when supply and demand meet. If there is a change on the investors' perception as a whole, the demand curve will shift to up or down. However, the demand curve will not change if there is increase on demand of stock. The increase on demand of stock will affect the price to increase, however it is still on the same curve. From this figure, the movement of the demand curves that shift up will cause the stock price to increase and the demand of stocks will be higher. This kind of movement occurs because the expected profitability level increases or because of a decrease in the level of risk. The competitive capital market exists because there is pressure on demand and supply continuously, therefore the stock price adjusts quickly with all information changes. There are no individual investors that are capable of influencing the price on the stock market, which is the reason why investors can not get profits consistently.

The demands to purchase and supply to sell the stock are more influenced by the consideration of buyers or sellers about the internal and external condition of the company. The internal perspective, as defined by Sartono (1996: 17) consist of: "earnings per share of the projected stocks, timing of receiving profits, level of business risks, use of debt, dividend policies, and other external factor". Meanwhile Husnan (1996: 272) states that "the price of stocks is affected by two main elements, which are r (level of profitability) and D (dividend). If r increases and D is constant, then the stock price will go down. When D increases and r is constant then the stock price will go up". In knowing what factors influencing the stock price, we need to identify the factors that affect r and D. The factors that
influence r are the risk or beta stock and the free risk level of profitability. Furthermore, some things that affect how big or small the stock price are the dividend and the ability of the company to obtain bigger profits. The company can only share bigger dividends if the company can produce bigger profits. In this condition, the price of a stock will increase. For the external side, some factors that can affect the price of a stock are the level of tax laws, the level of interest rate, monetary and fiscal policies, the level and rate of inflation, political factors, government policies in certain industries, competition, etc.

Brigham and Houston (1998: 23) state that "managers should take steps to maximize the firm's stock price, in maximizing the firm's stock price it is decided by factors that influence and affect that stock". In valuing the stock price, every investor has different opinion on valuing the total expected dividend and the level of expected profits. The difference in this valuation is affected by the investors' optimism to the firm. Furthermore, these optimistic differences will cause two different sides that have different objectives.

First are the buyers of stocks and the second is the seller of the stocks. Buyers expect that there will be an increase of price after purchasing the stocks, while sellers expect that there will be a decrease of price on the stocks that they have sold. Jones (1998: 289) stated that "A security's estimated (intrinsic) value determines the price that investors place on it in the open market". If the intrinsic value is higher than the stock price, then this stock is considered to be undervalued, and investors should buy some stocks or hold their stocks. In contrast, if the intrinsic value is smaller than the stock price, then the stock price is
considered to be overvalued, and investors should avoid buying these stocks or sell them if they have this kind of stocks. If the intrinsic value is equal to the stock price, it is considered to be correct and usually there is no transaction for this kind of stock.

These conditions are showing that the price of a stock is changing all the time because each investor holds a different opinion on the valuing of and the intrinsic value of a stock. The valuation of a stock is affected by how big is the expectation, optimism, or the objective of the buyers and the sellers of stocks.

The value of either a stock or earnings has an important meaning to a firm. The increasing of earnings will determine the welfare of the shareholders, because the increasing of earnings can be a sign/information to a firm that their firm is growing as a production smoothing firm. Furthermore, this kind of information will have an effect for doing a firm valuation. Thus, this kind of information can be a sign that this firm can have good distribution of dividend to shareholders. Meaning to say, this firm will be able to maximize the welfare of the shareholders by maximizing the present value of all the expected profits that will be received by the shareholders in the following years. "The welfare of shareholders will automatically increase when the price of the stock they own increase" (Sartono, 1996:11). Firm valuation is necessary need in purpose to maximize the wealth of shareholders and the firm itself.

Empirical evidence indicates that increasing shareholder value does not conflict with the long-run interests of other stakeholders. Winning companies seem to create relatively greater value for all stakeholders: customers, labor, the
government (via taxes paid), and suppliers of capital. Yet, there are additional reasons-more conceptual in nature, but equally compelling-to adopt a system that emphasizes shareholder value. First, value is the best metric for performance that we know. Second, shareholders are the only stakeholders of a corporation who simultaneously maximize everyone's claim in seeking to maximize their own. And finally, companies that do not perform will find that capital flows toward their competitors.

Value (discounted cash flows) is best for it is the only measure that requires complete information. To understand value creation one must use a longterm point of view, manage all cash flows on both the income statement and the balance sheet, and understand how to compare cash flows from different time periods of risk-adjusted basis. It is nearly impossible to make good decisions without complete information.

Information in here can be obtained through the deeper analyses of the changes in inventory. The increase of inventory may convey good or bad news to a firm. In here, stock price serves as a tool for investigating the incremental value of increase in inventory over earnings for manufacturing firms.

Increase in inventory may convey good or bad news to the market for different reasons. It may convey good news under the production smoothing model (Blinder, 1986; Bernard and Noel, 1991). A firm can be described as a production smoothing firm if it variance of production is smaller than its variance of sales (Blinder, 1986). If its future demand is expected to be decreased, then it sells as much as possible its inventory now, i.e., inventory for the year is
decreased. Inventory levels, therefore, are positively associated with future sales. If a firm's future demand is expected to be decreased, then its future earnings are also expected to be decreased. Inventory level, therefore, is also positively associated with future earnings (Bernard and Noel, 1991). Empirical results from the economic literature, however, show that the variance of production is higher than the variance of sales for manufacturing, whole sale trade, and retail trade industries, i.e., production smoothing model is not adequate with descriptive model (Blinder and Maccini, 1991).

Increase in inventory may also convey good news when managers anticipate an increase in future sales (Jiambalvo, Noreen and Shelvin, 1997). Jiambalvo, Noreen and Shelvin (1997) investigate the incremental value of increase in inventory over earnings for manufacturing firms from 1975 to 1992 using cumulative abnormal returns approach. The results of the pooled regression show that both unexpected earnings and increase in inventory are positively and significantly associated with cumulative abnormal earnings. The results annual regressions show that unexpected earnings are positively and significantly associated with CAR for all 18 years while CPAI (Change in Percentage of Production Added to Inventory) is positively and significantly associated with CAR in 11 of the 18 years. Thus, results in Jiambalvo, Noreen and Shelvin (1997) are consistent with the good news scenario.

Increase in inventory may convey bad news under the stockout model (Bernard and Noel, 1991). A firm can be described as a stockout firm if its variance of production is higher than its variance of sales (Blinder, 1986). A
decrease in inventory indicates a high frequency of stockouts, and a high level of demand. Thus, inventory levels are negatively associated with future sales, and therefore, future earnings (Bernard and Noel, 1991).

Increase in inventory may also convey bad news when the firm doing the things stated as follows:

1. Adds production to inventory in anticipation of a strike (Jiambalvo, Noreen and Shelvin, 1997)
2. Faces an unexpected sales decrease (Lev and Thiagarajan, 1993; Jiambalvo, Noreen and Shelvin, 1997).
3. Loses production or inventory control (Lev and Thiagarajan, 1993)
4. Has a growth of obsolete inventory items (Lev and Thiagarajan, 1993).
5. Tries to manipulate absorption-costing net income by increasing production volume (Lev and Thiagarajan, 1993; Jiambalvo, Noreen and Shelvin, 1997)

Strictly speaking, an informative inventory planning process should be described as a process that matches percentage of production added to inventory with one year ahead percentage change in cost of goods sold, instead of sales (Lev and Thiagarajan, 1993). A good inventory planning firm, therefore, can be described as a firm that has a positive and significant association between its percentage change in cost of goods sold and its lag one percentage of production added to inventory. Its change in inventory is informative and can sustain future sales and cost of goods sold, and the quality of its earnings is higher. The association between its stock price and its earnings, therefore, is also higher.

2.3. Fundamental Information Analysis

Fundamental analysis refers to the process of using basic accounting measures or "fundamentals" like accounting earnings, cash flows, or book values to estimate a company's worth. Fundamental is aimed at determining the value of corporate securities by a careful examination of key value-drivers, such as earnings, risk, growth, and competitive position. In fact, to identify a set of fundamentals that will be used to evaluate firm's performance, firstly we have to put a mind set on the effect of the association between stock price and earnings on firm valuation.

Analysts generally attach a unique interpretation to a fundamental signal. In this research, we are studying on how the changes in inventory can bring useful information for firm valuation or convey bad news to the market. The fundamental value driver that is used in this study is the increase in inventory. Under this fundamental value driver here, increase in inventory may convey good or bad news to the market for different reasons. According to Blinder (1986) and Bernard and Noel (1991), it may convey good news under the production smoothing model. Whereas an increase in inventory may convey bad news under stockout model.

The interpretation that were built here is that a firm can be described as a production smoothing firm if its variance of production is smaller than its variance of sales (Blinder, 1986). If its future demand is expected to be decreased, then it sells as much as possible its inventory now, i.e., inventory for the year is decreased. Inventory levels, therefore, are positively associated with future sales.

If a firm's future demand is expected to be decreased, then its future earnings are also expected to be decreased. Inventory level, therefore, is also positively associated with future earnings (Bernard and Noel, 1991). Therefore, a disproportionate (to sales) inventory increase might sometimes provide a positive signal about manager's expectation of sales increases. Moreover, a decrease in inventory provide a negative signal, indicates a high frequency of stockouts, and a high level of demand. Nevertheless, initially, in the noncontextual part of this study, we follow a parsimonious approach (Ender, 1995) of examining the extent to which a single interpretation of a fundamental (i.e., the one used by analysts) is valid for a large-cross section of firms.

2.4. Inventories

One of the 12 signals for fundamental analysis that is examined here is inventory. Inventory increases that outrun cost of sales increases are frequently considered a negative signal because such increases suggest difficulties in generating sales. Furthermore, such inventory increases suggest that earnings are expected to decline as management attempts to lower the inventory levels (e.g., car manufacturers' periodic price concessions).

Disproportionate inventory increases may also suggest the existence of slow-moving or obsolete items that will be written off in the future. Another point, not mentioned by analysts, is that inventory buildups increase current earnings at the expense of future earnings by absorbing overhead costs. Inventory decreases, through infrequently noted by analysts, generally suggest higher than
expected sales and a decrease in overhead cost absorption, boding well for current and future earnings.

Because there are many inventory-holding motives, such as smoothing production in the face of fluctuating sales, minimizing stock-out costs, and speculating or hedging against future price movements, an inventory increase might sometimes convey a positive rather than a negative signal. Nevertheless, viewing a disproportionate inventory increase as a negative signal is consistent with the major inventory-holding motive-production smoothing. Such as been stated by Blinder and Maccini (1991, p.781) that economists have singled out the production-smoothing/buffer-stock motive for attention.

When production varies less than sales, a disproportionate inventory increase may result from an unexpected sales decrease, loss of production or inventory control, or growth of obsolete inventory items-all reflecting negatively on future earnings. Since these arguments apply particularly to the "finished goods" component of inventory, our empirical tests are based on this component when it is available on compustat and on "total inventories" otherwise. The formula for each sample firm and year the following inventory signal:

Percentage Change in Inventory - Percentage Change in Sales The annual percentage change in inventory (and correspondingly for sales) is defined as:
[Inventory ${ }_{\mathrm{t}}-E\left(\right.$ Inventory $\left.\left._{\mathrm{t}}\right)\right] / E\left(\right.$ Inventory $\left._{\mathrm{t}}\right)$,
where $E($.$) denotes expected value. Since the writer of this thesis is regressing$ unexpected returns on the fundamental signals, the signals should reflect the
unexpected component of the fundamental variable. The writer used two expectation models: a random walk and a two-year averaging model $\left(E\left(\right.\right.$ Inventory $\left._{\mathrm{t}}\right)=1 / 2\left(\right.$ Inventory $_{\mathrm{t}-1}+$ Inventory $\left.\left._{\mathrm{t}-2}\right)\right)$. The empirical test indicated that the two expectation models yield very similar results; the findings reported below are those based on the two-year average model for all the fundamental signals. Since a positive value of the inventory signal is a priori perceived as "bad news", the signal is expected to be negatively correlated with stock returns.

2.5. Sales and Earnings and the Connectivity with Inventory

For manufacturers, especially those whose production is less variable relative to sales, unexpected changes in raw materials and work-in-process inventory (after controlling for current sales) are positive leading indicators of future sales, consistent with a "lead time" or "production smoothing" model of inventory. However, such changes are essentially neutral as far as earnings are concerned. In contrast, unexpected changes in manufacturers' finished goods inventory have little or no relation with future sales, and are negative leading indicators of future earnings, even after controlling for the impact of current sales on inventory levels; this is consistent with a "stockout model" of inventory.

2.6. The effect on Stock Prices regarding information in accruals and cash flows about the future earnings.

The nature of the information contained in the accrual and cash flow components of earnings and the extent to which this information is reflected in
stock prices. Meanwhile, the stock price itself, based on what is described in a nutshell, are formed by a company's ability to generate cash flows in present and in the future. It can be laid on based on three basic facts, those are:

1. Any financial asset, including a company's stock, is valuable only to the extent that it generates cash flows.
2. The timing of cash flows matters - cash received sooner is better, because it can be reinvested in the company to produce additional income or else be returned to investors.
3. Investors, generally, are averse to risk, so all else equal, they will pay more for a stock whose cash flows are relatively certain than for one whose cash flows are more risky.

Because of these three facts, managers can enhance their firm's stock prices by increasing the size of the expected cash flows, by speeding up their receipt, and by reducing their risk. In here, the effect of stock prices can bring good or bad news to a firm. Stocks commonly are purchased because shareholders want to earn a good return on their investment without undue risk exposure. In addition, in a firm, the primary goal is stockholder wealth maximization by maximizing the price of the firm's common stock. Beside of explanation above, there are three primary determinants of cash flows, those are:

1. Unit sales.
2. After-tax operating margins.
3. Capital requirements.

The first factor has two parts, the current level of sales and their expected future growth rate. Managers can increase sales; hence, cash flows, by truly understanding their customers and then providing the goods and services that customers want. Some companies may find it fortunate to come into a situation that creates rapid sales growth, but the unfortunate reality is that market saturation and competition will, in the long-term, cause their sales growth rate to decline to a level that is limited by population growth and inflation. Therefore, managers must constantly strive to create new products, services, and brand identifies that cannot be easily replicated by competitors, and thus to extend the period of high growth for as long as possible.

The second determinant of cash flows is the amount of after-tax profit that the company can keep after it has paid its employees and suppliers. One possible way to increase operating profit is to charge higher prices. However, in a competitive economy such as ours, higher prices can be charged only for products that meet the needs of customers better than competitors' products. Another way to increase operating profit is to reduce direct expenses, such as labor and materials. However, and paradoxically, sometimes companies can create even higher profit by spending more on labor and materials.

The third factor affecting cash flows is the amount of money a company must invest in plant and equipment. In short, it takes cash to create cash. For example, as a part of their normal operations, most companies must invest in inventory, machines, buildings, and so forth. However, each dollar tied up in operating assets is a dollar that the company must "rent" from investors and pay
for by paying interest or dividends. Therefore, reducing asset requirements tends to increase cash flows, which increases the stock price. For example, companies that successfully implement just-in-time inventory systems generally increase their cash flows, because they have less cash tied up in inventory. Each of investment and financing decisions that are taken by a manager is likely to affect the level, timing, and risk of the firm's cash flows, and, therefore, the price of its stock. Naturally, managers should make investment and financing decisions that are designed to maximize the firm's stock price.

Although managerial actions affect stock prices, stocks are also influenced by such external factors as legal constraints, the general level of economic activity, tax laws, interest rates, and conditions in the stock market. Working within the set of external constraints, management makes a set of longrun strategic policy decisions that chart a future course for the firm. These policy decisions, along with the general level of economic activity and the level of corporate income taxes, influence expected cash flows, their timing, and their perceived risk. These factors all affect the price of the stock, but so do another factor, the stock market's overall condition.

After a brief explanation about the things that forming and will be affecting stock price, it has been investigated that the results indicate that earnings performance attributable to the accrual component of earnings exhibits lower persistence than earnings performance attributable to the cash flow component of earnings. The results also indicate that stock prices act as if investors "fixate" on earnings, failing to distinguish fully between the different properties of the accrual
and cash flow components of earnings. Consequently, firms with relatively high (low) levels of accruals experience negative (positive) future abnormal stock returns that are concentrated around future earnings announcements.

Instead of relying on a statistically motivated model to predict future earnings, it is using model that relies on the characteristics of the underlying accounting process that are documented in texts on financial statement analysis. While Ou and Penmann (1989) and Bernard and Thomas (1990) use a random walk model to represent investors' naive earnings expectations, then it would be using a less restrictive model that assumes investors might not fully discriminate between different component of earnings.

Bernard and Stober (1989) find no evidence that stock prices respond in a systematic manner to the release of information about the cash flow and accrual components of earnings and conjecture that the information content of these two components of earnings may not be systematically different. However, the results demonstrate that the information content of these components is systematically different, but that stock prices do not reflect this information fully until it gives an impact on future earnings.

Information in prices is assumed useful in forecasting more-than-one-period-ahead earnings changes in examining its effect on the estimated slope coefficient and explanatory power of alternative specifications of the priceearnings relation.

Because prices reflect information about future earnings changes, therefore:

1. Compared to the change specification, the levels specification yields higher explanatory power and a less biased earnings response coefficient estimate, where the 'true' coefficient is the slope coefficient from a timeseries regression of unexpected return on scaled unexpected earnings.
2. The levels specification yields a biased earnings response coefficient when prices contain information about more-than-one-period-ahead earnings changes.
3. If an accurate proxy for the market's unexpected earnings is used, the earnings response coefficient estimate is unbiased and the explanatory power is greater than that using the levels and change specifications.
4. Beginning-of-the-year price as a deflator, compared to the previous year's earnings, yields a less biased earnings response coefficient estimate and higher explanatory power.

The explanatory power of the typically estimated price-earnings regression is expected to be low, perhaps only about $15-20$ percents.

If most of a stock's value is due to long-term cash flows, managers and analysts pay much attention to quarterly earnings, because it all lies in the information conveyed by short-term earnings. For example, if actual quarterly earnings are lower than expected, it is not because of fundamental problems but only because a company has increased its R\&D expenditure, studies have shown that the stock price probably will not decline and may actually increase. This is logical, because R\&D should increase future cash flows. On the other hand, if quarterly earnings are lower than expected because customers do not like the
company's new products, then this new information will have negative implication for future values of g , the long-term growth rate. Even small changes in g can lead to large changes in stock prices. Therefore, while the quarterly earnings themselves might not be very important, the information they convey about future prospects can be terribly important. Another reason why a number of managers focus on short-term earnings is that some firms pay managerial bonuses on the basis of current earnings rather than stock prices (which reflect future earnings). For these managers, the concern with quarterly earning is not due to their effect on stock prices-it is due to their effect on bonuses.

2.7. Previous Studies

The previous studies that serve as the base of this research are:

1. Bernard and Noel (1991)

Bernard and Noel (1991) have investigated the predictive ability of inventory level on sales and earnings. Whether there is any significant relationship between future sales, future earnings and with stock price.

Their results indicate that increase in finished goods inventory is not related to future sales, but it is negatively associated with future earnings. Given the overwhelming empirical evidence on the positive association between earnings and stock price, increase in inventory most likely is also negatively associated with stock price.
2. Lev and Thiagarajan (1993)

Lev and Thiagarajan (1993) had been made any investigation then had been generated 12 signals for fundamental analysis. One of the signals is increase in inventory, which is measured by percentage change in inventory value minus percentage change in sales (referred to by Jiambalvo, Noreen and Shelvin (1997) as PCIS).

Their result shows that increase in inventory is negatively associated with 12 months excess stock returns, i.e., a result that is consistent with that implied in Bernard and Noel (1991).
3. Jiambalvo, Noreen and Shelvin (1997)

Jiambalvo, Noreen and Shelvin (1997) have also studied the association between cumulative abnormal returns (CAR) over a 12 months window with the increase in inventory, measured by the change in percentage of production added to inventory (CPAI).

Their result shows that CPAI is positively associated with CAR, i.e., a result seems to be inconsistent with that in Lev and Thiagarajan (1993). Jiambalvo, Noreen, and Shelvin (1997), however, are unable to explain the inconsistency. They conclude that the measures for increase in inventory in the two studies (PCIS and CPAI) are different; PCIS is negatively associated with CAR while CPAI is positively associated with CAR, but the product moment correlation between PCIS and CPAI is positive and significant. Thus, increase in inventory is a significant
fundamental signal regardless of the different measures and the seemingly inconsistent empirical results.

While in Indonesia, the similar study is not yet conducted by Indonesian researcher. Nevertheless, there are many overseas researchers using sample firm in Indonesia

2.8. Theoretical Approach

Besides using valuation approach to examine the association between firm value and earnings, this research is also using the cumulative abnormal returns approach that had been done by Lev and Thiagarajan (1993) and Jiambalvo, Noreen, and Shelvin (1997), in which they measured the incremental value of increase in inventory over earning for manufacturing firms from 1975 to 1992. Increase in inventory is defined as the change in percentage of production added to inventory (CPAI). In order to reconcile the results in Jiambalvo, Noreen and Shelvin (1997) and Lev and Thiagarajan (1993) as well as to define the informativeness of change in inventory, the focus has to be placed on two aspects of earnings quality: cash component of earnings (Comiskey, Mulford and Choi, 1994/1995; Sloan, 1996; Ozanian and Fluke, 2001) and persistence/sustainability of earnings (Comiskey, Mulford and Choi, 1994/1995; Revsine, Collins and Johnson, 1999).

Cash component generally is defined as cash from operating activities (e.g., Collins and Hribar, 1999). An increase in inventory does not hurt earnings but does hurt cash flow from operations (Ozanian and Fluke, 2001) and, therefore,
quality of earnings. Results of Lev and Thiagarajan (1993) support the cash component argument while results of Jiambalvo, Noreen, and Shelvin (1997) do not support the cash component. Thus, the cash component argument alone does not explain the impact of change in inventory; the persistence/sustainability of earnings has to be considered.

The effect of inventory change on persistence/sustainability of earnings can be formulated by the association between change in inventory in this year and change in sales in the next year, i.e., inventory planning. Low association may imply a disproportionate inventory increase (Lev and Thiagarajan, 1993) resulting from, from example, unexpected sales decrease or loss of production control. Low association may also imply a disproportionate inventory decrease resulting from, for example, high degree of demand or high frequency of stockouts. Thus, all the events associated with low association reflect negatively on earnings. High association implies that change in inventory is proportionate, can sustain future sales and cost of goods, and results in higher quality of earnings, which are derived from subtracting cost of goods sold and other expenses from sales.

Production smoothing is not a good inventory planning in that it does not match current inventory level with future sales. Neither are increases in inventory due to a sales slowdown, a loss of inventory control, a growth of obsolete inventory, or manipulation of absorption-costing net income. Thus, an informative inventory planning process can be described as a process that matches change in inventory with change in future sales.

2.8.1 Cumulative Abnormal Return

The abnormal return for a day is the actual return for that day minus the return predicted for that day. Once the size of the abnormal return has been estimated for each day in the event window, the daily abnormal returns can be summed to find the cumulative abnormal return, or CAR, which is a measure of the impact of the event on the security's return. Hypothesis testing is used to test the statistical significance of the CAR to determine the probability that a CAR of that particular size had occurred due to random chance rather than in response to the incorporation of new information.

Once the event window has been selected and it has been determined whether the event in the event window has been partially anticipated, the actual calculation of the CAR is straightforward. The essence of the analysis is to find a "benchmark" level of performance of a comparable security during the event period and then subtract that level of performance from the security's actual performance during the event window. The benchmark is constructed to mimic the rate of return that the subject security would have had during the event window if the event under analysis had not occurred. Historically this benchmark has been constructed by calculating the average rate of return that is observed for stocks in general that day, and then adjusting that average return for the risk of the subject security. Recent evidence has cast doubt on some of the risk adjustment methods and, independently, models using unadjusted returns seem to perform as well as adjusted-return models. However, the benchmark is calculated, subtracting the benchmark level of performance from the stocks actual performance for a
particular day in the event window gives the abnormal return (AR) on the stock for that day. If the stock's AR for a day is positive, it becomes an evidence that the stock is reacting to the release of some positive news, while a negative AR is an evidence that the stock is reacting to some negative news. Often economists believe that it takes more than one day for new information to be fully reflected in a stock's price, so it is typical to add together the stock's ARs for two or three trading days. This summation is called as the "cumulative abnormal return" or "CAR" and the CAR is the subject of the hypothesis tests discussed infra.

If the estimated CAR is near zero, this is an evidence that the event hypothesized to have affected the value of the security did not actually affect the value of the security. On the other hand, if the CAR differs substantially from zero, which is evidence that the event did affect the value of the security. Indeed, the investigation of whether the CAR is about zero or whether it differs substantially from zero is the financial economics analog of the epidemiology inquiry that the Court required in Daubert. Such an inquiry is conducted by specifying a hypothesis, called the null hypothesis, that CAR is equal to zero, and then testing CAR to see if the scientist can reject (or falsify, to use the word that so concerned the Chief Justice in Daubert) that hypothesis. If the scientist can reject the null hypothesis, we can say that CAR differs from zero in a statistically significant manner and the event had an effect on the value of the security. If we fail to reject the null hypothesis, we are unable to determine that the event affected the value of the security.

2.9. Hypotheses Formulation

In $1^{\text {st }}$ alternative hypothesis, it is formed in line with what had been stated on previous studies; Bernard and Noel (1991) have investigated the predictive ability of inventory level on sales and earnings. Bernard and Noel (1991) have investigated the predictive ability of inventory level on sales and earnings. Whether there is any significant relationship between future sales, future earnings and with stock price. Their results indicate that increase in finished goods inventory does not have any relation to future sales, but it is negatively associated with future earnings. Given the overwhelming empirical evidence on the positive association between earnings and stock price, increase in inventory most likely is also negatively associated with stock price. Considering the explanation above, it leads to form the alternatives hypothesis as below:

H1 : Earnings is positively associated with stock price

In $2^{\text {nd }}$ alternative hypothesis, it is formed in line with what had been stated on previous studies, that Lev and Thiagarajan (1993) had made a research that had generated the 12 signals for fundamental analysis One of the signals is the increase in inventory, which is measured by percentage change in inventory value minus percentage change in sales (referred to by Jiambalvo, Noreen and Shelvin (1997) as PCIS). Their result shows that the increase in inventory is negatively associated with 12 months excess stock returns, i.e., a result that is consistent with that implied in Bernard and Noel (1991). Considering the explanation above, it leads to form the $2^{\text {nd }}$ alternatives hypothesis as follows:

H2 : There is negative association between increase in inventory and stock price.

Besides of what have been stated by Jiambalvo, Noreen and Shelvin (1997) on previous studies, they also investigate the incremental value of increase in inventory over earnings for manufacturing firms from 1975 to 1992 using the cumulative abnormal returns approach. The results of the pooled regression show that both unexpected earnings and increase in inventory are positively and significantly associated with cumulative abnormal earnings. The results of annual regression show that unexpected earnings are positively and significantly associated with CAR for all 18 years while CPAI is positively and significantly associated with CAR in 11 of 18 years. Considering the explanation above, it leads to form the $3^{\text {rd }}$ alternatives hypothesis as follows:

H3 : There is positive association on earnings between increase in inventory

 and stock price.
CHAPTER III

RESEARCH METHOD

3.1. Type of Research Method

This thesis used the quantitative analysis method. The quantitative analysis is a characteristic of variables when the value is stated on the numerical form. The characteristic of the measurement variable makes the value being placed in interval.

Furthermore, this study is also using a research methodology that is fundamentally different from those in the prior studies in two respects, those are as follows:

1. It classifies firms into two groups which Group I consists of firms with positive and significant association between percentage changes in cost of goods sold and lag one percentage of production added to inventory while Group 0 consists of other firms. Whereas Lev and Thiagarajan (1993) and Jiambalvo, Noreen, and Shelvin (1997) did not. To classify the sample firms in this research, the researcher was using 7 (seven) years, from year the 1998 to 2004, and then two years are found with its dummies to conduct this research that is from 2003 and 2004.
2. It uses the firm valuation analysis that consists of two approaches, those are the level approach and the changes approach. Those two approaches are used to examine the association between firm value and earnings while Lev and Thiagarajan (1993) and Jiambalvo, Noreen, and Shelvin
(1997) use the cumulative abnormal returns approach to study the incremental value of increase in inventory over earnings.

3.2. Population and Sample

The population from which the sample was taken for this study referred to all companies that were listed in JSX from the period January 1998 to December 2004. The samples for the study were those companies that meet following criteria:

1. Companies that developing as manufacturing firm.
2. Companies which annual total inventory data from 1998 to 2004 available in the Research Insight database.
3. Companies which annual cost of goods sold data from 1998 to 2004 available in the Research Insight database.
4. Companies which close price per share, basic earnings per share excluding extraordinary items, and book value per share data from 2002 to 2004 available in the Research Insight database.
5. Companies which common equity and shares used to calculate basic earnings per share data from 2002 to 2004 available in the Research Insight database.
6. Companies with inventory methods data from 2003 to 2004; gross profit, selling and administrative expenses data from 2002 to 2004; then 152 firms are selected from the database.

3.3. Data Collection

Data collection was conducted by compiling the secondary data that were available and quoted properly from the data sources in the library of Faculty of Economics UII Yogyakarta, MM UGM Library Yogyakarta, and Jakarta Stock Exchange Corner. The data collection and the sources of data are described below:

1. The data samples are manufacturing firms
2. Their annual total inventory data from 1998 to 2004 are available in the Research Insight database.
3. Their annual costs of goods sold data from 1998 to 2004 are available in the Research Insight database
4. Their close price per share, basic earnings per share excluding extraordinary items, and book value per share data from 2002 to 2004 are available in the Research Insight database.
5. Their common equity and shares used to calculate basic earnings per share data from 2002 to 2004 are available in the Research Insight database.
6. 152 firms are selected from the database. In addition to the above data, their inventory methods data from 2003 to 2004, gross profit and selling and administrative expenses data from 2002 to 2004 are also collected.

3.4. Research Variables

There are two variables in this research. Those are dependent variable and independent variable.

1) Independent Variable

Independent Variable is a variable that is not depending on other variables. It is usually called as free variable. The independent variables in this research are: unexpected earnings and CPAI (Change in Percentage of Production Added to Inventory)
2) Dependent Variable

Dependent variable is a variable that depends on other variables. Dependent variable in this research is CAR (Cumulative Abnormal Returns) over 12 months. CAR is acquired at closing stock price in the research period.

- There are two models that can be used in calculating the increase in inventory under cumulative abnormal return, in purpose to know whether increase in inventory may convey good or bad news to the market, then they are:
a. \quad Model : $\left.\left.\mathrm{CPAI}_{\mathrm{t}}=\left(\left(\mathrm{QP}_{\mathrm{t}}-\mathrm{QS}_{\mathrm{t}}\right) / \mathrm{QP}_{\mathrm{t}}\right)-\left(\mathrm{QP}_{\mathrm{t}-1}-\mathrm{QS}_{\mathrm{t}-1}\right) / \mathrm{QP}_{\mathrm{t}-1}\right)\right)$

Where:
$\mathrm{QP}_{\mathrm{t}}=$ is quantity produced in year t
$\mathrm{QS}_{\mathrm{t}}=$ is quantity sold in year t.

The statistical model was used to show whether the association between unexpected earnings and increase in inventory are positively and significantly associated with cumulative abnormal earnings under pooled regression and to show whether unexpected earnings are positively and significantly associated with CAR under annual regression
b. Model : $\mathrm{PAI}_{t}=\left(\mathrm{QP}_{t}-\mathrm{QS}_{t}\right) / \mathrm{QP}_{t}=\Delta \mathrm{INV}_{\mathrm{abs}, t} /\left(\mathrm{COG}_{\mathrm{abs}, t}+\right.$ Where: $\Delta \mathrm{INV}_{\text {abs }, t}$)

$$
\begin{aligned}
\Delta \mathrm{INV}_{\mathrm{abs}, t}= & \text { is change in inventory value under absorption } \\
& \text { costing in year } t \\
\mathrm{COG}_{\text {abs }, t}= & \text { is cost of goods sold under absorption-costing } \\
& \text { in year } t .
\end{aligned}
$$

The equation above can be used to measure the change in inventory by the percentage of production added to inventory (PAI), which the concept is defined by and derived from Jiambalvo, Noreen and Shelvin (1997)

3.5. Technique of Data Analysis

The data analysis used in this research is Linear Multiple Regression Analysis. Linear Multiple Regression Analysis is used to test the hypothesis. In this research, researcher used a Linear Multiple Regression in level model in order to know the relationship between CAR variable, unexpected earnings, and CPAI
(Change in Percentage of Production Added to Inventory). The steps of analysis are divided into some groups of framework based on the hypothesis followed by forming the regression model and formulate the hypothesis testing. The steps analyses of the hypotheses are explained as follows:
a) The identification of the event date.
b) Determining the event window, which were the five days before and five days after the listing date of the stock price.
c) Obtaining the data of firms that meets the criteria written in 3.3
d) Making statistical comparisons on the increase in inventory, to find out if there were significant differences between those two firms and periods.
e) Making statistical comparisons on annual total inventory data from 1998 to 2004
f) Making statistical comparisons on annual cost of goods sold data from 1998 to 2004.
g) Making grouping/classification firms from 2003 to 2004.
h) Making computation of dummies for several variables that are needed to support the hypotheses tests.
i) Making statistical comparisons on close price per share, basic earnings per share excluding extraordinary items, and book value per share data from 2002 to 2004.
j) Making statistical comparisons on common equity and shares used to calculate basic earnings per share data from 2002 to 2004.
k) Making statistical comparisons inventory methods data from 2003 to 2004, gross profit, selling and administrative expenses data from 2002 to 2004.

To examine the hypothesis, the following models were used:
a. A paired different test with the t-test parameter. This model was used to test some hypotheses about the variation between two population means for unexpected earnings and CPAI (Change in Percentage of Production Added to Inventory) variables.
b. Multiple regression analysis. This method was used to examine hypotheses (the relationship between earnings level and price level with increase in inventory, effect of the informativeness of change in inventory on firm valuation). Regressions were performed for each of the two sample groups by pooling data from 2003 to 2004.

The regression model:

1. $\% \Delta \operatorname{COG}_{\mathrm{t}+1}=\left(\mathrm{COG}_{\mathrm{t}+1}-\mathrm{COG}_{\mathrm{t}}\right) / \mathrm{COG}_{\mathrm{t}}=\alpha_{1}+\beta_{1} \mathrm{PAI}_{\mathrm{t}}+\varepsilon_{\mathrm{t}}$

This regression model was used to classify the firms.
Where:
$\% \Delta \operatorname{COG}_{\mathrm{t}+\mathrm{t}}=$ is percentage change in cost of goods sold for year $t+1$
$\mathrm{PAI}_{t}=$ is percentage of production added to inventory for year t defined by Equation (3.2).
2. Levels analysis. The levels approach can be represented by the following equation:

$$
\begin{equation*}
\mathrm{P}_{\mathbf{t}}=\alpha_{2}+\beta_{2} \mathrm{E}_{\mathrm{t}}+\varepsilon_{\mathrm{t}} \tag{3.4}
\end{equation*}
$$

Where:

$$
\begin{aligned}
P_{t}= & \text { close price per share for year } t \\
E_{t}= & \text { basic earnings per share excluding extraordinary items } \\
& \text { for year } t .
\end{aligned}
$$

Both the dependent and independent variables are normalized by beginning common equity per share. \mathbf{B}_{2} is expected to be positive and significant, i.e., earnings level is positively and significantly associated with stock price level.
3. Changes analysis. The changes approach can be represented by the following equation:

$$
\begin{equation*}
\left(P_{t}-P_{t-1}\right)=\alpha_{3}+\beta_{3}\left(E_{1}-E_{1-1}\right)+\varepsilon_{t} \tag{3.5}
\end{equation*}
$$

Both the dependent and independent variables are normalized by beginning common equity per share. β_{3} is expected to be positive and significant, i.e., earnings change is positively and significantly associated with stock price change.
4. Combined and pooled regressions. Barth, Elliot and Finn (1999) suggested the usage of an indicator variable to combine both sample groups into one regression. For the level approach, then the equation is:

$$
\begin{equation*}
P_{t}=\alpha_{4}+\beta_{4} E_{t}+\beta_{5}\left(D^{2} \times E_{t}\right)+\varepsilon_{t} \tag{3.6}
\end{equation*}
$$

Where:
D is an indicator variable; it equals one for Group 1, and zero for Group 0 .

Both the dependent and the independent variables are normalized by beginning common equity per share. The rationale for using the indicator variable is explained in Neter, Wasserman and Kuther (1985) as follows: For Group 1 firms $(\mathrm{D}=1)$,

$$
\begin{equation*}
E\left[P_{t}\right]=\alpha_{4}+\left(\beta_{4}+\beta_{5}\right) E\left[E_{t}\right] \tag{3.7}
\end{equation*}
$$

Where: $\mathrm{E}=$ is the expectations operator.
For Group 0 firms ($D=0$),

$$
\begin{equation*}
\mathrm{E}\left[\mathrm{P}_{\mathrm{t}}\right]=\alpha_{4}+\beta_{4} \mathrm{E}\left[\mathrm{E}_{1}\right] \tag{3.8}
\end{equation*}
$$

5. The difference between the two groups, therefore, is represented by β_{5}. If Group 1 firms do have a higher price-earnings multiple, then β_{5} should be positive and statistically significant. For the changes approach, the regression equation is as follows:

$$
\begin{equation*}
\left(P_{t}-P_{t-1}\right)=\alpha_{5}+\beta_{6}\left(E_{t}-E_{t-1}\right)+\beta_{7}\left(D \times\left(E_{t}-E_{t-1}\right)\right)+\varepsilon_{t} \tag{3.9}
\end{equation*}
$$

Both the dependent variable and the independent variables are normalized by beginning common equity per share. β_{7} should be positive and statistically significant if Group 1 firms have a higher price-earnings multiple than Group 0 firms.
6. Following are the levels and the changes regressions by incorporating the control variable:

$$
\begin{equation*}
P_{\mathbf{t}}=\alpha_{6}+\beta_{8} \mathrm{E}_{\mathrm{t}}+\beta_{9} \text { InvM1 }+\varepsilon_{t} \tag{3.10}
\end{equation*}
$$

$$
\begin{equation*}
\left(\mathrm{P}_{\mathrm{t}}-\mathrm{P}_{\mathrm{t}-1}\right)=\alpha_{7}+\beta_{10}\left(\mathrm{E}_{\mathrm{t}}-\mathrm{E}_{\mathrm{t}-1}\right)+\beta_{11} \text { InvM1 }+\varepsilon_{\mathrm{t}} \tag{3.11}
\end{equation*}
$$

Where:
InvM1 equals 1 if inventory method is FIFO and 0 otherwise
7. Price, price change, earnings, and earnings change are normalized by beginning common equity per share. An indicator variable can also be included in the levels and the changes regressions:

$$
\begin{align*}
\mathrm{P}_{\mathrm{t}}=\alpha_{8} & +\beta_{12} \mathrm{E}_{\mathrm{t}}+\beta_{13} \operatorname{InvM} 1+\beta_{14}\left(\mathrm{D} \times \mathrm{E}_{\mathrm{t}}\right)+\varepsilon_{\mathrm{t}} \tag{3.12}\\
\left(\mathrm{P}_{\mathrm{t}}-\mathrm{P}_{\mathrm{t}-1}\right) & =\alpha_{9}+\beta_{15}\left(\mathrm{E}_{\mathrm{t}}-\mathrm{E}_{1-1}\right)+\beta_{16} \text { InvM1 } \\
& +\beta_{17}\left(\mathrm{D} \times\left(\mathrm{E}_{\mathrm{t}}-\mathrm{E}_{\mathrm{t}-1}\right)\right)+\varepsilon_{\mathrm{t}} \tag{3.13}
\end{align*}
$$

8. Analysis by decomposing earnings. Earnings per share before extraordinary items are decomposed as the following in this study:

$$
\begin{equation*}
\mathrm{E}=\mathrm{GP}-\mathrm{SA}-\text { Other } \tag{3.14}
\end{equation*}
$$

Where:
E = earnings per share before extraordinary
GP = gross profit per share
$\mathrm{SA}=$ selling and administrative expense per share
Other = other expense per share

$$
\text { (i.e., Other }=G P-S A-E \text {). }
$$

9. Level analyses are performed for each group, and for the combined sample is using indicator variables:

$$
\begin{align*}
& P_{t}=\alpha_{10}+\beta_{18}{G P_{t}}^{+}+\beta_{19} S A_{t}+\varepsilon_{t} \tag{3.15}\\
& P_{t}=\alpha_{11}+\beta_{20} G_{t}+\beta_{21} S A_{t}+\beta_{22}\left(\mathrm{D} \times \mathrm{GP}_{\mathrm{t}}\right)
\end{align*}
$$

$$
\begin{equation*}
+\beta_{23}\left(\mathrm{D} \times \mathrm{SA}_{1}\right)+\varepsilon_{1} \tag{3.16}
\end{equation*}
$$

The dependent and the independent variables are normalized by beginning common equity per share.
10. Changes analyses are also performed for each group, and for the combined sample using indicator variables:

$$
\begin{align*}
\left(\mathrm{P}_{\mathrm{t}}-\mathrm{P}_{\mathrm{t}-1}\right)= & \alpha_{12}+\beta_{24}\left(\mathrm{GP}_{\mathrm{t}}-G \mathrm{PP}_{\mathrm{t}-1}\right)+\beta_{25}\left(\mathrm{SA}_{\mathrm{t}}-\mathrm{SA}_{\mathrm{t}-1}\right)+\varepsilon_{\mathrm{t}}(3.17) \\
\left(\mathrm{P}_{\mathrm{t}}-\mathrm{P}_{\mathrm{t}-1}\right)= & \alpha_{13}+\beta_{26}\left(\mathrm{GP}_{\mathrm{t}}-\mathrm{GP}_{\mathrm{t}-1}\right)+\beta_{27}\left(\mathrm{SA}_{\mathrm{t}}-\mathrm{SA}_{\mathrm{t}-1}\right) \\
& +\beta_{28}\left(\mathrm{Dx}\left(\mathrm{GP}_{\mathrm{t}}-\mathrm{GP}_{\mathrm{t}-1}\right)\right)+\beta_{29}\left(\mathrm{D} \times\left(\mathrm{SA}_{\mathrm{t}}-\mathrm{SA}_{\mathrm{t}-1}\right)\right) \\
& +\varepsilon_{\mathrm{t}} \tag{3.18}
\end{align*}
$$

Both the dependent and the independent variables are normalized by beginning common equity per share.

3.5.1. The period of Observation

The time of observation for this research was five days before and five days after the listing date of the stock price. Those times were applied for all samples during January 2003 to December 2004. The eleven days of research observation was sufficient to see the changes of inventory resulting from the change in inventory activity.

3.6. Formulated Hypothesis and Hypothesis Testing.

Based on the problem statements and the review of the related literature, the alternatives hypotheses and the null hypotheses that are proposed in this research are as follows:

$$
\mathrm{H}_{\mathrm{ol}}: \beta_{\mathrm{i}} \leq 0
$$

An earnings is not positively associated with stock price.

$$
\mathrm{H}_{\mathrm{A} 1}: \beta_{\mathrm{i}}>0
$$

An earnings is positively associated with stock price.
$\mathrm{H}_{\mathrm{o} 2}: \beta_{\mathrm{i}} \geq 0$

There is no negative association between increase in inventory and stock price.
$\mathrm{H}_{\mathrm{A} 2}: \beta_{\mathrm{i}}<0$

There is negative association between increase in inventory and stock price.
$\mathrm{H}_{\mathrm{o3}}: \beta_{\mathrm{i}} \leq 0$

There is no positive association on earnings between increase in inventory and stock price
$\mathrm{H}_{\mathrm{A} 3}: \beta_{\mathrm{i}}>0$
There is positive association on earnings between increase in inventory and stock price.

The hypothesis testing will be done by using the Linear Multiple Regression in order to find the relationship between the dependent and independent variables that are used in this research. This research used the significant level of 95% or $\alpha=5 \%$. The data, then, were processed by using SPSS 12.0 (Statistical Package for Social Science) computer software and E-views to do such classical assumption test in multiple regressions and to overcome them. After
finding the regression results, which all the hypothesis testing was done by using all the regression equation models, the researcher analyzed the significance of coefficient and variable.

To test the hypotheses, researcher used model developed by:
a) To test the $1^{\text {st }}$ hypothesis, the research was using $2^{\text {nd }}, 3^{\text {rd }}, 4^{\text {th }}$ and $5^{\text {th }}$ model of Linear Multiple Regression equation.

The $2^{\text {nd }}$ model was used to find the association of earnings with stock price for year t. Meanwhile, the $3^{\text {rd }}$ model here was used to test the association of changes of earnings for year t to year $t-l$ with stock price for year t to year $t-1$. Thus, the $4^{\text {th }}$ model here was used to combine both sample groups into one regression, namely by pooled regression. Then the $5^{\text {th }}$ model was used to test which group sample that has informativeness of change in inventory that would be useful for firm valuation.
b) To test the $2^{\text {nd }}$ null hypothesis, the research was using $6^{\text {th }}$ model of Linear Multiple Regression equation.

In the $6^{\text {th }}$ model here, the researcher wanted to see the association of changes in inventory and stock price, both in year t and the changes between year t and
$t-I$.
c) To test the $3^{\text {rd }}$ hypothesis, the research used $7^{\text {h }}, 9^{\text {th }}$ and $10^{\text {th }}$ model of Linear Multiple Regression equation.

In this case, $7^{\text {th }}$ model was used to test $3^{\text {rd }}$ null hypothesis, because the researcher wants to know whether there is no positive association on earnings between increase in inventory and stock price, both in year t and the changes between year t to year $t-1$. In the $9^{\text {th }}$ and $10^{\text {th }}$ models of regression here are used to test the connection between earnings and stock price whether earnings has side effect on stock price, including to have a deeper analysis on them.

3.7. Testing and Detecting the Classical Assumption on Multiple Regression

a. The outliers test.

The outliers test is an unusual observation in the data set. It happens when your data is included as extreme data. The impacts of the existence of outliers are as follows: β_{i} is changed, T-test will change, F-test will change, and R^{2} adj will change too. Two useful methods for detecting outliers are box plots and Z-scores. The Cook's Distance of 2.5 ranges is also used to detect the outliers. In addition, the treatment of it is by deleting the data or excluding the extreme data.

b. The multicollinearity test.

The multicollinearity test means there is a correlation among the independent variables. The impacts of the existence of multicollinearity are as the following: β_{i} is changed, T-test will change, F-test will change, and R^{2} adj will change too. The existence of multicollinearity can be seen
in the Calculation results of the Tolerance (TOL) and Variation Inflation Factor (VIF). Gujarati (1995) stated that a variable would have high collinearity if its VIF is more than 10 (ten) or its tolerance tend to be close to 0 (zero). In addition, the treatment of it is by:

1) Ignoring it; if there is no evidence of multicollinearity on your data.
2) Dropping a variable(s) and specification bias.

c. The autocorrelation test.

The term autocorrelation may be defined as "correlation between members during a series of observations ordered in time (as in time series data) or space (as in cross-sectional data)" Gujarati (2003: 442). Autocorrelation test is used to detect the serial correlation between disturbance terms. The impacts of the existence of autocorrelation are: β_{i} is change, T-test will change, F-test will change, and R^{2} adj will change too. The most celebrated test for detecting serial correlation is that developed by statisticians Durbin-Watson d statistic. As for other test to detect autocorrelation, we can use Lagrance multiplier test (Breusch-Godfrey Statistic), and Q statistic (Box-Pierce and Ljungbox). As long as the data by Durbin-Watson close to 2 , then those data do not have any problem nor auto correlation. In addition, the treatment of it is by:

1) Ignoring it when your test is not a time series (pooling or crosssectional test).
2) Transform all variable. When your test is time series, transform them into another form. You do that until there is no auto correlation anymore.

Test of time series is normally to see the relationship of data from one series to another series.

Durbin Watson d Statistics, Gujarati p. 469

Reject Ho Evidence of positive autocorrelation	Zone of indecision	Do not reject Ho or $\mathrm{H}^{*} \mathrm{o}$ or both. No autocorrelation	Zone of indecision	Reject H* evidence of negative autocorrelation

Ho : No positive auto correlation
$\mathrm{H}^{*} \mathrm{o}$: No negative auto correlation

Durbin Watson d Test : Decision Rules, Gujarati p. 470

Null Hypothesis	Decision	If
No positive	Reject	$0<d<d L$
autocorrelation	No	
No positive	decision	$\mathrm{dL}<\mathrm{d}<\mathrm{dU}$
autocorrelation	Reject	$4-\mathrm{dL}<\mathrm{d}<4$
No negative	No	
autocorrelation	No negative autocorrelation	decision Do not reject
No correlation, positive or negative	$\mathrm{dU}<\mathrm{dU}<\mathrm{d}<4-\mathrm{dL}$	

d. The heteroscedasticity test.

The heteroscedasticity test means there is no difference in the standard value of deviation of dependent variable in each independent variable value. It is occurred when the variance $\left(\sigma^{2}\right)$ does not equal to $0\left(\sigma^{2}\right.$ $\neq 0$). The impacts of the existence of heteroscedasticity are as the following: β_{i} is changed, T-test will change, F-test will change, and R^{2} adj will change too. Heteroscedasticity can be detected by analyzing the coefficient of the Spearman's correlation test. In addition, it can use the scatter diagram and the park test. The treatment of it is by: transforming all the data until there is no heteroscedasticity (into homocedasticity). To detect the existence of heteroscedasticity on your data is by:

1) First, we run $Y=f\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ then finds the error (ε) or residual.
2) Calculate the ε^{2} (variance).
3) Run regression: $\varepsilon^{2}=\left(x_{1}, x_{2}, \ldots, x_{k}\right)$. If $\beta_{i} \neq 0$, then there is heteroscedasticity on your test.
4) Do t-test on $x_{1}, x_{2}, \ldots, x_{k}$, from step 3 . If there is one coefficient of variable $\left(\beta_{i}\right)$ then there is heteroscedasticity.

CHAPTER IV

RESEARCH FINDINGS, DISCUSSIONS, AND IMPLICATIONS

4.1 Research Description

4.1.1. Research Population and Sample

"Population is the total collection of elements which is we wish to make some inferences" (Cooper \& Pamela, 1998). The meaning of this statement is that the population will determine the overall conclusion which will be made. The population on this research is the companies that are already go public and are listed in the Indonesia Capital Market Directory (ICMD) and in the Jakarta Stock Exchange (JSX) until the end of December 2004.

The population on this research is the companies that are already go public and listed in the Index Capital Market Directory book on JSX corner until the end of December 2004 and there are 153 companies that have been included as manufacturing firms (See Appendix 1). Among these 153 companies, based on the inventory method that I used, I eliminate one company that has standard cost criteria as its inventory method. The company is PT. Ryane Adibusana Tbk. It is omitted because in this research the inventory method that I use is only FIFO. There are 152 manufacturing firms after the elimination based on inventory method. Then, after the elimination based on inventory method, among these 152 companies I found that there are 40 companies which do not have a complete data and financial report for the research period (See Appendix 1, table A.1). The 112
selected companies that become the samples of this research can be seen in Appendix 1 in table 4.1.

After we classify the data above, the total population that really fulfills the research criteria is only 112 companies (See Appendix 1). Then, the next task is grouping or classifying firms (See Appendix 3). As mentioned in Chapter 3, the samples are divided into 2 (two) groups. Group 1 consists of firms with positive and significant association between percentage change in cost of goods sold and lag one percentage of production added to inventory, i.e., β_{1} is positive and statistically significant at $\alpha=0.10$ level. Meanwhile Group 0 consists of other firms. From several computations from the data samples that I acquired after doing some observation, 5 years sample observation from 2000 up to 2004 is obtained for the change in cost of goods sold from 1999 to 2004. The same things happen also for computation of lag one percentage of production added to inventory. From several computations from 1998 to 2003, it is obtained 5 years sample observation that is from 1999 up to 2003. This grouping is purposed to determine the dummies for each sample group. Because my research is time series and using pooled data method, therefore after doing grouping, I determined which firm is included in Group 1 or 0 by making correlation between change in cost of goods sold and production added of inventory. Then, from those computations that I have done, it is only provided 2 (two) years from 2003 up to 2004 that will be used in this research, with 112 companies as the sample on this research.

After eliminating the missing data, doing grouping, making computation to get dummies for 2003 and 2004 (See Appendix 4), then we removed several
companies that are considered to be the outliers which did not correlate significantly to the stock price. In this research, based on classifying firms that have been made, I removed companies per each different equation for 2003 up to 2004.

4.1.2. Sources and Data Collection Method

The required data in this research is the stock price, companies' financial statements, and companies' inventory method. The stock price is a price that happens a day after the companies' financial statement is published to the mass media. The stock price that is used for the annual report is the stock price at the end of the fourth months (closing price) after the date of financial statements, with some considerations that the companies' annual financial statements are published to media on average four months later from the date of the financial statements.

The companies' financial statements which are used in this research are the financial statements that are published in annual financial statements. From the year 2002 to 2004, there are 3 periods of financial statements published by the company. In here, closing price year 2002 is used as base year for changes level computation. In relation with this condition, at first the total observation (N) in this research is 304 for 152 companies after eliminating one company which inventory method does not meet the requirement on the test. Then, there are several companies that are eliminated because of missing data; therefore, the total observation (N) in this research is 224 for 112 companies. However, in order to
get better result, we removed some companies that do not have strong correlation with the stock price and they are considered to be the outliers of the data. Thus, the final total observations (N) in this research after removing some companies are different, based on different equation that are presented to support the hypothesis test.

The data that is used in this research are collected from the secondary data, such as financial statements, the company's stock price, the company's inventory method and the company's total shares. The data collection method is through literature search, obtaining data from mass media such as Indonesian Capital Market Directory, and Info Pasar Modal. The data for the stock price and the summary of the financial statement from 112 sample companies which have been selected can be seen in Appendix 1.

4.2 Research Findings.

In order to find out how big the influence on informativeness of change in inventory on stock price, the analysis is done by doing several tests of hypotheses. Therefore, in each hypothesis, there will be some testing on several equations that are provided to support the result of the hypothesis test. From the financial statements of 112 sample companies, we then calculated the result by using multiple regression analysis, which is shown in the tables below:

TABLE 4.2
THE RESULT OF REGRESSION ANALYSIS ON 112 COMPANIES ON EQUATION 3.4 WITH PROBABILITY $\alpha=5 \%$

VARIABLE	REGRESSION COEFFICIENTS	T - STATISTIC
CONSTANT	1.035	6.180
ET	-1.444	-72.764
R-Squared $\left(\mathrm{R}^{2}\right)$	$=0.960$	
Adjusted R-Squared	$=0.960$	
F-Statistic	$=5294.529$	
Durbin-Watson Statistic	$=1.771$	

Source: Appendix 5

TABLE 4.3
THE RESULT OF REGRESSION ANALYSIS ON 112 COMPANIES ON EQUATION 3.5 WITH PROBABILITY $\alpha=5 \%$

VARIABLE	REGRESSION COEFFICIENTS	T-STATISTIC
CONSTANT	-0.268	-0.975
ETET1	-0.551	-18.931
R-Squared $\left(\right.$ R $\left.^{2}\right)$	$=0.617$	
Adjusted R-Squared	$=0.616$	
F-Statistic	$=358.368$	
Durbin-Watson Statistic	$=1.282$	

Source: Appendix 5

TABLE 4.4
THE RESULT OF REGRESSION ANALYSIS ON 112 COMPANIES ON EQUATION 3.6 WITH PROBABILITY $\alpha=5 \%$

VARIABLE	REGRESSION COEFFICIENTS	T- STATISTIC
CONSTANT	1.056	6.792
E	-1.452	-78.593
DE	1.710	6.041
R-Squared (R		
Adjusted R-Squared $=0.965$ F-Statistic $=0.965$ Durbin-Watson Statistic $=3088.752$		
Source: Appendix 5		

TABLE 4.5
THE RESULT OF REGRESSION ANALYSIS ON 112 COMPANIES ON EQUATION 3.9 WITH PROBABILITY $\alpha=5 \%$

VARIABLE	REGRESSION COEFFICIENTS	T-STATISTIC
CONSTANT	-0.266	-0.966
ETET1	-0.551	-18.871
DETET1	0.123	0.246
R-Squared (R ${ }^{2}$)	$=0.618$	
Adjusted R-Squared	$=0.614$	
F-Statistic	$=178.455$	
Durbin-Watson Statistic	$=1.280$	
Source: Appendix 5		

Tables 4.2 up to table 4.5 are performed in order to support the $1^{\text {st }}$ hypothesis test.

TABLE 4.6

THE RESULT OF REGRESSION ANALYSIS ON 112 COMPANIES ON

 EQUATION 3.10 WITH PROBABILITY $\alpha=5 \%$| VARIABLE | REGRESSION
 COEFFICIENTS | T- STATISTIC |
| :--- | :---: | :---: |
| CONSTANT | 1.043 | 6.307 |
| E | -1.444 | -73.692 |
| METET1 | -1.948 | -2.606 |
| R-Squared $\left(\mathrm{R}^{2}\right)$ | | |
| Adjusted R-Squared | $=0.961$ | |
| F-Statistic | $=0.961$ | |
| Durbin-Watson Statistic | $=1.801$ | |

Source: Appendix 5

TABLE 4.7
THE RESULT OF REGRESSION ANALYSIS ON 112 COMPANIES ON
EQUATION 3.11 WITH PROBABILITY $\alpha=\mathbf{5 \%}$

VARIABLE	REGRESSION	T-STATISTIC
COEFFICIENTS		
ETET1	-0.262	-0.955
METET1	-0.550	-18.920
R-Squared (R ${ }^{2}$)	-1.510	-1.219
Adjusted R-Squared $=0.620$ F-Statistic $=0.617$ Durbin-Watson Statistic $=180.319$		

Source: Appendix 5
Tables 4.6 to 4.7 are performed in order to support the $2^{\text {nd }}$ hypothesis test.

TABLE 4.8
THE RESULT OF REGRESSION ANALYSIS ON 112 COMPANIES ON
EQUATION 3.12 WITH PROBABILITY $\alpha=5 \%$

VARIABLE	REGRESSION COEFICIENTS	T-STATISTIC
CONSTANT	1.067	7.020
E	-1.452	-80.444
DE	1.793	6.458
METET1	-2.341	-3.394
R-Squared (R		
Adjusted R-Squared $=0.967$ F-Statistic Durbin-Watson Statistic $=0.967$ $=2161.023$		

Source: Appendix 5

TABLE 4.9

THE RESULT OF REGRESSION ANALYSIS ON 112 COMPANIES ON EQUATION 3.13 WITH PROBABILITY $\alpha=5 \%$

VARIABLE	REGRESSION COEFFICIENTS	T -STATISTIC
CONSTANT	-0.254	-0.925
ETET1	-0.551	-18.917
METET1	-1.914	-1.424
DETET1	0.421	0.777
R-Squared (R ${ }^{2}$)	$=0.621$	
Adjusted R-Squared $=0.616$ F-Statistic Durbin-Watson Statistic $=120.199$		

Source: Appendix 5

TABLE 4.10
THE RESULT OF REGRESSION ANALYSIS ON 112 COMPANIES ON EQUATION 3.15 WITH PROBABILITY $\alpha=5 \%$

VARIABLE	REGRESSION COEFFICIENTS	T-STATISTIC
CONSTANT	0.963	5.531
GP	-2.698	-40.827
SA	3.987	67.009
R-Squared (R ${ }^{2}$)	$=0.960$	
Adjusted R-Squared	$=0.960$	
F-Statistic		
Durbin-Watson Statistic	$=1.673$	

Source: Appendix 5

TABLE 4.11
THE RESULT OF REGRESSION ANALYSIS ON 112 COMPANIES ON EQUATION 3.16 WITH PROBABILITY $\alpha=\mathbf{5 \%}$

VARIABLE	REGRESSION COEFFICIENTS	T-STATISTIC
CONSTANT	0.773	6.328
GP	-2.287	-31.648
SA	4.343	76.245
DGP	3.822	11.304
DSA	-5.327	-14.283
R-Squared (R ${ }^{2}$)	$=0.981$	
Adjusted R-Squared	$=0.981$	
F-Statistic	$=2846.503$	
Durbin-Watson Statistic	$=1.959$	

Source: Appendix 5

TABLE 4.12
THE RESULT OF REGRESSION ANALYSIS ON 112 COMPANIES ON EQUATION 3.17 WITH PROBABILITY $\alpha=5 \%$

VARIABLE	REGRESSION COEFFICIENTS	T-STATISTIC
CONSTANT	0.09922	0.319
GTGT10	-3.691	-7.562
SASAT1	-1.239	-1.388
R-Squared $\left(R^{2}\right)$		
Adjusted R-Squared $=0.522$ F-Statistic $=120.674$ Durbin-Watson Statistic $=1.517$		

Source: Appendix 5

TABLE 4.13
THE RESULT OF REGRESSION ANALYSIS ON 112 COMPANIES ON EQUATION 3.18 WITH PROBABILITY $\alpha=5 \%$

VARIABLE	REGRESSION COEFFICIENTS	T - STATISTIC
CONSTANT	-0.146	-0.554
GTGT10	-0.681	-1.183
SASAT1	-9.458	-7.643
DGTGT10	-0.276	-0.231
DSASAT1	10.955	6.855
R-Squared (R ${ }^{2}$)	$=0.668$	
Adjusted R-Squared $=0.662$ F-Statistic Durbin-Watson Statistic $=109.975$		

Source: Appendix 5
Tables 4.6 to table 4.13 are performed in order to support the $3{ }^{\text {rd }}$ hypothesis test.

Next, we need to remove several companies that are considered to be the outliers, which did not have strong correlation to the stock price. Thus, the result for each equation after removing the outliers can be seen in the tables below:

TABLE 4.14
THE RESULT OF REGRESSION ANALYSIS ON 112 COMPANIES ON EQUATION 3.4 WITH PROBABILITY $\alpha=5 \%$

VARIABLE	REGRESSION COEFFICIENTS	T-STATISTIC
CONSTANT	1.071	8.154
ET	0.853	2.089
R-Squared (\mathbf{R}^{2}) Adjusted R-Squared F-Statistic Durbin-Watson Stati	$\begin{aligned} & =0.020 \\ & =0.015 \\ & =4.365 \\ \text { istic } & =0.864 \end{aligned}$	

Source: Appendix 6
From the analysis result as shown in Table 4.14 above, we can arrange the regression equation as follows:

$$
\mathrm{SP}_{\mathrm{t}}=1.071+0.853 \mathrm{E}_{\mathrm{t}}
$$

Tstatistic $=(8.154) \quad(2.089)$
TABLE 4.15

THE RESULT OF REGRESSION ANALYSIS ON 112 COMPANIES ON

$$
\text { EQUATION 3.5 WITH PROBABILITY } \alpha=5 \%
$$

VARIABLE	REGRESSION COEFFICIENTS	T - STATISTIC
CONSTANT	0.03123	1.171
ETET1	-0.0111	-0.407

R-Squared $\left(\mathrm{R}^{2}\right)$	$=0.001$
Adjusted R-Squared	$=-0.004$
F-Statistic	$=0.166$
Durbin-Watson Statistic $=1.004$	
Source: Appendix 6	

From the analysis result as shown in Table 4.15 above, we can arrange the regression equation as follows:

$$
\begin{aligned}
& \mathbf{S P}_{\mathrm{t}}-\mathbf{S P} \mathbf{P}_{\mathrm{t}-1}=0.03123-0.0111 \mathrm{E}_{\mathrm{t}}-\mathrm{E}_{\mathrm{t}-1} \\
& \text { Tstatistic }=(1.171) \quad(-0.407)
\end{aligned}
$$

TABLE 4.16
THE RESULT OF REGRESSION ANALYSIS ON 112 COMPANIES ON EQUATION 3.6 WITH PROBABILITY $\alpha=5 \%$

VARIABLE	REGRESSION COEFFICIENTS	T-STATISTIC
CONSTANT	0.841	$\mathbf{1 4 . 4 7 4}$
E	0.163	0.695
DE	0.144	0.379
R-Squared $\left(R^{2}\right)$ Adjusted R-Squared F-Statistic Durbin-Watson Statistic $=0.007$ $=0.002$	1.654	

Source: Appendix 6
From the analysis result as shown in Table 4.16 above, we can arrange the regression equation as follows:

$$
\begin{aligned}
& \mathrm{SP}_{\mathrm{t}}=0.841+0.163 \mathrm{E}_{\mathrm{t}}+0.144 \mathrm{DE}_{\mathrm{t}} \\
& \mathrm{~T}_{\text {statistic }}=(14.474) \quad(0.695)
\end{aligned}
$$

TABLE 4.17

THE RESULT OF REGRESSION ANALYSIS ON 112 COMPANIES ON

EQUATION 3.9 WITH PROBABILITY $\alpha=5 \%$

VARIABLE	REGRESSION COEFFICIENTS	T- STATISTIC
CONSTANT	0.03143	1.185
ETET1	-0.0226	-0.698
DETET1	0.319	2.136
R-Squared (R ${ }^{2}$)	$=0.023$	
Adjusted R-Squared F-Statistic Durbin-Watson Statistic$=0.013$		
$=2.309$		

Source: Appendix 6
From the analysis result as shown in Table 4.17 above, we can arrange the regression equation as follows:

$$
\begin{align*}
& \mathrm{SP}_{\mathbf{t}}-\mathrm{SP}_{\mathrm{t}-1}=0.03143-0.0226 \mathrm{E}_{\mathrm{t}}-\mathrm{E}_{\mathrm{t}-1}+0.319 \mathrm{DE}_{\mathrm{t}}-\mathrm{E}_{\mathrm{t}-1} \\
& \text { Tstatistic }=(1.185) \quad(-0.698) \tag{2.136}
\end{align*}
$$

TABLE 4.18
THE RESULT OF REGRESSION ANALYSIS ON 112 COMPANIES ON EQUATION 3.10 WITH PROBABILITY $\alpha=5 \%$

VARIABLE	REGRESSION COEFFICIENTS	T- STATISTIC
CONSTANT	0.859	14.183
E	0.308	$\mathbf{1 . 5 5 9}$
METET1	-0.458	-0.698
R-Squared (R ${ }^{2}$)	$=0.012$	
Adjusted R-Squared	$=0.003$	
F-Statistic	$=1.272$	
Durbin-Watson Statistic	$=1.732$	

[^0]From the analysis result as shown in Table 4.18 above, we can arrange the regression equation as follows:

$$
\begin{align*}
& \mathrm{SP}_{\mathrm{t}}=0.859+0.308 \mathrm{E}_{1}-0.458 \mathrm{ME}_{\mathrm{t}}-\mathrm{E}_{\mathrm{t}-1} \\
& \text { Tstatistic }=(14.183) \quad(1.559) \tag{-0.698}
\end{align*}
$$

TABLE 4.19
THE RESULT OF REGRESSION ANALYSIS ON 112 COMPANIES ON EQUATION 3.11 WITH PROBABILITY $\alpha=\mathbf{5 \%}$

VARIABLE	REGRESSION COEFFICIENTS	T-STATISTIC
CONSTANT	0.03059	1.142
ETET1	-0.0103	-0.377
METET1	-0.101	-0.331
R-Squared $\left(\mathrm{R}^{2}\right)$	$=0.001$	
Adjusted R-Squared $=-0.009$ F-Statistic Durbin-Watson Statistic $=0.137$ Source: Appendix 6		

From the analysis result as shown in Table 4.19 above, we can arrange the regression equation as follows:

$$
\begin{align*}
& \mathrm{SP}_{\mathrm{t}}-\mathrm{SP}_{\mathrm{t}-1}=0.03059-0.0103 \mathrm{E}_{\mathrm{t}}-\mathrm{E}_{\mathrm{t}-1}-0.101 \mathrm{ME}_{\mathrm{t}}-\mathrm{E}_{\mathrm{t}-1} \\
& \text { Tstatistic }=(1.142) \quad(-0.377) \tag{-0.331}
\end{align*}
$$

TABLE 4.20

THE RESULT OF REGRESSION ANALYSIS ON 112 COMPANIES ON

 EQUATION 3.12 WITH PROBABILITY $\alpha=5 \%$| VARIABLE | REGRESSION
 COEFICIENTS | T - STATISTIC |
| :---: | :---: | :---: |
| CONSTANT | 0.859 | 14.148 |
| E | 0.272 | 1.117 |
| DE | -0.497 | -0.736 |
| METET1 | 0.104 | 0.257 |
| R-Squared (R2) | $=0.013$ | |
| Adjusted R-Squared $=-0.002$
 F-Statistic
 Durbin-Watson Statistic $=0.866$ | 1.812 | |

Source: Appendix 6
From the analysis result as shown in Table 4.20 above, we can arrange the regression equation as follows:

$$
\begin{align*}
& \mathrm{SP}_{\mathbf{t}}=0.859+0.272 \mathrm{E}_{\mathrm{t}}-0.497 \mathrm{DE}_{\mathrm{t}}+0.104 \mathrm{ME}_{\mathrm{l}}-\mathrm{E}_{\mathrm{t}-1} \\
& \text { Tstatistic }=(14.148) \quad(1.117) \quad(-0.736) \tag{1.117}
\end{align*}
$$

TABLE 4.21
THE RESULT OF REGRESSION ANALYSIS ON 112 COMPANIES ON

$$
\text { EQUATION 3.13 WITH PROBABILITY } \alpha=5 \%
$$

VARIABLE	REGRESSION COEFFICIENTS	T-STATISTIC
CONSTANT	0.02851	1.075
ETET1	-0.0222	-0.686
METET1	-0.466	-1.390
DETET1	0.416	2.528

$$
\begin{array}{ll}
\hline \text { R-Squared }\left(\mathbf{R}^{2}\right) & =0.033 \\
\text { Adjusted R-Squared } & =0.018 \\
\text { F-Statistic } & =2.191 \\
\text { Durbin-Watson Statistic } & =1.932
\end{array}
$$

Source: Appendix 6
From the analysis result as shown in Table 4.21 above, we can arrange the regression equation as follows:

$$
\begin{align*}
& \mathrm{SP}_{\mathrm{t}}-\mathrm{SP}_{\mathrm{t}-1}=0.02851-0.0222 \mathrm{E}_{\mathrm{t}}-\mathrm{E}_{\mathrm{t}-1}-0.466 \mathrm{ME}_{\mathrm{t}}-\mathrm{E}_{\mathrm{t}-1}+0.416 \mathrm{DE}_{\mathrm{t}}-\mathrm{E}_{\mathrm{t}-1} \\
& \text { Tstatistic }=(1.075)
\end{align*}
$$

TABLE 4.22
THE RESULT OF REGRESSION ANALYSIS ON 112 COMPANIES ON EQUATION 3.15 WITH PROBABILITY $\alpha=\mathbf{5 \%}$

VARIABLE	REGRESSION COEFFICIENTS	T-STATISTIC
CONSTANT	0.403	8.297
GP	1.267	8.390
SA	-0.611	-3.332
R-Squared $\left(\mathrm{R}^{2}\right)$	$=0.445$	
Adjusted R-Squared	$=0.439$	
F-Statistic		
Durbin-Watson Statistic $=1.953$		

Source: Appendix 6
From the analysis result as shown in Table 4.22 above, we can arrange the regression equation as follows:

$$
\begin{aligned}
& \mathrm{SP}_{\mathrm{t}}=0.403-1.267 \mathrm{GP}_{\mathrm{t}}-0.611 \mathrm{SA}_{\mathrm{t}} \\
& \mathrm{~T}_{\text {statistic }}=(8.297)
\end{aligned}
$$

TABLE 4.23
THE RESULT OF REGRESSION ANALYSIS ON 112 COMPANIES ON EQUATION 3.16 WITH PROBABILITY $\alpha=5 \%$

VARIABLE	REGRESSION COEFFICIENTS	T-STATISTIC
CONSTANT	0.393	7.931
GP	-1.217	5.978
SA	-0.332	-1.286
DGP	0.143	0.486
DSA	-0.527	-1.416
R-Squared $\left(\mathrm{R}^{2}\right)$ $=0.464$ Adjusted R-Squared $=0.453$ F-Statistic $=41.119$ Durbin-Watson Statistic $=1.690$		

Source: Appendix 6
From the analysis result as shown in Table 4.23 above, we can arrange the regression equation as follows:
$\mathrm{SP}_{\mathrm{t}}=0.393+1.217 \mathrm{GP}_{\mathrm{t}}-0.332 \mathrm{SA}_{\mathrm{t}}+0.143 \mathrm{DGP}_{\mathrm{t}}-0.527 \mathrm{DSA}_{\mathrm{t}}$
Tstatistic $=(7.931) \quad(5.978) \quad(-1.286) \quad(0.486) \quad(-1.416)$

TABLE 4.24
THE RESULT OF REGRESSION ANALYSIS ON 112 COMPANIES ON
EQUATION 3.17 WITH PROBABILITY $\alpha=5 \%$

VARIABLE	REGRESSION COEFFICIENTS	T- STATISTIC
CONSTANT	0.02053	0.740
GTGT10	0.168	1.707
SASAT1	-0.00236	-0.012

```
R-Squared (R') =0.015
Adjusted R-Squared =0.005
F-Statistic =1.459
Durbin-Watson Statistic = 1.549
```

Source: Appendix 6
From the analysis result as shown in Table 4.24 above, we can arrange the regression equation as follows:

$$
\begin{align*}
& \mathrm{SP}_{\mathbf{t}}-\mathrm{SP}_{\mathbf{t}-1}=0.02053+0.168 \mathrm{GP}_{\mathbf{t}}-\mathrm{GP}_{\mathrm{t}-1}-0.00236 \mathrm{SA}_{\mathrm{t}}-\mathrm{SA}_{\mathrm{t}-1} \\
& \text { Tstatistic }=(0.740) \tag{-0.012}
\end{align*}
$$

TABLE 4.25
THE RESULT OF REGRESSION ANALYSIS ON 112 COMPANIES ON EQUATION 3.18 WITH PROBABILITY $\alpha=5 \%$

VARIABLE	REGRESSION COEFFICIENTS	T - STATISTIC
CONSTANT	0.01778	0.640
GTGT10	0.08706	0.655
SASAT1	0.003156	0.009
DGTGT10	0.602	2.337
DSASAT1	-0.947	-1.380
R-Squared (R ${ }^{2}$)	$=0.056$	
Adjusted R-Squared $=0.036$ F-Statistic $=2.808$ Durbin-Watson Statistic $=1.757$		

Source: Appendix 6
From the analysis result as shown in Table 4.25 above, we can arrange the regression equation as follows:

$$
\begin{aligned}
\mathrm{SP}_{\mathrm{t}}-\mathrm{SP}_{\mathbf{t}-1}= & 0.01778+0.08706 \mathrm{GP}_{\mathrm{t}}-\mathrm{GP}_{\mathrm{t}-1}+0.003156 \mathrm{SA}_{\mathbf{t}}-\mathrm{SA}_{\mathrm{t}-1} \\
& +0.602 \mathrm{DGP}_{\mathbf{t}}-\mathrm{GP}_{\mathbf{t}-1}-0.947 \mathrm{DSA}_{\mathbf{t}}-\mathrm{SA}_{\mathbf{t}-1} \\
\text { Tstatistic }= & \left(\begin{array}{llll}
0.640) & (0.655) & (0.009)(2.337)(-1.380)
\end{array}\right.
\end{aligned}
$$

Afterward, we test the hypothesis in order to know whether there is a significant influence or not in the independent variables to the dependent variable in statistics. To test the independent variables in partial for each hypothesis, I use ρ - value test.

4.2.1 Testing the Regression Coefficients for Independent Variables

4.2.1.1. Testing the $1^{\text {st }}$ hypothesis: The Association of Earnings with Stock Price
$\mathrm{H}_{0}: \beta_{1} \leq 0$; Earnings is not positively associated with stock price.
$H_{A}: \beta_{1}>0$; Earnings is positively associated with stock price.
If : ρ - value $\geq \alpha$ then do not reject Ho.
If : ρ - value $<\boldsymbol{\alpha}$ then reject Ho.
Based on the calculation that I have done, it shows that:

1. In Table 4.14 (Equation 3.4), the test for year t, shows that the coefficient of earnings in here is positive and its ρ-value is 0.038 . The α with the 5% degree of significant is 0.05 , in which it means that ρ-value is lower than α or ρ-value $<\alpha$. Therefore H_{0} is rejected and accepts the alternative hypothesis. It means that an earnings is positively associated with stock price for year t.
2. In Table 4.15 (Equation 3.5), the test for changes of earnings for year t to year $t-1$, shows that the coefficient of earnings in here is negative and its ρ - value is 0.684 . The α with the 5% degree of significant is 0.05 , in which it means that ρ - value is bigger than α or $\rho-$ value $\geq \alpha$. Therefore
H_{0} is accepted. It means that an earning is not positively associated with stock price for the changes level.
3. In Table 4.16 (Equation 3.6), the test is using pooled data to know which sample group has the informativeness of change in inventory that would be useful for firm valuation for year t. Within this computation, the result shows that the coefficient both of earnings and DE_{t} in here are positive. The ρ - value of earnings is 0.488 and ρ-value of DE_{1} is 0.705 . The α with the 5% degree of significant is 0.05 , in which it means that ρ-value for both independent variable are bigger than α or $\rho-$ value $\geq \alpha$. Therefore H_{0} is accepted. It means that earnings are not positively associated with stock price for year t.
4. In Table 4.17 (Equation 3.9), the test using pooled data to know which sample group has informativeness of change in inventory that would be useful for firm valuation for changes level. Within this computation, the result shows that coefficient of earnings here is negative meanwhile the coefficient of $\mathrm{DE}_{\mathrm{t}}-\mathrm{E}_{\mathrm{t}-1}$ in here is positive. The ρ - value of earnings is 0.486 and ρ-value of $D E_{t}-E_{t-1}$ is 0.034 . The α with the 5% degree of significant is 0.05 , in which it means that ρ - value of earnings is bigger than α or $\rho-$ value $\geq \alpha$. Therefore H_{0} is accepted. It means that an earnings is not positively associated with stock price for changes level. But an earnings is positively associated with stock price for changes level in relationship with $\mathrm{DE}_{\mathfrak{t}}-\mathrm{E}_{\mathrm{t}-1}$.

Therefore, based on the explanation of results on several tests on regression equation models above, in overall, we can conclude that we have to accept H_{0} or accept null hypothesis. It means that earnings are not positively associated with stock price. This is based on the analyses by using p-value approach that has shown above. During the year 2003 up to 2004, we can see that p-value for variable of earnings for each of regression test (from equation 3.5 to equation 3.9) is mostly bigger than $\alpha=5 \%$. And it is the same for the coefficient for each of regression test above, for changes level, it shows that earnings have negative sign instead of positive sign on year level.

4.2.1.2. Testing the $2^{\text {nd }}$ hypothesis: The Association of Increase in Inventory with Stock Price

$H_{0}: \beta_{1} \geq 0$; There is no negative association between increase in inventory and stock price
$\mathrm{H}_{\mathrm{A}}: \beta_{1}<0$; There is negative association between increase in inventory and stock price.

If : ρ - value $\geq \alpha$ then do not reject Ho.
If : ρ - value $<\alpha$ then reject Ho.
Based on the calculation that I have done, it shows that:

1. In Table 4.18 (Equation 3.10), the test for year t, shows that the coefficient of earnings in here is positive, meanwhile coefficient of inventory method here is negative. Thus, the ρ - value of earnings is 0.121 and ρ - value of inventory method is 0.486 . The α with the 5% degree of significant is 0.05 ,
in which it means that ρ - value both for earnings and inventory method are bigger than α or $\rho-$ value $\geq \alpha$. Therefore H_{0} is accepted. It means that there is no negative association between increase in inventory and stock price for year t.
2. In Table 4.19 (Equation 3.11), the test for changes level, shows that coefficient for both of earnings and inventory method in here are negative. Thus, the ρ - value of earnings is 0.707 and ρ-value of inventory method is 0.741 . The α with the 5% degree of significant is 0.05 , in which it means that ρ - value both for earnings and inventory method are bigger than α or $\rho-$ value $\geq \alpha$. Therefore H_{0} is accepted. It means that there is no negative association between increase in inventory and stock price for changes level.

Therefore, based on the explanation of results on several tests on regression equation models above, in overall, we can conclude that we have to accept H_{0} or accept null hypothesis. It means that there is no negative association between increase in inventory and stock price. This is based on the analyses by using p-value approach that has been shown above. During the year 2003 up to 2004, we can see that p-value for variable of earnings for each of regression test (from equation 3.10 to equation 3.11) is bigger than $\alpha=5 \%$. And it is the same for the coefficient for each of regression test above, for changes level, it shows that earnings is have negative sign instead positive sign on year level.

4.2.1.3. Testing the $3^{\text {rd }}$ hypothesis: Association on Earnings between Increase in Inventory and Stock Price.

$\mathrm{H}_{0}: \beta_{1} \geq 0$; There is no positive association on earnings between increase in inventory and stock price.
$\mathrm{H}_{\mathrm{A}}: \beta_{1}<0$; There is positive association on earnings between increase in
inventory and stock price.
If : $\rho-$ value $\geq \alpha$ then do not reject Ho.
If : ρ - value $<\alpha$ then reject Ho.
Based on the calculation that I have done, it shows that:

1. In Table 4.20 (Equation 3.12), the test for year t, for two sample groups, shows that coefficient for both of earnings and DE_{1} in here are positive, meanwhile the coefficient for inventory method is negative. Thus, the ρ - value of earnings is $0.265, \rho$ - value of inventory method is 0.463 , and $\rho-$ value of $D E_{1}$ is 0.797 . The α with the 5% degree of significant is 0.05 , in which it means that ρ-value both for earnings, inventory method, and DE_{t} are bigger than α or $\rho-$ value $\geq \alpha$. Therefore H_{0} is accepted. It means that there is no positive association on earnings between increase in inventory and stock price for year t.
2. In Table 4.21 (Equation 3.13), the test for changes level for two sample groups, shows that the coefficient for both of earnings and inventory method is negative, meanwhile the coefficient for $\mathrm{DE}_{\mathrm{t}}-\mathrm{E}_{\mathrm{t}-1}$ in here is positive. Thus, the ρ - value of earnings is $0.493, \rho$ - value of inventory method is 0.166 , and ρ-value of $\mathrm{DE}_{1}-\mathrm{E}_{\mathrm{t}-1}$ is 0.012 . The α with the 5%
degree of significant is 0.05 , in which it means that ρ - value both for earnings and inventory method are bigger than α or $\rho-$ value $\geq \alpha$. Meanwhile for $\mathrm{DE}_{1}-\mathrm{E}_{\mathrm{t}-1}$, its ρ - value is lower than α or $\rho-$ value $<\alpha$. Therefore H_{0} is accepted. It means that there is no positive association on earnings between increase in inventory and stock price for changes level. However, there is a positive association on earnings between increase in inventory and stock price for changes level in relationship with $\mathrm{DE}_{\mathrm{t}}-\mathrm{E}_{\mathrm{t}-1}$.
3. In Table 4.22 (Equation 3.15), the test to know the connection between earnings and stock price for year t, shows that the coefficient for both of Gross Profit and Selling and Administrative Expense are positive. Thus, the ρ - value of Gross Profit is 0.000 , and ρ - value of Selling and Administrative Expense is 0.001 . The α with the 5% degree of significant is 0.05 , in which it means that ρ - value both for Gross Profit and Selling and Administrative Expense are lower than α or $\rho-$ value $<\alpha$. Therefore H_{0} is rejected and accept the alternative hypothesis. It means that there is positive association on earnings between increase in inventory and stock price in relationship both with Gross Profit and Selling and Administrative Expense in year t.
4. In Table 4.23 (Equation 3.16), the test to know connection between earnings and stock price for year t between two sample groups, shows that coefficient for both of Gross Profit and $\mathrm{DGP}_{\mathrm{t}}$ are positive meanwhile the coefficient for both Selling and Administrative Expense and DSA $_{t}$ are negative. Thus, the ρ - value of Gross Profit is $0.000, \rho-$ value of Selling
and Administrative Expense is $0.200, \rho$ - value of DGP is 0.628 , and $\rho-$ value of DSA is 0.080 . The α with the 5% degree of significant is 0.05 , in which it means that ρ - value for Gross Profit is lower than α or $\rho-$ value $<\alpha$. Therefore, H_{0} is rejected and accept the alternative hypothesis. It means that there is a positive association on earnings between increase in inventory and stock price in relationship with gross profit for year t. Meanwhile for Selling and Administrative Expense and DSA $_{4}$, its ρ - value is higher than α or $\rho-$ value $\geq \alpha$. It means that there is no positive association on earnings between increase in inventory and stock price in relationship with Selling and Administration Expense.
5. In Table 4.24 (Equation 3.17), the test to know the connection between earnings and stock price for changes level, shows that coefficient of Gross Profit is positive meanwhile the coefficient for Selling and Administrative Expense is negative. Thus, the ρ - value of Gross Profit is 0.089 , and ρ - value of Selling and Administrative Expense is 0.991 . The α with the 5% degree of significant is 0.05 , in which it means that ρ-value for both Gross Profit and Selling and Administrative Expense are bigger than α or $\rho-$ value $\geq \alpha$. Therefore, H_{0} is accepted. It means that there is no positive association on earnings between increase in inventory and stock price in relationship both with gross profit and Selling and Administrative Expense.
6. In Table 4.25 (Equation 3.18), the test to know connection between earnings and stock price for changes level for two sample groups, shows
that coefficient of Gross Profit, Selling and Administrative Expense and $D G_{t}-G_{t-1}$ are positive. Meanwhile, the coefficient for DSA $_{t}-S A_{t-1}$ is negative. Thus, the ρ-value of Gross Profit is $0.513, \rho$-value of Selling and Administrative Expense is $0.992, \rho-$ value of $\mathrm{DG}_{\mathrm{t}}-\mathrm{G}_{\mathrm{t}-1}$ is 0.020 and $\rho-$ value of $\mathrm{DSA}_{t}-\mathrm{SA}_{\mathrm{t}}-1$ is 0.169 . The α with the 5% degree of significant is 0.05 , in which it means that ρ-value for both Gross Profit, Selling and Administrative Expense, and $\mathrm{DSA}_{t}-\mathrm{SA}_{t-1}$ are bigger than α or $\rho-$ value $\geq \alpha$. Therefore H_{0} is accepted. It means that there is no positive association on earnings between increase in inventory and stock price in relationship both with Gross Profit, Selling and Administrative Expense and $D S A_{t}-S_{t-1}$. Meanwhile, ρ-value for $D G G_{t}-G_{t-1}$ is lower than α or $\rho-$ value $<\alpha$. Therefore, it means that there is positive association on earnings between increase in inventory and stock price in relationship with $\mathrm{DG}_{\mathrm{t}}-\mathrm{G}_{\mathrm{t}-1}$.

Therefore, based on explanation of results on several tests on regression equation models above, in overall, we can conclude that we have to accept H_{0} or accept null hypothesis. Meaning to say, there is not any positive association on earnings between increase in inventory and stock price. This thing is based on analyses by using p-value approach that has been shown above. During the year 2003 up to 2004, we can see that p-value for the variable of earnings for each of regression test (from equation 3.12 to equation 3.18) is mostly bigger than $\alpha=5 \%$. Although for only equation 3.13 of variable of earnings has negative sign instead of positive sign on the rest.

4.2.2. Classical Assumptions test in Multiple Regressions

In a linear multiple regression analysis, the deviation of classical assumption should be avoided. Therefore, in order to find out whether the result of the regression equations above can be used, it needs to be tested further to know whether the deviations of the classical assumption occur in the model or not. Thus, there are several kinds of tests that are being used in this research to find out and overcome the classical assumptions' problem that occurs within the computation of regression.

4.2.2.1. Test of Multicollinearity

Multicollinearity refers to the situation where there is an existence of a "perfect", or exacts, linear relationship among some or all-explanatory variables of a regression model. Strictly speaking, multicollinearity refers to the existence of more than one exact linear relationship, and collinearity refers to the existence of a single linear relationship. If there is a linear relationship among independent variables, then this regression is considered to have a multicollinearity problem. If there is multicollinearity in the model, then it is hard to separate the influence of each independent variable to the dependent variable.

In detecting whether the regression model has a multicollinearity or not, we can see that from the value of R^{2} or the coefficient determination is high (such as: between 0.7 and 1), and the partial coefficient correlation between independent variable is bigger or equal compare to the R^{2}, then this regression is considered to have a multicollinearty problem.

Based on the calculation results:

1. The value of R^{2} is relatively low (See Appendix 6).
2. The values of Variance Inflation Factor (VIF), the reciprocal of the tolerance. As the variance inflation factor increases, so does the variance of the regression coefficient, making it an unstable estimation. Large VIF values higher than 10 are an indicator of multicollinearity or its tolerance tend to be closer to 0 (zero).

From table equation 3.16 a significance of multicollinearity is found. However, its tolerance still above 0 (not exactly close to 0 (zero)). Therefore, it can be concluded that multicollinearity problem is not found in this regression model. And from table 3.4 up to 3.15 , and 3.17 up to 3.18 , it can be said that there is no multicollinearity problems, considered both its VIF tend to be lower than 10 (ten) and its Tolerance (TOL) is not close to 0 (zero). Therefore, in that case, we can say that in these regression models, multicollinearity problems have not occurred.

4.2.2.2. Test of Autocorrelation

The objective of this test is to find out whether this regression consists of serial correlation between the disturbance terms (e) or not. The most celebrated test for detecting serial correlation is developed by statisticians Durbin-Watson d statistic. While using d statistic, it is important to note the assumption underlying d statistic:

1. The regression model includes an intercept term.
2. The explanatory variables, the X 's, is nonstochastic, or fixed in repeated sampling.
3. the disturbances u_{t} are generated by the first-order autoregressive scheme:

$$
u_{t}=\rho=u_{t-1}+\varepsilon_{t} .
$$

4. The regression model does not include lagged value(s) of the dependent variable as one of the explanatory variables. Thus, the test is inapplicable to models of the following type:

$$
\mathrm{Y}_{\mathrm{t}}=\beta_{0}+\beta_{1} \mathrm{X}_{1 \mathrm{t}}+\beta_{2} \mathrm{X}_{2 \mathrm{t}}+\ldots+\beta_{\mathrm{k}} \mathrm{X}_{\mathrm{kt}}+\gamma \mathrm{Y}_{\mathbf{t}-1}+\mathrm{u}_{\mathrm{t}}
$$

5. There are no missing observations in the data.

The hypothesis for this test is:
$H_{0}: \rho=0$: there are no positive autocorrelation.
$\mathrm{H}_{\mathrm{A}}: \rho \neq 0$: there are positive autocorrelation.
If $\mathrm{d}>\mathrm{d}_{\mathrm{U}}$ then Ho is accepted. It means that there is no positive correlation. If $\mathrm{d}<\mathrm{d}_{\mathrm{L}}$ then Ho is rejected. It means that there is a positive correlation. If $d_{L}<d<d_{U}$, then the result of the Durbin-Watson calculation is in the area of no conclusion, therefore the result of the test can not be concluded.

In here, I'm using E-Views program to detect and overcome the autocorrelation problem. Because, the computer program E-Views performs an exact d test (it gives the ρ value, the exact probability, of the computed d value), and those with access to this program may want to use that test in case the usual d statistic lies in the indecisive zone. From the result of the calculation, I found that there are positive autocorrelations in the equations $3.4,3.5,3.6,3.10,3.11,3.16$,
and 3.17. Besides, it is found a greater autocorrelation in these regression models because of unnormalized data. So, first of all, we have to normalize them before transforming them into a new regression model.

In order to handle the autocorrelation in these regression models, therefore, we need to transform the data into a new equation by using generalized difference equation method (Gujarati, 2003). It means that the regression of Y to X is not in the original form, but it is on the difference which is received from eliminating a proportion (ρ) of related value variable with the previous value variable. The equation is as follows:

$$
\left(Y_{t}-\rho Y_{t-1}\right)=A(1-\rho)+B\left(X_{t}-\rho X_{t-1}\right)+\mu_{t}
$$

In the procedure of elimination, the first observation will be lost because there are no previous observations before it. To prevent the missing value in the first observation, then at the first observation Y and X is change into this form:

$$
Y \sqrt{ } 1-\rho^{2} \text { and } X \sqrt{ } 1-\rho^{2}
$$

The value of ρ is from d (Durbin-Watson Statistic) by using the formula which is written by Gujarati, Damodar (2003) as follows:

$$
\rho=1-\mathrm{d} / 2
$$

The benefits that are received from doing the transformation data into a new form theoretically will make the value among the observation in each variable to be smaller so that there is a possibility to remove the influence of the autocorrelation in the model.

Regression Result after Transforming the Data

The result of the regression analysis after the transformation data as what we seen previously using the generalized difference equation method can be seen in tables below:

TABLE 4.26 (EQUATION 3.4)
THE RESULT OF REGRESSION ANALYSIS AFTER DATA
TRANSFORMATION

VARIABLES	REGRESSION COEFFICIENTS	T-STATISTIC
CONSTANT	-0.051500	-0.714276
Diff Et	0.904773	2.732013
R-Squared $\left(R^{2}\right)$ Adjusted R-Square $=0.046285$ F-Statistic $=0.041890$ Durbin-Watson Statistic $=2.533119$		

Source: Appendix 7

TABLE 4.27 (EQUATION 3.5)
THE RESULT OF REGRESSION ANALYSIS AFTER DATA TRANSFORMATION

VARIABLES	$\begin{aligned} & \text { REGRESSION } \\ & \text { COEFFICIENTS } \end{aligned}$	T-STATISTIC
CONSTANT	-0.002000	-0.158943
Diff ETET1	-0.017660	-0.981200
R-Squared (\mathbf{R}^{2}) $=0.003280$ Adjusted R-Square $=-0.001857$ F-Statistic $=0.638464$ Durbin-Watson Statistic $=2.911313$		

Source: Appendix 7

TABLE 4.28 (EQUATION 3.6)
THE RESULT OF REGRESSION ANALYSIS AFTER DATA
TRANSFORMATION

VARIABLES	REGRESSION COEFFICIENTS	T-STATISTIC
CONSTANT	-0.000347	-0.009319
Diff Et	0.175630	0.370432
Diff DEt	0.511803	1.050526
R-Squared $\left(\mathrm{R}^{2}\right)$	$=0.032633$	
Adjusted R-Square F-Statistic Durbin-Watson Statistic $=0.023008$ $=3.960286$		

Source: Appendix 7

TABLE 4.29 (EQUATION 3.10)
THE RESULT OF REGRESSION ANALYSIS AFTER DATA
TRANSFORMATION
$\left.\begin{array}{|c|c|c|}\hline \text { VARIABLES } & \text { REGRESSION } & \text { T-STATISTIC } \\ & \text { COEFFICIENTS }\end{array}\right]-0.023131$

Source: Appendix 7

TABLE 4.30 (EQUATION 3.11)
THE RESULT OF REGRESSION ANALYSIS AFTER DATA
TRANSFORMATION

VARIABLES	REGRESSION COEFFICIENTS	T-STATISTIC
CONSTANT	-0.002176	-0.214205
Diff ETET1	-0.013881	-0.599581
Diff METET1	-0.094117	-0.343103
R-Squared $\left(R^{2}\right)$	$=0.005001$	
Adjusted R-Square $=-0.005310$ F-Statistic $=0.484986$ Durbin-Watson Statistic $=2.973147$		

Source: Appendix 7

TABLE 4.31 (EQUATION 3.16)
THE RESULT OF REGRESSION ANALYSIS AFTER DATA
TRANSFORMATION

VARIABLES	REGRESSION	T-STATISTIC
	COEFFICIENTS	
CONSTANT	0.005646	0.208549
Diff GP	0.783735	2.971209
Diff SA	0.179462	0.497390
Diff DGP	1.171764	2.334638
Diff DSA	-1.701002	-2.999913
R-Squared (R^{2}) $=0.520706$ Adjusted R-Square $=0.510563$ F-Statistic $=51.33258$ Durbin-Watson Statistic $=2.934553$		

Source: Appendix 7

TABLE 4.32 (EQUATION 3.17)

THE RESULT OF REGRESSION ANALYSIS AFTER DATA

TRANSFORMATION

VARIABLES	REGRESSION COEFFICIENTS	T-STATISTIC
CONSTANT	0.002348	0.164177
Diff GTGT10	0.105494	1.044606
Diff SATSAT1	0.163739	1.190498
R-Squared $\left(R^{2}\right)$ $=0.012194$ Adjusted R-Square $=0.001958$ F-Statistic Durbin-Watson Statistic $=2.853203$		

Source: Appendix 7
The result of the regression analysis after the transformation data as what we seen previously will be retested in order to know whether these models contain any classical assumption problem or not.

1. Test of Multicollinearity.

In testing multicollinearity, we still see the value of R^{2} or the coefficients determination and the VIF (Variance Inflation Factor).
a. The value of R^{2} is low (See Appendix 7)
b. The values of VIF that is not close to zero and not higher than 10 . Based on this test we can say that there are no multicollinearity problems that occur in these regression models.
2. Test of Autocorrelation.

Based on the results of the regression after transforming the data from tables 4.26 up to 4.32 , we can see that the values of Durbin-Watson in these tables
are quite higher than the d_{U} for each equation. Therefore, we reject H_{o} and accept the alternate hypothesis. In this case we find no autocorrelation problems anymore and this model is considered to be free from autocorrelation problems.

4.2.2.3. Test of Heteroscedasticity

Heteroscedasticity is a situation where the variance is not constant, the consequences from heteroscedasticity will be bias on variance, and therefore the test of significant will not be perfect. To see whether there is any heteroscedasticity in the model or not, we can use the Park test or White's test. In this term, to make it easier in detecting and treating the heteroscedasticity problem, therefore, I'm using E-views to investigate whether my data contains any heteroscedasticity by using White's test and Newey-West HAC test. The general test of heteroscedasticity proposed by White does not rely on the normality assumption and is easy to implement. As an illustration of the basic idea, consider the following three-variable regression model (the generalization to the k-variable model is straightforward):

$$
\begin{equation*}
Y_{i}=\beta_{1}+\beta_{2} X_{2 i}+\beta_{3} X_{3 i}+u_{i} \tag{a}
\end{equation*}
$$

The White test proceeds as follows:

1. Given the data, we estimate (a) and obtain the residual, \hat{u}_{i}.
2. We then run the following (auxiliary) regression:

$$
\begin{equation*}
\hat{u}_{i}^{2}=\alpha_{1}+\alpha_{2} X_{2 i}+\alpha_{3} X_{3 i}+\alpha_{4} X_{2 i}{ }^{2}+\alpha_{5} X_{3 i}{ }^{2}+\alpha_{6} X_{2 i} X_{3 i}+v_{i} \tag{b}
\end{equation*}
$$

That is, the squared residuals from the original regression are regressed on the original X variables or regressors, their squared values, and the cross
product(s) of the regressors. Higher powers of regressors can also be introduced. Note that there is a constant term in this equation even though the original regression may or may not contain it. Obtain the R^{2} from this (auxiliary) regression.
3. Under the null hypothesis that there is no heteroscedasticity, it can be shown that the sample size (n) times the R^{2} obtained from the auxiliary regression asymptotically follows the chi-square distribution with df equal to the number of regressors (excluding the constant term) in the auxiliary regression. That is:

$$
\mathrm{n} \cdot \mathrm{R}_{\text {asy }}^{2} \sim X_{d f^{2}}^{2}
$$

(c)
where df is as defined previously. In our example, there are 5 df since there are 5 regressors in the auxiliary regression.
4. If the chi-square value obtained in (c) exceeds the critical chi-square value at the chosen level of significance, the conclusion is that there is heteroscedasticity. If it does not exceeds the critical chi-square value, there is no heteroscedasticity, which is to say that in the auxiliary regression (b), $\alpha_{2}=\alpha_{3}=\alpha_{4}=\alpha_{5}=\alpha_{6}=0$.

After long testing on this term, it is found heteroscedasticity in all equation tables. So, I have to transform them until there is no more heteroscedasticity in those regression models.

TABLE 4.33 (EQUATION 3.4)

THE RESULT OF HETEROSCEDASTICITY TRANSFORMATION

Independent Variables	$\mathbf{T}_{\text {critical }}$	$\mathbf{t}_{\text {observed }}$	Significant
$\mathbf{E}_{\mathbf{t}}$	± 1.96	2.732013	0.0068 (not significant)

Source: Appendix 7
Based on the regression result between the \log residual square value and the independent variables (Table 4.33), we can see that the value of $\mathrm{t}_{\text {observed }}$ is bigger than the $\mathrm{t}_{\text {critical }}$. However, the beta parameter is not significant in statistic. So it can be concluded that there is no more heteroscedasticity in this regression model. The regression model in this research is the regression model after transforming the data for the autocorrelation problem, that is:
$P_{t}=-0.0515+0.904773 E_{1}$.

TABLE 4.34 (EQUATION 3.5)
THE RESULT OF HETEROSCEDASTICITY TRANSFORMATION

Independent Variables	$\mathbf{T}_{\text {critcal }}$	$\mathbf{t}_{\text {observed }}$	
$\mathbf{E}_{\mathbf{t}}-\mathbf{E}_{\mathbf{t}-\mathbf{1}}$	± 1.96	-0.9812	0.3277 (not significant

Source: Appendix 7
Based on the regression result between \log residual square value and the independent variables (Table 4.34), we can see that the value of $t_{\text {observed }}$ is lower than the $t_{\text {critical }}$, and the beta parameter is not significant in statistic. So it can be concluded that there is no more heteroscedasticity in this regression model. The
regression model in this research is the regression model after transforming the data for the autocorrelation problem, that is:
$P_{t}-P_{t-1}=-0.002-0.01766 E_{t}-E_{1-1}$.
TABLE 4.35 (EQUATION 3.6)

THE RESULT OF HETEROSCEDASTICITY TRANSFORMATION

Independent Variables	$\mathbf{T}_{\text {critical }}$	$\mathbf{t}_{\text {observed }}$	Significant
$\mathbf{E}_{\mathbf{t}}$	± 1.96	0.370432	0.7115 (not significant)
$\mathbf{D E}_{\mathbf{t}}$	± 1.96	1.050526	0.2947 (not significant)

Source: Appendix 7
Based on the regression result between \log residual square value and the independent variables (Table 4.35), we can see that the values of tobserved for all of independent variables are lower than the $\mathrm{t}_{\text {critical }}$, and the beta parameter is not significant in statistic. So it can be concluded that there is no more heteroscedasticity in this regression model. The regression model in this research is the regression model after transforming the data for the autocorrelation problem, that is:
$P_{t}=-0.000347+0.17563 E_{t}+0.511803 D_{t}$
TABLE 4.36 (EQUATION 3.9)
THE RESULT OF HETEROSCEDASTICITY TRANSFORMATION

Independent Variables	$\mathbf{T}_{\text {critical }}$	$\mathbf{t}_{\text {observed }}$	Significant
$\mathbf{E}_{\mathbf{t}}-\mathbf{E}_{\mathbf{t}-\mathbf{1}}$	± 1.96	-1.263058	0.2081 (not significant)
$\mathbf{D E}_{\mathbf{t}}-\mathbf{E}_{\mathbf{t}-\mathbf{1}}$	± 1.96	2.508614	0.0129 (not significant)

Source: Appendix 7

Based on the regression result between \log residual square value and the independent variables (Table 4.36), we can see that the value of $\mathrm{t}_{\text {observed }}$ is lower for $E_{t}-E_{t-1}$ than the $t_{\text {critical }}$ and bigger for $D E_{t}-E_{1-1}$ than $t_{\text {critical. }}$ However, the beta parameter for all independent variables is not significant in statistic. So it can be concluded that there is no more heteroscedasticity in this regression model. The regression model in this research is the regression model after transforming the data for the autocorrelation problem, that is:

$$
P_{t}-P_{t-1}=0.031427-0.022607 E_{t}-E_{t-1}+0.318501 D E_{1}-E_{t-1} .
$$

TABLE 4.37 (EQUATION 3.10)

THE RESULT OF HETEROSCEDASTICITY TRANSFORMATION

Independent Variables	$\mathbf{T}_{\text {critical }}$	$\mathbf{t}_{\text {observed }}$	Significant
$\mathbf{E}_{\mathbf{t}}$	± 1.96	1.569609	0.1101 (not significant)
$\mathbf{M E}_{\mathbf{t}}-\mathbf{E}_{\mathbf{t} \mathbf{1}}$	± 1.96	1.492456	0.1371 (not significant)
Source: Appendix 7			

Source: Appendix 7
Based on the regression result between \log residual square value and the independent variables (Table 4.37), we can see that the value of $t_{\text {observed }}$ for all of independent variables are lower than the $\mathrm{t}_{\text {critical }}$ and, the beta parameter for all independent variables is not significant in statistic. So it can be concluded that there is no more heteroscedasticity in this regression model. The regression model in this research is the regression model after transforming the data for the autocorrelation problem, that is:
$P_{t}=-0.002134+1.796325 E_{t}+4.561975 \mathrm{ME}_{\mathrm{t}}-\mathrm{E}_{\mathrm{t}-1}$

TABLE 4.38 (EQUATION 3.11)
THE RESULT OF HETEROSCEDASTICITY TRANSFORMATION

Independent Variables	$\mathbf{T}_{\text {critical }}$	$\mathbf{t}_{\text {observed }}$	Significant
$\mathbf{E}_{\mathbf{t}}-\mathbf{E}_{\mathbf{t}-\mathbf{1}}$	± 1.96	-0.599581	0.5495 (not significant)
$\mathbf{M E}_{\mathbf{t}}-\mathbf{E}_{\mathbf{t}-\mathbf{1}}$	± 1.96	-0.343103	0.7319 (not significant)

Source: Appendix 7
Based on the regression result between \log residual square value and the independent variables (Table 4.38), we can see that the value of $t_{\text {observed }}$ for all of independent variables are lower than the $t_{\text {critical }}$ and, the beta parameter for all independent variables is not significant in statistic. So it can be concluded that there is no more heteroscedasticity in this regression model. The regression model in this research is the regression model after transforming the data for the autocorrelation problem, that is:
$P_{t}-P_{t-1}=-0.002176-0.013881 E_{t}-E_{t-1}-0.094117 \mathrm{ME}_{\mathrm{t}}-\mathrm{E}_{\mathrm{t}-1}$.

TABLE 4.39 (EQUATION 3.12)

THE RESULT OF HETEROSCEDASTICITY TRANSFORMATION

Independent Variables	$\mathbf{T}_{\text {critical }}$	$\mathbf{t}_{\text {observed }}$	Significant
$\mathbf{E}_{\boldsymbol{t}}$	± 1.96	0.619767	0.5361 (not significant)
$\mathbf{D E}_{\mathbf{t}}$	± 1.96	0.246079	0.8059 (not significant)
$\mathbf{M E}_{\mathbf{t}}-\mathbf{E}_{\mathbf{t}-\mathbf{1}}$	± 1.96	-1.096639	0.2741 (not significant)

[^1]Based on the regression result between \log residual square value and the independent variables (Table 4.39), we can see that the value of $\mathrm{t}_{\text {observed }}$ for all of independent variables are lower than the $\mathrm{t}_{\text {critical }}$ and, the beta parameter for all independent variables is not significant in statistic. So it can be concluded that there is no more heteroscedasticity in this regression model. The regression model in this research is the regression model after transforming the data for the autocorrelation problem, that is:
$P_{t}=0.858662+0.271604 \mathrm{E}_{\mathrm{t}}-0.496965 \mathrm{ME}_{\mathrm{t}}-\mathrm{E}_{\mathrm{t}-1}+0.104203 \mathrm{DE}_{\mathrm{t}}$.

TABLE 4.40 (EQUATION 3.13)
THE RESULT OF HETEROSCEDASTICITY TRANSFORMATION

Independent Variables	$\mathbf{T}_{\text {critical }}$	$\mathbf{t}_{\text {observed }}$	Significant
$\mathbf{E}_{\mathbf{t}}-\mathbf{E}_{\mathbf{t - 1}}$	± 1.96	-1.308802	0.1922 (not significant)
$\mathbf{M E}_{\mathbf{t}}-\mathbf{E}_{\mathbf{t}-\mathbf{1}}$	± 1.96	-1.615605	0.1078 (not significant)
$\mathbf{D E}_{\mathbf{t}}-\mathbf{E}_{\mathbf{t}-\mathbf{1}}$	± 1.96	2.148177	0.033 (not significant)

Source: Appendix 7
Based on the regression result between \log residual square value and the independent variables (Table 4.40), we can see that the value of $t_{\text {observed }}$ for both $E_{t}-E_{t-1}$ and $M E_{t}-E_{t-1}$ are lower than the $t_{\text {critical }}$, meanwhile the value of $t_{\text {observed }}$ of $\mathrm{DE}_{t}-\mathrm{E}_{\mathrm{t}}-1$ is bigger than the $\mathrm{t}_{\text {critical }}$. However, the beta parameter for all independent variables is not significant in statistic. Therefore, it can be concluded that there is no more heteroscedasticity in this regression model. The regression
model in this research is the regression model after transforming the data for the autocorrelation problem, that is:

$$
\begin{aligned}
\mathrm{P}_{\mathrm{t}}-\mathrm{P}_{\mathrm{t}-1}= & 0.028515-0.022176 \mathrm{E}_{\mathrm{t}}-\mathrm{E}_{\mathrm{t}-1}-0.465998 \mathrm{ME}_{\mathrm{t}}-\mathrm{E}_{\mathrm{t}-1} \\
& +0.4156 \mathrm{DE}_{\mathrm{t}}-\mathrm{E}_{\mathrm{t}-1}
\end{aligned}
$$

TABLE 4.41 (EQUATION 3.15)

THE RESULT OF HETEROSCEDASTICITY TRANSFORMATION

Independent Variables	$\mathbf{T}_{\text {critical }}$	$\mathbf{t}_{\text {observed }}$	Significant
$\mathbf{G P}_{\mathbf{t}}$	± 1.96	4.525983	0.0000 (not significant)
$\mathbf{S A}_{\mathbf{t}}$			
Source: Appendix 7	± 1.96	-1.719138	0.0872 (not significant)

Source: Appendix 7
Based on the regression result between \log residual square value and the independent variables (Table 4.41), we can see that the value of $\mathrm{t}_{\text {observed }}$ of GP is bigger than the $t_{\text {critical, }}$, meanwhile the value of $t_{\text {observed }}$ of $S A_{t}$ is lower than the $\mathrm{t}_{\text {critical }}$. However, the beta parameter for all independent variables is not significant in statistic. So it can be concluded that there is no more heteroscedasticity in this regression model. The regression model in this research is the regression model after transforming the data for the autocorrelation problem, that is:
$\mathrm{P}_{\mathrm{t}}=0.402955+1.267113 \mathrm{GP}_{\mathrm{t}}-0.610769 \mathrm{SA}_{\mathrm{t}}$.
TABLE 4.42 (EQUATION 3.16)
THE RESULT OF HETEROSCEDASTICITY TRANSFORMATION

Independent Variables	$\mathbf{T}_{\text {critical }}$	$\mathbf{t}_{\text {observed }}$	Significant
$\mathbf{G P}_{\mathbf{t}}$	± 1.96	2.971209	0.0034 (not significant)
$\mathbf{S A}_{\mathbf{t}}$	± 1.96	0.49739	0.6195 (not significant)

DGP $_{\mathbf{t}}$	± 1.96	2.334638	0.0206 (not significant)
DSA $_{\mathbf{t}}$	± 1.96	-2.999913	0.0031 (not significant)

Source: Appendix 7
Based on the regression result between \log residual square value and the independent variables (Table 4.42), we can see that the values of $\mathrm{t}_{\mathrm{observed}}$ for both GP_{t} and DGP_{t} is bigger than the $t_{\text {critical }}$, and the value of $t_{\text {observed }}$ of DSA_{t} is far
 independent variables is not significant in statistic. Therefore, it can be concluded that there is no heteroscedasticity anymore in this regression model. The regression model in this research is the regression model after transforming the data for the autocorrelation problem, that is:
$\mathrm{P}_{\mathrm{t}}=0.005646+0.783735 \mathrm{GP}_{\mathrm{t}}+0.179462 \mathrm{SA}_{\mathrm{t}}+1.171764 \mathrm{DGP}_{\mathrm{t}}-1.701002 \mathrm{DSA}_{\mathrm{t}}$.

TABLE 4.43 (EQUATION 3.17)

THE RESULT OF HETEROSCEDASTICITY TRANSFORMATION

Independent Variables	$\mathbf{T}_{\text {critical }}$	$\mathbf{t}_{\text {observed }}$	Significant
$\mathbf{G P}_{\mathbf{t}}-$ GP $_{\mathbf{t}-\mathbf{1}}$	± 1.96		1.044606
$\mathbf{S A}_{\mathbf{t}}-\mathbf{S A}_{\mathbf{t}-\mathbf{1}}$	± 1.96	1.190498	0.2975 (not significant)
Sour	0.2353 (not significant)		

Source: Appendix 7
Based on the regression result between \log residual square value and the independent variables (Table 4.43), we can see the values of $\mathrm{t}_{\text {observed }}$ for both $\mathrm{GP}_{\mathbf{t}}-\mathrm{GP}_{\mathbf{t - 1}}$ and $\mathrm{SA}_{\mathbf{t}}-\mathrm{SA}_{\mathbf{t}_{-1}}$ are lower than the $\mathrm{t}_{\text {critical }}$, and the beta parameter for all independent variables is not significant in statistic. Therefore, it can be concluded that there is no more heteroscedasticity in this regression model. The
regression model in this research is the regression model after transforming the data for the autocorrelation problem, that is:

$$
\mathbf{P}_{\mathbf{t}}-\mathbf{P}_{\mathbf{t}-\mathbf{1}}=0.002348+0.105494 \mathrm{GP}_{\mathbf{t}}-\mathrm{GP}_{\mathbf{t}-1}+0.163739 \mathrm{SA}_{\mathrm{t}}-\mathrm{SA}_{\mathrm{t}-1} .
$$

TABLE 4.44 (EQUATION 3.18)

THE RESULT OF HETEROSCEDASTICITY TRANSFORMATION

Independent Variables	$\mathbf{T}_{\text {critical }}$	$\mathbf{t}_{\text {observed }}$	Significant
$\mathbf{G P}_{\mathbf{t}}-\mathbf{G P}_{\mathbf{t}-\mathbf{1}}$	± 1.96	0.854093	0.3941 (not significant)
$\mathbf{S A}_{\mathbf{t}}-\mathbf{S A}_{\mathbf{t}-\mathbf{1}}$	± 1.96	0.011756	0.9906 (not significant)
$\mathbf{D G P}_{\mathbf{t}}-\mathbf{G P}_{\mathbf{t}-\mathbf{1}}$	± 1.96	$\mathbf{3 . 8 3 5 4 3 3}$	0.0002 (not significant)
$\mathbf{D S A}_{\mathbf{t}}-\mathbf{S A}_{\mathbf{t} \mathbf{1}}$	± 1.96	-1.459688	0.146 (not significant)

Source: Appendix 7
Based on the regression result between \log residual square value and the independent variables (Table 4.44), we can see that the values of $\mathrm{t}_{\text {observed }}$ for both $G P_{t}-G P_{t-1}, S A_{t}-S A_{t-1}$, and $D S A_{t}-S A_{t-1}$ are lower than the $t_{\text {critical }}$, but the values of $\mathrm{t}_{\text {observed }}$ for $\mathrm{DGP}_{\mathrm{t}}-\mathrm{GP}_{\mathrm{t}-1}$ is higher than the $\mathrm{t}_{\text {critical }}$. However, the beta parameter for all independent variables is not significant in statistic. Therefore, it can be concluded that there is no more heteroscedasticity in this regression model. The regression model in this research is the regression model after transforming the data for the autocorrelation problem, that is:
$\mathrm{P}_{\mathrm{t}}-\mathrm{P}_{\mathbf{t}-\mathbf{1}}=0.017776+0.087057 \mathrm{GP}_{\mathbf{t}}-\mathrm{GP}_{\mathrm{t}-1}+0.003156 \mathrm{SA}_{\mathrm{t}}-\mathrm{SA}_{\mathrm{t}-1}+0.602228$

$$
\mathrm{DG}_{t-} \mathrm{G}_{\mathrm{t}-1}-0.946918 \mathrm{DSA}_{\mathbf{t}}-\mathrm{SA}_{\mathrm{t}-1} .
$$

After the model is stated to be free from the classical assumption, we need to retest the independent variables influences, whether there are any significant influences on the dependent variable or not by using p - value approach.

4.2.3. Test of Regression Coefficients after Transforming the Data

After we conducted the data transformation as the action of repairing the data to prevent the classical assumption problems, we find the result of twelve regression models as follows:

$$
\begin{equation*}
P_{t}=-0.0515+0.904773 \mathrm{E}_{\mathrm{t}} . \tag{2.732013}
\end{equation*}
$$

T Statistic $=(-0.714276)$
$\mathrm{P}_{\mathrm{t}}-\mathrm{P}_{\mathrm{t}-1}=-0.002-0.01766 \mathrm{E}_{\mathrm{t}}-\mathrm{E}_{\mathrm{t}-1}$.
T Statistic $=(-0.158943) \quad(-0.9812)$

$$
P_{t}=-0.000347+0.17563 \mathrm{E}_{\mathrm{t}}+0.511803 \mathrm{DE}_{\mathrm{t}} .
$$

T Statistic $=(-0.009319) \quad(0.370432) \quad(1.050526)$
$\mathbf{P}_{\mathbf{t}}-\mathbf{P}_{\mathbf{t}-\mathbf{1}}=0.031427-0.022607 \mathrm{E}_{\mathrm{t}}-\mathrm{E}_{\mathrm{t}-\mathbf{1}}+0.318501 \mathrm{DE}_{\mathrm{t}}-\mathrm{E}_{\mathrm{t}-1}$.
T Statistic $=(0.898662) \quad(-1.263058)$
(2.508614)

The five regression models above are performed to support the $1^{\text {st }}$ hypothesis test.

$$
\mathbf{P}_{\mathbf{t}}=-0.002134+1.796325 \mathrm{E}_{1}+4.561975 \mathrm{ME}_{1}-\mathrm{E}_{1-1} .
$$

T Statistic $=(-0.023131) \quad(1.569609) \quad(1.492456)$
$\mathbf{P}_{\mathrm{t}}-\mathbf{P}_{1-1}=-0.002176-0.013881 \mathrm{E}_{1}-\mathrm{E}_{1-1}-0.094117 \mathrm{ME}_{1}-\mathrm{E}_{\mathrm{t}-1}$.
T Statistic $=(-0.214205) \quad(-0.599581)$
(-0.343103)

The two regression models above are performed to support the $2^{\text {nd }}$ hypothesis test. Meanwhile, the rest of regression models below are performed to support the $3^{\text {rd }}$ hypothesis, those are:

$$
\begin{aligned}
& P_{t}=0.858662+0.271604 \mathrm{E}_{\mathrm{t}}-0.496965 \mathrm{ME}_{\mathrm{t}}-\mathrm{E}_{\mathrm{t}-1}+0.104203 \mathrm{DE}_{\mathrm{t}} . \\
& \mathrm{T} \text { Statistic }=(11.61229) \quad(0.619767) \quad(0.246079)
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{T} \text { Statistic }=(0.164177) \quad(1.044606) \\
& \text { (1.190498) } \\
& \mathrm{P}_{\mathbf{t}}-\mathrm{P}_{\mathrm{t}-1}=0.017776+0.087057 \mathrm{GP}_{\mathrm{t}}-\mathrm{GP}_{\mathbf{t}-1}+0.003156 \mathrm{SA}_{\mathrm{t}}-\mathrm{SA}_{\mathbf{t}-1} \\
& +0.602228 \mathrm{DG}_{\mathrm{t}-} \mathrm{G}_{\mathrm{t}-1}-0.946918 \mathrm{DSA}_{\mathrm{t}}-\mathrm{SA}_{\mathrm{t}-1} \text {. } \\
& \mathrm{T} \text { Statistic }=(0.570109)(0.854093)(0.011756)(3.835433)(-1.459688)
\end{aligned}
$$

4.2.3.1. Test of Regression Coefficients in Partial

4.2.3.1.1. Test of $1^{\text {st }}$ hypothesis: The Association of Earnings with Stock Price

From all regression models that we have conducted which are required to support the $1^{\text {st }}$ hypothesis, levels and changes regressions are performed for each
of the two sample groups by pooling data from 2003 to 2004. Thus it can be concluded as follows:

- The result of equation 3.4 after conducting the data transformation shows that coefficient of earnings in here is positive and its $\rho-$ value is 0.0068 . The α with the 5% degree of significant is 0.05 , in which it means that ρ - value is lower than α or ρ - value $<\alpha$. Therefore, we reject H_{0} or accept the alternative hypothesis. It means is that the variable of E_{t} is positively associated with stock price. It is consistent with the prior research, which is done by Bernard and Noel (1991). The positive value indicate that the higher the earning power, the higher association between earnings level and price level for firms with informative change in inventory. Therefore, in this term, we can conclude that the association between earnings level and price level is higher for firms with informative change in inventory.
- The result of equation 3.5 after conducting the data transformation shows that the coefficient of earnings here is negative and its ρ-value is 0.3277 . The α with the 5% degree of significant is 0.05 , in which it means that ρ - value is higher than α or ρ-value $\geq \alpha$. Therefore, we accept H_{0} or null hypothesis. It means that the variable of $\mathrm{E}_{\mathrm{t}}-\mathrm{E}_{\mathrm{t}-1}$ is not positively associated with stock price. Therefore, in this case for changes level, it is not consistent with the prior research that was once done by Bernard and Noel (1991). The negative value indicates that the lower the earning power, the lower association between earnings changes level and price changes level for firms with informative change in inventory. Therefore, in this term, we can
conclude that the association between earnings change and price change is lower for firms with informative change in inventory.
- The result of equation 3.6 after conducting the data transformation (performing combined and pooled regression) shows that all coefficients of independent variables in here are positive. Thus, ρ - value of earnings is 0.7115 and ρ - value of DE_{t} is 0.2947 . The α with the 5% degree of significant is 0.05 , in which it means that ρ-value for all independent variable here is higher than α or ρ-value $\geq \alpha$. Therefore, we accept H_{0} or null hypothesis. It means that the both of variable of E_{1} and DE_{1} are not positively associated with stock price. So, in this case for earnings level, it is not consistent with the prior research that was once done by Bernard and Noel (1991). The positive value indicate that the higher the earning power, the higher association between earnings level and price level for firms with informative change in inventory. Therefore, in this term, we can conclude that the association between earnings level and price level is lower for firms with informative change in inventory.
- The result of equation 3.9 after conducting the data transformation (performing combined and pooled regression) showing that coefficient of earnings in here is negative meanwhile coefficient of $D E_{t}-E_{1-1}$ is positive. Thus, ρ - value of earnings is 0.2081 and ρ-value of $D E_{t}-E_{1-1}$ is 0.0129 . The α with the 5% degree of significant is 0.05 , in which it means that ρ - value for earnings here is higher than α or ρ - value $\geq \alpha$. Therefore, we accept H_{0} or null hypothesis. It means that the variable of $\mathrm{E}_{1}-\mathrm{E}_{1-1}$ is not
positively associated with stock price. So, in this case for earnings level, it is not consistent with the prior research which is ever done by Bernard and Noel (1991). The positive value indicate that the higher the earning power, the higher association between earnings change and price change for firms with informative change in inventory. Meanwhile for $D E_{1}-E_{t}-1$, its ρ - value $<\alpha$. Therefore, we can conclude that the association between earnings change and price change is lower for firms with informative change in inventory.

As a result, based on the explanation of results on several tests on regression equation models above, in overall, we can conclude that for $1^{\text {st }}$ hypothesis, we have to accept H_{0} or accept null hypothesis. Meaning to say, earnings are not positively associated with stock price. This is based on the analyses by using p-value approach that has been shown above. During year the 2003 up to 2004, we can see that p -value for variable of earnings for each of regression test (from equation 3.5 to equation 3.9) is mostly bigger than $\alpha=5 \%$. And for the coefficient for each of regression test above, for changes level, it shows that earnings have negative sign instead of positive sign on year level.

4.2.3.1.2. Test of $\mathbf{2}^{\text {nd }}$ hypothesis: The Association of Increase in Inventory with Stock Price

From all regression models that we have done which are required to support the $2^{\text {nd }}$ hypothesis, the levels and changes regressions are performed for each of the two sample groups by pooling data from 2003 to 2004. Additional
analyses are performed by including inventory valuation method as a control variable. Thus it can be concluded as follows:

- The result of equation 3.10 after conducting the data transformation (using inventory valuation method as a control variable) shows that all coefficients of the independent variables in here are positive. Thus, ρ - value of earnings is 0.1181 and $\rho-$ value of $M E_{t}-E_{t-1}$ is 0.1371 . The α with the 5% degree of significant is 0.05 , in which it means that ρ-value for all independent variables here are higher than α or $\rho-$ value $\geq \alpha$. Therefore, we accept H_{0} or null hypothesis. It means that there is no negative association between increase in inventory and stock price. So, in this case for earnings level, it is inconsistent with the prior research that was once done by Lev and Thiagarajan (1993) and also not consistent with what was implied by Bernard and Noel (1991). The positive value indicates that the higher the earning power, the higher association between earnings level and price level for firms with informative change in inventory. Therefore, we can conclude that the conclusion is changed by incorporating inventory method as a control variable.
- The result of equation 3.11 after conducting the data transformation (using inventory valuation method as a control variable) shows that all coefficients of independent variables in here are negative. Thus, ρ - value of earnings is 0.5495 and ρ - value of $\mathrm{ME}_{t}-\mathrm{E}_{1-1}$ is 0.7319 . The α with the 5% degree of significant is 0.05 , in which it means that ρ - value for all independent variables here are higher than α or $\rho-$ value $\geq \alpha$. Therefore, we accept H_{0} or
null hypothesis. The meaning of this is that there is no negative association between increase in inventory and stock price. So, in this case for earnings change, it is inconsistent with the prior research which is ever done by Lev and Thiagarajan (1993) and also inconsistent with what was implied by Bernard and Noel (1991). The negative value indicates that the lower the earning power, the lower association between earnings change and price change for firms with informative change in inventory. Therefore, we can conclude that the conclusion is changed by incorporating inventory method as a control variable.

As a result, based on the explanation of results on several tests on regression equation models above, in overall, we can conclude that for $2^{\text {nd }}$ hypothesis, we have to accept H_{0} or accept null hypothesis. Meaning to say, there is no negative association between increase in inventory and stock price. This is based on analyses by using p-value approach that has shown above. During the year 2003 up to 2004, we can see that p-value for variable of earnings for each of regression test (from equation 3.10 to equation 3.11) is higher than $\alpha=5 \%$. And for the coefficient for each of regression test above, for changes level, it shows that earnings have negative sign instead of positive sign on year level.

4.2.3.1.3. Test of $3^{\text {rd }}$ hypothesis: Association on Earnings between Increase in Inventory and Stock Price.

From all regression models that we have done which are required to support the $3^{\text {rd }}$ hypothesis, levels and changes regressions are performed for each
of the two sample groups by pooling data from 2003 to 2004. Additional analyses are also performed by including inventory valuation method as a control variable and also performing additional analysis by including decomposing earnings into their components. Thus it can be concluded as follows:

- The result of equation 3.12 after do data transformation, showing that both of coefficients of earnings and $\mathrm{DE}_{\mathfrak{t}}$ in here are positive. Meanwhile, coefficient of $\mathrm{ME}_{\mathfrak{t}}-\mathrm{E}_{\mathrm{t}-1}$ is negative. Thus, ρ - value of earnings is 0.5361 , ρ - value of DE_{t} is 0.8059 and $\rho-$ value of $\mathrm{ME}_{t}-\mathrm{E}_{\mathrm{t}-1}$ is 0.2741 . The α with the 5% degree of significant is 0.05 , in which it means that ρ-value for all independent variables here are bigger than α or $\rho-$ value $\geq \alpha$. Therefore, we accept H_{0} or null hypothesis. It means that there is no positive association on earnings between increase in inventory and stock price. So, in this case for earnings level, it is inconsistent with the prior research that was once done by Jiambalvo, Noreen and Shelvin (1997). The positive value indicate that the higher the earning power, the higher association between earnings level and price level for firms with informative change in inventory. Therefore, we can conclude that the conclusion is changed by incorporating inventory method as a control variable.
- The result of equation 3.13 after conducting the data transformation shows that both of coefficients of earnings and $\mathrm{ME}_{t}-\mathrm{E}_{\mathrm{t}-1}$ in here are negative Meanwhile, coefficient of $D E_{t}-E_{1-1}$ is positive. Thus, ρ - value of earnings is $0.1922, \rho$ - value of $D E_{1}-E_{t-1}$ is 0.0330 and ρ-value of $M E_{t}-E_{t-1}$ is 0.1078 . The α with the 5% degree of significant is 0.05 , in which it means
that ρ - value for both earnings and inventory method here are higher than α or $\rho-$ value $\geq \alpha$. Therefore, we accept H_{0} or null hypothesis. It means that there is no positive association on earnings between increase in inventory and stock price. So, in this case for earnings change, it is inconsistent with the prior research that was once done by Jiambalvo, Noreen and Shelvin (1997). Meanwhile, for variable of $\mathrm{DE}_{t}-\mathrm{E}_{\uparrow-1}$, its ρ-value $<\alpha$. The positive value indicates that the higher the earning power, the higher association between earnings change and price change for firms with informative change in inventory. Therefore, we can conclude that the conclusion is changed by incorporating inventory method as a control variable.
- The result of equation 3.15 after conducting the data transformation shows that coefficient of Gross Profit in here is positive; meanwhile for Selling and Administrative Expense, it is negative. Thus, ρ - value of Gross Profit is 0.0000 , and $\rho-$ value of Selling and Administrative Expense is 0.0872 . The α with the 5% degree of significant is 0.05 , in which it means that ρ-value for earnings here is lower than α or $\rho-$ value $<\alpha$. Therefore, we reject H_{0} or accept alternative hypothesis. It means that there is positive association on earnings between increase in inventory and stock price in relationship with Gross Profit. So, in this term for earnings level, it is consistent with the prior research which is ever done by Jiambalvo, Noreen and Shelvin (1997). Meanwhile for variable Selling and Administrative Expense, its ρ - value $\geq \alpha$. It means that there is no positive association on earnings between increase in inventory and stock price in relationship with Selling and

Administrative Expense. Thus, the positive value indicates that the higher the earning power, the higher association between earnings level and price level for firms with informative change in inventory.

- The result of equation 3.16 after conducting the data transformation shows that coefficients of Gross Profit, Selling and Administrative Expense, and DGP $_{t}$ in here are positive, whereas for DSA $_{t}$ is negative. Thus, ρ - value of Gross Profit is $0.0034, \rho$ - value of Selling and Administrative Expense is $0.6195, \rho$ - value of DGP $_{t}$ is 0.0206 , and ρ - value of DSA $_{t}$ is 0.0031 . The α with the 5% degree of significant is 0.05 , in which it means that ρ-value for Gross Profit, DGP $_{t}$ and DSA $_{t}$ in here are lower than α or $\rho-$ value $<\alpha$. Therefore, we reject H_{0} or accept alternative hypothesis. It means that there is positive association on earnings between increase in inventory and stock price in relationship with Gross Profit. So, in this case for earnings level, it is consistent with the prior research which is ever done by Jiambalvo, Noreen and Shelvin (1997). Meanwhile for variable SA $_{t}$, its $\rho-$ value $\geq \alpha$. It means that there is no positive association on earnings between increase in inventory and stock price in relationship with Selling and Administrative Expense. Thus, the positive value indicates that the higher the earning power, the higher association between earnings level and price level for firms with informative change in inventory.
- The result of equation 3.17 after conducting the data transformation shows that the coefficient of all independent variables here are positive. Thus, ρ - value of Gross Profit is 0.2975 , and ρ - value of Selling and

Administrative Expense is 0.2353 . The α with the 5% degree of significant is 0.05 , in which it means that ρ-value for all independent variables here is higher than α or $\rho-$ value $\geq \alpha$. Therefore, we accept H_{0} or null hypothesis. It means that there is no positive association on earnings between increase in inventory and stock price. So, in this case for earnings changes, it is inconsistent with the prior research that was once done by Jiambalvo, Noreen and Shelvin (1997). Thus, the positive value indicates that the higher the earning power, the higher association between earnings change and price change for firms with informative change in inventory.

- The result of equation 3.18 after conducting the data transformation shows that coefficients of Gross Profit, Selling and Administrative Expense, and DGP $\mathbf{t}_{\mathbf{t}}-\mathrm{GP}_{\mathrm{t}}-1$ in here are positive, meanwhile for $\mathrm{DSA}_{\mathrm{t}}-\mathrm{SA}_{\mathrm{t}}-1$, it is negative. Thus, ρ - value of Gross Profit is $0.3941, \rho$ - value of Selling and Administrative Expense is $0.9906, \rho$ - value of $\mathrm{DGP}_{\mathrm{t}}-\mathrm{GP}_{\mathrm{t}-1}$ is 0.0002 , and ρ - value of $\mathrm{DSA}_{t}-\mathrm{SA}_{t-1}$ is 0.1460 . The α with the 5% degree of significant is 0.05 , in which it means that ρ - value for Gross Profit, Selling and Administrative Expense in here are higher than α or $\rho-$ value $\geq \alpha$. Therefore, we accept H_{0} or null hypothesis. It means that there is no positive association on earnings between increase in inventory and stock price. So, in this case for earnings changes, it is inconsistent with the prior research that was once done by Jiambalvo, Noreen and Shelvin (1997). Meanwhile, only variable $\mathrm{DGP}_{\mathrm{t}}-\mathrm{GP}_{\mathrm{t}-1}$ that has $\rho-$ value $<\alpha$. Thus, the positive value indicate that the higher the earning power, the higher association between
earnings change and price change for firms with informative change in inventory.

As a result, based on the explanation of results on several tests on regression equation models above, in overall, we can conclude that for $3^{\text {rd }}$ hypothesis, we have to accept H_{0} or accept null hypothesis. Meaning to say, there is no positive association on earnings between increase in inventory and stock price. This is based on the analyses by using p-value approach that has shown above. During the year 2003 up to 2004, we can see that p-value for variable of earnings for each of regression test (from equation 3.12 to equation 3.18) is mostly higher than $\alpha=5 \%$. Although for equation 3.13 of variable of earnings have negative sign instead of it has positive sign on the rest.

4.2.4. Interpretation on the Result of the Calculation

4.2.4.1. Determination Coefficients (Adjusted $\mathbf{R}^{\mathbf{2}}$)

The result of the analysis shows that the value of Adjusted R^{2} (determination coefficients), for each equation regression models are explained as follows:

1. In Table 4.45 (See Appendix 7), its adjusted \mathbf{R}^{2} is 0.04189 . It means that 4.19% of the total variation on stock price can be explained by E_{t} (Earnings Levels) after adjusting for the number of explanatory variables and sample size. Meanwhile, the other 95.81% is explained by the other variables that are not included in this research.
2. In Table 4.46 (See Appendix 7), its adjusted R^{2} is -0.001857 . It means that 0.186% of the total variation on stock price can be explained by $E_{1}-E_{t-1}$ (Earnings changes) after adjusting for the number of explanatory variables and sample size. Meanwhile, the other 99.814% is explained with the other variables that are not included in this research. Adjusted \mathbf{R}^{2} here is in negative sign, because $\mathrm{k}>1$.
3. In Table 4.47 (See Appendix 7), its adjusted \mathbf{R}^{2} is 0.023008 . It means that 2.3% of the total variation on stock price can be explained by E_{l} (Earnings level) and DE_{1} (indicator variable for both sample groups) after adjusting for the number of explanatory variables and sample size. Meanwhile, the other 97.7% is explained by the other variables that are not included in this research.
4. In Table 4.48 (See Appendix 7), its adjusted \mathbf{R}^{2} is 0.01325 . Means 1.325% of total variation on stock price can be explained by $E_{t}-E_{l_{-1}}$ (Earnings changes) and $\mathrm{DEt}-\mathrm{DE}_{t-1}$ (indicator variable for both sample groups) after adjusting for the number of explanatory variables and sample size. Meanwhile, the other 98.675% is explained by the other variables that are not included in this research.
5. In Table 4.49 (See Appendix 7), its adjusted R^{2} is 0.191423 . It means that 19.1423% of total variation on stock price can be explained by E_{t} (Earnings level) and $\mathrm{ME}_{1}-\mathrm{E}_{1-1}$ (indicator variable for inventory valuation method) after adjusting for the number of explanatory variables and
sample size. Meanwhile, the other 80.8577% is explained by the other variables that are not included in this research.
6. In Table 4.50 (See Appendix 7), its adjusted \mathbf{R}^{2} is -0.005310 . It means that 0.531% of total variation on stock price can be explained by $E_{t}-E_{t-1}$ (Earnings changes) and $\mathrm{ME}_{1}-\mathrm{E}_{\mathrm{t}} \quad 1$ (indicator variable for inventory valuation method) after adjusting for the number of explanatory variables and sample size. Meanwhile, the other 99.469% is explained by the other variables that are not included in this research. Adjusted R^{2} here is in negative sign, because $\mathrm{k}>1$.
7. In Table 4.51 (See Appendix 7), its adjusted R^{2} is -0.001950 . It means 0.195% of total variation on stock price can be explained by E_{t} (Earnings level), $D E_{t}$ (indicator variable for both sample groups), and $M E_{t}-E_{t-1}$ (indicator variable for inventory valuation method) after adjusting for the number of explanatory variables and sample size. Meanwhile, the other 99.805% is explained by the other variables that are not included in this research. Adjusted R^{2} here is in negative sign, because $\mathrm{k}>1$.
8. In Table 4.52 (See Appendix 7), its adjusted R^{2} is 0.017988 . It means that 1.8% of total variation on stock price can be explained by $E_{t}-E_{t-1}$ (Earnings changes), $\mathrm{DE}_{\mathrm{t}}-\mathrm{E}_{\mathrm{t}-1}$ (indicator variable for both sample groups), and $\mathrm{ME}_{t}-\mathrm{E}_{\mathrm{t}-1}$ (indicator variable for inventory valuation method) after adjusting for the number of explanatory variables and sample size. Meanwhile, the other 98.2% is explained by the other variables that are not included in this research.
9. In Table 4.53 (See Appendix 7), its adjusted \mathbf{R}^{2} is 0.43874 . It means that 43.874% of total variation on stock price can be explained by GP_{t} (Gross Profit levels), and SA_{t} (Selling and Administrative Expense Levels) after adjusting for the number of explanatory variables and sample size. Meanwhile, the other 56.126% is explained by the other variables that are not included in this research.
10. In Table 4.54 (See Appendix 7), its adjusted R^{2} is 0.510563 . It means that 51.056% of the total variation on stock price can be explained by GP $_{t}$ (Gross Profit Levels), and $\mathrm{SA}_{\mathbf{t}}$ (Selling and Administrative Expense Levels) after adjusting for the number of explanatory variables and sample size. Meanwhile, the other 48.944% is explained by the other variables that are not included in this research.
11. In Table 4.55 (See Appendix 7), its adjusted R^{2} is 0.001958 . It means that 0.196% of total variation on stock price can be explained by $\mathrm{GP}_{\mathrm{t}}-\mathrm{GP}_{\mathrm{t}-1}$ (Gross Profit changes), and $\mathrm{SA}_{\mathrm{t}}-\mathrm{SA}_{\mathrm{t}}-1$ (Selling and Administrative Expense changes) after adjusting for the number of explanatory variables and sample size. Meanwhile, the other 99.804% is explained by the other variables that are not included in this research.
12. In Table 4.56 (See Appendix 7), its adjusted R^{2} is 0.03593 . It means that 3.6% of total variation on stock price can be explained by $\mathrm{GP}_{\mathrm{t}}-\mathrm{GP}_{\mathrm{t}}-1$ (Gross Profit changes), $\mathrm{SA}_{\mathrm{t}}-\mathrm{SA}_{\mathrm{t}-1}$ (Selling and Administrative Expense changes), $\mathrm{DGP}_{\mathrm{t}}-\mathrm{GP}_{\mathrm{t}-1}$ (indicator variable for both sample groups), and $\mathrm{DSA}_{t}-\mathrm{SA}_{t-1}$ (indicator variable for both sample groups) after adjusting
for the number of explanatory variables and sample size. Meanwhile, the other 96.4% is explained by the other variables that are not included in this research.

4.2.4.2. Determination Coefficients ($\mathbf{R}^{\mathbf{2}}$)

The result of the analysis shows that the value of R^{2} (determination coefficients), for each equation regression models are explained as follows:

1. In Table 4.45 (See Appendix 7), its \mathbf{R}^{2} is 0.046285 . It means that 4.63% of the total variation on stock price can be explained by E_{l} (Earnings Levels). Meanwhile, the other 95.81% is explained by the other variables that are not included in this research.
2. In Table 4.46 (See Appendix 7), its R^{2} is 0.00328 . It means that 0.33% of the total variation on stock price can be explained by $\mathrm{E}_{1}-\mathrm{E}_{\mathrm{t}-1}$ (Earnings changes). Meanwhile, the other 99.67% is explained by the other variables that are not included in this research.
3. In Table 4.47 (See Appendix 7), its R^{2} is 0.032633 . It means that 3.26% of the total variation on stock price can be explained by E_{t} (Earnings level) and DE_{1} (indicator variable for both sample groups). Meanwhile, the other 96.74% is explained by the other variables that are not included in this research.
4. In Table 4.48 (See Appendix 7), its R^{2} is 0.023371 . It means that 2.33% of the total variation on stock price can be explained by $\mathrm{E}_{\mathrm{t}}-\mathrm{E}_{\mathrm{t}-1}$ (Earnings changes) and $D E_{t}-D E_{t-1}$ (indicator variable for both sample groups).

Meanwhile, the other 97.67% is explained by the other variables that are not included in this research.
5. In Table 4.49 (See Appendix 7), its R^{2} is 0.199312 . It means that 19.93% of the total variation on stock price can be explained by E_{t} (Earnings level) and $M E_{1}-E_{1}-1$ (indicator variable for inventory valuation method). Meanwhile, the other 80.07% is explained by the other variables that are not included in this research.
6. In Table 4.50 (See Appendix 7), its R^{2} is 0.005001 . It means that 0.5% of the total variation on stock price can be explained by $E_{1}-E_{1-1}$ (Earnings changes) and $M E_{t}-E_{t}-1$ (indicator variable for inventory valuation method). Meanwhile, the other 99.95% is explained by the other variables that are not included in this research.
7. In Table 4.51 (See Appendix 7), its R^{2} is 0.012642 . It means that 1.264% of the total variation on stock price can be explained by E_{t} (Earnings level), DE_{\uparrow} (indicator variable for both sample groups), and $M E_{1}-E_{t-1}$ (indicator variable for inventory valuation method). Meanwhile, the other 98.736% is explained by the other variables that are not included in this research.
8. In Table 4.52 (See Appendix 7), its R^{2} is 0.033096 . It means that 3.3096% of the total variation on stock price can be explained by $E_{t}-E_{t-1}$ (Earnings changes), $D E_{t}-E_{t-1}$ (indicator variable for both sample groups), and $M E_{1}-E_{1}-1$ (indicator variable for inventory valuation method).

Meanwhile, the other 96.6904% is explained with the other variables that are not included in this research.
9. In Table 4.53 (See Appendix 7), its R^{2} is 0.444556 . It means that 44.456% of the total variation on stock price can be explained by GP $_{\mathrm{t}}$ (Gross Profit levels), and SA_{t} (Selling and Administrative Expense Levels). Meanwhile, the other 55.544% is explained by the other variables that are not included in this research.
10. In Table 4.54 (See Appendix 7), its R^{2} is 0.520706 . It means that 52.07% of the total variation on stock price can be explained by GP_{t} (Gross Profit Levels), and SA_{t} (Selling and Administrative Expense Levels). Meanwhile, the other 47.93% is explained by the other variables that are not included in this research.
11. In Table 4.55 (See Appendix 7), its R^{2} is 0.012194 . It means that 1.2194% of the total variation on stock price can be explained by $\mathrm{GP}_{\mathrm{t}}-\mathrm{GP}_{\mathrm{t}}{ }_{-1}$ (Gross Profit changes), and $\mathrm{SA}_{\mathrm{t}}-\mathrm{SA}_{\mathrm{t}}-1$ (Selling and Administrative Expense changes). Meanwhile, the other 98.7806% is explained by the other variables that are not included in this research.
12. In Table 4.56 (See Appendix 7), its R^{2} is 0.055808 . It means that 5.58% of the total variation on stock price can be explained by $\mathrm{GP}_{\mathbf{t}}-\mathrm{GP}_{\mathrm{t}-1}$ (Gross Profit changes), $\mathrm{SA}_{\mathbf{t}}-\mathrm{SA}_{\mathbf{t}}-1$ (Selling and Administrative Expense changes), $\mathrm{DGP}_{\mathrm{t}}-\mathrm{GP}_{\mathrm{t}-1}$ (indicator variable for both sample groups), and $\mathrm{DSA}_{t}-\mathrm{SA}_{t-1}$ (indicator variable for both sample groups). Meanwhile, the
other 94.42% is explained with the other variables that are not included in this research

4.2.4.3. Interpretation on the Analysis Result of the Regression.

The regression equation that can be arranged based on the result of the calculation for each equation regression models are explained as follows: $P_{t}=-0.0515+0.904773 E_{1}$.

From the above equation, we can explain that:
a. The value Constant $(C)=-0.0515$. The sample Y intercepts β_{0}, computed as -0.0515 , and estimates the expected amount of Stock Price if Earnings is equal to zero $(\mathrm{X} 1=0)$.
b. The value of coefficient $\beta_{1}=0.904773$. It is stated that every increase of $\operatorname{Rp} 1$ in $\mathrm{E}_{1}\left(\mathrm{X}_{1}\right)$ will also increase the Stock Price (Y) for 0.904773 with the assumption that X_{2} is constant. Therefore, the influence of E_{1} to the Stock Price is positive.
$P_{t}-P_{t-1}=-0.002-0.01766 E_{t}-E_{t-1}$.
From the above equation, we can explain that:
a. The value Constant $(\mathrm{C})=-0.002$. The changes in the Stock Price (Y) will be 0.002 if the independent variable of earnings level which changes the Stock Price is equal to zero $\left(\mathrm{X}_{1}=0\right)$.
b. The value of coefficient $\beta_{1}=-0.01766$. It is stated that every increase of $R p 1$ in $E_{t}-E_{1-1}\left(X_{1}\right)$, while other independent variables are constant, the estimated average amount of stock price is decreased by 0.01766 .
$\mathrm{P}_{\mathrm{t}}=-0.000347+0.17563 \mathrm{E}_{\mathrm{t}}+0.511803 \mathrm{DE}_{1}$.
From the above equation, we can explain that:
a. The value Constant $(\mathrm{C})=-0.000347$. The changes in the Stock Price (Y) will be 0.000347 if all the independent variables which change the Stock Price are equal to zero $\left(\mathrm{X}_{1}, \mathrm{X}_{2}=0\right)$.
b. The value of coefficient $\beta_{1}=0.175630$. It is stated that every increase of Rp 1 in $\mathrm{E}_{\mathrm{t}}\left(\mathrm{X}_{1}\right)$, while $\mathrm{DE}_{1}\left(\mathrm{X}_{2}\right)$ is constant, the estimated average amount of stock price is increased by 0.175630 .
c. The value of coefficient $\beta_{2}=0.511803$. It is stated that every increase of Rp 1 in $\mathrm{DE}_{1}\left(\mathrm{X}_{2}\right)$, while $\mathrm{E}_{1}\left(\mathrm{X}_{1}\right)$ is constant, the estimated average amount of stock price is increased by 0.511803 .
$P_{t}-P_{t-1}=0.031427-0.022607 E_{t}-E_{t-1}+0.318501 D E_{t}-E_{t-1}$.
From the above equation, we can explain that:
a. The value Constant $(C)=0.031427$. The changes in the Stock Price (Y) will be 0.031427 if all the independent variables which change the Stock Price are equal to zero $\left(\mathrm{X}_{1}, \mathrm{X}_{2}=0\right)$.
b. The value of coefficient $\beta_{1}=-0.022607$. It is stated that every increase of Rp 1 in $E_{t}-E_{t-1}\left(X_{1}\right)$, while $D E_{t}-E_{t-1}\left(X_{2}\right)$ is constant, the estimated average amount of stock price is decreased by 0.022607 .
c. The value of coefficient $\beta_{2}=0.318501$. It is stated that every increase of Rp 1 in $D E_{t}-E_{t-1}\left(X_{2}\right)$, while $E_{t}-E_{t-1}\left(X_{1}\right)$ is constant, the estimated average amount of stock price is increased by 0.318501 .
$\mathrm{P}_{\mathrm{t}}=-0.002134+1.796325 \mathrm{E}_{1}+4.561975 \mathrm{ME}_{1}-\mathrm{E}_{\mathrm{t}-1}$.
From the above equation, we can explain that:
a. The value Constant $(\mathrm{C})=-0.002134$. The changes in the Stock Price (Y) will be 0.002134 if all the independent variables which change the Stock Price are equal to zero $\left(\mathrm{X}_{1}, \mathrm{X}_{2}=0\right)$.
b. The value of coefficient $\beta_{1}=1.796325$. It is stated that every increase of Rp 1 in $E_{t}\left(X_{1}\right)$, while $M E_{t}-E_{1-1}\left(X_{2}\right)$ is constant, the estimated average amount of stock price is increased by 1.796325 .
c. The value of coefficient $\beta_{2}=4.561975$. It is stated that every increase of $R p 1$ in $M E_{t}-E_{t-1}\left(X_{2}\right)$, while $E_{t}\left(X_{1}\right)$ is constant, the estimated average amount of stock price is increased by 4.561975 .
$P_{t}-P_{t-1}=-0.002176-0.013881 \mathrm{E}_{\mathrm{t}}-\mathrm{E}_{\mathrm{t}-1}-0.094117 \mathrm{ME}_{\mathrm{t}}-\mathrm{E}_{\mathrm{t}-1}$.
From the above equation, we can explain that:
a. The value Constant $(C)=-0.002176$. The changes in the Stock Price (Y) will be 0.002176 if all the independent variables which change the Stock Price are equal to zero $\left(\mathrm{X}_{1}, \mathrm{X}_{2}=0\right)$.
b. The value of coefficient $\beta_{1}=-0.013881$. It is stated that every increase of Rp 1 in $E_{t}-E_{t-1}\left(X_{1}\right)$, while $M E_{t}-E_{t-1}\left(X_{2}\right)$ is constant, the estimated average amount of stock price is decreased by 0.013881 .
c. The value of coefficient $\beta_{2}=-0.094117$. It is stated that every increase of Rp 1 in $M E_{t}-E_{1-1}\left(X_{2}\right)$, while $E_{t}-E_{1-1}\left(X_{1}\right)$ is constant, the estimated average amount of stock price is decreased by 0.094117 .

$$
P_{t}=0.858662+0.271604 \mathrm{E}_{1}-0.496965 \mathrm{ME}_{1}-\mathrm{E}_{\mathrm{t}-1}+0.104203 \mathrm{DE}_{\mathrm{t}} .
$$

From the above equation, we can explain that:
a. The value Constant $(\mathrm{C})=0.858662$. The changes in the Stock Price (Y) will be 0.858662 if all the independent variables which change the Stock Price are equal to zero ($\left.\mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{X}_{3}=0\right)$.
b. The value of coefficient $\beta_{1}=0.271604$. It is stated that every increase of Rp 1 in $E_{1}\left(X_{1}\right)$, while $M E_{1}-E_{1}-1\left(X_{2}\right)$ and $D E_{f}\left(X_{3}\right)$ are constant, the estimated average amount of stock price is increased by 0.271604 .
c. The value of coefficient $\beta_{2}=-0.496965$. It is stated that every increase of $R p 1$ in $M E_{t}-E_{t-1}\left(X_{2}\right)$, while $E_{t}\left(X_{1}\right)$ and $D E_{t}\left(X_{3}\right)$ are constant, the estimated average amount of stock price is decreased by 0.496965 .
d. The value of coefficient $\beta_{3}=0.104203$. It is stated that every increase of Rp 1 in $\mathrm{DE}_{t}\left(\mathrm{X}_{3}\right)$, while $\mathrm{E}_{\mathrm{t}}\left(\mathrm{X}_{1}\right)$ and $\mathrm{ME}_{1}-\mathrm{E}_{\mathrm{t}-1}\left(\mathrm{X}_{2}\right)$ are constant, the estimated average amount of stock price is increased by 0.104203 .

$$
\begin{aligned}
P_{t}-P_{t-1}= & 0.028515-0.022176 \mathrm{E}_{\mathrm{t}}-\mathrm{E}_{\mathrm{t}-1}-0.465998 \mathrm{ME}_{\mathrm{t}}-\mathrm{E}_{\mathrm{t}-1} \\
& +0.4156 \mathrm{DE}_{\mathrm{t}}-\mathrm{E}_{\mathrm{t}-1}
\end{aligned}
$$

From the above equation, we can explain that:
a. The value Constant $(\mathrm{C})=0.028515$. The changes in the Stock Price (Y) will be 0.028515 if all the independent variables which change the Stock Price are equal to zero $\left(X_{1}, X_{2}, X_{3}=0\right)$.
b. The value of coefficient $\beta_{1}=-0.022176$. It is stated that every increase of Rp 1 in $E_{t}-E_{t-1}\left(X_{1}\right)$, while $M E_{t}-E_{t-1}\left(X_{2}\right)$ and $D E_{t}-E_{t-1}\left(X_{3}\right)$ are
constant, the estimated average amount of stock price is decreased by 0.022176 .
c. The value of coefficient $\beta_{2}=-0.465998$. It is stated that every increase of Rp 1 in $M E_{t}-E_{1-1}\left(X_{2}\right)$, while $E_{t}-E_{t-1}\left(X_{1}\right)$ and $D E_{t}-E_{t-1}\left(X_{3}\right)$ are constant, the estimated average amount of stock price is decreased by 0.465998 .
d. The value of coefficient $\beta_{3}=0.4156$. It is stated that every increase of Rp 1 in $D E_{t}-E_{t-1}\left(X_{3}\right)$, while $E_{t}-E_{t-1}\left(X_{1}\right)$ and $M E_{t}-E_{t-1}\left(X_{2}\right)$ are constant, the estimated average amount of stock price is increased by 0.4156 .
$P_{t}=0.402955+1.267113 \mathrm{GP}_{\mathrm{t}}-0.610769 \mathrm{SA}_{\mathrm{t}}$.
From the above equation, we can explain that:
a. The value Constant $(\mathrm{C})=0.402955$. The changes in the Stock Price (Y) will be 0.402955 if all the independent variables which change the Stock Price are equal to zero $\left(\mathrm{X}_{1}, \mathrm{X}_{2}=0\right)$.
b. The value of coefficient $\beta_{1}=1.267113$. It is stated that every increase of Rp 1 in $\mathrm{GP}_{\mathrm{t}}\left(\mathrm{X}_{1}\right)$, while $\mathrm{SA}_{\mathrm{t}}\left(\mathrm{X}_{2}\right)$ is constant, the estimated average amount of stock price is increased by 1.267113
c. The value of coefficient $\beta_{2}=-0.610769$. It is stated that every increase of Rp 1 in $\mathrm{SA}_{\mathrm{t}}\left(\mathrm{X}_{2}\right)$, while $\mathrm{GP}_{\mathrm{t}}\left(\mathrm{X}_{1}\right)$ is constant, the estimated average amount of stock price is decreased by 0.610769 .
$\mathrm{P}_{\mathrm{t}}=0.005646+0.783735 \mathrm{GP}_{\mathrm{t}}+0.179462 \mathrm{SA}_{\mathrm{t}}+1.171764 \mathrm{DGP}_{\mathrm{t}}-1.701002 \mathrm{DSA}_{\mathrm{t}}$. From the above equation, we can explain that:
a. The value Constant $(\mathrm{C})=0.005646$. The changes in the Stock Price (Y) will be 0.005646 if all the independent variables which change the Stock Price are equal to zero $\left(X_{1}, X_{2}, X_{3}, X_{4}=0\right)$.
b. The value of coefficient $\beta_{1}=0.783735$. It is stated that every increase of Rp 1 in $\mathrm{GP}_{1}\left(\mathrm{X}_{1}\right)$, while $\mathrm{SA}_{\mathrm{t}}\left(\mathrm{X}_{2}\right), \mathrm{DGP}_{\mathbf{t}}\left(\mathrm{X}_{3}\right)$ and $\mathrm{DSA}_{t}\left(\mathrm{X}_{4}\right)$ are constant, the estimated average amount of stock price is increased by 0.783735 .
c. The value of coefficient $\beta_{2}=0.179462$. It is stated that every increase of Rp 1 in $\operatorname{SA}_{t}\left(\mathrm{X}_{2}\right)$, while $\mathrm{GP}_{\mathrm{t}}\left(\mathrm{X}_{1}\right)$, $\mathrm{DGP}_{\mathrm{t}}\left(\mathrm{X}_{3}\right)$ and $\mathrm{DSA}_{\mathrm{t}}\left(\mathrm{X}_{4}\right)$ are constant, the estimated average amount of stock price is increased by 0.179462 .
d. The value of coefficient $\beta_{3}=1.171764$. It is stated that every increase of Rp 1 in $\operatorname{DGP}_{t}\left(\mathrm{X}_{3}\right)$, while $\mathrm{GP}_{1}\left(\mathrm{X}_{1}\right), \mathrm{SA}_{\mathrm{t}}\left(\mathrm{X}_{2}\right)$, and $\operatorname{DSA}_{t}\left(\mathrm{X}_{4}\right)$ are constant, the estimated average amount of stock price is increased by 1.171764 .
e. The value of coefficient $\beta_{4}=-1.701002$. It is stated that every increase of Rp 1 in and $\operatorname{DSA}_{t}\left(X_{4}\right)$, while $\operatorname{GP}_{t}\left(X_{1}\right), \operatorname{SA}_{t}\left(X_{2}\right)$, and $\operatorname{DGP}_{t}\left(X_{3}\right)$ are constant, the estimated average amount of stock price is decreased by 1.701002.
$\mathrm{P}_{\mathrm{t}}-\mathrm{P}_{\mathrm{t}-1}=0.002348+0.105494 \mathrm{GP}_{\mathrm{t}}-\mathrm{GP}_{\mathrm{t}-1}+0.163739 \mathrm{SA}_{\mathrm{t}}-\mathrm{SA}_{\mathrm{t}-1}$.
a. The value Constant $(\mathrm{C})=0.002348$. The changes in the Stock Price (Y) will be 0.002348 if all the independent variables which change the Stock Price are equal to zero $\left(X_{1}, X_{2}=0\right)$.
b. The value of coefficient $\beta_{1}=0.105494$. It is stated that every increase of $\operatorname{Rp} 1$ in $\mathrm{GP}_{\mathrm{t}}-\mathrm{GP}_{\mathrm{t}-1}\left(\mathrm{X}_{1}\right)$, while $\mathrm{SA}_{\mathrm{t}}-\mathrm{SA}_{\mathrm{t}-1}$ is constant, the estimated average amount of stock price is increased by 0.105494 .
c. The value of coefficient $\beta_{2}=0.163739$. It is stated that every increase of Rp 1 in $S A_{\mathbf{t}}-$ SA $_{t-1}\left(\mathrm{X}_{2}\right)$, while $\mathrm{GP}_{\mathbf{t}}-\mathrm{GP}_{1-1}\left(\mathrm{X}_{1}\right)$ is constant, the estimated average amount of stock price is increased by 0.163739
$\mathbf{P}_{\mathbf{t}}-\mathbf{P}_{\mathbf{t}-1}=0.017776+0.087057 \mathrm{GP}_{\mathbf{t}}-\mathrm{GP}_{\mathrm{t}-1}+0.003156 \mathrm{SA}_{\mathbf{t}}-\mathrm{SA}_{\mathbf{t}-1}+0.602228$ DGP $_{t-}$ GP $_{t-1}-0.946918$ DSA $_{\mathbf{t}}-$ SA $_{t-1}$.

From the above equation, we can explain that:
a. The value Constant $(C)=0.017776$. The changes in the Stock Price (Y) will be 0.017776 if all the independent variables which change the Stock Price are equal to zero $\left(X_{1}, X_{2}, X_{3}, X_{4}=0\right)$
b. The value of coefficient $\beta_{1}=0.087057$. It is stated that every increase of Rp 1 in $G_{t}-\operatorname{GP}_{t-1}\left(X_{1}\right)$, while $S A_{t}-S_{t-1}\left(X_{2}\right), \operatorname{DGP}_{t}-\operatorname{GP}_{t-1}\left(X_{3}\right)$ and $\mathrm{DSA}_{4}-\mathrm{SA}_{t-1}\left(\mathrm{X}_{4}\right)$ are constant, the estimated average amount of stock price is increased by 0.087057
c. The value of coefficient $\beta_{2}=0.003156$. It is stated that every increase of Rp 1 in $\mathrm{SA}_{\mathrm{t}}-\mathrm{SA}_{\mathrm{t}-1}\left(\mathrm{X}_{2}\right)$, while $\mathrm{GP}_{\mathrm{t}}-\mathrm{GP}_{\mathrm{t}-1}\left(\mathrm{X}_{1}\right)$, $\mathrm{DGP}_{\mathrm{t}}-\mathrm{GP}_{\mathrm{t}-1}\left(\mathrm{X}_{3}\right)$ and $\mathrm{DSA}_{\mathrm{t}}-\mathrm{SA}_{\mathrm{t}-1}\left(\mathrm{X}_{4}\right)$ are constant, the estimated average amount of stock price is increased by 0.003156 .
d. The value of coefficient $\beta_{3}=0.602228$. It is stated that every increase of Rp 1 in $\operatorname{DGP}_{t}-\operatorname{GP}_{t-1}\left(X_{3}\right)$, while $\operatorname{GP}_{\mathbf{t}}-\mathrm{GP}_{\mathrm{t}-1}\left(\mathrm{X}_{1}\right), \mathrm{SA}_{\mathrm{t}}-\mathrm{SA}_{\mathrm{t}-1}\left(\mathrm{X}_{2}\right)$, and
$\mathrm{DSA}_{\mathbf{t}}-\mathrm{SA}_{\mathbf{t}-1}\left(\mathrm{X}_{4}\right)$ are constant, the estimated average amount of stock price is increased by 0.602228 .
e. The value of coefficient $\beta_{4}=-0.946918$. It is stated that every increase of Rp 1 in and DSA $_{t}-$ SA $_{t-1}\left(X_{4}\right)$, while $\operatorname{GP}_{t}-$ GP $_{t-1}\left(X_{1}\right), S A_{t}-S A_{t-1}\left(X_{2}\right)$, and $\mathrm{DGP}_{\mathbf{t}}-\mathrm{GP}_{\mathrm{t}-1}\left(\mathrm{X}_{3}\right)$ are constant, the estimated average amount of stock price is decreased by 0.946918

CHAPTER V

CONCLUSION AND RECOMMENDATIONS

5.1. Conclusion.

Based on the analysis result in the previous chapter, we can take some conclusions. Those are as follows

1. Compared to the previous study, based on what we have found within this study, the findings are: $1^{\text {st }}$ hypothesis is in not in line with the previous study that had been done by Bernard and Noel (1992) and also with $2^{\text {nd }}$ hypothesis, however the researcher found that her hypotheses results still in line with previous study that have been done by Jiambalvo, Noreen, and Shelvin (1997). Thus, the increase in inventory seems to have big association with stock price. And within this study, after several computation and analyses, the researcher found that earnings do not have any effect both with increase in inventory and stock prices and does not impact on the relationship between increase in inventory and stock prices Therefore, it is true that informativeness of change in inventory is affecting stock prices.
2. The result of the analyses consistently show that the association between stock price and earnings, both in level and changes form, is lower for firms with the informativeness of change in inventory. The implication is that investors and analysts do not have to rely more heavily on earnings figures when analyzing firms with informativeness of change in inventory.
3. Results in this study are also showing that inventory methods are insignificant in some analyses and significant in other analyses. Thus, this variable is not consistent in explaining the variation in stock price.
4. The association between gross profit and stock price is higher for levels form. The implication of this study, therefore, is the importance of knowledge on a firm's inventory planning (i.e., the association between percentage change in cost of goods sold and lag one percentage of production added to inventory) for valuation purposes.
5. The contributions of change in inventory, in explaining the change on stock price, are weak and have a small relationship (See Appendix 7). The low Adjusted R^{2} gives a clue that the movements of changes on stock price are characteristic random that can not be decided or fully influenced only by the increase on inventory. In this case, the stock price changes are more influenced by the other outside factors of changes in inventory.

5.2. Limitations and Recommendation.

1. This research is only using 2 (two) years sample observation. Therefore, in order to get better result, it is recommended for other researchers to use at least 14 years sample observation because this study is using firms classification analysis in the short-run with three consecutives years.
2. In this research, the researcher analyzes the companies' performance by using the financial statements of the companies. The financial statements which are used in this research are the annual financial statements. It is

BIBLIOGRAPHY

Bernard, V., and J, Noel. "Do Inventory Disclosures Predict Sales and Earnings." Journal of Accounting, Auditing and Finance, Vol. 6, pp. 145-181.

Brigham, E. F., and Ehrhardt, Michael. Financial Management Theory and Practice, $10^{\text {th }}$ ed., Harcourt College Publisher. 2002.

Cumulative Abnormal Returns. Internet. 2002. Internet: http://www.financialdictionary.thefreedictionary.com/cumulative + preferred + stock. December $23{ }^{\text {rd }} 2005$.

Davis-Friday, Paquita Y., Eng, Li Li, and Liu, Chao-Shin. The Effect of Corporate Governance on the Valuation of Book Value and Earnings during the Asian Financial Crisis. American Accounting Association Annual Meeting. December 2002.

Fees, Philip E., and Warren, Carl S., Accounting Principles, $7^{\text {th }}$ ed., SouthWestern Publishing Co. 1993

Ghozali, Dr. Imam, M. Com, Akt. Aplikasi Analisis Multivariate dengan program SPSS. Badan Penerbit Universitas Diponegoro.

Gujarati, Damodar. Basic Econometrics, $4^{\text {th }} \mathrm{ed}$., McGraw Hill, Inc. 2003.
Indonesian Capital Market Directory, $12^{\text {th }}$ ed., Indonesia: Institute for Economic and Financial Research. 2001.

Indonesian Capital Market Directory, $15^{\text {th }}$ ed., Indonesia: Institute for Economic and Financial Research. 2004

Indonesian Capital Market Directory, $16^{\text {th }}$ ed., Indonesia: Institute for Economic and Financial Research. 2005.

Kothari, S. P. "Price-Earnings Regressions in the Presence of Price Leading Earnings." Journal of Accounting and Economics, Vol. 15, pp. 173-202. North Holland: Elsevier Science Publishers. 1992.

Lev, B., and R., Thiagarajan S., "Fundamental Information Analysis." Journal of Accounting Research, Vol. 31, pp. 190-215. U.S.A: Institute of Professional Accounting. 1993.

Merriken, Harry E., and Reinhardt, Walter J., "The implication of Tax Reforms on Firm Valuation and Management Decisions." Journal of Akron Business and Economic Review, Vol. 21, No. 2, pp. 94. Summer Publishers. 1990.

Penmann, Ou., Fundamental Accounting Variable Analysis and Nonlinearity of Accounting Information, pp. 465. Internet. 1992.

Sloan, Richard G., "Do Stock Prices Fully Reflect Information in Accruals and Cash Flows about Future Earnings?" Journal of Accounting Review, Vol. 71, pp. 289-315. University of Pensylvania. 1996

Statement of Financial Accounting Concepts No. 33: Financial Reporting and Changing Prices; September 1979. Internet: http://www.fasb.org/pdf/fas33.pdf. December $23^{\text {rd }} 2005$.

Widarjono, Agus. Ekonometrika Teori dan Aplikasi untuk Ekonomi dan Bisnis. Ekonisia.

Zhang, Wei., Cao, Qing., and Schniederjans, Mark J., Neural Network Earnings per Share Forecasting Models: A Comparative Analysis of Alternative

Methods. Vol. 35, No. 2, pp. 205. Atlanta: American Institute for Decision Science Spring. 2004.

APPENDIX 1
LISTS OF FIRST COMPANIES' SAMPLE COMPANIES THAT BECOME THE SAMPLE OF RESEARCH

Table A

THE COMPANIES' STOCK PRICES LIST

FIRST SAMPLE OF 153 COMPANIES IN THE RESEARCH

No	Firms	Closing Price per Share (PRICE)		
		2002	2003	2004
123456789	PT Ades Alfindo Putrasetia Tbk PT Aqua Golden Mississippi Tbk PT Cahaya Kalbar Tbk PT Davomas Abadi Tbk PT Delta Djakarta Tbk PT Fast Food Indonesia Tbk PT Indofood Sukses Makmur Tbk PT Mayora Indah Tbk PT Multi Bintang Indonesia Tbk PT Pioneerindo Gourmet International (d/h Putra Sejahtera Pioneerindo (CFC))	1150	550	975
		38000	40000	47550
		190	220	255
		300	100	490
		9200	9000	10500
		0	0	0
		825	600	775
		420	365	975
		34250	30000	40000
		0	0	0
$\begin{aligned} & 10 \\ & 11 \\ & 12 \end{aligned}$	Tbk PT Prasidha Aneka Niaga Tbk	125	125	125
	PT Prasidha Aneka Niaga Tbk PT Sari Husada Tbk	10250	10000	17800
13	PT Sekar Laut Tbk PT Siantar Top Tbk PT Sierad Produce Tbk	400	275	500
		270	215	185
15		45	20	25
16	PT Sinar Mas Agro Resources and Technology Corporation (SMART) Tbk	925	1125	2900
17	PT Suba Indah Tbk	40	25	125
18	PT Tiga Pilar Sejahtera Tbk (Asia Intiselera) PT Tunas Baru Lampung Tbk	165	330	195
19		290	140	170
20	PT Ultra Jaya Milk Industry and Trading Company Tbk PT BAT Indonesia Tbk	750	500	295
21		7900	9150	9100
22	PT Gudang Garam Tbk	10950	7400	13000
23	PT Hanjaya Mandala Sampoerna Tbk	4575	2900	4500
24	PT Argo Pantes Tbk	700	700	1275
25	PT Century Textile Industry (Centex) Tbk	0	0	0
26		460	200	200
27	PT Eratex Djaja Limited Tbk PT Panasia Filament Inti Tbk PT Panasia Indosyntec Tbk	195	70	45
28		0	0	0
29	PT Roda Vivatex Tbk	1125	1000	850
30	PT Sunson Textile Manufacture Tbk	330	175	115
31	PT Teijin Indonesia Fiber Corporation (Tifico) Tbk	300	165	240
32		0	0	0
33	PT APAC Citra Centertex Tbk	210	85	170
34	PT Daeyu Orchid Indonesia Tbk	100	60	80
35	PT Ever Shine Textile Industry Tbk	335	100	125
36	PT Fortune Mate Indonesia Tbk	0	0	0
37	PT Great River International Tbk	0	0	0
38	PT Hanson Industri Utama Tbk	0	0	0
39	PT Indorama Syntetics Tbk	725	420	455
40	PT Karwell Indonesia Tbk	455	350	420
41	PT Kasogi International Tbk	0	0	0
42	PT Pan Brothers Tex Tbk	0	0	0
43	PT Primarindo Asia Infrastructure Tbk	0	0	0
44	PT Ricky Putra Globalindo Tbk	160	45	320

PT Sarasa Nugraha Tbk
 PT Sepatu Bata Tbk

PT Surya Intrindo Makmur Tbk
PT Barito Pacific Timber Tbk
PT Daya Sakti Unggul Corporation Tbk
PT Sumalindo Lestari Jaya Tbk
PT Surya Dumai Industri Tbk
PT Tirta Mahakam Plywood Industry Tbk
PT Fajar Surya Wisesa Tbk
PT Indah Kiat Pulp \& Paper Corporation Tbk
PT Pabrik Kertas Tjiwi Kimia Tbk
PT Suparma Tbk
PT Surabaya Agung Industry Pulp Tbk
PT Aneka Kimia Raya Tbk
PT Budi Acid Jaya Tbk
PT Colorpak Indonesia Tbk
PT Eterindo Wahanatama Tbk
PT Lautan Luas Tbk
PT Polysindo Eka Perkasa Tbk
PT Sorini Corporation Tbk
PT Unggul Indah Cahaya Tbk
PT Duta Pertiwi Nusantara Tbk
PT Ekadharma Tape Industries Tbk
PT Intan Wijaya International Tbk
PT Resource Alam Indonesia Tbk (Kurnia Kapuas Utama Glue Industries) Tbk
PT Argha Karya Prima Industry Tbk
PT Asahimas Flat Glass Co LId Tbk
PT Asiaplast Industries Tbk
PT Berlina Co Ltd Tbk
PT Dynaplast Tbk
PT Fatrapolindo Nusa Industri Tbk
PT Inti Indah Karya Plasindo Tbk
PT Kageo Igar Jaya Tbk (Igarjaya)
PT Langgeng Makmur Plastik Industry Ltd Tbk
PT Lapindo International Tbk
PT Palm Asia Corpore Tbk (PT Plaspak Prima Industri Tbk) PT Siwani Makmur Tbk
PT Summiplast Interbenua Tbk
PT Trias Sentosa Tbk
PT Wahana Jaya Perkasa Tbk
PT Indocement Tunggal Perkasa Tbk
PT Semen Cibinong Tbk
PT Semen Gresik (Persero) Tbk
PT Alakasa Industrindo Tbk
PT Alumindo Light Metal Industry Tbk
PT Betonjaya Manunggal Tbk
PT Citra Tubindo Tbk
PT Indal Aluminium Industry Tbk
PT Jakarta Kyoei Steel Works Ltd Tbk
PT Jaya Pari Steel Tbk
PT Lion Mesh Prima Tbk
PT Lion Metal Works Tbk
PT Pelangi Indah Canindo Tbk
PT Tembaga Mulia Semanan Tbk

100	40	35
16500	14000	15000
1000	375	200
0	0	0
95	75	130
105	65	110
500	445	385
150	95	110
440	340	750
230	205	775
195	215	775
85	75	190
75	65	65
0	0	0
135	90	100
450	365	480
75	70	195
0	0	0
35	15	60
475	390	750
1300	1100	2075
415	200	220
550	490	165
495	270	305
240	90	160
220	230	750
1225	1150	2300
45	20	35
1500	1400	1275
1200	975	1725
0	0	0
0	0	0
80	80	120
80	35	55
550	420	525
0	0	0
0	0	0
210	170	150
110	165	225
0	0	0
850	825	1900
320	150	375
8450	7350	9950
0	0	0
625	145	235
140	125	200
7900	8050	8000
310	115	150
35	20	125
100	140	385
525	350	925
725	850	925
175	60	160
2750	2600	2300

99	PT Tira Austenite Tbk	0	0	0
100	PT Kedaung Indah Can Tbk	350	370	150
101	PT Kedawung Setia Industrial Tbk	285	145	150
102	PT Arwana Citra Mulia Tbk	105	95	295
103	PT Intikeramik Alamasri Industry Tbk	125	80	135
104	PT Keramika Indonesia Assosiasi Tbk	0	0	0
105	PT Mulia Industrindo Tbk	155	110	250
106	PT Surya Toto Indonesia Tbk	5500	5500	4450
107	PT Komatsu Indonesia Tbk	0	0	0
108	PT Texmaco Perkasa Engineering Tbk	0	0	0
109	PT GL Kabel Indonesia Tbk	80	50	80
110	PT Jembo Cable Company Tbk	600	775	235
111	PT Kabelindo Murni Tbk	90	50	75
112	PT Sumi Indo Kabel Tbk	725	300	400
113	PT Supreme Cable Manufacturing Corporation (Sucaco) Tbk	925	1000	1025
114	PT Voksel Electric Tbk	-150	110	120
115	PT Astra Graphia Tbk	0	0	0
116	PT Metrodata Electronics Tbk	- 0	0	0
117	PT Multi Agro Persada Tbk	\bigcirc	0	0
118	PT Multipolar Corporation Tbk	0	0	0
119	PT Andhi Chandra Automotive Products Tbk	340	465	475
120	PT Astra International Tbk	2700	2550	5350
121	PT Astra Otoparts Tbk	1600	1250	1325
122	PT Branta Mulia Tbk	800	550	800
123	PT Gajah Tunggal Tbk	170	210	600
124	PT Goodyear Indonesia Tbk	4500	4100	4000
125	PT GT Petrochem Industries Tbk	0	0	0
126	PT Hexindo Adiperkasa Tbk	0	0	0
127	PT Indomobil Sukses International Tbk	0	0	0
128	PT Indospring Tbk	525	700	650
129	PT Intraco Penta Tbk	0	0	0
130	PT Multi Prima Sejahtera Tbk	550	600	1025
131	PT Nipress Tbk	0	0	0
132	PT Prima Alloy Steel Tbk	270	210	320
133	PT Selamat Sempurna Tbk	1725	1500	270
134	PT Sugi Samapersada Tbk	0	0	0
135		0	0	0
136	PT United Tractors Tbk	0	0	0
137	PT Inter Delta Tbk	0	0	0
138	PT Modern Photo Film Company Tbk	0	0	0
139	PT Perdana Bangun Pusaka Tbk	0	0	0
140	PT Bristol-Myers Squibb Indonesia Tbk	10500	9800	15600
141	PT Dankos Laboratories Tbk	0	0	0
142	PT Darya-Varia Laboratoria Tbk	425	650	775
143	PT Indofarma (Persero) Tbk	235	200	160
144	PT Kalbe Farma Tbk	325	305	475
145	PT Kimia Farma (Persero) Tbk	230	165	185
146	PT Merck Tbk	12800	9000	21000
147	PT Pyridam Farma Tbk	310	275	60
148	PT Schering Plough Indonesia Tbk	16000	6750	10500
149	PT Tempo Scan Pacific Tbk	4850	4625	5200
150	PT Mandom Indonesia Tbk	2100	1625	2750
151	PT Mustika Ratu Tbk	1775	525	465
152	PT Unilever Indonesia Tbk	20500	18000	3550

Table A. 1

THE COMPANIES' LIST THAT REMOVED WITHIN

THIS RESEARCH

No.	Firms
1	PT Fast Food Indonesia Tbk
2	PT Pioneerindo Gourmet International (d/h Putra Sejahtera Pioneerindo (CFC))
3	Tbk
4	PT Century Textile Industry (Centex) Tbk
5	PT Texanile Manufacturing Company Jaya (Texmaco Jaya) Tbk
6	PT Fortune Mate Indonesia Tbk
7	PT Great River International Tbk
8	PT Hanson Industri Utama Tbk
9	PT Kasogi International Tbk
10	PT Pan Brothers Tex Tbk
11	PT Primarindo Asia Infrastructure Tbk
12	PT Ryane Adibusana Tbk
13	PT Barito Pacific Timber Tbk
14	PT Aneka Kimia Raya Tbk
15	PT Lautan Luas Tbk
16	PT Fatrapolindo Nusa Industri Tbk
17	PT Inti Indah Karya Plasindo Tbk
18	PT Palm Asia Corpore Tbk (PT Plaspak Prima Industri Tbk)
19	PT Siwani Makmur Tbk
20	PT Wahana Jaya Perkasa Tbk
21	PT Alakasa Industrindo Tbk
22	PT Tira Austenite Tbk
23	PT Keramika Indonesia Assosiasi Tbk
24	PT Komatsu Indonesia Tbk
25	PT Texmaco Perkasa Engineering Tbk
26	PT Astra Graphia Tbk
27	PT Metrodata Electronics Tbk
28	PT Multi Agro Persada Tbk
29	PT Multipolar Corporation Tbk
30	PT GT Petrochem Industries Tbk
31	PT Hexindo Adiperkasa Tbk
32	PT Indomobil Sukses International Tbk
33	PT Intraco Penta Tbk
34	PT Nipress Tbk
35	PT Sugi Samapersada Tbk
36	PT Tunas Ridean Tbk
37	PT United Tractors Tbk
38	PT Inter Delta Tbk
39	PT Modem Photo Film Company Tbk
40	PT Perdana Bangun Pusaka Tbk
41	PT Dankos Laboratories Tbk

TABLE 4.1
THE COMPANIES' STOCK PRICES LIST
THAT BECOME THE SAMPLE OF THE RESEARCH

No	firms	Closing Price per Share		
		2002	2003	2004
1	PT Ades Alfindo Putrasetia Tbk	1150	550	975
2	PT Aqua Golden Mississippi Tbk \quad	38000	40000	47550
3	PT Cahaya Kalbar Tbk	190	220	255
4	PT Davomas Abadi Tbk	300	100	490
5	PT Delta Djakarta Tbk	9200	9000	10500
6	PT Indofood Sukses Makmur Tbk	825	600	775
7	PT Mayora Indah Tbk	420	365	975
8	PT Muti Bintang Indonesia Tbk	34250	30000	40000
9	PT Prasidha Aneka Niaga Tbk	125	125	125
10	PT Sari Husada Tbk	10250	10000	17800
11	PT Sekar Laut Tbk	400	275	500
12	PT Siantar Top Tbk	270	215	185
13	PT Sierad Produce Tbk	45	20	25
14	PT Sinar Mas Agro Resources and Technology Corporation (SMART) Tbk	925	1125	2900
15	PT Suba Indah Tbk	40	25	125
16	PT Tiga Pilar Sejahtera Tbk (Asia Intiselera)	165	330	195
17	PT Tunas Baru Lampung Tbk	290	140	170
18	PT Ultra Jaya Milk Industry and Trading Company Tbk	750	500	295
19	PT BAT Indonesia Tbk	7900	9150	9100
20	PT Gudang Garam Tbk	10950	7400	13000
21	PT Hanjaya Mandala Sampoerna Tbk	4575	2900	4500
22	PT Argo Pantes Tbk	700	700	1275
23	PT Eratex Djaja Limited Tbk	460	200	200
24	PT Panasia Filament Inti Tbk	195	70	45
25	PT Roda Vivatex Tbk	- 1125	1000	850
26	PT Sunson Textile Manufacture Tbk	330	175	115
27	PT Teijin Indonesia Fiber Corporation (Tifico) Tbk	300	165	240
28	PT APAC Citra Centertex Tbk	210	85	170
29	PT Daeyu Orchid Indonesia Tbk	100	60	80
30	PT Ever Shine Textile Industry Tbk	335	100	125
31	PT Indorama Syntetics Tbk	725	420	455
32	PT Karwell Indonesia Tbk	455	350	420
33	PT Ricky Putra Globalindo Tbk	160	45	320
34	PT Sarasa Nugraha Tbk	100	40	35
35	PT Sepatu Bata Tbk	16500	14000	15000
36	PT Surya Intrindo Makmur Tbk	1000	375	200
37	PT Daya Sakti Unggul Corporation Tbk	95	75	130
38	PT Sumalindo Lestari Jaya Tbk	105	65	110
39	PT Surya Dumai Industri Tbk	500	445	385
40	PT Tirta Mahakam Plywood Industry Tbk	150	95	110

91	PT Andhi Chandra Automotive Products Tbk	340	465	475
92	PT Astra International Tbk	2700	2550	5350
93	PT Astra Otoparts Tbk	1600	1250	1325
94	PT Branta Mulia Tbk	800	550	800
95	PT Gajah Tunggal Tbk	170	210	600
96	PT Goodyear Indonesia Tbk	4500	4100	4000
97	PT Indospring Tbk	525	700	650
98	PT Multi Prima Sejahtera Tbk	550	600	1025
99	PT Prima Alloy Steel Tbk	270	210	320
100	PT Selamat Sempurna Tbk	1725	1500	270
101	PT Bristol-Myers Squibb Indonesia Tbk	10500	9800	15600
102	PT Darya-Varia Laboratoria Tbk	425	650	775
103	PT Indofarma (Persero) Tbk	235	200	160
104	PT Kalbe Farma Tbk	325	305	475
105	PT Kimia Farma (Persero) Tbk	230	165	185
106	PT Merck Tbk	12800	9000	21000
107	PT Pyridam Farma Tbk	310	275	60
108	PT Schering Plough Indonesia Tbk	16000	6750	10500
109	PT Tempo Scan Pacific Tbk	4850	4625	5200
110	PT Mandom Indonesia Tbk	2100	1625	2750
111	PT Mustika Ratu Tbk	1775	525	465
112	PT Unilever Indonesia Tbk	20500	18000	3550

APPENDIX 2
LISTS OF FINANCIAL
STATEMENTS OF SAMPLE COMPANIES, STOCK PRICES \& INVENTORY METHODS
SUMMARY OF FINANCIAL STATEMENT OF 112 COMPANIES Per 31 Desember
(In Million Rupiahs)

No.	Firms	Annual Inventory						
		1998	1999	2000	2001	2002	2003	2004
1	PT Ades Alfindo Putrasetia Tbk	12553	10217					
2	PT Aqua Goiden Mississippi Tbk	4575	5883	11792	9987	9193	9981	7775
3	PT Cahaya Kalbar Tbk	48785	5883	9453	9129	7561	7816	23453
4	PT Davomas Abadi Tbk	487838	59133	69432	73129	72637	84726	63799
5	PT Detta Djakarta Tbk	77438	78175	91678	92412	53655	86736	86933
6	PT Indofood Sukses Makmur Tbk	$\frac{11773846}{}$	14949	20619	33052	32126	41630	40032
7	PT Mayora Indah Tbk	1938112	1348653	1970598	2137103	2743304	2218210	2284332
8	PT Multi Bintang Indonesia Tbk	56450	69434	113461	104526	88223	122798	184596
9	PT Prasidha Aneka Niaga Tbk	232612	52658	60105	62420	59628	60829	72001
10	PT Sari Husada Tbk	232612	241162	104915	100055	110680	33337	39958
11	PT Sekar Laut Tbk	21854	79076	111931	102492	106022	75409	130829
12	PT Siantar Top Tbk	20605	21503	24957	20895	20388	16692	16465
13	PT Sierad Produce Tbk	20605	26719	47726	56802	112023	111783	94850
14	PT Sinar Mas Agro Resources and Technology Corporation (SMART) Tbk	1150737	177845	211776	252921	202218	175659	178808
15	PT Suba Indah Tbk	7160	232646	300743	292710	348610	475677	506080
16	PT Tiga Pilar Sejahtera Tbk (Asia Intiselera)	17012	7591	10287	8508	19768	47458	70338
17	PT Tunas Baru Lampung Tbk	79659	7672	7557	5096	28804	26799	43809
18	PT Ultra Jaya Milk Industry and Trading Company Tbk		77537	80233	48588	51313	115595	129297
19	PT BAT Indonesia Tbk	440558	74072	103146	101132	103295	147635	150020
20	PT Gudang Garam Tbk	4467864	499487	472260	392531	392566	365959	411373
21	PT Hanjaya Mandala Sampoerna Tbk	1527374	4250502	7197500	9103779	9381700	9528579	10875860
22	PT Argo Pantes Tbk	273430	2242541	4125651	5294415	5333008	4658728	4887583
23	PT Eratex Djaja Limited Tbk	273430	200763	268510	368059	337625	243585	286419
24	PT Panasia Filament Inti Tbk	221852	85540	148336	134613	129730	92091	100356
		221852	168926	180958	247833	201632	180478	196469

25	PT Roda Vivatex Tbk	49330	53790	48098	52135	48473	35259	
26	PT Sunson Textile Manufacture Tbk	161236	188370	177258	52135	48473	35259	30865
27	PT Teijin Indonesia Fiber Corporation (Tifico) Tbk	126222	182991	177258	196511	182564	198368	248464
28	PT APAC Citra Centertex Tbk	324210	182991	224207	256011	201326	145926	152619
29	PT Daeyu Orchid Indonesia Tbk	324210	273773	361534	294583	296451	279575	290080
30	PT Ever Shine Textile Industry Tbk	157	690	436	1282	3948	1588	190558
31	PT Indorama Syntetics Tbk	132268	134571	168838	224616	200845	188298	191405
32	PT Karwell Indonesia Tbk	261117	353410	502932	515393	436176	466764	617172
33	PT Ricky Putra Globalindo Tbk	180583	126285	146646	102217	113039	86557	135218
34	PT Sarasa Nugraha Tbk	73276	88746	116056	111644	93218	92316	101512
35	PT Sepatu Bata Tbk	45660	47307	52808	66852	65063	39410	6827
36	PT Surya Intrindo Makmur Tbk	53457	75038	89030	89193	82828	106015	105050
37	PT Daya Sakti Unggul Corporation Tbk	11898	40462	73676	84677	77156	45382	36262
38	PT Sumalindo Lestari Jaya Tbk	89720	113664	147749	134292	138011	136990	142612
39	PT Surya Dumai Industri Tbk	173135	205802	266324	213398	230746	174924	211791
40	PT Tirta Mahakam Plywood Industry Tbk	90283	104494	119968	102359	107967	62594	89763
41	PT Fajar Surya Wisesa Tbk	57166	71536	94113	133881	130180	127025	249763
42	PT Indah Kiat Pulp \& Paper Corporation Tbk	187671	129841	188015	181792	180119	192261	197592
43	PT Pabrik Kertas Tjiwi Kimia Tbk	1228300	1871927	2964001	1889719	2519359	2661623	2892139
44	PT Suparma Tbk	1442131	1450368	2213998	1671572	1742156	1605832	2193187
45	PT Surabaya Agung Industry Pulp Tbk	168130	155592	128297	104509	105527	130939	151199
46	PT Budi Acid Jaya Tbk	100506	84871	92605	134402	131243	72704	98556
47	PT Colorpak Indonesia Tbk	63529	71195	89540	97743	81570	151473	122022
48	PT Eterindo Wahanatama Tbk	0	0	4737	4014	6225	6410	17884
49	PT Polysindo Eka Perkasa Tbk	92158	164178	179385	161325	225662	0	3429
50	PT Sorin Corporation Tbk	394680	418683	551861	648033	518660	295950	642891
51	PT Unggul Indah Cahaya Tb	73788	59048	117211	124117	121815	148946	122281
52	PT Duta Pertiwi Nusantara Tbk	262146	303785	395855	600780	459548	388533	815591
53	PT Ekadharma Tape Industries Tbk	8579	7415	13971	11035	12630	9828	19689
54	PT Intan Wijaya international Tbk	6159	10273	13818	6660	9327	10325	15707
	PT Resource Alam Indonesia Tbk (Kurnia Kapuas Utama Glue Industries)	4432	5555	8493	7524	12094	6177	10842
55	Tbk	49941	41860	46073	46043	40272	43959	32943
56	PT Argha Karya Prima Industry Tbk	130623	120420	154035	140268	161367	1674	
57	PT Asahimas Flat Glass Co Ltd Tbk	314214	246981	318451	180168	161367	1674	233098

58	PT Asiaplast Industries Tbk	9807	13003	20404	33889	28606		
59	PT Berlina Co Ltd Tbk	13860	19520	25243	25306	29082		28447
60	PT Dynaplast Tbk	18564	18175	35432	34570	296000	25549	28447
61	PT Kageo Igar Jaya Tbk (igariaya)	22542	40479	60364	54537	55876	35379	102496
62	PT Langgeng Makmur Plastik Industry Ltd Tbk	55943	67844	78464	76866	598501	35751	65340
3	PT Lapindo International Tbk	654	970	861	7686	2288	99928	112267
64	PT Summiplast Interbenua Tbk	16403	14546	20416	15772	2288	8110	11643
65	PT Trias Sentosa Tbk	144257	120346	${ }^{-168526}$	${ }_{1} 666638$	- 85732	10749	12808
66	PT Indocement Tunggal Perkasa Tbk	454883	464544	562090	828045	153250	187905	281196
67	PT Semen Cibinong Tbk	265331	281771	290183	219720	875872	709065	711899
68	PT Semen Gresik (Persero) Tbk	596953	538093	662610	769957	210683	222790	291233
69	PT Alumindo Light Metal Industry Tbk	168979	256400	299370	342528	263089	768813	919561
70	PT Betonjaya Manunggal Tbk	1826	2206	2710	3488	$\underline{3377}$	363499	315357
71	PT Citra Tubindo Tbk	51594	231058	54100	66296		2542	3252
72	PT Indal Aluminium Industry Tbk	36443	40111	87288		88240	71626	76205
73	PT Jakarta Kyoei Steel Works Ltd Tbk	64710	14336	4990				
74 75	PT Jaya Pari Stee! Tbk	32453	6215	9324				
$\frac{75}{76}$	PT Lion Mesh Prima Tbk	6012	5056	5996				
76	PT Lion Metal Works Tbk	17235	17234	16554				
77	PT Pelangi Indah Canindo Tbk	40934	33123	37409	27279	3040	26098	48471
78	PT Tembaga Mulia Semanan Tbk	67863	82673	107119	4739112	53201	60250	54857
79	PT Kedaung Indah Can Tbk	40110	39065	49092	124112	14140	97158	134001
80	PT Kedawung Setia Industrial Tbk	56691	46181	67925	52528	55267	41465	51885
81	PT Amana Citra Mulia Tbk	71967	111652		73652	89486	83375	104779
82	PT Intikeramik Alamasri Industry Tbk	71967	111652	1333313	9895	15503	14106	15114
83	PT Mulia Industrindo Tbk	306126	291679	133311	159002	151273	139546	157667
84	PT Surya Toto Indonesia Tbk	66772						
5	PT GL Kabel Indonesia Tbk	104975						
86	PT Jembo Cable Company Tbk	70198						
87	PT Kabelindo Murni Tbk							
88	PT Sumi Indo Kabel Tbk							
		35289	48393	48053	52374	51027	34034	68763
90	PT Voksel Electric Tbk	107585	83178	65367	43852	88359	114708	125827
		100817	89403	111836	97140	95044	76390	97146

91	PT Andhi Chandra Automotive Products Tbk	9788	17685	30543	22091	22401	26726	44623
92	PT Astra International Tbk	2007763	1739590	3038371	3028927		1759560	3334329
93	PT Astra Otoparts Tbk	230260	159040	259430	217917	2590775	1759560	3334329
94	PT Branta Mulia Tbk	193539	146220	362623	2179088	262404	256821	404953
95	PT Gajah Tunggal Tbk	792784	895423	1117379	1182990	233042	254572	284460
96	PT Goodyear Indonesia Tbk	70818	67479	93875		1013196	1050494	686924
97	PT Indospring Tbk	81270	61438	74683	75630	81928	78655	89438
98	PT Multi Prima Sejahtera Tbk	14756	6339	10044	81166	76253	94586	140930
99	PT Prima Alloy Steel Tbk	82477	51141	59577	15569	14324	11299	12958
100	PT Selamat Sempurna Tbk	55444	78868		60859	58143	57813	66896
101	PT Bristol-Myers Squibb indonesia Tbk	151863	182131		94574	100336	140892	206492
102	PT Darya-Varia Laboratoria Tbk	71024	71647		22015	33888	11586	18110
103	PT Indofarma (Persero) Tbk	113471	91818	159174	93050	38743	44883	58302
104	PT Kalbe Farma Tbk	130617	202033	275463	280892	285698	143412	109985
105	PT Kimia Farma (Persero) Tbk	179728	264804	246425	340477	330208	305614	446229
106	PT Merck Tbk	14281	22248		241872	228342	307510	221377
107	PT Pyridam Farma Tbk	0	0	2366	37881	46920	49579	51484
108	PT Schering Plough Indonesia Tbk	9827	16778		5820	5192	5487	6070
109	PT Tempo Scan Pacific Tbk	151863	182131	16516	18893	13948	15016	15016
110	PT Mandom Indonesia Tbk	56016	74519		266903	245275	258776	259746
111	PT Mustika Ratu Tbk	42033	40330	3109	115145	111640	105874	124506
112	PT Unilever Indonesia Tbk	422006	438466	39602	49427	53039	46480	42510
				412673	301318	383902	517459	628826

SUMMARY OF FINANCIAL STATEMENT OF 112 COMPANIES
Per 31 Desember
(In Million Rupiahs)

No.	Firms	COG						
		1998	1999	2000	2001	2002	2003	2004
1	PT Ades Alfindo Putrasetia Tbk	60611	61323	91678	80067	96154	106899	106580
2	PT Aqua Golden Mississippi Tbk	304747	356365	478251	694647	897846	969935	1191197
3	PT Cahaya Kalbar Tbk	177130	206742	157090	133396	155455	168469	168575
4	PT Davomas Abadi Tbk	478492	478643	446671	486467	560228	738515	851108
5	PT Delta Djakarta Tbk	84663	112704	129143	156480	140841	159985	190353
7	PT Indofood Sukses Makmur Tbk	8834356	11548599	8964596	10776075	12398734	13405369	13323637
8	PT Mayora Indah Tbk	364418	421486	502612	643532	724448	804918	1035628
9	PT Mutiti intang Indonesia Tbk	212405	246983	275858	315399	285962	290529	402109
10	PT Sari Husada Tbk	160518	1159531	1193858	276767	363787	76361	219156
11	PT Sekar Laut Tbk	163999	254718	362462	577314	583323	574088	664139
12	PT Siantar Top Tbk	103959	130519	142417	149203	133272	131009	113735
13	PT Sierad Produce Tbk	434221	183042	292605	429220	512469	574119	591216
14	PT Sinar Mas Agro Resources and Technology Corporation (SMART) Tbk	1703472	672700	956338	1194390	1182988	1054203	1283986
15	PT Suba Indah Tbk	39679	47769	2070823	1861476	2563899	2921165	3658560
16	PT Tiga Pilar Sejahtera Tbk (Asia Intiselera)	89647		68977	103222	80231	413562	491016
17	PT Tunas Baru Lampung Tbk	494353	586279	63995	54076	110573	122620	178856
18	PT Ulitra Jaya Milk Industry and Trading Company Tbk	134487	191354	556278	539695	511094	573771	962428
19	PT BAT Indonesia Tbk	564052	613446	243579	380185	278154	331151	371960
20	PT Gudang Garam Tbk	7352019	8943319	479702	334430	282617	290269	313378
21	PT Hanjaya Mandala Sampoerna Tbk			10837213	13519452	16108007	18615630	19457427
22	PT Argo Pantes Tbk	964201		6932271	9993830	10517229	10152735	11839970
23	PT Eratex Djaja Limited Tbk	299745	933374	813407	1039424	976267	1036890	1017993
24	PT Panasia Filament Inti Tbk	440466	280534	326149	339351	320662	374860	369095
			542322	550556	579499	547649	408599	406481

25	PT Roda Vivatex Tbk	180453	186780					
26	PT Sunson Textile Manufacture Tbk	338745	186780	162531	196071	196699	156836	148436
27	PT Teijin Indonesia Fiber Corporation (Tifico) Tbk	338745	346513	409474	486288	456982	475831	526722
28		636900	601088	1404132	1674632	1548731	1901638	2534887
29	PT	1314215	1347478	1547034	1898822	1780943	1810114	2000842
30	Shine Textie Industry Tbk	54012	34852	40279	72949	63278	75341	292843
31	PT Indorama Syntetics Tbk	304336	339996	395213	425787	397436	390995	463722
32	PT Karwell Indonesia Tbk	1390563	1470204	2540862	2677532	2450807	2662748	3553756
33	PT Karwell Indonesia Tbk	919364	640010	753379	754573	505464	479285	504436
34	Picky Putra Globalindo Tbk	165803	192286	213471	247555	216214	172953	157254
35	PT Sarasa Nugraha Tbk	237943	212050	272684	268554	252103	226211	189887
36	PT Sepatu Bata Tbk	85547	145678	192373	218872	222817	229245	250808
37	PT Daya Sakti Ungoul Corporation Tbk	77265	111901	128622	197164	135651	133156	89923
38	PT Daya Sakti Unggul Corporation Tbk PT Sumalindo Lestari	317956	410194	382634	470168	419530	405438	386883
39	PT Sumalindo Lestari Jaya Tbk	576967	739251	761652	878958	859927	700185	682974
40	PT Surya Dumai Industri Tbk	387555	436424	465701	440339	512873	354382	267567
41	Tirta Mahakam Plywood Industry Tbk	134999	230389	270491	341490	345678	367179	654929
42	$\frac{\text { PT Fajar Surya Wisesa Tbk }}{}$	698612	807661	965526	991395	980094	1044802	1187962
43	Indah Kiat Pulp \& Paper Corporation Tbk	3939790	5457905	9597226	9405736	9209454	10078390	11323628
44	PT Pabrik Kertas Tjiwi Kimia Tbk	2799984	4163982	7360334	5746102	5493661	5712508	6482156
45	PT Suparma Tbk	258109	332437	380843	375651	343668	396383	454690
46	PT Surabaya Agung Industry Pulp Tbk	485157	585294	633552	589687	518649	393242	292834
47	PT Budi Acid Jaya Tbk	491980	548308	588545	373268	685189	554275	787320
48	PT Colorpak Indonesia Tbk	0	0	32622	41581	35488	44767	102940
49	PT Eterindo Wahanatama Tbk	621664	931847	1150112	1124094	1165936	494073	95798
50	PT Polysindo Eka Perkasa Tbk	2986232	2899580	3628104	4187990	3999511	2421590	1738461
51	PT Sorini Corporation Tbk	273792	270760	314731	380671	424776	404210	415372
52	PT Unggul Indah Cahaya Tbk	858139	844254	1276116	1479695	1237250	1791916	2333332
53	PT Duta Pertiwi Nusantara Tbk	37687	34858	38850	54817	40449	56355	59157
54	PT Ekadharma Tape Industries Tbk	81292	71534	66048	66159	60397	63640	61369
54	PT Resource Alam In Intan Wijaya International Tbk	67565	49077	49124	62571	56951	116530	130379
55	PT Resource Alam Indonesia Tbk (Kurnia Kapuas Utama Glue Industries) Tbk	136160	101003	116491	136159	129266	123938	128667
56	PT Argha Karya Prima Industry Tbk	494383	426024	534463	630264	660269	650084	766780
57	PT Asahimas Flat Glass Co Ltd Tbk	397023	579292	587800	732009	841454	904440	929428

58	PT Asiaplast Industries Tbk	15120	60666	115800	145299	175589	144662	220620
59	PT Berlina Co Ltd Tbk	57090	70964	104965	137919	150833	159754	197441
60	PT Dynaplast Tbk	110614	142981	217732	278795	312688	429880	569515
61	PT Kageo Igar Jaya Tbk (Igarjaya)	115308	170664	226772	282304	308799	285940	314471
62	PT Langgeng Makmur Plastik Industry Ltd Tbk	71496	109377	139179	174282	185359	208298	208676
63	PT Lapindo international Tbk	8208	8955	10651	18317	21881	53900	84444
64	PT Summiplast Interbenua Tbk	101291	99178	129754	120769	115177	143176	187874
65	PT Trias Sentosa Tbk	304203	351714	377761	544428	570744	618248	762682
66	PT Indocement Tunggal Perkasa Tbk	973974	1123913	1439388	2370743	2648367	2761762	3092419
67	PT Semen Cibinong Tbk	811583	1141161	1430366	1771215	1977100	2015729	2196901
68	PT Semen Gresik (Persero) Tbk	1276776	1864895	2202978	2860884	2536030	3507185	4005287
69	PT Alumindo Light Metal Industry Tbk	416463	700617	953088	979426	903209	999320	1213382
70	PT Betonjaya Manunggal Tbk	24286	16655	15331	16091	20435	17242	40782
71	PT Citra Tubindo Tbk	175275	110999	160172	341456	327411	550057	605743
72	PT Indal Aluminium Industry Tbk	152933	164341	199265	294040	256246	293274	438178
73	PT Jakarta Kyoei Steel Works Ltd Tbk	92693	48794	22001	34713	185545	111053	73228
74	PT Jaya Pari Steel Tbk	90055	78608	117642	78573	218974	214169	301101
75	PT Lion Mesh Prima Tbk	15338	23968	36590	44030	53344	59410	76250
76	PT Lion Metal Works Tbk	22693	20060	33464	42239	48820	50129	58251
77	PT Pelangi Indah Canindo Tbk	117857	138553	124288	135860	153358	154599	159509
78	PT Tembaga Mulia Semanan Tbk	301913	474967	678040	957756	913366	982483	1763257
79	PT Kedaung Indah Can Tbk	100408	88938	87870	87811	85074	85146	83970
80	PT Kedawung Setia Industrial Tbk	123834	199823	352876	381529	473429	468966	491646
81	PT Arwana Citra Mulia Tbk	77325	91276	116155	79532	107671	125527	137947
82	PT Intikeramik Alamasri Industry Tbk	77325	91276	116155	157141	174768	176675	181528
83	PT Mulia Industrindo Tbk	695469	991240	1088495	1312200	1554990	1804941	1956901
84	PT Surya Toto Indonesia Tbk	132467	146013	217990	278888	280340	334910	418249
85	PT GL Kabel Indonesia Tbk	216575	187677	225369	320590	337431	345784	419996
86	PT Jembo Cable Company Tbk	218229	128043	149578	245001	227511	253514	311024
87	PT Kabelindo Murni Tbk	58881	47535	46234	71817	91063	102702	139151
88	PT Sumi Indo Kabel Tbk	369009	292495	542271	647806	527124	555697	917184
89	PT Supreme Cable Manufacturing Corporation (Sucaco) Tbk	225332	276100	401005	587716	472402	569420	962840
90	PT Voksel Electric Tbk	264387	261094	332291	402628	478412	398157	542742

91	PT Andhi Chandra Automotive Products Tbk	32482	46897	90957	124714	106711	116073	153001
92	PT Astra International Tbk	7241478	11130624	23284363	24465854	24059817	23833547	34031168
93	PT Astra Otoparts Tbk	1009459	1243977	1639984	1690070	1664022	1743832	2356276
94	PT Branta Mulia Tbk	533609	521614	787594	944438	985897	986342	1167810
95	PT Gajah Tunggal Tbk	2471975	2891236	3970806	4656310	4712762	4857685	5683194
96	PT Goodyear Indonesia Tbk	411244	381538	438026	545630	499826	524991	681812
97	PT Indospring Tbk	27711	56988	108096	144954	173024	189754	266530
98	PT Muiti Prima Sejahtera Tbk	25821	47818	29195	33014	29834	23815	31093
99	PT Prima Alloy Steel Tbk	78138	126283	131553	146144	178770	342589	489329
100	PT Selamat Sempurna Tbk	228858	243567	364069	404147	461504	483747	556294
101	PT Bristol-Myers Squibb Indonesia Tbk	499939	732481	766611	93229	99946	87188	83906
102	PT Darya-Varia Laboratoria Tbk	150459	189783	232777	277554	281234	128446	143411
103	PT Indofarma (Persero) Tbk	142360	209965	220828	311633	564822	361370	472968
104	PT Kalbe Farma Tbk	359246	543920	729039	1059022	1202975	1265321	1464979
105	PT Kimia Farma (Persero) Tbk	524486	705876	963402	950875	1093554	1273698	1279340
106	PT Merck Tbk	40885	54253	75394	88254	88546	115749	161465
107	PT Pyridam Farma Tbk	0	0	15968	9714	9506	10263	13236
108	PT Schering Plough Indonesia Tbk	40292	56175	56830	73217	69690	72778	58658
109	PT Tempo Scan Pacific Tbk	499939	732481	766611	967212	1090880	1156443	1302765
110	PT Mandom Indonesia Tbk	173991	235111	294747	353738	359162	386299	481975
111	PT Mustika Ratu Tbk	42800	67371	96518	97343	108219	98813	111955
112	PT Unilever Indonesia Tbk	2148564	2357092	2594253	3221217	3646380	3906550	4315329

SUMMARY OF FINANCIAL STATEMENT OF 112 COMPANIES
Per 31 Desember
(In Million Rupiahs)

No.	Firms	Earnings			Closing Price per Share (Per April 1t)			Common Equity per share		
		2002	2003	2004	2002	2003	2004	2002	2003	2004
1	PT Ades Alfindo Putrasetia Tbk	97	46	-991	1150	550	975	1143	1187	117
2	PT Aqua Golden Mississippi Tbk	5023	4716	6962	38000	40000	47550	16773	20572	26933
3	PT Cahaya Kalbar Tbk	33	11	-78	190	220	255	763	769	688
4	PT Davomas Abadi Tbk	18	74	16	300	100	490	402	476	111
5	PT Delta Djakarta Tbk	2800	2382	2417	9200	9000	10500	18428	20410	22068
6	PT Indofood Sukses Makmur Tbk	86	64	40	825	600	775	390	434	
7	PT Mayora Indah Tbk	156	110	111	420	365	975	969	1061	1134
8	PT Multi Bintang Indonesia Tbk	4037	4282	4096	34250	30000	40000	13429	12734	12547
9	PT Prasidha Aneka Niaga Tbk	-1076	2277	3	125	125	125	-4048	-277	-274
10	PT Sari Husada Tbk	941	1171	923	10250	10000	17800	4447	5188	5196
11	PT Sekar Laut Tbk	557	141	-564	400	275	500	-4585	-4443	-5007
12	PT Siantar Top Tbk	23	24	22	270	215	185	206	229	243
13	PT Sierad Produce Tbk	-10	-15	-213	45	20	25	10	28	72
14	PT Sinar Mas Agro Resources and Technology Corporation (SMART) Tbk	946	234	-363	925	1125	2900	-1125	-852	-1172
15	PT Suba Indah Tbk	-83	-508	-455	40	25	125	1864	1356	823
16	PT Tiga Pilar Sejahtera Tbk (Asia Intiselera)	201	-8	6.69	165	330	195	-82.46	90.94	91.02
17	PT Tunas Baru Lampung Tbk	27	16	10	290	140	170	312	311	316
18	PT Ultra Jaya Milk Industry and Trading Company Tbk	10	4	2	750	500	295	273	291	280
19	PT BAT Indonesia Tbk	1791	748	-265	7900	9150	9100	6129	6337	6061
20	PT Gudang Garam Tbk	1085	956	930	10950	7400	13000	5046	5702	6332
21	PT Hanjaya Mandala Sampoerna Tbk	371	313	454	4575	2900	4500	1156	1282	1109

51	PT Unggul Indah Cahaya Tbk	209	164	427	1300	1100	2075	2041	2197	2798
52	PT Duta Pertiwi Nusantara Tbk	21	-13	51	415	200	220	873	820	874
53	PT Ekadharma Tape industries Tbk	140	97	20	550	490	165	1086	1113	239
54	PT Intan Wijiaya International Tbk	29	47	65	495	270	305	822	859	847
55	PT Resource Alam Indonesia Tbk (Kurnia Kapuas Utama Glue Industries) Tbk	$\cdot 7$	-5	-2	240	90	160	561	556	554
56	PT Argha Karya Prima industry Tbk	830	608	10	220	230	750	-878	807	834
57	PT Asahimas Flat Glass Co Ltd Tbk	476	376	476	1225	1150	2300	1672	1977	2376
58	PT Asiaplast Industries Tbk	\pm	0.21	-5.7	45	20	35	113	113	107
59	PT Berlina Co Ltd Tbk	434	129	232	1500	1400	1275	2069	2003	2067
60	PT Dynaplast Tbk	155	178	151	1200	975	1725	1053	1183	1255
61	PT Kageo Igar Jaya Tbk (lgarjaya)	18	15	25	80	80	120	116	131	152
62	PT Langgeng Makmur Plastik Industry Ltd Tbk	-150	-90	-115	80	35	55	119	29	10
63	PT Lapindo international Tbk	7	2	4	550	420	525	92	94	99
64	PT Summiplast Interbenua Tbk	-3	2	9	210	170	150	133	135	144
65	PT Trias Sentosa Tbk	102	61	10	110	165	225	308	340	340
66	PT Indocement Tunggal Perkasa Tbk	283	182	32	850	825	1900	1035	1232	1265
67	PT Semen Cibinong Tbk	66	23	-70	320	150	375	327	347	281
68	PT Semen Gresik (Persero) Tbk	331	628	878	8450	7350	9950	5363	5923	6171
69	PT Alumindo Light Metal Industry Tbk	-47	-118	117	625	145	235	1125	1007	1124
70	PT Betonjaya Manunggal Tbk	13	1	13	140	125	200	121	120	128
71	PT Citra Tubindo Tbk	149	180	172	7900	8050	8000	6223	6266	6821
72	PT İndal Aluminium Industry Tbk	2	-251	15	310	115	150	622	372	387
73	PT Jakarta Kyoei Steel Works Ltd Tbk	157	255	-276	35	20	125	-2421	. 2166	-2442
74	PT Jaya Pari Steel Tbk	106	80	417	100	140	385	451	451	868
75	PT Lion Mesh Prima Tbk	154	168	573	525	350	925	1172	1272	1821
76	PT Lion Metal Works Tbk	228	241	453	725	850	925	1817	1954	2317
77	PT Pelangi Indah Canindo Tbk	202	-4	-9	175	60	160	-1147	76	67
78	PT Tembaga Mulia Semanan Tbk	1147	433	-211	2750	2600	2300	5921	6297	5986
79	PT Kedaung Indah Can Tbk	-23	-96	-132	350	370	150	918	804	661

80	PT Kedawung Setia Industrial Tbk	-11	-64	-75	285	145	150	412	348	273
81	PT Arwana Citra Mulia Tbk	17	23	28	105	95	295	124	34	273
82	PT Intikeramik Alamasri Industry Tbk	65	-88	4	125	80	135			161
83	PT Mulia Industrindo Tbk	235					135	293	206	209
84	PT Surya Toto Indonesia Tbk		-129	-488	155	110	250	-800	-939	-1426
85		1390	640	522	5500	5500	4450	2169	2609	2932
	PT GL Kabel Indonesia Tbk	763	-9	-33	80	50	80	198	28	- 5
86	PT Jembo Cable Company Tbk	33	11	6	600	775	235	430	422	430
87	PT Kabelindo Murni Tbk	-38	-41	-23	90	50	75	162	121	114
88	PT Sumi Indo Kabel Tbk	-15	-32	24	725	300	400	1043	1011	1035
89	PT Supreme Cable Manufacturing Corporation (Sucaco) Tbk	298	74	-164	925	1000	1025	1237	1261	1063
90	PT Voksel Electric Tbk	86	-85	-295	150	110	120	-661	-915	-1199
91	PT Andhi Chandra Automotive Products Tbk	14	17	25	340	465	475	148	153	144
92	PT Astra International Tbk	1394	1096	1335	2700	2550	5350	2492	2902	4072
93	PT Astra Otoparts Tbk	343	273	291	1600	1250	1325	1398		
94	PT Branta Mulia Tbk	244	164	94	800	550	800		1582	1821
95	PT Gajah Tunggal Tbk	1207	275	151	170	10	800	1254	1413	1579
96	PT Goodyear Indonesia Tbk	371	401	610	4500				419	532
97	PT Indospring Tbk	824					4000	6545	6519	6979
98	PT Multi Prima Sejahtera Tbk			-507	525	700	650	1824	1918	1980
99		189	-28	-152	550	600	1025	737	3655	3503
100	Prima Alloy Steel Tbk	301	101	102	270	210	320	661	971	1083
100	PT Selamat Sempurna Tbk	31	37	44	1725	1500	270	268	275	264
101	PT Bristol-Myers Squibb Indonesia Tbk	1944	2751	41.514	10500	9800	15600	8674	11280	130462
102	PT Darya-Varia Laboratoria Tbk \quad Tb	113	87	89	425	650	775	406	481	570
103	PT Indofarma (Persero) Tbk	-19	-42	2	235	200	160	126	80	82
104	PT Kalbe Farma Tbk	66	40	46	325	305	475	121	102	150
105	PT Kimia Farma (Persero) Tbk	6	8	14	230	165	185	122	136	147
106	PT Merck Tbk	1671	2258	2555	12800	9000	21000	6663	7121	6876
107	PT Pyridam Farma Tbk	1	1	3	310	275	60	112	113	116
108	PT Schering Plough Indonesia Tbk	-291	665	-92	16000	6750	10500	885	621	528

SUMMARY OF FINANCIAL STATEMENT OF 112 COMPANIES
Per 31 Desember

(In Million Rupiahs)

No.	Firms	Gross Profit			Selling and Administrative expense		
		2002	2003	2004	2002	2003	2004
1	PT Ades Alfindo Putrasetia Tbk	52302	62037	18974	60936	82037	88831
2	PT Aqua Golden Mississippi Tbk	124053	107287	141950	39228	28554	25193
3	PT Cahaya Kalbar Tbk	17513.	12029	-963	9903	11044	9719
4	PT Davomas Abadi Tbk	40273	116452	181070	6297	8281	8592
5	PT Della Djakarta Tbk	136796	142682	163127	78848	91360	8592
6	PT Indofood Sukses Makmur Tbk	4067551	4466057	4594892		2458262	104901
7	PT Mayora Indah Tbk	274109	298976	- 34542492	2187416	2457262	2507501
8	PT Multil Bintang Indonesia Tbk	256432	272323	308802	134926	147957	211867
9	PT Prasidha Aneka Niaga Tbk	20922	13690		134926	166789	205280
10	PT Sari Husada Tbk	438528	13690	50834	32474	27770	28828
11	PT Sekar Laut Tbk	25057	526043	571020	125228	189622	321126
12	PT Siantar Top Tbk	115305	20509	24019	31929	32646	31556
13	PT Sierad Produce Tbk	115305	126958	121342	75991	77302	73471
14	PT Sinar Mas Agro Resources and Technology Corporation (SMART)	132714	72505	69636	110858	114018	138694
15	PT Sinar Mas Agro Resources and Technology Corporation (SMAR T) PT Suba indah Tbk	515027	411156	616009	276741	294317	332614
16	PT Tiga Pilar Sejahtera Tbk (Asia Intiselera)	32404	29553	-61576	36678	46605	35760
17	PT Tiga Pilar Sejahtera Tbk (Asia Intiselera) PT Tunas Baru Lampung Tbk	22572	44800	49581	20486	27389	24219
18		115554	141806	228582	64736	67623	94446
	PT Ultra Jaya Mik Industry and Trading Company Tok	130640	159481	174365	66268	73630	87912
+	PT BAT Indonesia Tbk	406031	300919	260048	236624	225517	283240
20	PT Gudang Garam Tbk	4831077	4521746	4834265	1376047	1591099	1916005
21	PT Hanjaya Mandala Sampoerna Tbk	4587808	4522390	5806724	1860313	2129788	2623446
22	PT Argo Pantes Tbk	57197	-8096	-35622	68142	72001	58358

52	PT Duta Pertiwi Nusantara Tbk	17853	13421	16560	11903	14524	16330
53	PT Ekadharma Tape Industries Tbk	15052	18234	18227	9581	14032	12327
54	PT Intan Wiiaya International Tbk	28020	30728	28261			
55	PT Resource Alam Indonesia Tbk (Kurnia Kapuas Utama Glue Industries)				12802	14278	16197
56		42886	29467	28900	26776	26655	30410
57		258269	194628	180097	87258	100670	92893
58	PT Asahimas Flat Glass Co Ltd Tbk	452830	452938	527838	210052	214610	226035
	PT Asiaplast Industries Tbk	2322	24401	21070	9023	7968	9101
59	PT Berlina CoLtd Tbk	75078	54742	70105	19299	23711	29415
60	PT Dynaplast Tbk	133526	159448	171932	45674	68447	72884
61	PT Kageo Igar Jaya Tbk (lgariaya)	81787	79699	60735	30036	28355	25137
62	PT Langgeng Makmur Plastik Industry Ltd Tbk	38372	36134	28620	30823	33944	34515
63	PT Lapindo international Tbk	2869	4674	6717	2484	3522	3937
64	PT Summiplast Interbenua Tbk	7908	12337	25852	9857	10090	11959
65	PT Trias Sentosa Tbk	210893	175147	140412	52301	57601	67187
66	PT Indocement Tunggal Perkasa Tbk	1299915	1395922	1523088	369971	581545	686852
67	PT Semen Cibinong Tbk	1832	224567	171588	212560	238362	241571
68	PT Semen Gresik (Persero) Tbk	1641513	1892976	2062271	881148	963938	1104434
69	PT Alumindo Light Metal Industry Tbk	60156	66409	116842	70554	60611	61765
70	PT Betonjaya Manunggal Tbk	8	1301	5031	1575	1551	2076
71	PT Citra Tubindo Tbk	48524	65942	64848	48311	59242	63515
72	PT Indal Aluminium Industry Tbk	31044	20587	32364	32486	32821	30303
73	PT Jakarta Kyoei Steel Works Ltd Tbk	3868	-5160	14104	3864	4395	12792
74	PT Jaya Pari Steel Tbk	34063	33718	78826	13364	11108	10898
75	PT Lion Mesh Prima Tbk	4119	5695	12988	3330	3456	3814
76	PT Lion Metal Works Tbk	34715	37868	52864	17266	20859	23641
77	PT Pelangi Indah Canindo Tbk	5237	4754	16070	17127.	-18184	-16517
78	PT Tembaga Mulia Semanan Tbk	39737	37893	59958	34658	34477	38220
79	PT Kedaung Indah Can Tbk	20710	-872	3951	15421	17091	15522
80	PT Kedawung Setia Industrial Tbk	39665	29587	51109	55432	60537	59753

| 110 | PT Mandom Indonesia Tbk | 223586 | 250857 | 318637 | 137840 | 160277 | 193221 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 111 | PT Mustika Ratu Tbk | 144758 | 130966 | 131924 | 102860 | 103164 | 110776 |
| 112 | PT Unilever Indonesia Tbk | 3368801 | 4217075 | 4669493 | 2048646 | 2440049 | 2630295 |

SUMMARY OF FINANCIAL STATEMENT OF 112 COMPANIES

No.	Firms	Number of Shares			Inventory Method	
		2002	2003	2004	2003	2004
1	PT Ades Alfindo Putrasetia Tbk	76000000	76000000	149720000	FIFO	FIFO
2	PT Aqua Golden Mississippi Tbk	13162473	13162473	13162473	FIFO	FIFO
3	PT Cahaya Kalbar Tbk	297500000	297500000	297500000	AVERAGE	AVERAGE
4	PT Davomas Abadi Tbk	1240371132	1240371132	6201855660	FIFO	FIFO
5	PT Delta Djakarta Tbk	16013181	16013181	16013181	AVERAG	AVERAGE
	PT Indofood Sukses Makmur Tbk	9384900000	9443269500	9444189000	AVERAGE	AVERAGE
7	PT Mayora Indan Tbk	766584000	766584000	766584000	AVERAGE	AVERAGE
8	PT Multi Bintang Indonesia Tbk	21070000	21070000	21070000	AVERAGE	AVERAGE
9	PT Prasidha Aneka Niaga Tbk	360000000	360000000	360000000	AVERAGE	AVERAGE
10	PT Sari Husada Tbk	188352433	188352433	1970000000	AVERAGE	AVERAGE
11	PT Sekar Laut Tbk	75600000	75600000	75600000	AVERAGE	AVERAGE
12	PT Siantar Top Tbk	1310000000	1310000000	1310000000	AVERAGE	AVERAGE
13	PT Sierad Produce Tbk	7237865083	7237865083			AVERAGE
14	PT Sinar Mas Agro Resources and Technology Corporation (SMART) Tbk	297360000	297360000	723786509	AVERAGE	AVERAGE
15	PT Suba Indah Tbk	2160000000	270000000	288054000	average	AVERAGE
17		365000000	1045000000	1045000000	FIFO	FIFO
18		1538464000	1615387200	1615387200	AVERAGE	AVERAGE
19	PT Uitra Jaya Milik Industry and Trading Company Tbk	1925588000	1925588000	2888382000	FIFO	FIFO
20	PT BAT Indonesia Tbk	66000000	66000000	66000000	AVERAGE	AVERAGE
21	PT Gudang Garam Tbk	1924088000	1924088000	1924088000	average	AVERAGE
2	PT Hanjaya Mandala Sampoerna Tbk	4500000000	4500000000	4383000000	average	average
	PT Argo Pantes Tbk	264705000	264705000	264705000	AVERAGE	AVERAGE

23	PT Eratex Djaja Limited Tbk	98236000	98236000	98236000	AVERAGE	AVERAGE
24	PT Panasia Filament intit Tbk	250000000	250000000	250000000	FIFO	
25	PT Roda Vivatex Tbk	268800000	268800000	268800000	FIFP	FIFO
26	PT Sunson Textile Manufacture Tbk	836707000	2680000	26860000	FIFO	FIFO
27	PT Teijin Indonesia Fiber Corporation (Tifico) Tbk	930000000	836707000	836707000	AVERAGE	AVERAGE
28	PT APAC Citra Centertex Tbk		930000000	930000000	AVERAGE	AVERAGE
29	PT Daeyu Orchid Indonesia Tbk	534666577	534666577	1466668577		
30	PT Ever Shine Texile industry Tbk	205770930	205770930	2777895930	FIFO	FIFO
31	PT Indorama Syntetics Tbk	2015208720	2015208720	2015208720	AVERAGE	AVERAGE
32	PT Karwell Indonesia Tbk	654351707	654351707	654351707	AVERAGE	AVERAGE
33	PT Ricky Putra Globalindo Tbk	587152700	587152700	587152700	AVERAGE	average
34	PT Sarasa Nugraha Tbk	288000000	288000000	641717510	AVERAGE	average
35	PT Sepatu Bata Tbk	2200000000	2200000000	2200000000	FIFO	FIFO
36	PT Surya intrindo Makmur Tbk	13000000	13000000	13000000	AVERAGE	AVERAGE
37	PT Daya Sakti Unggul Corporation Tbk	1000000000	1000000000	1000000000	FIFO	FIFO
38	PT Sumalindo Lestari Jaya Tbk	500000000	500000000	500000000	AVERAGE	AVERAGE
39	PT Surya Dumai Industri Tbk	468750000	468750000	782476629	AVERAG	AVERAGE
40	PT Tita Mahakam Plywood Industry Tbk	2500000000	316666666	3166668667	AVERAGE	AVERAGE
41	PT Fajar Surya Wisesa Tbk	624000000	780000000	1011774750	AVERAGE	AVERAGE
42	PT Indah Kiat Pulp \& Paper Corporation Tbk	2477888787	2477888787	2477888787	AVERAGE	AVERAGE
43	PT Pabrik Kertas Tjiwi Kimia Tbk	5470982941	5470982941	5470982941	AVERAGE	AVERAGE
44	PT Suparma Tbk	1335702240	1335702240	1335702240	AVERAGE	AVERAGE
45	PT Surabaya Agung Industry Pulp Tbk	992046658	992046658	992046658	AVERAGE	AVERAGE
46	PT Budi Acid Jaya Tbk	294000000	294000000	294000000	AVERAGE	AVERAGE
47	PT Colorpak Indonesia Tbk	1050000000	1050000000	1050000000	AVERAGE	AVERAGE
48	PT Eterindo Wahanatama Tbk	306288500	306307000	306338500	FIFO	FIFO
49	PT Polysindo Eka Perkasa Tbk	968297000	968297000	968297000	AVERAGE	AVERAGE
50	PT Sorini Corporation Tbk	4393920000	4393920000	4393920000	average	AVERAGE
51		180000000	180000000	180000000		

52	PT Duta Pertiwi Nusantara Tbk	125945820	125945820			
3	PT Ekadharma Tape Industries Tbk	44721600		125945820	FIFO	FIFO
54	PT Intan Wijaya International Tbk PT Resource Alam Indonesia Tbk (Kurnia Kapuas Utama Glue Industries)	16866666	44721600	223608000	AVERAGE	AVERAGE
		168666667	168666667	181035556		
		250000000	250000000	250000000	AVERAGE	AVER
56	PT Argha Karya Prima Industry Tbk	352000000	680000000	680000000	AVERAGE	average
57	PT Asahimas Flat Glass Coitd Tbk	434000000	434000000	434000000		AVERREE
58		1300000000	1300000000	1300000000	average	AVERAGE
59	PT Asiaplast Industries Tbk	69000000		1300000000	average	AVERAGE
60	PT Dynaplast Tbk	302594440	69000000	69000000	FIFO	FIFO
61	PT Kageo Igar Jaya Tbk (Igariaya)	1050000000	3071414	314705440	FIFO	FIFO
2	PT Langgeng Makmur Plastik Industry Ltd Tbk	346344895	1050000000	1050000000	FIFO	FIFO
63	PT Lapindo International Tbk		443706186	443706186	AVERAGE	AVERAGE
4	PT Summiplast interbenua Tbk	-	64280700	264398200	FIFO	FIFO
65	PT Trias Sentosa Tbk	835000000	835000000	835000000	AVERAGE	AVERAGE
66	PT Indocement Tunggal Perkasa Tbk	160000000	2808000000	2808000000	average	AVERAGE
67	PT Semen Cibinong Tbk	3681223519	3681231699	3681231699	AVERAGE	AVERAGE
8	PT Semen Gresik (Persero) Tbk	7662900000	7662900000	7662900000	AVERAGE	AVERAGE
69	PT Alumindo Light Metal Industry Tbk	593152000	593152000	593152000	AVERAGE	AVERAGE
70	PT Betoniaya Manunggal Tbk	308000000	308000000	308000000	AVERAGE	AVERAGE
71	PT Citra Tubindo Tbk	180000000	180000000	180000000	AVERAGE	AVERAGE
72	PT Indal Aluminium Industry Tbk	80000000	80000000	80000000	AVERAGE	AVERAGE
73	PT Jakarta Kyoei Steel Works Ltd Tbk	158400000	158400000	158400000	AVERAGE	AVERAGE
74	PT Jaya Pari Steel Tbk	150000000	150000000	150000000	AVERAGE	AVERAGE
75	PT Lion Mesh Prima Tbk	150000000	150000000	150000000	AVERAGE	AVERAGE
76	PT Lion Metal Works Tbk	9600000	9600000	9600000	AVERAGE	AVERAGE
77	PT Pelangi indah Canindo Tbk	52016000	52016000	52016000	AVERAGE	AVERAGE
78	PT Tembaga Mulia Semanan Tbk	135500000	531880000	531880000	AVERAGE	AVERAGE
79	PT Kedaung indah Can Tbk	18367000	18367000	18367000		
80	PT Kedawung Setia Industrial Tbk	138000000	138000000	138000000	AVERAGE	AVERAGE
		301000000	301000000	301000000	AVERAGE	AVERAGE

81	PT Arwana Ciltra Mulia Tbk	905604150	905604150	905604150	AVERAGE	AVERAGE
82	PT Intikeramik Alamasri Industry Tbk	450000000				
83	PT Mulia Industrindo Tbk	450000000	450000000	450000000	AVERAGE	AVERAGE
34	PT Surya Toto Indonesia Tbk	1325000000	1323000000	1323000000	AVERAGE	AVERAGE
85	PT GL Kabel Indonesia Tbk	49536000	49536000	49536000	AVERAGE	AVERAGE
36	PT Jembo Cable Company Tbk	560000000	3075000000	3075000000	AVERAGE	AVERAGE
37	PT Kabelindo Murni Tbk	151200000	151200000	151200000	AVERAGE	AVERAGE
8	PT Sumi Indo Kabel Tbk	20000000	1120000000	1120000000	FIFO	FIFO
9	PT Supreme Cable Manufacturing Corporation (Sucaco) Tbk	308000000	306000000	306000000	AVERAGE	AVERAGE
90	PT Voksel Electric Tbk	205583400	205583400	205583400	AVERAGE	average
91	PT Andhi Chandra Automotive Products Tbk	126000000	126000000	126000000	AVERAGE	average
32	PT Astra International Tbk	804000000	804000000	804000000	AVERAGE	AVERAGE
93	PT Astra Otoparts Tbk	2608068910	4034490996	4048355314	AVERAGE	AVERAGE
94	PT Branta Mulia Tbk	749930280	755317280	767978280	AVERAGE	AVERAGE
95	PT Gajah Tunggal Tbk	450000000	450000000	450000000	AVERAGE	AVERAGE
96	PT Goodyear Indonesia Tbk	3168000000	3168000000	3168000000	AVERAGE	AVERAGE
97	PT Indospring Tbk	41000000	41000000	41000000	AVERAGE	AVERAGE
98	PT Mutil Prima Sejahtera Tbk	37500000	37500000	37500000	AVERAGE	AVERAGE
99	PT Prima Alloy Steel Tbk	21250000	21250000	21250000	AVERAGE	AVERAGE
100	PT Selamat Sempurna Tbk	76000000	117600000	117600000	AVERAGE	AVERAGE
101		259733760	1298668800	1298668800	average	AVERAGE
102	PT Darya-Varia Laboratorias Tbk	972000	972000	972000	FIFO	FIFO
103	PT Indofarma (Persero) Tbk	560000000	560000000	560000000	AVERAGE	AVERAGE
104	PT Kalbe Farma Tbk	3099267500	3099267500	3099267500	average	AVERAGE
105	PT Kimia Farma (Persero) Tbk	4060800000	4060800000	8121600000	FIFO	FIFO
106	PT Merck Tbk	5554000000	5554000000	5554000000	FIFO	FIFO
107	PT Pyridam Farma Tbk	22400000	22400000	22400000	AVERAGE	AVERAGE
108	PT Schering Plough Indonesia Tbk	535080000	535080000	535080000	AVERAGE	AVERAGE
109	PT Tempo Scan Pacific Tbk	3600000	3600000	3600000	FIFO	FIFO
	PT Tempo Scan Pacific Tbk	450000000	450000000	450000000	AVERAGE	AVERA

110	PT Mandom Indonesia Tbk	156000000	156000000	156000000	AVERAGE	AVERAGE
111	PT Mustika Ratu Tbk	428000000	428000000	428000000	FIFO	FIFO
112	PT Unilever Indonesia Tbk	763000000	7630000000	7630000000	AVERAGE	AVERAGE

TABLE B
SUMMARY OF GROUPING SAMPLE FIRMS

0.0151829	0.0525705	-0.0549613	-0.2539035	-0.0051836	1.0000003				
-0.1298265	0.2063606	0.0032029	-0.2026599	-0.0535591	1.0000003	0.9999956	1.0000008	0.9999945	0.9999998
0.1816988	0.1875919	-0.0602647			1.000029	1.0000363	0.9999992	0.9999447	0.9999959
0.1816388	0.1875919	-0.0602647	0.0412467	0.1069518	0.9999933	1.0000169	1.0000031	1.000003	0.9999932
1.3359841	0.1926457	-0.0751813	0.2278685	0.3330019	0.9999765	0.9999953	1,0000		
0.1480959	0.2273951	-0.0620801	0.0163795	0.1053679	1.0000029		1.0000	1.0000042	1.000006
0.1557156	0.8110926	-0.1325721				析	0.9999991	0.9999912	1.0000062
0.1624049	0.0773608	-0.0665849	-0.016			1.0032035	1.0001567	0.9999285	1.0012248
0.7282377	0.0537888		-0.016	0.1860049	0.9999295	0.9999977	1.0000012	0.9999993	1.0000148
0.1771363	0.0015849			0.3346197	0.9999921	0.9999996	1.0000068	1.0000011	0.9999891
0.1101744	0.15966		1792	0.0524761	1.0000033	0.9999999	0.9999926	1.0000048	1.000002
0.285942			-0.2000842	-0.0907703	0.9999929	0.9999942	0.9999713	0.9999891	0.9998994
0.3205357	0.13774	-0.0612577	-0.1027041	-0.1605757	0.9998264	1.0000028	1.0000044	0.9999426	0.9999937
0.1494267	0.53289		0.0288488	0.0940609	0.9999851	0.9999902	0.9998894	1.0000045	0.9999959
-0.0671877	0.532894	-0.311989	-0.0183928	-0.3246793	0.9999948	0.999984	1.0000284	0.9999976	0.9999898
0.0303023		-0.1077019	-0.03359	-0.0457653	1.0000028	0.9999933	0.999992	1.000009	0.9999552
0.06708		-0.0216518	-0.1857623	-0.0245806	0.9999991	0.9999975	0.9999996	1.0000107	0.9999996
0.1740621	-0.0544598	0.1647231	-0.3090258	-0.2449758	0.9999953	1.0000035	1.0000094	1.0000551	0.9999946
0.1740621	0.2624819	0.0122639	0.0621995	0.7836777	0.9999879	0.9999884	0.9999997	1.0000168	
0.1954595	0.0267926	-0.0113991	0.0660222	0.1370212	1.0000034	0.9999995	9999		
0.7584084	-0.0199526	-0.0208683	0.0943526	0.1235553	. 999998			1.0000395	0.9999887
0.7676191	-0.219315	-0.0439326	0.0398363				1	0.9999999	0.9999991
0.1456095	-0.0136329	085		0.1347303	0.9999068	1.0000003	0.9999999	0.9999994	1.000001
0.0824509	-0.0692366	-0.120		0.1470976	1.0000116	0.9999995	0.9999964	0.9998493	0.9999942
0.0733839		-0.120	-0.2417955	-0.2553339	1.0000053	1.000009	1.0000029	0.9999235	0.9999956
0		0.8356489	-0.1910626	0.4204501	0.9999904	1.0000199	0.9998981	0.9999882	0.999994
0.234228	0.2746306	-0.1465333	0.2614687	1.2994617	0	0.999942	0.9997974	0.9998818	0.9930249
0.251251	-0.0226221	0.0372229	-0.5762435	-0.8061056	0.9999967	1.0000015	1.0000021	1.000009	0.9999964
0.162	0.1543192	-0.0450046	-0.3945285	-0.2820994	0.9999895	0.9999988	1.0000005	0.999997	0.9999987
0.1623984	0.2095123	0.1158612	-0.0484161	0.0276144	1.000011	0.9999964	0.9999832	0.999979	0.999999
0.5115309	0.1595302	-0.163848	0.4483055	0.3021436	0.9999877	0.9999983	1.0000008	1.0000032	1.0000043
0.1145218	0.410991	-0.2621085	0.3932359	0.0497205	1.0000984	0.9999373	0.9999107	0.9997535	1.0000177
-0.0766908	0.0016806	-0.0870932	0.0536947	-0.0356851	1.0000186	0.9999995	0.9999878	0.9999799	1.0000358
0.0009577	0.2737359	-0.089818	1.0461449	0.1188449	0.9999991	0.9999068	0.9999073	0.9997711	1.0000358
0.153342	0.1688371	-0.0506246	-0.0412173	0.0381562	1.000019	0.9999599	0.9983154	0.9999929	0.9999897

PT Panasia Filament Inti Tbk PT Roda Vivatex Tbk
Teijin Indonesia Fiber Corporation (Tifico) Tbk
PT APAC Citra Centertex Tbk
PT Daeyu Orchid Indonesia Tbk PT Ever Shine Textile Industry Tbk
PT Indorama Syntetics Tbk
PT Ricky Putra Globatindo Tbk
PT Ricky Putra Globatindo Tbk
PT Sarasa Nugraha Tbk
PT Surya Intrindo Makmur Tbk
PT Daya Sakti Unggul Corporation Tbk
PT Sumalindo Lestari Jaya Tbk
PT Surya Dumai Industri Tbk
PT Tirta Mahakam Plywood Industry Tbk
PT Fajar Surya Wisesa Tbk
PT Indah Kiat Pulp \& Paper Corporation Tbk
PT Pabrik Kertas Tjiwi Kimia Tbk
PT Suparma Tbk
PT Surabaya Agung Industry Pulp Tbk
PT Budi Acid Jaya Tbk
Colorpak Indonesia Tbk
PT Eterindo Wahanatama Tbk
PT Polysindo Eka Perkasa Tbk
PT Sorini Corporation Tbk
PT Unggul Indah Cahaya Tbk
PT Duta Pertiwi Nusantara Tbk
PT Ekadharma Tape industries Tbk
T Intan Wijaya International Tbk
PT Resource Alam Indonesia Tbk
(Kurnia Kapuas Utama Glue Industries) Tbk

0.2545373	0.1792472	0.047607	-0.0154255	0.1795091					
0.0146869	0.2453368	0.1495132	0.0748538	0.1795091	1.0000249	0.9999947	1.0000035	1.0000007	0.9999706
0.9088122	0.2547409	0.2084667	-0.1761329	0.0276281	0.9097157	0.9999966	1.0000039	0.9999924	0.9999985
0.4791303	0.3139523	0.0936347	0.1761329	0.5250722	0.9997157	0.9999656	0.9999845	0.9999667	0.9999309
0.5228037	0.2804503	0.1215696		0.2359065	0.9999154	0.9999451	0.9985159	0.9999843	1.0000668
0.3287629	0.2448803	0.0938527		0.3248232	1.0013458	0.9999837	1.0001411	0.999738	0.9999832
		0.0936527		0.0997797	0.9999817	0.9999877	1.0000161	1.0000553	1.000005
0.2724704	0.2522148	0.0635579	0.1237544	0.0018147	0.9999771	0.9999763			
0.1893914	0.7197446	0.1945733	1.4633243	0.566679	0.999401	0.9999763	1.0000398	0.9999945	0.9999958
0.3082942	-0.0692464	-0.0463033	0.2430954	0.3121892			. 9997026	0.9981105	0.9999027
0.0740573	0.4411969	0.048337	0.0832317		1.000166	1.0000118	0.9999966	0.999865	0.9998566
0.2806934	0.6470493	0.1171042	0.042817		0031	0.9999908	1.0000256	1.0000062	0.9999933
0.2534305	0.238295	0.1162394	0.0195382		0.9999709	0.9999934	0.9999996	0.9999991	1.0000007
0.181288	0.2986439	-0.1135502			0.9999846	0.9999717	1.0000016	1.0000022	0.9999926
0.3603552	0.0276344	-0.077818		0.1420233	1.0000031	0.9999976	1.0000011	0.9999954	1.0000017
-0.0794956	0.0495728	0.2699646		0.2142077	0.9999959	0.9999994	1.0000018	1.0000013	0.9999979
0.443004	1.1318083	-0.0411327		1.3652709	1.0002092	0.9999017	0.9996531	0.9985943	1.0016377
0.2125094	0.4756229	-0.1285335		0.1012368	0.9999975	1.0000064	1.0000034	0.999969	1.0000061
-0.5491044	0.5777919	4.3451157		0.4940909	0.9999421	0.9999899	0.9999962	0.9999943	1.0000519
0.4965652	-0.3321008	1.7868861		-0.3406031	0.9999891	1.0000618	0.9997667	1.0001072	0.9998947
0.5266188	0.2033342	0.2115376		0.4059037	1.0000189	1.0001068	0.9997931	1.0000015	0.9998916
0.6681954	0.2622221	0.1558039		0.283454	1.0005512	0.9997837	0.9999061	1.0001723	1.0010471
-0.102957	0.0931063	0.1287943		0.162022	3.0138221	1.0003858	0.9999855	0.9999914	1.0000376
0.4275518	0.4125361	-0.0463479	0.0080922	0.0317596	0.9999868	0.9999783	0.9999871	0.9999986	0.9999955
-0.0120084	-0.0006714	-0.0311692	0.0756728	0.7946947	0.9999711	0.9999831	1.0000027	0.9999956	1.000018
0.7659429	0.0811985	0.2408729	3	-0.0138116	0.9999885	1.0000001	1.0000091	0.9999997	0.999999
0.2725689	-0.3152942	0.3538073	-0.009427	0.0483617	1.0000729	0.9999963	0.9999579	1.0000006	1.0000079
0.2725689	0.3528561	0.1121731	8385	0.0989429	0.9999931	1.0000146	1.0000029	0.9999704	1.0000708
0.0981145	0.2055177	0.1850251	09116	0.0274685	0.9999931	0.9999837	0.9999956	1.0000014	1.0000023
0.4929493	0.2793614	0.0052064	7412	0.0841911	1.0000068	0.9999952	0.9999992	0.9999986	1.0000007
0.2008344	0.4225115	0.0525313	946565	0.24884	1.0001213	0.9999905	0.9999997	0.9999661	0.9999672
0.1681857	0.6379481	-0.0713875	0.0247547	0.2146195	1.0000046	0.9999836	0.9999967	1.0000013	1.0000085
-0.0273693	0.5533374	0.26798	0.1142934	0.2268514	0.9999913	1.0002452	1.0000267	0.9999951	1.0000088
0.8539496	0.1946167	-0.186	0.1278126	0.3549006	0.9999958	1.0002671	1.0001363	1.0000277	1.0000633
			0.0542055	0.650511	0.9999348	1.0005727	1.0000431	1.0000402	1.0000383

PT Argha Karya Prima Industry Tbk T Asahimas Flat Glass Co Ltd Tbk T Asiaplast industries Tbk PT Berlina Co Ltd Tbk

Pl7 Ausnpul Y(lfseld Inuyew 6ua66uen Id
Tbk
PT La
PT Lapindo International Tbk
PT Summiplast Interbenua Tbk
PT Trias Sentosa Tbk
PT Indocement Tunggal Perkasa Tbk
PT Semen Cibinong Tbk
PT Semen Cibinong Tbk
PT Alumindo Gresik (Persero) Tbk
PT Alumindo Light Metal Industry Tbk PT Betonjaya Manunggal Tbk
PT Indal Aluminium Industry Tbk
PT Jakarta Kyoei Steel Works Ltd Tbk
T Jaya Pari Steel Tbk
PT Lion Mesh Prima Tbk
PT Lion Metal Works Tbk
PT Pelangi Indah Canindo Tbk
PT Tembaga Mulia Semanan Tbk
PT Kedaung Indah Can Tbk
PT Kedawung Setia Industrial Tbk
PT Arwana Citra Mulia Tbk
T Intikeramik Alamasri Industry Tbk
T Mulia Industrindo Tbk
ST Surya Toto Indonesia Tbk
T GL Kabel Indonesia Tbk
T Jembo Cable Company Tbk
T Kabelindo Murni Tbk
T Sumi Indo Kabel Tbk

0.4523904	0.4656077	-0.196207	0.2053717	0.6909136	1.0000185	1.0000261	0.9999909	0.9999954	0.9999738
0.2726872	0.2116729	0.1882234	-0.1677529	0.3631356	1.0000239	0.9999906	1.0000128	0.99992	1.0000195
0.9395057	0.3711314	-0.1443543	0.0877323	0.3181446	0.999881	0.9999711	0.9999829	0.9997171	0.9999264
1.0919189	0.0507418	-0.0165961	-0.0094045	0.4278684	1.0000041	1	0.9999982	1	1.0000005
0.3183395	0.0305405	-0.0154124	0.0479621	0.3512059	1.0000045	0.9999997	0.9999996	0.9999989	1.0000629
0.5099173	0.1991432	0.0438981	0.0004514	0.1839808	1.0000108	0.9999991	1.0000004	1	0.9999915
0.3733939	0.172636	0.0121238	0.0307512	0.1699388	0.9999964	0.9999992	0.9999998	1.0000002	0.9999954
0.1480534	0.2456567	-0.083947	0.0503475	0.2987118	1.0000443	0.9999907	0.9999954	0.999992	1.0000913
0.8968204	0.3409747	0.1936476	0.0966918	0.4046081	1.0000452	0.9999743	0.9999701	1.0000197	0.9999779
-0.3894559	0.1308101	-0.0963228	-0.2017497	0.3056057	0.9999537	0.9999647	1.0000174	0.999838	1.000101
0.0417317	0.1109135	0.2232456	0.9163674	0.4283267	1.0000013	0.9999869	0.9998259	1.0003375	1.0012996
0.4947386	0.1100835	0.1419211	0.0481968	0.1499689	0.9999789	0.9999958	1.0000135	0.9999916	0.9999963
0.0465951	-0.8783881	0.0720484	-0.1276489	-0.0376428	0.9999985	1.0000207	1.0000004	1.0000108	0.9999983
0.2265429	0.1923601	0.0132587	-0.5432771	0.1165081	0.9996365	0.9999883	0.9999974	0.99999	0.999981
0.0517372	0.4112024	0.8124589	-0.3602055	0.3088192	1.0000024	0.9999939	0.9999933	1.000075	1.0000022
0.3403423	0.4526274	0.1359301	0.0518265	0.1577924	0.9999952	0.9999938	0.9999979	1.000005	1.0000064
0.3648318	-0.0130029	0.1500502	0.1647326	0.0044296	0.9999957	0.9999993	1.000033	1.0000122	0.9999999
0.3896743	0.1705706	0.0033086	0.3072188	0.3949581	0.9999511	0.9999857	0.9999991	0.999966	0.9998515
0	-0.3916583	-0.0214124	0.0796339	0.2896814	0	1.0001656	1.0000062	1.0001268	0.999019
0.01166	0.2883512	-0.0481719	0.0443105	-0.1940147	0.9999983	1.0011018	1.0000203	1.000009	1.0001817
0.0465951	0.2616725	0.1278603	0.060101	0.1265276	0.9999985	0.9999938	0.999997	1.0000028	0.9999906
0.2536504	0.2001411	0.0153334	0.0755564	0.2476734	0.9999863	1.0000028	0.9999999	1.0000216	1.000043
0.4326342	0.0085476	0.1117286	-0.0869163	0.1329987	1.0002541	1.0000117	0.9999886	1.0000241	1.0000203
0.1006159	0.2416742	0.1319883	0.0713502	0.1046394	0.9999939	1.0000094	1.0000012	0.9999991	0.9999992

TABLE B. 1
SUMMARY RESULT OF DUMMIES FOR GROUPING SAMPLE FIRMS

No.	Firm	D04	D03	DM03	DM04
1	PT Ades Alfindo Putrasetia Tbk	0.4983374	0.9259069	1	1
2	PT Aqua Golden Mississippi Tbk	0.0717856	-0.1781063	0	1
3	PT Cahaya Kalbar Tbk	0.0311275	0.0927236	1	1
4	PT Davomas Abadi Tbk	0.23977	-0.3531798	0	1
5	PT Delta Djakarta Tbk	-0.0892867	0.0681735	1	0
6	PT Indofood Sukses Makmur Tbk	-0.6134868	-0.940009	0	0
7	PT Mayora indah Tbk	-0.9405446	-0.0939299	0	0
8	PT Mutil Bintang Indonesia Tbk	-0.941068	-0.6312361	0	0
10	PT Prasidha Aneka Niaga Tbk	-0.0971513	0.0727825	1	0
10	PT Sari Husada Tbk	-0.928319	-0.9943991	0	0
11	PT Sekar Laut Tbk	0.711621	0.6991705	1	1
12	PT Siantar Top Tbk	-0.6785305	-0.8319962	0	0
4	PT Sierad Produce Tbk	0.0843676	-0.8213537	0	1
14	PT Sinar Mas Agro Resources	0.6390816	0.8928078	1	1
	and Technology Corporation (SMART) Tbk				
15	PT Suba Indah Tbk	-0.8809803	0.0108177	1	0
16	PT Tiga Pilar Sejahtera Tbk (Asia Intiselera)	0.8114734	0.6891356	1	1
17	PT Tunas Baru Lampung Tbk	-0.1881661	-0.7496181	0	0
18	Tbk Ultra Jaya Milk Industry and Trading Company	0.7217539	0.7566608	1	1
19	PT BAT indonesia Tbk	-0.424179	-0.8966429	0	0
20	PT Gudang Garam Tbk	0.4774332	0.7912902	1	1
21	PT Hanjaya Mandala Sampoerna Tbk	-0.7510152	-0.8502916	0	0
22	PT Argo Pantes Tbk	-0.7909082	-0.4848214	0	0
23	PT Eratex Djaja Limited Tbk	0.9404638	0.6952865	1	1
24	PT Panasia Filament Inti Tbk	0.418274	0.4542168	1	1

0.9745516	0.6773996	1	1
0.4120415	0.1318486	1	1
0.2213113	-0.9453741	0	1
0.1808971	0.279533	1	1
0.306133	0.8921853	1	1
0.7361198	-0.8315371	0	1
-0.9877102	-0.938874	0	0
0.8395544	0.8191033	1	1
0.2236053	0.5975327	1	1
0.3301981	-0.8609663	0	1
0.5195609	0.3854746	1	1
-0.5901231	-0.9197314	0	0
0.1568374	-0.3114642	0	1
-0.8876943	-0.9208241	0	0
-0.4293803	-0.8445306	0	0
0.9281046	-0.6983113	0	1
-0.0807824	0.0881463	1	0
-0.8092299	-0.9993867	0	0
0.2209301	-0.9704156	0	1
-0.5914183	-0.5101403	0	0
0.6215766	0.770471	1	1
-0.8514003	-0.9753464	0	0
-0.9432018	0.3152724	1	0
0.1273938	-0.9775245	0	1
0.6147542	-0.4226212	0	1
0.4650715	0.7082058	1	1
0.5212336	-0.4538425	0	1
-0.396171	-0.2905603	0	0
-0.2832142	-0.5429901	0	0
-0.8000727	-0.8851919	0	0
0.5069622	0.5991369	1	1
-0.7054868	0.5717778	1	0

0.1457405	0.0076667	1	1
-0.5904012	-0.8905681	0	0
0.4492558	0.4478589	1	1
-0.8889969	0.6238744	1	0
-0.9750569	-0.9884735	0	0
-0.5596568	-0.9083035	0	0
-0.2155123	-0.090663	0	0
-0.9943795	0.1865788	1	0
-0.8279156	-0.7707004	0	0
-0.950894	-0.2267039	0	0
-0.891957	-0.8549313	0	0
-0.8276014	-0.671348	0	0
-0.7374856	-0.8833645	0	0
0.9499178	0.3539254	1	1
-0.2124677	-0.0779943	0	0
0.4804459	-0.1967407	0	1
-0.7656192	-0.9062265	0	0
-0.9300001	-0.959259	0	0
0.5713275	0.7435335	1	1
0.7926122	0.9378354	1	1
-0.7824624	-0.3007135	0	0
0.4270006	-0.9449101	0	1
-0.8554911	-0.4655049	0	0
-0.9313129	0.760073	1	0
-0.1671711	-0.4802416	0	0
-0.9938326	-0.9397704	0	0
-0.8135361	-0.9656068	0	0
-0.5612444	0.7526856	1	0
-0.6061654	-0.7428905	0	0
0.8766418	0.8882578	1	1
0.8694553	0.9867165	1	1
0.0239787	-0.22223	0	1
-0.0432291	0.8887854	1	0

[^2]| | | | |
| ---: | ---: | ---: | ---: |
| 0.9579387 | 0.9687744 | 1 | 1 |
| 0.0817231 | -0.0257528 | 0 | 1 |
| 0.6285889 | 0.9534615 | 1 | 1 |
| 0.985927 | 0.9589874 | 1 | 1 |
| -0.6112334 | 0.8911265 | 1 | 0 |
| -0.6868747 | -0.9655089 | 0 | 0 |
| 0.6149873 | 0.2050597 | 1 | 1 |
| -0.6811006 | 0.6242592 | 1 | 0 |
| 0.7963183 | 0.2626912 | 1 | 1 |
| 0.3076463 | 0.8475294 | 1 | 1 |
| 0.6001788 | -0.6236314 | 0 | 1 |
| -0.9089498 | -0.9352705 | 0 | 0 |
| -0.2187043 | -0.4738353 | 0 | 0 |
| -0.9220612 | -0.8371179 | 0 | 0 |
| -0.7813356 | -0.9011852 | 0 | 0 |
| 0.8046917 | -0.1654592 | 0 | 1 |
| -0.816771 | -0.9849778 | 0 | 0 |
| -0.744379 | -0.2646 | 0 | 0 |
| 0.7956036 | 0.9630107 | 1 | 1 |
| -0.5686404 | -0.8378755 | 0 | 0 |
| 0.5874593 | -0.5687864 | 0 | 1 |
| -0.5012034 | 0.8845662 | 1 | 0 |
| 0.979815 | 0.8747405 | 1 | 1 |

Corporation (Sucaco) Tbk
PT Andhi Chandra Automotive Products Tbk
PT Astra International Tbk
PT Astra Otoparts Tbk
PT Branta Mulia Tbk
PT Gajah Tunggal Tbk
PT Goodyear Indonesia Tbk
PT Indospring Tbk
PT Multi Prima Sejahtera Tbk
PT Prima Alloy Steel Tbk
PT Selamat Sempurna Tbk
PT Bristol-Myers Squibb Indonesia Tbk
PT Darya-Varia Laboratoria Tbk
PT Indofarma (Persero) Tbk
T Kimia Farm (Pk Tbk
Pyridam Farma Tbk
TT Schering Plough Indonesia Tbk

PT Mandom Indonesia Tbk
PT Mustika Ratu Tbk
PT Unilever Indonesia Tbk

APPENDIX 4
LISTS OF DUMMIES FOR STOCK PRICE, EARNINGS, GROSS PROFIT, SELLING\&ADMINISTRATIVE EXPENSE \& INVENTORY METHOD OF SAMPLE FIRMS
TABLE C. 1
THE SUMMARY OF DUMMIES DURING 2003-2004

No	firms	Closing Price per Share (PRICE)			
		P03	P04	Pt-Pt103	Pt-Pt104
1	PT Ades Alfindo Putrasetia Tbk	0.4811899	0.8213985	-0.5249344	0.3580455
2	PT Aqua Golden Mississippi Tbk	2.3847851	2.3113941	0.1192393	0.3670037
3	PT Cahaya Kalbar Tbk	0.2883355	0.3315995	0.0393185	0.0455137
5	PT Davomas Abadi Tbk	0.2487562	1.0294118	-0.4975124	0.8193277
6	PT Indofood Sukses Makmur Tbk	0.4883872	0.5144537	-0.010853	0.0734934
7	PT Mayora Indah Tbk	1.5384615	1.7857143	-0.5769231	0.4032258
8	PT Multi Bintang Indonesia Tbk	0.376677	0.9189444	-0.0567595	0.5749293
9	PT Prasidha Aneka Niaga Tbk	2.2339713	3.1411968	-0.3164793	0.7852992
10	PT Sari Husada Tbk	-0.0308794	-0.4512635	0	0
11	PT Sekar Laut Tbk	2.248707	3.4309946	-0.0562177	1.5034695
12	PT Siantar Top Tbk	-0.0599782	-0.1125366	0.0272628	-0.0506415
13	PT Sierad Produce Tbk	1.0436893	0.8078603	-0.2669903	-0.1310044
14	PT Sinar Mas Agro Resources and Technology Corporation (SMART) Tbk	2	0.8928571	-2.5	0.1785714
15	PT Suba Indah Tbk	- \quad -	-3.4037559	-0.1777778	-2.0833333
16	PT Tiga Pilar Sejahtera Tbk (Asia Intiselera)	0.013412	0.0921829	-0.0080472	0.0737463
17	PT Tunas Baru Lampung Tbk	-4.0019403	2.1442709	-2.0009702	-1.4844953
18	PT Ultra Jaya Milk Industry and Trading Company Tbk	0.4487179	0.5466238	-0.4807692	0.096463
19	PT BAT Indonesia Tbk	1.8315018	1.0137457	-0.9157509	-0.7044674
20	PT Gudang Garam Tbk	1.4929026	1.4360107	0.2039484	-0.0078902
21	PT Hanjaya Mandala Sampoerna Tbk	1.4665081	2.2799018	-0.7035275	0.9821115
22	PT Argo Pantes Tbk	2.5086505	3.5101404	-1.4489619	1.2480499
23	PT Eratex Djaja Limited Tbk	-14.893617	-182.14286	0	-82.142857
24	PT Panasia Filament Inti Tbk	0.2688172	0.8196721	-0.3494624	0
25	PT Roda Vivatex Tbk	0.1386139	0.1343284	-0.2475248	-0.0746269
26	PT Sunson Textile Manufacture Tbk	1.0626993	0.8817427	-0.1328374	-0.1556017
		0.5208333	0.2832512	-0.4613095	-0.1477833

27	PT Teijin Indonesia Fiber Corporation (Tifico) Tbk				
28	PT APAC Citra Centertex Tbk	0.3095685	0.3026482	-0.2532833	0.0945776
29	PT Daeyu Orchid Indonesia Tbk	-0.3526971	0.2354571	0.5188722	0.1177285
30	PT Ever Shine Textile Industry Tbk	0.4724409	0.6299213	-0.3149606	0.1574803
31	PT Indorama Syntetics Tbk	0.5181347	0.7022472	-1.2178166	0.1404494
32	PT Karwell Indonesia Tbk	0.1362309	0.1527871	-0.0989296	0.0117529
33	PT Ricky Putra Globalindo Tbk	2.8225806	5.060241	-0.8467742	0.8433735
34	PT Sarasa Nugraha Tbk	1.3235294	6.9565217	-3.3823529	5.9782609
35	PT Sepatu Bata Tbk	1.1111111	1.2962963	-1.6666667	-0.1851852
36	PT Surya Intrindo Makmur Tbk	1.2202563	1.2308197	-0.2179029	0.0820546
37	PT Daya Sakti Unggul Corporation Tbk	3.2608696	2.5316456	-5.4347826	-2.2151899
38	PT Sumalindo Lestari Jaya Tbk	0.3409091	0.7692308	-0.0909091	0.3254438
39	PT Surya Dumai Industri Tbk	-0.1097973	-0.1190478	0.0675676	-0.0487013
40	PT Tirta Mahakam Plywood industry Tbk	-1.4735099	-4.5294118	0.1821192	0.7058824
41	PT Fajar Surya Wisesa Tbk	0.4679803	0.5699482	-0.270936	0.0777202
42	PT Indah Kiat Pulp \& Paper Corporation Tbk	0.8312958	1.7401392	-0.2444988	0.9512761
43	PT Pabrik Kertas Tjiwi Kimia Tbk	0.0653491	0.3059613	-0.0079694	0.2250296
44	PT Suparma Tbk	0.0756776	0.2925632	0.0070398	0.2114005
45	PT Surabaya Agung Industry Pulp Tbk	0.3537736	0.8482143	-0.0471698	0.5133929
46	PT Budi Acid Jaya Tbk	-0.0142669	-0.013716	0.0021949	0
47	PT Colorpak Indonesia Tbk	0.6766917	0.7352941	-0.3383459	0.0735294
48	PT Eterindo Wahanatama Tbk	2.4496644	3.0967742	-0.5704698	0.7419355
49	PT Polysindo Eka Perkasa Tbk	-0.1994302	0.4814815	0.014245	0.308642
50	PT Sorini Corporation Tbk	-0.0086157	-0.0324149	0.0114877	-0.0243112
51	PT Unggul Indah Cahaya Tbk	0.2813853	0.477707	-0.0613276	0.2292994
52	PT Duta Pertiwi Nusantara Tbk	0.5389515	0.9444697	-0.0979912	0.443787
53	PT Ekadharma Tape Industries Tbk	0.2290951	0.2682927	-0.2462772	0.0243902
54	PT Intan Wijaya International Tbk	0.4511971	0.148248	-0.0552486	-0.2920036
	PT Resource Alam Indonesia Tbk (Kurnia Kapuas Utama Glue Industries)	0.3284672	0.355064	-0.2737226	0.0407451
55	Tbk	0.1604278	0.2877698	-0.2673797	0.125899
56	PT Argha Karya Prima Industry Tbk	-0.261959	0.929368	-0.0113895	0.1258993
57	PT Asahimas Flat Glass Co Ltd Tbk	0.687799	1.1633789	-0.0448565	0.5816894
58	PT Asiaplast Industries Tbk	0.1769912	0.3097345	-0.2212389	0.1327434
59	PT Berlina Co Ltd Tbk	0.6766554	0.6365452	-0.0483325	-0.0624064

60	PT Dynaplast Tbk	0.9259259	1.4581572	-0.2136752	0.6339814
61	PT Kageo Igar Jaya Tbk (lgarjaya)	0.6896552	0.9160305	0	0.3053435
62	PT Langgeng Makmur Plastik Industry Ltd Tbk	0.2941176	1.8965517	-0.3781513	0.6896552
63	PT Lapindo International Tbk	4.5652174	5.5851064	-1.4130435	1.1170213
64	PT Summiplast Interbenua Tbk	1.2781955	1.1111111	-0.3007519	-0.1481481
65	PT Trias Sentosa Tbk	0.5357143	0.6617647	0.1785714	0.1764706
66	PT Indocement Tunggal Perkasa Tbk	0.7971014	1.5422078	-0.0241546	0.8725649
67	PT Semen Cibinong Tbk	0.4587156	1.0806916	-0.5198777	0.648415
68	PT Semen Gresik (Persero) Tbk	1.3705016	1.6798919	-0.2051091	0.4389667
69	PT Alumindo Light Metal Industry Tbk	0.1288889	0.2333664	-0.4266667	0.0893744
70	PT Betonjaya Manunggal Tbk	1.0330579	1.6666667	-0.1239669	0.625
71	PT Citra Tubindo Tbk	1.2935883	1.2767316	0.0241041	-0.0079796
72	PT Indal Aluminium Industry Tbk	0.1848875	0.4032258	-0.3135048	0.094086
73	PT Jakarta Kyoei Steel Works Ltd Tbk	-0.008261	-0.0577101	0.0061958	-0.0484765
74	PT Jaya Pari Steel Tbk	0.3104213	0.8536585	0.0886918	0.5432373
75	PT Lion Mesh Prima Tbk	0.2986348	0.7272013	-0.1493174	0.452044
76	PT Lion Metal Works Tbk	0.4678041	0.4733879	0.0687947	0.0383828
77	PT Pelangi Indah Canindo Tbk	-0.0523104	2.1052632	0.1002616	1.3157895
78	PT Tembaga Mulia Semanan Tbk	0.439115	0.3652533	-0.0253336	-0.0476417
79	PT Kedaung Indah Can Tbk	0.4030501	0.1865672	0.0217865	-0.2736318
80	PT Kedawung Setia Industrial Tbk	0.3519417	0.4310345	-0.3398058	0.0143678
81	PT Arwana Citra Mulia Tbk	0.766129	2.0921986	-0.0806452	1.4184397
82	PT Intikeramik Alamasri Industry Tbk	0.2730375	0.6553398	-0.1535836	0.2669903
83	PT Mulia Industrindo Tbk	-0.1375	-0.2662407	0.05625	-0.1490948
84	PT Surya Toto Indonesia Tbk	2.5357308	1.7056343	0	-0.402453
85	PT GL Kabel Indonesia Tbk	0.2525253	2.8571429	-0.1515152	1.0714286
86	PT Jembo Cable Company Tbk	1.8023256	0.556872	0.4069767	-1.2796209
87	PT Kabelindo Murni Tbk	0.308642	0.6198347	-0.2469136	0.2066116
88	PT Sumi Indo Kabel Tbk	0.2876318	0.3956479	-0.4074784	0.098912
89	PT Supreme Cable Manufacturing Corporation (Sucaco) Tbk	0.8084074	0.8128469	0.0606306	0.0198255
90	PT Voksel Electric Tbk	-0.1664145	-0.1311475	0.0605144	-0.010929
91	PT Andhi Chandra Automotive Products Tbk	3.1418919	3.1045752	0.8445946	0.0653595
92	PT Astra International Tbk	1.0232745	1.8435562	-0.0601926	0.9648518

93	PT Astra Otoparts Tbk	0.8954155	0.8375474	-0.2507163	0.0474083
94	PT Branta Mulia Tbk	0.4385965	0.5661713	-0.199362	0.1769285
95	PT Gajah Tunggal Tbk	1.4482759	1.4319809	0.2758621	0.9307876
96	PT Goodyear Indonesia Tbk	0.6264324	0.613591	-0.0611154	-0.0153398
97	PT Indospring Tbk	0.3837719	0.3388947	0.095943	-0.0260688
98	PT Multi Prima Sejahtera Tbk	0.8141113	0.2804378	0.0678426	0.1162791
99	PT Prima Alloy Steel Tbk	0.3177005	0.3295572	-0.0907716	0.1132853
100	PT Selamat Sempurna Tbk	5.5970149	0.9818182	-0.8395522	-4.4727273
101	PT Bristol-Myers Squibb Indonesia Tbk	1.1298132	1.3829787	-0.0807009	0.5141844
102	PT Darya-Varia Laboratoria Tbk	1.6009852	1.6112266	0.5541872	0.2598753
103	PT Indofarma (Persero) Tbk	1.5873016	2	-0.2777778	-0.5
104	PT Kalbe Farma Tbk	2.5206612	4.6568627	-0.1652893	1.6666667
105	PT Kimia Farma (Persero) Tbk	1.352459	1.3602941	-0.5327869	0.1470588
106	PT Merck Tbk	1.3507429	2.949024	-0.5703137	1.6851566
107	PT Pyridam Farma Tbk	2.4553571	0.5309735	-0.3125	-1.9026549
108	PT Schering Plough Indonesia Tbk	7.6271186	16.908213	-10.451977	6.0386473
109	PT Tempo Scan Pacific Tbk	1.4622194	1.5024559	-0.071135	0.166137
110	PT Mandom Indonesia Tbk	0.8354756	1.2580055	-0.2442159	0.5146386
111	PT Mustika Ratu Tbk	0.9358289	0.8563536	-2.228164	-0.1104972
112	PT Unilever Indonesia Tbk	6.8001511	12.909091	-0.9444654	-52.545455

TABLE C. 2
THE SUMMARY OF DUMMIES DURING 2003-2004

No	firms	Earnings			
		E03	E04	Et-Et103	Et-Et104
1	PT Ades Alfindo Putrasetia Tbk	0.040245	-0.8348778	-0.0446194	-0.873631
2	PT Aqua Golden Mississippi Tbk	0.2811662	0.3384212	-0.0183032	0.1091775
3	PT Cahaya Kalbar Tbk	0.0144168	-0.1014304	-0.0288336	-0.1157347
4	PT Davomas Abadi Tbk	0.1840796	0.0336134	0.1393035	-0.1218487
5	PT Delta Djakarta Tbk	0.1292598	0.1184223	-0.0226829	0.0017148
6	PT Indofood Sukses Makmur Tbk	0.1641026	0.0921659	-0.0564103	-0.0552995
7	PT Mayora Indah Tbk	0.1135191	0.1046183	-0.0474716	0.0009425
8	PT Multi Bintang Indonesia Tbk	0.3188622	0.3216586	0.0182441	-0.0146066
9	PT Prasidha Aneka Niaga Tbk	-0.5625	-0.0108303	-0.8283103	8.2093863
10	PT Sari Husada Tbk	0.2633236	0.1779106	0.0517203	-0.0478026
11	PT Sekar Laut Tbk	-0.0307525	0.1269413	0.0907306	0.1586766
12	PT Siantar Top Tbk	0.1165049	0.0960699	0.0048544	-0.0087336
13	PT Sierad Produce Tbk	-1.5	-7.6071429	-0.5	-7.0714286
14	PT Sinar Mas Agro Resources and Technology Corporation (SMART) Tbk	-0.208	0.4260563	0.6328889	0.7007042
15	PT Suba Indah Tbk	-0.2725322	-0.3355457	-0.2280043	0.0390855
16	PT Tiga Pilar Sejahtera Tbk (Asia intiselera)	0.0970167	0.073565	2.5345622	0.1615351
17	PT Tunas Baru Lampung Tbk	0.0512821	0.0321543	-0.0352564	-0.0192926
18	PT Ulitra Jaya Milk Industry and Trading Company Tbk	0.014652	0.0068729	-0.021978	-0.0068729
19	PT BAT Indonesia Tbk	0.1220427	-0.0418179	-0.1701746	-0.1598548
20	PT Gudang Garam Tbk	0.189457	0.1631007	-0.0255648	-0.0045598
21	PT Hanjaya Mandala Sampoerna Tbk	0.2707612	0.3541342	-0.050173	0.1099844
22	PT Argo Pantes Tbk	-1.1914894	125.85714	42.680851	133.85714
23	PT Eratex Djaja Limited Tbk	-0.6438172	-1.0491803	-0.702957	0.9139344
24	PT Panasia Filament inti Tbk	-0.3366337	-0.1253731	-0.5326733	0.3820896
25	PT Roda Vivatex Tbk	0.0265675	0.0446058	0.0626993	0.0486722
26	PT Sunson Textile Manufacture Tbk	0.0297619	-0.1428571	-0.0505952	-0.1674877
27	PT Teijin Indonesia Fiber Corporation (Tifico) Tbk	0.1465291	-0.2139975	0.2020638	-0.3124842
28	PT APAC Citra Centertex Tbk	0.8589212	-0.0872576	0.0456432	0.199446

29	PT Daeyu Orchid Indonesia Tbk	0.0074803	0.0025197	0.0476378	-0.0049606
30	PT Ever Shine Textile Industry Tbk	-0.0777202	-0.0393258	-0.0829016	0.0449438
31	PT Indorama Syntetics Tbk	0.0201103	0.0235057	0.003568	0.0026864
32	PT Karwell Indonesia Tbk	-0.3306452	0.0120482	-0.2983871	0.5060241
33	PT Ricky Putra Globalindo Tbk	0.3823529	0.9347826	0.8823529	0.6521739
34	PT Sarasa Nugraha Tbk	-0.5277778	-0.9807407	-0.3333333	-0.277037
35	PT Sepatu Bata Tbk	0.2409134	0.2213014	-0.0833261	-0.0054977
36	PT Surya Intrindo Makmur Tbk	-0.3130435	-0.1265823	-0.2521739	0.3291139
37	PT Daya Sakti Unggul Corporation Tbk	-0.2181818	-0.0710059	-0.4727273	0.2130178
38	PT Sumalindo Lestari Jaya Tbk	0.5625	-0.2261905	0.0456081	-0.5865801
39	PT Surya Dumai Industri Tbk	-0.1953642	0.2470588	-0.6291391	0.9411765
40	PT Tirta Mahakam PIrwood Industry Tbk	0.0394089	0.0518135	-0.0492611	0.0103627
41	PT Fajar Surya Wisesa Tbk	0.0513447	0.0046404	-0.1246944	-0.0440835
42	PT Indah Kiat Pulp \& Paper Corporation Tbk	-0.1408989	0.2400316	-0.002869	0.4145282
43	PT Pabrik Kertas Tjiwi Kimia Tbk	-0.0672298	0.4420536	0.0383668	0.5141563
44	PT Suparma Tbk	0.0518868	-0.2857143	0.3254717	-0.3348214
45	PT Surabaya Agung Industry Pulp Tbk	-0.0403863	0.380882	-0.0217296	0.4197088
46	PT Budi Acid Jaya Tbk	0.0300752	0.0147059	-0.0150376	-0.0147059
47	PT Colorpak Indonesia Tbk	0.1006711	0.1354839	-0.0872483	0.0387097
48	PT Eterindo Wahanatama Tbk	0.0911681	-0.0987654	0.014245	-0.0197531
49	PT Polysindo Eka Perkasa Tbk	0.1499138	0.2506753	0.2125215	0.1096704
50	PT Sorini Corporation Tbk	0.1327561	0.1242038	0.0281385	0.0070064
51	PT Unggul Indah Cahaya Tbk	0.0803528	0.1943559	-0.022048	0.1197087
52	PT Duta Pertiwi Nusantara Tbk	-0.0148912	0.0621951	-0.0389462	0.0780488
53	PT Ekadharma Tape Industries Tbk	0.0893186	0.0179695	-0.0395948	-0.0691824
54	PT Intan Wijaya International Tbk	0.0571776	0.0756694	0.0218978	0.0209546
55	PT Resource Alam Indonesia Tbk (Kurnia Kapuas Utama Glue Industries)	-0.0089127	-0.0035971	0.0035651	0.0053957
55	Tbk	-0.6924829	0.0123916	0.2528474	-0.7410161
56	PT Argha Karya Prima Industry Tbk	0.2248804	0.2407688	-0.0598086	0.0505817
57	PT Asahimas Flat Glass Co Ltd Tbk	0.0018584	-0.0504425	0.0815044	-0.0523009
58	PT Asiaplast Industries Tbk	0.062349	0.1158263	-0.1474142	0.0514229
59	PT Berlina Co Ltd Tbk	0.1690408	0.1276416	0.0218424	-0.0228233
60	PT Dynaplast Tbk	0.1293103	0.1908397	-0.0258621	0.0763359
61	PT Kageo Igar Jaya Tbk (Igarjaya)				

62	PT Langgeng Makmur Plastik Industry Ltd Tbk	-0.7563025	-3.9655172	0.5042017	-0.862069
63	PT Lapindo International Tbk	0.0217391	0.0425532	-0.0543478	0.0212766
64	PT Summiplast Interbenua Tbk	0.0150376	0.0666667	0.037594	0.0518519
65	PT Trias Sentosa Tbk	0.1980519	0.0294118	-0.1331169	-0.15
66	PT Indocement Tunggal Perkasa Tbk	0.1758454	0.025974	-0.0975845	-0.1217532
67	PT Semen Cibinong Tbk	0.0703364	-0.2017291	-0.1314985	-0.2680115
68	PT Semen Gresik (Persero) Tbk	0.1170986	0.1482357	0.0553795	0.0422083
69	PT Alumindo Light Metal Industry Tbk	-0.1048889	0.1161867	-0.0631111	0.2333664
70	PT Betonjaya Manunggal Tbk	0.0082645	0.1083333	-0.0991736	0.1
71	PT Citra Tubindo Tbk	0.028925	0.0274497	0.0049815	-0.0012767
72	PT Indal Aluminium Industry Tbk	-0.403537	0.0403226	-0.4067524	0.7150538
73	PT Jakarta Kyoei Steel Works Ltd Tbk	-0.1053284	0.1274238	-0.0404791	0.2451524
74	PT Jaya Pari Steel Tbk	0.1773836	0.924612	-0.0576497	0.7472284
75	PT Lion Mesh Prima Tbk	0.1433447	0.4504717	0.0119454	0.3183962
76	PT Lion Metal Works Tbk	0.1326362	0.2318321	0.0071547	0.1084954
77	PT Pelangi Indah Canindo Tbk	0.0034874	-0.1184211	0.179599	-0.0657895
78	PT Tembaga Mulia Semanan Tbk	0.0731295	-0.033508	-0.1205877	-0.1022709
79	PT Kedaung Indah Can Tbk	-0.1045752	-0.1641791	-0.0795207	-0.0447761
80	PT Kedawung Setia Industrial Tbk	-0.1553398	-0.2155172	-0.1286408	-0.0316092
81	PT Arwana Citra Mulia Tbk	0.1854839	0.1985816	0.0483871	0.035461
82	PT Intikeramik Alamasri Industry Tbk	-0.3003413	0.0194175	-0.5221843	0.4466019
83	PT Mulia Industrindo Tbk	0.16125	0.5197018	0.0 .455	0.3823216
84	PT Surya Toto Indonesia Tbk	0.2950669	0.200767	-0.3457815	-0.0452281
85	PT GL Kabel Indonesia Tbk	-0.0454545	-1.1785714	-3.8989899	-0.8571429
86	PT Jembo Cable Company Tbk	0.0255814	0.014218	-0.0511628	-0.0118483
87	PT Kabelindo Murni Tbk	-0.2530864	-0.1900826	-0.0185185	0.1487603
88	PT Sumi Indo Kabel Tbk	-0.0306807	0.0237389	-0.0162991	0.0553907
89	PT Supreme Cable Manufacturing Corporation (Sucaco) Tbk	0.0598222	-0.1300555	-0.1810833	-0.1887391
90	PT Voksel Electric Tbk	0.128593	0.3224044	0.2586989	0.2295082
91	PT Andhi Chandra Automotive Products Tbk	0.1148649	0.1633987	0.0202703	0.0522876
92	PT Astra International Tbk	0.4398074	0.4600276	-0.1195827	0.082357
93	PT Astra Otoparts Tbk	0.1955587	0.1839444	-0.0501433	0.011378
94	PT Branta Mulia Tbk	0.1307815	0.0665251	-0.0637959	-0.04954

TABLE C. 3
THE SUMMARY OF DUMMIES DURING 2003-2004

No	firms	Gross Profit							
		GP03	GP04	DGP03	DGP04	Gt-Gt103	Gt-Gt104	DGt-Gt103	DGt-Gt104
1	PT Ades Alfindo Putrasetia Tbk	0.7141525	0.1067649	0.7141525	0.1067649	0.1120666	-0.2423113	0.1120666	-0.2423113
2	PT Aqua Golden Mississippi Tbk	0.4859581	0.5242294	0	0.5242294	-0.0759419	0.1280124	0	0.1280124
3	PT Cahaya Kalbar Tbk	0.0529929	-0.0042093	0.0529929	-0.0042093	-0.0241594	-0.0567888	-0.0241594	-0.0567888
4	PT Davomas Abadi Tbk	0.2335443	0.0613363	0	0.0613383	0.1527769	0.0218889	0	0.0218889
5	PT Delta Djakarta Tbk	0.483451	0.4991203	0.483451	0	0.0198786	0.0626168	0.0198786	0
6	PT Indofood Sukses Makmur Tbk	1.212655	1.1210395	0	0	0.1082051	0.0314325	0	0
7	PT Mayora Indah Tbk	0.4024879	0.421099	0	0	0.0334765	0.0535111	0	0
8	PT Multi Bintang Indonesia Tbk	0.9624454	1.1509348	0	0	0.0561621	0.1359607	0	0
9	PT Prasidha Aneka Niaga Tbk	-0.0093942	-0.5097673	-0.0093942	0	0.0049627	-0.372483	0.0049627	0
10	PT Sari Husada Tbk	0.6280336	0.0558708	0	0	0.1044826	0.0044007	0	0
11	PT Sekar Laut Tbk	-0.0591675	-0.0715084	-0.0591675	-0.0715084	0.0131208	-0.0104498	0.0131208	-0.0104498
12	PT Siantar Top Tbk	0.4704588	0.4044868	0	0	0.0431816	-0.0187206	0	0
13	PT Sierad Produce Tbk	1.0017457	3.4360961	0	3.4360961	-0.8318613	-0.141567	0	-0.141567
14	PT Sinar Mas Agro Resources and Technology Corporation (SMART) Tbk	-1.2290557	-2.4314476	-1.2290557	-2.4314476	0.3104983	-0.8085748	0.3104983	-0.8085748
15	PT Suba Indah Tbk	0.0587208	-0.1576442	0.0587208	0	-0.0056648	-0.2333044	-0.0056648	0
16	PT Tiga Pilar Sejahtera Tbk (Asia Intiselera)	-0.5198983	0.5217279	-0.5198983	0.5217279	-0.2579531	0.0503092	-0.2579531	0.0503092
17	PT Tunas Baru Lampung Tbk	0.2813607	0.4549933	0	0	0.0520872	0.1727279	0	0
18	PT Ulitra Jaya Milk Industry and Trading Company Tbk	0.3033772	0.2074492	0.3033772	0.2074492	0.0548636	0.0177081	0.0548636	0.0177081
19	PT BAT Indonesia Tbk	0.7439026	0.6217644	0	0	-0.2598476	-0.0977209	0	0
20	PT Gudang Garam Tbk	0.4657298	0.4406343	0.4657298	0.4406343	-0.0318604	0.0284855	-0.0318604	0.0284855
21	PT Hanjaya Mandala Sampoerna Tbk	0.869356	1.0334077	0	0	-0.0125755	0.2285696	0	0
22	PT Argo Pantes Tbk	0.6507445	19.224636	0	0	5.2481546	14.855351	0	0
23	PT Eratex Djaja Limited Tbk	0.2209404	2.3775131	0.2209404	2.3775131	-0.369324	1.703826	-0.369324	1.703826
24	PT Panasia Filament Inti Tbk	-0.2928634	-0.0375881	-0.2928634	-0.0375881	-0.3896238	0.4038925	-0.3896238	0.4038925
25	PT Roda Vivatex Tbk	0.0859885	0.1163501	0.0859885	0.1163501	0.0853559	0.0324132	0.0853559	0.0324132
26	PT Sunson Textile Manufacture Tbk	0.179107	0.0628431	0.179107	0.0628431	0.0006794	-0.0853834	0.0006794	-0.0853834

9

27	PT Teiiin Indonesia Fiber Corporation (Tifico) Tbk	0.0914221	0.0750519	0	0.0750519	0.0308298	0.0136043	0	0.0136043
28	PT APAC Citra Centertex Tbk	-0.7943291	0.1559579	-0.7943291	0.1559579	0.5567126	0.0593012	0.5567126	0.0593012
29	PT Daeyu Orchid Indonesia Tbk	0.2237792	0.0532777	0.2237792	0.0532777	-0.1028971	0.0367014	-0.1028971	0.0367014
30	PT Ever Shine Textile Industry Tbk	-0.0368005	0.0665919	0	0.0665919	-0.0893362	0.1064936	0	0.1064936
31	PT Indorama Syntetics Tbk	0.1715221	0.196589	0	0	-0.0188345	0.0190192	0	0
32	PT Karwell Indonesia Tbk	0.6279896	1.6190858	0.6279896	1.6190858	0.14489	0.6808844	0.14489	0.6808844
33	PT Ricky Putra Globalindo Tbk	3.5417688	2.2020728	3.5417688	2.2020728	1.6332721	1.0272026	1.6332721	1.0272026
34	PT Sarasa Nugraha Tbk	-0.0650758	-0.1458249	0	-0.1458249	-0.2778157	-0.0590572	0	-0.0590572
35	PT Sepatu Bata Tbk	1.1971854	1.1999924	1.1971854	1.1999924	-0.0647205	0.0729466	-0.0647205	0.0729466
36	PT Surya Intrindo Makmur Tbk	-0.2202174	0.0406709	0	0	-0.2279478	0.3612405	0	0
37	PT Daya Sakti Unggul Corporation Tbk	0.9152545	1.5926509	0	1.5926509	-0.2066909	0.4011953	0	0.4011953
38	PT Sumalindo Lestari Jaya Tbk	0.0381153	-0.125289	0	0	-0.1670595	-0.1399182	0	0
39	PT Surya Dumai Industri Tbk	0.0168989	-0.0778328	0	0	0.0943698	-0.1378737	0	0
40	PT Tirta Mahakam Plywood Industry Tbk	0.2552419	0.4810559	0	0.4810559	0.0377289	0.2740887	0	0.2740887
41	PT Fajar Surya Wisesa Tbk	0.160892	0.2238537	0.160892	0	-0.0305045	0.0711743	-0.0305045	0
42	PT Indah Kiat Pulp \& Paper Corporation Tbk	0.0751554	0.1427766	0	0	-0.0123887	0.0497002	0	0
43	PT Pabrik Kertas Tijwi Kimia Tbk	0.4315427	0.5483067	0	0.5483087	0.0431372	0.0854857	0	0.0854857
44	PT Suparma Tbk	0.3509706	0.4131475	0	0	0.0386613	0.0809789	0	0
45	PT Surabaya Agung Industry Pulp Tbk	0.0279082	-0.0004436	0.0279082	-0.0004436	0.0136054	-0.027274	0.0136054	-0.027274
46	PT Budi Acid Jaya Tbk	0.5717365	0.9959944	0	0	-0.0498174	0.4368697	0	0
47	PT Colorpak Indonesia Tbk	0.2434501	0.3006373	0.2434501	0	-0.0845097	0.0666351	-0.0845097	0
48	PT Eterindo Wahanatama Tbk	-0.1512686	0.0281849		0.0281849	0.315189	-0.1029146	0	-0.1029146
49	PT Polysindo Eka Perkasa Tbk	0.0449121	0.0488353	0	0.0488353	0.0183002	0.0065923	0	0.0065923
50	PT Sorini Corporation Tbk	0.3481922	0.5672753	0.3481922	0.5672753	-0.0873377	0.2598903	-0.0873377	0.2598903
51	PT Unggul Indah Cahaya Tbk	0.4184045	0.5265923		0.5265923	0.0303191	0.137897	0	0.137897
52	PT Duta Pertiwi Nusantara Tbk	0.1220638	0.1603477	0	0	-0.040309	0.0303944	0	0
53	PT Ekadharma Tape Industries Tbk	0.375435	0.0732374	0	0	0.0655169	-2.813E-05	0	0
54	PT Intan Wijaya International Tbk	0.2216324	0.1817316	0	0	0.019532	-0.015864	0	0
55	PT Resource Alam Indonesia Tbk (Kurnia Kapuas Utama Glue industries) Tbk	0.2101034	0.2079137	0.2101034	0.2079137	-0.0956791	-0.0040791	-0.0956791	-0.0040791
56	PT Argha Karya Prima Industry Tbk	-0.3259882	0.328189	-0.3259882	0	0.1065942	-0.0264797	0.1065942	0
57	PT Asahimas Flat Glass Co Lid Tbk	0.6241842	0.6151829	0.6241842	0.6151829	0.0001488	0.0872942	0.0001488	0.0872942
58	PT Asiaplast Industries Tbk	0.1661062	0.1434309	0	0	0.1502995	-0.0226753	0	0
59	PT Berlina Co Ltd Tbk	0.3834521	0.5072464	0.3834521	0.5072464	-0.1424479	0.1111593	-0.1424479	0.1111593

APPENDIX 5 REGRESSION RESULT ON 112 COMPANIES FROM YEAR 2003-2004
Regression on Equation 3.4:
Variables Entered/Removed

Mariables	$\begin{array}{l}\text { Variables } \\ \text { Removed }\end{array}$	Method	
Model	Entered		
1	$E^{\text {a }}$		Enter
a. All requested variables entered			

a. All requested variables entered.
b. Dependent Variable: P
Model Summary ${ }^{\text {b }}$

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate	Durbin-W atson
1	$.980^{\text {a }}$.960	.960	2.5002507594546	1.771

a. Predictors: (Constant), E
b. Dependent Variable: P

ANOVA $^{\text {b }}$						
Model		$\begin{array}{c}\text { Sum of } \\ \text { Squares }\end{array}$	df	Mean Square	F	
1	Regression	33097.448	1	33097.448	5294.529	
	Residual	1387.778	222	6.251		
	Total	34485.226	223		$.000^{\text {a }}$	

a. Predictors: (Constant), E
b. Dependent Variable: P
Coefficients ${ }^{\text {a }}$

a. Dependent Variable: P

Regression on Equation 3.5:

Variables Entered/Removed

Model	Variables Entered	Variables Removed	Method
1	ETETA 2		Enter

a. All requested variables entered.
b. Dependent Variable: PTPT10
Model Summary'

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate	Durbin-W atson
1	$.786^{\text {a }}$.617	.616	4.0940435337417	1.282

a. Predictors: (Constant), ETET1
b. Dependent Variable: PTPT10
ANOVA ${ }^{\text {b }}$

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	6006.668	1	6006.668	358.368	$.000^{a}$
	Residual	3720.985	222	16.761		
	Total	9727.652	223			

a. Predictors: (Constant), ETET1
b. Dependent Variable: PTPT10
Coefficients

Regression on Equation 3.6:
Variables Entered/Removed

Model	Variables Entered	Variables Removed	Method
1	DE, E^{a}		Enter

a. All requested variables entered
b. Dependent Variable: P
ANOVA ${ }^{\text {b }}$

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	33294.130	2	16647.065	3088.752	$.000^{\text {a }}$
	Residual	1191.096	221	5.390		
	Total	34485.226	223			

a. Predictors: (Constant), DE, E
b. Dependent Variable: P

Model Summary ${ }^{\phi}$

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate	Durbin-W atson
1	$.983^{\mathrm{a}}$.965	.965	2.3215461560630	1.872

a. Predictors: (Constant), DE, E
b. Dependent Variable: P
ber b. Dependent Variable: P
Coefficients ${ }^{\text {a }}$

Model	Unstandardized Coefficients		Standardized Coefficients		Sig.	Collinearity Statistics	
	B	Std. Error	Beta				
1 (Constant)	1.056	155				Tolerance	VIF
E	-1.452	. 018		6.792	. 000		
DE	1.710	283	-. 985	-78.593	000	. 996	1.004
	1.710	283	076	6.041	. 000	996	1.004

a. Dependent Variable: P
Regression on Equation 3.9:
Model Summary ${ }^{\text {b }}$

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate	Durbin-W atson
1	$.786^{a}$.618	614	4.1027357282032	1.280

b. Dependent Variable: PTPT10

Coefficients ${ }^{\text {a }}$

Model		Unstandardized Coefficients		Standardized Coefficients	t	Sig.	Collinearity Statistics	
		B	Std. Error	Beta			Tolerance	VIF
1	(Constant)	-. 266	275		-. 966	335		
	ETET1	-. 551	. 029	-. 786	-18.871	. 000	. 996	1.004
	DETET1	. 123	501	010	-. 246	- 806	. 996	1.004

a. Dependent Variable: PTPT10
Regression on Equation 3.10:

a. All requested variables entered.
b. Dependent Variable: P
Model Summary ${ }^{b}$

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate	Durbin-W atson
1	$.980^{\text {a }}$.961	.961	2.468263023751365	1.801

a. Predictors: (Constant), METET1, E
b. Dependent Variable: P
ANOVA ${ }^{\text {b }}$

Model		Sum of Squares	df	Mean Square	F	Sig.		
1	Regression	33138.823	2	16569.412	2719.720	$.000^{a}$		
	Residual	1346.403	221	6.092				
	Total	34485.226	223				\quad	a. Predictors: (Constant), METET1, E
:---								
b. Dependent Variable: P								

Coefficients ${ }^{\text {a }}$

Model		Unstandardized Coefficients		Standardized Coefficients Beta	t	Sig.	Collinearity Statistics	
		B	Std. Error				Tolerance	VIF
1	(Constant)	1.043	8.165		6.307	000		
	E	-1.444	. 020	-. 979	-73.692	000	1.000	1.000
	METET1	-1.948	. 748	-. 035	-2.606	010	1.000	1.000

[^3]Regression on Equation 3.11:
Variables Entered/Removed

Model	Variables Entered	Variables Removed	Method
1	METET1, ETET1		Enter

a. All requested variables entered.
Model Summary ${ }^{\text {b }}$

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate	Durbin-W atson
1	$.787^{2}$.620	.617	4.0895691148656	1.275

a. Predictors: (Constant), METET1, ETET1
b. Dependent Variable: PTPT10
ANOVA ${ }^{b}$

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	6031.521	2	3015.761	180.319	$.000^{\text {a }}$
	Residual	3696.131	221	16.725		
	Total	9727.652	223			

a. Predictors: (Constant), METET1, ETET1
b. Dependent Variable: PTPT10

Regression on Equation 3.13:
Variables Entered/Removed

Model	Variables Entered	Variables Removed	Method
1	DETET1, ETET1, a METET1		Enter

a. All requested variables entered.
b. Dependent Variable: PTPT10
Model Summaryb

| Model Summary' | | |
| :--- | :---: | ---: | :---: | :---: | :---: |
| Model R R Square Adjusted
 R Square
 1 $.788^{\text {a }}$.621 .616 4.0932384365493 | Std. Error of the | Durbin-W |
| atson | | |

a. Predictors: (Constant), DETET1, ETET1, METET1
b. Dependent Variable: PTPT10

ANOVA ${ }^{b}$

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	6041.640	3	2013.880	120.199	$.000^{2}$
	Residual	3686.012	220	16.755		
	Total	9727.652	223			

a. Predictors: (Constant), DETET1, ETET1, METET1
b. Dependent Variable: PTPT10
Coefficients ${ }^{\text {a }}$

Model		Unstandardized Coefficients		Standardized Coefficients	t	Sig.	Collinearity Statistics	
		B	Std. Error	Beta			Tolerance	VIF
1	(Constant)	-. 254	. 275		-. 925	. 356		
	ETET1	-. 551	- $\quad .029$	-. 786	-18.917	. 000	. 996	1.004
	METET1	-1.914	- 1.344	. 064	-1.424	$\square .156$	850	1.176
	DETET1	421	. 542	. 035	. 777	- $\quad .438$	848	1.180

a. Dependent Variable: PTPT10
Regression on Equation 3.15:

Variables Entered/Removed

a. All requested variables entered.
b. Dependent Variable: P

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate	Durbin-W atson
1	$.980^{2}$	960	.960	2.4833491207893	1.673

a. Predictors: (Constant), SA, GP
b. Dependent Variable: P

ANOVA ${ }^{\text {b }}$						
Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	33122.314	2	16561.157	2685.438	$000^{\text {a }}$
	Residual	1362.912	221	6.167		
	Total	34485.226	223			

b. Dependent Variable: P

Model		Unstandardized Coefficients		Standardized Coefficients Beta	t	Sig.	Collinearity Statistics	
		B	Std. Error				Tolerance	VIF
1	(Constant)	963	. 174		5.531	000		
	GP	-2.698	. 066	-. 554	-40.827	000	. 970	1.031
	SA	3.987	060	910	67.009	000	970	1.031

Regression on Equation 3.16:

Variables Entered/Removed

Model	Variables Entered	Variables Removed	Method
1	SSA, SA a		Enter

a. All requested variables entered.
b. Dependent Variable: P

Model Summary ${ }^{\text {b }}$

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate	Durbin-W atson
1	$.991^{\text {a }}$.981	.981	1.7238272254670	1.959

a. Predictors: (Constant), DSA, SA, GP, DGP
b. Dependent Variable: P

ANOVA ${ }^{\text {b }}$

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	33834.450	4	8458.613	2846.503	$.000^{a}$
	Residual	650.776	219	2.972		
	Total	34485.226	223			

a. Predictors: (Constant), DSA, SA, GP, DGP
b. Dependent Variable: P

a. Dependent Variable: P

Regression on Equation 3.17:

Variables Entered/Removed			
Model	Variables Entered	Variables Removed	Method
1	SATSAT1, GTGT10		Enter

a. All requested variables entered.
b. Dependent Variable: PTPT10
Model Summary ${ }^{\text {b }}$

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate	Durbin-W atson
1	$.722^{\text {a }}$.522	.518	4.5869025104132	1.517

a. Predictors: (Constant), SATSAT1, GTGT10
b. Dependent Variable: PTPT10
ANOVAb

Model		Unstandardized Coefficients		Standardized Coefficients		Sig.	Collinearity Statistics	
		B	Std. Error	Beta			Tolerance	VIF
1	(Constant)	9.922E-02	. 311		. 319	. 750		
	GTGT10	-3.691	488	-. 625	-7.562	. 000	317	3.156
	SATSAT1	-1.239	. 892	-. 115	-1.388	166	317	3.156

a. Dependent Variable: PTPT10
Regression on Equation 3.18:

b. Dependent Variable: PTPT10
Model Summary ${ }^{\text {b }}$

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate	Durbin-W atson
1	$.817^{\mathrm{a}}$.668	.662	3.8423208770043	1.163

a. Predictors: (Constant), DSATSAT1, GTGT10, DGTGT10, SATSAT1 b. Dependent Variable: PTPT10
ANOVA ${ }^{\text {b }}$

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	6494.461	4	1623.615	109.975	$.000^{a}$
	Residual	3233.191	219	14.763		
	Total	9727.652	223			

a. Predictors: (Constant), DSATSAT1, GTGT10, DGTGT10, SATSAT1
b. Dependent Variable: PTPT10

Model		Unstandardized Coefficients		Standardized Coefficients Beta	t	Sig.	Collinearity Statistics	
		B	Std. Error				Tolerance	VIF
1	(Constant)	-. 146	. 263		-. 554	. 580		
	GTGT10	-. 681	. 576	-. 115	-1.183	238	. 160	6.264
	SATSAT1	-9.458	1.238	-. 876	-7.643	. 000	. 116	8.654
	DGTGT10	-. 276	1.196	-. 014	-. 231	. 818	. 388	2.575
	DSATSAT1	10.955	1.598	596	6.855	. 000	201	4.985

Regression on Equation 3.4:

Variables Entered/Removed

Model	Variables Entered	Variables Removed	Method
1	$E^{\text {a }}$		Enter

a. All requested variables entered
b. Dependent Variable: P
Model Summary ${ }^{\text {b }}$

Model R R Square Adjusted R Square Std. Error of the Estimate Durbin-W atson 1 $.140^{\text {a }}$.020 .015 1.9208730488797 .864					
a. Predictors: (Constant), E					
b. Dependent Variable: P					

ANOVA ${ }^{b}$

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	16.107	1	16.107	4.365	$.038^{\mathrm{a}}$
	Residual	804.366	218	3.690		
	Total	820.473	219			

a. Predictors: (Constant), E
b. Dependent Variable: P
Coefficients ${ }^{2}$

Model	Unstandardized Coefficients		Standardized Coefficients	t	Sig.	Collinearity Statistics	
	B	Std. Error	Beta			Tolerance	VIF
(Constant)	1.071	. 131		8.154	. 000	Tolerance	
E	853	408	. 140	2.089	. 038	1.000	1.000

a. Dependent Variable: P
Regression on Equation 3.5:
Variables Entered/Removed

Model	Variables Entered	Variables Removed	Method
1	ETET ${ }^{\text {a }}$		Enter
a. All requested variables entered			

a. All requested variables entered
b. Dependent Variable: PTPT10
Model Summary ${ }^{b}$

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate	Durbin-W atson
1	$.029^{\text {a }}$.001	-.004	.373460627242574	1.004

b. Dependent Variable: PTPT10

a. Predictors: (Constant), ETET1
Coefficients ${ }^{2}$

a. Dependent Variable: PTPT10
Regression on Equation 3.6:
Variables Entered/Removed

a. All requested variables entered
b. Dependent Variable: P
Model Summary ${ }^{b}$

Model	Sum of Squares	df	Mean Square	F	Sig.
1 Regression	1.035	2	. 518	758	470^{2}
Residual	137.881	202	. 683		
Total	138.916	204			
a. Predictors: (Constant), DE, E b. Dependent Variable: P					
Model	Unstandardized Coefficients		Standardized Coefficients	t	Sig
	B	Std. Error	Beta		
1 (Constant)	841	. 058		14.474	000
E	. 163	234	1.062	- 695	. 488
DE	. 144	380	. 034	379	705

a. Dependent Variable: P
Regression on Equation 3.9:
Variables Entered/Removed

Model	Variables Entered	Variables Removed	Method
1	DETET1 $^{1} 1$		
ETET1			

a. All requested variables entered.
b. Dependent Variable: PTPT10
Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate	Durbin-W atson
1	$.153^{\text {a }}$.023	.013	.37098844946483	1.602

a. Predictors: (Constant), DETET1, ETET1
b. Dependent Variable: PTPT10

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	.636	2	.318	2.309	$.102^{\text {a }}$
	Residual	26.563	193	.138		
	Total	27.199	195			
a. Predictors.						

a. Predictors: (Constant), DETET1, ETET1
b. Dependent Variable: PTPT10
Coefficients ${ }^{\text {a }}$

Model		Unstandardized Coefficients		$\begin{gathered} \hline \begin{array}{c} \text { Standardized } \\ \text { Coefficients } \end{array} \\ \hline \text { Beta } \end{gathered}$	t	Sig.	Collinearity Statistics	
		B	Std. Error				Tolerance	VIF
1	(Constant)	$3.143 \mathrm{E}-02$. 027		1.185	237		
	ETET1	-2.26E-02	. 032	-. 051	-. 698	486	953	1.049
	DETET1	319	. 149	156	2.136	034	953	1.049

a. Dependent Variable: PTPT10

Regression on Equation 3.10:

Model	Variables Entered	Variables Removed	Method
1	METET1, E		Enter

a. All requested variables entered
b. Dependent Variable: P
Model Summary ${ }^{\text {b }}$

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate	Durbin-W atson
1	$.111^{\mathrm{a}}$.012	.003	.859364323386870	1.732

a. Predictors: (Constant), METET1, E
b. Dependent Variable: P

Regression on Equation 3.11:
Variables Entered/Removed

Model	$\begin{array}{l}\text { Variables } \\ \text { Entered }\end{array}$	$\begin{array}{l}\text { Variables } \\ \text { Removed }\end{array}$	Method
1	$\begin{array}{l}\text { METET1, } \\ \text { ETET1 }{ }^{2}\end{array}$		Enter

a. All requested variables entered.
b. Dependent Variable: PTPT10
Model Summary ${ }^{\dagger}$

Model	R	R Square	Adjusted R Square	Std Error of the Estimate	Durbin-W atson
1	$.038^{2}$.001	-.009	.374316288183377	.795

a. Predictors: (Constant), METET1, ETET1
b. Dependent Variable: PTPT10
ANOVA ${ }^{b}$

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	.038	2	.019	.137	$.872^{\text {a }}$
	Residual	27.182	194	.140		
	Total	27.220	196			

a. Predictors: (Constant), METET1, ETET1
b. Dependent Variable: PTPT10
Coefficients ${ }^{\text {a }}$

Regression on Equation 3.12:

Variables Entered/Removed			
Model Variables Entered Variables Removed 1 DE, Method METET1, E E			

a. All requested variables entered.
b. Dependent Variable: P

Model Summary					
\begin{tabular}{\|l	r	r	r	}	
\hline					
\end{tabular}	R	R Square	Adjusted R Square	Std. Error of the Estimate	Durbin-W atson
1	$.112^{\mathrm{a}}$.013	-.002	.86133789575959	1.812

a. Predictors: (Constant), DE, METET1, E
b. Dependent Variable: P

Regression on Equation 3.13:

\section*{Variables Entered/Removed
 | Model | Variables
 Entered | Variables
 Removed | Method |
| :--- | :--- | :--- | :--- |
| 1 | DETET1,
 ETET1,
 METET1 | | Enter |
| a. All requested variables entered | | | |}

a. All requested variables entered.
b. Dependent Variable: PTPT10

Model Summary'

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate	Durbin-W atson
1	$.182^{\mathrm{a}}$.033	018	.370096809486420	1.932

a. Predictors: (Constant), DETET1, ETET1, METET1
b. Dependent Variable: PTPT10

ANOVA ${ }^{b}$

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	.900	3	.300	2.191	091^{2}
	Residual	26.299	192	.137		
	Total	27.199	195			

a. Predictors: (Constant), DETET1, ETET1, METET1
b. Dependent Variable: PTPT10
Coefficients ${ }^{\text {a }}$

Model		Unstandardized Coefficients		Standardized Coefficients	t	Sig.	Collinearity Statistics	
		B	Std. Error	Beta			Tolerance	VIF
1	(Constant)	$2.851 \mathrm{E}-02$	027		1.075	284		
	ETET1	-2.22E-02	. 032	- 050	-686	\bigcirc	-. 953	1.049
	METET1	-. 466	. 335	-. 110	-1.390	. 166	. 811	1.234
	DETET1	. 416	164	. 203	2.528	012	. 781	1.281

Regression on Equation 3.15:

Variables Entered/Removed

Model	$\begin{array}{c}\text { Variables } \\ \text { Entered }\end{array}$	$\begin{array}{c}\text { Variables } \\ \text { Removed }\end{array}$	Method
1	SA, GP		Enter

a. All requested variables entered.
b. Dependent Variable: P

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate	Durbin-W atson
1	$.667^{\text {a }}$.445	.439	.55899014421653	1.953

a. Predictors: (Constant), SA, GP
b. Dependent Variable: P

Regression on Equation 3.16:
Variables Entered/Removed

Model Summary ${ }^{\circ}$

ANOVAb

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	52.529	4	13.132	41.119	$.000^{\text {a }}$
	Residual	60.680	190	.319		
	Total	113.209	194			

a. Predictor: (Constant, DSA, GP, SA, DGP
b. Dependent Variable: P

Regression on Equation 3.18:

a. All requested variables entered.
b. Dependent Variable: PTPT10

a. Predictors: (Constant), DSATSAT1, GTGT10, DGTGT10, SATSAT1
b. Dependent Variable: PTPT10

ANOVA ${ }^{b}$

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	1.518	4	.379	2.808	$.027^{a}$
	Residual	25.680	190	.135		
	Total	27.198	194			

b. Dependent Variable: PTPT10

a. Dependent Variable: PTPT10

APPENDIX 7
REGRESSION RESULT
AFTER DATA TRANSFORMATION \& DO HETEROSCEDASTICITY REGRESSION FROM YEAR 2003-2004

Table 4.45
Equation 3-4

Dependent Variable: D(P)				
Dependent Variable: $\mathrm{D}(\mathrm{P})$Method: Least Squares				
Date: 03/20/06 Time: 10:01				
Sample(adjusted): 2220				
Included observations: 219 after adjusting endpoints Newey-West HAC Standard Errors \& Covariance (lag truncation=4)				
Variable	Coefficient	Std. Error	t -Statistic	Prob
	-0.051500	0.0721	-0.714276	
D(E)	0.904773	0.331175	2.732013	0.0068
R-squared	0.046285	Mean de	dent var	-0.054245
Adjusted R-squared	0.041890	S.D. depen	ent var	2.048541
S.E. of regression	2.005176	Akaike info	criterion	4.238431
Sum squared resid	872.4985	Schwarz ci	erion	4.269381
Log likelihood	-462.1082	F-statistic		10.53119
Durbin-Watson stat	2.633344	Prob(F-sta		

$\mathrm{D}=$ Difference, after transform the autocorrelation problem.

Table 4.46

Equation 3-5				
Dependent Variable: D(PTPT10)				
Method: Least Squares				
Date: 03/20/06 Time: 11:56				
Sample(adjusted): 2197				
Included observations: 196 after adjusting endpoints Newey-West HAC Standard Errors \& Covariance (lag truncation=4)				
Variable	Coefficient	Std. Error	t-Statistic	Prob
	-0.002000	0.012581	-0.158943	
D(ETET1)	-0.017660	0.017998	-0.981200	0.3277
R-squaredAdjusted R-squared	0.003280	Mean de	dent var	
	-0.001857	S.D. depen	ent var	0.374654
S.E. of regression	0.375002	Akaike info	criterion	0.886382
Sum squared resid	27.28157	Schwarz cri	arion	0.919832
Log likelihood	-84.86544	F-statistic		0.638464
Durbin-Watson stat	2.911313	Prob(F-stat		0.425245
$\mathrm{D}=$ Difference		rm the au		

Table 4.47
Equation 3-6

Dependent Variable	D(P)			
Method: Least Squares				
Date: 03/20/06 Time: 12:15				
Sample(adjusted): 2205				
Included observations: 204 after adjusting endpoints				
Newey-West HAC S	andard Errors	\& Covaria	- (lag	=4)
Variable	Coefficient	Std. Error	t-Statistic	Prob.
	-0.000347	0.037214	-0.009319	
D(E)	0.175630	0.474121	-0.370432	
D(DE)	0.511803	0.487187	1.050526	0.7115
R-squared	0.032633	Mean depe	dent var	
Adjusted R-squared	0.023008	S.D. depen	ent var	1.072378
S.E. of regression	1.059970	Akaike info	criterion	2.968954
Sum squared resid	225.8307	Schwarz cr	rion	3.017750
Log likelihood	-299.8333	F-statistic		3.390286
Durbin-Watson stat	2.961905	Prob(F-stat		0.035638

$\mathrm{D}=$ Difference, after transform the autocorrelation problem.

Table 4.48

Equation 3-9
Dependent Variable: PTPT10
Method: Least Squares
Date: 03/24/06 Time: 10:00
Sample: 1196
Included observations: 196
Newey-West HAC Standard Errors \& Covariance (lag truncation=4)

Variable	Coefficient	Std. Error	t-Statistic	Prob
C	0.031427	0.034971	0.898662	0.3700
ETET1	-0.026607	0.017898	-1.263058	0.2081
DETET1	0.318501	0.126963	2.508614	0.0129
R-squared	0.023371	Mean dependent var	0.031162	
Adjusted R-squared	0.013250	S.D. dependent var	0.373471	
S.E. of regression	0.370988	Akaike info criterion	0.869896	
Sum squared resid	26.56306	Schwarz criterion	0.920071	
Log likelihood	-82.24982	F-statistic	2.309262	
Durbin-Watson stat	1.602345	Prob(F-statistic)	0.102073	

Table 4.49
Equation 3-10
Dependent Variable: $\mathrm{D}(\mathrm{P})$
Method: Least Squares
Date: 03/27/06 Time: 12:24
Sample(adjusted): 2207
Included observations: 206 after adjusting endpoints
Newey-West HAC Standard Errors \& Covariance (lag truncation=4)

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	-0.002134	0.092256	-0.023131	0.9816
D(E)	1.796325	1.144441	1.569609	0.1181
D(METET1)	4.561975	3.056690	1.492456	0.1371
R-squared	0.199312	Mean dependent var	-0.036127	
Adjusted R-squared	0.191423	S.D. dependent var	3.114139	
S.E. of regression	2.800261	Akaike info criterion	4.911758	
Sum squared resid	1591.817	Schwarz criterion	4.960222	
Log likelihood	-502.9111	F-statistic	25.26598	
Durbin-Watson stat	2.886901	Prob(F-statistic)	0.000000	
$\mathrm{D}=$ Differ				

$\mathrm{D}=$ Difference, after transform the autocorrelation problem.

Table 4.50

Equation 3-11

Equation 3-11				
Dependent Variable: D(PTPT10)				
Method: Least Squares				
Date: 03/27/06 Time: 11:54				
Sample(adjusted): 2197				
Included observations: 196 after adjusting endpoints				
Newey-West HAC Standard Errors \& Covariance (lag truncation=4)				
\|Variable	Coefficient	Std. Error	t-Statistic	Prob
	-0.002176	0.010157	-0.214205	0.8306
D(ETET1)	-0.013881	0.023151	-0.599581	0.5495
D(METET1)	-0.094117	0.274312	-0.343103	0.7319
R-squared	0.005001	Mean depen	dent var	-0.001594
Adjusted R-squared	-0.005310	S.D. depend	ent var	0.333680
S.E. of regression	0.334565	Akaike info	criterion	0.663215
Sum squared resid	21.60318	Schwarz crit	rion	0.713390
Log likelihood	-61.99507	F-statistic		0.484986
Durbin-Watson stat	2.973147	Prob(F-statis		0.4616454

$\mathrm{D}=$ Difference, after transform the autocorrelation problem.

Table 4.51
Equation 3-12

Dependent Variable: P Method: Least Squares				
Date: 03/27/06 Time: 12:02				
Sample: 1207				
Variable	Coefficient	Std. Error	t-Statistic	Prob.
	0.858662	0.073944		
E	0.271604	0.438235	0.619767	0.0000
DE	0.104203	0.423452	0.646079	0.5361
METET1	-0.496965	0.453171	-12466639	0.8059
R-squared	0.012642	Mean depend	dent var	
Adjusted R-squared	-0.001950	S.D. depen	dent var	0.874073 0.860499
S.E. of regression	0.861338	Akaike info	criterion	0.860499 2.558475
Sum squared resid	150.6063	Schwarz crit		2.522875
Log likelihood	-260.8021	F-statistic		2.622875
Durbin-Watson stat	1.812228	Prob(F-statis		0.859431

Table 4.52

Equation 3-13
Dependent Variable: PTPT10
Method: Least Squares
Date: 03/27/06 Time: 12:05
Sample: 1196
Included observations: 196
Newey-West HAC Standard Errors \& Covariance (lag truncation=4)

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	0.028515	0.025517	1.117470	0.2652
ETET1	0.02176	0.016944	-1.308802	0.1922
METET1	-0.465998	0.288435	-1.615605	0.1078
DETET1	0.415600	0.193467	2.148177	0.0330
R-squared	0.033096	Mean dependent var	0.031162	
Adjusted R-squared	0.017988	S.D. dependent var	0.373471	
S.E. of regression	0.370097	Akaike info criterion	0.870093	
Sum squared resid	26.29856	Schwarz criterion	0.936993	
Log likelihood	-81.26909	F-statistic	2.190627	
Durbin-Watson stat	1.931892	Prob(F-statistic)	0.090508	

Table 4.53
Equation 3-15

Dependent Variable: P				
Method: Least Squares				
Mate: 03/27/06	Time: $12: 07$			
Sample: 1194				
Included observations: 194				
Newey-West HAC Standard Errors \& Covariance (lag truncation=4)				
Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	0.402955	0.050826	7.928073	0.0000
GP	1.267113	0.279964	4.525983	0.0000
SA	-0.610769	0.355276	-1.719138	0.0872
R-squared	0.444556	Mean dependent var	0.734968	
Adjusted R-squared	0.438740	S.D. dependent var	0.746143	
S.E. of regression	0.558990	Akaike info criterion	1.689973	
Sum squared resid	59.68177	Schwarz criterion	1.740507	
Log likelihood	-160.9274	F-statistic	76.43449	
Durbin-Watson stat	1.952591	Prob(F-statistic)	0.000000	

Table 4.54

Dependent Variable: $\mathrm{D}(\mathrm{P})$
Method: Least Squares
Date: 03/27/06 Time: 12:11
Sample(adjusted): 2195
Included observations: 194 after adjusting endpoints
Newey-West HAC Standard Errors \& Covariance (lag truncation=4)

Variable	Coefficient	Std. Error	t-Statistic	Prob.
	0.005646	0.027071	0.208549	Prob 0.8350
D(GP)	0.783735	0.263777	2.971209	0.8350 0.0034
D(SA)	0.179462	0.360807	0.497390	0.0034
D(DGP)	1.171764	0.501904	2.334638	0.6190
D(DSA)	-1.701002	0.567017	-2.999913	
R-squared	0.520706	Mean dependent var		
Adjusted R-squared	0.510563	S. D. dependent var		1.019040
S.E. of regression	0.712918	Akaike info criterion		
Sum squared resid	96.05965	Schwarz criterion		2.186535 2.270758
Log likelihood	-207.0939	F-statistic		2.270758
Durbin-Watson stat	2.934553	Prob(F-stat		51.33258 0.00000

$\mathrm{D}=$ Difference, after transform the autocorrelation problem.

Table 4.55
Equation 3-17

Dependent Variabl Equation 3-17				
Dependent Variable: D(PTPT10)				
Method: Least Squares				
Date: 03/27/06 Time: $12: 14$Sample(adjusted). 2197				
Included observations: 196 after adjusting endpoints				
Newey-West HAC Standard Errors \& Covariance (lag truncation=4)				
Variable	Coefficient	Std. Error	t-Statistic	
	0.002	0.014302	0.164177	
D(GTGT10)	0.10549	0.100989	1.1644606	
D(SATSAT1)	0.163739	0.137539	1.19446498	0.2975
R-squared	0.012194	Mean depe	dent var	
Adjusted R-squared	0.001958	S.D. depen	dent var	0.002114
S.E. of regression	0.462350	Akaike info		0.462803
Sum squared resid	41.25714	Schwarz cri		1.360374
Log likelihood	-125.3995	F-statistic		1.191282
Durbin-Watson stat	2.853203	Prob(F-statis		0.306055

$\mathrm{D}=$ Difference, after transform the autocorrelation problem.

Table 4.56

Equation 3-18

3-18				
Dependent Variable: PTPT10				
Method: Least Squares				
Date: 03/27/06 Time:				
Sample: 1195				
Newey-West HAC Standard Errors \& Covariance (lag truncation=4)				
Variable	Coefficient	Sta Error	stic	
	0.017776	0.031180	0.570109	0.5693
	0.087057	0.101930	0.854093	0.3941
SATSAT10	0.003156	0.268454	0.011756	0.9906
DGTGT10	0.602228	0.157017	3.835433	0.0002
DSATSAT1	-0.946918	0.648713	-1.459688	0.1460
R-squared	0.055808	Mean depe	dent var	0.031322
Adjusted R-squared	0.035930	S.D. depend	ent var	0.374426
S.E. of regression	0.367637	Akaike info	criterion	0.861868
Sum squared resid	25.67989	Schwarz crit		0.945791
Log likelihood	-79.03209	F-statistic		2.807569
Durbin-Watson stat	1.757192	Prob(F-statis		2.026927

[^0]: Source: Appendix 6

[^1]: Source: Appendix 7

[^2]: PT Asahimas Flat Glass Co Ltd Tbk PT Asiaplast Industries Tbk

 PT Langgeng Makmur Plastik Industry Ltd Tbk
 PT Lapindo International Tbk
 Trias Sentosa Tbk
 Indocement Tunggal Perkasa Tbk
 Semen Cibinong Tbk
 PT Semen Gresik (Persero) Tbk
 PT Alumindo Light Metal Industry Tbk
 PT Alumindo Light Metal Industry Tbk
 PT Betonjaya Manunggal Tbk
 PT Citra Tubindo Tbk
 Thdal Aluminium Industry Tbk
 PT Jakarta Kyoei Steel Works Ltd Tbk
 PT Jaya Pari Steel Tbk
 PT Lion Mesh Prima Tbk
 T Pelangi Indah Canindo Tbk
 TT Tembaga Mulia Semanan Tbk
 T Kedaung Indah Can Tbk
 TT Kedawung Setia Industrial Tbk
 PT Arwana Citra Mulia Tbk
 PT Intikeramik Alamasri Industry Tbk
 PT Mulia Industrindo Tbk
 PT Surya Toto Indonesia Tbk
 TT Kabel Indonesia
 PT Jembo Cable Company Tbk
 PT Kabelindo Murni Tbk
 T Supremi Indo Kabel rok
 的

[^3]: a. Dependent Variable: P

