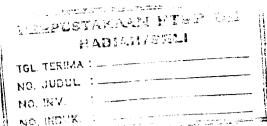


ANALISIS PERBANDINGAN


PRAKIRAAN WAKTU PENYELESAIAN PROYEK DENGAN METODE KUMULATIF (KONSEP NILAI HASIL) DAN METODE MATEMATIS (KURVA-S RENCANA)

JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK SIPIL DAN PERENCANAAN UNIVERSITAS ISLAM INDONESIA YOGYAKARTA

2007

LEMBAR PENGESAHAN TUGAS AKHIR

ANALISIS PERBANDINGAN

PRAKIRAAN WAKTU PENYELESAIAN PROYEK

DENGAN METODE KUMULATIF (KONSEP NILAI HASIL)

DAN METODE MATEMATIS (KURVA-S RENCANA)

Disusun Oleh:
FERI IRAWAN 00 511 170

Telah diperiksa dan disetujui oleh,

Ir. H. Faisol AM, MS Dosen Pembimbing

Tgl.

"Allah satu-satunya tempat bergantung"

(QSAl-Ikhlas:2)

"Tak ada yang lebih setia menepati janji daripada Allah."

(QS At Taubah : 111)

" Sesungguhnya sholatku, ibadahku, hidup dan matiku hanyalah untuk Allah, penguasa semesta alam tiada sekutu bagi-Nya, dan demikian itulah yang diperintahkan kepadaku dan aku adalah orang yang pertama-tama menyerahkan diri kepada Allah."

(QS Al An'am: 162-163)

"Sesungguhnya Allah tiada mengubah keadaan suatu kaum sehingga mereka mengubah keadaan yang ada pada diri mereka sendiri."

(QS Ar-Ra'du: 11)

"Hendaklah ada diantaramu kelompok yang selalu mengajak kepada kebajikan,
memerintahkan kepada yang makruf dan mencegah dari kemungkaran, Mereka itulah
orang – orang yang bakal mencapai kebahagiaan."

(QS Ali Imran: 104)

HALAMAN PERSEMBAHAN

Dedicate to;

My In Conditional Love

Bapak, Inog, Udo & Asosh² Ku

¹ Bahasa daerah etnis rejang, yang berarti : <u>Ayah, Ibu, Kakak dan Adik² Ku</u>

KATA PENGANTAR

Assalamualaikum Wr. Wb.

Alkhamdulillahirobbil'alamiin, puji syukur kehadirat Allah SWT yang telah melimpahkan segala taufiq, hidayah, dan karunia-Nya, sehingga penyusun berhasil menyelesaikan Tugas Akhir ini dengan baik.

Tugas Akhir dengan judul "Analisis Perbandingan Prakiraan Waktu Penyelesaian Proyek Dengan Metode Pendekatan Kumulatif (Konsep Nilai Hasil) Dan Pendekatan Matematis (Kurva-S Rencana)" merupakan penelitian dengan menggunakan data proyek yang telah dilaksanakan di Daerah Istimewa Yogyakarta.

Tugas Akhir ini merupakan salah satu syarat menempuh jenjang strata satu (S-1) pada Jurusan Teknik Sipil, Fakultas Teknik Sipil dan Perencanaan, Universitas Islam Indonesia, Yogyakarta.

Terselesaikannya Tugas Akhir ini, penyusun banyak memperoleh saran, nasehat, gagasan, dorongan serta bimbingan dari berbagai pihak. Untuk itu pada kesempatan ini perkenankanlah penyusun menghaturkan terima kasih yang sebesar – besarnya kepada :

- 1. Ir.H. Faisol AM, MS., selaku Dosen Pembimbing Utama Tugas Akhir yang telah banyak memberikan masukan, kritikan, bimbingan dan solusi.
- 2. Ir. H. Tadjuddin BM Aris, MT., selaku Dosen Tamu Penguji I,
- 3. Ir. Hj. Tuti Sumarningsih, ST. MT., selaku Dosen Tamu Penguji II,

- 4. Orangtua, kakak, adik, dan seluruh anggota keluarga yang dengan tulus ikhlas mendoakan dan memberikan semangat, dorongan moral maupun materi selama menempuh pendidikan hingga terselesaikannya Tugas Akhir ini,
- 5. Saudara Faqih Usman atas segala dukungan dan bantuannya.
- 6. Semua pihak yang telah banyak membantu terselesaikannya Tugas Akhir ini dengan segala keikhlasan moral maupun materi dan tidak bisa penyusun sebutkan satu persatu, penyusun mendoakan semoga amal kebaikannya mendapat balasan yang sepadan.

Penyusun menyadari bahwa penelitian yang sekaligus Tugas Akhir ini masih jauh dari sempurna dan masih banyak kekurangan yang dikarenakan keterbatasan penyusun baik secara keilmuan maupun secara pengalaman penelitian. Oleh karena itu penyusun mengaharapkan segala kritik, saran, masukan, ataupun komentar yang membangun sehingga hasil penelitian ini menjadi lebih baik lagi.

Pada akhirnya laporan penelitian yang sekaligus Tugas Akhir ini diharapkan bermanfaat dalam memberikan informasi keilmuan maupun pengetahuan kepada penyusun dan kepada semua pihak. Semoga Allah SWT membalas segala kebaikan bagi semua pihak yang dengan ikhlas membantu, membimbing dan mengarahkan hingga selesainya penelitian dan Tugas Akhir ini dengan imbalan pahala yang setimpal, *amiina ya robbal'alamiin*.

Wabillahittaufiq wal hidayah, Wassalamu'alaikum Wr. Wb.

Yogyakarta, Februari 2007

Penyusun

DAFTAR ISI

HALA	MAN JUDUL	i
LEMB	AR PENGESAHAN	ii
HALA	MAN MOTTO	iii
	MAN PERSEMBAHAN	iv
KATA	PENGANTAR	v
	AR ISI	and the second second
	AR TABEL	
DAFT	AR GAMBAR	xiv
DAFTA	AR LAMPIRAN	xviii
ABSTR	AK	xix
***		171
BAB I	PENDAHULUAN	
	1.1 Latar Belakang Masalah	
	1.2 Rumusan Masalah	
	1.3 Tujuan Penelitian	4
	1.4 Manfaat Penelitian	5
	1.5 Batasan Masalah	
BAB II	TINJAUAN PUSTAKA	7
	2.1 Penelitian Sebelumnya	7
	2.1.1 Arianto Daru dan Arif Yustian, 2005	7
	2.1.2 Bisma Nusantara, 2003	8

2.1.3 Arif Suseno dan Rusdi Hamzah, 20029
2.1.4 Anondho Basuki dan Sulaiman Lydiawati, 20039
2.2 Keaslian Penelitian
BAD HILL AND A CANADO ON
BAB III LANDASAN TEORI12
3.1 Proyek Konstruksi12
3.1.1 Kinerja Suatu Proyek Konstruksi
3.1.2 Integrasi Biaya, Waktu dan Mutu
3.2 Pengendalian Proyek
3.2.1 Definisi Pengendalian Proyek
3.2.2 Fungsi Pengendalian Proyek
3.2.3 Proses Pengendalian Proyek
3.2.4 Pengendalian Proyek Yang Efektif
3.2.5 Pengendalian Waktu
3.2.6 Pengendalian Biaya22
3.3 Metode Pengendalian Proyek
3.3.1 Bagan Balok (Grantt Chart) atau Bar Chart
3.3.2 Kurva-S
3.3.3 Analisis Varians
3.3.4 Earned Value
BAB IV METODA PENELITIAN42
4.1 Objek dan Subjek Penelitian
4.2 Variabel Data

	4.2.1 Variabel Pembanding	44
	4.2.2 Variabel Tolok Ukur Jadwal	45
	4.2.3 Variabel Tolok Ukur Biaya	46
	4.3 Pengumpulan Data	46
	4.4 Alat Pengolahan Data	18
	4.5 Metode Analisis	18
	4.5.1 Metode Matematis (Pendekatan Kurva-S Rencana)5	50
	4.5.2 Metode Kumulatif (Earned Value Concept)	52
	4.7 Bagan Alur Penelitian5	52
PAD W	ANALISIS DATA5	
DAD V		
	5.1 Data Proyek5	
	5.2 Tabulasi Data Primer	
	5.3 Analisis Data8	5
	5.2.1 Perhitungan Data Berdasarkan Skala Waktu Pengamatan 8	5
	5.2.2 Analisis Earned Value8	7
	5.2.3 Hasil perhitungan prakiraan waktu total proyek (EAS) 89	9
	5.2.4 Deviasi EAS Terhadap Waktu Rencana	l
	5.2.5 Deviasi EAS Terhadap Waktu Rencana	2
	5.4 Tabulasi Data Sekunder	
	5.5 Analisis Integrasi Data Antar Proyek	,
	5.5.1 EAS _{Kumulatif} Keseluruhan Proyek	
	5.5.2 EAS _{Matematis} Keseluruhan Proyek	
	5.5.3 Schedule Varians (SV)	

	5.5.4 Schedule Performance Indeks (SPI)	. 129
	5.5.5 Estimation Temporary Schedule (ETS)	. 131
	5.5.6 Persen Deviasi EAS _{Kumulatif} Terhadap T _{Rencana}	. 133
	5.5.7 Persen Deviasi EAS _{Kumulatif} Terhadap T _{Rill}	. 135
	5.5.8 Persen Deviasi EAS _{Matematis} Terhadap T _{Rencana}	. 137
	5.5.9 Persen Deviasi EAS _{Matematis} Terhadap T _{Rill}	. 139
BAB VI PE	MBAHASAN	. 141
6.1	Kinerja Waktu Dengan Metode Matematis Dan Kumulatif	. 141
	6.1.1 Schedule Varians (SV)	
	6.1.2 Schedule Performance Indeks (SPI)	. 143
	6.1.3 Estimasi Temporary Schedule (ETS)	. 145
	6.1.4 Estimasi All Schedule (EAS)	. 147
	6.1.5 Deviasi Terhadap Waktu Rencana	. 151
	6.1.5 Deviasi Terhadap Waktu Riil	. 154
BAB VII	KESIMPULAN DAN SARAN	. 158
7.1	Kesimpulan	. 158
7.2	Saran – saran	. 159

DAFTAR PUSTAKA

LAMPIRAN

DAFTAR TABEL

Tabel	3.1. A	Analisis Varian Terpadu	. 34
Tabel	4.1.	Contoh Format Tabulasi Data	. 47
Tabel	5.1. I	Oata Primer Masing – Masing Proyek	
	5.1.1.	Gedung DISHUTBUN	56
	5.1.2.	Masjid DPRD Propinsi DIY	57
	5.1.3.	Gedung Bapekoinda	58
	5.1.4.	Kantor Badan Informasi Daerah	59
	5.1.5.	Ruang VIP Rumah Sakit Grhasia	60
	5.1.6.	Gedung Elektromedik RS. Grhasia	61
	5.1.7.	Gedung Wagub. Propinsi DIY	62
	5.1.8.	Biro Kepegawaian dan P3KSDM	63
	5.1.9.	Asrama BAPELKES	64
	5.1.10.	Diskimpraswil Prop DIY	65
	5.1.11.	Pagar Tembok RS Grhasia	66
	5.1.12.	Lt. II Gedung B4 dan Pagar Depan	67
	5.1.13.	Garasi dan Laboratorium HIPERKES	68
	5.1.14.	Rehabilitas Balai Mangu	69
	5.1.15.	Masjid Gedung Diklat Propinsi DIY	70
	5.1.16.	Gedung Balai Latihan Kerja	71
	5.1.17.	Grha Wana Bhakti Yasa	72
	5.1.18.	Pavilum Eks. Bkow DPD DIY	73
	5.1.19.	Laboratorium UGM Untuk Kantor KPU	74
;	5.1.20.	Jalan KRETEK - DEPOK (1 Km)	75
:	5.1.21.	Jalan BANDUNG - WERO (1 Km)	76
;	5.1.22.	Jalan Milir - Dayakan - Sugiman (1,84 Km)	77
4	5.1.23.	Gedung Fakultas ADAB IAIN Sunan Kalijaga	78
4	5.1.24.	Jalan Mulo - Kemiri - Baron (1,00 Km)	79
4	5 1 25	Jembatan Ngahlak (35,00 ml)	0.0

	5.1.26.	Jembatan Kalasan (7,00 m')	81
	5.1.27.	Pasar Ikan Higienis Tahap II	82
	5.1.28.	Gedung KPLT FT UNY Tahap I	83
	5.1.29.	Gedung KPLT FT UNY Tahap II	84
Tabel	5.2. Da	ata Sekunder Masing – Masing Proyek	
	5.2.1.	Gedung DISHUTBUN	94
	5.2.2.	Masjid DPRD Propinsi DIY	95
	5.2.3.	Gedung Bapekoinda	96
	5.2.4.	Kantor Badan Informasi Daerah	97
	5.2.5.	Ruang VIP Rumah Sakit Grhasia	98
	5.2.6.	Gedung Elektromedik RS. Grhasia	99
	5.2.7.	Gedung Wagub. Propinsi DIY	100
	5.2.8.	Biro Kepegawaian dan P3KSDM	101
	5.2.9.	Asrama BAPELKES	102
	5.2.10.	Diskimpraswil Prop DIY	103
	5.2.11.	Pagar Tembok RS Grhasia	104
	5.2.12.	Lt. II Gedung B4 dan Pagar Depan	
	5.2.13.	Garasi dan Laboratorium HIPERKES	106
	5.2.14.	Rehabilitas Balai Mangu	107
	5.2.15.	Masjid Gedung Diklat Propinsi DIY	
	5.2.16.	Gedung Balai Latihan Kerja	109
	5.2.17.	Grha Wana Bhakti Yasa	110
	5.2.18.	Pavilum Eks. Bkow DPD DIY	111
	5.2.19.	Laboratorium UGM Untuk Kantor KPU	112
	5.2.20.	Jalan KRETEK - DEPOK (1 Km)	113
	5.2.21.	Jalan BANDUNG - WERO (1 Km)	114
	5.2.22.	Jalan Milir - Dayakan - Sugiman (1,84 Km)	
	5.2.23.	Gedung Fakultas ADAB IAIN Sunan Kalijaga	
	5.2.24.	Jalan Mulo - Kemiri - Baron (1,00 Km)	
	5.2.25.	Jembatan Ngablak (35,00 m')	

	5.2.26.	Jembatan Kalasan (7,00 m')	119
	5.2.27.	Pasar Ikan Higienis Tahap II	120
	5.2.28.	Gedung KPLT FT UNY Tahap I	121
	5.2.29.	Gedung KPLT FT UNY Tahap II	122
Tabel	5.3. Int	regrasi Data Keseluruhan Proyek	
	5.3.1.	Nilai EAS _{Kumulatif}	124
	5.3.2.	Nilai EAS _{Matematis}	126
	5.3.3.	Nilai Schedule Varians	128
	5.3.4.	Nilai Schedule Performance Indeks	
	5.3.5.	Nilai Estimation Temporary Schedule	132
	5.3.6.	Nilai % $\Delta_{Kumulatif}$ Terhadap Rencana	
	5.3.7.	Nilai % $\Delta_{Kumulatif}$ Terhadap Riil	136
	5.3.8.	Nilai % $\Delta_{Matematis}$ Terhadap Rencana	
	5.3.9.	Nilai % $\Delta_{Matematis}$ Terhadap Riil	140
Tabel	6.1. Kir	nerja EAS _{Kumulatif} Terhadap Rencana	148
Tabel	6.2. Kir		148
Tabel	6.3. Kin	nerja EAS _{Kumulatif} Terhadap Riil	149
Tabel	6.4. Kin	nerja EAS _{Matematis} Terhadap Riil	150
		as Optimal Berdasarkan T _{rencana}	
Tabel	6.6. Bat	as Optimal Berdasarkan T _{riil}	156

DAFTAR GAMBAR

Gambar 3.1.	Skema Integrasi Biaya, Waktu dan Mutu	15
Gambar 3.2.	Siklus Perencanaan dan Pengendalian Proyek	18
Gambar 3.3.	Contoh Bagan Balok	25
Gambar 3.4.	Contoh Kurva-S	27
Gambar 3.5.	Analisis Varians dengan Kurva-S	29
Gambar 3.6.	Skema Paket Kerja Dengan Kegiatan Berbeda Kemajuan	32
Gambar 3.7.	Analisis Varian Terpadu Dengan Kurva-S	36
Gambar 3.8.	Prakiraan Jadwal Dan Biaya Pada Akhir Proyek	38
Gambar 4.1.	Asumsi Persamaan Kurva-S	50
Gambar 4.2.	Analisis Matematis dan Grafis	51
Gambar 5.1.	Kurva-S Masing - Masing Proyek	
5.1.1.	Gedung DISHUTBUN	56
5.1.2.	Masjid DPRD Propinsi DIY	57
5.1.3.	Gedung Bapekoinda	58
5.1.4.	Kantor Badan Informasi Daerah	59
5.1.5.	Ruang VIP Rumah Sakit Grhasia	60
5.1.6.	Gedung Elektromedik RS. Grhasia	61
5.1.7.	Gedung Wagub. Propinsi DIY	62
5.1.8.	Biro Kepegawaian dan P3KSDM	63
5.1.9.	Asrama BAPELKES	64
5.1.10.	Diskimpraswil Prop DIY	65
5.1.11.	Pagar Tembok RS Grhasia	66
5.1.12.	Lt. II Gedung B4 dan Pagar Depan	67
5.1.13.	Garasi dan Laboratorium HIPERKES	68
5.1.14.	Rehabilitas Balai Mangu	60

5.1.15	. Masjid Gedung Diklat Propinsi DIY	70
5.1.16	. Gedung Balai Latihan Kerja	71
5.1.17	. Grha Wana Bhakti Yasa	72
5.1.18.	. Pavilum Eks. Bkow DPD DIY	73
5.1.19.	. Laboratorium UGM Untuk Kantor KPU	74
5.1.20.	Jalan KRETEK - DEPOK (1 Km)	75
5.1.21.	Jalan BANDUNG - WERO (1 Km)	76
5.1.22.	Jalan Milir - Dayakan - Sugiman (1,84 Km)	77
5.1.23.	Gedung Fakultas ADAB IAIN Sunan Kalijaga	78
5.1.24.	Jalan Mulo - Kemiri - Baron (1,00 Km)	79
5.1.25.	Jembatan Ngablak (35,00 m')	80
5.1.26.		81
5.1.27.	Pasar Ikan Higienis Tahap II	82
5.1.28.	Gedung KPLT FT UNY Tahap I	83
5.1.29.	Gedung KPLT FT UNY Tahap II	84
C	4	
	Persamaan Kurva-S Masing - Masing Proyek	
5.2.1.	Gedung DISHUTBUN	94
5.2.2.	Masjid DPRD Propinsi DIY	95
5.2.3.	Gedung Bapekoinda	96
5.2.4.	Kantor Badan Informasi Daerah	97
5.2.5.	Ruang VIP Rumah Sakit Grhasia	98
5.2.6.	Gedung Elektromedik RS. Grhasia	99
5.2.7.	Gedung Wagub. Propinsi DIY	100
5.2.8.	Biro Kepegawaian dan P3KSDM	101
5.2.9.	Asrama BAPELKES	102
5.2.10.	Diskimpraswil Prop DIY	103
5.2.11.	Pagar Tembok RS Grhasia	104
5.2.12.	Lt. II Gedung B4 dan Pagar Depan	105
5.2.13.	Garasi dan Laboratorium HIPERKES	
5.2.14.	Rehabilitas Balai Mangu	107

5.2.15	5. Masjid Gedung Diklat Propinsi DIY	108
5.2.10	6. Gedung Balai Latihan Kerja	109
5.2.17	7. Grha Wana Bhakti Yasa	110
5.2.18	3. Pavilum Eks. Bkow DPD DIY	111
5.2.19	2. Laboratorium UGM Untuk Kantor KPU	112
5.2.20	Jalan KRETEK - DEPOK (1 Km)	113
5.2.21	Jalan BANDUNG - WERO (1 Km)	114
5.2.22	2. Jalan Milir - Dayakan - Sugiman (1,84 Km)	115
5.2.23	Gedung Fakultas ADAB IAIN Sunan Kalijaga	116
5.2.24	Jalan Mulo - Kemiri - Baron (1,00 Km)	117
5.2.25	5. Jembatan Ngablak (35,00 m')	118
5.2.26	Jembatan Kalasan (7,00 m')	119
5.2.27		
5.2.28	Gedung KPLT FT UNY Tahap I	121
5.2.29	. Gedung KPLT FT UNY Tahap II	122
Gambar 6.1.	Grafik Nilai SV _{rata-rata} Keselurahan Proyek	. 141
Gambar 6.2.	Grafik Nilai SPI _{rata-rata} Keselurahan Proyek	. 143
Gambar 6.3.	Grafik Nilai ETS _{rata-rata} Keselurahan Proyek	. 146
Gambar 6.4.	Hubungan Deviasi Kumulatif dan Matematis (Trencana)	. 151
Gambar 6.5	Grafik Batas Optimal EAS _{Kumulatif} & EAS _{Matematis} Berdasarkan	
1	T _{rencana}	. 152
Gambar 6.6.	Hubungan Deviasi Kumulatif dan Matematis (Triil)	. 154
Gambar 6.7	Grafik Batas Optimal EAS _{Kumulatif} & EAS _{Matematis} Berdasarkan	
	T _{riil}	155

DAFTAR LAMPIRAN

Lampiran I Kartu Peserta Tugas Akhir

Lampiran II Grafik Persentase Deviasi matematis dan kumulatif terhadap rencana (masing-masing proyek)

Lampiran III Grafik Persentase Deviasi matematis dan kumulatif terhadap riil
(masing-masing proyek)

Lampiran III Surat – surat

- 1. Bimbingan Tugas Akhir Periode II
- 2. Bimbingan Tugas Akhir Periode III
- 3. Undangan Seminar Proposal Tugas Akhir
- 4. Surat Keterangan Habis Teori

Lampiran IV Permohonan Ijin Survey / Data TA

ABSTRAKSI

Pengendalian proyek merupakan salah satu hal yang berperan penting dalam keberhasilan pelaksanaan suatu proyek konstruksi agar dapat mencapai tujuan sebagaimana yang diinginkan semua pihak yang berkepentingan pada proyek tersebut. Suatu sistem pengendalian dan pemantauan disamping memerlukan perencanaan yang realistis sebagai tolak ukur pencapain sasaran, juga harus dilengkapi dengan teknik dan metode yang dapat segera mengungkapkan tandatanda terjadinya penyimpangan.

Dengan metode kumulatif (Earned Value Concept) yang memperhitungkan akumulasi kinerja pelaksanaan, atau dengan metode matematis (pendekatan kurva-S rencana) dengan asumsi bahwa pekerjaan setelah pelaporan akan seperti rencana. Dalam proses perhitungan metode kumulatif diperlukan indikator BCWS, BCWP, SV, SPI dan ETS sedangkan pada proses perhitungan metode matematis dengan menggunakan persamaan yang dibentuh kurva-s rencana berdasarkan asumsi bahwa pada bagian awal adan akhir adalah persamaan kuadratik sedangkan bagian tengah persamaan linier. Berdasarkan perbandingan metode kumulatif dan matematis terhadap waktu rencana dan waktu riil diharapkan dapat diketahui perbedaan karakteristik, keunggulan, kelemahan serta tingkat akurasi metode matematis dan kumulatif dalam memprediksi waktu penyelesaian proyek.

Dari analisis dan pembahasan yang dilakukan dapat disimpulkan bahwa dalam memproyeksikan waktu penyelesaian metode kumulatif memiliki sebaran penyimpangan yang lebih luas terhadap waktu rencana dan riil dibandingkan metode kumulatif, sedangkan tingkat akurasi kesuluruhan antara keduanya relatif sama, dengan karakteristik kumulatif lebih akurat berdasarkan pengamatan pada waktu 60-70% hingga akhir proyek, sedangkan metode matematis lebih akurat untuk waktu pelaporan yang kurang dari 60-70%.

BABI

PENDAHULUAN

Pada bab pendahuluan ini akan dijelaskan tentang latar belakang masalah, rumusan masalah, tujuan penelitian, manfaat penelitian serta batasan masalah.

1.1 Latar Belakang Masalah

Kebutuhan akan konsep pengendalian proyek merupakan salah satu hal yang berperan penting dalam keberhasilan pelaksanaan suatu proyek konstruksi agar dapat mencapai tujuan sebagaimana yang diinginkan semua pihak yang berkepentingan pada proyek tersebut.

Pada aspek pengendalian ditekankan penggunaan metode dan teknik yang dapat memantau atau mengukur kinerja (performance) suatu pekerjaan. Ini berarti harus ada keterkaitan yang menyatu dalam menganalisis kemajuan pekerjaan dengan jumlah biaya yang telah terpakai untuk pekerjaan tersebut. Dengan mengetahui kinerja suatu pekerjaan pada setiap saat pelaporan, akan dapat dibuat perkiraan atau proyeksi keperluan dana dan waktu penyelesaian proyek. Hal ini berarti pengelolaan proyek jauh-jauh sebelumnya telah memperoleh tanda peringatan perlu tidaknya diadakan perbaikan penyelenggaraan untuk mencapai sasaran yang telah ditentukan.

Suatu sistem pengendalian dan pemantauan disamping memerlukan perencanaan yang realistis sebagai tolak ukur pencapain sasaran, juga harus dilengkapi dengan teknik dan metode yang dapat segera mengungkapkan tanda-

tanda terjadinya penyimpangan. Dalam perkembangan ilmu ketekniksipilan khususnya manajemen proyek ada beberapa teknik pemantauan prestasi kerja antara lain adalah: laporan rutin (harian/mingguan/bulanan), Cash-flow, diagram batang (Barchart), kurva-S, konsep nilai hasil (Earned Value) dan lain sebagainya.

Untuk pengendalian biaya dan jadwal terdapat teknik dan metode yang luas pemakaiannya, yaitu identifikasi varians dan konsep nilai hasil (Earned Value). Identifikasi dilakukan dengan membandingkan jumlah uang yang sebenarnya dikeluarkan dengan anggaran. Sedangkan untuk jadwal, dianalisis kurun waktu yang telah dipakai dibandingkan dengan perencanaan. Dengan demikian akan terlihat bila terjadi penyimpangan antara rencana dan kenyataan, serta mendorong untuk mencari sebab-sebabnya. Bagi tujuan yang lebih jauh jangkauanya, identifikasi diatas dikembangkan menjadi cost/schedule control system criteria yang dapat digunakan untuk mengkaji kinerja suatu kegiatan.

Secara khusus *Earned Value* merupakan suatu teknik pemantauan pada proses konstruksi yang didasari konsep integrasi antara biaya dan waktu. Asumsi yang digunakan adalah bahwa kecenderungan yang ada dan terungkap pada saat pelaporan akan terus berlangsung. Keterangan yang memberitahukan proyeksi masa depan penyelenggaraan proyek merupakan masukan yang sangat berguna bagi pengelola maupun pemilik, karena dengan demikian mereka memiliki cukup waktu untuk memikirkan cara-cara menghadapi segala persoalan di masa yang akan datang. *Earned Value* merupakan pengembangan lebih lanjut dari teknik pemanfaatan kurva-S yang didasari konsep kumulatif biaya yang dikeluarkan

dengan mengintegrasikannya terhadap waktu serta prestasi nyata pekerjaan dilapangan, maka *Earned Value* diharapkan dapat lebih mengakomodasi kebutuhan pemantauan kinerja proyek.

Dalam proses perhitungan *Earned Value* dilakukakan pendekatan untuk menetapkan perkiraan biaya akhir dari suatu kondisi pada suatu saat dalam kurun waktu proyek, dikenal dua pendekatan yaitu: pendekatan kumulatif yang menganggap sisa pelaksanaan proyek hanya dapat menghabiskan sisa anggaran dan pendekatan matematis yang menganggap kinerja sistem tetap sampal akhir proyek. Masing-masing pendekatan memiliki keunggulan yang berbeda sehingga diperlukan acuan yang tepat dalam menentukan metode pendekatan yang akan dipakai sehingga dapat mengoptimalkan pengendalian suatu proyek.

Di negara sedang berkembang seperti Indonesia, dalam rangka meningkatkan taraf hidup, tuntutan akan terselenggaranya suatu kegiatan secara efisien (doing the right things) dan efektif (doing things right), makin terasa mengingat banyaknya kemajuan yang harus dikejar, sedangkan sumber daya yang tersedia baik yang berupa sumber daya manusia terampil maupun dana amat terbatas. Untuk itu studi ini mencoba melihat fenomena yang terjadi secara ilmiah dan lebih terstruktur, dengan tujuan mendapatkan gambaran tentang berlakunya rumus-rumus dan metode yang telah ada dalam penerapannya pada kondisi seperti di Indonesia.

1.2 Rumusan Masalah

Penggunaan metode pendekatan yang berbeda tentunya akan menghasilkan proyeksi keadaan proyek kedepan yang berbeda pula. Dengan pendekatan matematis yang mengasumsikan bahwa kinerja setelah pelaporan akan sama seperti kinerja rencana awal sampai ahir proyek, sehingga proyeksi waktu penyelesaian proyek adalah dengan menyesuaikan kurva rencana terhadap waktu pelaporan. Asumsi ini menganggap keadaan setelah pelaporan adalah tetap seperti rencana dengan penyesuaian yang dilakukan hingga saat pelaporan saja.

Sedangkan pendekatan secara kumulatif berdasakan pada asumsi bahwa kinerja yang ada pada saat pelaporan akan bertahan hingga ahir, sehingga prediksi waktu penyelesaian proyek sangat bergantung dengan keadaan dan kinerja dilapangan. Dari keadaan tersebut didapatkan beberapa rumusan masalah sebagai berikut:

- 1. Apakah perbedaan pendekatan matematis dan kumulatif dalam memproyeksi waktu penyelesaian suatu proyek?
- 2. Bagaimanakah tingkat akurasi pendekatan matematis dan kumulatif dalam memprediksi waktu penyelesaian suatu proyek?

1.3 Tujuan Penelitian

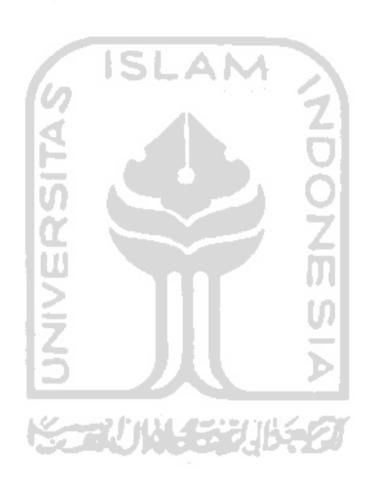
Penelitian ini bertujuan untuk:

1. Mengetahui perbedaan antara pendekatan matematis dan kumulatif dalam memproyeksikan waktu penyelesaian proyek dengan *Earned Value Concept*.

2. Mengetahui tingkat akurasi pendekatan matematis dan kumulatif dalam perhitungan *Earned Value* untuk memproyeksikan jadwal penyelesaian proyek.

1.4 Manfaat Penelitian

Manfaat yang dapat diambil dari penelitian ini antara lain adalah:


- 1. Menjadi alternatif pertimbangan dalam mengendalian suatu proyek konstruksi.
- 2. Memberikan sebuah pembahasan tentang *Earned Value* sebagai wacana dan pengetahuan bagi akademisi dan praktisi terkait.
- Menjadi acuan untuk pengembangan dan penelitian lebih lanjut dalam mengaplikasikan Earned Value sebagai metode pengendalian proyek di Indonesia.
- 4. Memberikan penilaian objektif terhadap kinerja *Earned Value* dalam pelaksanaan pengendalian proyek.

1.5 Batasan Masalah

Untuk menghindari terjadinya penyimpangan penulisan penelitian ini dari topik dan tujuan yang telah ditetapkan maka perlu adanya batasan permasalahan sebagai berikut ini.

- Data yang digunakan adalah data proyek konstruksi jalan raya dan gedung bertingkat pada proyek yang sudah selesai proses pengerjaannya.
- Data diambil dari sampel proyek yang berada di Yogyakarta dengan harapan menghindari variasi tingkat sumber daya manusia, sumber daya alam dan faktor lingkungan lain.

- 3. Pengolahan data menggunakan MS Excel.
- 4. Penelitian menitik beratkan pada perbandingan dalam penggunaan kedua jenis pendekatan berdasarkan waktu pengamatan yang dilaksanakan.
- 5. Hanya melakukan analisis dan pembatasan terhadap kinerja jadwal/waktu penyelesaian proyek.

BAB II

TINJAUAN PUSTAKA

Pada penelitian ini sangat dibutuhkan pustaka yang mendukung pencapaian tujuan penelitian, sehingga akan diperoleh suatu hasil yang akurat serta dapat dijadikan pedoman dalam menyelesaikan permasalahan-permasalahan yang akan terjadi. Tinjauan pustaka tersebut diambil dari hasil-hasil penelitian yang sudah dilakukan dan jurnal..

2.1 Penelitian Sebelumnya

Dari penelitian terdahulu yang telah dilakukan terdapat beberapa diantaranya yang mempunyai relevansi terhadap penelitian yang akan penulis lakukan, yang kemudian menjadi tinjauan pustaka bagi penulis dalam melaksanakan penelitian ini.

2.1.1 Arianto Daru Anggoro dan Arif Yustian, 2005

Dari laporan Tugas Akhir yang berjudul "Analisis Pengendalian Biaya dan Waktu Dengan Metode Konsep Nilai Hasil", studi kasus pada proyek pembangunan Gedung Bank BNI Purwokerto. Dari perhitungan yang dilakukan dengan metode konsep nilai hasil pada proyek pembangunan gedung BNI Purwokerto berdasarkan data yang diperoleh diantaranya RAB Rp.3.636.363.843,44, kurva-S, laporan keuangan, dan data kemajuan proyek

bulan Juni 2004 - Desember 2004. Dapat disimpulkan bahwa pada pelaporan ke-12, proyek tersebut akan mengalami penghematan sebesar Rp.1.546.805 dan dari segi waktu untuk menyelesaikan prestasi rencana yang telah ditentukan, dari hasil sekali *rescheduling* yang dilakukan maka penyelesaian proyek akan sesuai dengan batas waktu yang ditentukan selama 343 hari. Dapat disimpulkan pelaksanaan proyek tersebut berjalan lebih baik dari rencana.

ISLA

2.1.2 Bisma Nusantara 2003

Pada penelitian yang berjudul Evaluasi Kinerja Blaya Dan Waktu Dengan Menggunakan Konsep Nilai Hasil "Studi Kasus Pembangunan Laboratorium Terpadu UII". Dari analisis terhadap biaya dan waktu pada proyek laboratorium terpadu didapatkan hasil dari segi biaya rencana adalah: Rp.8.217.316.745,64 sementara peramalan biaya total proyek menurut konsep nilai hasil sebesar Rp.7.745.897.246,99.

Namun biaya pengeluaran aktual hingga akhir proyek sebesar Rp.7.925.687.280,50 sehingga proyek mengalami keuntungan sebesar Rp.291.614.591,14. Dari segi waktu proyek mengalami keterlambatan dari rencana *time schedule* pada pelaporan kedua. Namun dari waktu total yang diberikan oleh pemilik proyek, penyelesaian pekerjaan belum terlambat. Penyebab keterlambatan proyek adalah kurangnya sumber daya manusia, sehingga prestasi realisasi pekerjaan proyek lebih kecil dari prestasi rencana.

2.1.3 Arif Suseno dan Rusdi Hamzah, 2002

Pada proyek Janti Fly Over Dengan Metode Konsep Nilai Hasil. Berdasarkan data-data yang diperoleh diantaranya rencana anggaran biaya Rp.29.340.834.450, kurva-S, laporan keuangan, data kemajuan proyek Agustus-Oktober dapat disimpulkan secara berturut-turut dari pelaporan pertama hingga kelima bahwa proyek tersebut mengalami keuntungan sebesar:

- 1. Rp. 5.782.173.716,39
- 2. Rp. 5.961.756.693,39
- 3. Rp.6.198.123.757,68
- 4. Rp.7.373.518.363,81
- 5. Rp.7.861.515.650,00

Dari segi waktu proyek mengalami keterlambatan dari waktu rencana secara berturut-turut ; 1 hari, 1 hari, 5 hari, 3 hari, 1 hari. Berdasarkan hasil perhitungan maka dapat disimpulkan pada proyek pembangunan Janti Fly Over lebih baik dari rencana.

2.1.4 Anondho Basuki dan Sulaiman Lydiawati, 2003

Pada jurnal yang berjudul "Studi Perbandingan Perhitungan Earned Value Antara Pendekatan Kumulatif dan Matematis pada Proyek Konstruksi Rumah Tinggal". Dari jurnal ini dapat ketahui bahwa pada awal proyek pendekatan matematis lebih memiliki kecocokan untuk pemantauan dan

pengendalian proyek, sedangkan pada akhir proyek pendekatan kumulatif lebih memiliki kecocokan dalam pemantauan dan pengendalian proyek.

Hal ini diperkuat dengan kecenderungan grafik korelasi masing-masing metode pendekatan, dimana untuk metode matematis bertambahnya waktu menyebabkan deviasi yang lebih besar. Hal yang sebaliknya terjadi pada grafik pendekatan kumulatif. Dari kedua hasil diatas *Earned Value Concept* cukup layak untuk diterapkan pada kondisi lingkungan dengan standarisasi rendah.

2.2 Keaslian Penelitian

Penelitian yang akan dilakukan ini merupakan hal baru yang belum diteliti sebelumnya, karena terdapat perbedaan terhadap penelitian yang dilakukan sebelumnya. Pada jurnal Anondho Basuki dan Sulaiman Lydiawati, 2003 mereka menjadikan rumah tinggal sebagai sampel, sedangkan dalam penelitian yang akan dilakukan mengunakan gedung bertingkat dan proyek jalan raya sebagai sample dan terdapat perbedaan definisi matematis serta kumulatif yang digunakan dalam penelitian ini. Batasan permasalahan yang digunakan pada penelitian ini hanya pada kinerja jadwal saja sedangkan dalam jurnal mereka dilakukan pula terhadap kinerja biaya.

Karena terdapat perbedaan yang prinsip dari kedua jenis sampel yang digunakan seperti, pengorganisasian proyek, besaran anggaran yang digunakan, kompleksitas pekerjaan, serta karakteristik proyek. Untuk proyek gedung bertingkat dan jalan raya terdapat pengulangan pekerjaan yang menjadi pertimbangan tersendiri dalam mengevaluasi ketepatan metode pendekatan yang

akan digunakan dalam mengaplikasi *Earned Value Concept* untuk mengendalikan pelaksanaan suatu proyek. Selain itu dilakukan pula perbandingan terhadap EAS riil penyelesaian proyek.

Sedangkan dengan beberapa penelitian dan studi lain yang berkenaan dengan *Earned Value* sangat jelas perbedaannya. Untuk beberapa sampel penelitian yang ditampilkan diatas masing-masing hanya menekankan pengaplikasian *Earned Value* pada studi kasus terhadap salah satu proyek, jadi secara prinsip akan sangat berbeda.

Dari uraian diatas maka penelitian yang akan penulis lakukan dengan judul "Analisis Perbandingan Prakiraan Waktu Penyelesaian Proyek Dengan Metode Pendekatan Kumulatif (Konsep Nilai Hasil) Dan Pendekatan Matematis (Kurva-S Rencana)" dengan ruang lingkup dan batasan yang ada memiliki tingkat keaslian yang dapat dipertanggung-jawabkan.

BAB III LANDASAN TEORI

3.1 Proyek Konstruksi

Suatu proyek diartikan sebagai upaya yang diorganisasikan untuk mencapai tujuan, sasaran dan harapan-harapan penting dengan menggunakan anggaran dana serta sumber daya yang tersedia dan harus diselesaikan dalam jangka waktu tertentu. Proyek merupakan rangkaian kegiatan panjang yang dimulai sejak direncanakan, kemudian dilaksanakan, sampai benar-benar memberikan hasil atau *output* sesuai dengan perencanaannya.

Pada umumnya proyek konstruksi merupakan suatu rangkaian mekanisme tugas atau kegiatan yang rumit dengan mengandung berbagai permasalahan serta kesulitan tersendiri. Berdasarkan kondisi yang kompleks tersebut, membawa kita kepada suatu pertanyaan besar, bagaimana agar suatu proyek dapat diselesaikan dengan tepat waktu, tepat mutu sesuai dengan peraturan, perundangan serta ketentuan lain yang berlaku, dan tetap dalam batas-batas anggaran yang telah direncanakan serta memberikan keuntungan pada pihak pelaksana proyek.

Kompleksitas jaringan mekanisme kegiatan yang apabila tidak ditangani secara sungguh-sungguh dapat menimbulkan berbagai permasalahan yang akan memberi dampak pada terlambatnya penyelesaian, penyimpangan mutu hasil, terdapat sisa anggaran besar karena proyek tidak selesai, pembiayaan membengkak, kekacauan dalam koordinasi pemborosan sumber daya, atau bahkan

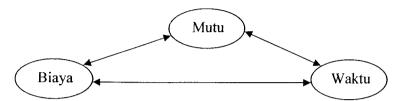
memungkinkan persaingan tidak sehat di antara para pelaksana, serta kegagalan untuk mencapai tujuan dan sasaran yang diinginkan.

3.1.1 Kinerja Suatu Proyek Konstruksi

Kinerja suatu proyek dapat diartikan sebagai pencapaian atau prestasi dari keseluruhan komponen yang terlibat pada kurun waktu tertentu terhadap rencana yang telah ditetapkan sebelumnya. Dalam proyek konstruksi kinerja suatu proyek digambarkan dari bobot pekerjaan yang telah diselesaikan dan anggaran dana yang telah dikeluarkan pada kurun waktu tertentu dari pelaksanaan proyek secara keseluruhan yang dibandingkan dengan rencana pencapaian bobot dan pengeluaran anggaran pada rencana pelaksanaan proyek.

Kinerja suatu proyek dapat berasumsi positif bila terdapat prestasi pada bobot pekerjaan yang telah diselesaikan, namun hal tersebut tidak terlepas dari anggaran yang telah dikeluarkan. Karena mungkin saja prestasi pada bobot pekerjaan yang terselesaikan menimbulkan pembengkakkan pada anggaran. Untuk itu diperlukan pengendalian terpadu dari keseluruhan parameter penyelesaian proyek dalam menentukan kinerja proyek yang telah dilaksanakan. Beberapa yang dapat digunakan untuk gambaran kinerja suatu proyek, seperti Kurva-S dan Metode Nilai Hasil (Earned Value Concpt).

Agar diperoleh kinerja yang optimal diperlukan sistem manajemen proyek yang merupakan proses terpadu dimana individu-individu sebagai bagian dari organisasi yang dilibatkan untuk memelihara, mengembangkan, mengendalikan, dan menjalankan program-program, yang kesemuanya diarahkan pada sasaran


yang telah ditetapkan dan berlangsung secara menerus seiring berjalannya waktu (Istimawan Dipohusodo,1995).

3.1.2 Integrasi Biaya, Waktu dan Mutu

Waktu penyelesaian yang dibutuhkan untuk proses konstruksi selalu tertera dalam dokumen kontrak karena akan berpengaruh penting terhadap nilai pelelangan dan pembiayan pekerjaannya sendiri dengan tidak boleh melanggar spesifikasi mutu yang telah ditentukan. Penetapan jangka waktu pelaksanaan proyek terikat erat dengan pembiayaan bahkan saling tergantung. Sehingga pengendalian waktu pelaksanaan konstruksi umumnya dilakukan bersamaan dan tidak terlepas dari pengendalian biaya. Selama berlangsung tahap konstruksi fisik, kontraktor bertanggung jawab untuk menyediakan jadwal rencana kerja terperinci yang memenuhi seluruh aspek persyaratan (mutu) yang tercantum didalam dokumen kontrak.

Tugas pokok utama dalam pengendalian waktu dan biaya adalah merencanakan dan menganalisis proyek dalam bentuk struktur perincian kegiatan dan anggaran. Kemudian dikembangkan menjadi jadwal rencana kerja utama yang dilengkapi dengan rambu-rambu marka atau titik kontrol dan jadwal rencana anggaran biaya. Keduanya merupakan alat pokok untuk mengendalikan faktorfaktor waktu dan biaya dari kinerja proyek. Selain itu beberapa alat lain berupa anggapan-anggapan, informasi data dasar dan keluaran-keluaran juga dipakai sebagai pengendali pada berbagai titik kontrol. Disamping itu, untuk kepentingan berbagai tataran manajemen, perlu dikumpulkan data-data penting untuk diubah

menjadi informasi manajemen. Secara skematis hubungan antara biaya, mutu dan waktu dapat digambarkan sebagai berikut

Gambar 3.1 Skema Integrasi Biaya, Waktu dan Mutu

3.2 Pengendalian Proyek

Dalam pengendalian proyek diusahakan agar pekerjaan berjalan sesuai dengan perencanaan, maka aspek dan objek pengendalian sama dengan perencanaan. Aspek-aspek yang akan dipantau dan dikendalikan adalah biaya, jadwal, mutu yang ingin dicapai. Selain itu perlu ditumbuhkan suasana yang mendukung sebagai syarat tercapainya maksud pengendalian dilingkungan proyek yang menurut Iman Soeharto(1995), dengan cara sebagai berikut:

- Menciptakan sadar akan anggaran dan jadwal. Ini berarti meminta semua pihak penyelenggara proyek menyadari bagaimana dampak kegiatan yang dilakukan terhadap biaya dan jadwal.
- 2. Meminimalkan biaya proyek dengan melihat kegiatan-kegiatan apa saja yang biayanya bisa dihematkan.
- 3. Mengkomunikasikan ke semua pihak, perihal kinerja pemakaian dana dan menekan potensi adanya area-area rawan guna tindakan koreksi.

3.2.1 Definisi Pengendalian Proyek

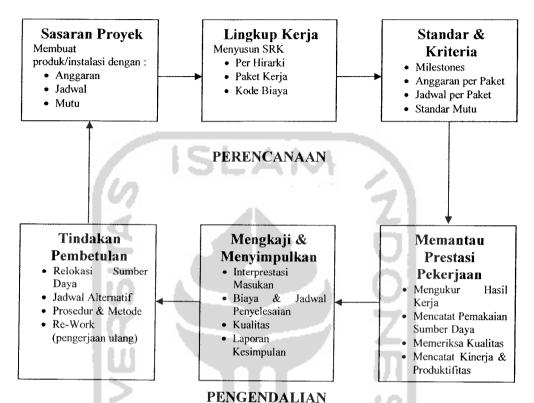
Pengendalian adalah suatu tindakan untuk memonitoring serta membandingkan pelaksanaan dengan perencanaan agar penyimpangan yang terjadi dapat segera diantisipasi. Kegiatan pengendalian proyek dilakukan pada saat pelaksanaan proyek pada tingkat kemajuan tertentu dengan tujuan untuk mengumpulkan informasi status akhir kemajuan proyek sehingga diketahui apakah pengeluaran proyek melebihi anggaran atau kemajuan sudah sesuai dengan jadwal, (RJ Mockler, 1972).

3.2.2 Fungsi Pengendalian Proyek

Pengendalian diperlukan agar pelaksanaan kegiatan dilapangan sesuai dengan program yang telah ditetapkan. Kesesuaian hasil pekerjaan dengan perencanaan dinilai berdasarkan kriteria dan sasaran pengendalian yang pada dasarnya terdiri dari pengendalian waktu, biaya, dan mutu. Pengendalian proyek berfungsi untuk memantau, mengkaji, mengadakan koreksi, dan membimbing agar kegiatan menuju kearah sasaran yang telah ditetapkan, (Iman Soeharto, 1995).

Pengendalian melalui pemantauan (monitoring) berarti melakukan observasi serta pengujian pada interval tertentu untuk memeriksa baik kinerja produk maupun dampak samping yang tidak diharapkan. Oleh karena itu, fungsi pengendalian dan pengawasan menjadi hal penting di dalam proses rekayasa ataupun eksperimentasi pada umumnya. Pemantauan merupakan proses yang terus-menerus (continue) dengan tujuan adalah mengukur apakah proyek masih tetap pada jalannya. Obyek pemantauan kebudayaan tentang masukan dan keluaran dari proses, dan membandingkan hasil pekerjaan yang dapat dicapai

terhadap yang direncanakan sesuai dengan yang ditetapkan dalam spesifikasi, (Dipohusodo, 1995).


3.2.3 Proses Pengendalian Proyek

Monitoring dan pelaporan adalah alat yang diperlukan dalam proses pengendalian proyek, monitoring dapat diartikan sebagai mengamat-amati dan mempengaruhi kegiatan-kegiatan pokok dan hasil pekerjaan, sedangkan pelaporan berarti memberikan informasi kepada seseorang tentang kemajuan, masalah-masalah dan kemungkinan-kemungkinan dikemudian hari. Sedangkan pengendalian atau pengawasan cenderung berarti mengambil tindakan yang perlu pada saat yang tepat. Monitoring berbeda dengan evaluasi, monitoring mengukur apakah proyek masih tetap pada jalannya dan dilakukan secara terus menerus (continue), sedangkan evaluasi mempermasalahkan apakah proyek berjalan secara benar dan dilakukan secara berkala pada kurun waktu tertentu. Langkah-langkah proses pengendalian proyek dapat diuraikan sebagai berikut:

- 1. Menentukan sasaran.
- 2. Definisi lingkup kerja.
- 3. Menentukan standar dan kriteria.
- 4. Merancang sistem informasi.
- 5. Mengkaji dan menganalisis.
- 6. Mengadakan tindakan pembetulan.

Perubahan dan penyimpangan selalu terjadi, tetapi dengan siklus perencanaa — pengendalian — koreksi yang terus menerus maka akibat penyimpangan itu dapat ditekan sekecil mungkin. Menurut Iman Soeharto (1995),

siklus perencanaan – pengendalian dapat ditampilkan dalam gambar sebagai berikut :

Gambar 3.2 Siklus Perencanaan dan Pengendalian Proyek

3.2.4 Pengendalian Proyek Yang Efektif

Agar fungsi pengendalian dapat efektif diperlukan pemilihan metode pengendalian yang tepat didukung oleh sistem informasi yang mencukupi. Suatu pengendalian proyek yang efektif ditandai oleh hal-hal berikut ini :

- 1. Tepat waktu dan peka terhadap penyimpangan.
- 2. Macam tindakan yang tepat dan benar.
- 3. Terpusatkan pada masalah atau titik yang sifatnya strategis dilihat dari segi penyelenggaraan proyek.

- 4. Mampu mengetengahkan dan mengkomunikasikan masalah dan penemuan.
- 5. Kegiatan pengendalian tidak melebihi keperluan.
- 6. Dapat memberikan petunjuk berupa prakiraan hasil pekerjaan yang akan datang.

Salah satu metode untuk meningkatkan efektivitas dalam memantau dan mengendalikan proyek adalah Konsep Nilai Hasil (Earned Valeu Concept).

Dengan memakai dasar asumsi tertentu, metode tersebut dapat dikembangkan untuk membuat prakiraan masa depan proyek, baik jadwal maupun biaya.

3.2.5 Pengendalian Waktu

Pengendalian waktu bertujuan untuk menjaga agar waktu pelaksanaan sesuai dengan rencana jadwal waktu yang telah ditetapkan sehingga dapat diketahui kemajuan proyek. Sebagaimana diketahui bahwa tolak ukur waktu pelaksanaan proyek adalah rencana waktu pelaksanaan (time schedule) proyek sehingga dalam pengendalian waktu proyek ditinjau dari pengukuran waktu pelaksanaan yang dibandingkan dengan rencana waktu pelaksanaan proyek tersebut sehingga informasi-informasi berupa jadwal induk, bobot persentase setiap item pekerjaan dan laporan kemajuan (progress) proyek dapat ditentukan.

A. Rencana Waktu Pelaksanaan

Rencana waktu (jadwal) pelaksanaan adalah penjabaran perencanaan proyek menjadi urutan langkah-langkah pelaksanaan pekerjaan untuk mencapai sasaran. Jadwal waktu pelaksanaan harus telah dipersiapkan sebelum proyek dimulai, agar dalam pelaksanaan dapat diketahui kemajuan pekerjaan sehingga dapat dibandingkan dengan rencana yang telah dibuat. Jadwal tersebut menjadi

pedoman untuk melaksanakan kegiatan proyek sehingga dapat diketahui tahapantahapan pekerjaan yang harus dilakukan (Iman Soeharto, 1995).

Adapun tujuan pembuatan jadwal waktu pelaksanaan adalah:

- 1. Untuk menentukan target lamanya waktu pelaksanaan proyek.
- Sebagai pedoman bagi pelaksanaan untuk memudahkan di dalam melaksanakan pekerjaannya.
- Untuk memperkirakan alokasi sumber daya yang harus disediakan setiap kali diperlukan, agar proyek berjalan dengan lancar.
- Untuk mengkontrol kemajuan pekerjaan, sehingga apabila ada keterlambatan didalam pelaksanaan dapat diketahui sesegera mungkin dan diambil langkahlangkah penanggulangannya.
- 5. Untuk mengevaluasi hasil pekerjaan, dimana hasil evaluasi dapat dipakai sebagai pedoman untuk pelaksanaan pekerjaan yang sejenis.

Jenis rencana kerja yang sering dipergunakan di proyek adalah Diagram Balok (Gantt Chart) atau sering disebut Bart Chart, karena mudah dibuat, mempunyai bentuk yang sederhana, dan cepat dimengerti. Bentuk rencana kerja ini berupa daftar urutan pekerjaan-pekerjaan, bobot persentase (%) yang didapat dari persentase anggaran pada setiap item pekerjaan teerhadap anggaran total proyek, dan garis-garis lurus mendatar yang menunjukkan jangka waktu pelaksanaan yang dibutuhkan untuk menyelesaikan bagian-bagian pekerjaan yang bersangkutan. Apabila kumulatif bobot persentase pekerjaan diplotkan dalam diagram balok, maka akan tergambar kurva yang dikenal sebagai kurva S.

B. Laporan Kemajuan

Untuk mengetahui status kemajuan proyek pada saat pelaksanaan, maka dibuat laporan kemajuan proyek sehingga dapat diketahui adanya penyimpangan terhadap rencanan dengan melakukan pengukuran pada pekerjaan yang telah dilaksanankan. Hasil pengukuran dituangkan dalam suatu laporan periodik baik mingguan maupun bulanan. Laporan mingguan pada umumnya mengupas kegiatan operasional jangka pendek di lapangan yang berkaitan dengan pencapaian kemajuan proyek. Sedangkan laporan bulanan bertujuan untuk memperoleh keterangan perihal kemajuan pelaksanaan dan kendala-kendala yang dihadapi, kemudian mengambil keputusan untuk pelaksanaan di bulan-bulan berikutnya yang ditujukan pada pimpinan menengah dan atas dari proyek dan perusahaan.

Isi laporan merupakan hasil evaluasi dari masing-masing pekerjaan kemudian diintegrasikan dengan mencerminkan keadaan proyek secara keseluruhan. Sistem informasi berupa laporan-laporan ini sebaiknnya memberikan keterangan yang singkat, jelas dan dimengerti.

Hal-hal yang perlu dilaporkan di dalam suatu rapat bulanan meliputi :

- 1. Jumlah pemakaian material.
- 2. Jumlah pemakaian tenaga kerja.
- 3. Jumlah pemakaian perlatan.
- 4. Kemajuan pekerjaan.

3.2.6 Pengendalian Biaya

Posisi biaya proyek pada saat monitor tidak lepas dari status (kemajuan) pada saat monitor. Dengan kata lain, status atau biaya proyek pada saat monitor telah diperoleh dengan membandingkan total pengeluaran biaya (berdasarkan laporan keuangan) dengan proyeksi rencana anggaran pada tingkat kemajuan tercapai pada saat yang sama (berdasarkan laporan *progress*). Dari sini akan tersimpulkan apakah biaya proyek pada tingkat *progress* tersebut lebih besar, sama, atau lebih kecil dari proyeksi anggaran biaya yang direncanakan.

A. Anggaran Biaya Proyek

Anggaran biaya merupakan perencanaan terperinci perkiraan biaya dari sebagian atau keseluruhan kegiatan proyek yang berkaitan dengan rencana jadwal pelaksanaan pekerjaan akan menjadi patokan dasar atau tolak ukur kegiatan pengendalian. Iman Soeharto (1995), berpendapat bahwa secara garis besar anggaran biaya pelaksanaan proyek terdiri dari:

- Biaya langsung (direct cost), yaitu biaya yang harus dikeluarkan dan berhubungan langsung dengan pekerjaan-pekerjaan di lapangan, seperti biaya tenaga kerja, material dan peralatan.
- Biaya tak langsung (indirect cost), yaitu biaya yang harus dikeluarkan dan tidak berhubungan langsung dengan kemajuan kegiatan dilapangan, seperti gaji personil, transportasi, dana overhead kantor pusat, sewa alat, dan bunga bank.

Sehinga total biaya proyek adalah jumlah biaya langsung dan tidak langsung dan hal tersebut sangat dipengaruhi oleh jadwal waktu pelaksanaan.

Pada pihak pemilik, anggaran proyek pada nilai kontrak biasanya terdiri dari total anggaran fisik dan unsur keuntungan sehingga tidak diketahui perbedaan antara biaya langsung dan biaya tidak langsung.

B. Alokasi Anggaran

Metode pengendalian proyek perlu disusun dengan baik agar dapat dipakai untuk mengendalikan penggunaan sarana atas anggaran yang ada. Biasanya dalam anggaran dinyatakan pula rencana persentase pengeluaran tiap bulan yang berdasarkan time schedule yang telah dibuat dan hal tersebut merupakan alokasi anggaran yang bertujuan untuk mengetahui kapan dan berapa besar anggaran tersebut dikeluarkan. Apabila pada saat pelaksanaan terjadi revisi time schedule, maka alokasi anggaran pada bulan berikutnya akan mengikuti rencana jadwal pelaksanaan yang telah direvisi.

C. Laporan Biaya Proyek

Untuk mengetahui status biaya pada saat pengukuran kemajuan pekerjaan, dilakukan dengan cara membandingkan rencana anggaran biaya pada saat kemajuan (progress) tercapai dengan laporan pengeluaran biaya, sampai dengan saat monitoring. Dengan adanya laporan pengeluaran biaya baik laporan harian, mingguan, atau bulanan, manajer proyek selaku pimpinan proyek beserta personil inti lainnya secara terus menerus mengendalikan segala macam sumber daya (material, tenaga kerja, dan peralatan) serta faktor penunjang lain yang akan mempengaruhi besar kecilnya biaya proyek. Laporan biaya proyek dikelompokkan menjadi biaya langsung (direct cost) dan biaya tidak langsung (indirect cost).

3.3 Metode Pengendalian Proyek

Seperti telah diuraikan sebelumnya, tugas pokok yang pertama kali dalam pelaksanaan penggendalian waktu dan biaya adalah merencanakan dan menganalisis proyek dalam bentuk struktur perincian kegiatan dan anggaran. Pengendalian biaya yang terutama bertujuan menjamin agar biaya akhir proyek tidak melampaui rencana anggaran pelaksanaannya, sehinga pengendalian biaya secara teratur harus dilakukan sejak saat-saat awal. Menurut Istimawan Dipohusodo (1995) alat bantu yang baik dalam pengendalian adalah rencana anggaran pelaksanaan yang mengkait mutu, volume dan harga satuan. Terutama untuk komponen-komponen biaya utama yang menentukan.

Disamping itu alat bantu lainnya dalam upaya pengendalian proyek adalah estimasi biaya akhir yang secara teratur bisa jadi harus direvisi agar dapat mencerminkan keadaan nyata pada saat tertentu. Telah dikenal beberapa metode pengendalian proyek yang cukup efektif dan terus mengalami penyempurnaan dan penyesuaian dari waktu ke waktu dan pemilihan penggunaannya disesuaikan dengan kebutuhan yang terkait dengan tingkat kompleksitas dari suatu proyek kontruksi itu sendiri.

3.3.1 Bagan Balok (Gantt Chart) atau Bar Chart

Bagan balok dikembangkan oleh Henry L. Grantt merupakan rencana kerja yang paling sederhana dan sering digunakan pada proyek konstruksi karena tidak terlalu rumit dan mudah dipahami. Diagram batang secara grafis menguraikan suatu proyek yang terdiri dari kumpulan tugas atau kegiatan yang telah dirumuskan dengan baik.

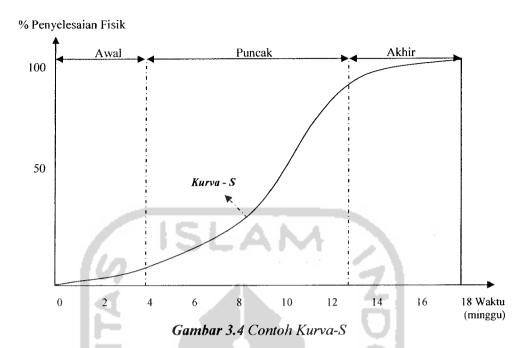
Bentuk rencana kerja ini terdiri dari arah vertikal yang menunjukan jenis pekerjaan dan arah horizontal yang menunjukkan jangka waktu yang dibutuhkan oleh setiap pekerjaan, yaitu waktu mulai dan waktu akhir, juga secara tidak langsung menunjukkan bobot atau nilai dari suatu kegiatan tersebut. Kemajuan pekerjaan yang sering diungkapkan sebagai prestasi pekerjaan pada suatu saat ditunjukkan oleh besarnya bobot aktual kumulatif dari kegiatan atau beberapa kegiatan. Beberapa keuntungan pemakaian bagan balok adalah sebagai berikut:

- 1. Mudah pembuatannya.
- 2. Mudah pembacaannya.
- 3. Sangat cocok untuk kegiatan yang sederhana.

Sedangkan kelemahan dari pemakaian bagan balok diantaranya:

- 1. Kurang memberi gambaran dari ketergantungan antara kegiatan.
- 2. Tidak dapat diketahui kegiatan mana yan kritis.
- 3. Sulit dimonitor penyimpangan pada pertengahan kegiatan.
- 4. Tidak mengetahui adanya tenggang waktu untuk kegiatan yan tidak kritis.
- Sulit untuk menyusun kaitan antara kegiatan yang bersifat kompleks pada proyek yang berukuran menengah atau besar.

No	Pekerjaan	Waktu (minggu)											
	i okonjadii	1	2	3	4	5	6	7	8				
1	Persiapan												
2	Pelaksanaan												
3	Penyelesaian												


Gambar 3.3 Contoh Bagan Balok

3.3.2 Kurva-S

Kurva-S adalah pengembangan dan pengabungan dari diagram batang dan Hannum Curve, kurva-S digunakan untuk menggambarkan dan menggungkapkan nilai-nilai kuantitas dalam hubungannya dengan waktu. Kurva-S menggambarkan secara kumulatif kemajuan pelaksanaan proyek, kriteria ataupun ukuran kemajuan proyek yang dapat berupa bobot prestasi pelaksanaan atau produksi, nilai uang yang dibelanjakan, jumlah kuantitas atau volume pekerjaan, penggunaan sumber daya, jam, tenaga kerja dan masih banyak lagi.

Kurva-S dibuat dengan sumbu-X menunjukkan parameter waktu sedangkan sumbu-Y sebagai nilai kumulatif persentase (%) bobot pekerjaan. Kurva ini disebut sebagai kurva-S karena berbentuk huruf S, hal ini disebabkan :

- Pada tahap awal (sekitar kurang 40% waktu rencana) kurva agak landai, hal ini disebakan pada tahap awal kegiatan proyek relatif sedikit dan kemajuan awalnya bergerak lambat. Dan garis kurva yang terbentuk dapat diasumsikan sebagai persamaan kuadratik atau fungsi pangkat dua.
- 2. Diikuti kegiatan yang bergerak cepat dalam kurun waktu yang lebih lama (pada 40% s.d. 70 atau 80% waktu rencana), pada tahap ini terdapat banyak kegiatan proyek yang dikerjakan dengan volume kegiatan yang lebih banyak. Dari kurva yang terbentuk secara umum dapat diasumsikan sebagai garis persamaan linier dengan gradian kemiringan tertentu
- Pada tahap akhir kecepatan kemajuan menurun dan berhenti pada titik akhir dimana semua kegiatan proyek telah selesai. Sama dengan bagian awal garis kurva yang terbentuk diasumsikan sebagai persamaan kuadratik.

Secara umum kurva-S dapat digunakan dalam hal:

- 1. Analisis kemajuan proyek secara keseluruhan.
- 2. Analisis kemajuan untuk satu unit pekerjaan atau elemen-elemennya.
- 3. Untuk menyiapkan rancangan produksi gambar, menyusun pengajuan pembelian bahan material, penyiapan alat maupun tenaga kerja.
- 4. Analisis dana proyek.

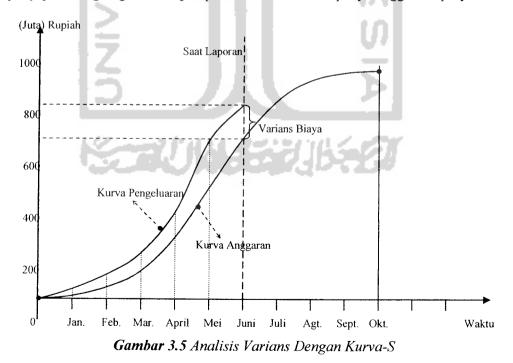
Kurva-S sangat berfaedah untuk dipakai sebagai laporan bulanan yang diajukan kepada manajer pelaksana pengendalian karena kurva ini dapat dengan jelas menunjukan kemajuan proyek dalam bentuk yang mudah dipahami.

3.3.3 Analisis Varians

Pada setiap rapat yang membicarakan aspek pengendalian biaya dan jadwal akan selalu ditanyakan bagaimana kemajuan pelaksanaan kegiatan, apakah pengeluaran melebihi anggaran atau kemajuan sesuai jadwal. Untuk itu,

menjelang saat pelaporan dikumpulkan informasi mengenai status akhir kemajuan proyek dengan menghitung jumlah unit yang diselesaikan kemudian membandingkan dengan perencanaan, atau melihat catatan penggunaan sumber daya, dan membandingkan dengan anggaran. Teknik demikian dikenal sebagai analisis varians, yang menurut Iman Soeharto (1995) akan memperlihatkan perbedaan antara hal-hal berikut:

- 1. Biaya pelaksanaan dengan anggaran.
- 2. Waktu pelaksanaan dengan jadwal.
- 3. Tanggal mulai pelaksanaan dengan rencana.
- 4. Tanggal akhir pekerjaan dengan rencana.
- 5. Angka kenyataan pemakaian tenaga kerja dengan anggaran.
- 6. Jumlah penyelesaian pekerjaan dengan rencana.


Disamping menunjukan angka perbedaan kumulatif antara rencana dan pelaksanaan pada saat pelaporan, analisis varians mendorong untuk melacak dan mengkaji di mana dan kapan telah terjadi varians yang paling dominan dan kemudian mencari penyebabnya untuk diadakan koreksi. Terjadinya varians biaya yang relatif besar dapat ditimbulkan oleh berbagai sebab, misalnya oleh perencanaan, penggunaan ataupun jumlah anggaran yang tidak tepat atau karena pelaksanaan pekerjaan lebih cepat, dan lain-lain. Selain dapat digunakan untuk memantau kemajuan proyek dapat pula digunakan untuk kegiatan akuntansi dan audit yang berfungsi antara lain untuk meyakinkan apakah pembebanan biaya telah sesuai dengan prosedur dan alokasi, termasuk verifikasi dan penelitian kebenaran apakah pekerjaan telah dilaksanakan sesuai rencana dan anggaran. Jadi

pendekatan dengan cara analisis varians akan memberi gambaran hasil kerja masa lalu dan menunjukan perbandingan antara hasil pelaksanaan dan perencanaan.

A. Analisis Varians dengan Kurva-S

Cara lain untuk memperagakan adanya varians adalah dengan menggunakan grafik. Grafik dibuat dengan sumbu-X sebagai nilai kumulatif biaya atau jam-orang yang telah digunakan atau persentase (%) penyelesaian pekerjaan, sedangkan sumbu-Y menunjukkan parameter waktu. Ini berarti menunjukkan kemajuan volume pekerjaan yang diselesaikan sepanjang siklus proyek.

Bila grafik tersebut dibandingkan dengan grafik serupa yang disusun berdasarkan perencanaan (kumulatif pengeluaran berdasarkan anggaran uang/jamorang) maka akan segera terlihat jika terjadi penyimpangan. Dengan memiliki sifat seperti tersebut dan pembuatanya yang relatif cepat dan mudah, maka metode penyajian dengan grafik S dijumpai secara luas dalam penyelenggaraan proyek.

B. Analisis Varians dengan Kombinasi Bagan Balok dan Kurva-S

Salah satu teknik pengendalian kemajuan proyek adalah memakai kombinasi grafik S dan tonggak kemajuan (milestone). Milestone adalah titik yang menandai suatu peristiwa yang dianggap penting dalam rangkaian pelaksanaan pekerjaan proyek. Peristiwa itu dapat berupa saat mulai atau berakhirnya pekerjaan. Arti penting ini misalnya dihubungkan dengan keterkaitan peristiwa tersebut terhadap pekerjaan lain yang tidak dapat dimulai atau dilanjutkan sebelum milestone terlaksana.

Titik *milestone* ditentukan pada waktu menyiapkan perencanaan dasar yang disiapkan sebagai tolak ukur kegiatan pengendalian kemajuan proyek. Penggunaan *milestone* yang dikombinasikan dengan grafik S amat efektif untuk mengendalikan pembayaran berkala.

3.3.4 Earned Value

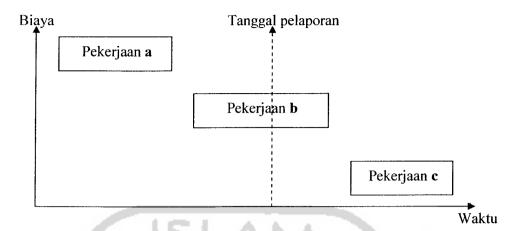
Kelemahan metode analisis varians yang telah dijelaskan diatas adalah menganalisis varians biaya dan jadwal masing-masing secara terpisah, dan tidak mengungkapkan masalah kinerja kegiatan yang sedang dilakukan. Karena walaupun suatu kegiatan tertentu pada saat pelaporan dinyatakan memiliki kemajuan melampaui jadwal yang direncanakan, tetapi belum tentu kegiatan tersebut sesuai dengan anggaran yang dialokasikan untuknya.

Untuk meningkatkan efektivitas dalam memantau dan mengendalikan kegiatan proyek, perlu dipakai metode selain yang telah dibicarakan diatas yang juga mampu menunjukkan kinerja kegiatan, yakni dengan konsep nilai hasil (earned value concept). Dengan memakai dasar asumsi tertentu, metode tersebut

dapat dikembangkan untuk membuat prakiraan atau proyeksi keadaan masa depan proyek, dengan demikian akan ada cukup waktu untuk memikirkan solusi dari masalah yang mungkin timbul, yang berupa pertanyaan berikut:

- 1. Dapatkah proyek diselesaikan dengan dana sisa yang ada?
- 2. Berapa besar perkiraaan biaya untuk menyelesaikan proyek?
- 3. Berapa besar proyeksi keterlambatan pada akhir proyek, bila kondisi masih seperti saat pelaporan?

A. Biaya Pekerjaan Berdasarkan Anggaran


Konsep nilai hasil merupakan suatu konsep untuk menghitung biaya menurut anggaran sesuai dengan pekerjaan yang telah diselesaikan atau dilaksanakan (budget cost of work performed). Rumus nilai hasil dari pekerjaan yang telah dilaksanakan adalah:

B. Biaya Pekerjaan Yang masih Berlangsung

Pada kenyataannya dalam suatu proyek terdapat berbagai macam pekerjaan yang sedang berlangsung tidak bersamaan, misalnya pada saat pelaporan terdapat pekerjaan a, b, c dengan kemajuan yang berbeda-beda, yaitu

- 1. Pekerjaan a telah selesai dilaksanakan 100%.
- 2. Pekerjaan b telah berlangsung, dan pada saat pelaporan belum 100% selesai.
- 3. Pekerjaan c belum berjalan.

Keadaan ini dapat dijelaskan pada gambar dibawah ini:

Gambar 3.6 Skema Paket Kerja Dengan Kegiatan Berbeda Kemajuan

Untuk menghitung nilai paket kerja diatas, pendekatan yang digunakan adalah dengan memperhatikan bobot komponen-komponen pekerjaan tersebut terhadap total (a + b + c), sedangkan nilai hasil komponen-komponen adalah sebagai berikut:

- 1. Komponen a telah 100% selesai = 100
- 2. Komponen b = besarnya persentase penyelesaian fisik sesungguhnya.
- 3. Komponen c belum mulai = 0

C. Indikator Earned Value ACWP, BCWP, dan BCWS

Konsep nilai hasil dapat digunakan untuk menganalisi kinerja dan membuat prakiraan pencapaian sasaran dengan menggunakan 3 indikator yaitu :

1. ACWP (Actual Cost of Work Performed) adalah jumlah biaya aktual dari pekerjaan yang telah dilaksanakan. Biaya ini diperoleh dari data-data akuntansi atau keuangan proyek pada tanggal pelaporan, yaitu catatan segala pengeluaran biaya aktual dari paket kerja. Jadi ACWP merupakan jumlah

aktual dari pengeluaran atau dana yang dipergunakan untuk melaksanakan pekerjaan pada kurun waktu tertentu.

- 2. BCWP (Budgeted Cost of Work Performed) adalah jumlah biaya yang seharusnya dikeluarkan untuk pekerjaan yang telah dilaksanakan selama kurun waktu tertentu menurut perencanaan. Nilai BCWP sangat tergantung pada prestasi pekerjaan fisik yang telah dicapai pada saat pelaporan.
- 3. BCWS (Budgeted Cost of Work Schedule) adalah jumlah biaya yang dikeluarkan menurut rencana selama kurun waktu tertentu. Nilai BCWS dapat diketahui dengan perencanaan pada saat pelaporan pekerjaan tersebut.

Dengan menggunakan 3 indikator diatas dapat dihitung berbagai faktor yang menunjukkan kemajuan dan kinerja proyek seperti :

1. Analisis Varian

Varian Biaya (CV) adalah perbedaan antara biaya yang telah dikeluarkan dengan biaya yang seharusnya dikeluarkan sesuai dengan prestasi pekerjaan. Besarnya varian biaya dapat bernilai positif atau negatif. Bila varian biaya bernilai positif berarti proyek mengalami keuntungan, sedangkan bila bernilai negatif berarti proyek mengalami kerugian. Varian biaya dapat dihitung menggunakan rumus seperti tercantum dibawah ini:

$$CV = BCWP - ACWP$$

Varian Jadwal (SV) adalah besarnya perbedaan jadwal yang terjadi sebanding dengan perbedaan biaya yang terjadi. Besarnya nilai varian jadwal dapat bernilai positif maupun negatif. Bila varian jadwal bernilai positif berarti

proyek tersebut mengalami kemajuan, bila bernilai negatif berarti proyek tersebut mengalami keterlambatan. Varian jadwal menggunakan rumus berikut :

$$SV = BCWP - BCWS$$

Angka negatif varian biaya yang menunjukkan bahwa biaya lebih tinggi dari anggaran disebut *Cost Overrun*. Angka nol menunjukkan pekerjaan terlaksana sesuai dengan biaya. Sementara angka positif berarti pekerjaan terlaksana dengan biaya kurang dari anggaran, hal ini disebut *Cost Underrun*. Demikian pula dengan varian jadwal, angka negatif berarti terlambat, angka nol berarti tepat dan angka positi berarti lebih cepat dari rencana. Dengan tabel rangkuman berikut menunjukkan rincian analisis varian terpadu:

Tabel 3.1 Analisis Varian Terpadu

Varian	Varian									
Jadwal	Biaya	Keterangan								
(SV)	(CV)	m i								
(BCWP-BCWS)	(BCWP-ACWP)	171								
	2									
		Pekerjaan terlaksana lebih cepat dari jadwal dengan								
Positif	Positif	biaya pengeluaran lebih sedikit dari anggaran								
1		Pekerjaan terlaksana tepat waktu rencana dengan								
Nol	Positif	biaya pengeluaran lebih kecil dari anggaran								
		Pekerjaan terlaksana lebih cepat dari jadwal dengan								
Positif	Nol	biaya pengeluaran sesuai dengan anggaran								
1.4	/P	Pekerjaan terlaksana sesuai jadwal dan biaya								
Nol	Nol	pengeluaran sesuai dengan anggaran								
		Pekerjaan terlaksana terlambat dari jadwal dan								
Negatif	Negatif	biaya pengeluaran lebih besar dari anggaran								
		Pekerjaan terlaksanan sesuai jadwal dan biaya								
Nol	Negatif	pengeluaran lebih besar dari anggaran								
		Pekerjaan terlaksana terlambat dari jadwal dan								
Negatif	Nol	biaya pengeluaran sesuai dengan anggaran								
		Pekerjaan terlaksanan terlambat dari jadwal dan								
Negatif	Positif	biaya pengeluaran lebih sedikit dari anggaran								
		Pekerjaan terlaksanan lebih cepat dari jadwal dan								
Positif	Negatif	biaya pengeluaran lebih besar dari anggaran								

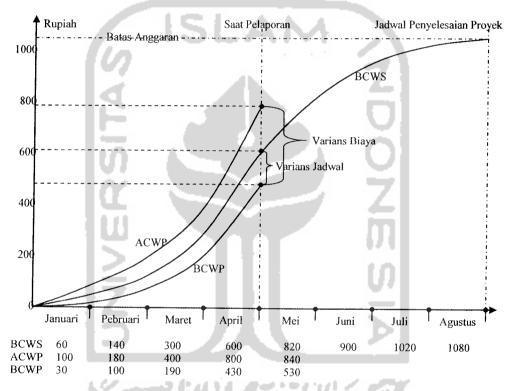
2. Analisis Indeks Kinerja

Indeks kinerja biaya (Cost performed Index) adalah perbandingan antara biaya menurut prestasi terhadap biaya yang telah dikeluarkan. Indeks kinerja dapat dihitung dengan menggunakan rumus sebagai berikut;

Indeks kinerja jadwal (*Schedule Performance Index*) adalah perbandingan antara biaya yang seharusnya dikeluarkan untuk pekerjaan yang telah dilaksanakan terhadap biaya yang telah dikeluarkan menurut rencana kurun waktu tertentu. Indeks kinerja jadwal dapat dihitung dengan rumus berikut ini;

Bila angka indeks prestasi ditinjau lebih lanjut, akan terlihat hal-hal sebagai berikut;

- 1. CPI < 1, berarti biaya pengeluaran lebih besar dari anggaran (rugi)
- 2. CPI > 1, berarti biaya pengeluaran lebih kecil dari anggaran (untung)
- 3. SPI < 1, berarti pelaksanaan pekerjaan lebih lambat dari jadwal (rugi)
- 4. SPI > 1, berarti pelaksanaan pekerjaan lebih cepat dari jadwal (untung)


3. Analisis Kemajuan Proyek

Pada saat pelaksanaan, misalnya didalam laporan bulanan data yan terkumpul mengenai kemajuan pekerjaan dan pengeluaran biaya di analisis untuk setiap paket kerja meliputi :

 Kemajuan fisik aktual dihitung berdasarkan anggaran yang dialokasikan atau BCWP.

- 2. Pengeluaran tercatat pada laporan keuangan atau ACWP.
- Perencanaan dasar dan anggaran yang mengkaitkan jadwal dan biaya atau BCWS.

Ketiga indikator diatas setelah di analisis akan memberikan gambaran yang tepat dan lengkap perihal kinerja setiap paket kerja, yaitu mengenai pencapaian jadwal dan anggarannya.

Gambar 3.7 Analisis Varian terpadu Dengan Kurva-S

D. Prakiraan Biaya dan Jadwal Penyelesaian

Membuat prakiraan jadwal dan biaya penyelesaian proyek didasarkan atas hasil analisis indikator yang diperoleh pada saat pelaporan, akan memberikan petunjuk tentang prakiraan total biaya sampai akhir proyek (EAC) dan petunjuk tentang prakiraan total waktu sampai akhir proyek (EAS). Pada kenyataannya,

prakiraan tersebut tidak memberikan jawaban dengan angka yang tepat karena didasarkan atas asumsi, jadi tergantung dari durasi asumsi yang dipakai.

Meskipun demikian pembuatan prakiraan jadwal dan biaya sangat bermanfaat karena memberikan peringatan dini mengenai hal-hal yang akan terjadi di masa yang akan datang. Dengan demikian masih ada kesempatan untuk mengadakan tindakan pembetulan. Diantara prakiraan tersebut adalah sebagai berikut:

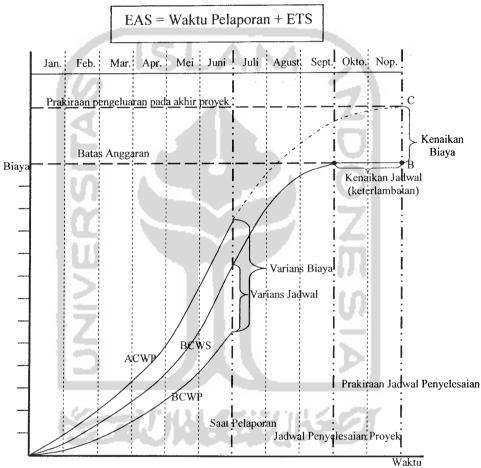
1. Prakiraan Biaya Untuk Pekerjaan Tersisa (ETC)

Estimation Temporary Cost (ETC) adalah merupakan perkiraan biaya yang diperlukan untuk menyelesaikan pekerjaan tersisa. ETC dapat dihitung berdasarkan rumus seperti tercantum dibawah ini:

2. Prakiraan Biaya Total Proyek (EAC)

Estimation All Cost (EAC) adalah jumlah pengeluaran sampai pada saat pelaporan ditambah biaya untuk pekerjaan sisa. EAC dapat dihitung berdasarkan rumus berikut ini:

$$EAC = ACWP + ETC$$


3. Prakiraan Waktu Untuk Pekerjaan Sisa (ETS)

Estimation Temporary Scheduled (ETS) adalah waktu pekerjaan tersisa dibagi indek kinerja jadwal. ETS dapat dihitung berdasarkan rumus berikut ini:

$$ETS = (Rencana - Waktu Pelaporan) / SPI$$

4. Prakiraan Waktu Total Proyek (EAS)

Estimation All Scheduled (EAS) adalah jumlah waktu pelaksanaan pekerjaan sampai pada saat pelaporan ditambah prakiraan waktu yang dibutuhkan untuk menyelesaikan pekerjaan tersisa. EAS dapat dihitung dengan menggunakan rumus seperti tercantum dibawah ini :

Gambar 3.8 Prakiraan Jadwal dan Biaya pada akhir Proyek

E. Pendekatan Matematis (Kurva-S)

Dengan pendekatan matematis diasumsikan bahwa kinerja setelah pelaporan akan kembali seperti kinerja rencana dan berlaku sampai ahir proyek,

sehingga proyeksi jadwal adalah ekstrapolasi dari angka pada saat pelaporan kemasa akhir proyek (Anondho Basuki dan Sulaiman Lydiawati, 2003). Asumsi ini dianggap wajar bila pada saat pelaporan, proyek belum cukup jauh dari segi waktu, sehingga prestasi yang dicapai masih mendekati atau sama dengan rencana. Artinya setelah saat pengamatan kinerja organisasi proyek akan sama seperti rencana. Rumus yang dipakai pada pendekatan ini adalah:

$$EAS = T_{Pelaporan} + ETS$$

ETS pada pendekatan matematis diperoleh dengan mengeset kurva-S_{rencana} pada kurva setelah saat pelaporan dengan asumsi bahwa kurva bagian awal dan ahir adalah persamaan kuadratik dan bagian pertengahan adalah persamaan linier, sehingga akan diperoleh % waktu saat pekerjaan mencapai 100% (selesai).

F. Pendekatan Kumulatif (Earned Value Concept)

Pendekatan secara kumulatif berdasakan pada asumsi bahwa sisa pekerjaan tidak hanya tergantung dari prestasi yang dicapai saat pelaporan, waktu total diperoleh dari kumulatif kinerja sampai pada saat pengamatan, sehingga bisa dianggap sebagai kinerja organisasi proyek secara umum dengan demikian kinerja setelah waktu pengamatan dapat ditingkatkan, tetap atau bahkan menurun.

Asumsi ini dapat dipergunakan pada kurun waktu pertengahan hingga akhir proyek yang sudah memiliki karakteristik kinerja. Artinya setiap penyimpangan sampai dengan saat pengamatan dapat dipergunakan untuk meningkatkan kinerja di masa datang.

$$\frac{BCWS}{BCWP} = \frac{1}{SPI}$$

Dengan asumsi bahwa faktor deviasi tidak tetap untuk WR (Work Remaining)

$$ETS = WR \times \frac{1}{SPI}$$

$$ETS = (T_{Rencana} - T_{Pelaporan}) \times \frac{1}{SPI}$$


Sehingga untuk perkiraan akhir dapat ditulis sebagai berikut:

$$EAS = T_{Pelaporan} + ETS$$

$$EAS = T_{Pelaporan} + (T_{Rencana} - T_{Pelaporan}) \times \frac{1}{SPI}$$
 Dengan subtitusi dari kedua persamaan diatas, maka:

EAS =
$$T_{Pelaporan}$$
 + $\left((T_{Rencana} - T_{Pelaporan}) \times \frac{BCWS}{BCWP} \right)$
EAS = $T_{Rencana} \times \frac{BCWS}{BCWP}$ + $\left(T_{Pelaporan} - (T_{pelaporan} \times \frac{BCWS}{BCWP}) \right)$
EAS = $T_{Rencana} \times \frac{BCWS}{BCWP}$ + $\left(\frac{(I_{Pelaporan} \times BEWP)}{BEWP} - \frac{(I_{Pelaporan} \times BEWS)}{BEWP} \right)$
EAS = $T_{Rencana} \times \frac{BCWS}{BCWP}$ + $\left(T_{Pelaporan} \times \frac{SV}{BCWP} \right)$

Konsep model matematis menuntut kondisi standar kualitas yang terukur baik. Artinya kemampuan kinerja proyek, yang dalam hal ini merupakan cerminan dari kualitas kerja, berlangsung relatif tetap dari awal sampai akhir proyek. Sedangkan pada model kumulatif, yang merupakan pengembangan teori dari berbagai literatur, menuntut adanya kemampuan untuk meningkatkan kinerja secara teknis.

Pada prakteknya, kedua persyaratan standar kualitas kerja dan kemampuan peningkatan kinerja secara teknis merupakan kendala yang menjadi karakteristik umum industri jasa konstruksi pada negara berkembang, mengingat masih kurangnya standar kualitas tenaga kerja dan transfer teknologi untuk keperluan optimasi proses.

BABIV

METODE PENELITIAN

4.1 Objek dan Subjek Penelitian

Dalam mengumpulkan data diperlukan penyaringan sumber sampel untuk mengurangi interferen data. Penyaringan ini dilakukan mengingat industri konstruksi memiliki rentang ruang lingkup yang cukup besar, yaitu jenis pekerjaan yang ringan hingga pekerjaan yang volume maupun biayanya secara teknis sangat besar. Indonesia sebagai negara berkembang dengan tingkat sumber daya yang terbatas dengan transfer teknologi yang tidak begitu baik dan tidak merata antara daerah satu dengan yang lain, secara global akan mempengaruhi tingkat produktivitas dan kinerja dalam pelaksanaan suatu proyek konstruksi.

Dengan beragamnya tingkat dan jenis pekerjaan konstruksi yang ada dapat mengurangi tingkat akurasi penelitian dalam mendeskrifsikan keadaan yang sebenarnya sebagaimana yang diharapkan. Untuk itu diusahakan mengelimisasi tingkat variasi dari objek dan subjek penelitian dengan membatasi dari hal-hal yang dianggap dapat menjadi kendala. Pilihan pembatasan sumber sampel pada jenis pekerjaan konstruksi gedung bertingkat dan jalan raya dengan hanya menganalisis pada kinerja jadwal diharapkan dapat mengakomodasi beberapa hal, yaitu:

- 1. Kemudahan mencari data
- 2. Tingkat pengulangan pekerjaan yang relatif banyak
- 3. Adanya sistem organisasi proyek yang cukup baik

- Adanya proses pengendalian proyek dengan monitoring periodik yang berkesinambungan.
- 5. Adanya target mutu, anggaran dan waktu yang jelas

Dengan demikian tujuan dari studi ini dapat dicapai secara lebih optimal, dengan asumsi sumber daya manusia untuk melaksanakan proyek tersebut memiliki kualitas yang lebih optimal mengingat persyaratan mutu yang diharapkan

4.2 Variabel Data

Variabel adalah sifat yang dimiliki oleh individu sebagai contoh yang berbeda antara satu (kelompok) individu dengan (kelompok) yang lain (Supraman, Sugiarto 1993). Sedangkan variabel data adalah menemukan variabel-variabel yang akan diukur dengan menetukan data yang dibutuhkan sesuai dengan tujuan yang ingin dicapai.

Variabel data terdiri atas varibel bebas (*independent*) dan variabel terikat (*dependent*). Pada penelitian ini yang menjadi :

- 1. Variabel bebas (independent) adalah:
 - BCWS yang diperoleh dari data perencanaan
 - BCWP yang diperoleh dari laporan kemajuan proyek
 - BAC yang diperoleh dari laporan pengawasan proyek
 - T_{Rencana} yang diperoleh dari kurva-s rencana
- 2. Variabel terikat (dependet) adalah
 - Analisis Varian Waktu (SV)
 - Indek Kinerja Waktu (SPI)

- Perkiraan Waktu Untuk Pekerjaan Sisa (ETS)
- Prakiraan Waktu Penyelesaian Proyek (SEAC)

Dalam penelitian ini variabel data dikelompokan menjadi beberapa dengan tujuan agar dapat mengoptimalkan hasil penelitian yang akan dicapai. Variabel tersebut adalah :

- 1. Variabel Pembanding
- 2. Variabel Tolok Ukur Jadwal
- 3. Variabel Tolok Ukur Waktu

4.2.1 Variabel Pembanding

Untuk menetapkan variabel pembanding, maka perlu dilakukan identifikasi terhadap jenis variabel yang dapat menjadi indikator terhadap karakteristik kinerja waktu proyek dan sekaligus memberikan perkiraan hasil akhir. Dari penurunan rumus-rumus perhitungan menunjukkan bahwa EAS dapat dipergunakan sebagai parameter yang diperbandingkan.

Secara matematis atau kumulatif yang menggunakan asumsi berbeda akan diperoleh EAS yang berbeda pula, yang bila dibandingkan terhadap rencana awal maupun kondisi riil diakhir proyek akan menunjukkan tingkat perbedaan tersebut (% deviasi), dari besaran deviasi ini akan dianalisis lebih lanjut dalam menentukan tingkat akurasi dan karakteristik kedua metode pendekatan yang digunakan.

Dengan pendekatan kumulatif (EAS_{kum}) EAS =
$$\frac{T_{\text{Re ncana}}}{SPI} + \frac{T_{\text{Pelaporan}}xSV}{BCWP}$$

Dengan pendekatan matematis (EAS $_{Mat}$) EAS = $T_{Pelaporan} + ETS$

4.2.2 Variabel Tolok Ukur Jadwal

Dengan membandingkan EAS terhadap suatu besaran yang sama, maka dapat diperoleh nilai deviasi (Δ) untuk masing masing metode pendekatan. Variabel $T_{Rencana}$ dipilh sebagai variabel tolok ukur terhadap rencana sehingga dapat diperoleh persentase deviasi EAS terhadap $T_{Rencana}$.

Selain itu karena menggunakan data proyek yang telah selesai maka T_{nil} telah diketahui jadi dapat pula dijadikan sebagai variabel tolok ukur dengan cara membandingkan EAS dari masing-masing pendekatan yang digunakan. Dari perbandingan itu akan diperoleh nilai deviasi masing-masing terhadap kondisi riil dan rencana ;

 Δkum_{renc} = adalah % deviasi terhadap perkiraan waktu pada saat pekerjaan selesai secara pendekatan kumulatif dibanding dengan waktu rencana awal.

 Δkum_{riil} = adalah % deviasi terhadap perkiraan waktu pada saat pekerjaan selesai secara pendekatan kumulatif dibanding dengan waktu riil penyelesaian proyek.

 Δmat_{renc} = adalah % deviasi terhadap perkiraan waktu pada saat pekerjaan selesai secara pendekatan matematis dibanding dengan waktu rencana awal.

 Δmat_{riil} = adalah % deviasi terhadap perkiraan biaya pada saat pekerjaan selesai secara pendekatan matematis dibanding dengan EAC_{riil}

Sehingga dapat dihitung dengan rumus berikut ini :

• Terhadap T_{Rencana} (waktu rencana)

$$\Delta_{Kum} = ((T_{Rencana} - EAS_{Kumulatif})/T_{Rencana}) \times 100\%$$

$$\Delta_{Mat} = ((T_{Rencana} - EAS_{Matematis})/T_{Rencana}) \times 100\%$$

Terhadap Triil (waktu riil)

$$\Delta_{Kum} = ((T_{Riil} - EAS_{Kumulatif})/T_{Riil}) \times 100\%$$

$$\Delta_{Mat} = ((T_{Riil} - EAS_{Matematis})/T_{Riil}) \times 100\%$$

4.2.3 Variabel Tolok Ukur Waktu

Karena Earned value berbasis pada waktu pengamatan, maka diperlukan interval waktu yang sama untuk kedua pendekatan sebagai variable waktu pengukuran. Dengan membandingkan kurun waktu pengamatan terhadap waktu total rencana penyelesaian proyek, maka dapat diperoleh persentase kurun waktu pengamatan yang sama untuk perhitungan EAS. Hal ini dapat dirumuskan sebagai berikut:

%
$$T = \frac{t_p}{t_r} \times 100\%$$

% T = Persentase waktu pengamatan terhadap waktu total rencana

t_p = Waktu pengamatan progress

t_r = Waktu total rencana

4.3 Pengumpulan Data

Data merupakan keterangan yang memberi gambaran tentang suatu persoalan. Data digolongkan sebagai data primer (pokok) seperti laporan keuangan, kurva-S, laporan kemajuan proyek dan data sekunder (penunjang) seperti surat perjanjian, daftar personil pelaksana (kontraktor), struktur organisasi,

gambar-gambar rencana dan lain-lain. Secara umum data harus memenuhi persyaratan sebagai berikut:

- 1. Data harus objektif, yang berarti sesuai dengan kenyataan dan kebenaran
- 2. Representatif, yang berarti dapat mewakili dari suatu persoalan
- 3. Variannya kecil, atau dalam batas yang ditolerasi
- 4. Tepat waktu, terkait dengan keadaan saat sekarang atau saat permasalahan tersebut dibahas.
- 5. Relevan dengan permasalahan yang terkait

Pengumpulan data dilakukan dengan survei, observasi atau pengamatan langsung pada proyek yang telah selesai dilaksanakan. Data tersebut berupa rencana anggaran awal yang diperoleh dari kurva-S, laporan monitoring periodik, dan laporan progres pekerjaan (*progress report*). Dari data yang diperoleh dilakukan tabulasi pada tabel dengan format sebagai berikut:

Tabel 4.1 Contoh Format Tabel Data

No	%Waktu	BCWS					S					Perkiraan		(%) Deviasi			
				В	CWP	BAC	T rend	T riii	S<	SPI	ETS	EAS		Terhadap T rencana		Terhadap T riil	
		(%)	(x10^6)	(%)	(x10^6)							Kum	Mat	Kum	Mat	Kum	Mat

- %Waktu Proyek adalah waktu pengamatan dibagi total waktu rencana
- \bullet $\Delta_{\rm mat}$ adalah % deviasi terhadap perkiraan waktu pada saat pekerjaan selesai secara pendekatan matematis dibanding dengan waktu rencana awal
- $\Delta_{\rm kum}$ adalah % deviasi terhadap perkiraan waktu pada saat pekerjaan selesai secara pendekatan kumulatif dibanding dengan waktu rencana awal

 Perhitungan deviasi adalah dengan konsep bahwa waktu pelaksanaan diharapkan lebih kecil dari waktu rencana awal.

Dari bentuk tabulasi data sepeti diatas lalu diadakan pengolahan data dengan cara dan alat yang telah ditentukan sedemikian rupa. Untuk selanjutnya dapat ditarik kesimpulan yang menggambarkan hal yang ditampilkan data tersebut.

4.4 Alat Pengolahan Data

Pengolahan data untuk menetapkan korelasi antara kedua variabel dilakukan dengan bantuan program komputer biasa. Pada penelitian ini dipergunakan program Microsoft Exel® untuk melakukan pengolahan data. Program ini dapat menampilkan grafik hubungan antara 2 variabel lengkap dengan persamaan garisnya dan nilai determinasi R² sedangkan untuk beberapa syarat validitas dan statistik data diolah dengan menggunakan program SPSS.

Pada penelitian ditetapkan bahwa korelasi yang memiliki R²>0,5 dapat menyatakan bahwa pengolahan data dapat dipergunakan lebih lanjut untuk analisis. Atau dengan kata lain, persamaan yang diperoleh menyatakan hubungan yang cukup antara waktu pengamatan dengan besaran deviasi sehingga mencerminkan adanya kesesuaian konsep *Earned Value*.

4.5 Metode Analisis

Setelah pengumpulan dan tabulasi data, maka proses pengolahan dan analisis data dilakukan dengan langkah-langkah sebagai berikut:

- 1. Mencari karakteristik hubungan antara variabel waktu pengamatan dengan variable % deviasi EAS terhadap $T_{Rencana}$.
- 2. Untuk melihat pengaruh masing-masing metode pada kurun waktu proyek, dilakukan dengan mencari titik potong antara kedua garis persamaan metode.
- 3. Setelah pengolahan data selanjutnya dilakukan penarikan kesimpulan.

Dalam penelitian ini dicari hubungan antara variabel waktu pengamatan dengan variabel %deviasi EAS terhadap $T_{Rencana}$ dan T_{Riil} proyek. Tujuannya adalah untuk melihat hubungan antara % deviasi dengan skala waktu pengamatan. Penetapan besaran variabel-variabel tersebut adalah sebagai berikut :

1. Variabel tolok ukur waktu sebagai sumbu-x

$$\%T_n = \frac{t_p}{t_r} \times 100\%$$

%T_n = Persentase waktu pengamatan terhadap waktu total rencana

n = Waktu pengamatan ke-n

t_p = Waktu total pelaporan

t_r = Waktu total rencana

2. Variabel tolok ukur waktu rencana sebagai sumbu-y

$$\Delta_{xn} = ((T_{Rencana} - EAS_{xn})/T_{Rencana}) \times 100\%$$

3. Variabel tolok ukur waktu riil sebagai sumbu-v

$$\Delta_{xn} = ((T_{Riil} - EAS_{xn})/T_{Riil}) \times 100\%$$

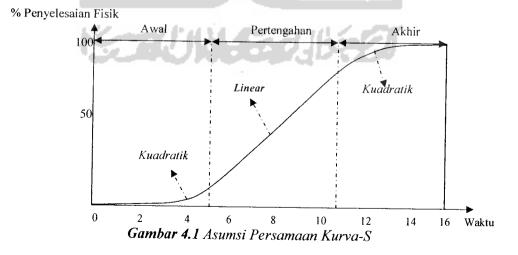
 Δ_{xn} = Persentasi deviasi estimasi waktu penyelesaian terhadap jadwal rencana awal untuk metode x pada waktu pengamatan ke n.

x = Pendekatan metode matematis atau kumulatif.

n = Waktu pengamatan ke n.

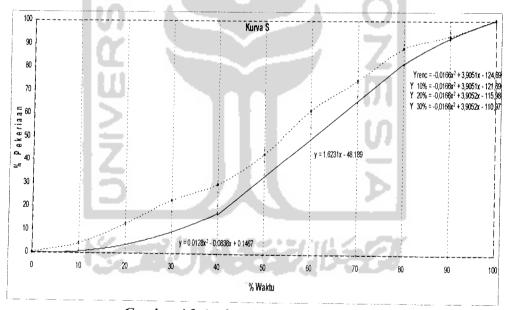
T_{Rencana} = Waktu untuk menyelesaikan proyek berdasarkan rencana awal

T_{Riil} = Waktu riil yang dibutuhkan untuk menyelesaikan proyek


EAS = Perkiraan waktu penyelesaian suatu proyek dengan pendekatan metode x pada waktu ke n.

Mengingat karakteristik proyek yang terjadi dipengaruhi oleh banyak faktor dan bahwa setiap proyek memiliki sifat yang unik, maka untuk menetapkan korelasi kedua variabel diatas, dilakukan dengan asumsi tidak memiliki hubungan yang linier. Sehingga persamaan umum yang dipergunakan sebagai pendekatan adalah:

$$y = f(x)^2$$


4.5.1 Metode Matematis (Pendekatan Kurva-S Rencana)

Dari data diperoleh kurva-s rencana dan kurva-s pelaksanaan, yang kemudian dapat diketahui persamaan garisnya dengan asumsi bahwa pada bagian awal (0 – 30% atau 40% T_{rencana}) dan akhir (70% atau 80% s.d. 100% T_{rencana}) adalah persamaan kuadratik sedangkan pada bagian pertengahan diantara keduanya diasumsikan sebagai persamaan linier. Hal ini disebabkan volume pekerjaan pada bagian awal dan akhir relatif lebih kecil dari bagian pertengahan yang dapat terlihat dari kelandaian kurva yang terbentuk. Secara lebih jelas dapat dilihat pada gambar berikut:

Dari keadaan seperti diatas dapat dilakukan proyeksi untuk mengetahui waktu penyelesaian akhir proyek dengan metode matematis, melalui persamaan yang diperoleh dari kurva atau dengan pengesetan kurva (grafis). Proses perhitungan dilakukan dengan batuan Microsoft Excel®, yang langsung dapat diketahui persamaan garis dan diperoleh bentuk kurvanya.

Dalam pengesetan kurva untuk meproyeksikan waktu penyelesaian proyek harus diperhatikan tingakat varian dan waktu pelaporan/pengamatan sebagai acuan pergeser kurva. Dari keadaan tersebut dapat diketahui waktu pelaporan berada pada kurva kuadratik atai linear, sehingga dapat dilakukan pengesetan kurva berikutnya sebagai proyeksi dari keadaan rencana terhadap pelaksanaan.

Gambar 4.2 Analisis Matematis dan Grafis

Dari langkah dan proses perhitungan diperoleh EAS $_{matematis}$ yang kemudian dapat diketahui tingkat penyimpangannya terhadap rencana awal dan kondisi riil (% Δ terhadap rencana dan riil).

4.5.2 Metode Kumulatif (Earned Value Concept)

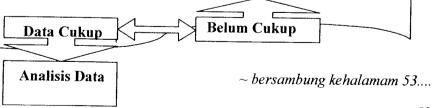
Dari data yang diperoleh dilakukan analisis dengan *Earned value Method* sebagai mana yang telah dijabarkan pada Bab III, diantaranya akan dilakukan :

- 1. Analisis Varians (SV)
- 2. Analisis Indeks Kinerja Waktu (SPI)
- 3. Analisis Kemajuan Proyek (ETS)
- 4. Prakiraan Waktu (EAS)
- 5. % Δ EAS terhadap rencana dan riil

4.6 Bagan Alur Penelitian

Secara sistematis dan garis besar skema penelitian yang akan lakukan dapat dilihat dari bagan berikut ini :

Studi Literatur


"Pembahasan penelitian sebelumnya yang memiliki relevansi dan keaslian penelitian yang dilakukan"

Penentuan Objek Penelitian

"Yang merupakan objek pada penelitian ini adalah pekerjaan konstruksi gedung bertingkat dan jalan raya dengan hanya menganalisis kinerja jadwal"

Pengumpulan Data

"Pengumpulan data dilakukan dengan survei, observasi atau pengamatan langsung pada proyek yang telah selesai dilaksanakan. Data tersebut berupa rencana anggaran awal yang diperoleh dari kurva-S, laporan monitoring periodik, dan laporan progres pekerjaan (progress report)"

Pengumpulan Data "Pengumpulan data dilakukan dengan survei, observasi atau pengamatan langsung pada proyek yang telah selesai dilaksanakan. Data tersebut berupa rencana anggaran awal yang diperoleh dari kurva-S, laporan monitoring periodik, dan laporan progres pekerjaan (progress report)" Belum Cukup Data Cukup **Analisis Data** Earned Value Kumulatif • Analisis Varians • SPI **Matematis** • ETS Persamaan kurva-S_{rencana} EAS_{kumulatif} Proyeksi keadaan proyek % Δ EAS_{kumulatif} terhadap rencana • EAS_{matematis} $\% \Delta EAS_{kumulatif}$ terhadap riil • % Δ EAS_{matematis} terhadap rencana • $\% \Delta EAS_{matematis}$ terhadap riil Pembahasan

"Dengan membandingkan hasil analisis dari kedua metode untuk mengetahui perbedaan dan tingkat akurasi sebagai tolok ukur dalam proses pengendalian proyek secara optimal"

BAB V

ANALISIS DATA

5. 1 Data Proyek

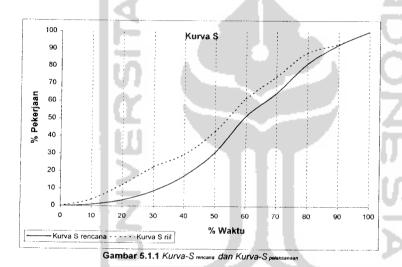
Data yang digunakan adalah data dari proyek yang sudah selesai proses pengerjaan dan terdapat Daerah Istimewa Yogyakarta. Data diperoleh dari laporan kemajuan proyek, laporan akhir proyek serta kurva-s rencana pelaksanaan proyek dengan menjadikan waktu (schedule) sebagai obyek penelitian. Dari sejumlah proyek kontruksi yang menjadi objek penelitian diperoleh data berikut:

- A. BCWS (Budgeted Cost of Work Schedule), merupakan biaya pengeluaran menurut perencanaan yang diperoleh dari data perencanaan, pada RAB atau kurva-s rencana proyek.
- B. BCWP (Budgeted Cost of Work Performed), merupakan biaya pengeluaran pada saat pelaporan yang diperoleh dari laporan kemajuan atau laporan akhir proyek.
- C. Jadwal Penyelesaian Proyek Rencana (T_{Rencana}) merupakan waktu yang direncanakan untuk menyelesaikan suatu proyek, diperoleh dari data perencanan (kurva-s rencana).
- D. Waktu Real Penyelesaian Proyek (EAS_{Riil}), adalah waktu sebenarnya yang dibutuhkan untuk menyelesaikan proyek, diperoleh dari laporan akhir proyek(kurva-s realisasi proyek).

Selain itu terdapat data umum dari proyek tersebut yang diperoleh dengan cara studi pustaka, survei dan observasi langsung dilapangan. Data – data tersebut

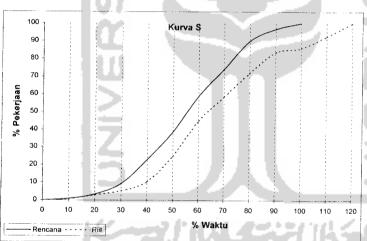
merupakan data primer karena diperoleh langsung dari sumbernya. Setelah melalui pembelajar data secara umum untuk membedakan data yang dapat digunakan lebih lanjut dan yang tidak valid untuk digunakan, data tersebut kemudian ditransfer kebentuk tabulasi data untuk memudahkan proses pengolahan data dengan format tabel sebagaimana yang telah ditentunkan terlebih dahulu.

5. 2 Tabulasi Data Primer


Tabel 5.1.1 sampai 5.1.29 adalah hasil tabulasi data proyek konstruksi yang menjadi obyek penelitian disertakan dengan kurva-S_{rencana} dan kurva-S_{riil} yang terdapat pada gambar grafik 5.1.1 sampai dengan 5.1.29 berikut ini:

1 Pembangunan Gedung Bidang Perkebunan DISHUTBUN JL. ARGOLUBANG YOGYAKARTA Tahun 2005 PB. IKHA AGUNG KARYA Rp. 445.397.000,00

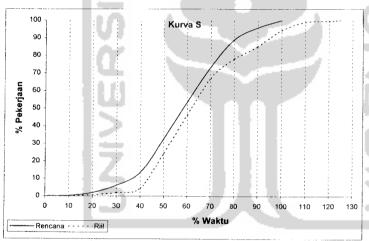
Tabel 5.1.1 Data Primer Pembangunan Gedung Bidang Perkebunan DISHUTBUN


Wa	ktu		WS	ВС	WP	8		
Persen	Minggu	(%)	(x10^6)	(%)	(x10^6)	Varians	BAC	EACriil
8	1	0.490	2.182	2.706	11.667	2.216	445.397	431.163
17	2	2.439	10.863	8.530	36.778	6.091	445.397	431.163
25	3	5.283	23.530	17.903	77.191	12.620	445.397	431.163
33	4	11.200	49.884	25.645	110.572	14.445	445.397	431.163
42	5	18.914	84.242	30.559	131.759	11.645	445.397	431.163
50	6	30.835	137.338	42.705	184.128	11.870	445.397	431.163
58	7	50.028	222.823	59.830	257.965	9.802	445.397	431.163
67	8	57.271	255.083	67.959	293.014	10.688	445.397	431.163
75	_ 9	75.822	337.709	83.336	359.314	7.514	445.397	431.163
83	10	85.445	380.569	90.935	392.077	5.490	445.397	431.163
92	11	94.209	419.604	93.549	403.349	-0.660	445.397	431.163
100	12	100.000	445.397	100.000	431.163	0.000	445.397	431.163

2 Pembangunan Masjid DPRD Propinsi DIY Kota Yogyakarta Tahun 2002 PB. PRIMA KARSA Rp. 549.000.000,00

Tabel 5.1.2 Data Primer Pembangunan Masjid DPRD Propinsi DIY

	Tabel 6.1.2 Data Filmer Fernbangunan Wasjid DEND Flopinsi DIT											
Wa	ktu	BC	ws	ВС	WP	(%)						
Persen	Minggu	(%)	(x10^6)	(%)	(x10^6)	Varians	BAC	EACril				
7	1	0.397	2.180	0.028	0.165	-0.369	549.000	596.288				
13	2	1.473	8.087	1.395	8.317	-0.078	549.000	596.288				
20	3	3.368	18.490	2.948	17.581	-0.420	549.000	596.288				
27	4	5.655	31.046	4.991	29.763	-0.664	549.000	596.288				
33	5	13.091	71.870	5.732	34.182	-7.359	549.000	596.288				
40	6	22.952	126.006	10.380	61.895	-12.572	549.000	596.288				
47	7	31.440	172.606	18.617	111.011	-12.823	549.000	596.288				
53	8	46.048	252.804	31.190	185.982	-14.858	549.000	596.288				
60	9	58.744	322.505	44.934	267.936	-13.810	549.000	596.288				
67	10	67.778	372.101	56.250	335.412	-11.528	549.000	596.288				
73	11	80.445	441.643	60.565	361.142	-19.880	549.000	596.288				
80	12	89.876	493.419	71.731	427.723	-18.145	549.000	596.288				
87	13	95.940	526.711	83.192	496.064	-12.748	549.000	596.288				
93	14	97.458	535.044	83.833	499.886	-13.625	549.000	596.288				
100	15	100.000	549.000	85.905	512.241	-14.095	549.000	596.288				
107	16	100.000	549.000	88.520	527.834	-11.480	549.000	596.288				
113	17	100.000	549.000	96.424	574.965	-3.576	549.000	596.288				
120	18	100.000	549.000	100.000	596.288	0.000	549.000	596.288				

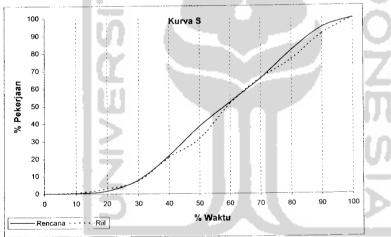


Gambar 5.1.2 Kurva-S rencana dan Kurva-S pelaksanaan

3 Rehabilitasi Gedung Bapekoinda Kota Yogyakarta Tahun 2002 CV. YANI KARYA Rp. 313.100.000,00

Tabel 5.1.3 Data Primer Rehabilitasi Gedung Bapekoinda

T							·	
Wa	ktu	BC BC	ws	BC	WP	(%)		
Persen	Minggu	(%)	(x10^6)	(%)	(x10^6)	Varians	BAC	EACriil
8	1	0.268	0.839	0.098	0.336	-0.170	313.100	342.434
17	2	0.536	1.678	0.239	0.818	-0.297	313.100	342.434
25	3	4.144	12.975	1.520	5.205	-2.624	313.100	342.434
33	4	7.483	23.429	2.346	8.034	-5.137	313.100	342.434
42	5	15.036	47.078	4.958	16.978	-10.078	313.100	342.434
50	6	32.854	102.866	24.566	84.122	-8.288	313.100	342.434
58	7	50.016	156.600	42.231	144.613	-7.785	313.100	342.434
67	8	67.827	212.366	62.377	213.600	-5.450	313.100	342.434
75	9	82.032	256.842	74.495	255.096	-7.537	313.100	342,434
83	10	93.876	293.926	80.475	275.574	-13.401	313.100	342.434
92	11	96.277	301.443	86.306	295.541	-9.971	313.100	342.434
100	12	100.000	313.100	94.326	323.004	-5.674	313.100	342.434
108	13	100.000	313,100	98.907	338.691	-1.093	313.100	342.434
117	14	100.000	313.100	99.041	339.150	-0.959	313,100	342.434
125	15	100.000	313.100	100.000	342.434	0.000	313.100	342.434

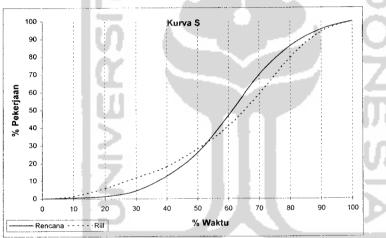


Gambar 5.1.3 Kurva-S rencana dan Kurva-S pelaksanaan

4 Rehabilitasi Kantor Badan Informasi Daerah KOTA YOGYAKRTA Tahun 2004 PB. IKHA AGUNG KARYA Rp. 447.852.000,00

Tabel 5.1.4 Data Primer Rehabilitasi Kantor Badan Informasi Daerah

	Taber 5.1.4 Data Fritter Aerabinas Ranto Bassi Información											
Wa	ktu	вс	ws	ВС	WP	(%) \$	240	510				
Persen	Minggu	(%)	(x 10^6)	(%)	(x10^6)	Varians	BAC	EACriil				
7	1	0.300	1.344	0.11	0.458	-0.190	447.852	416.668				
14	2	0.450	2.015	1.59	6.625	1.140	447.852	416.668				
21	3	1.910	8.554	3.27	13.625	1.360	447.852	416.668				
29	4	6.280	28.125	5.24	21.833	-1.040	447.852	416.668				
36	5	14.840	66.461	16.54	68.917	1.700	447.852	416.668				
43	6	26.637	119.294	23.778	99.075	-2.859	447.852	416.668				
50	7	38.570	172.737	31.44	131.000	-7.130	447.852	416,668				
57	8	47.080	210.849	44.51	185.459	-2.570	447.852	416.668				
64	9	60.000	268.711	61.54	256.417	1.540	447.852	416.668				
71	10	67.030	300.195	66,91	278.793	-0.120	447.852	416.668				
79	11	78.930	353.490	74.23	309.293	-4.700	447.852	416.668				
86	12	92.782	415.524	85.29	355.376	-7.492	447.852	416.668				
93	13	95.940	429,669	94.87	395.293	-1.070	447.852	416.668				
100	14	100.000	447.852	100	416.668	0.000	447.852	416.668				

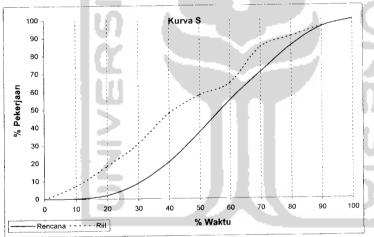


Gambar 5.1.4 Kurva-S rencana dan Kurva-S pelaksanaan

5 Pembangunan Gedung Ruang VIP Rumah Sakit Grhasia Jl. Kaliurang Km. 17 Yogyakarta Tahun 2005 PT. PERTIWI PERSADA Rp. 931.881.000,00

Tabel 5.1.5 Data Primer Pembangunan Gedung Ruang VIP Rumah Sakit Grhasia

Wa	ktu	ВС	ws	ВС	WP	\$ (%)		
Persen	Minggu	(%)	(x 10^6)	(%)	(x10^6)	Varians	BAC	EACriit
7	1	0.438	4.082	0.114	1.164	-0.324	931.881	1020.784
14	2	0.876	8.163	3.58	36.544	2.704	931.881	1020.784
21	3	1.421	13.242	6.467	66.014	5.046	931.881	1020.784
29	4	3.452	32.169	10.351	105.661	6.899	931.881	1020.784
36	5	8.789	81.903	17.933	183.057	9.144	931.881	1020.784
43	6	15.637	145.718	18.533	189.182	2.896	931.881	1020.784
50	7	26.07	242.941	28.143	287.279	2.073	931.881	1020.784
57	8	40.093	373.619	33.441	341.360	-6.652	931.881	1020.784
64	9	56.981	530.995	52.202	532.870	-4.779	931.881	1020.784
71	10	73.178	681.932	60.577	618.360	-12.601	931.881	1020.784
79	11	84,453	787.001	77.193	787.974	-7.260	931.881	1020.784
86	12	92.374	860.816	88.52	903.598	-3.854	931.881	1020.784
93	13	97.458	908.193	97.845	998.786	0.387	931.881	1020.784
100	14	100	931.881	100	1020.784	0.000	931.881	1020.784

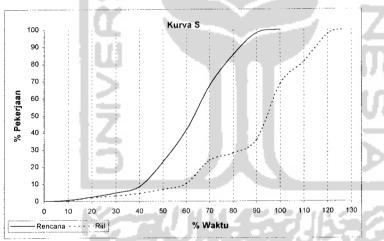

Gambar 5.1.5 Kurva-S rencena dan Kurva-S pelaksanaan

6 Pembangunan Gedung Elektromedik Lantai II RS. Grhasia JL. Kaliurang Pakem, Sleman

Tahun 2005 CV.BB dan T. HAKA Rp. 1.220.000.000,00

Tabel 5.1.6 Data Primer Pembangunan Gedung Elektromedik Lantai II RS. Grhasia

ranc		. Date	11107 7 01110	- 3				
Wa	ktu	BC	ws	BC	WP	s (%)	D40	540
Persen	Minggu	(%)	(x 10^6)	(%)	(x 10^6)	Varians	BAC	EACriil
7	1	0.182	2.220	4.943	57.198	4.761	1220.000	1157.142
13	2	0.364	4.441	9.498	109.905	9.134	1220.000	1157.142
20	3	2.032	24.790	18.414	213.076	16.382	1220.000	1157.142
27	4	5.883	71.773	26.273	304.016	20.390	1220.000	1157.142
33	5	11.678	142.472	35.672	412.776	23.994	1220.000	1157.142
40	6	20.806	253.833	47.749	552.524	26.943	1220.000	1157.142
47	7	31,768	387.570	54.458	630,156	22.690		1157.142
53	8	42,919	523.612	61.419	710.705	18.500	1220.000	1157.142
60		55.100	672.220	64.527	746.669	9.427	1220.000	1157.142
67	10	65,348	797.246	80.696	933.767	15.348	1220.000	1157.142
73	11	75,953	926.627	88.220	1020.831	12.267	1220.000	1157.142
80		85.520	1043.344	90.606	1048.440	5.086	1220.000	1157.142
87	13	94.256	1149.923	94.431	1092.701	0.175	1220.000	1157.142
93	14	97.647	1191.293	98.017	1134.196	0.370	1220.000	1157.142
100	15	100.000	1220.000	100.000	1157.142	0.000	1220,000	1157.142

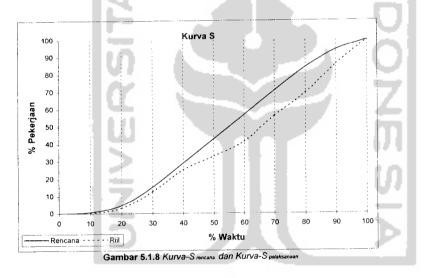

Gambar 5.1.6 Kurva-S rencana dan Kurva-S pelaksanaan

7 Pembangunan Gedung Wakil Gubernur Propinsi DIY KOTA YOGYAKARTA

Tahun 2002 PT. PERWITA KARYA Rp. 1.859.000.000,00

Tabel 5.1.7 Data Primer Pembangunan Gedung Wakil Gubernur Propinsi DIY

1	Tabel 5.1.7 Data Primer Pembangunan Gedung Wakii Gubernui Propinsi Di t								
Wa	ktu	BC	ws	ВС	WP	s (%)			
Persen	Minggu	(%)	(x 10^6)	(%)	(x10^6)	Varians	BAC	EACnit	
7	1	0.281	5.224	0.183	2.519	-0.098	1859.000	1379.000	
13	2	1.197	22.252	0.605	8.342	-0.592	1859.000	1379.000	
20	3	2.528	46.996	2.178	30.028	-0.351	1859.000	1379.000	
27	4	3.966	73.728	2.665	36.746	-1.301	1859.000	1379.000	
33	5	5.778	107.413	3.658	50.447	-2.120	1859.000	1379.000	
40	6	8.484	157.718	4.604	63.482	-3.881	1859.000	1379.000	
47	7	17.983	334.304	5.913	81.535	-12.070	1859.000	1379.000	
53	8	28.022	520.929	7.955	109.702	-20.067	1859.000	1379.000	
60	9	41.588	773.121	10.200	140.652	-31.388	1859.000	1379.000	
67	10	60.138	1117.965	20,291	279.813	-39.847	1859.000	1379.000	
73	11	74.674	1388.190	27.098	373.677	-47.576	1859.000	1379.000	
80	12	85.243	1584.667	27.925	385.083	-57.318	1859,000	1379.000	
87	13	96.199	1788.339	29.505	406.870	-66.694	1859.000	1379.000	
93	14	99.715	1853.702	41.955	578.557	-57.760	1859.000	1379.000	
100	15	100.000	1859.000	68.399	943.228	-31.601	1859.000	1379.000	
107	16	100.000	1859.000	73.623	1015.260	-26.377	1859.000	1379,000	
113	17	100.000	1859.000	89.240	1230.624	-10.760	1859.000	1379.000	
120	18	100.000	1859.000	97.433	1343.606	-2.567	1859.000	1379.000	
127	19	100.000	1859.000	100.000	1379.000	0.000	1859.000	1379.000	



Gambar 5.1.7 Kurva-S rencene dan Kurva-S peleksanaal

8 Rehabilitasi Gedung Biro Kepegawaian Setda dan P3KSDM Jl. Kyai Mojo Yogyakarta Tahun 2005 CV. ISTAN BANA MULIA Rp. 656.703.00,00

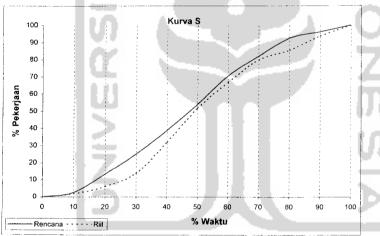
Tabel 5.1.8 Data Primer Rehabilitasi Gedung Biro Kepegawaian Setda dan P3KSDM

Wa	ktu	BC	ws	ВС	WP _	(%)		
Persen	Minggu	(%)	(x 10^6)	(%)	(x 10^6)	Varians	BAC	EACnil
8	1	0.465	3.054	0.017	0.109	-0.448	656.703	639.287
15	2	1.540	10.113	1.159	7.409	-0.381	656.703	639.287
23	3	6.713	44.084	4.584	29.305	-2.129	656.703	639.287
31	4	16.300	107.043	13.667	87.371	-2.633	656.703	639.287
38	5	26.960	177.047	23.466	150.015	-3.494	656.703	639.287
46	6	37.610	246.986	32.161	205.601	-5.449	656.703	639.287
54	7	48.270	316.991	33.724	215.593	-14.546	656.703	639.287
62	-8	58.940	387.061	43.213	276.255	-15.727	656.703	639.287
69	9	69.590	457.000	55.073	352.074	-14.517	656.703	639.287
77	10	80.250	527.004	66.006	421.968	-14.244	656.703	639.287
85	11	90.056	591.400	73.979	472.938	-16.077	656.703	639.287
92	12	96,060	630.829	90.852	580.805	-5.208	656.703	639.287
100	13	100.000	656.703	100.000	639.287	0.000	656.703	639.287

9 Pembangunan Gedung Asrama BAPELKES Jl. Godean Godean Sleman Tahun 2005 PB. PRIMA KARSA Rp. 462.563.000,00

Tabel 5.1.9 Data Primer Pembangunan Gedung Asrama BAPELKES

	Tabel 5.1.5 Data Fillier Fellibangunan Gedung Asiama DAI EERES										
Wa	ktu	ВС	ws	ВС	WP	(%)		_			
Persen	Minggu	(%)	(x 10^6)	(%)	(x10^6)	Varians	BAC	EACriii			
6	1	0.497	2.299	1.057	4.826	0.560	462.563	456.557			
13	2	0.968	4.478	3.073	14.029	2.105	462.563	456.557			
19	3	5.546	25.654	7.808	35.648	2.262	462.563	456.557			
25	4	10.934	50.577	12.821	58.535	1.887	462.563	456.557			
31	5	20.583	95.209	20.875	95.306	0.292	462.563	456.557			
38	6	31.661	146.452	33.369	152.349	1.708	462.563	456.557			
44	7	42.608	197.089	35.132	160.398	-7.476	462.563	456.557			
50	8	51.764	239.441	44.204	201.816	-7.560	462.563	456.557			
56	9	63.389	293.214	54.726	249.855	-8.663	462.563	456.557			
63	10	75.835	350.785	66.851	305.213	-8.984	462,563	456.557			
69	11	85.035	393.340	81.106	370.295	-3.929	462.563	456.557			
75	12	90.81	420.053	89.525	408.733	-1.285	462.563	456.557			
81	13	96.071	444.389	96.424	440.231	0.353	462.563	456.557			
88	14	97.643	451.660	98.201	448.344	0.558	462.563	456.557			
94	15	99.216	458.937	99.144	452.649	-0.072	462.563	456.557			
100	16	100.000	462.563	100.000	456.557	0.000	462.563	456.557			

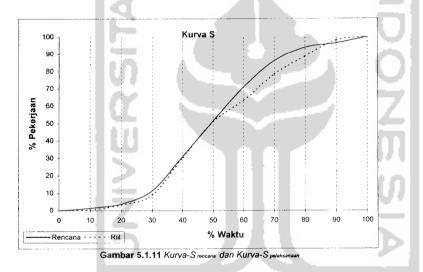


Gambar 5.1.9 Kurva-S rencene dan Kurva-S peleksanaan

10 Rehabilitasi Gedung Diskimpraswil Prop DIY Kota Yogyakarta Tahun 2004 PB. KITA Rp. 214.062.000,00

Tabel 5.1.10 Data Primer Rehabilitasi Gedung Diskimpraswil Prop DIY

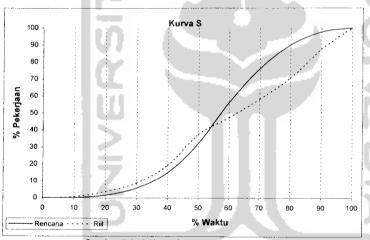
	ı a	per 5. 1. 10	Data Prime	Renaum	asi Gedung	DISKITIPI	aswii i top	<u> </u>
Wa	ktu	ВС	ws					
Persen	Minggu	(%)	(x10^6)	(%)	(x10^6)	Varians	BAC	EACriil
7	1	0.600	1.284	0.439	1.133	-0.161	214.062	258,158
13	2	4.526	9.688	3.182	8.215	-1.344	214.062	258.158
20	3	13.350	28.577	6.043	15.600	-7.307	214.062	258.158
27	4	20.930	44.803	11.103	28.663	-9.827	214.062	258.158
33	5	29.620	63.405	16.479	42.542	-13,141	214.062	258.158
40	6	39.010	83.506	32.095	82.856	-6.915	214.062	258.158
47	7	48,890	104.655	47.600	122.883	-1.290	214.062	258.158
53	8	59.430	127.217	55,907	144.328	-3.523	214.062	258.158
60	9	70.720	151.385	66.840	172.553	-3.880	214.062	258.158
67	10	75.831	162.325	76.893	198.505	1.062	214.062	258.158
73	11	88.471	189.383	82.877	213.954	-5.594	214.062	258,158
80	12	92.568	198.153	85.489	220.697	-7.079	214.062	258.158
87	13	94.873	203.087	89.150	230.148	-5.723	214.062	258.158
93	14	97.621	208.969	98.258	253.661	0.637	214.062	258.158
100	15	100.000	214.062	100.000	258.158	0.000	214.062	258.158


Gambar 5.1.10 Kurva-S rencena dan Kurva-S peleksanaan

11 Pembangunan Pagar Tembok Gedung Napza RS Grhasia JI. Kaliurang Km 17 Yogyakarta Tahun 2005 PB, BERLIAN PUTRA Rp. 210.412.000,00

Tabel 5.1.11 Data Primer Pembangunan Pagar Tembok Gedung Napza RS Grhasia

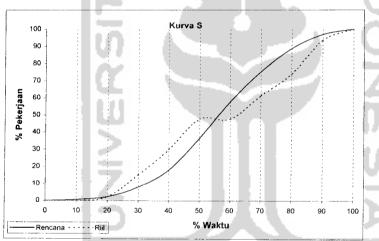
Wa	ktu	ВС	ws	ВС	WP	(%)		
Persen	Minggu	(%)	(x10^6)	(%)	(x10^6)	Varians	BAC	EACriil
8	1	1.060	2.230	0.000	0.000	-1.060	210.412	224.528
17	2	2.880	6.060	2.660	5.972	-0.220	210.412	224.528
25	3	5.260	11.068	4.320	9.700	-0.940	210.412	224.528
33	4	15.580	32.782	12.290	27.594	-3.290	210.412	224.528
42	5	34.960	73.560	34.850	78.248	-0.110	210.412	224.528
50	6	51.500	108.362	51.140	114.824	-0.360	210.412	224.528
58	7	68,160	143.417	60.280	135.345	-7.880	210.412	224.528
67	8	82.920	174.474	75,350	169.182	-7.570	210.412	224,528
75	9	90.965	191.400	82.770	185.842	-8.195	210.412	224.528
83	10	95.940	201.869	92.900	208.587	-3.040	210.412	224.528
92	11	96.500	203.048	99.460	223.316	2.960	210.412	224.528
100	12	100.000	210.412	100,000	224.528	0.000	210.412	224.528


12 100.000 210.412₁ *sumber : data asli proyek

12 Pembangunan Lt. II Gedung B4 dan Pagar Depan Jl. D.I. Panjaitan Tahun 2005 PB. JARAJ RAYA Rp.176.617.000,00

Tabel 5.1.12 Data Primer Pembangunan Lt. II Gedung B4 dan Pagar Depan

Wa	iktu	вс	ws	ВС	WP	(%)		
Persen	Minggu	(%)	(x10^6)	(%)	(x10^6)	Varians	BAC	EACriil
7	1	0.000	0.000	0.000	0.000	0.000	176.617	145.965
14	2	0.490	0.865	1.890	2.759	1.400	176.617	145.965
21	3	1.870	3.303	4.180	6.101	2.310	176.617	145.965
29	4	4.820	8.513	7.360	10.743	2.540	176.617	145.965
36	5	10.100	17.838	15.190	22.172	5.090	176.617	145.965
43	6	18.400	32.498	22.220	32.433	3.820	176.617	145.965
50	7	32.400	57.224	37.540	54.795	5.140	176.617	145.965
57	8	50.000	88.309	42.540	62.094	-7.460	176.617	145.965
64	9	65.785	116.187	54.470	79.507	-11.315	176.617	145.965
71	10	78.656	138.920	59.150	86.338	-19.506	176.617	145.965
79	11	88.565	156.421	67.220	98,118	-21.345	176.617	145.965
86	12	95.788	169.178	84.810	123.793	-10.978	176.617	145.965
93	13	98.865	174.612	89.300	130.347	-9.565	176.617	145.965
100	14	100.000	176.617	100.000	145.965	0.000	176.617	145.965

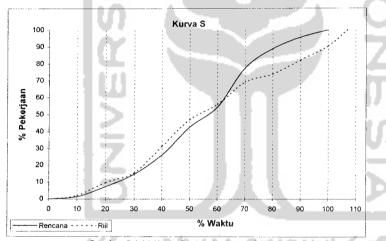

Gambar 5.1.12 Kurva-S rencana dan Kurva-S pelaksanaan

13 Pembangunan Garasi dan Laboratorium HIPERKES Ji. Ireda Dipowinatan Yogyakarta Tahun 2005 CV. CIPTA MULYA PRATAMA Rp. 173.336.000,00

Tabel 5.1.13 Data Primer Pembangunan Garasi dan Laboratorium HIPERKES

	Tabel of the Bara 7 limbs of consumptions and the Bara San San San San San San San San San Sa								
Wa	ktu	ВС	ws	BC	WP	(%)			
Persen	Minggu	(%)	(x 10^6)	(%)	(x10^6)	Varians	BAC	EACriil	
7	1	0.300	0.520	0.000	0.000	-0.300	173.336	142.427	
14	2	1.050	1.820	0.000	0.000	-1.050	173.336	142.427	
21	3	2.610	4.524	2.800	3.988	0.190	173.336	142.427	
29	4	6.960	12.064	12.800	18.231	5.840	173.336	142.427	
36	5	12.300	21.320	25.010	35.621	12.710	173.336	142.427	
43	6	21.900	37.961	33.250	47.357	11.350	173.336	142.427	
50	7	36.500	63.2 68	47.640	67.852	11.140	173.336	142.427	
57	8	51.300	88.921	47.640	67.852	-3.660	173.336	142.427	
64	9	67.600	117.175	47.640	67.852	-19.960	173.336	142.427	
71	10	77.100	133.642	64.580	91.979	-12.520	173.336	142.427	
79	11	87.100	150.976	70.470	100.368	-16.630	173.336	142,427	
86	12	95.200	165.016	87.770	125.008	-7.430	173.336	142.427	
93	13	98.100	170.043	97,430	138.767	-0.670	173.336	142.427	
100	14	100.000	173.336	100.000	142.427	0.000	173.336	142.427	

*sumber : data asli proyek

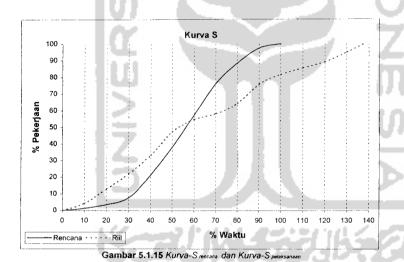


Gambar 5.1.13 Kurva-S rencana dan Kurva-S peleksanaan

14 Rehabilitas Balai Mangu Kepatihan Yogyakarta Tahun 2005 PB. ERLIAN UTAMA Rp. 244.991.000,00

Tabel 5.1.14 Data Primer Rehabilitas Balai Mangu

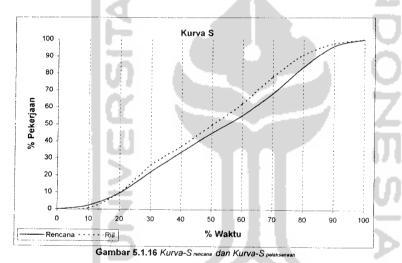
	label 5.1.14 Data Primer Renabilitas Balai Mangu										
Wa	ktu	BC	ws	BCWP		(%)	_				
Persen	Minggu	(%)	(x10^6)	(%)	(x 10^6)	Varians	BAC	EACriil			
7	1	0.490	1.200	1.010	2.700	0.520	244.991	267.277			
13	2	2.247	5.505	3,287	8.785	1.040	244.991	267.277			
20	3	7.290	17.860	9.764	26.097	2.474	244.991	267.277			
27	4	11.290	27.659	12.618	33.725	1.328	244.991	267.277			
33	5	18.040	44.196	18.416	49.222	0.376	244.991	267.277			
40	6	26.190	64.163	31.274	83.588	5.084	244.991	267.277			
47	7	39.510	96.796	41.526	110.990	2.016	244.991	267.277			
53	8	45.910	112.475	52.507	140.339	6.597	244.991	267.277			
60	9	54.540	133.618	56.0 3 3	149.764	1.493	244. 9 91	267.277			
67	10	72.870	178.525	66.753	178.416	-6.117	244.991	267.277			
73	11	82.05 2	201.020	71.574	191.301	-10.478	244.991	267.277			
80	12	88.880	217.748	74.002	197.791	-14.878	244.991	267.277			
87	13	93.857	229.941	79.706	213.036	-14.151	244.991	267.277			
93	14	97.500	238.866	84.661	226.280	-12.839	244.991	267.277			
100	15	100.000	244.991	90.457	241.771	-9.543	244,991	267.277			
107	16	100.000	244.991	100.000	267.277	0.000	244.991	267.277			



Gambar 5.1.14 Kurva-S rencena dan Kurva-S peleksenaan

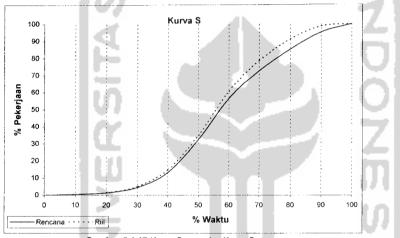
15 Pembangunan Masjid Gedung Diklat Propinsi DIY Gunung Sempu Kasihan Bantul Tahun 2002 PB. ARDIYAN Rp. 294.000.000,00

Tabel 5.1.15 Data Primer Pembangunan Masjid Gedung Diklat Propinsi DIY


Wa	ktu	ВС	ws	ВС	WP	(%)		
Persen	Minggu	(%)	(x10^6)	(%)	(x10^6)	Varians	BAC	EACril
8	1	0.470	1.382	2.541	7.332	2.071	294.000	288.565
15	2	3.456	10.161	8.401	24.243	4.945	294.000	288.565
23	3	3.528	10.372	15.739	45.417	12.211	294.000	288,565
31	4	8.010	23.549	22.636	65.320	14.626	294.000	288.565
38	5	18.924	55.637	30.935	89.268	12.011	294.000	288.565
46	6	31.021	91.202	41.787	120.583	10.766	294.000	288.565
54	7	45.267	133.085	52.954	152.807	7.687	294.000	288.565
62	8	60.549	178.014	55.318	159.628	-5.231	294.000	288.565
69	9	75.383	221.626	57.615	166.257	-17.768	294,000	288.565
77	10	85.020	249.959	63.731	183.905	-21.289	294.000	288.565
85	11	94.015	276.404	65.098	187.850	-28.917	294.000	288.565
92	12	98.934	290.866	80.423	232.073	-18.511	294.000	288.565
100	13	100.000	294.000	81.617	235.518	-18.383	294.000	288.565
108	14	100.000	294.000	84.672	244.334	-15.328	294.000	288.565
115	15	100.000	294.000	87.304	251.929	-12.696	294.000	288.565
123	16	100.000	294.000	90.237	260.392	-9.763	294.000	288.565
131	17	100.000	294.000	95.242	274.835	-4.758	294.000	288.565
138	18	100.000	294.000	100.000	288.565	0.000	294.000	288.565

16 Rehabilitas Gedung Balai Latihan Kerja Jl. Kyai Mojo Yogyakarta Tahun 2005 PB. KITA Rp. 301.241.000,00

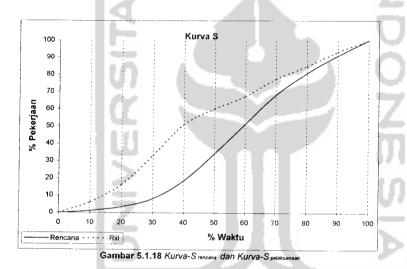
Tabel 5.1.16 Data Primer Rehabilitas Gedung Balai Latihan Kerja


_	Tabel of the Data / Illinoi rechabilitad Geodalig Balar Edunan Renja										
Wa		ВС	BCWS		WP	(%) \$					
Persen	Minggu	(%)	(x10^6)	(%)	(x10^6)	Varians	BAC	EACnil			
8	1	1.340	4.037	0.000	0.000	-1.340	301.241	295.909			
17	2	6.340	19.099	3.740	11.067	-2.600	301.241	295.909			
25	3	14.720	44.343	18.740	55,453	4.020	301.241	295.909			
33	4	27.010	81.365	30.870	91.347	3.860	301.241	295.909			
42	5	35.390	106.609	38.740	114.635	3.350	301.241	295.909			
50	6	44.990	135.528	49.620	146.830	4.630	301.241	295.909			
58	7	53.380	160.802	59.250	175.326	5.870	301.241	295.909			
67	8	63.100	190.083	74.280	219.801	11.180	301.241	295.909			
75	9	75.840	228.461	83.760	247.853	7.920	301.241	295.909			
83	10	89.150	268.556	95.780	283.422	6.630	301.241	295.909			
92	11	97.980	295.156	98.230	290.671	0.250	301.241	295.909			
100	12	100.000	301.241	100.000	295.909	0.000	301.241	295.909			

17 Rehabilitas Grha Wana Bhakti Yasa Jl. Kenari Baciro Yogyakarta Tahun 2005 CV. KRIDA BAKTI Rp.96.630.000,00

Tabel 5.1.17 Data Primer Rehabilitas Grha Wana Bhakti Yasa

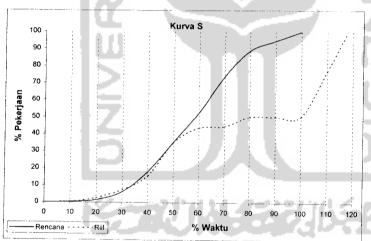
	Tabel 3.1.17 Data / Hiller / Crisbillas Ciria Francis											
Wa	ktu	BCWS		BCWP		(%)	_	EAC				
Persen	Minggu	(%)	(x10^6)	(%)	(x10^6)	Varians	BAC	EACriil				
13	1	0.653	0.631	0.671	0.649	0.018	96,630	96.764				
25	2	1.801	1.740	2.197	2.126	0.396	96.630	96.764				
38	3	8.526	8.239	9.755	9.439	1.229	96.630	96.764				
50	4	32.468	31.374	34.895	33.766	2.427	96,630	96.764				
63	5	62.583	60.474	67.149	64.976	4,566	96.630	96.764				
75	6	79.491	76.812	86,246	83.455	6.755	96.630	96.764				
88	7	93.997	90.829	98.372	95.189	4.375	96.630	96.764				
100	8	100.000	96.630	100.000	96.764	0.000	96.630	96.764				



Gambar 5.1.17 Kurva-S rencene dan Kurva-S pelaksenean

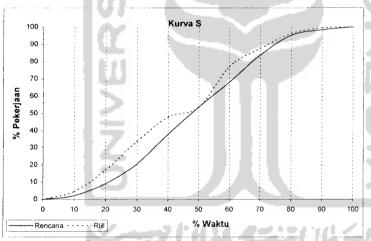
18 Rehabilitas Pavilum Eks. Bkow DPD DIY JI. AM. Sangaji Yogyakarta Tahun 2005 PB. ATNA JAYA Rp. 92.549.000,00

Tabel 5.1.18 Data Primer Rehabilitas Pavilum Eks. Bkow DPD DIY


	Tabel 3.1.10 Data / filler / tellabilità 3 / aviium Exs. Dikov Di D Di i											
Wa	ktu		ws	ВС	WP	(%)						
Persen	Minggu	(%)	(x10^6)	(%)	(x10^6)	Varians	BAC	EACriii				
8	1	0.997	0.922	4.644	4.198	3.647	92.549	90.401				
17	2	2.172	2.010	12.043	10.887	9.871	92.549	90.401				
25	3	5.207	4.819	22.418	20.266	17.211	92.549	90.401				
33	4	10.133	9.378	40.072	36.226	29.939	92.549	90.401				
42	5	20.575	19.042	53.884	48.712	33.309	92.549	90.401				
50	6	34.349	31.790	60.252	54.468	25.902	92.549	90.401				
58	7	48.213	44.621	65.403	59.125	17.189	92.549	90.401				
67	8	63.817	59.062	75.362	68.128	11.545	92.549	90.401				
75	9	74.647	69.085	80.814	73.057	6.167	92.549	90.401				
83	10	84.951	78.621	87.534	79.132	2.583	92.549	90.401				
92	11	92.545	85.649	94.713	85.622	2,168	92.549	90.401				
100	12	100.000	92.549	100,000	90.401	0.000	92.549	90.401				

19 Rehabilitas Gedung Laboratorium UGM Untuk Kantor KPU JI. Jati Pingit Yogyakarta Tahun 2003 PB. KARYA SETIA ABADI Rp.392.630.000,00

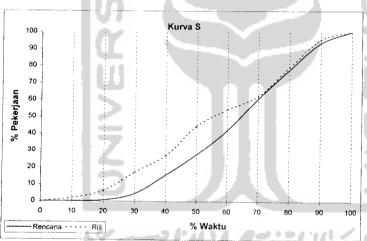
Tabel 5.1.19 Data Primer Rehabilitas Gedung Laboratorium UGM Untuk Kantor KPU


Wa	ktu	1	ws	ВС	WP	(%)		
Persen	Minggu	(%)	(x10^6)	(%)	(x10^6)	Varians	BAC	EACril
6	1	0.206	0.810	0.084	0.347	-0.122	392.630	411.785
12	2	0.526	2.066	0.506	2.083	-0.021	392.630	411.785
18	3	1.007	3.952	2.305	9.493	1.299	392.630	411.785
24	4	2.240	8.796	3.325	13.693	1.085	392.630	411.785
29		5.637	22.131	6.867	28.279	1.231	392.630	411.785
35		11.498	45.143	12.068	49.695	0.571	392.630	411.785
41	7	19.659	77.188	16.419	67.611	-3.240	392.630	411.785
47	8	26.509	104.082	31.677	130.441	5.168	392.630	411.785
53	9	44.105	173.168	38.261	157,552	-5.844	392.630	411.785
59	10	50.198	197.092	43.623	179.631	-6.575	392.630	411.785
65	11	62.786	246.515	43.702	179.957	-19,084	392.630	411.785
71	12	75.259	295.489	44.593	183.628	-30.666	392.630	411.785
76	13	86.278	338.751	50.080	206.220	-36.198	392.630	411.785
82	14	90.651	355.925	50.197	206.701	-40.455	392.630	411.785
88	15	93.772	368.178	50.219	206.794	-43.553	392.630	411.785
94	16	96.635	379.418	50.232	206.846	-46.404	392.630	411.785
100	17	100.000	392.630	50.376	207.439	-49.624	392.630	411.785
106	18	100.000	392.630	50.555	208.177	-49.445	392.630	411.785
112	19	100.000	392.630	88.351	363.814	-11.650	392.630	411.785
118	20	100.000	392.630	100.000	411.785	0.000	392.630	411.785

20 Peningkatan Jalan KRETEK - DEPOK (1 Km) Bantul - Yogyakarta Tahun 2005 PT. MAJU BATU RAYA Rp. 603.336.888,00

Tabel 5.1.20 Data Primer Peningkatan Jalan KRETEK - DEPOK (1 Km)

Wa	ktu	вс	ws	ВС	WP	(%)		
Persen	Minggu	(%)	(x10^6)	(%)	(x10^6)	Varians	BAC	EACril
6	1	0.723	4.362	0.625	4.128	-0.098	603.336	660.474
11	2	2.584	15.590	5.607	37.033	3.023	603.336	660.474
17	3	4.446	26.824	12.358	81.621	7.912	603.336	660.474
22	4	12.415	74.904	20.228	133.601	7.813	603.336	660.474
28	5	16.510	99.611	30.171	199.272	13.661	603.336	660.474
33	6	26.848	161.984	39.515	260.986	12.667	603.336	660.474
39	7	35.629	214.963	48.072	317.503	12.443	603,336	660.474
44	8	47.431	286.168	47.243	312.028	-0.188	603.336	660.474
50	9	53.654	323.714	53.594	353.975	-0.060	603.336	660.474
56	10	61.703	372.276	66.641	440.147	4.938	603.336	660.474
61	11	69.769	420.941	79.689	526.325	9.920	603.336	660.474
67	12	75.835	457.540	84.552	558.444	8.717	603.336	660.474
72	13	88.901	536.372	89.415	590.563	0.514	603.336	660.474
78	14	93.957	566.876	94.250	622.497	0.293	603.336	660.474
83	15	97.064	585.622	99.143	654.814	2.079	603.336	660.474
89	16	98.173	592.313	99.300	655.851	1.127	603.336	660.474
94	17	99.185	598,419	99.843	659.437	0.658	603.336	660.474
100	18	100.000	603.336	100.000	660.474	0.000	603.336	660.474



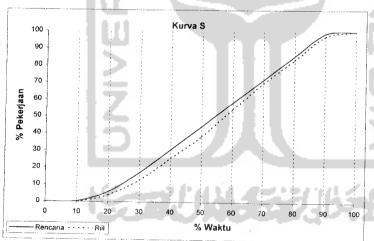
Gambar 5.1.20 Kurva-S rencana dan Kurva-S pelaksanaan

21 Peningkatan Jalan BANDUNG - WERO (1 Km) Gunung Kidul - Yogyakarta Tahun 2005 PB. Maruto Rp. 395.620.235,00

Tabel 5.1.21 Data Primer Peningkatan Jalan BANDUNG - WERO (1 Km)

Wa	aktu	ВС	WS		WP	8)	•	
Persen	Minggu	(%)	(x10^6)	(%)	(x10^6)	Varians	BAC	EACril
6	1	0.130	0.514	1.159	4.907	1.029	395,620	423.389
12	2	0.260	1.029	2.450	10.373	2.190	395.620	423.389
18	3	0.390	1.543	3.763	15.932	3.373	395.620	423.389
24	4	1.277	5.052	10.328	43.728	9.051	395.620	423.389
29	5	3.934	15.564	16.894	71.527	12.960	395.620	423.389
35	6	10.388	41.097	21.489	90,982	11.101	395.620	423.389
41	7	16.919	66.935	28.486	120.607	11.567	395.620	423.389
47	8	22.850	90.399	37.958	160.710	15.108	395.620	423.389
53	9	32.281	127.710	51.290	217.156	19.009	395.620	423.389
59	10	40.649	160.816	54.182	229.401	13.533	395.620	423,389
65	11	48.716	192.730	55.696	235.811	6,980	395.620	423.389
71	12	62.007	245.312	62.923	266.409	0.916	395.620	423.389
76	13	71.819	284.130	71.192	301.419	-0.627	395.620	423.389
82	14	81.632	322.953	84.469	357.632	2.837	395.620	423.389
88	15	91.444	361.771	93.705	396.736	2.261	395.620	423.389
94	16	98.337	389.041	99.910	423.008	1.573	395.620	423.389
100	17	100.000	395.620	100.000	423.389	0.000	395.620	423.389

Gambar 5.1.21 Kurva-S rencens dan Kurva-S peleksanaan

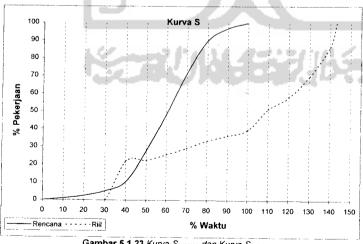

22 Peningkatan Jalan Propinsi (Milir - Dayakan - Sugiman), 1,84 Km Daerah Istimewa Yogyakarta Tahun 2005

PT. Laju Baru Rp. 1.399.388.729,20

Tabel 5.1.22 Data Primer Peningkatan Jalan Propinsi (Milir - Dayakan - Sugiman), 1,84 Km

W	aktu	ì	ws		WP	(%)		Jugimanij, 1
Persen		(%)	(x10^6)	(%)	(x10^6)	Varians	BAC	EACril
5	1	0.079	1.106	0.075	1.154	-0.004	1399.389	1539.281
10	2	0.237	3.317	0.187	2.878	-0.050	1399.389	1539.281
14	3	1.284	17.968	0.498	7.666	-0.786	1399.389	1539.281
19		5.284	73.944	3.287	50.596	-1.997	1399.389	1539.281
24	5	8.676	121.411	7.105	109.366	-1.571	1399.389	1539.281
_29	6	15.166	212.231	10.834	166.766	-4.332	1399.389	1539.281
33	7	21.657	303.066	16.988	261.493	-4.669	1399.389	1539.281
38	8	28.147	393.886	23.142	356.220	-5.005	1399.389	1539.281
43	9	34.577	483.867	29.246	450.178	-5.331	1399.389	1539.281
48	10	41.007	573.847	35,350	544.136	-5.657	1399.389	1539.281
52	11	47.437	663.828	41.454	638.093	-5.983	1399.389	1539,281
57	12	53.788	752.703	49.793	766.454	-3.995	1399.389	1539.281
62	13	61.231	856.860	57.535	885.625	-3.696	1399.389	1539.281
67	14	66.119	925.262	65.277	1004.796	-0.842	1399.389	1539.281
71	15	74.325	1040.096	71.716	1103.911	-2.609	1399.389	1539.281
76	16	80.609	1128.033	78.227	1204.133	-2.382	1399.389	1539.281
81	17	86.893	1215.971	84.738	1304.356	-2.155	1399.389	1539.281
86	18	93.176	1303.894	91.249	1404.578	-1.927	1399.389	1539.281
90	19	99.462	1391.860	97.760	1504.801	-1.702	1399.389	1539.281
95	20	99.544	1393.008	99.838	1536.787	0.294	1399.389	1539.281
100	21	100.000	1399.389	100.000	1539.281	0.000	1399.389	1539.281

*sumber : data asli proyek

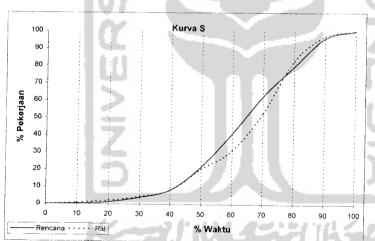


Gambar 5.1.22 Kurva-S rencana dan Kurva-S pelaksanaan

23 Pembangunan Gedung Fakultas ADAB IAIN Sunan Kalijaga Kota Yogyakarta Tahun 2006 PT. ADHI KARYA (Persero) Tbk. Rp. 9.185,142.000,00

Tabel 5.1.23 Data Primer Pembangunan Gedung Fakultas ADAB IAIN Sunan Kalijaga

Wa	ıktu	ВС	:WS	T	WP	8	7.8 17.114 0.	
Persen	Minggu	(%)	(x 10^6)	(%)	(x10^6)	Varians (BAC	EACril
4	1	0.310	28.501	0.000	0.000	-0.310	9185.142	9317.722
9	2		85.495	0.000	0.000	-0.931	9185.142	9317.722
13	3	1.551	142.498	0.000	0.000	-1.551	9185.142	9317.722
17	4	2.172	199.501	0.000	0.000	-2.172	9185.142	9317.722
22	5		256.495	0.000	0.000	-2.793	9185.142	9317.722
26	6	4.034	370.501	0.000	0.000	-4.034	9185.142	9317.722
30	7	5.275	484.498	0.097	8.992	-5.178	9185.142	9317.722
35	8		752.144	12.889	1200.989	4.701	9185.142	9317.722
39	9	9.353	859.105	21.665	2018.675	12.312	9185.142	9317.722
43	10	13.889	1275.715	21.866	2037,413	7.977	9185.142	9317.722
48	11	23.273	2137.649	21.905	2041.066	-1.368	9185.142	9317.722
52	12	32.010	2940.173	22.733	2118.198	-9.277	9185.142	9317.722
57	13	39.748	3650.929	24.616	2293.688	-15.132	9185.142	9317.722
61	14	50.587	4646.515	25.599	2385.234	-24.988	9185.142	9317.722
65	15	61.290	5629.574	27.070	2522.345	-34.220	9185.142	9317.722
70	16	70.460	6471.879	28.930	2695.626	-41.530	9185.142	9317.722
74	17	80.945	7434.941	31.402	2925.914	-49.544	9185.142	9317.722
78	18	88.175	8099.008	32.667	3043.811	-55.508	9185.142	9317.722
83	19	92.494	8495.687	34.418	3206.955	-58.076	9185.142	9317.722
87	20	96.106	8827.436	34.992	3260.411	-61.114	9185.142	9317.722
91	21	97.434	8949.433	36.809	3429.779	-60.625	9185.142	9317.722
96	22	98.730	9068.500	37.971	3538.042	-60.759	9185.142	9317.722
100	23	100.000	9185.142	39.483	3678.870	-60.518	9185.142	9317.722
104	24	100.000	9185.142	44.003	4100.096	-55.997	9185.142	9317.722
109	25	100.000	9185.142	50.258	4682.863	-49.742	9185.142	9317.722
113	26	100.000	9185.142	53.856	5018.152	-46.144	9185.142	9317.722
117	27	100.000	9185.142	56.044	5222.043	-43.956	9185.142	9317.722
122	28	100.000	9185.142	59.571	5550.623	-40.429	9185.142	9317.722
126	29	100.000	9185.142	65.552	6107.953	-34.448	9185.142	9317.722
130	30	100.000	9185.142	70.277	6548.225	-29.723	9185.142	9317.722
135	31	100.000	9185.142	72.717	6775.559	-27.283	9185.142	9317.722
139	32	100.000	9185.142	83.141	7746.847	-16.859	9185.142	9317.722
143	33	100.000	9185.142	100.000	9317.722	0.000	9185.142	9317.722

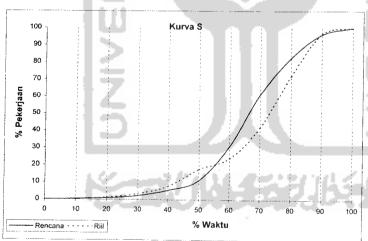


24 Peningkatan Jalan Propinsi (Mulo - Kemiri - Baron), 1,00 Km Daerah Istimewa Yogyakarta Tahun 2005

Rp. 499.478.600,00

Tabel 5.1.24 Data Primer Peningkatan Jalan Propinsi (Mulo - Kemiri - Baron), 1,00 Km

		т		, 		7 1		1011), 1,001
Wa	ktu	ВС	:WS	ВС	WP	(%)		
Persen	Minggu	(%)	(x10^6)	(%)	(x10^6)	Varians	BAC	EACril
6	1	0.069	0.345	0.310	1.486	0.241	499.478	479.499
11		0.454	2.268	1.047	5.020	0.593	499.478	479.499
17	3	0.641	3.202	1.620	7.768	0.979	499.478	479.499
22	4	1.570	7.842	2.450	11.748	0.880	499.478	479.499
28	_	2.974	14.854	3.120	14.960	0.146	499.478	479.499
33		5.440	27.172	6.340	30.400	0.900	499.478	479.499
39	7	7.290	36.412	7.221	34.625	-0.069	499.478	479.499
44	8	12.110	60.487	11.751	56.346	-0.35 9	499.478	479.499
50	9	21.510	107.438	20.140	96.571	-1.370	499.478	479.499
56	10	34.505	172.345	26.380	126.492	-8.125	499.478	479.499
61	11	42.550	212.528	32.217	154.480	-10.333	499.478	479.499
67	12	56.420	281.805	40.870	195.971	-15.550	499.478	479.499
72	13	66.420	331.753	60.620	290.673	-5.800	499.478	479.499
78	14	74.720	373.210	78.820	377.941	4.100	499.478	479.499
83	15	86.854	433.817	88.916	426.354	2.062	499.478	479.499
89	16	95.320	4 76.102	96.496	462.698	1.176	499.478	479.499
94	17	98.080	489.888	98.820	473.841	0.740	499.478	479.499
100	18	100.000	499.478	100.000	479.499	0.000	499.478	479.499

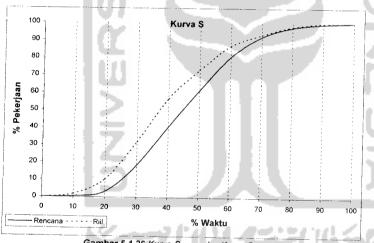


Gambar 5.1.24 Kurva-S rencana dan Kurva-S pelaksanaan

25 Peningkatan Jembatan Ngablak (35,00 m') Bantul - Yogyakarta Tahun 2004 PT. KARSINDO ESTATAMA Rp. 1.571.712.867,88

Tabel 5.1.25 Data Primer Peningkatan Jembatan Ngablak (35,00 m')

Waktu				BCWP		8	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
		BCWS		DOVVE			•	
Persen	Minggu	(%)	(x10^6)	(%)	(x10^6)	Varians	BAC	EACrit
5	1	0.207	3.250	0.138	2.187	-0.069	1571.713	1581.554
9		0.383	6.015	0.345	5.461	-0.037	1571.713	1581.554
14	3	0.559	8.780	0.702	11.101	0.143	1571.713	1581.554
18	_	0.779	12.240	1.098	17.358	0.319	1571.713	1581.554
23	5	1.228	19.296	1.688	26.693	0.460	1571.713	1581.554
27	6	1.832	28.792	2.712	42.893	0.880	1571.713	1581.554
32	7	2.510	39.455	3.829	60.555	1.319	1571.713	1581.554
36	8	3.992	62.736	5.745	90.852	1.753	1571.713	1581.554
41	9	5.772	90.719	8.270	130.799	2.498	1571.713	1581.554
45	10	9.135	143.578	12.254	193.804	3.119	1571.713	1581.554
50	11	11.178	175.686	17.544	277.473	6.366	1571.713	1581.554
55	12	19.397	304.865	20.183	319.207	0.786	1571.713	1581.554
59	13	28.499	447.922	23.161	366.302	-5.338	1571.713	1581.554
64	14	41.375	650.296	27.034	427.562	-14.341	1571.713	1581.554
68	15	57.837	909.032	37.362	590.892	-20.476	1571.713	1581.554
73	16	66.307	1042.156	48.990	774.803	-17.317	1571.713	1581.554
_77	17	75.503	1186.690	61.784	977.144	-13.719	1571.713	1581.554
82	18	87.548	1376.003	78.963	1248.835	-8.586	1571.713	1581.554
86	19	90.183	1417.416	92.702	1466.126	2.519	1571.713	1581.554
91	20	97.786	1536.914	97.575	1543.198	-0.211	1571.713	1581.554
95	21	99.484	1563.595	99.415	1572.302	-0.069	1571.713	1581.554
100	22	100.000	1571.713	100.000	1581.554	0.000	1571.713	1581.554



Gambar 5.1.25 Kurva-S rencana dan Kurva-S peleksanaan

26 Peningkatan Jembatan Kalasan (7,00 m') Sleman - Yogyakarta Tahun 2005 CV. TRIASA Rp. 350.000.543.53

Tabel 5.1.26 Data Primer Peningkatan Jembatan Kalasan (7,00 m')

Deta , filler , Chinighatan Jembatan Naiasan (7,00 m)											
Waktu		BCWS		BCWP		8]				
Persen	Minggu	(%)	(x10^6)	(%)	(x10^6)	Varians	BAC	EACriil			
6		0.070	0.245	0.070	0.269	0.000	350.001	385,000			
12		0.700	2.450	2.690	10.356	1.990	350.001	385.000			
18	-	1.230	4.305	6.090	23.446	4.860	350.001	385.000			
24		6.110	21.385	16.470	63.409	10.360	350.001	385.000			
29		17.600	61.600	30.510	117.463	12.910	350.001	385.000			
35	6	25.610	89.635	44.560	171.556	18.950	350.001	385.000			
41	7	44.070	154.245	59.560	229.306	15.490	350.001	385.000			
47		55.300	193.550	65.160	250.866	9.860	350.001	385.000			
53		67.460	236.110	81.040	312.004	13.580	350.001	385.000			
59	_	78.760	275.660	85.920	330.792	7.160	350.001	385.000			
65	11	87.780	307.230	90.520	348.502	2.740	350.001	385,000			
71	12	92.470	323.646	93.550	360.167	1.080	350.001	385.000			
76	13	96.300	337.051	96.150	370.177	-0.150	350.001	385.000			
82	14	98.140	343,491	99.040	381.304	0.900	350.001	385.000			
88	15	99.042	346.648	99.890	384.576	0.848	350.001	385.000			
94	16	99.930	349.756	100.000	385.000	0.070	350.001	385.000			
100	17	100.000	350.001	100.000	385.000	0.000	350.001	385,000			

Gambar 5.1.26 Kurva-S rencena dan Kurva-S peleksar