HALAMAN PENGESAHAN TUGAS AKHIR

KAPASITAS LENTUR BALOK CASTELLA BERDASARKAN KONDISI BATAS TEKUK LOKAL

Diajukan Untuk Memenuhi Persyaratan Mencapai Gelar Sarjana Strata Satu (S1) Program Studi Teknik Sipil Fakultas Teknik Sipil dan Perencanaan Universitas Islam Indonesia Jogjakarta

Ir. FATKHURROHMAN N.S, MT

8-11-2007

Dosen Pembimbing I

Tanggal :

Motto

Demi matahari dan sinarnya di pagi hari Demi bulan apabila mengiringi Demi siang apabila menampakkan diri Demi malam apabila menutupi Demi langit dan seluruh binaannya Demi bumi dan seluruh yang ada di permukaannya

Demi jiwa dan pensempurnaannsa

Allah mengilhami sukma kebaikan dan keburukan Beruntunglah bagi siapa yang mensucikannya Dan merugilah bagi siapa yang mengotorinya

(Asy-Symms QS 91:1-10)

Gunakan seluruh potensi kecerdasanmu, karena kamu berasal dari Ar Rasyid Allah yang maha cerdas

Kecerdasan yang dibutuhkan adalah kemampuan untuk menemukan makna kehidupan yang lebih tinggi dan lebih luas

PERSEMBAHAN

Tugas Akhir ini Kupersembahkan Kepada:

KATA PENGANTAR

Assalamu'alaikum Wr.Wb.

Alhamdulillahirabbil'alamin, segala puji dan syukur kehadirat Allah SWT yang telah memberikan karunia, hidayah, dan inayahnya kepada penulis, sehingga Laporan Tugas Akhir yang berjudul " KAPASITAS LENTUR BALOK CASTELLA BERDASARKAN KONDISI BATAS TEKUK LOKAL " dapat diselesaikan dengan baik.

Laporan Tugas Akhir ini disusun sebagai syarat kelulusan untuk menempuh jenjang pendidikan Strata Satu (S1) Fakultas Teknik Sipil dan Perencanaan Jurusan Teknik Sipil Universitas Islam Indonesia, Jogjakarta. Dalam penyusunan laporan Tugas Akhir ini, sebelumnya penulis melakukan pengujian di Laboratorium Mekanika Rekayasa Universitas Islam Indonesia. Laporan Tugas Akhir ini adalah sarana bagi mahasiswa untuk mengaplikasikan ilmu dan pengetahuan yang didapat selama mengikuti perkualiahan di Fakultas Teknik Sipil dan Perencanaan Jurusan Teknik Sipil Universitas Islam Indonesia (UII), dan dari penelitian yang dilakukan mendapatkan ilmu dan pengetahuan yang baru.

Selama melaksanakan dan menyelesaikan laporan Tugas Akhir ini, tentunya tidak lepas dari segala hambatan dan rintangan. Namun berkat bantuan dan support dari berbagai pihak, akhirnya Tugas Akhir ini dapat diselesaikan dengan baik. Dalam kesempatan ini penulis mengucapkan terima kasih kepada:

- 1. Prof. DR. Edy Suandi Hamid, M.Ec, selaku Rektor Universitas Islam Indonesia Jogjakarta.
- 2. DR. Ir. H. Ruzardi, Ms, selaku Dekan Fakultas Teknik Sipil dan Perencanaan Universitas Islam Indonesia.
- 3. Ir. H. Faisol A.M. Ms, selaku Ketua Jurusan Teknik Sipil Universitas Islam Indonesia.
- 4. Ir. Fatkhurrohman Nursodik, MT, selaku Dosen Pembimbing Tugas Akhir dan selaku Kepala Laboratorium Mekanika Rekayasa, yang telah memberikan ide-ide dasar dan bimbingannya hingga selesainya Tugas Akhir ini.
- 5. Staf Dosen dan Karyawan Jurusan Teknik Sipil, Fakultas Teknik Sipil dan Perencanaan Universitas Islam Indonesia, Jogjakarta.
- 6. Ayah dan Bunda tercinta yang selalu memberikan kasih sayang, cinta, perhatian, dukungan moral dan material yang tak terhingga dan segala doanya.
- 7. Aditya Kusumo Wardhana & Hendra Haika Prayudha (ade) yang selalu memberikan kasih sayang, support dan doa.
- 8. Seluruh keluarga besar saya yang selalu memberikan motivasi dan doa.
- 9. Mas Aris yang telah banyak membantu dalam pengujian laboratorium.
- 10. K'Riza selaku rekan satu tim penelitian Tugas Akhir yang banyak membantu hingga laporan ini dapat diselesaikan dengan baik.
- 11. Saudara-saudara saya: Alin, Rzq, Gna & Iwan, serta sahabat-sahabat saya: Die2t, Gadis, Fia, Deny, Kholiq, thanx ya atas bantuan dan doanya dalam menyelesaikan Tugas Akhir ini, dan semua teman-teman yang selalu memberikan semangat.

Penulis juga menyadari bahwa Tugas Akhir ini masih banyak kekurangan dan jauh dari sempurna. Oleh karena itu, saran dan kritik sangat penulis harapkan.

Akhirnya penulis berharap semoga laporan Tugas Akhir ini dapat bermanfaat bagi kita semua sebagai pertimbangan dalam perencanaan bangunan khususnya konstruksi baja.

Wassalamu'alaikum Wr.Wb.

DAFTAR ISI

HALAN	MAN JUDUL	i
HALAN	IAN PENGESAHAN	••
МОТТ()	11
UAT AN		iii
HALAN	IAN PERSEMBAHAN	iv
КАТА Р	ENGANTAR	v
DAFTAI	R ISI	
DAFTAI	Самрар	viii
DATIA	COAMBAR	xiv
DAFTAF	R TABEL	xvii
DAFTAR	R NOTASI	viv
DAFTAR	LAMPIRAN	лід
		xxiii
ABSTRA	KSI	xxiv
BAB I	PENDAHULUAN	
		1
	1.1. Latar Belakang	1
	1.2.Rumusan Masalah	3
	1.3. Tujuan Penelitian	3
	1.4.Manfaat Penelitian	5
	1.5. Batasan Masalah	4
		4
	1.6.Keaslian Penelitian	5

BAB II	TINJAUAN PUSTAKA	6
	2.1 Balok Castella	6
	2.2 Tegangan Kritis Pelat	6
	2.3 Tegangan Tekan Beban Terpusat	7
	2.4 Rasio Kelangsingan Batas Pelat Sayap	7
	2.5 Momen Kritis Balok Castella	7
	2.6 Hubungan Beban – Deformasi	7
	2.7 Hubungan Momen – Kelengkungan	, 8
	2.8 Kapasitas Lentur Profil Castella Dengan Perkuatan.	8
	2.9 Kapasitas Lentur dan Geser Profil Castella	0
		7
BAB III	LANDASAN TEORI	
	2.1 Druge (1.4) \sim 10	10
	5.1. Profil Castella	10
	3.2 Tegangan Pada Balok Castella	11
	3.3 Tegangan Geser Horizontal Profil Castella	15
	3.4 Tegangan Kritis Profil-I dan Profil Castella	16
	3.5 Tegangan Tekan Akibat Beban Terpusat Pada Sayap Profil	18
	3.6 Tekuk Elastis Akibat Lentur Murni	20
	3.7 Tekuk Elastis Akibat Geser Murni	22
	3.8 Tekuk Lokal	23
	3.8.1 Rasio Kelangsingan Batas Pelat Sayap	23

3.8.2 Rasio Kelangsingan Batas Pelat Badan	25
3.9 Momen Batas Berdasarkan Tekuk Lokal dan Tekuk	
Puntir Lateral	28
3.10 Karakteristik Balok Castella	29
3.11 Hipotesa	32

BAB IV	METODE PENELITIAN	34
	4.1 Tahapan Penelitian	34
	4.2 Persiapan Bahan dan Peralatan	35
	4.2.1 Bahan	35
	4.2.2 Peralatan penelitian	35
	4.3 Model Benda Uji	38
	a. Benda Uji Profil Castella	38
	b. Benda Uji Tarik Baja dan Tarik Las	40
	4.4 Pembuatan Benda Uji	41
	4.5 Set Up Peralatan	42
	4.6 Pelaksanaan Pembebanan	43
	4.7 Pelaksanaan Uji Kuat Tarik Baja dan Tarik Las	43
	4.8 Data Yang Dibutuhkan	44

BAB V	HASIL PENELITIAN DAN PEMBAHASAN	45
	5.1 Hasil Pengujian	45
	5.1.1 Hasil Uji Kuat Tarik Baja	45
	5.1.2 Hasil Uji Kuat Tarik Las	46
	5.1.3 Hasil Pengujian Kuat Lentur Profi-1 dan Castella	48
	5.1.3.1 Grafik Hasil Pengujian Balok Castella	
	dengan Variasi L _b	49
	5.1.3.2 Grafik Hasil Pengujian Profil-1	55
	5.1.3.3 Kurva Beban-Deformasi Balok Castella dan	
	Profil-I	56
	5.1.4 Rasio Momen Kritis Terhadap Momen leleh (M _{cr} /M	y)
	Profil Castella dan Profil-I	59
	5.1.5 Rasio Momen Kritis Terhadap Momen Plastis (Mer/	M _p)
	Profil Castella dan Profil-1	62
	5.1.6 Rasio Tegangan Lentur Terhadap Tegangan Leleh	
	(f _b /F _y) Profil Castella dan Profil-I	65
	5.1.7 Nilai Tegangan Geser Kritis Profil Castella dan	
	Profil-I	68
	5.1.8 Nilai Tegangan Kritis Pada Sayap Akibat Beban	
	Terpusat Profil Castella	69
	5.1.9 Nilai Koefisien Tekuk	70

5.1.10 Nilai Faktor Kelengkungan Profil-I dan Profil	
Castella	70
5.2 Pembahasan	83
5.2.1 Kerusakan Profil-I dan Profil Castella	83
5.2.2 Hubungan Beban-Deformasi Pengujian	84
5.2.3 Rasio Momen Batas Terhadap Momen Leleh (M_{cr}/M_{cr})	d
Profil-/ dan Profil Castella	87
5.2.4 Rasio Momen Batas Terhadap Momen Plastis (M_{cr}/M_{cr})	(I_p)
Profil-1 dan Profil Castella	88
5.2.5 Rasio Nilai Tegangan Lentur (f _b) Profil-I dan	
Castella	88
5.2.6 Nilai Tegangan Kritis (F _{er}) Pada Sayap Akibat Beba	in
Tepusat Profil Castella	89
5.2.7 Nilai Koefisien Tekuk (k) Profil Castella	90
5.2.8 Rasio Momen Batas Berdasarkan Tekuk Lokal	
Terhadap Momen Leleh (M _{cr} /M _y) vs Rasio Jarak Ar	ntar
Dukungan Lateral Terhadap Jari-Jari Inersia (L _b /r _y)	
	91

BAB VI	KESIMPULAN DAN SARAN		93	
	6.1	Kesimpulan	93	
	6.2	Saran	94	

DAFTAR PUSAKA

LAMPIRAN

1	Lompiran I	Perhitungan Hasil Uji Tarik Baja dan Tarik Las
1. ว	Lampiran II	Perhitungan Momen Batas Berdasarkan Tekuk
2.	Lamphan n	Lokal dan Tekuk Puntir Lateral
3.	Lampiran III	Perhitungan Beban Maksimum Teoritis
4.	Lampiran IV	Perhitungan BebanTeoritis dan Hasil Uji
		Berdasarkan Tegangan Geser
5.	Lampiran V	Data Beban – Lendutan Hasil Uji
6.	Lampiran VI	Perhitungan Koefisien Tekuk Hasil Uji
7.	Lampiran VII	Hubungan Momen – Kelengkungan Hasil Uji dan
	2	Teoritis
8.	Lampiran VIII	Perhitungan Lendutan Secara Teoritis
9.	Lampiran IX	Dokumentasi Hasil Pengujian
	E	
	1.0	m
	15	
	16	I I I I I I I I I I I I I I I I I I I
	15	
	Ken	THAL STREET

DAFTAR GAMBAR

1.	Gambar 3.1	Pembuatan profil Castella	10
2.	Gambar 3.2	SFD dan BMD rofil Castella	10
3.	Gambar 3.3	Momen lentur pada penampang T karena gaya	
		geser vertical	12
4.	Gambar 3.4	Tegangan-tegangan lentur yang terjadi pada	
		balok Castella	13
5.	Gambar 3.5	Tegangan geser pada profil Castella	15
6.	Gambar 3.6	Pelat memikul tekanan merata	16
7.	Gambar 3.7	Koefisien tekuk pelat untuk tekanan merata	17
8.	Gambar 3.8	Kelumpuhan web untuk beban interior	19
9.	Gambar 3.9	Kelumpuhan web untuk reaksi ujung	19
10.	Gambar 3.10	Koefisien tekuk pelat dalam lentur murni	20
11.	Gambar 3.11	Koefisien tekuk local untuk batang lentur	
	- IU	penampang I	21
12.	Gambar 3.12	Pelat memikul tegangan geser	23
13.	Gambar 3.13	Balok Castella dengan beban terpusat P	29
14.	Gambar 3.14	Contoh kurva beban – deformasi	30
15.	Gambar 3.15	Kurva momen – kelengkungan	31
16.	Gambar 4.1	Flowchart tahapan penelitian	34
17.	Gambar 4.2	Universal Testing Machine (UTM)	36
18.	Gambar 4.3	Loading Frame	37
19.	Gambar 4.4	Dial Gauge	38
20.	Gambar 4.5	Dukungan Sendi dan Roll	38
21.	Gambar 4.6	Hydraulic Jack	39
22.	Gambar 4.7	Sample Benda Uji	40
23.	Gambar 4.8	Benda Uji Tarik Baja dan Tarik Las	41
24.	Gambar 4.9	Dimensi Profil-I dan Profil Castella	43

25.	Gambar 4.10	Set Up Peralatan	43
26.	Gambar 5.1	Kurva beban-deformasi Castella Lb 960 mm	49
27.	Gambar 5.2	Kurva beban-deformasi Castella L _b 980 mm	50
28.	Gambar 5.3	Kurva beban-deformasi Castella Lb 1000 mm	51
29.	Gambar 5.4	Kurva beban-deformasi Castella L _b 1500 mm	52
30.	Gambar 5.5	Kurva beban-deformasi Castella Lb 2000 mm	53
31.	Gambar 5.6	Kurva beban-deformasi Castella Lb 2500 mm	54
32.	Gambar 5.7	Kurva beban-deformasi Profil-/ L _b 960 mm	55
33.	Gambar 5.8	Kurva beban-deformasi Profil Castella dan	
		Profil-1	56
34.	Gambar 5.9	Grafik Hubungan M _{er} /M _y Hasil Uji dan Teoritis	61
35.	Gambar 5.10	Grafik Hubungan M _{cr} /M _p Hasil Uji dan Teoritis	64
36.	Gambar 5.11	Grafik Hubungan f _b /F _y Hasil Uji	67
37.	Gambar 5.12	Grafik tegangan geser kritis profil Castella dan	
		profil- <i>I</i>	69
38.	Gambar 5.13	Kurva momen-kelengkungan Profil-/ L _b 960 mm	73
39.	Gambar 5.14	Kurva momen-kelengkungan Castella L _b 960 mm	75
40.	Gambar 5.15	Kurva momen-kelengkungan Castella L _b 980 mm	76
41.	Gambar 5.16	Kurva momen-kelengkungan Castella L _b 1000 mm	78
42.	Gambar 5.17	Kurva momen-kelengkungan Castella L _b 1500 mm	79
43.	Gambar 5.18	Kurva momen-kelengkungan Castella L_b 2000 mm	81
44.	Gambar 5.19	Kurva momen-kelengkungan Castella L _b 2500 mm	82
45.	Gambar 5.20	Kurva beban-deformasi Profil-1	84
46.	Gambar 5.21	Kurva beban-deformasi balok Castella	86
47.	Gambar 5.22	Koefisien tekuk local untuk batang lentur penampan	g I
			91
47	Gambar 5.23	Hubungan momen batas terhadap momen leleh vs	
		Kelangsingan	92

DAFTAR TABEL

1. Tabel 5.1	Hasil Uji Kuat Tarik Baja	46
2. Tabel 5.2	Hasil Uji Kuat Tarik Las	47
3. Tabel 5.3	Beban Maksimum Benda Uji	57
4. Tabel 5.4	Analisa Kekakuan Balok <i>Castella</i> dari Kurva	
	Beban – Deformasi	58
5. Tabel 5.5	Momen Kritis Terhadap Momen Leleh (M_{cr}/M_{v})	
	Hasil Uji Profil Castella	60
6. Tabel 5.6	Momen Kritis Terhadap Momen Leleh (M _{cr} /M _y)	
2	Hasil Uji Profil-1	60
7. Tabel 5.7	Momen Kritis Terhadap Momen Leleh (Mcr/My)	
ເທ	Profil Castella Secara Teoritis	60
8. Tabel 5.8	Momen Kritis Terhadap Momen Leleh (M_{cr}/M_y)	00
Ū	Profil-1 Secara Teoritis	61
9. Tabel 5.9	Momen Kritis Terhadap Momen Plastis (M_{cr}/M_p)	
IZ IZ	Hasil Uji Profil Castella	63
10. Tabel 5.10	Momen Kritis Terhadap Momen Plastis (M _{cr} /M _p)	
12	Hasil Uji Profil-I	63
11. Tabel 5.11	Momen Kritis Terhadap Momen Plastis (M_{cr}/M_p)	
	Profil Castella Secara Teoritis	63
12. Tabel 5.12	Momen Kritis Terhadap Momen Plastis (M_{cr}/M_p)	
	Profil-1 Secara Teoritis	64

13. Tabel 5.13	Nilai Ix dan Sx Pada Profil-I dan Castella	65
14. Tabel 5.14	Nilai Tegangan Lentur Terhadap Tegangan Leleh (fb/F.	<i>v</i>)
	Profil Castella	66
15. Tabel 5.15	Nilai Tegangan Lentur Terhadap Tegangan Leleh (fr/Fr)
	Profil-/	66
16. Tabel 5.16	Nilai Tegangan Geser Kritis (Vcr) Profil Castella	68
17. Tabel 5.17	Nilai Tegangan Geser Kritis (Vcr) Profil-1	68
18. Tabel 5.18	Nilai Tegangan Kritis Akibat Beban Terpusat Profil	
	Castella	69
19. Tabel 5.19	Nilai Koefisien Tekuk (k) Plat Sayap Profil	
	Castella	71
20. Tabel 5.20	Nilai Kelengkungan Profil-1 dengan L _b 960 mm	71
21. Tabel 5.21	Nilai Kelengkungan Profil Castella dengan	
- 12	L _b 960 mm	73
22. Tabel 5.22	Nilai Kelengkungan Profil Castella dengan	
ເທ	L _b 980 mm	75
23. Tabel 5.23	Nilai Kelengkungan Profil Castella dengan	
15	L _b 1000 mm	77
24. Tabel 5.24	Nilai Kelengkungan Profil Castella dengan	
	L _b 1500 mm	78
25. Tabel 5.25	Nilai Kelengkungan Profil <i>Castella</i> dengan	
15	L _b 2000 mm	80
26. Tabel 5.26	Nilai Kelengkungan Profil <i>Castella</i> dengan	
	L _b 2500 mm	81
27. Tabel 5.27	Nilai Beban-Deformasi Profil-I	84
28. Tabel 5.28	Nilai Beban-Deformasi Profil Castella	85

DAFTAR NOTASI

а		Jarak antar pengaku
$\mathbf{A}_{\mathfrak{b}}$	=	Abruto = Luas penampang lintang bruto
A_{w}	<u></u>	Luasan badan
\mathbf{b}_{f}	=	Lebar flens
$\mathbf{b}_{\mathbf{f}}$	=	Lebar flens
C _b	=	Faktor untuk menghitung gradient momen kekuatan balok
Ce	-	Rasio kelangsingan batas
$C_{\mathfrak{m}}$		Koefisien reduksi momen
Cw		Konstanta kelengkungan puntir
d	-1007-0	Tinggi profil
d_g	=	Tinggi profil Castella
dt		Tebal pemotongan profil Castella
E	=	Modulus elastisitas bahan
e	=	Lebar pemotongan profil Castella
EI		Kekakuan
f _a		Tegangan tarik aksial beban layan.
f _b	=	Tegangan lentur dalam layan
$\mathbf{f}_{\mathbf{v}}$	=	Tegangan geser beban layan
F _b	=	Tegangan lentur ijin.

Fer	=	Tegangan kritis
F _e ,	7	Tegangan Euler
Fs	=	Faktor keamanan
F_{u}	=	Tegangan tarik ultimit
$F_{\mathbf{v}}$	-	Tegangan geser
$\mathbf{F}_{\mathbf{y}}$	=	Tegangan leleh
G		Modulus elastisitas geser
h	=	Tinggi pemotongan profil Castella
1	=	Momen inersia
I_x	=	Momen inersia sumbu kuat
I _y	Ξ	Momen inersia sumbu lemah
k	=	Koefisien tekuk pelat
L	=	Panjang bentang
L _b		Panjang dukungan lateral
m	=	Momen puntir beban layan terdistribusi merata
M _{cr}	=	Momen kritis
M_p	=	Kekuatan momen elastis
M _x		Momen berdasarkan arah sumbu kuat
M_y	=	Momen berdasarkan arah sumbu lemah
Р	=	Beban aksial layan
P _n	-	Kekuatan nominal batanbg tekan yang dibebani aksial

P_u	<u></u>	Beban aksial terfaktor
S_{x}	=	Modulus penampang elastis
t _f	-	Tebal flens
t _w		Tebal web
V	=	Tegangan geser
V_{cr}	Ŧ	Tegangan geser kritis
\mathbf{V}_{n}		Kekuatan nominal geser
У	=	Defleksi pada sumbu lokasi z sepanjang bentang
z	=	Modulus elastic
Z _x	Nataran Mining	Modulus elastic sumbu Z
γ	=	Istilah umum untuk factor kelebihan badan
3	=	Regangan
ε _t		Regangan total
$\epsilon_{\rm x}$	=	Regangan arah x
ε	=	Regangan pada saat tegangan leleh
Δ	tanima Munga	Defleksi
$\Delta_{\mathbf{y}}$	=	Lendutan pada saat beban maksimum
Δ_{total}		Defleksi total
λ	=	Rasio kerampingan untuk pelat
λ_{e}		parameter kerampingan
λ_p		Rasio kerampingan maksimum pelat kompak

- μ = Angka poisson
- ϕ = Kelengkungan
- $\sigma = Tegangan$
- τ = Tegangan geser
- τ_y = Tegangan leleh geser
- θ = Sudut rotasi
- ρ = Rasio luas penampang lintang badan Aw terhadap luas penampang

DAFTAR LAMPIRAN

1.	Lampiran I	Perhitungan Hasil Uji Tarik Baja dan Tarik Las
2.	Lampiran II	Perhitungan Momen Batas Berdasarkan Tekuk
		Lokal dan Tekuk Puntir Lateral
3.	Lampiran III	Perhitungan Beban Maksimum Teoritis
4.	Lampiran IV	Perhitungan BebanTeoritis dan Hasil Uji
		Berdasarkan Tegangan Geser
5.	Lampiran V	Data Beban – Lendutan Hasil Uji
6.	Lampiran VI	Perhitungan Koefisien Tekuk Hasil Uji
7.	Lampiran VII	Hubungan Momen – Kelengkungan Hasil Uji
8.	Lampiran VIII	Perhitungan Lendutan Secara Teoritis
9.	Lampiran IX	Dokumentasi Hasil Pengujian
	12	
	14	0
	IZ I	
	12	

STRUM STRUCT

ABSTRAKSI

Balok Castella merupakan balok pengembangan berbadan terbuka (open web expanded beams) dari profil I yang dipotong secara zig-zag kemudian kedua potongan tersebut ditemukan dan disatukan dengan teknik pengelasan, sehingga terbentuk profil baru dengan penambahan tinggi dan mempunyai lubang pada badan. Sebagai akibat pemotongan zig-zag pada profil I menyebabkan penambahan tinggi dan terjadi kenaikan modulus penampang profil sehingga momen (M) yang mampu ditahan juga akan mengalami peningkatan, sedangkan lubang pada badan menjadikan profil tidak kompak sehingga kapasitasnya dibatasi oleh tekuk lokal.

Penelitian eksperimental profil Castella terbuat dari profil I 150 x 75 mm dan panjang sample 3850 mm. Sample menggunakan dukungan lateral bentang pendek untuk mencegah tekuk puntir lateral dengan pembebanan transversal terpusat. Penelitian ini bertujuan untuk mendapatkan nilai beban-deformasi (P- Δ), momen-kelengkungan (M-Ø), rasio kapasitas lentur balok Castella (M_{cr}), tegangan kritis (F_{cr}) , koefisien tekuk plat (k), dan rasio momen kritis terhadap momen leleh (M_{cr}/M_y) balok Castella dengan rasio jarak dukungan lateral terhadap jari-jari inersia bervariasi (L_b/r_v).

Hasil penelitian ini diperoleh bahwa kekuatan balok Castella meningkat sangat signifikan dibandingkan profil-I, kekuatan balok Castella meningkat hingga 1,44 kali terhadap profil-1, nilai momen kritis (M_{cr}) balok Castella meningkat hingga 1,45 kali terhadap M_{cr} profil-I, nilai tegangan kritis (F_{cr}) balok Castella meningkat hingga 1.45 kali terhadap F_{cr} profil-I, nilai koefisien tekuk (k) pelat sayap profil Castella meningkat 0.19 kali dan pelat badan meningkat 1.62 kali terhadap k profil-I. Hal ini dapat dipertimbangkan dalam perencanaan sebuah gelagar pelat.

Kata Kunci = Profil-I dan Profil Castella, Beban-Deformasi, Momen kritis, Tegangan kritis, Koefisien tekuk pelat.

BAB I

PENDAHULUAN

1.1 Latar Belakang

Baja penampang I standar (produksi pabrik) umum digunakan sebagai komponen struktur yang fungsi utama memikul momen lentur dan gaya geser. Profil ini mempunyai dua sumbu simetri, yaitu sumbu kuat (I_x) dan sumbu lemah (I_y) . Agar penampang I tersebut efisien, maka beban diatur melalui pusat geser *(shear center)* sehingga menimbulkan pelenturan terhadap sumbu kuat (I_x) . Usaha meningkatkan kapasitas lentur profil-I dapat dilakukan dengan memodifikasi profil-I standar menjadi profil *Castella*.

Modifikasi balok tersebut meningkatkan modulus potongan terhadap sumbux (S_x) kurang lebih 1,6 kali dari profil aslinya, sedangkan untuk modulus potongan terhadap sumbu-y (S_y) relatif sama. Modifikasi yang dilakukan pada profil standar tersebut mengakibatkan perubahan sifat penampang dari penampang kompak menjadi tidak kompak, sehingga profil tersebut tidak akan mencapai kekuatan batasnya. Karena profil tersebut tidak kompak, cenderung mengakibatkan kegagalan dini berupa tekuk lokal dan tekuk puntir-lateral. Profil *Castella* adalah profil yang tidak kompak karena mempunyai lubang dibagian badan *(open-web expanded beam)* sehingga berpotensi mengalami tekuk. Kapasitas lentur balok yang diakibatkan oleh tekuk inilah yang menarik untuk diteliti. Kapasitas lentur balok *Castella* dipengaruhi oleh banyak faktor, antara lain: sifat bahan (berpengaruh terhadap tegangan leleh (F_y) , tegangan residu (F_r) , dan modulus elastisitas (E)), geometri penampang (pengaruh terhadap momen inersia, modulus girasi, dan rasio kelangsingan elemen plat), panjang bentang antar dukungan lateral (L_b) , dan gradien momen.

Tekuk yang mungkin terjadi pada profil *Castella* akan berbentuk salah satu dari berikut ini : tekuk lokal flens dalam tekan *(flens local buckling)*, tekuk ini dipengaruhi oleh rasio kelangsingan plat sayap $(b/2t_f)$; tekuk lokal badan balok *(web local buckling)*, tekuk ini dipengaruhi oleh rasio kelangsingan plat badan (h_c / t_w) ; tekuk puntir-lateral *(lateral torsional buckling)*, tekuk ini dipengaruhi oleh rasio panjang bentang antara dua tumpuan lateral dan jari-jari inersia minimumnya (L_b/r_y) .

Untuk mencegah tekuk puntir-lateral pada penampang yang tertekan akibat adanya beban, maka digunakan dukungan lateral *(lateral support)*. Ada dua kategori dukungan lateral yang definit dan mencukupi, yaitu tumpuan lateral menerus dengan membenamkan flens tekan dalam slab beton, tumpuan lateral dengan interval tertentu yang diberikan oleh balok lintang, dimana sistem lateralnya itu sendiri sudah cukup kaku dan berpenopang *(bracing)*.

Banyak yang membahas masalah tekuk lokal, tapi belum ada yang membahas secara detail. Maka penelitian eksperimental ini menarik untuk dilakukan. Analisis balok *Castella* ini berdasarkan teori stabilitas plat dan kekuatan bahan *(strength of materials)*. Diharapkan setelah penelitian ini dapat diketahui sampai seberapa besar kenaikan kapasitas lentur dari balok tersebut.

1.2 Rumusan Masalah

Untuk mengetahui sampai seberapa besar kapasitas lentur profil *Castella* dan profil-I, maka penelitian dirumuskan sebagai berikut :

- Agar mendapatkan lentur yang besar maka dipakai dua beban titik yang sama besar, masing-masing diletakkan pada sepertiga bentang profil.
- 2. Sebagai pembanding terhadap hasil pengujian, dilakukan perhitungan secara analitis yang menghasilkan beban teoritis.

1.3 Tujuan Penelitian

Tujuan penelitian eksperimental kapasitas lentur balok Castella berdasarkan kondisi batas tekuk lokal antara lain :

- 1. Mendapatkan rasio momen batas profil *Castella* terhadap momen batas profil-*I* standar.
- 2. Membandingkan kekakuan lentur terhadap sumbu kuat balok Castella dengan kekakuan lentur profil-I, Mendapatkan kurva beban-deformasi, kurva momen-kelengkungan.
- 3. Mendapatkan rasio momen kritis terhadap momen leleh (M_{cr}/M_y) balok *Castella* dengan rasio jarak dukungan lateral terhadap jari-jari inersia bervariasi (L_b/r_y) .
- 4. Mendapatkan tegangan kritis (F_{cr}) profil *Castella* akibat pembebanan terpusat.
- 5. Mendapatkan koefisien tekuk (k) plat sayap profil Castella.

1.4 Manfaat Penelitian

Manfaat dari penelitian ini adalah :

- Pengembangan pengetahuan yang telah ada khusus tentang perilaku lentur balok *Castella*.
- 2. Hasil penelitian eksperimental ini dapat digunakan sebagai bahan pertimbangan dalam perencanaan struktur khususnya komponen struktur lentur *Castella*.

1.5 Batasan Masalah

Perilaku kapasitas lentur balok *Castella* terhadap panjang bentang dukungan lateral mencakup persoalan yang cukup luas dan dipengaruhi oleh berbagai macam faktor, oleh karena itu penelitian eksperimental ini dibatasi untuk keadaan-keadaan sebagai berikut :

ISLAN

- Profil yang digunakan adalah profil-*I* 150 x 75 mm yang dimodifikasi menjadi profil *Castella* sebagai sample benda uji.
- 2. Untuk dukungan lateral menggunakan profil Siku 50 x 50 x 5 mm.
- 3. Profil-*I* yang dimodifikasi menjadi profil *Castella* dihubungkan dengan menggunakan las dan mengabaikan efek tegangan residu yang diakibatkan karena pengelasan.
- 4. Penelitian ini hanya meninjau kapasitas lentur dan tegangan kritis yang terjadi akibat adanya beban dengan dukungan lateral *(lateral support)*.
- 5. Penelitian menggunakan metode balok sederhana (*simple beam*) dengan tumpuan sendi dan roll.

1.6 Keaslian Penelitian

Berdasarkan studi pustaka, penelitian balok *Castella* sudah pernah dilaksanakan. Dalam penelitian ini meninjau kapasitas lentur balok *Castella* berdasarkan kondisi batas tekuk lokal yang berbeda dengan penelitian terdahulu yaitu meninjau kapasitas lentur balok *Castella* dengan perkuatan dan meninjau kapasitas lentur dan geser balok *Castella*. Dengan demikian dapat disimpulkan bahwa penelitian ini asli.

1.7 Lokasi Penelitian

Lokasi penelitian dan pengujian sample dilakukan di Laboratorium Teknologi Bahan Konstruksi Jurusan Teknik Sipil, Fakultas Teknik Sipil dan Perencanaan, Universitas Islam Indonesia, Jogjakarta.

BAB II

TINJAUAN PUSTAKA

2.1 Balok Castella

Omer W. Blodgett (4.7-(1-24)), menyatakan bahwa balok *Castella* merupakan balok pengembangan berbadan terbuka *(open web expanded beams)* dari profil I yang dipotong secara zig-zag kemudian kedua potongan terluar ditemukan dan disatukan dengan teknik pengelasan, sehingga terbentuk profil baru dengan penambahan tinggi dan mempunyai lubang pada badan. Sebagai akibat pemotongan zig-zag pada profil I menyebabkan penambahan tinggi dan terjadi kenaikan modulus penampang I, sehingga momen *(M)* yang mampu ditahan juga akan mengalami peningkatan.

2.2 Tegangan Kritis Pelat

Timoshenko dan Gere (1959), menyatakan bahwa tegangan kritis pelat (F_{cr}) dipengaruhi oleh fungsi dari koefisien pelat (k), modulus elastisitas baja (E), angka poisson (μ), dan rasio kelangsingan (h/t). Tegangan kritis pelat berbanding terbalik dengan rasio kelangsingan kuadrat dan berbanding lurus dengan koefisien pelat. Pendapat yang sama juga dikemukakan oleh *Salmon dan Johnson(1996)*.

2.3 Tegangan Tekan Beban Terpusat

Spiegel dan Limbrunner (1991), menyatakan bahwa tegangan tekan akibat beban terpusat pada sayap (f_c) dipengaruhi oleh beban terpusat atau reaksi ujung (R), panjang landasan (N), koefisien pelat (k), dan tebal badan (t_{w}).

2.4 Rasio Kelangsingan Batas Pelat Sayap

Salmon dan Johnson (1996), menyatakan bahwa rasio kelangsingan pelat sayap profil-*I* harus dibatasi untuk mencegah tekuk lokal dengan tujuan tegangan sayap tekan dapat mencapai tegangan leleh.

2.5 Momen Kritis Balok Castella

Salmon dan Johnson (1996), menyatakan bahwa kekuatan momen tekuk puntir lateral elastis (M_{cr}) dipengaruhi oleh fungsi panjang dukungan lateral (L_b), modulus elastisitas (E), faktor gradient momen (C_b), konstanta lengkungan puntir (C_w), inersia sumbu lemah (I_y), modulus elastisitas geser (G), dan konstanta putiran (J).

2.6 Hubungan Beban-deformasi

Timoshenko dan Kriger (1988) menyatakan kekakuan suatu struktur sebagai rasio beban deformasi (P/Δ) .

2.7 Hubungan Momen-Kelengkungan

Timoshenko dan Gere (1961) menyatakan hubungan momen dengan kelengkungan. Kelengkungan struktur berbanding lurus dengan momen, berbanding terbalik dengan modulus elastis bahan dan momen inersia penampang.

Perilaku struktur (karakteristik) balok yang beban tranversal dapat diketaui dapat dikehahui berdasarkan kurva beban-deformasi $(P - \Delta)$ dan kurva momen-kelengkungan $(M - \varphi)$.

2.8 Kapasitas Lentur Profil Castella Dengan Perkuatan

Jawad dan Supariyanto (2002), melakukan penelitian kapasitas lentur balok Castella dengan perkuatan dan tanpa perkuatan bentang 5.4 m yang dibuat dari penampang 1 150 x 75 mm. Penelitian ini menggunakan 4 (empat) sample. Profil Castella dengan perkuatan terdiri dari 3 (tiga) sample yaitu balok Castella dengan perkuatan pada beban terpusat, balok Castella dengan perkuatan pada beban terpusat dan tengah bentang, dan balok Castella dengan perkuatan tiap tiga lubang. Sedangkan profil Castella tanpa perkuatan terdiri dari 1 (satu) sample.

Hasil pengujian, balok *Castella* dengan perkuatan mempunyai kapasitas lentur yang lebih besar dibanding dengan balok *Castella* tanpa perkuatan. Peningkatan balok *Castella* dengan perkuatan kurang lebih 1.4 kali dari balok *Castella* tanpa perkuatan.

Dalam penelitian ini disarankan untuk meneliti kapasitas lentur balok Castella berdasarkan tekuk lokal dan belum diukur lendutan kesamping akibat tekuk lateral pada balok Castella.

2.9 Kapasitas Lentur dan Geser Profil Castella

Mulyawan dan Laksono (2000), melakukan penelitian untuk menganalisis kemampuan balok *Castella* dalam menerima lentur dan geser dengan bentang 1 (satu) m yang merupakan modifikasi dari profil-1 150 x 75 mm. Penelitian ini menggunakan 5 sample yaitu 1 sample profil-1 utuh dan 4 sample profil Castella.

Hasil pengujian balok *Castella* dalam menerima lentur dan geser meningkat kurang lebih 1.02 kali dari profil aslinya. Dalam penelitian ini disarankan variasi sample untuk satu model lubang harus lebih banyak untuk ketelitian perbandingan kenaikan kapasitas lentur dan geser.

BAB III

LANDASAN TEORI

3.1 Profil Castella

Profil *Castella* merupakan pengembangan dari profil-*I* yang dipotong secara zig-zag pada badan profil kemudian kedua potongan tersebut disatukan lagi sehingga diperoleh profil baru yang lebih tinggi dan badannya berlubang *(openweb expanded beam)*. Pertambahan tinggi profil menyebabkan momen inersia sumbu-x (I_x) meningkat dan momen inersia sumbu-y (I_y) relatif sama.

b. profil castella setelah pemotongan dan disatukan

Gambar 3.1 Pembuatan Profil Castella (Omer W. Blodgett)

3.2 Tegangan Pada Balok Castella

Dari **Gambar 3.2** terlihat bahwa pada profil *Castella* yang diberi dua beban terpusat, dengan mengabaikan berat sendiri balok pada daerah tengah bentang gaya geser yang terjadi kecil sehingga mempunyai pengaruh yang kecil juga terhadap kekuatan balok *Castella*. Mendekati daerah tumpuan, gaya geser yang terjadi juga semakin besar sehingga pada profil *Castella* akan terjadi momen akibat gaya geser pada penampang T yang harus ditambahkan dengan tegangan lentur akibat beban yang bekerja.

Gambar 3.2 SFD dan BMD Profil Castella (Omer W. Blodgett)

Gaya geser yang bekerja pada penampang T profil *Castella* dapat menyebabkan momen pada penampang T seperti terlihat pada **Gambar 3.3**.

Gambar 3.3 Momen lentur pada penampang T karena gaya geser vertikal

Pembebanan Gambar 3.2 mengakibatkan tegangan lentur (Gambar 3.2b) dan tegangan geser (Gambar 3.2c). Detail tegangan yang terjadi dapat dilihat pada Gambar 3.4 (Omer W. Blodgett).

Gaya yang bekerja pada profil Castella menimbulkan tegangan akibat momen, sebagai berikut:

 Sisi atas balok mengalami tegangan tekan dan pada sisi bawah mengalami tegangan tarik akibat momen lentur elastis utama (akibat beban pada balok) sebesar:

$$\sigma_b = \pm \frac{M}{S_b} \tag{3.1}$$

dengan: σ_b adalah tegangan lentur beban layanan, M adalah momen primer, dan S_b adalah modulus section of *Castella*. Dapat dilihat pada **Gambar 3.3** (bagian paling kiri).

- 2. Badan balok memikul gaya geser vertical (V) akibat beban, dan menghasilkan tegangan geser pada daerah badan (bagian pejal (Solid) dan bagian tangkai (Stem) dari penampang T (Tee section)).
- Pada daerah lubang, gaya geser vertical (V) dibagi dua antara penampang T bagian atas dan bagian bawah. Dengan menganggap bahwa geser terjadi pada tengah-tengahnya, maka akan menghasilkan momen di kantilever penampang T (*cantilevered Tee Section*). Hasil tegangan lentur sekunder (σ_T) yang teriadi :

$$\sigma_{T} = \frac{V_{T} \cdot e_{2}}{S} = \frac{V_{T} \cdot e_{4}}{S}$$

$$\sigma_{T} = \frac{V_{T} \cdot e}{4S}$$
(3.2)

dengan : σ_T adalah tegangan lentur sekunder, V_T adalah geser vertikal pada *Tee section*, *e* adalah panjang dari *Tee section*, dan S adalah section modulus. Dapat dilihat pada **Gambar 3.3** (bagian paling kanan).

4. Gaya geser horizontal (V_h) pada bagian pejal dari badan sepanjang garis netral balok mengakibatkan tekuk (*buckling*).

14
Menurut *Omer W. Blodgett*, menghitung tegangan geser horizontal sepanjang garis netral balok terdapat beberapa cara salah satu diantaranya yaitu:

 Mengacu dari Gambar 3.5 dan menggunakan persamaan keseimbangan momen pada titik y didapat :

Sehingga tegangan geser horizontal menjadi:

$$\tau_n = \frac{V_h}{t_w.e} \tag{3.5}$$

3.4 Tegangan Kritis Profil-I dan Castella

Profil baja penampang I disusun dari elemen sayap dan elemen badan yang terbuat dari pelat yang tipis, sehingga apabila pelat menerima gaya tekan, gaya lentur, atau gaya geser rawan terhadap tekuk. Sayap pada profil penampang I akibat tegangan lentur dapat disumsikan menerima gaya tekan merata (**Gambar 3.6**), sedangkan badan menerima gaya lentur.

tegangan kritis untuk pelat yang menerima tekanan merata dinyatakan sebagai :

$$F_{cr} = k \cdot \frac{\pi^2 E}{12(1-\mu^2)(h/t)^2}$$
(3.6)

dengan F_{cr} adalah tegangan kritis, k adalah koefisien tekuk pelat, E adalah modulus elastisitas baja (2.10^5 Mpa), μ adalah angka poisson (0,30), dan h/t adalah rasio tinggi terhadap tebal.

Dari persamaan 3.6 tampak bahwa tegangan kritis berbanding terbalik dengan kuadrat kelangsingan, sehingga semakin besar kelangsingan pelat badan dan sayap maka semakin kecil tegangan kritisnya begitu pula sebaliknya. Untuk pelat yang menerima tekanan merata nilai k ditunjukkan pada **Gambar 3.7**.

Gambar 3.7 Koefisien tekuk pelat untuk tekanan merata (Salmon dan Johnson, 1996)

Terlihat bahwa untuk pelat dengan kondisi tumpuan jepit-jepit (A) nilai $k_{min} = 6.79$, untuk pelat dengan tumpuan sederhana jepit (B) nilai $k_{min} = 5.42$, sedangkan untuk pelat dengan tumpuan sederhana-sederhana nilai $k_{min} = 4$, dan untuk pelat jepit bebas niali $k_{min} = 1.277$, serta untuk pelat dengan tumpuan sederhana bebas nilai $k_{min} = 0.425$.

3.5 Tegangan Tekan Akibat Beban Terpusat Pada Sayap Profil

Pelipatan badan (web crippling) merupakan leleh setempat akibat tegangan tekan yang besar disekitar beban terpusat. Keadaan ini ditimbulkan oleh beban terpusat yang bekerja pada balok dan reaksi perletakan balok.

Asumsi yang diambil adalah beban tersebar pada garis 45 derajat sehingga luas tegangan kritis (F_{cr}) yang terjadi mempunyai panajang (N+k) atau (N+2k)berturut-turut untuk reaksi di ujung dan beban interior, dan mempunyai lebar t_{w_s} seperti yang ditunjukkan pada **Gambar 3.8** dan **Gambar 3.9**. Menurut Persamaan tegangan tekan akibat beban terpusat pada sayap dapat dinyatakan:

Menurut Spiegel dan Limbrunner (1991), untuk beban di bentangan :

$$f_c = \frac{R}{t_w (N+2k)}$$
(3.7)

Gambar 3.8 Kelumpuhan web untuk beban interior

(Spiegel dan Limbrunner, 1991)

Dimana k adalah jarak dari muka sayap terluar ke kaki lengkungan badan, N adalah panjang dukung atau landasan \geq k, R adalah beban terpusat yang disalurkan ke balok dan t_w adalah tebal web.

Kebenaran prosedur ini dapat diperiksa dengan meninjau faktor bahwa tegangan leleh pada daerah antara penampang kritis dan muka dalam sayap cenderung lebih kecil dari tegangan leleh pada badan, terutama karena bahan badan yang lebih tipis mengalami perlakuan panas yang lebih banyak selama pembuatan profil.

3.6 Tekuk Elastis Akibat Lentur Murni

Penurunan harga k secara teoritis untuk lentur pada bidang plat dijabarkan oleh Timoshenko dan Woinowski-Kriger (1959).

Gambar 3.10 Koefisien Tekuk Plat Dalam Lentur Murni

Untuk sembarang jenis pembebanan, nilai k bergantung pada rasio bentuk a/h dan kondisi tumpuan sepanjang tepi. Jika plat dianggap jepit sempurna sepanjang tepi yang sejajar arah pembebanan maka nilai k min untuk sembarang rasio a/h adalah 39,6. Jika sayap dianggap tidak mengekang tepi maka nilai k min 23,9. Variasi nilai k terhadap rasio a/h ditunjukkan pada **Gambar 3.10**.

Tekuk lokal pada elemen plat dapat menyebabkan kegagalan dini (premature collapse) pada keseluruhan penampang. Pada Gambar 3.11 menunjukkan nilai koefisien tekuk local pada profil-I kondisi lentur.

Gambar 3.11 Koefisien Tekuk Lokal untuk Batang Lentur Penampang I (N.S Tharair dan M Bradford, 1988)

Pada Gambar 3.11 dapat dilihat nilai koefisien tekuk lokal pada penampang I. Nilai koefisien tekuk pada pelat dipengaruhi oleh rasio lebar sayap

terhadap tinggi badan (b/d) dan tebal sayap terhadap tebal badan (T/t). Dari gambar diatas dapat dijelaskan bahwa untuk mendapatkan nilai koefisien tekuk yang besar diperlukan lebar sayap yang semakin panjang dan tebal sayap yang semakin besar sehingga akan tercapai nilai koefisien tekuk yang besar.

3.7 Tekuk Elastis Akibat Geser Murni

Menurut *Timoshenko dan Gere (1959*), tegangan kritis elastis pelat-pelat yang menerima tegangan geser dinyatakan pada persamaan ebagai berikut yaitu :

 $F_{cr} = \frac{k \pi^2 E}{12(1-\mu^2)\left(\frac{b}{t}\right)^2}$ (3.9)

Dengan b = sisi pendek pelat. Koefisien tekuk pelat yang memikul geser bergantung kepada (a/h), dimana (a/h) merupakan rasio jarak bentang terhadap lebar, yang dinyatakan pada persamaan sebagai berikut yaitu :

Menurut *Timoshenko dan Gere (1959)*, nilai k untuk kasus $(a/h) \le 1$ Gambar (3.12a) adalah :

$$k = 4 + \frac{5,34}{(a/h)^2}$$
(3.10a)

Menurut *Timoshenko dan Gere (1959)*, nilai k pada kasus $a/h \ge 1$ (Gambar 3.12b) adalah :

$$k = \frac{4}{(a/h)^2} + 5,34$$
 (3.10b)

Agar persamaan (3.10a) dan persamaan (3.10b) dapat dipahami maka dapat dijelaskan pada **Gambar 3.12** sebagai berikut yaitu :

3.8 Tekuk Lokal

Tekuk lokal elemen pelat dapat mengakibatkan kehancuran penampang keseluruhan yang terlalu dini, atau paling sedikit menyebabkan tegangan menjadi tidak merata dan mengurangi kekuatan keseluruhan.

3.8.1 Rasio Kelangsingan Batas Pelat Sayap

Menurut Salmon dan Johnson (1996), rasio kelangsingan pelat sayap profil-*I* harus dibatasi untuk mencegah tekuk lokal dengan tujuan tegangan sayap tekan dapat mencapai tegangan leleh. Rasio kelangsingan pelat sayap dapat ditentukan dengan :

$$\frac{b}{t} = \sqrt{\frac{k.\pi^2 . E}{12(1-\mu^2)F_y}}$$
(3.11)

Persamaan (3.11) dapat ditulis kembali menjadi:

$$F_{cr} = \frac{k\pi^2 E}{12(1-\mu^2)(b/t)^2} \ge F_y, Mpa$$
(3.12)

Menurut Salmon dan Johnson (1996), Rasio lebar (b) terhadap tebal (t) dalam persamaan (3.11) disebut juga sebagai rasio kelangsingan elemen (λ). Rasio kelangsingan elemen (λ) untuk plat sayap dihitung dengan persamaan berikut :

$$\lambda = \lambda_s = \frac{b_f}{2t_f} \tag{3.13}$$

dengan : b_f adalah lebar sayap (mm) dan t_f adalah tebal sayap (mm)

Menurut *Salmon dan Johnson (1996*), batas rasio kelangsingan elemen (λ) yang diberikan oleh AISC-LRFD agar balok mampu mencapai tegangan leleh tanpa tekuk lokal adalah rasio kelangsingan elemen (λ_r) , dapat ditulis berikut :

$$\lambda \le \lambda_r \tag{3.14}$$

Menurut Salmon dan Johnson (1996), rasio kelangsingan elemen (λ_r) untuk plat sayap dihitung dengan :

$$\lambda_r = \lambda_{rs} = \frac{370}{\sqrt{(F_y - F_r)}}$$
(3.15)

dengan : F_y adalah tegangan leleh baja (Mpa) dan F_r adalah tegangan sisa baja (70 Mpa).

Menurut Salmon dan Johnson (1996), batas rasio kelangsingan elemen (λ) agar balok mampu mencapai tegangan plastik tanpa tekuk lokal adalah rasio kelangsingan elemen (λ_p) , dapat ditulis :

$$\lambda \le \lambda_p \tag{3.16}$$

Menurut Salmon dan Johnson (1996), rasio kelangsingan elemen (λ_p) untuk plat sayap dihitung dengan :

$$\lambda_{p} = \lambda_{ps} = \frac{171}{\sqrt{F_{y}}} \tag{3.17}$$

3.8.2 Rasio Kelangsingan Batas Plat Badan

Untuk sembarang jenis pembebanan, nilai k bergantung pada rasio bentuk a/h dan kondisi tumpuan sepanjang tepi. Jika plat dianggap jepit sempurna sepanjang tepi yang sejajar arah pembebanan maka nilai k min untuk sembarang rasio a/h adalah 39,6. Jika sayap dianggap tidak mengekang tepi maka nilai k min 23,9 (dengan E = 200.000 Mpa)

$$F_{cr} = \frac{4320000}{(h/t_w)^2}$$
 Mpa untuk k = 23,9 (tumpuan sederhana di sayap) (3.18)

$$F_{cr} = \frac{7120000}{(h/t_w)}$$
 Mpa untuk k = 39,6 (jepit sempurna di sayap) (3.19)

Dengan memasukkan rasio h/t untuk profil-I dan profil Castella, maka dapat diketahui F_{cr} profil-/ dan profil *Castella*.

Menurut Salmon dan Johnson (1996), rasio h/t profil IWF 15 adalah 13.8/0.5 = 27.6 dengan anggapan jepit sempurna pada sayap, maka nilai F_{cr} untuk profil-/ 15 adalah :

 $F_{cr} = \frac{7120000}{(27.6)^2} = 9346.77 Mpa$

$$F_{cr} = \frac{7120000}{(45.6)^2} = 3424.13Mpc$$

Menurut Salmon dan Johnson (1996), rasio kelangsingan elemen λ untuk plat badan diitung dengan:

$$\lambda = \lambda_h = \frac{h}{t_w}$$

(3.20)

dengan: h adalah tinggi profil (mm) dan tw adalah tebal badan (mm).

Semakin besar rasio kelangsingan elemen λ , maka semakin mudah balok

tersebut tertekuk dan kuat lenturnya juga semakin rendah.

Menurut Salmon dan Johnson (1996), batas rasio kelangsingan elemen (λ) yang diberikan oleh AISC-LRFD agar balok mampu mencapai tegangan leleh tanpa tekuk lokal adalah rasio kelangsingan elemen (λ_r) , dapat ditulis :

$$\lambda \le \lambda_r \tag{3.21}$$

Menurut Salmon dan Johnson (1996), rasio kelangsingan elemen (λ_r) untuk plat badan dihitung dengan :

$$\lambda_r = \lambda_{rb} = \frac{2550}{\sqrt{F_y}} \tag{3.22}$$

Menurut Salmon dan Johnson (1996), batas rasio kelangsingan elemen (λ) agar balok mampu mencapai tegangan plastik tanpa tekuk lokal adalah rasio kelangsingan elemen (λ_p) , dapat ditulis :

$$\lambda \le \lambda_p \tag{3.23}$$

Menurut Salmon dan Johnson (1996), rasio kelangsingan elemen (λ_p) untuk plat badan dihitung dengan:

$$\lambda_p = \lambda_{pb} = \frac{1680}{\sqrt{F_y}}$$
(3.24)

3.9 Momen Batas Berdasarkan Tekuk Lokal dan Tekuk Puntir Lateral

Momen batas profil penampang I berdasarkan kondisi tekuk lokal merupakan momen maksimum yang dipikul akibat pelat sayap atau pelat badan yang tertekuk. Dan momen batas profil penampang I berdasarkan tekuk puntir lateral merupakan fungsi dari momen inersia sumbu lemah, panjang bentang antar dukungan lateral (L_b), Konstanta puntir / koefisien warping (C_w), Modulus Geser (G), dan momen inersia polar (J), dinyatakan oleh *Timoshenko dan Gere (1961)* dengan persamaan :

$$M_{cr} = C_b \frac{\pi}{L_b} \sqrt{\left(\frac{\pi . E}{L_b}\right)^2 C_w . I_y + E . I_y . G . J} \le M_\rho$$
(3.25)

Dengan M_{cr} adalah kuat momen tekuk punter lateral elastis, C_b adalah gradient momen, C_w adalah koefisien puntir, G adalah modulus geser, L_b adalah panjang bentang antara dukungan lateral, I_y adalah momen inersia sumbu y atau momen inersia sumbu lemah, E adalah modulus elastisitas bahan, dan J adalah Konstanta puntir.

1....

Factor untuk menghitung gradient momen (C_b) dinyatakan dengan:

$$C_{b} = 1.75 + 1.05 \left(\frac{M_{1}}{M_{2}}\right) + 0.3 \left(\frac{M_{1}}{M_{2}}\right)^{2} \le 2.3$$
 (3.26)

Konstanta puntir (C_w) penampang I dinyatakan dengan:

$$C_{w} = I_{y} \frac{h^{2}}{4}$$
(3.27)

Nilai koefisien geser (G) penampang I dinyatakan dengan:

$$G = \frac{E}{2(1+\mu)} \tag{3.28}$$

dengan : μ adalah angka poisson ratio (0,3), dan *E* adalah modulus elastisitas bahan (2x10⁵).

Momen inersia polar (J) dinyatakan dengan:

3.10 Karakteristik Balok Castella

Beban transversal P pada balok Castella menimbulkan momen, lendutan, dan pelenturan. Karakteristik balok Castella dapat diketahui dari kurva bebanlendutan (P – Δ) dan kurva momen kelengkungan (M – ϕ) hasil eksperimen.

Gambar 3.13 Balok Castella dengan Beban Terpusat P

Jika beban P dikerjakan bertahap hingga balok runtuh dan pada setiap tahap pembebanan lendutan maksimumnya di ukur maka akan didapat kurva beban-lendutan. Contoh kurva beban-lendutan ditunjukkan pada **Gambar 3.14**.

Gambar 3.14 Contoh Kurva Beban-Deformasi (Timoshenko dan Kriger, 1988)

Kekakuan balok *Castella* yang masih elastic dihitung dengan persamaan sebagai berikut :

dengan : P_y adalah beban leleh, dan Δ_y adalah lendutan pada saat beban mencapai titik leleh.

 $k = \frac{P_y}{P_y}$

(3.30)

mengacu pada Gambar 3.13 didapatkan momen :

$$M = \frac{1}{6}PL \tag{3.31}$$

dengan : P adalah beban, dan L adalah panjang sample.

Dari pendekatan metode *Central Difference*, kelengkungan hasil eksperimen dapat dihitung dengan persamaan sebagai berikut yaitu :

$$\phi = \frac{\varepsilon}{h/2} \tag{3.32}$$

dimana : ε adalah regangan dan h adalah tinggi pelat badan. Sehingga dengan menggunakan persamaan diatas didapatkan kurva momen kelengkungan sebagai berikut yaitu :

Gambar 3.15 Kurva Momen Kelengkungan (Timoshenko dan Gere, 1961)

3.11 Hipotesa

Berdasarkan tinjauan pustaka dan landasan teori dapat diambil hipotesa sementara sebagai berikut:

1. Rasio momen kritis terhadap momen leleh (M_{cr}/M_y) .

Menggunakan persamaan 3.25 akan didapat momen kritis profil dengan gradient momen (C_b) = 1. Jarak antar dukungan lateral (L_b) sangat berpengaruh terhadap kekuatan momen. Jika L_b memiliki nilai yang kecil maka momen kritis yang mampu ditahan balok akan besar, sebaliknya jika L_b memiliki nilai yang besar maka momen kritis menjadi kecil.

Grafik rasio momen kritis terhadap momen leleh (M_{cr}/M_y) profi-l dan profil *Castella* pada berbagai variasi rasio jarak antar dukungan lateral terhadap jari-jari inersia minimum (L_b/r_y) dapat dilihat pada gambar dibawah ini :

Jadi, dari grafik diatas dapat diambil kesimpulan bahwa semakin besar nilai L_b/r_y maka rasio momen kritis terhadap momen leleh (M_{cr}/M_y) akan semakin kecil.

2. Rasio tegangan kritis terhadap tegangan leleh (F_{cr}/F_y) .

Tegangan kritis (F_{cr}) adalah rasio dari momen kritis (M_{cr}) terhadap modulus penampang profil (S_x) . Grafik rasio tegangan kritis terhadap tegangan leleh (F_{cr}/F_y) profil-1 dan profil *Castella* pada berbagai variasi nilai rasio jarak antar dukungan lateral terhadap jari-jari inersia minimum (L_b/r_y) dapat dilihat pada gambar dibawah ini :

Jadi, dari grafik diatas dapat diambil kesimpulan bahwa semakin besar nilai L_b/r_y maka rasio tegangan kritis terhadap tegangan leleh (F_{cr}/F_y) akan semakin kecil.

BAB IV

METODE PENELITIAN

4.1 Tahapan Penelitian

Tahapan penelitian ini dapat dilihat dari flowchart pada Gambar 4.1.

Gambar 4.1 Flowchart tahapan penelitian

4.2 Persiapan Bahan dan Peralatan

Sebelum melaksanakan penelitian perlu diadakan persiapan bahan dan peralatan sebagai sarana penelitian.

4.2.1 Bahan

Bahan yang digunakan pada penelitian ini adalah :

- a. Baja profil I 150 x 75 yang dimodifikasi menjadi profil Castella.
- b. Baja profil Siku 50 x 50 x 5 yang digunakan untuk dukungan lateral.

4.2.2 Peralatan penelitian

Peralatan yang digunakan antara lain :

a. Mesin Uji Kuat Tarik

Alat ini digunakan untuk mengetahui seberapa besar kuat tarik baja. Alat ini bernama Universal Testing Machine *(UTM)* merk Shimadzu type UMH-330 dengan kapasitas 30 ton, seperti pada *Gambar 4.2*.

Gambar 4.2 Universal Testing Machine (UTM)

b. Loading Frame

Untuk keperluan uji lentur balok *Castella* digunakan *Loading Frame*, yang dibuat dari profil WF 450 x 200 x 9 x 14 mm. Bentuk dasar berupa portal segi empat yang berdiri di atas lantai beton *(rigid floor)* dengan perantara plat dasar besi setebal 14 mm sebagai landasan. Agar *Loading Frame* tetap stabil, plat dasar dibaut ke lantai beton dan kedua kolomnya dihubungkan dengan balok WF 450 x 200 x 9 x 14 mm. Posisi balok portal dapat diatur untuk menyesuaikan dengan bentuk dan ukuran model yang akan diuji. Sketsa *Loading Frame* ini dapat disajikan pada *Gambar 4.3*.

c. Dial Gauge

Dial Gauge pada penelitian ini digunakan untuk mengukur deformasi pada benda uji. Dalam penelitian digunakan 3 (*tiga*) *Dial Gauge* kapasitas ukur maksimal 50 mm dengan ketelitian 0,01 mm, pada pengujian balok kecil dipakai *Dial Gauge* dengan kapasitas lendutan maksimal 20 mm dan ketelitian 0,01 mm. Dalam penelitian ini digunakan 3 buah *Dial Gauge*. Sketsa *Dial Gauge* ditunjukkan pada *Gambar 4.4*.

d. Tumpuan Sendi dan Roll

Ujung-ujung benda uji balok Castella ditumpu sederhana, satu ujung ditumpu berupa sendi, ujung yang lain ditumpu oleh rol. Bentuk fisik tumpuan sendi dan rol ditunjukkan pada pada *Gambar 4.5a* dan *Gambar 4.5b*.

(a) Dukungan sendi

(b) Dukungan roll

Gambar 4.5 Dukungan Sendi dan Rol

e. Hydraulic jack

Alat ini digunakan sebagai pembangkit beban pada pengujian lentur balok Castella, dengan beban sentries P yang mempunyai kapasitas maksimum *Hydraulic Jack* adalah 300 KN dengan ketelitian 0,5 ton. Besar beban yang bekerja dapat dibaca pada manometer. Alat ini dapat dilihat pada *Gambar 4.6*.

Bahan utama dari penelitian ini adalah baja profil-1 yang dimodifikasi menjadi profil *Castella* dengan lubang segienam dan sudut 60 derajat, dengan panjang sample 3850 mm dan jumlah sample sebanyak 3 buah, dan 1 sample profil-1 asli dengan panjang sample 3850 mm, sebagai berikut:

(d) Sample profil Castella dengan L_b 1000 mm

Gambar 4.7 Sample Benda Uji

b. Benda Uji Tarik Baja dan Tarik Las

Tegangan tarik baja dapat diketahui dengan membagi batas luluh awal dengan luas rata-rata dari luasan benda uji. Benda uji untuk kuat tarik baja dan kuat tarik las dibuat seperti Gambar 4.8.

Gambar 4.8 Benda Uji Tarik Baja dan Tarik Las

4.4 Pembuatan Benda Uji

Sebelum melakukan pembuatan benda uji, dilakukan perhitungan dimensi profil terlebih dahulu baik profil-*I* maupun profil *Castella*. Tahapan pembuatan benda uji sebagai berikut:

- 1. Pengukuran pelat profil-I sesuai dimensi profil Castella yang akan dibuat.
- 2. Memotong profil-*I* secara zig-zag dengan sudut pemotongan 60 derajat, panjang pemotongan 5 cm, dan tebal $d_t = 3$ cm.
- 3. Penyambungan antar pelat dilakukan dengan menggunakan las listrik.
- 4. Pengelasan dilakukan dengan menyatukan profil yang sudah dipotong sehingga akan terbentuk profil baru dengan ada lubang pada bagian badan profil.
- Setelah selesai, diberi profil siku dengan cara pengelasan pada bagian atas sayap profil untuk mencegah tekuk puntir-lateral sesuai dengan jarak variasi L_b yang sudah ditentukan.
- 6. Pembuatan bracing untuk menyangga profil agar tidak terjadi puntir saat terjadi pembebanan.

a. Profil I sebelum pemotongan dan pola pemotongan

4.5 Set Up peralatan

- 1. Benda uji profil-*I* dan profil *Castella* diletakkan di bawah portal pemikul beban, ujung-ujungnya ditumpu oleh sendi dan rol,
- Pada benda uji dipasang 3 (tiga) dial gauge pada arah transversal dan 1 (satu) dial gauge pada arah lateral,
- 3. Pembangkit beban (Hidraulic Jack) dipasang diatas benda uji.

4.6 Pelaksanaan Pembebanan Profil-I dan Castella

- Beban tranversal diberikan pada profil melalui hydraulik jack, pembebanan awal 2 kN.
- Lendutan pada titik 1 hingga 4 akibat beban 3 kN dibaca pada dial 1 hingga
 4.
- 3. Beban P ditingkatkan menjadi 4 kN, lendutan pada titik 1 hingga 4 dibaca pada dial gauge.
- 4. Prosedur seperti di atas terus diulangi hingga profil rusak.

4.7 Pelaksanaan Uji Kuat Tarik Baja dan Kuat Tarik Las

- Pemasangan benda uji pada alat uji tarik Universal Testing Machine (UTM) merk Shimadzu type UMH-300 dengan kapasitas 30 ton.
- Benda uji disetting sehingga siap dipakai dalam pengujian, kemudian diatur kapasitasnya.
- 3. Kemudian dilakukan pembacaan beban pada kondisi leleh, beban maksimum dan beban pada saat patah.

4.8 Data Yang Dibutuhkan

- 1. Kuat tarik baja dan kuat tarik las.
- 2. Kuat lentur profil-I dan profil Castella dengan variasi.
- 3. Beban Deformasi profil-I dan profil Castella.
- 4. Analisis kekakuan profil-I dan profil Castella dengan variasi.
- Menghitung rasio momen kritis terhadap momen leleh (Mer/My) profil-I dan profil Castella dengan variasi.
- 6. Menghitung rasio momen kritis terhadap momen plastis (M_{cr}/M_p) profil-I dan profil *Castella*.
- 7. Menghitung rasio tegangan lentur terhadap tegangan leleh (f_b/F_y) profil-I dan profil *Castella*.
- 8. Menghitung tegangan geser kritis profil-I dan profil Castella.
- 9. Menghitung tegangan kritis (F_{cr}) pada sayap akibat beban terpusat pada profil *Castella*.
- 10. Menghitung koefisien tekuk (k).
- 11. Momen Kelengkungan profil-I dan Profil Castella.

BAB V

HASIL PENELITIAN DAN PEMBAHASAN

5.1 Hasil Pengujian

5.1.1 Hasil Uji Kuat Tarik Baja

Untuk mengetahui kualitas profil baja yang dipakai sebagai benda uji, maka dilakukan uji tarik baja di Laboratorium Bahan Konstruksi Teknik, Fakultas Teknik Sipil dan Perencanaan, Universitas Islam Indonesia. Hasil pengujian kuat tarik baja dibuat dari plat sayap dengan ketebalan 6 mm dan plat badan dengan ketebalan 5 mm. Pengujian dilakukan dengan menggunakan alat *Universal Testing Machine (UTM)* merk *Shimadzu type UMH 30*. Benda uji yang digunakan ada enam buah dengan kesimpulan hasil pengujian terlihat pada **Tabel 5.1**.

Uji Kuat Tarik Plat Badan (Plat 5 mm) dan Plat Sayap (Plat 6 mm)

No	Benda Uji	Lebar (mm)	Luas (mm ²)	P Leleh (N)	P maks (N)	P Patah (N)	F _y (Mpa)	F _u (Mpa)
1	Plat 5mm	20	100	30750	45100	38833	308	451
2	Plat 6mm	20	120	39100	58350	52500	326	486

Tabel 5.1 Hasil Uji Kuat Tarik Baja

Dari hasil pengujian didapatkan nilai tegangan leleh (F_y) plat sayap 6 mm lebih besar dari pada plat badan 5 mm. Oleh karena itu, digunakan 2 macam F_y, yaitu F_y= 308 Mpa untuk pelat badan dan F_y=326 Mpa untuk pelat sayap. Dan didapatkan pula nilai F_u/F_y plat 5 mm yaitu 1.46, sedangkan plat 6 mm yaitu F_u/F_y = 1,50. Nilai F_u/F_y plat 6 mm lebih besar dari pada F_u/F_y plat 5 mm, sehingga dapat disimpulkan bahwa plat badan 5 mm lebih besar kuat tariknya dibandingkan dengan plat sayap 6 mm. Hasil perhitungan kuat tarik baja dapat dilihat pada lampiran II Tugas Akhir ini.

5.1.2 Hasil Uji Kuat Tarik Las

Pengujian kuat tarik las dilakukan dengan menggunakan alat Universal Testing Machine (UTM) merk Shimadzu type UMH 30. Uji tarik las ini dilaksanakan di Laboratorium Bahan Konstruksi Teknik, Fakultas Teknik Sipil dan Perencanaan, Universitas Islam Indonesia. Dari hasil pengujian didapatkan hasil kuat tarik las ditunjukkan pada **Tabel 5.2**.

a. Uji Kuat Tarik Las (Plat 6 mm)

Dari hasil pengujian didapatkan nilai kuat tarik las sebesar 422 MPa. Dapat diambil kesimpulan bahwa nilai kuat tarik las sebesar 422 MPa memenuhi persyaratan las Spesifikasi SMAW yaitu E60XX yang kekuatan tariknya berkisar 415 MPa. Perhitungan kuat tarik las dapat dilihat pada lampiran II Tugas Akhir ini.

5.1.3 Hasil Pengujian Kuat Lentur Profil-I dan Castella

Pengujian kuat lentur balok *Castella* dilaksanakan di Laboratorium Mekanika Rekayasa Universitas Islam Indonesia. Pada sisi kanan dan kiri balok *Castella* saat diuji diberi pengekang *(bracing)* dengan tujuan agar plat tidak terjadi tekuk puntir lateral *(lateral torsional buckling)*.

Beban yang diberikan secara kontinu pada setiap 2 kN, membuat profil mengalami lendutan. Apabila beban yang diberikan telah mencapai maksimum, maka pembebanan dihentikan. Pembebanan telah mencapai maksimum ditandai dengan tidak bertambahnya nilai beban yang tertera pada *Hydrolic Jack* meskipun pemompaan terus dilanjutkan. Jika setelah mencapai maksimum dan pemompaan diteruskan, maka akan terjadi nilai penurunan beban. Angka penurunan beban juga dapat dijadikan bukti kekuatan balok pasca tekuk.

Nilai lendutan dapat dibaca pada dial yang telah terpasang pada ketiga tempat, yaitu ujung-ujung 1/3 bentang (dial 1 dan dial 3) serta 1/2 bentang gelagar (dial 2). Dimana nilai pada dial 2 harus lebih besar dari pada nilai di dial 3, sebab momen yang terjadi di dial 2 lebih besar. Begitu pula nilai lendutan dial 1 dan dial 3 juga harus sama untuk menunjukkan ketepatan jarak meletakkan beban pada balok. Data pengujian selengkapnya dan dokumentasi pelaksanaan dapat dilihat pada lampiran laporan Tugas Akhir ini.

5.1.3.1 Grafik Hasil Pengujian Balok Castella Dengan Variasi L_b

Pada pengujian kuat lentur ini, enam sample balok *Castella* dengan variasi jarak dukungan lateral (L_b) diberi beban dengan menggunakan *Hydrolick Jack* setiap sepertiga bentang. Secara bertahap beban dinaikkan dengan interval sebesar 2 kN dan data lendutan balok *Castella* yang terjadi pada setiap tahapan kenaikan beban dicatat. Dari pengujian balok *Castella* dengan variasi pada jarak dukungan lateral (L_b) didapatkan data-data yang dapat dibuat grafik sebagai berikut:

Balok Castella dengan L_b 960 mm

Dari **Gambar 5.1** didapatkan data nilai lendutan pada *dial gauge 1* sebesar 23.12 mm, lendutan pada *dial gauge 2* sebesar 26.7 mm dan lendutan pada dial 3 sebesar 24.6

sebesar 24.65 mm. Dari pengujian yang telah dilaksanakan dapat diambil

kesimpulan bahwa nilai lendutan terbesar terjadi pada setengah panjang bentang atau pada pembacaan *dial gauge 2* dengan nilai lendutan sebesar 26.7 mm. Namun pembacaan pada *dial gauge 1* dan *3* tidak memiliki nilai yang sama karena pada saat pengujian beban bergeser sehingga pemberian beban tidak tepat pada 1/3 panjang bentang. Selain itu, dari grafik tersebut didapatkan beban maksimum yang diterima balok *Castella* dengan L_b 960 mm adalah 90 kN.

Balok Castella dengan L_b 980 mm

Gambar 5.2 Kurva beban-deformasi Castella $L_b = 980 \text{ mm}$

Dari **Gambar 5.2** didapatkan data nilai lendutan pada *dial gauge 1* sebesar 21.84 mm, lendutan pada *dial gauge 2* sebesar 22.78 mm dan lendutan pada dial 3 sebesar 21.18 mm. Dari pengujian yang telah dilaksanakan dapat diambil kesimpulan bahwa nilai lendutan terbesar terjadi pada setengah panjang bentang atau pada pembacaan *dial gauge 2* dengan nilai lendutan sebesar 22.78 mm.
Namun pembacaan pada *dial gauge 1* dan 3 tidak memiliki nilai yang sama karena pada saat pengujian beban bergeser sehingga pemberian beban tidak tepat pada 1/3 panjang bentang. Selain itu, dari grafik tersebut didapatkan beban maksimum yang diterima balok *Castella* dengan L_b 980 mm adalah 84 kN.

90 80 70³ DIAL I 60 DIAL 2 50 BEBAN (kN) DIAL 3 40 30 20 P 5 10 Õ Õ \sim D1 D2 0 D3 0 Δ 5 10 15 20 25 30 **DEFORMASI (mm)**

Balok Castella dengan L_b 1000 mm

Gambar 5.3 Kurva beban-deformasi Castella $L_b = 1000 \text{ mm}$

Dari **Gambar 5.3** didapatkan data nilai lendutan pada *dial gauge 1* sebesar 22.94 mm, lendutan pada *dial gauge 2* sebesar 23.22 mm dan lendutan pada dial 3 sebesar 20.62 mm. Dari pengujian yang telah dilaksanakan dapat diambil kesimpulan bahwa nilai lendutan terbesar terjadi pada setengah panjang bentang atau pada pembacaan *dial gauge 2* dengan nilai lendutan sebesar 23.22 mm. Namun pembacaan pada *dial gauge 1* dan 3 tidak memiliki nilai yang sama karena pada saat pengujian beban bergeser sehingga pemberian beban tidak tepat

pada 1/3 panjang bentang. Selain itu, dari grafik tersebut didapatkan beban maksimum yang diterima balok *Castella* dengan L_b 1000 mm adalah 78 kN.

Balok Castella dengan L_b 1500 mm

Gambar 5.4 Kurva beban-deformasi Castella $L_b = 1500 \text{ mm}$

Dari **Gambar 5.4** didapatkan data nilai lendutan pada *dial gauge 1* sebesar 15.51 mm, lendutan pada *dial gauge 2* sebesar 20.58 mm dan lendutan pada dial 3 sebesar 16.6 mm. Dari pengujian yang telah dilaksanakan dapat diambil kesimpulan bahwa nilai lendutan terbesar terjadi pada setengah panjang bentang atau pada pembacaan *dial gauge 2* dengan nilai lendutan sebesar 20.58 mm. Namun pembacaan pada *dial gauge 1* dan 3 tidak memiliki nilai yang sama karena pada saat pengujian beban bergeser sehingga pemberian beban tidak tepat pada 1/3 panjang bentang. Selain itu, dari grafik tersebut didapatkan beban maksimum yang diterima balok *Castella* dengan L_b 1500 mm adalah 76 kN.

Balok Castella dengan L_b 2000 mm

Gambar 5.5 Kurva beban-deformasi Castella $L_b = 2000 \text{ mm}$

Dari **Gambar 5.5** didapatkan data nilai lendutan pada *dial gauge 1* sebesar 21.18 mm, lendutan pada *dial gauge 2* sebesar 25.09 mm dan lendutan pada dial 3 sebesar 22.4 mm. Dari pengujian yang telah dilaksanakan dapat diambil kesimpulan bahwa nilai lendutan terbesar terjadi pada setengah panjang bentang atau pada pembacaan *dial gauge 2* dengan nilai lendutan sebesar 25.09 mm. Namun pembacaan pada *dial gauge 1* dan 3 tidak memiliki nilai yang sama karena pada saat pengujian beban bergeser sehingga pemberian beban tidak tepat pada 1/3 panjang bentang. Selain itu, dari grafik tersebut didapatkan beban maksimum yang diterima balok *Castella* dengan L_b 2000 mm adalah 74 kN.

Balok Castella dengan L_b 2500 mm

Gambar 5.6 Kurva beban-deformasi Castella $L_b = 2500 \text{ mm}$

Dari **Gambar 5.6** didapatkan data nilai lendutan pada *dial gauge 1* sebesar 17.81 mm, lendutan pada *dial gauge 2* sebesar 19.26 mm dan lendutan pada dial 3 sebesar 16.82 mm. Dari pengujian yang telah dilaksanakan dapat diambil kesimpulan bahwa nilai lendutan terbesar terjadi pada setengah panjang bentang atau pada pembacaan *dial gauge 2* dengan nilai lendutan sebesar 19.26 mm. Namun pembacaan pada *dial gauge 1* dan 3 tidak memiliki nilai yang sama karena pada saat pengujian beban bergeser sehingga pemberian beban tidak tepat pada 1/3 panjang bentang. Selain itu, dari grafik tersebut didapatkan beban maksimum yang diterima balok *Castella* dengan L_b 2500 mm adalah 70 kN.

5.1.3.2 Grafik Hasil Pengujian Profil-I dengan L_b 960 mm

Pengujian kuat lentur ini sama dengan pada pengujian sample balok *Castella*. Satu sample profil asli atau profil-*I* juga menggunakan dukungan lateral (L_b) kemudian diberi beban dengan menggunakan *Hydrolick Jack* pada sepertiga bentangnya dan didapatkan data-data yang dapat dibuat grafik seperti pada **Gambar 5.7**.

Gambar 5.7 Kurva beban-deformasi Profil-I $L_b = 960 \text{ mm}$

Dari **Gambar** 5.7 didapatkan data nilai lendutan pada *dial gauge 1* sebesar 59.12 mm, lendutan pada *dial gauge 2* sebesar 68.28 mm dan lendutan pada dial 3 sebesar 58.9 mm. Dari pengujian yang telah dilaksanakan dapat diambil kesimpulan bahwa nilai lendutan terbesar terjadi pada setengah panjang bentang atau pada pembacaan *dial gauge 2* dengan nilai lendutan sebesar 68.28 mm. Namun pembacaan pada *dial gauge 1* dan 3 tidak memiliki nilai yang sama

karena pada saat pengujian beban bergeser sehingga pemberian beban tidak tepat pada 1/3 panjang bentang. Selain itu, dari grafik tersebut didapatkan beban maksimum yang diterima profil-I dengan L_b 960 mm adalah 62.5 kN.

5.1.3.3 Kurva Beban-Deformasi Balok Castella dan Profil-I

Untuk mengetahui lendutan yang terjadi pada balok *Castella* dan *profil-I*, maka dilakukan perhitungan lendutan hasil pengujian. Berikut ini kurva bebandeformasi hasil pengujian:

Gambar 5.8 Kurva beban-deformasi Profil Castella dan Profil-I

Gambar 5.8 menunjukkan bahwa balok *Castella* lebih besar menerima beban dibandingkan profil aslinya. Diantara semua sample balok *Castella* yang

sudah diuji, banyaknya dukungan lateral juga mempengaruhi kekuatan dalam menerima beban. Beban maksimum yang mampu ditahan balok Castella dengan empat dukungan lateral adalah sebesar 90 kN, dan 62.5 kN untuk *profil-I*. Hal ini menunjukkan bahwa dengan memodifikasi *profil-I* menjadi *Castella* dapat meningkatkan kekuatan profil terhadap beban hingga 1.44 kali.

Beban transversal maksimum yang dicapai pada masing-masing benda uji dengan variasi jarak dukungan lateral seperti terlihat pada **Tabel 5.3**.

No	Variasi Jarak Dukungan Lateral (L _b)	L _b /r _y	P maks	P maks
	(mm)		(kN)	(%)
1	Profil I dengan Lb = 960	38.381	62.5	100
2	Castella dengan Lb = 960	38.381	2 90	144
3	Castella dengan Lb = 980	39.644	84	134
4	Castella dengan Lb = 1000	40.453	78	124.8
5	Castella dengan Lb = 1500	60.680	76	121.6
6	Castella dengan Lb = 2000	80.906	74	118.4
7	Castella dengan Lb = 2500	101.133	70	112

Tabel 5.3Beban Maksimum Benda Uji

Dari data pembebanan maksimum yang didapat dari pengujian laboratorium, dapat digunkan untuk mencari nilai kekakuan profil. Untuk mengetahui nilai kekakuan profil Castella dan profil-I, dapat dicari dengan persamaan (5.1) sebagai berikut:

$$k = \frac{P_y}{\Delta_y} \tag{5.1}$$

Benda Uji	L _b /r _y	Beban (P _y) (kN)	Lendutan (Δ _y) (mm)	Kekakuan (Ρ _y /Δ _y) (kN/mm)	Rasio kekakuan terhadap profil-I (%)
Profil I dengan Lb = 960	38.381	52	34.27	1.517	100
Castella dengan Lb = 960	38.381	84	20.69	4.060	267.633
Castella dengan Lb = 980	39.644	78	20.64	3.779	249.110
Castella dengan Lb = 1000	40.453	76	19.95	3.810	251.154
Castella dengan Lb = 1500	60.680	68	17.50	3.886	256.163
Castella dengan Lb = 2000	80.906	72	18.90	3.810	251.154
Castella dengan Lb = 2500	101.133	64	16.07	3.983	262.558

 Tabel 5.4
 Analisa Kekakuan Balok Castella dari Kurva Beban-Deformasi

Dari perhitungan kekakuan diatas tampak jelas bahwa dengan memodifikasi profil-I menjadi profil Castella dapat meningkatan kekakuan profil Castella sebesar 2.68 kali terhadap profil-I.

5.1.4 Rasio Momen Kritis Terhadap Momen Leleh (*M_{cr}/M_y*) Profil *Castella* dan Profil-*I*

Hasil pengujian profil *Castella* dan profil-*I* menunjukkan beban maksimum. Dari beban maksimum (P_{max}) tersebut dapat diperoleh nilai batas momen maksimum dari masing-masing sample yaitu dengan persamaan (5.2), yaitu:

$$M_{maks} = \frac{1}{6} PL \tag{5.2}$$

Berdasarkan perhitungan pada lampiran 3 dan lampiran 7 didapatkan nilai momen kritis dan momen leleh $(M_{cr}M_y)$ terhadap jarak antar dukungan lateral dan jari-jari girasi (L_b/r_y) dari hasil pengujian profil-I dan Castella pada **Tabel 5.5** dan **Tabel 5.6** berikut ini:

Tabel 5.5Momen Kritis Terhadap Momen Leleh (M_{cr}/M_y)

Variasi (L _b /r _y)	38.381	39.644	40.453	60.680	80.906	101.133
M _{cr} Castella <i>(kNmm)</i>	57750	53900	50050	48766.670	47483.333	44916.667
My (kNmm)	40291.641	40291.641	40291.641	40291.641	40291.641	40291.641
M_{erC}/M_y	1.43	1.34	1.24	1.21	1.18	1.11

Hasil Uji Profil Castella

Tabel 5.6Momen Kritis Terhadap Momen Leleh (M_{cr}/M_y) Hasil Uji Profil-I

Variasi L _b /r _y	M _{cr} (kNmm)	M _y (kNmm)	M _{er} /M _y
38.381	40104.167	40291.641	0.995

Untuk rasio momen kritis dan momen leleh (M_{cr}/M_y) terhadap jarak antar dukungan lateral dan jari-jari girasi (L_b/r_y) secara teoritis profil-I dan Castella dapat dilihat pada **Tabel 5.7** dan **Tabel 5.8** berikut ini :

 Tabel 5.7
 Momen Kritis Terhadap Momen Leleh (M_{cr}/M_y) Profil Castella

 Secara Teoritis

Variasi	38 381	30.644	40.452	(0.(00		
(L_b/r_y)	50.501	37.044	40.453	60.680	80.906	101.133
M _{cr}	1.1.1	and a set	·	in a such of		
Castella	91657.779	88211.164	84968.535	41123.904	25544.408	18141.299
(kNmm)						
My (kNmm)	40291.641	40291.641	40291.641	40291.641	40291.641	40291.641
M _{crC} /M _y	2.27	2.19	2.11	1.02	0.63	0.45

Variasi (L _b /r _y)	38.381	39.644	40.453	60.680	80.906	101.133
M _{cr} Castella (kNmm)	39367.983	38069.657	36848.278	19979.960	13576.983	10298.605
My (kNmm)	40291.641	40291.641	40291.641	40291.641	40291.641	40291.641
M _{erC} /M _y	0.98	0.94	0.91	0.50	0.34	0.26

 Tabel 5.8
 Momen Kritis Terhadap Momen Leleh (M_{cr}/M_y) Profil-I

Secara Teoritis

Nilai-nilai dari Tabel 5.5, Tabel 5.6, Tabel 5.7 dan Tabel 5.8 diatas dapat

ditunjukan dalam grafik sebagai berikut :

Berdasarkan **Gambar 5.9** didapatkan rasio momen batas terhadap momen leleh $(M_{cr}M_y)$ balok Castella seperti terlihat pada **Tabel 5.5** dan **Tabel 5.6**. Dari hasil ini terbukti bahwa dengan memodifikasi profil-1 menjadi profil Castella dengan menambahkan dukungan lateral pada sayap dapat meningkatkan momen batas hingga 1,44 kali.

Selain pada hasil uji nyata telah dibuktikan juga secara teoritis yang terlihat pada **Tabel 5.7** dan **Tabel 5.8** Sehingga rasio momen kritis terhadap momen leleh berdasarkan hasil perhitungan teoritis meningkat hingga 2.3 kali.

5.1.5 Rasio Momen Kritis Terhadap Momen Plastis (M_{cr}/M_p) profil Castella dan profil-I

Dari hasil pengujian, diperoleh rasio momen kritis dan momen plastis (M_{cr}/M_p) terhadap jarak antar dukungan lateral dan jari-jari girasi (L_b/r_y) hasil pengujian seperti yang dijelaskan pada **Tabel 5.9** dan **Tabel 5.10** sebagai berikut:

Tabel 5.9Momen Kritis Terhadap Momen Plastis (M_{cr}/M_p)

Variasi			T	1	1	T
(L_b/ry)	38.381	39.644	40.453	60.680	80.906	101.133
M _{cr}						
Castella	57750	53900	50050	48766.670	47483.333	44916 667
(kNmm)						11/10.007
M _p (kNmm)	352080	352080	352080	352080	352080	352080
M_{erC}/M_p	0.16	0.15	0.14	0.14	0.13	0.13
		ISL	Ar			

Hasil Uji Profil Castella

Tabel 5.10Momen Kritis Terhadap Momen Plastis (M_{er}/M_p) Hasil Uji Profil-I

Variasi L _b /r _y	M _{cr} (kNmm)	M _p (kNmm)	M _{cr} /M _p
38.381	40104.167	177521.050	
ເທ		137531.250	0.292

Untuk rasio momen kritis dan momen plastis (M_{cr}/M_p) terhadap jarak antar dukungan lateral dan jari-jari girasi (L_b/r_y) secara teoritis profil-l dan Castella dapat dilihat pada **Tabel 5.11** dan **Tabel 5.12** berikut ini :

Tabel 5.11Momen Kritis Terhadap Momen Plastis (M_{cr}/M_p) Profil Castella
Secara Teoritis

Variasi		T	T			
(L_b/ry)	38.381	39.644	40.453	60.680	80.906	101.133
M _{cr}					<u> </u>	
Castella	91657.779	88211.164	84968.535	41123.904	25544.408	18141 299
(kNmm)						
M _p	352080	252090	2			
(kNmm)	552080	352080	352080	352080	352080	352080
M _{erC} /M _p	0.26	0.25	0.24	0.12	0.07	0.05
	l					

Variasi	38.381	39.644	40.453	60.680	80.906	101.133
(L_b/ry)						
M _{cr}						
Castella	39367.983	38069.657	36848.278	19979.960	13576.983	10298.605
(kNmm)						
M _p	137531.25	137531.25	137531.25	137531.25	137531.25	137531.25
(kNmm)						
M_{crC}/M_p	0.29	0.28	0.27	0.15	0.10	0.07
	10	1.01				
	107	L,				A

Tabel 5.12Momen Kritis Terhadap Momen Plastis (M_{cr}/M_p) Profil-1 Secara
Teoritis

Dari nilai-nilai dari Tabel 5.9, Tabel 5.10, Tabel 5.11 dan Tabel 5.12

diatas dapat ditunjukan dalam grafik sebagai berikut :

Gambar 5.10 Grafik hubungan Mcr/Mp hasil uji dan teoritis

Berdasarkan **Gambar 5.10** didapatkan rasio momen batas (M_{cr}) balok *Castella* lebih kecil dari pada momen plastis (M_p) . Hal ini menunjukkan bahwa momen kritis yang terjadi pada profil-I dan Castella belum mencapai momen plastis (M_p) karena tekuk setempat pada sayap yang tertekan terjadi sebelum regangan tekan yang diperlukan untuk mencapai momen plastis (M_p) tercapai.

5.1.6 Rasio Tegangan Lentur Terhadap Tegangan Leleh (f_b/F_y) Profil Castella dan Profil-I

Karena nilai inersia dari kedua profil sudah diketahui, maka akan didapatkan nilai S_x profil-*I* dan *Castella*:

Profil	I	Castella
$I_x (mm^4)$	5763330	14831278.77
$S_x (mm^3)$	76844.4	123593.9898

Tabel 5.13Nilai Ix dan Sx Pada Profil-I dan Castella

Dari kedua data diatas maka akan diperoleh nilai tegangan lentur pada pofil-*I* dan *Castella*, dengan persamaan (5.3) sebagai berikut:

$$f_b = \frac{M_{cr}}{S_x} \tag{5.3}$$

Dari hasil pengujian dan teoritis, diperoleh nilai momen kritis (M_{cr}) seperti yang dijelaskan pada **Tabel 5.9**, **Tabel 5.10**, **Tabel 5.11** dan **Tabel 5.12**. Berdasarkan perhitungan lampiran 7 didapatkan nilai tegangan lentur terhadap tegangan leleh (F/F_y) profil Castella dan profil-1 hasil uji pada **Tabel 5.14** dan **Tabel 5.15** sebagai berikut:

Tabel 5.14 Rasio Tegangan Lentur Terhadap Tegangan Leleh (f_b/F_y)

Protil Castella									
Variasi (L _t /r _v)	38.381	39.644	40.453	60.680	80.906	101.133			
f _b (Mpa)	467.256	436.105	404.955	394.572	384.188	363.421			
Fy (Mpa)	326	326	326	326	326	326			
F _{cr} /F _y	0.93	0.87	0.81	0.79	0.77	0.73			
			L						

Tabel 5.15Rasio Tegangan Lentur Terhadap Tegangan Leleh (f_b/F_y) Profil-I

Variasi L _b /r _y	f _b (Mpa)	F _y (Mpa)	F _{cr} /F _y
38.381	521.888	326	1.042

Dari nilai-nilai dari Tabel 5.14, Tabel 15, diatas dapat ditunjukan dalam

grafik sebagai berikut :

Gambar 5.11 Grafik hubungan fb/Fy hasil uji dan teoritis

Berdasarkan **Gambar 5.11** dapat disimpulkan bahwa semakin kecil rasio L_b/r_y akan meningkatkan tegangan lentur (f_b) yang mampu ditahan oleh profil tersebut. Lebih jelasnya dapat dilihat pada **Tabel 5.14** dan **Tabel 5.15**, dimana didapatkan peningkatan nilai tegangan lentur (f_b) profil *Castella* dengan variasi jarak dukungan lateral (L_b). Tegangan lentur (f_b) pada profil-l memiliki nilai yang lebih besar dari pada profil Castella, Hal itu disebabkan karena profil-l tidak mengalami tekuk (buckling) seperti yang terjadi pada profil Castella, tetapi mengalami lentur murni sehingga beban yang mampu ditahan menjadi kecil dari profil Castella.

5.1.7 Nilai Tegangan Geser Kritis Profil Castella dan Profil-I

Beban maksimum yang diperoleh dari hasil pengujian profil Castella dan profil-I, maka dapat dihitung nilai batas tegangan geser kritis dengan persamaan 5.4 sebagai berikut :

$$V_{cr} = \frac{\left(\frac{P}{2}\right)}{dI_{w}} \tag{5.4}$$

Berdasarkan perhitungan pada lampiran 5 dapat dibuat tabel sebagai berikut :

Variasi 38.381 39.644 40.453 60.680 80.906 101.133 (L_b/r_y) Vcr U) 39.4737 36.8421 34.2105 (Mpa) 32.4561 33.3333 30.7018 τ_{y} 300.6 300.6 300.6 300.6 300.6 300.6 (Mpa) 0.13 V_{cr}/τ_y 0.12 0.11 0.11 0.11 0.10 4

Tabel 5.16Nilai Tegangan Geser Kritis (Vcr) Profil Castella

Tabel 5.17Nilai Tegangan Geser Kritis (Vcr) Profil-1

Variasi L _b /r _y	V _{cr} (Mpa)	τ _y (Mpa)	V_{cr}/τ_y
38.381	45.2899	300.6	0.15

Gambar 5.12 Grafik tegangan geser kritis profil Castella dan profil-I

Berdasarkan Gambar 5.12 dapat disimpulkan bahwa semakin kecil rasio $L_{b'}r_{y}$ akan meningkatkan tegangan geser kritis (V_{cr}) yang mampu ditahan oleh profil tersebut. Lebih jelasnya dapat dilihat pada **Tabel 5.16** dan **Tabel 5.17**, dimana didapatkan peningkatan nilai tegangan lentur (V_{cr}) profil *Castella* dengan variasi jarak dukungan lateral (L_{b}).

5.1.8 Nilai Tegangan Kritis Pada Sayap Akibat Beban Terpusat Profil Castella

Beban maksimum yang diperoleh dari hasil pengujian profil Castella, maka dapat dihitung nilai tegangan kritis akibat beban terpusat dengan persamaan 5.5 sebagai berikut :

$$F_{cr} = \frac{R}{t_w (N+2k)}$$
(5.5)

Berdasarkan perhitungan pada lampiran 10, nilai tegangan tekan akibat beban terpusat profil Castella dapat dilihat pada **Tabel 5.18** sebagai berikut :

 Tabel 5.18
 Nilai Tegangan Kritis Akibat Beban Terpusat Profil Castella

Variasi (L _b /r _y)	38.381	39.644	40.453	60.680	80.906	101.133
F _{cr} (Mpa)	150	140	130	126.667	123.333	116.667

5.1.9 Nilai Koefisien Tekuk

Dari hasil pengujian profil *Castella* dan profil-*I* diperoleh beban maksimum (*P*) dan nilai tegangan kritis (F_{cr}). Karena nilai $F_{cr} < F_y$ maka untuk menghitung nilai k dipakai data F_{cr} , sehingga nilai koefisien tekuk (*k*) hasil pengujian dapat dicari dengan persamaan (5.6) sebagai berikut:

k sayap :

$$k = \frac{F_{cr} \cdot 12 \cdot (1 - 0.3^2) \left(\frac{b}{T}\right)^2}{\pi^2 \cdot E}$$
(5.6)

Berdasarkan perhitungan lampiran 7 didapatkan nilai koefisien tekuk plat sayap sebagai berikut:

 Tabel 5.19
 Nilai Koefisien Tekuk (k) Plat Sayap Profil Castella

Variasi	960	980	1000	1500	2000	2500
k Castella	0.032	0.030	0.028	0.027	0.027	0.025

5.1.10 Nilai Faktor Kelengkungan Profil-I dan Profil Castella

Berdasarkan pengujian yang telah dilakukan didapatkan nilai beban-beban sampai mencapai beban maksimum. Dari data-data ini akan didapatkan nilai kelengkungan dari profil-*I* dan *Castella*. Dengan menggunakan persamaan (5.7) didapat nilai kelengkungan plat sebagai berikut :

$$\varphi = \frac{\varepsilon}{h/2}$$

(5.7)

Berdasarkan perhitungan pada lampiran 8 didapat nilai hubungan momen dan kelengkungan sebagai berikut:

Tabel 5.20Nilai Kelengkungan Profil-I dengan Lb 960 mm

	A CONTRACTOR	F # 10 # 5	22 24 HL C.	
BEBAN (kN)	MOMEN (kN/m)	Fcr (Mpa)	REGANGAN	KELENGKUNGAN (1/m)
0	0	0	0	0
2	1.2833	0.0167	8.3502E-08	1.2102×10^{-09}
4	2.5667	0.0334	1.6700E-07	2.4203 x 10 ⁻⁰⁹
6	3.8500	0.0501	2.5051E-07	3.6305 x 10 ⁻⁰⁹
8	5.1333	0.0668	3.3401E-07	4.8407 x 10 ⁻⁰⁹
10	6.4167	0.0835	4.1751E-07	6.0509 x 10 ⁻⁰⁹
12	7.7000	0.1002	5.0101E-07	7.2610 x 10 ⁻⁰⁹

14	8.9833	0.1169	5.8451E-07	8.4712 x 10 ⁻⁰⁹
16	10.2667	0.1336	6.6802E-07	9.6814×10^{-09}
18	11.5500	0.1503	7.5152E-07	1.0892×10^{-08}
20	12.8333	0.1670	8.3502E-07	1.2102×10^{-08}
22	14.1167	0.1837	9.1852E-07	1.3312×10^{-08}
24	15.4000	0.2004	1.0020E-06	1.3512×10^{-08}
26	16.6833	0.2171	1.0855E-06	1.5732×10^{-08}
28	17.9667	0.2338	1.1690E-06	1.5752×10^{-08}
30	19.2500	0.2505	1.2525E-06	$\frac{1.0042 \times 10}{1.8153 \times 10^{-08}}$
32	20.5333	0.2672	1.3360E-06	1.0155×10^{-08}
34	21.8167	0.2839	1.4195E-06	2.0573×10^{-08}
36	23.1000	0.3006	1.5030E-06	2.0373×10^{-08}
38	24.3833	0.3173	1.5865E-06	2.1703×10^{-08}
40	25.6667	0.3340	1.6700E-06	2.2993×10^{-08}
42	26.9500	0.3507	1.7535E-06	2.4203×10^{-08}
44	28.2333	0.3674	1.8370E-06	2.5414×10^{-08}
46	29.5167	0.3841	1.9205E-06	2.0024×10^{-08}
48	30.8000	0.4008	2.0040E-06	2.7654×10^{-08}
50	32.0833	0.4175	2.0876E-06	$\frac{2.0044 \times 10}{3.0254 \times 10^{-08}}$
52	33.3667	0.4342	2.1711E-06	3.1465×10^{-08}
54	34.6500	0.4509	2.2546E-06	3.1403×10^{-08}
56	35.9333	0.4676	2.3381E-06	3.2075×10^{-08}
58	37.2167	0.4843	2.4216E-06	35005×10^{-08}
60	38.5000	0.5010	2.5051E-06	3.5095×10^{-08}
62	39.7833	0.5177	2.5886E-06	3.7515×10^{-08}
62.5	40.1042	0.5219	2.6094E-06	3.7818×10^{-08}
62.5	40.1042	0.5219	2.6094E-06	3 7818 × 10 ⁻⁰⁸
62.5	40.1042	0.5219	2.6094E-06	3 7818 × 10 ⁻⁰⁸
				J./010 X 10
	100			

Lanjutan Tabel Nilai Kelengkungan Profil-1 L_b 960 mm

Dari hasil perhitungan dapat ditunjukkan dengan grafik nilai kelengkungan yang terjadi pada profil-*I*, yaitu:

Gambar 5.13 Kurva momen-kelengkungan profil-I L_b 960 mm

Dari pengujian profil Castella dengan variasi didapat nilai kelengkungan

sebagai berikut:

				TTO .
BEBAN (kN)	MOMEN (kN/m)	Fcr (Mpa)	REGANGAN	KELENGKUNGAN (1/m)
0	0	0	0	0
2	1.2833	0.0095	4.7414E-08	4.1591 x 10 ⁻¹⁰
4	2.5667	0.0190	9.4828E-08	8.3182 x 10 ⁻¹⁰
6	3.8500	0.0284	1.4224E-07	1.2477 x 10 ⁻⁹
8	5.1333	0.0379	1.8966E-07	1.6636 x 10 ⁻⁹
10	6.4167	0.0474	2.3707E-07	2.0796 x 10 ⁻⁹
12	7.7000	0.0569	2.8448E-07	2.4955 x 10 ⁻⁹
14	8.9833	0.0664	3.3190E-07	2.9114 x 10 ⁻⁹
16	10.2667	0.0759	3.7931E-07	3.3273 x 10 ⁻⁹
18	11.5500	0.0853	4.2673E-07	3.7432 x 10 ⁻⁹
20	12.8333	0.0948	4.7414E-07	4.1591 x 10 ⁻⁹
22	14.1167	0.1043	5.2155E-07	4.5750×10^{-9}
24	15.4000	0.1138	5.6897E-07	4.9909 x 10 ⁻⁹
26	16.6833	0.1233	6.1638E-07	5.4068 x 10 ⁻⁹
28	17.9667	0.1328	6.6379E-07	5.8228 x 10 ⁻⁹
30	19.2500	0.1422	7.1121E-07	6.2387 x 10 ⁻⁹
32	20.5333	0.1517	7.5862E-07	6.6546 x 10 ⁻⁹
34	21.8167	0.1612	8.0604E-07	7.0705×10^{-9}

Nilai Kelengkungan Castella L_b 960 mm Tabel 5.21

26				
36	23.1000	0.1707	8.5345E-07	7.4864×10^{-9}
38	24.3833	0.1802	9.0086E-07	7.9023 x 10 ⁻⁹
40	25.6667	0.1897	9.4828E-07	8.3182 x 10 ⁻⁹
42	26.9500	0.1991	9.9569E-07	8.7341 x 10 ⁻⁹
44	28.2333	0.2086	1.0431E-06	9.1500 x 10 ⁻⁹
46	29.5167	0.2181	1.0905E-06	9.5660 x 10 ⁻⁹
48	30.8000	0.2276	1.1379E-06	9.9819 x 10 ⁻⁹
50	32.0833	0.2371	1.1853E-06	1.0398×10^{-8}
52	33.3667	0.2466	1.2328E-06	1.0814×10^{-8}
54	34.6500	0.2560	1.2802E-06	1.1230×10^{-8}
56	35.9333	0.2655	1.3276E-06	1.1646×10^{-8}
58	37.2167	0.2750	1.3750E-06	1.2061×10^{-8}
60	38.5000	0.2845	1.4224E-06	1.2477×10^{-8}
62	39.7833	0.2940	1.4698E-06	1.2893×10^{-8}
64	41.0667	0.3034	1.5172E-06	1.3309×10^{-8}
66	42.3500	0.3129	1.5647E-06	1.3725×10^{-8}
68	43.6333	0.3224	1.6121E-06	1.4141×10^{-8}
70	44.9167	0.3319	1.6595E-06	14557×10^{-8}
72	46.2000	0.3414	1.7069E-06	1.4973×10^{-8}
74	47.4833	0.3509	1.7543E-06	1.5389×10^{-8}
76	48.7667	0.3603	1.8017E-06	1.5805×10^{-8}
78	50.0500	0.3698	1.8491E-06	1.5005×10^{-8}
80	51.3333	0.3793	1.8966E-06	1.6221×10^{-8}
82	52.6167	0.3888	1.9440E-06	1.0050×10^{-8}
84	53.9000	0.3983	1.9914E-06	1.7468×10^{-8}
86	55.1833	0.4078	2.0388E-06	1.7884×10^{-8}
88	56.4667	0.4172	2.0862E-06	1.8300×10^{-8}
90	57.7500	0.4267	2.1336E-06	$\frac{1.0300 \times 10}{1.8716 \times 10^{-8}}$
90	57.7500	0.4267	2.1336E-06	1.8716×10^{-8}
83	53.2583	0.3935	1.9677E-06	1.0710×10^{-8}
83	53.2583	0.3935	1.9677E-06	1.7200×10^{-8}
80	51.3333	0.3793	1.8966E-06	1.7200×10 1.6636 × 10 ⁻⁸
				1.0000 X 10

Lanjutan Tabel Nilai Kelengkungan Castella L_b 960 mm

Dari hasil perhitungan dapat ditunjukkan dengan grafik nilai kelengkungan yang terjadi pada profil *Castella* dengan L_b 960 mm, yaitu:

Gambar 5.14 Kurva momen-kelengkungan profil Castella L_b 960 mm

BEBAN (kN)	MOMEN (kN/m)	Fcr (Mpa)	REGANGA N	KELENGKUNGAN
0	0	0	0	0
2	1.2833	0.0095	4.7414E-08	4.1591×10^{-10}
4	2.5667	0.0190	9.4828E-08	8 3182 x 10 ⁻¹⁰
6	3.8500	0.0284	1.4224E-07	1.2477×10^{-9}
8	5.1333	0.0379	1.8966E-07	1.6636×10^{-9}
10	6.4167	0.0474	2.3707E-07	2.0796×10^{-9}
12	7.7000	0.0569	2.8448E-07	2.4955×10^{-9}
14	8.9833	0.0664	3.3190E-07	2.9114×10^{-9}
16	10.2667	0.0759	3.7931E-07	3.3273×10^{-9}
18	_11.5500	0.0853	4.2673E-07	3.7432×10^{-9}
20	12.8333	0.0948	4.7414E-07	4.1591×10^{-9}
22	14.1167	0.1043	5.2155E-07	-4.5750×10^{-9}
24	15.4000	0.1138	5.6897E-07	4.9909×10^{-9}
26	16.6833	0.1233	6.1638E-07	5.4068 x 10 ⁻⁹
28	17.9667	0.1328	6.6379E-07	5.8228 x 10 ⁻⁹
30	19.2500	0.1422	7.1121E-07	6.2387×10^{-9}
32	20.5333	0.1517	7.5862E-07	6.6546 x 10 ⁻⁹
34	21.8167	0.1612	8.0604E-07	7.0705×10^{-9}
36	23.1000	0.1707	8.5345E-07	7.4864 x 10 ⁻⁹
38	24.3833	0.1802	9.0086E-07	7.9023×10^{-9}
40	25.6667	0.1897	9.4828E-07	8.3182 x 10 ⁻⁹
42	26.9500	0.1991	9.9569E-07	8.7341 x 10 ⁻⁹
44	28.2333	0.2086	1.0431E-06	9.1500×10^{-9}

Tabel 5.22Nilai Kelengkungan Castella Lb 980 mm

16		1	· · · · · · · · · · · · · · · · · · ·	
46	29.5167	0.2181	1.0905E-06	9.5660 x 10 ⁻⁹
48	30.8000	0.2276	1.1379E-06	9.9819 x 10 ⁻⁹
50	32.0833	0.2371	1.1853E-06	1.0398×10^{-8}
52	33.3667	0.2466	1.2328E-06	1.0814×10^{-8}
54	34.6500	0.2560	1.2802E-06	1.1230×10^{-8}
56	35.9333	0.2655	1.3276E-06	1.1646 x 10 ⁻⁸
58	37.2167	0.2750	1.3750E-06	1.2061×10^{-8}
60	38.5000	0.2845	1.4224E-06	1.2477×10^{-8}
62	39.7833	0.2940	1.4698E-06	1.2893×10^{-8}
64	41.0667	0.3034	1.5172E-06	1.3309×10^{-8}
66	42.3500	0.3129	1.5647E-06	1.3725×10^{-8}
68	43.6333	0.3224	1.6121E-06	1.4141×10^{-8}
70	44.9167	0.3319	1.6595E-06	1.4557×10^{-8}
72	46.2000	0.3414	1.7069E-06	1.4973×10^{-8}
74	47.4833	0.3509	1.7543E-06	1 5389 x 10 ⁻⁸
76	48.7667	0.3603	1.8017E-06	1.5805×10^{-8}
78	50.0500	0.3698	1.8491E-06	1.5005×10^{-8}
80	51.3333	0.3793	1.8966E-06	1.6221×10^{-8}
82	52.6167	0.3888	1.9440E-06	1.0050×10^{-8}
84	53.9000	0.3983	1.9914E-06	1.7652×10^{-8}
80	51.3333	0.3793	1.8966E-06	1.6636×10^{-8}
80	51.3333	0.3793	1.8966E-06	1.0030×10^{-8}
80	51.3333	0.3793	1.8966E-06	1.6636 v 10 ⁻⁸
			1.0700L-00	1.0030 X 10

Lanjutan Tabel Nilai Kelengkungan Castella L_b 980 mm

Dari hasil perhitungan dapat ditunjukkan dengan grafik nilai kelengkungan yang terjadi pada profil *Castella* dengan L_b 980 mm, yaitu:

Gambar 5.15 Kurva momen-kelengkungan profil Castella L_b 980 mm

BEBAN (kN)	MOMEN (kN/m)	Fcr (Mpa)	REGANGAN	KELENGKUNGAN (1/m)
0	0	0	0	0
2	1.2833	0.0095	4.7414E-08	4.1591×10^{-10}
4	2.5667	0.0190	9.4828E-08	8.3182×10^{-10}
6	3.8500	0.0284	1.4224E-07	1.2477×10^{-9}
8	5.1333	0.0379	1.8966E-07	1.6636×10^{-9}
10	6.4167	0.0474	2.3707E-07	2.0796×10^{-9}
12	7.7000	0.0569	2.8448E-07	2.4955×10^{-9}
14	8.9833	0.0664	3.3190E-07	2.9114×10^{-9}
16	10.2667	0.0759	3.7931E-07	3.3273 x 10 ⁻⁹
18	11.5500	0.0853	4.2673E-07	3.7432×10^{-9}
20	12.8333	0.0948	4.7414E-07	4.1591×10^{-9}
22	14.1167	0.1043	5.2155E-07	4.5750×10^{-9}
24	15.4000	0.1138	5.6897E-07	4.9909×10^{-9}
26	16.6833	0.1233	6.1638E-07	5.4068×10^{-9}
28	17.9667	0.1328	6.6379E-07	5.8228 x 10 ⁻⁹
30	19.2500	0.1422	7.1121E-07	6.2387×10^{-9}
32	20.5333	0.1517	7.5862E-07	6.6546×10^{-9}
34	21.8167	0.1612	8.0604E-07	70705×10^{-9}
36	23.1000	0.1707	8.5345E-07	74864×10^{-9}
38	24.3833	0.1802	9.0086E-07	7.9023×10^{-9}
40	25.6667	0.1897	9.4828E-07	8 3182 x 10 ⁻⁹
42	26.9500	0.1991	9.9569E-07	8.7341×10^{-9}
44	28.2333	0.2086	1.0431E-06	9.1500 x 10 ⁻⁹
46	29.5167	0.2181	1.0905E-06	9.5660×10^{-9}
48	30.8000	0.2276	1.1379E-06	9.9819 x 10 ⁻⁹
50	32.0833	0.2371	1.1853E-06	1.0398×10^{-8}
52	33.3667	0.2466	1.2328E-06	1.0814×10^{-8}
54	34.6500	0.2560	1.2802E-06	1.1230×10^{-8}
56	35.9333	0.2655	1.3276E-06	1.1646 x 10 ⁻⁸
58	37.2167	0.2750	1.3750E-06	1.2061×10^{-8}
60	38.5000	0.2845	1.4224E-06	1.2477 x 10 ⁻⁸
62	39.7833	0.2940	1.4698E-06	1.2893×10^{-8}
64	41.0667	0.3034	1.5172E-06	1.3309×10^{-8}
66	42.3500	0.3129	1.5647E-06	1.3725×10^{-8}
68	43.6333	0.3224	1.6121E-06	1.4141×10^{-8}
70	44.9167	0.3319	1.6595E-06	1.4557×10^{-8}
72	46.2000	0.3414	1.7069E-06	1.4973×10^{-8}
74	47.4833	0.3509	1.7543E-06	1.5389×10^{-8}
76	48.7667	0.3603	1.8017E-06	1.5805×10^{-8}
78	50.0500	0.3698	1.8491E-06	1.6221 x 10 ⁻⁸
78	50.0500	0.3698	1.8491E-06	1.6221×10^{-8}
75	48.1250	0.3556	1.7780E-06	1.5597×10^{-8}
75	48.1250	0.3556	1.7780E-06	1.5597×10^{-8}
75	48.1250	0.3556	1.7780E-06	1.5597×10^{-8}

Tabel 5.23Nilai Kelengkungan Castella Lb 1000 mm

Dari hasil perhitungan dapat ditunjukkan dengan grafik nilai kelengkungan yang terjadi pada profil Castella dengan L_b 1000 mm, yaitu:

Gambar 5.16 Kurva momen-kelengkungan profil Castella L_b 1000 mm

BEBAN (kN)	MOMEN (kN/m)	Fcr (Mpa)	REGANGAN	KELENGKUNGAN
0	0	0	0	(1/m)
2	1.2833	0.0095	1 741E 00	0
4	2.5667	0.0190	9.482E.00	4.1591×10^{-10}
6	3.8500	0.0284	9.463E-08	8.3182 x 10 ⁻¹⁰
8	5.1333	0.0234	1.422E-07	1.2477 x 10 ⁻⁹
10	6.4167	0.0379	1.897E-07	1.6636 x 10 ⁻⁹
12	7 7000	0.0474	2.371E-07	2.0796 x 10 ⁻⁹
14	8 0832	0.0569	2.845E-07	2.4955 x 10 ⁻⁹
16	10 2667	0.0664 -	3.319E-07	2.9114 x 10 ⁻⁹
18	11.5500	0.0759	3.793E-07	3.3273×10^{-9}
20	12,8222	0.0853	4.267E-07	3.7432×10^{-9}
20	12.8333	0.0948	4.741E-07	41591×10^{-9}
24	14.116/	0.1043	5.216E-07	4 5750 × 10 ⁻⁹
	15.4000	0.1138	5.690E-07	4 9900 × 10 ⁻⁹
20	16.6833	0.1233	6.164E-07	<u>4.3309 X 10</u> 5 4069 x 10 ⁻⁹
28	17.9667	0.1328	6.638E-07	<u>5 8228 109</u>
	19.2500	0.1422	7 112E-07	<u> </u>
32	20.5333	0.1517	7 586E 07	0.238/ x 10 ⁻⁷
			7.5000-07	0.0546 x 10 ⁻⁹

Tabel 5.24 Nila

1

Nilai Kelengkungan Castella L_b 1500 mm

24	01.01.05	· · · · · · · · · · · · · · · · · · ·		
34	21.8167	0.1612	8.060E-07	7.0705 x 10 ⁻⁹
36	23.1000	0.1707	8.535E-07	7.4864×10^{-9}
38	24.3833	0.1802	9.009E-07	7.9023 x 10 ⁻⁹
40	25.6667	0.1897	9.483E-07	8.3182 x 10 ⁻⁹
42	26.9500	0.1991	9.957E-07	8.7341 x 10 ⁻⁹
44	28.2333	0.2086	1.043E-06	9.1500×10^{-9}
46	29.5167	0.2181	1.091E-06	9.5660×10^{-9}
48	30.8000	0.2276	1.138E-06	9.9819 x 10 ⁻⁹
50	32.0833	0.2371	1.185E-06	1.0398×10^{-8}
52	33.3667	0.2466	1.233E-06	1.0814×10^{-8}
54	34.6500	0.2560	1.280E-06	1.1230×10^{-8}
56	35.9333	0.2655	1.328E-06	1.1646×10^{-8}
58	37.2167	0.2750	1.375E-06	1.2061×10^{-8}
60	38.5000	0.2845	1.422E-06	1.2477×10^{-8}
62	39.7833	0.2940	1.470E-06	1.2893×10^{-8}
64	41.0667	0.3034	1.517E-06	1.3309×10^{-8}
66	42.3500	0.3129	1.565E-06	1.3725×10^{-8}
68	43.6333	0.3224	1.612E-06	14141×10^{-8}
70	44.9167	0.3319	1.659E-06	14557×10^{-8}
72	46.2000	0.3414	1.707E-06	1.4973×10^{-8}
74	47.4833	0.3509	1.754E-06	1.1779×10^{-8}
76	48.7667	0.3603	1.802E-06	1.5805×10^{-8}
76	48.7667	0.3603	1.802E-06	1.5805×10^{-8}
74	47.4833	0.3509	1.754E-06	1.5389×10^{-8}
74	47.4833	0.3509	1.754E-06	1.5389×10^{-8}
70	44.9167	0.3319	1.659E-06	1.5567×10^{-8}
				1.4007 X 10

Lanjutan Tabel Nilai Kelengkungan Castella L_b 1500 mm

Dari hasil perhitungan dapat ditunjukkan dengan grafik nilai kelengkungan yang terjadi pada profil *Castella* dengan L_b 1500 mm, yaitu:

Gambar 5.17 Kurva momen-kelengkungan profil Castella L_b 1500 mm

BEBAN	N MOMEN		PECANCA	
(kN)	(kN/m)	Fcr (Mpa) NEGANGA	KELENGKUNGAN
0	0	0	0	(1/m)
2	1.2833	0.0095	4 7414E 08	0
4	2.5667	0.0190	9.4828E.08	4.1591×10^{-10}
6	3.8500	0.0284	1 4224E 07	8.3182 x 10 ⁻¹⁰
8	5.1333	0.0379	1.4224L-07	1.2477×10^{-9}
10	6.4167	0.0474	2 3707E 07	1.6636×10^{-9}
12	7.7000	0.0569	2.37072-07	2.0796 x 10 ⁻⁹
14	8.9833	0.0664	3 3100E 07	2.4955 x 10 ⁻⁹
16	10.2667	0.0759	3 7031E 07	2.9114 x 10 ⁻⁹
18	11.5500	0.0853	1.7931E-07	<u>3.3273 x 10⁻⁹</u>
20	12.8333	0.0948	4.2073E-07	<u>3.7432 x 10⁻⁹</u>
22	14.1167	0.1043	4.7414E-07	4.1591×10^{-9}
24	15.4000	0.1138	5.6907E.07	4.5750 x 10 ⁻⁹
26	16.6833	0.1233	5.0697E-07	4.9909 x 10 ⁻⁹
28	17.9667	0.1328	0.1038E-07	5.4068 x 10 ⁻⁹
30	19.2500	0.1320	0.0379E-07	5.8228 x 10 ⁻⁹
32	20.5333	0.1422	7.1121E-07	6.2387 x 10 ⁻⁹
34	21.8167	0.1517	7.5862E-07	6.6546 x 10 ⁻⁹
36	23.1000	0.1012	8.0604E-07	7.0705 x 10 ⁻⁹
38	24.3833	0.1802	8.5345E-07	7.4864 x 10 ⁻⁹
40	25.6667	0.1802	9.0086E-07	7.9023 x 10 ⁻⁹
42	26.9500	0.1001	9.4828E-07	8.3182 x 10 ⁻⁹
44	28.2333	0.1991	9.9569E-07	8.7341 x 10 ⁻⁹
46	29.5167	0.2080	1.0431E-06	9.1500 x 10 ⁻⁹
48	30.8000	0.2101	1.0905E-06	9.5660 x 10 ⁻⁹
50	32.0833	0.2270	1.1379E-06	9.9819 x 10 ⁻⁹
52	33.3667	0.2371	1.1853E-06	1.0398×10^{-8}
54	34.6500	0.2400	1.2328E-06	1.0814×10^{-8}
56	35,9333	0.2360	1.2802E-06	1.1230×10^{-8}
58	37,2167	0.2655	1.3276E-06	1.1646 x 10 ⁻⁸
60	38.5000	0.2750	1.3750E-06	1.2061×10^{-8}
62	39 7833	0.2845	1.4224E-06	1.2477×10^{-8}
64	41.0667	0.2940	1.4698E-06	1.2893×10^{-8}
66	42 3500	0.3034	1.5172E-06	1.3309×10^{-8}
68	43 6333	0.3129	1.5647E-06	1.3725×10^{-8}
70	44 9167	0.3224	.6121E-06	1.4141×10^{-8}
72	46 2000	0.3319 1	.6595E-06	1.4557×10^{-8}
74	47 4833	0.3414 1	.7069E-06	1.4973 x 10 ⁻⁸
74	47 4833	0.3509 1	.7543E-06	1.5389 x 10 ⁻⁸
62	39 7822	0.3509 1	.7543E-06	1.5389×10^{-8}
62	30 7822	0.2940 1	.4698E-06	1.2893 x 10 ⁻⁸
	37.1033	0.2940 1.	4698E-06	1 2893 v 10-8
		·		1.2073 X 10

Tabel 5.25

Nilai Kelengkungan Castella L_b 2000 mm

Dari hasil perhitungan dapat ditunjukkan dengan grafik nilai kelengkungan yang terjadi pada profil Castella dengan Lb 2000 mm, yaitu:

Gambar 5.18 Kurva momen-kelengkungan profil Castella L_b 2000 mm

Tabel 5.26Nilai Kelengkungan Castella Lb 250	0 mm
--	------

BEBAN (kN)	MOMEN (kN/m)	Fcr (Mpa)	REGANGA	KELENGKUNGAN
00	0	0	0	(1/m)
2	1.2833	0.0095	4 7414E 08	0
4	2.5667	0.0190	9.18285.08	4.1591 x 10 ⁻¹⁰
6	3.8500	0.0284	1.4224E.07	8.3182 x 10 ⁻¹⁰
8	5.1333	0.0379	1.4224E-07	1.2477 x 10 ⁻⁹
10	6.4167	0.0474	1.0900E-07	1.6636 x 10 ⁻⁹
12	7,7000	0.0560	2.3/0/E-0/	<u>2.0796 x 10⁻⁹</u>
14	8,9833	0.0509	2.8448E-07	2.4955×10^{-9}
16	10.2667	0.0004	3.3190E-07	2.9114 x 10 ⁻⁹
18	11 5500	0.0759	3.7931E-07	3.3273 x 10 ⁻⁹
20	12 8333	0.0853	4.2673E-07	3.7432 x 10 ⁻⁹
22	14 1167	0.0948	4.7414E-07	4.1591 x 10 ⁻⁹
24	15 4000	0.1043	5.2155E-07	4.5750 x 10 ⁻⁹
26	16 6922	0.1138	5.6897E-07	4.9909 x 10 ⁻⁹
28	17.0667	0.1233	6.1638E-07	5.4068 x 10 ⁻⁹
30	10.2500	0.1328	6.6379E-07	5.8228 x 10 ⁻⁹
32	19.2300	0.1422	7.1121E-07	6.2387 x 10 ⁻⁹
34	20.5333	0.1517	7.5862E-07	6.6546 x 10 ⁻⁹
	21.8167	0.1612	8.0604E-07	7.0705×10^{-9}

36	23.1000	0.1707	8.5345E-07	7.4864×10^{-9}
38	24.3833	0.1802	9.0086E-07	7.9023×10^{-9}
40	25.6667	0.1897	9.4828E-07	8.3182 x 10 ⁻⁹
42	26.9500	0.1991	9.9569E-07	$\frac{8.7341 \times 10^{-9}}{8.7341 \times 10^{-9}}$
44	28.2333	0.2086	1.0431E-06	9.1500×10^{-9}
46	29.5167	0.2181	1.0905E-06	9.5660 x 10 ⁻⁹
48	30.8000	0.2276	1.1379E-06	9.9819 x 10 ⁻⁹
50	32.0833	0.2371	1.1853E-06	1.0398×10^{-8}
52	33.3667	0.2466	1.2328E-06	1.0814×10^{-8}
54	34.6500	0.2560	1.2802E-06	1.1230×10^{-8}
56	35.9333	0.2655	1.3276E-06	11646×10^{-8}
58	37.2167	0.2750	1.3750E-06	1.2061×10^{-8}
60	38.5000	0.2845	1.4224E-06	1.2477×10^{-8}
62	39.7833	0.2940	1.4698E-06	1.2893×10^{-8}
64	41.0667	0.3034	1.5172E-06	1.2099×10^{-8}
66	42.3500	0.3129	1.5647E-06	1.3725×10^{-8}
68	43.6333	0.3224	1.6121E-06	1.5725×10^{-8}
70	44.9167	0.3319	1.6595E-06	1.4557×10^{-8}
70	44.9167	0.3319	1.6595E-06	1.1057×10^{-8}
64	41.0667	0.3034	1.5172E-06	1.3309×10^{-8}
62	39.7833	0.2940	1.4698E-06	1.3307×10^{-8}
	1 C C 1			1.2075 A 10

Lanjutan Tabel Nilai Kelengkungan Castella L_b 2500 mm

Dari hasil perhitungan dapat ditunjukkan dengan grafik nilai kelengkungan yang

terjadi pada profil Castella dengan Lb 2500 mm, yaitu:

Gambar 5.19 Kurva momen-kelengkungan profil Castella L_b 2500 mm

5.2 Pembahasan

Hasil penelitian profil-*I* dan profil *Castella* dengan variasi berupa datadata hasil uji dan foto-foto dari setting alat sampai hasil pengujian yang dapat dilihat pada lampiran laporan Tugas Akhir ini.

5.2.1 Kerusakan Profil-I dan Profil Castella

Berdasarkan hasil pengujian lentur profil-*I* dan profil *Castella* dapat diketahui kerusakan profil-I berupa lentur murni. Kerusakan dapat dilihat pada Lampiran X Gambar 10.9. Pada profil *Castella* dengan dukungan lateral bervariasi tidak terjadi lentur murni tetapi mengalami tekuk *(buckling)* pada sayap. Ini berarti, pada plat sayap profil *Castella* mengalami tekuk lokal dan sedikit mengalami tekuk puntir-lateral. Walaupun demikian, profil *Castella* mampu menahan beban lebih besar dibandingkan dengan profil-*I*. dapat dilihat pada Lampiran X Gambar 10.5-Gambar 10.7.

Dari hasil pengujian dan kerusakan-kerusakan yang terjadi dapat diambil kesimpulan bahwa dengan memodifikasi profil-*I* menjadi *Castella* akan menghindari lentur murni pada profil, sehingga akan meningkatkan kekuatan profil untuk menahan beban. Agar lebih jelas untuk mengetahui tingkat kerusakan profil hasil uji dapat dilihat pada lampiran laporan Tugas Akhir ini.

5.2.2 Hubungan Beban - Deformasi Pengujian

Dari pengujian yang telah dilakukan, benda uji mengalami tekuk lokal pada sayap balok, baik profil-1 maupun profil Castella. Hal ini dapat dilihat pada lampiran laporan Tugas Akhir ini. Nilai beban dan lendutan dapat dilihat pada **Tabel 5.27** dan **Tabel 5.28** dibawah ini, yaitu:

L _b /r _y	Beban (P _y) (kN)	Lendutan (Δ _y) (mm)	Kekakuan (P _y /Δ _y) (kN/mm)
38.381	52	34.27	1.517

 Tabel 5.27
 Nilai Beban-Deformasi Profil-I

Nilai kekakuan dapat dicari dengan membagi faktor beban terhadap lendutan yang terjadi. Data selengkapnya dapat dilihat pada lampiran laporan Tugas Akhir ini. Adapun grafik Beban-Lendutan yang terjadi pada profil-I setiap kenaikan beban 2 kN dapat dilihat pada **Gambar 5.19** berikut ini:

Gambar 5.20 Kurva beban-deformasi profil-I

Setelah dilakukan pengujian, didapat nilai kenaikan beban setiap 2 kN hingga beban maksimum. Semakin besar beban yang diberikan maka semakin besar pula lendutan yang terjadi. Nilai beban dan lendutan balok Castella dapat dilihat pada **Tabel 5.28** berikut ini :

L_b/r_y	Beban (P _y) (kN)	Lendutan (Δ _y) (mm)	Kekakuan (Ρ/Δ _y) (kN/mm)
38.381	84	20.69	4.060
39.644	78	20.64	3.779
40.453	76	19.95	3.810
60.680	68	17.50	3.886
80.906	72	18.90	3.810
101.133	64	16.07	3.983

Tabel 5.28 Nilai Beban-Deformasi Profil Castella

Dari **Tabel 5.28** menunjukkan bahwa karakteristik nilai beban maksimum dan lendutan yang terjadi pada balok Castella sama dengan karakteristik nilai pada profil-I yaitu semakin besar rasio jarak antar dukungan lateral terhadap jarijari girasi (L_b/r_y) maka semakin kecil beban maksimum yang dapat dipikul dan semakin kecil pula lendutan yang terjadi. Data selengkapnya dapat dilihat pada Lampiran laporan Tugas Akhir ini. Adapun grafik beban-lendutan yang terjadi pada balok Castella setiap kenaikan beban 2 kN dapat dilihat pada **Gambar 5.21** berikut ini:

Gambar 5.21 Kurva beban-deformasi balok Castella

Dalam pengujian ini, benda uji dengan rasio Lb/ry = 38.381 pada profil-I mampu menahan beban maksimum hingga 62.5 kN dengan lendutan yang terjadi akibat beban sebesar 63.24 mm. Sedangkan profil Castella dengan rasio Lb/ry = 38.381 mampu menahan beban maksimum hingga 90 kN dengan lendutan yang terjadi sebesar 23,92 mm. Sehingga dapat ditarik pernyataan bahwa dengan memodifikasi profil-I menjadi profil Castella dapat meningkatkan kekuatan hingga 1,44 kali. Dari peningkatan yang sebesar itu, modifikasi yang dilakukan hanya meningkatan modulus penampang $(S_x) = 1.6$ kali, inersia sumbu kuat $(I_x) =$ 2.6 kali dan sumbu lemah $(I_y) =$ 1,6 kali. Inersia meningkat dikarenakan adanya penambahan bahan yang terjadi, dengan penambahan bahan yang cukup ekonomis
dapat meningkatkan kekuatan sebesar 1,44 kali. Dilihat dari besarnya beban yang ditumpu dan lendutan yang terjadi, kekuatan balok Castella meningkat hingga 3.8 kali terhadap profil-I.

Dari penelitian bersama saudara Riza dapat disimpulkan bahwa semakin banyak dukungan lateral yang digunakan maka akan meningkatkan kekuatan dan kekakuan pada profil-*I* dan profil *Castella*. Hal ini terbukti jelas pada hasil penelitian yang ditunjukkan pada *Gambar 5.20* dan *Gambar 5.21*.

5.2.3 Rasio Momen Batas Terhadap Momen Leleh (M_{cr}/M_y) Profil-I dan Profil Castella

Berdasarkan perhitungan pada **Tabel 5.5** dan **Tabel 5.6** didapatkan rasio momen batas terhadap momen leleh $(M_{cr}M_y)$ balok Castella dengan rasio $L_b/r_y =$ 38.381 adalah 1.43 dan pada profil-I dengan rasio $L_b/r_y =$ 38.381 adalah 0.995. Dari hasil ini terbukti bahwa dengan memodifikasi profil-I menjadi profil Castella dengan menambahkan dukungan lateral pada sayap dapat meningkatkan momen batas hingga 1,44 kali.

Selain pada hasil uji nyata telah dibuktikan juga secara teoritis bahwa pada profil-I dengan rasio $L_b/r_y = 38.381$ adalah 0.98, sedangkan pada profil Castella dengan rasio $L_b/r_y = 38.381$ nilai momen kritis terhadap momen leleh (M_{cr}/M_y) adalah sebesar 2.27. Sehingga rasio momen kritis terhadap momen leleh berdasarkan hasil perhitungan teoritis pada Tabel 5.7 dan Tabel 5.8 meningkat hingga 2.3 kali.

Penelitian yang dilaksanakan oleh saudara Riza dengan menggunakan variasi rasio jarak antar dukungan lateral terhadap jari-jari girasi (L_b/r_y) yang lebih besar terjadi penurunan nilai momen kritis (M_{cr}) . Sehingga dapat disimpulkan bahwa semakin kecil rasio L_b/r_y akan meningkatkan momen batas (M_{cr}) yang mampu ditahan oleh profil tersebut. Lebih jelasnya dapat dilihat pada **Tabel 5.5** dan **Tabel 5.6**, dimana didapatkan peningkatan nilai momen kritis (M_{cr}) pada profil-*I* dan profil *Castella*.

5.2.4 Rasio Momen Batas Terhadap Momen Plastis (M_{cr}/M_p) Profil-I dan Profil Castella

Berdasarkan Tabel 5.9 dan Tabel 5.10 didapatkan rasio momen batas (M_{cr}) balok Castella lebih kecil dari pada momen plastis (M_p) . Hal ini menunjukkan bahwa momen kritis yang terjadi pada profil-I dan Castella belum mencapai momen plastis (M_p) karena tekuk setempat pada sayap yang tertekan terjadi sebelum regangan tekan yang diperlukan untuk mencapai momen plastis (M_p) tercapai.

5.2.5 Rasio Nilai Tegangan Lentur (fb) Profil-I dan Castella

Berdasarkan **Tabel 5.14** dan **Tabel 5.15** diperoleh nilai tegangan lentur terhadap tegangan leleh (f_b/F_y) untuk profil-I dengan rasio $L_b/r_y = .38.381$ adalah 521.888 MPa dan tegangan lentur profil Castella dengan rasio $L_b/r_y = .38.381$ adalah 467.256 Mpa. Maka rasio tegangan lentur profil-I : profil Castella = 0.9. Dengan penambahan dukungan lateral pada sayap maka akan meningkatkan nilai tegangan lentur (f_b) .

Sehingga dapat disimpulkan bahwa semakin kecil rasio L_b/r_y akan meningkatkan tegangan lentur (f_b) yang mampu ditahan oleh profil tersebut. Lebih jelasnya dapat dilihat pada **Tabel 5.14** dan **Tabel 5.15**, dimana didapatkan peningkatan nilai tegangan lentur (f_b) profil *Castella* dengan variasi jarak dukungan lateral (L_b). Tegangan lentur (f_b) pada profil-I memiliki nilai yang lebih besar dari pada profil Castella, Hal itu disebabkan karena profil-I tidak mengalami tekuk (buckling) seperti yang terjadi pada profil Castella, tetapi mengalami lentur murni sehingga beban yang mampu ditahan menjadi kecil dari profil Castella.

5.2.6 Nilai Tegangan Kritis (F_{cr}) Pada Sayap Akibat Beban Terpusat Profil Castella

Berdasarkan **Tabel 5.18** diperoleh nilai tegangan kritis (F_{cr}) pada sayap akibat beban terpusat untuk profil Castella dengan variasi. Dari nilai **Tabel 5.18**, dapat disimpulkan bahwa dengan ditambahkannya dukungan lateral pada sayap

profil dengan jarak yang bervariasi, dapat meningkatkan nilai tegangan kritis (F_{cr}) . Tegangan kritis (F_{cr}) pada profil Castella yang memiliki jarak dukungan lateral (L_b) yang pendek memiliki nilai F_{cr} yang lebih besar. Hal itu disebabkan karena koefisien tekuk (k) yang dimiliki profil Castella dengan L_b yang pendek memiliki koefisien tekuk (k) yang lebih besar dibandingkan dengan profil Castella dengan L_b yang lebih panjang.

5.2.7 Nilai Koefisien Tekuk (k) Profil Castella

Dengan mengamati **Tabel 5.19** didapatkan nilai koefisien tekuk pada pelat sayap profil Castella dengan berbagai variasi. Dari data tersebut dapat diketahui peningkatan koefisien tekuk untuk masing-masing sample hingga 1.07 kali.

Dari **Tabel 5.19** didapatkan nilai koefisien tekuk pada plat sayap dengan $L_b = 960$ adalah 0.032, $L_b = 980$ adalah 0,030 dan untuk $L_b = 1000$ adalah 0,028. Tekuk yang terjadi pada penelitian ini hanya terjadi pada sayap yang diakibatkan oleh kesalahan pada tahap pengujian oleh beban terpusat yang langsung disalurkan ke sayap profil tanpa landasan plat dengan luasan yang cukup. Dapat dilihat pada Lampiran X Gambar.10.5.

Pada penelitian yang diuji oleh saudara **Riza** dengan variasi rasio jarak antar dukungan lateral terhadap jari-jari girasi (L_b/r_y) yang lebih panjang didapatkan bahwa nilai koefisien tekuk pada pelat sayap akan semakin kecil. Hal ini menunjukan bahwa semakin kecil rasio L_b/r_y maka akan meningkatkan koefisien tekuk plat sayap.

Untuk mengetahui kebenaran penelitian yang telah dilakukan dapat dibuktikan pada penelitian yang telah dilakukan oleh *N.S Tharair dan M.A Bradford* (1988) yang ditunjukan pada gambar sebagai berikut yaitu :

5.2.8 Rasio Momen Batas Berdasarkan Tekuk Lokal Terhadap Momen Leleh (*M_{cr}/M_y*) vs Rasio Jarak Antar Dukungan Lateral Terhadap Jari-Jari Girasi (*L_b/r_y*).

Setelah didapat nilai momen kritis (M_{cr}) pada pengujian maka akan didapatkan nilai rasio memen batas terhadap momen lelehnya (M_{cr}/M_y) . Pada perhitungan tercantum pada **Tabel 5.5** dan **Tabel 5.6** didapatkan nilai M_{cr}/M_y profil-I dengan rasio L_b/r_y = 38.381 adalah sebesar 1.6 dan pada profil Castella

dengan rasio $L_b/r_y = 38.381$ adalah sebesar 1.43. Sehingga didapat momen batas terhadap momen leleh adalah sebesar 0.9 kali.

Dari penelitian yang diuji oleh Saudara Riza dengan variasi rasio L_b/r_y yang lebih besar didapatkan nilai rasio momen batas terhadap momen leleh (M_{cr}/M_y) akan semakin kecil. Hal ini ditunjukan pada **Tabel 5.5** pada laporan Tugas Akir ini.

Untuk mengetahui kebenaran penelitian yang telah dilakukan maka berdasarkan grafik momen batas terhadap momen leleh versus kelangsingan (Gambar 5.22) yang ditetapkan oleh peneliti terdahulu maka dapat dilakukan pengecekan sebagai berikut yaitu :

Gambar 5.23 Hubungan momen batas terhadap momen leleh vs kelangsingan

BAB VI

KESIMPULAN DAN SARAN

6.1 Kesimpulan

Berdasarkan hasil penelitian profil-1 dan profil Castella dapat diambil kesimpulan sebagai berikut :

- Rasio momen batas profil Castella terhadap momen batas profil-I standar kurang lebih 1.44 kali.
- 2. Didapatkan kurva beban-deformasi, kurva momen-kelengkungan dan dari analisa kekakuan balok *Castella* meningkat hingga 3.81 kali terhadap profil-*I*.
- 3. Rasio momen kritis (M_{cr}) profil Castella terhadap momen kritis (M_{cr}) profil-I kurang lebih 1.44 kali.
- Tegangan kritis (F_{cr}) sayap profil Castella akibat pembebanan terpusat dengan variasi jarak dukungan lateral (L_b) 960 mm adalah 150 Mpa, L_b 980 mm adalah 140 Mpa dan L_b 1000 mm adalah 130 Mpa.
- Koefisien tekuk pelat sayap profil Castella (k) dengan variasi jarak dukungan lateral (L_b) 960 mm adalah 0.032, L_b 980 mm adalah 0.030 dan L_b 1000 mm adalah 0.028.

6.2 Saran

Guna mengetahui sifat-sifat balok Castella yang lebih detail, perlu penelitian lanjutan antara lain :

- 1. Balok Castella dengan beban Siklis.
- 2. Jarak dukungan lateral terhadap jari-jari inersia minimum (L_b/r_y) bervariasi.

DAFTAR PUSTAKA

Blodgett, Omer W, DESIGN OF WELDED STRUCTURE (4.7-(1-24)).

- Jawad M, Supariyanto A, 2002, KAPASITAS LENTUR BALOK CASTELLA DENGAN PERKUATAN, FTSP UII, Jogjakarta.
- Mulyawan P.A,Laksono B, 2000, ANALISIS KAPASITAS LENTUR DAN GESER PROFIL CASTELLA DENGAN MENGGUNAKAN PROFIL SAYAP LEBAR (WIDE FLANGE), FTSP UII, Jogjakarta.
- Salmon C.G, Johnson J.E, 1996, STRUKTUR BAJA DESAIN DAN PERILAKU 1, PT Gramedia Pustaka Utama, Jakarta.
- -----, 1996, STRUKTUR BAJA DESAIN DAN PERILAKU 2, PT Gramedia Pustaka Utama, Jakarta.
- Spiegel L, Limbrunner F.G, 1991, DESAIN BAJA STRUKTURAL TERAPAN, PT. Eresco, Bandung.
- S.Timoshenko, S.Woinowsky, Krieger, S.Hindarko, 1988, TEORI PLAT DAN CANGKANG Edisi Kedua, Erlangga, Jakarta.
- Timoshenko dan Gere, Hans J.Wospakrik, 1959, Mekanika Edisi kedua jilid 1, Erlangga, Jakarta.
- Trahair,NS dan Bradford,MA, 1988, THE BEHAVIOUR AND DESIGN OF STEEL STRUCTURES, Chapman & Hall, London.

HASIL HITUNGAN UJI TARIK BAJA DAN UJI TARIK LAS

Pengujian ini dilakukan untuk melihat seberapa besar kekuatan tarik pelat baja dengan tebal 5 mm dan 6 mm. pengujian dilakukan di Laboratorium Bahan Konstruksi Teknik Universitas Islam Indonesia Jogjakarta. Adapun grafik (tanpa skala) yang digunakan sebagai acuan dalam menentukan kuat tarik baja sebagai berikut:

- a = Beban mencapai titik leleh
- b = Beban maksimum
- c = Beban patah akibat kuat tarik

Persamaan yang mendukung teori tersebut adalah:

$$F_{y} = \frac{Bebanluluh}{A}$$
$$F_{u} = \frac{Bebanmaksimum}{A}$$

1. Uji Tarik Baja

a. Plat Badan 5 mm

No	P leleh (N)	P maks (N)	P patah (N)	$F_y = \frac{P_{leleh}}{A}$ (N/mm ²)	$F_u = \frac{P_{\text{max}}}{A}$ (N/mm ²)	
1	32000	48250	39750	320	482.5	
2	29500	41800	38000	295	418	
3	30750	45250	38750	307.5	452.5	

b. Plat Sayap 6mm

Gambar Benda Uji Tarik

Tabel Hasil Uji Tarik Plat Sayap

No	P leleh (N)	P maks (N)	P patah (N)	$F_y = \frac{P_{leleh}}{A}$	$F_u = \frac{P_{\text{max}}}{A}$	
1	40300	58800	53000	(N/mm ²) 335.833	(N/mm ²) 490	
2	38000	58250	52500	316.667	485.417	
3	39000	58000	52000	325	483.333	

c. Hasil Uji Kuat tarik Rata-Rata Plat Badan dan Plat Sayap

No	Benda Uji	Lebar (mm)	Luas (mm ²)	P Leleh (N)	P maks (N)	P Patah (N)	F _y (Mpa)	F _u (Mpa)
1	Plat 5mm	20	100	30750	45100	38833	308	451
2	Plat 6mm	20	120	39100	58350	52500	326	486

2. Uji Tarik Las

a. Pelat Baja 6 mm

PERHITUNGAN BENDA UJI

1. Perhitungan Inersia Sumbu Kuat dan Lemah Profil-I dan Profil Castella.

> **PROPERTIS PROFIL**

a. Profil-I

$$A' = (6 \times 75) + \left(\left(\frac{138}{6}\right) \times 5\right) = 565 mm^2$$
$$r_t = \sqrt{\frac{I'_y}{A'}} = \sqrt{\frac{211177}{565}} = 19,333 mm$$

b. Profil Castella

Profil yang digunakan untuk pengujian di laboratorium adalah profil I 150 x 75 dengan data sebagai berikut:

$$d = 240 \text{ mm} \quad t_w = 5 \text{ mm} \quad F_y = 250 \text{ Mpa}$$

$$d = 240 \text{ mm} \quad t_w = 5 \text{ mm} \quad F_y = 250 \text{ Mpa}$$

$$b_f = 75 \text{ mm} \quad t_f = 6 \text{ mm} \quad y = 120 \text{ mm}$$

$$d_s = 24 \text{ mm} \quad d_T = 30 \text{ mm}$$

$$A_f = b_f x \ t_f = 75 \text{ x} 6 = 450 \text{ mm}^2$$

$$A_{T} = (b_{f} \times t_{f}) + (d_{s} \times t_{w}) = (75 \times 6) + (24 \times 5) = 570 mm^{2}$$

$$M_{y} = \left(A_{f}\left(d_{s} \times \frac{t_{f}}{2}\right)\right) + \left(A_{s} \times \frac{d_{s}}{2}\right)$$

$$= \left(450\left(24 \times \frac{6}{2}\right)\right) + \left(120 \times \frac{24}{2}\right) = 13590 mm^{3}$$

$$Iy = \left(A_{J}\left(d_{x}^{2} + (d_{x} \times t_{f}) + \frac{t_{f}^{2}}{3}\right)\right) + \left(A_{x} \times \frac{d_{x}^{2}}{3}\right)$$

$$= \left(450\left(24^{2} + (24 \times 6) + \frac{6^{2}}{3}\right)\right) + \left(120 \times \frac{24^{2}}{3}\right) = 352440mm^{4}$$

$$C_{x} = \frac{M_{y}}{A_{T}} = \frac{13590}{570} = 23,8421mm$$

$$I_{T} = I_{y} - (C_{x} \times M_{y}) = 348390 - (23,8421 \times 13590) = 28425.86mm^{4}$$

$$S_{x} = \frac{I_{T}}{C_{x}} = \frac{24375,861}{23,8421} = 1022,3873mm^{3}$$

$$d = 2(h + C_{x}) = 2(90 + 23,8421) = 227,6842mm$$

$$I_{g} = (2 \times I_{T}) + \left(\frac{A_{T} \times d^{2}}{2}\right) = (2 \times 24375,861) + \left(\frac{570 \times 227,6842^{2}}{2}\right) = 14831278,77mm^{4}$$

$$S_{g} = \frac{2 \times I_{g}}{d_{g}} = \frac{2 \times 14831278,78}{240} = 123593,9898mm^{3}$$

1. Perhitungan Momen Batas Berdasarkan Tekuk Lokal dan Tekuk Puntir Lateral Profil-I dan Castella

al Marine C

Profil-I

Diketahui :

 $E = 2x10^5 \text{ kg/mm}^2$

$$\mu = 0.3$$

C_b = 1

G
$$= \frac{E}{2(1+\mu)} = \frac{2x10^5}{2(1+0.3)} = 7.69 \times 10^4 \text{ kg/mm}^2$$

Profil-/ dengan L_b 960 mm

$$I_{y1} = 211177 \text{ mm}^{4}.$$

$$C_{w} = I_{y} \times \left(\frac{h^{2}}{4}\right) = 211177 \times \left(\frac{138^{2}}{4}\right)$$

$$C_{w} = 1005413697 \text{ mm}^{6}$$

$$J = \frac{1}{3}h(t_{w})^{3} + 2 \times \frac{1}{3}b(t_{r})^{3} = \frac{1}{3} \times 138 \times (5)^{3} + 2 \times \frac{1}{3} \times 75 \times (6)^{3}$$

$$J = 16550 \text{ mm}^{4}.$$

$$M_{erl} = C_{h} \frac{\pi}{Lb} \sqrt{\left(\frac{\pi E}{Lb}\right)^{2}} C_{w} I_{y} + EI_{y} GJ$$

$$= 1 \times \frac{\pi}{960} \sqrt{\left(\frac{\pi \times 2 \cdot 10^{3}}{960}\right)^{2} \times 1005413697 \times 211177 + 2 \cdot 10^{5} \times 211177 \times 7.69 \cdot 10^{4} \times 16550}$$

$$= 39367983.04 \text{ Nmm}$$

$$= 39367.98304 \text{ KNmm}$$

$$M_{y} = F_{y} \cdot S_{x}$$

$$= 501 \cdot 76844.4$$

$$= 38499044.4 \text{ Nmm}$$

$$= 38499.0444 \text{ KNmm}$$

$$\frac{M_{cr}}{M_y} = 1,02$$

Profil-I dengan L_b 980 mm

$$I_{y1} = 211177 \text{ mm}^4.$$

 $C_w = I_y \times \left(\frac{h^2}{4}\right) = 211177 \times \left(\frac{138^2}{4}\right)$

 $C_w = 1005413697 \text{ mm}^6$

J =
$$\frac{1}{3}h(t_w)^3 + 2 \times \frac{1}{3}b(t_f)^3$$
 = $\frac{1}{3} \times 138 \times (5)^3 + 2 \times \frac{1}{3} \times 75 \times (6)^3$

$$J = 16550 \text{ mm}^{4},$$

$$M_{\text{crl}} = C_{b} \frac{\pi}{Lb} \sqrt{\left(\frac{\pi E}{Lb}\right)^{2} C_{w} I_{y} + E I_{y} G J}$$

$$= \frac{\pi}{1 \times \frac{\pi}{980}} \sqrt{\left(\frac{\pi \times 2 \cdot 10^{5}}{980}\right)^{2} \times 1005413697 \times 211177 + 2 \cdot 10^{5} \times 211177 \times 7.69 \cdot 10^{4} \times 16550}$$

$$= 38069657 \text{ Nmm}$$

$$= 38069,657 \text{ kNmm}$$

$$M_{y} = F_{y} \cdot S_{x}$$

$$= 501 \cdot 76844,4$$

$$= 38499044,4 \text{ Nmm}$$

$$= 38499.0444 \text{ kNmm}$$

$$\frac{M_{cr}}{M_{y}} = 0.99$$

Profil-I dengan L_b 1000 mm

$$I_{yi} = 211177 \text{ mm}^{4}.$$

$$C_{w} = I_{y} \times \left(\frac{h^{2}}{4}\right) = 211177 \times \left(\frac{138^{2}}{4}\right)$$

$$C_{w} = 1005413697 \text{ mm}^{6}$$

$$J = \frac{1}{3}h(t_{w})^{3} + 2 \times \frac{1}{3}b(t_{f})^{3} = \frac{1}{3} \times 138 \times (5)^{3} + 2 \times \frac{1}{3} \times 75 \times (6)^{3}$$

$$J = 16550 \text{ mm}^{4}.$$

$$M_{crl} = C_{b} \frac{\pi}{Lb} \sqrt{\left(\frac{\pi E}{Lb}\right)^{2} C_{w} I_{y} + EI_{y} GJ}$$

$$= 1 \times \frac{\pi}{1000} \sqrt{\left(\frac{\pi \times 2 \cdot 10^{5}}{1000}\right)^{2} \times 1005413697 \times 211177 + 2 \cdot 10^{5} \times 211177 \times 7.69 \cdot 10^{4} \times 16550}$$

$$= 36848278 \text{ Nmm}$$

$$M_{y} = F_{y} \cdot S_{x}$$

$$= 501 \cdot 76844.4$$

$$= 384990.444 \text{ Nmm}$$

$$= 38499..0444 \text{ kNmm}$$

Profil-I dengan L_b 1500 mm

$$C_{w} = I_{y} \times \left(\frac{h^{2}}{4}\right) = 211177 \times \left(\frac{138^{2}}{4}\right)$$

 $C_w = 1005413697 \text{ mm}^6$

 $I_{yl} = 211177 \text{ mm}^4$.

J =
$$\frac{1}{3}h(t_w)^3 + 2 \times \frac{1}{3}b(t_f)^3$$
 = $\frac{1}{3} \times 138 \times (5)^3 + 2 \times \frac{1}{3} \times 75 \times (6)^3$

$$J = 16550 \text{ mm}^{4}.$$

$$M_{crl} = C_{b} \frac{\pi}{Lb} \sqrt{\left(\frac{\pi E}{Lb}\right)^{2} C_{w} I_{y} + E I_{y} G J}$$

$$= 1 \times \frac{\pi}{1500} \sqrt{\left(\frac{\pi \times 2 \cdot 10^{5}}{1500}\right)^{2} \times 1005413697 \times 211177 + 2 \cdot 10^{5} \times 211177 \times 7.69 \cdot 10^{4} \times 16550}$$

$$= 19979960 \text{ Nmm}$$

$$= 19979960 \text{ kNmm}$$

$$M_{y} = F_{y} \cdot S_{x}$$

$$= 501 \cdot 76844,4$$

$$= 38499044,4 \text{ Nmm}$$

$$= 38499.0444 \text{ kNmm}$$

$$\frac{M_{cr}}{M_{y}} = 0,52$$

Profil-I dengan L_b 2000 mm

$$I_{y1} = 211177 \text{ mm}^4.$$

 $C_w = I_y \times \left(\frac{h^2}{4}\right) = 211177 \times \left(\frac{138^2}{4}\right)$

 $C_w = 1005413697 \text{ mm}^6$

$$J = \frac{1}{3}h(t_w)^3 + 2 \times \frac{1}{3}b(t_f)^3 = \frac{1}{3} \times 138 \times (5)^3 + 2 \times \frac{1}{3} \times 75 \times (6)^3$$

$$J = 16550 \text{ mm}^{4}.$$

$$M_{crl} = C_{h} \frac{\pi}{Lb} \sqrt{\left(\frac{\pi E}{Lb}\right)^{2} C_{w} I_{y} + E I_{y} G J}$$

$$= \frac{\pi}{2000} \sqrt{\left(\frac{\pi \times 2 \cdot 10^{5}}{2000}\right)^{2} \times 1005413697 \times 211177 + 2 \cdot 10^{5} \times 211177 \times 7.69 \cdot 10^{4} \times 16550}$$

$$= 13576983 \text{ Nmm}$$

$$= 13576,983 \text{ Nmm}$$

$$M_{y} = F_{y} \cdot S_{x}$$

$$= 501 \cdot 76844.4$$

$$= 38499044.4 \text{ Nmm}$$

$$\frac{M_{cr}}{M_{y}} = 0.35$$

Profil-/ dengan L_b 2500 mm

$$l_{yl} = 211177 \text{ mm}^4$$
.

$$C_{w} = I_{y} \times \left(\frac{h^{2}}{4}\right) = 211177 \times \left(\frac{138^{2}}{4}\right)$$

 $C_w = 1005413697 \text{ mm}^6$

J =
$$\frac{1}{3}h(t_w)^3 + 2 \times \frac{1}{3}b(t_f)^3$$
 = $\frac{1}{3} \times 138 \times (5)^3 + 2 \times \frac{1}{3} \times 75 \times (6)^3$

$$J = 16550 \text{ mm}^4$$
.

$$\mathbf{M}_{\rm crl} = C_b \frac{\pi}{Lb} \sqrt{\left(\frac{\pi E}{Lb}\right)^2 C_w I_y + E I_y G J}$$

$$= \frac{\pi}{1 \times \frac{\pi}{2500}} \sqrt{\left(\frac{\pi \times 2 \cdot 10^5}{2500}\right)^2 \times 1005413697 \times 211177 + 2 \cdot 10^5 \times 211177 \times 7.69 \cdot 10^4 \times 16550}$$

= 10298605 Nmm
= 10298,605 kNmm

$$M_y = F_y \cdot S_x$$

= 501 \cdot 76844,4
= 38499044,4 Nmm
= 38499..0444 kNmm

$$\frac{M_{cr}}{M_y} = 0.27$$

✤ Profil Castella

Profil Castella dengan L_b 960 mm

$$I_{yC} = 352440 \text{ mm}^4$$

$$C_{w} = I_{y} \times \left(\frac{h^{2}}{4}\right) = 352440 \times \left(\frac{228^{2}}{4}\right)$$

 $C_w = 4580310240 \text{ mm}^6$

$$J = \frac{1}{3}h(t_w)^3 + 2 \times \frac{1}{3}b(t_f)^3 = \frac{1}{3} \times 228 \times (5)^3 + 2 \times \frac{1}{3} \times 75 \times (6)^3$$

$$J = 20300 \text{ mm}^4.$$

$$J = 20300 \text{ mm}^4$$
.

$$M_{crC} = C_b \frac{\pi}{Lb} \sqrt{\left(\frac{\pi E}{Lb}\right)^2 C_w I_y + EI_y GJ}$$
$$= \frac{\pi}{1 \times \frac{\pi}{960}} \sqrt{\left(\frac{\pi \times 2 \cdot 10^5}{960}\right)^2 \times 4580310240 \times 352440 + 2 \cdot 10^5 \times 352440 \times 7.46}$$

$$960 \sqrt{\left(\frac{960}{960}\right) \times 4580310240 \times 352440 + 2 \cdot 10^5 \times 352440 \times 7.69 \cdot 10^4 \times 20300}$$

$$= 61886,771 \text{ kNmm}$$

 $\frac{M_{cr}}{M_{cr}} = 1.50$

$$\frac{d}{M_y} = 1$$

Profil Castella dengan L_b 980 mm

$$I_{yC} = 352440 \text{ mm}^4$$

$$C_{w} = I_{y} \times \left(\frac{h^{2}}{4}\right) = 352440 \times \left(\frac{228^{2}}{4}\right)$$

 $C_w = 4580310240 \text{ mm}^6$

J =
$$\frac{1}{3}h(t_w)^3 + 2 \times \frac{1}{3}b(t_f)^3$$
 = $\frac{1}{3} \times 228 \times (5)^3 + 2 \times \frac{1}{3} \times 75 \times (6)^3$

$$J = 20300 \text{ mm}^4$$
.

Profil Castella dengan L_b 1000 mm

$$I_{yC} = 352440 \text{ mm}^{4}$$

$$C_{w} = I_{y} \times \left(\frac{h^{2}}{4}\right) = 352440 \times \left(\frac{228^{2}}{4}\right)$$

$$C_{w} = 4580310240 \text{ mm}^{6}$$

$$J = \frac{1}{3}h(t_{w})^{3} + 2 \times \frac{1}{3}b(t_{f})^{3} = \frac{1}{3} \times 228 \times (5)^{3} + 2 \times \frac{1}{3} \times 75 \times (6)^{3}$$

$$J = 20300 \text{ mm}^{4}.$$

$$M_{erC} = C_{h} \frac{\pi}{Lb} \sqrt{\left(\frac{\pi E}{Lb}\right)^{2}} C_{w}I_{y} + EI_{y}GJ$$

$$= 1 \times \frac{\pi}{1000} \sqrt{\left(\frac{\pi \times 2 \cdot 10^{4}}{1000}\right)^{2} \times 4580310240 \times 352440 + 2 \cdot 10^{4} \times 352440 \times 7.69 \cdot 10^{4} \times 20300}$$

$$= 85882817,33 \text{ Nmm}$$

$$= 85882,817 \text{ kNmm}$$

$$M_{y} = F_{y} \cdot S_{x}$$

$$= 501 \cdot 123526,4898$$

$$= 61886771.39 \text{ Nmm}$$

$$= 61886,771 \text{ kNmm}$$

$$\frac{M_{er}}{M_{y}} = 1.39$$

Profil Castella dengan L_b 1500 mm

$$I_{yc} = 352440 \text{ mm}^{4}$$

$$C_{w} = I_{y} \times \left(\frac{h^{2}}{4}\right)_{=} 352440 \times \left(\frac{228^{2}}{4}\right)$$

$$C_{w} = 4580310240 \text{ mm}^{6}$$

$$J = \frac{1}{3}h(t_{w})^{3} + 2 \times \frac{1}{3}b(t_{f})^{3} = \frac{1}{3} \times 228 \times (5)^{3} + 2 \times \frac{1}{3} \times 75 \times (6)^{3}$$

$$J = 20300 \text{ mm}^{4}.$$

$$M_{erC} = C_{h} \frac{\pi}{Lb} \sqrt{\left(\frac{\pi E}{Lb}\right)^{2} C_{w}I_{y} + EI_{y}GJ}$$

$$= 1 \times \frac{\pi}{1500} \sqrt{\left(\frac{\pi \times 2 \cdot 10^{5}}{1500}\right)^{2} \times 4580310240 \times 352440 + 2 \cdot 10^{5} \times 352440 \times 7.69 \cdot 10^{4} \times 20300}$$

$$= 41534472.88 \text{ Nmm}$$

$$= 41534472 \text{ kNmm}$$

$$M_{y} = F_{y} \cdot S_{x}$$

$$= 501 \cdot 123526,4898$$

$$= 61886771.39 \text{ Nmm}$$

$$= 61886,771 \text{ kNmm}$$

$$\frac{M_{cr}}{M_{y}} = 0.67$$

Profil Castella dengan L_b 2000 mm

$$I_{yC} = 352440 \text{ mm}^{4}$$

$$C_{w} = I_{y} \times \left(\frac{h^{2}}{4}\right) = 352440 \times \left(\frac{228^{2}}{4}\right)$$

$$C_{w} = 4580310240 \text{ mm}^{6}$$

$$J = \frac{1}{3}h(t_{w})^{3} + 2 \times \frac{1}{3}b(t_{f})^{3} = \frac{1}{3} \times 228 \times (5)^{3} + 2 \times \frac{1}{3} \times 75 \times (6)^{3}$$

$$J = 20300 \text{ mm}^{4}.$$

$$M_{erC} = C_{h} \frac{\pi}{Lb} \sqrt{\left(\frac{\pi E}{Lb}\right)^{2} C_{w} I_{y} + E I_{y} G J}$$

$$= 1 \times \frac{\pi}{2000} \sqrt{\left(\frac{\pi \times 2 \cdot 10^{5}}{2000}\right)^{2} \times 4580310240 \times 352440 + 2 \cdot 10^{5} \times 352440 \times 7.69 \cdot 10^{4} \times 20300}$$

$$= 25780218, 28 \text{ Nmm}$$

$$= 25780, 218 \text{ kNmm}$$

$$M_{y} = F_{y} \cdot S_{x}$$

$$= 501 \cdot 123526, 4898$$

$$= 61886771.39 \text{ Nmm}$$

$$= 61886, 771 \text{ kNmm}$$

Profil Castella dengan L_b 2500 mm

$$I_{yC} = 352440 \text{ mm}^4$$

$$C_{\rm w} = I_{\rm y} \times \left(\frac{h^2}{4}\right) = 352440 \times \left(\frac{228^2}{4}\right)$$

 $C_w = 4580310240 \text{ mm}^6$

$$J = \frac{1}{3}h(t_w)^3 + 2 \times \frac{1}{3}b(t_f)^3 = \frac{1}{3} \times 228 \times (5)^3 + 2 \times \frac{1}{3} \times 75 \times (6)^3$$

$$J = 20300 \text{ mm}^{4}.$$

$$M_{crC} = C_{b} \frac{\pi}{Lb} \sqrt{\left(\frac{\pi E}{Lb}\right)^{2} C_{w} I_{y} + EI_{y} GJ}$$

$$= \frac{\pi}{2500} \sqrt{\left(\frac{\pi \times 2 \cdot 10^{5}}{2500}\right)^{2} \times 4580310240 \times 352440 + 2 \cdot 10^{5} \times 352440 \times 7.69 \cdot 10^{4} \times 20300}$$

$$= 18297073.23 \text{ Nmm}$$

$$= 18297,073 \text{ kNmm}$$

$$M_{y} = F_{y} \cdot S_{x}$$

$$= 501 \cdot 123526,4898$$

$$= 61886771.39 \text{ Nmm}$$

$$= 61886,771 \text{ kNmm}$$

$$\frac{M_{cr}}{M_{y}} = 0,3$$

PERHITUNGAN BEBAN MAKSIMUM TEORITIS

1. Profil-I

Momen Inersia Sumbu Kuat

$$I_{x} = \frac{1}{12}t_{w}.d^{3} + 2.\frac{1}{12}b_{f}t_{f}^{3} + 2.b_{f}t_{f}(\frac{d}{2} - \frac{t_{f}}{2})^{2}$$

$$\frac{1}{3850} \times 1.1$$

2. Profil Castella

Momen Inersia Sumbu Kuat , $F_v = 250 \text{ Mpa}$ $t_w = 5 \text{ mm}$ $d = 240 \, \text{mm}$ = 120 mm $t_f = 6 \text{ mm}$ *b_f* = 75 mm *d_T*= 30 mm *d*_s = 24 mm 1 des ZDOZM $A_T = (b_f \times t_f) + (d_s \times t_w) = (75 \times 6) + (24 \times 5) = 570 mm^2$ $\mathbf{M}_{\mathbf{y}} = \left(A_f\left(d_s \times \frac{t_f}{2}\right)\right) + \left(A_s \times \frac{d_s}{2}\right)$ $= \left(450\left(24 \times \frac{6}{2}\right)\right) + \left(120 \times \frac{24}{2}\right) = 13590 mm^{3}$ $\mathbf{ly} = \left(A_f\left(d_s^2 + \left(d_s \times t_f\right) + \frac{t_f^2}{3}\right)\right) + \left(A_s \times \frac{d_s^2}{3}\right)$ $= \left(450\left(24^{2} + (24 \times 6) + \frac{6^{2}}{3}\right)\right) + \left(120 \times \frac{24^{2}}{3}\right) = 348390 mm^{4}$

$$C_s = \frac{M_y}{A_T} = \frac{13590}{570} = 23,8421mm$$
$$I_T = I_y - (C_s \times M_y) = 348390 - (23,8421 \times 13590) = 24375,861mm^4$$

$$S_s = \frac{I_T}{C_s} = \frac{24375,861}{23,8421} = 1022,3873 mm^3$$

$$d = 2(h + C_s) = 2(90 + 23,8421) = 227,6842mm$$

$$I_x = (2 \times I_T) + \left(\frac{A_T \times d^2}{2}\right) = (2 \times 24375,861) + \left(\frac{570 \times 227,6842^2}{2}\right) = 14823178,78mm^4$$

= 60,16 kN

PERHITUNGAN BEBAN BERDASARKAN

TEGANGAN GESER

1. Perhitungan Beban Teoritis

Profil-I ۶

$$V_{cr} = A_w x F_{cr}$$

 $A_w = h x t_w = 138 x 5 = 690 mm^2$.

Bila dipakai a = 960 mm
Untuk $a/h = 960 / 138 = 6.96 > 1$ maka;
k = 5,34 + $\frac{4}{(a/h)^2}$ = 5,34 + $\frac{4}{(6.96)^2}$
k = 5.423
$\mathbf{E} = \frac{k\pi^2 E}{2} = \frac{5.423 \times \pi^2 \times 2 \times 10^5}{2}$
$\Gamma_{\rm cr} = \frac{1}{12(1-\mu^2)\left(\frac{h}{t_w}\right)^2} = \frac{12(1-0,3^2)\left(\frac{138}{5}\right)^2}{12(1-0,3^2)\left(\frac{138}{5}\right)^2}$
F _{cr} = 1286.85 Mpa > 250 MPa

Jadi gaya geser teoritis sebesar :

 V_{cr} $= A_w x F_{cr}$

 $= 690 \times 250$

$$V_{cr}$$
 = 172500 N
= 172.5 kN
P = Vcr x 2
= 172.5 x 2 = 345 kN

Profil Castella dengan Variasi

Jadi gaya geser teoritis sebesar :

$$V_{cr} = A_w x F_{cr}$$

 $= 1140 \times 250$

 $V_{cr} = 285000 \text{ N}$ = 285 kN P = Vcr x 2 = 285 x 2 = 570 kN

2. Perhitungan Beban Hasil Uji

Profil-I dengan L_b 960 mm

Data yang didapatkan dari hasil pengujian adalah :

P = 6250 kg F_y = 501 Mpa $V_{cr} = \frac{P/2}{dt_w} = \frac{6250/2}{138 \times 5} = 45.2899 N/mm^2$ $\tau_y = 0.6 \times F_y = 0.6 \times 501 = 300.6 Mpa$ $\frac{V_{cr}}{\tau_y} = \frac{45.2899}{300.6} = 0.15$

Profil Castella dengan L_b 960 mm

Data yang didapatkan dari hasil pengujian adalah :

P = 9000 kg

 $F_y = 501 \text{ Mpa}$

$$V_{cr} = \frac{\frac{P}{2}}{dt_{w}} = \frac{\frac{9000}{2}}{228 \times 5} = 39.4737 \frac{N}{mm^{2}}$$

$$\tau_v = 0.6 \times F_v = 0.6 \times 501 = 300.6 Mpa$$

$$\frac{V_{cr}}{\tau_v} = \frac{39.4737}{300.6} = 0.13$$

Profil Castella dengan L_b 980 mm

Data yang didapatkan dari hasil pengujian adalah : P = 8400 kg F_y = 310 Mpa $V_{er} = \frac{P/2}{dt_w} = \frac{8400/2}{228 \times 5} = 36.8421 N/mm^2$ $\tau_y = 0.6 \times F_y = 0.6 \times 501 = 300.6 Mpa$ $\frac{V_{er}}{\tau_y} = \frac{36.8421}{300.6} = 0.12$

> Profil Castella dengan L_b 1000 mm

Data yang didapatkan dari hasil pengujian adalah :

$$P = 7800 \text{ kg}$$

 $F_y = 310 \text{ Mpa}$

$$V_{cr} = \frac{P/2}{dt_w} = \frac{7800/2}{228 \times 5} = 34.2105 N/mm^2$$

$$\tau_v = 0.6 \times F_v = 0.6 \times 501 = 300.6 Mpa$$

$$\frac{V_{cr}}{\tau_{v}} = \frac{34.2105}{300.6} = 0.11$$

Profil Castella dengan L_b 1500 mm

Data yang didapatkan dari hasil pengujian adalah : P = 7600 kg F_y = 310 Mpa $V_{cr} = \frac{P/2}{dt_w} = \frac{7600/2}{228 \times 5} = 33.3333 N/mm^2$ $\tau_y = 0.6 \times F_y = 0.6 \times 501 = 300.6 Mpa$ $\frac{V_{cr}}{\tau_y} = \frac{33.3333}{300.6} = 0.11$

Profil Castella dengan L_b 2000 mm

Data yang didapatkan dari hasil pengujian adalah :

$$P = 7400 \text{ kg}$$

 $F_y = 310 \text{ Mpa}$
$$V_{cr} = \frac{P_2}{dt_w} = \frac{7400/2}{228 \times 5} = 32.4561 N / mm^2$$

$$\tau = 0.6 \times F_{\rm o} = 0.6 \times 501 = 300.6 Mpa$$

$$\frac{V_{cr}}{\tau_v} = \frac{32.4561}{300.6} = 0.11$$

Profil Castella dengan L_b 2500 mm

DATA BEBAN – LENDUTAN HASIL PENGUJIAN

NO	BEBAN	DIAL 1	DIAL 2	DIAL 3	Ρ/Δ
	(kN)	(mm)	(mm)	(mm)	(kN/mm)
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0	0	0
2	2	3	16	10	0.1250
3	44	82	53	42	0.0755
4	6	93	96	81	0.0625
5	8	109	136	121	0.0588
6	10	186	188	170	0.0532
7	12	206	242	220	0.0496
8	14	285	290	267	0.0483
9	16	308	344	317	0.0465
10	18	379	391	357	0.0460
11	20	395	426	390	0.0469
12	22	429	487	440	0.0452
13	24	488	525	472	0.0457
14	26	504	572	513	0.0455
15	28	583	620	558	0.0452
16	30	598	664	594	0.0452
17	32	679	718	645	0.0446
18	34	698	771	685	0.0441
19	36	720	815	727	0.0442
20	38	792	866	769	0.0439
21	40	816	917	815	0.0436
22	42	893	978	869	0.0429
23	44	910	1016	900	0.0433
24	46	989 1075		954	0.0428
25	48	48 1004 1		992	0.0430
26	50	50 1085		1035	0.0430
27	52	1098	1211	1073	0.0429
28	54	1178	1255	1115	0.0430
29	56	1193	1305	1158	0.0429
30	58	1212	1355	1203	0.0428
31	60	1288	1403	1247	0.0428
32	62	1311	1311 1458 1297		0.0425
33	64	1386	1507	1341	0.0425
34	66	1400	1547	1376	0.0425
35	68	1481	1601	1426	0.0427
36	70	1495	1652	1467	0.0423
37	72	1579	1708	1515	0.0424
38	74	1591	1753	1558	0.0422
39	76	1612	1805	1601	0.0422
				1001	0.0721

TABEL BEBAN-LENDUTAN HASIL UJI PROFIL CASTELLA L_b 960 mm

40	78	1650	1865	1655	0.0418
41	80	1719	1933	1715	0.0414
42	82	1795	2001	1779	0.0410
43	84	1884	2069	1845	0.0410
44	86	1982	2170	1947	0.0306
45	88	2011	2273	2050	0.0390
46	90	2109	2392	2170	0.0387
47	90	2312	$\frac{2670}{2670}$	2465	0.0370
48	83	2330	2742	2554	0.0337
49	83	2384	2793	2554	0.0303
_50	80	2395	2841	2652	0.0297

LANJUTAN TABEL BEBAN-LENDUTAN HASIL UJI PROFIL
CASTELLA L_b 960 mm

Marill Contract of the Contrac

N	O BEBA (kN)	N DIAL 1 (mm)	DIAL 2 (mm)	DIAL 3	Р/Д
1	0	0	0		(KN/mm)
2	2	34	36		0 00556
3	4	59	64	82	0.0556
4	6	110	123	104	0.0625
5	8	196	221	204	0.0488
6	10	248	274	204	0.0362
7	12	293	320	203	0.0365
8	14	340	368	376	0.0375
9	16	388	424	370	0.0380
10	18	434	470	476	0.0377
11	20	475	515	470	0.0383
12	22	525	565	506	0.0388
13	24	565	612	591	0.0389
14	26	614	660	500	0.0392
15	28	666	715	599	0.0394
16	30	704	713	6/8	0.0392
17	32	746	803	693	0.0398
18	34	804	861	/18	0.0399
19	36	844	005	/91	0.0395
20	38	903	905	810	0.0398
21	40	944	1010	889	0.0394
22	42	998	1010	908	0.0396
23	44	1048	1110	986	0.0394
24	46	1048	1119	1008	0.0393
25	48	11/3	110/	1084	0.0394
26	50	1145	1218	1105	0.0394
27	52	1727	1265	1181	0.0395
28	54	1237	1318	1199	0.0395
29	56	1293	1378	1280	0.0392
30	58	1331	1421	1295	0.0394
31	60	1300	1483	1379	0.0391
32	62	1434	1530	1394	0.0392
33	64	1470	1575	1419	0.0394
34	66	1530	1631	1490	0.0392
35	68	1624	1682	1510	0.0392
36	70	1034	1742	1586	0.0390
37	72	1080	- 1792	1608	0.0391
38	74	1/40	1853	1685	0.0389
39	76	1803	1916	1710	0.0386
40	78	1004	1979	1789	0.0384
41	80	1953	2064	1882	0.0378
42	82	2064	2171	1979	0.0368
44	<u> </u>	2150	2235	2085	0.0367
	04	2184	2278	2118	0.0369

TABEL BEBAN-LENDUTAN HASIL UJI PROFIL CASTELLA L_b 980 mm

LANJUTAN TABEL BEBAN-LENDUTAN HASIL UJI PROFIL CASTELLA L₅ 980 mm
--

······································			0 · • • • •		
45	80	2203	2362	0100	1
46	80	2304	2303	2183	0.0339
47	80	2424	2433	2209	0.0329
<u> </u>		2424	2572	2379	0.0311

Statilitation .

NO	BEBAN	DIAL 1 (mm)	DIAL 2 (mm)	DIAL 3 (mm)	P/Δ (kN/mm)
+		0	0	0	0
$-\frac{1}{2}$		4	14	12	0.1429
2		11	23	22	0.1739
3	4	92	60	55	0.1000
4	0	105	111	103	0.0721
5	8	103	174	151	0.0575
6	10	214	233	215	0.0515
7	12	214	302	278	0.0464
8	14	234	366	338	0.0437
9	10	308	418	385	0.0431
10	18	423	475	439	0.0421
11	20	423	533	493	0.0413
12		46.5	575	530	0.0417
13	24	505	631	588	0.0412
14	26	595	685	638	0.0409
15	28	621	725	676	0.0414
16	30	714	785	730	0.0408
17	32	714	824	763	0.0413
18	34	/80	874	808	0.0412
19	36	805	024	865	0.0407
20	38	891	091	904	0.0408
21	40	906	901	955	0.0404
22	42	988	1040	993	0.0407
23	44	1004	1080	1050	0.0403
24	46	1089	1141	1050	0.0406
25	48	1104	1181	1135	0.0404
26	50	1186	1237	1174	0.0406
27	52	1200	1281	1220	0.0406
28	54	1290	1331	1220	0.0403
29	56	1302	1390	12/0	0.0406
30	58	1328	1430	1310	0.0401
31	60	1401	1496	1421	0.0400
32	62	1486	1551	1421	0.0398
33	64	1506	- 1610	1472	0.0397
34	66	1584	1663	1520	0.0394
35	68	1608	1724	15/5	0.0391
36	70	1690	1788	1039	0.0391
37	72	1783	1864	1099	0.0383
38	74	1809	1930	1/5/	0.0383
39	76	1897	1995	1810	0.0301
40	78	1907	2103	1893	0.0371
41	78	2294	2322	2062	0.0330
42	75	2380	2375	2100	0.0316

TABEL BEBAN-LENDUTAN HASIL UJI PROFIL CASTELLA L_b 1000 mm

LANJUTAN TABEL BEBAN-LENDUTAN HASIL UJI PROFIL CASTELLA L_b 1000 mm

1	42	75	2392	2406	2129	0.0312
	43	75	2402	2430	2145	0.0309
1	44	75	2402			

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	NO	BEBAN	DIAL 1	DIAL 2	DIAL 3	P/Δ
1 0 0 0 0 0 0 2 2 21 58 50 0.0345 3 4 34 99 88 0.0404 4 6 58 141 126 0.0426 5 8 133 203 178 0.0394 6 10 226 259 231 0.0386 7 12 235 311 278.5 0.0386 8 14 260 361 321 0.0388 9 16 335 420 375 0.0381 10 18 426 483 434 0.0373 11 20 428 518 467 0.0386 12 22 454 574 516 0.0393 14 26 536 653 587 0.0398 15 28 555 690 620 0.0406	1			(1111)	(1111)	
2 21 36 30 0.0343 3 4 34 99 88 0.0404 4 6 58 141 126 0.0426 5 8 133 203 178 0.0394 6 10 226 259 231 0.0386 7 12 235 311 278.5 0.0386 8 14 260 361 321 0.0386 8 14 260 361 321 0.0386 10 18 426 483 434 0.0373 11 20 428 518 467 0.0386 12 22 454 574 516 0.0393 14 26 536 653 587 0.0398 15 28 555 690 620 0.0405 17 </td <td>2</td> <td></td> <td>21</td> <td>59</td> <td>50</td> <td>0 0245</td>	2		21	59	50	0 0245
3 4 34 54 59 86 0.0404 4658141126 0.0426 58133203178 0.0394 610226259231 0.0386 712235311278.5 0.0386 814260361321 0.0386 916335420375 0.0381 1018426483434 0.0373 1120428518467 0.0386 1222454574516 0.0383 1324523610549 0.0393 1426536653587 0.0398 1528555690620 0.0406 1630628740665 0.0405 1732643786707 0.0407 1834723827743 0.0411 1936735876792 0.0411 2038768928840 0.0409 2140828968875 0.0413 22428441011885 0.0415 23449241053892 0.0418 24469361105903 0.0416 2548101811511045 0.0407 2650102212151061 0.0412 <	2	4	21		30	0.0343
4638141126 0.0426 58133203178 0.0394 610226259231 0.0386 712235311278.5 0.0386 814260361321 0.0388 916335420375 0.0381 1018426483434 0.0373 1120428518467 0.0386 1222454574516 0.0383 1324523610549 0.0393 1426536653587 0.0398 1528555690620 0.0406 1630628740665 0.0405 1732643786707 0.0407 1834723827743 0.0411 1936735876792 0.0411 2038768928840 0.0409 2140828968875 0.0413 22428441011885 0.0415 23449241053892 0.0418 24469361105903 0.0416 2548101811511045 0.0407 2650102212151061 0.0407 2752104412731120 0.0408 28<		4	59	99	00	0.0404
3 8 133 203 178 0.0394 6 10 226 259 231 0.0386 7 12 235 311 278.5 0.0386 8 14 260 361 321 0.0388 9 16 335 420 375 0.0381 10 18 426 483 434 0.0373 11 20 428 518 467 0.0386 12 22 454 574 516 0.0393 14 26 536 653 587 0.0398 15 28 555 690 620 0.0406 16 30 628 740 665 0.0405 17 32 643 786 707 0.0407 18 34 723 827 743 0.0411 20 38	4	0	38	141	120	0.0426
6 10 226 239 231 0.0386 712 235 311 278.5 0.0386 814 260 361 321 0.0388 916 335 420 375 0.0381 1018 426 483 434 0.0373 11 20 428 518 467 0.0386 12 22 454 574 516 0.0383 13 24 523 610 549 0.0393 14 26 536 653 587 0.0398 15 28 555 690 620 0.0406 16 30 628 740 665 0.0405 17 32 643 786 707 0.0407 18 34 723 827 743 0.0411 19 36 735 876 792 0.0411 20 38 768 928 840 0.0409 21 40 828 968 875 0.0413 22 42 844 1011 885 0.0415 23 44 924 1053 892 0.0418 24 46 936 1105 903 0.0416 25 48 1018 1151 1045 0.0407 24 46 936 1105 903 0.0416 25 48 1018 1151 1045 0.0407 <td></td> <td><u> </u></td> <td>135</td> <td>203</td> <td>1/8</td> <td>0.0394</td>		<u> </u>	135	203	1/8	0.0394
7 12 235 311 278.5 0.0386 814 260 361 321 0.0388 916 335 420 375 0.0381 1018 426 483 434 0.0373 11 20 428 518 467 0.0386 12 22 454 574 516 0.0383 13 24 523 610 549 0.0393 14 26 536 653 587 0.0398 15 28 555 690 620 0.0406 16 30 628 740 665 0.0405 17 32 643 786 707 0.0407 18 34 723 827 743 0.0411 19 36 735 876 792 0.0411 20 38 768 928 840 0.0409 21 40 828 968 875 0.0413 22 42 844 1011 885 0.0415 23 44 924 1053 892 0.0418 24 46 936 1105 903 0.0416 25 48 1018 1151 1045 0.0407 26 50 1022 1215 1061 0.0412 27 52 1044 1273 1120 0.0408 28 54 1122 1328 1159 0.0407 <td>0</td> <td>10</td> <td>220</td> <td>259</td> <td>231</td> <td>0.0386</td>	0	10	220	259	231	0.0386
814260 361 321 0.0388 916 335 420 375 0.0381 1018 426 483 434 0.0373 1120 428 518 467 0.0386 1222 454 574 516 0.0383 1324 523 610 549 0.0393 1426 536 653 587 0.0398 1528 555 690 620 0.0406 1630 628 740 665 0.0405 1732 643 786 707 0.0407 18 34 723 827 743 0.0411 2038 768 928 840 0.0409 21 40 828 968 875 0.0413 22 42 844 1011 885 0.0415 23 44 924 1053 892 0.0418 24 46 936 1105 903 0.0416 25 48 1018 1151 1045 0.0417 26 50 1022 1215 1061 0.0407 29 56 1138 1370 1212 0.0409 30 58 1160 1425 1247 0.0407 31 60 1226 1486 1280 0.0401 32 62 1248 1547 1363 0.0401 33 <td< td=""><td>/</td><td>12</td><td>235</td><td>311</td><td>278.5</td><td>0.0386</td></td<>	/	12	235	311	278.5	0.0386
916335420375 0.0381 1018426483434 0.0373 1120428518467 0.0386 1222454574516 0.0383 1324523610549 0.0393 1426536653587 0.0398 1528555690620 0.0406 1630628740665 0.0405 1732643786707 0.0407 1834723827743 0.0411 2038768928840 0.0409 2140828968875 0.0413 22428441011885 0.0415 23449241053892 0.0418 24469361105903 0.0416 2548101811511045 0.0417 2650102212151061 0.0412 2752104412731120 0.0409 3058116014251247 0.0407 3160122614861280 0.0401 3262124815471363 0.0401 3364132216021467 0.03095 3566134916701505 0.0395	8	14	260	361	321	0.0388
10 18 426 485 434 0.0375 11 20 428 518 467 0.0386 12 22 454 574 516 0.0383 13 24 523 610 549 0.0393 14 26 536 653 587 0.0398 15 28 555 690 620 0.0406 16 30 628 740 665 0.0405 17 32 643 786 707 0.0407 18 34 723 827 743 0.0411 19 36 735 876 792 0.0411 20 38 768 928 840 0.0409 21 40 828 968 875 0.0413 22 42 844 1011 885 0.0415 23 44 924 1053 892 0.0418 24 46 936 1105 903 0.0416 25 48 1018 1151 1045 0.0417 26 50 1022 1215 1061 0.0412 27 52 1044 1273 1120 0.0408 28 54 1122 1328 1159 0.0407 30 58 1160 1425 1247 0.0407 31 60 1226 1486 1280 0.0404 32 62 1248 </td <td>9</td> <td>10</td> <td>335</td> <td>420</td> <td>375</td> <td>0.0381</td>	9	10	335	420	375	0.0381
11 20 428 518 467 0.0386 12 22 454 574 516 0.0383 13 24 523 610 549 0.0393 14 26 536 653 587 0.0398 15 28 555 690 620 0.0406 16 30 628 740 665 0.0405 17 32 643 786 707 0.0407 18 34 723 827 743 0.0411 19 36 735 876 792 0.0411 20 38 768 928 840 0.0409 21 40 828 968 875 0.0413 22 42 844 1011 885 0.0415 23 44 924 1053 892 0.0418 24 46 936 1105 903 0.0416 25 48 1018 1151 1045 0.0417 26 50 1022 1215 1061 0.0412 27 52 1044 1273 1120 0.0408 28 54 1122 1328 1159 0.0407 30 58 1160 1425 1247 0.0407 31 60 1226 1486 1280 0.0404 32 62 1248 1547 1363 0.0401 33 64 1322	10	18	420	483	434	0.0373
12 22 434 574 516 0.0383 13 24 523 610 549 0.0393 14 26 536 653 587 0.0398 15 28 555 690 620 0.0406 16 30 628 740 665 0.0405 17 32 643 786 707 0.0407 18 34 723 827 743 0.0411 19 36 735 876 792 0.0411 20 38 768 928 840 0.0409 21 40 828 968 875 0.0413 22 42 844 1011 885 0.0415 23 44 924 1053 892 0.0418 24 46 936 1105 903 0.0416 25 48 1018 1151 1045 0.0417 26 50 1022 1215 1061 0.0412 27 52 1044 1273 1120 0.0408 28 54 1122 1328 1159 0.0407 30 58 1160 1425 1247 0.0407 31 60 1226 1486 1280 0.0401 32 62 1248 1547 1363 0.0401 33 64 1322 1602 1467 0.0400 34 66 1	11	20	428	518	467	0.0386
13 24 523 610 549 0.0393 14 26 536 653 587 0.0398 15 28 555 690 620 0.0406 16 30 628 740 665 0.0405 17 32 643 786 707 0.0407 18 34 723 827 743 0.0411 19 36 735 876 792 0.0411 20 38 768 928 840 0.0409 21 40 828 968 875 0.0413 22 42 844 1011 885 0.0415 23 44 924 1053 892 0.0416 24 46 936 1105 903 0.0416 25 48 1018 1151 1045 0.0417 26 50 1022 1215 1061 0.0412 27 52 1044 1273 1120 0.0408 28 54 1122 1328 1159 0.0407 29 56 1138 1370 1212 0.0407 31 60 1226 1486 1280 0.0401 32 62 1248 1547 1363 0.0401 33 64 1322 1602 1467 0.0400 34 66 1349 1670 1505 0.0395	12	22	454	5/4	516	0.0383
14 26 536 653 587 0.0398 15 28 555 690 620 0.0406 16 30 628 740 665 0.0405 17 32 643 786 707 0.0407 18 34 723 827 743 0.0411 19 36 735 876 792 0.0411 20 38 768 928 840 0.0409 21 40 828 968 875 0.0413 22 42 844 1011 885 0.0415 23 44 924 1053 892 0.0418 24 46 936 1105 903 0.0416 25 48 1018 1151 1045 0.0417 26 50 1022 1215 1061 0.0402 27 52 1044 1273 1120 0.0408 28 54 1122 1328 1159 0.0407 30 58 1160 1425 1247 0.0407 31 60 1226 1486 1280 0.0401 33 64 1322 1602 1467 0.0400 34 66 1349 1670 1505 0.0395	13	24	523	610	549	0.0393
15 28 555 690 620 0.0406 16 30 628 740 665 0.0405 17 32 643 786 707 0.0407 18 34 723 827 743 0.0411 19 36 735 876 792 0.0411 20 38 768 928 840 0.0409 21 40 828 968 875 0.0413 22 42 844 1011 885 0.0415 23 44 924 1053 892 0.0418 24 46 936 1105 903 0.0416 25 48 1018 1151 1045 0.0417 26 50 1022 1215 1061 0.0412 27 52 1044 1273 1120 0.0408 28 54 1122 1328 1159 0.0407 29 56 1138 1370 1212 0.0409 30 58 1160 1425 1247 0.0407 31 60 1226 1486 1280 0.0401 33 64 1322 1602 1467 0.0400 34 66 1349 1670 1505 0.0395	14	26	536	653	587	0.0398
16 30 628 740 665 0.0405 17 32 643 786 707 0.0407 18 34 723 827 743 0.0411 19 36 735 876 792 0.0411 20 38 768 928 840 0.0409 21 40 828 968 875 0.0413 22 42 844 1011 885 0.0415 23 44 924 1053 892 0.0418 24 46 936 1105 903 0.0416 25 48 1018 1151 1045 0.0417 26 50 1022 1215 1061 0.0412 27 52 1044 1273 1120 0.0408 28 54 1122 1328 1159 0.0407 29 56 1138 1370 1212 0.0409 30 58 1160 1425 1247 0.0407 31 60 1226 1486 1280 0.0404 32 62 1248 1547 1363 0.0401 33 64 1322 1602 1467 0.0400 34 66 1349 1670 1505 0.0395	15	28	555	690	620	0.0406
17 32 643 786 707 0.0407 18 34 723 827 743 0.0411 19 36 735 876 792 0.0411 20 38 768 928 840 0.0409 21 40 828 968 875 0.0413 22 42 844 1011 885 0.0415 23 44 924 1053 892 0.0418 24 46 936 1105 903 0.0416 25 48 1018 1151 1045 0.0417 26 50 1022 1215 1061 0.0412 27 52 1044 1273 1120 0.0408 28 54 1122 1328 1159 0.0407 29 56 1138 1370 1212 0.0409 30 58 1160 1425 1247 0.0407 31 60 1226 1486 1280 0.0404 32 62 1248 1547 1363 0.0401 33 64 1322 1602 1467 0.0400 34 66 1349 1670 1505 0.0395	16	30	628	740	665	0.0405
18 34 723 827 743 0.0411 19 36 735 876 792 0.0411 20 38 768 928 840 0.0409 21 40 828 968 875 0.0413 22 42 844 1011 885 0.0415 23 44 924 1053 892 0.0418 24 46 936 1105 903 0.0416 25 48 1018 1151 1045 0.0417 26 50 1022 1215 1061 0.0412 27 52 1044 1273 1120 0.0408 28 54 1122 1328 1159 0.0407 29 56 1138 1370 1212 0.0409 30 58 1160 1425 1247 0.0407 31 60 1226 1486 1280 0.0401 32 62 1248 1547 1363 0.0401 33 64 1322 1602 1467 0.0400 34 66 1349 1670 1505 0.0395	17	32	643	786	707	0.0407
19 36 735 876 792 0.0411 20 38 768 928 840 0.0409 21 40 828 968 875 0.0413 22 42 844 1011 885 0.0415 23 44 924 1053 892 0.0418 24 46 936 1105 903 0.0416 25 48 1018 1151 1045 0.0417 26 50 1022 1215 1061 0.0412 27 52 1044 1273 1120 0.0408 28 54 1122 1328 1159 0.0407 29 56 1138 1370 1212 0.0409 30 58 1160 1425 1247 0.0407 31 60 1226 1486 1280 0.0404 32 62 1248 1547 1363 0.0401 33 64 1322 1602 1467 0.0400 34 66 1349 1670 1505 0.0395	18	34	723	827	743	0.0411
20 38 768 928 840 0.0409 21 40 828 968 875 0.0413 22 42 844 1011 885 0.0415 23 44 924 1053 892 0.0418 24 46 936 1105 903 0.0416 25 48 1018 1151 1045 0.0417 26 50 1022 1215 1061 0.0412 27 52 1044 1273 1120 0.0408 28 54 1122 1328 1159 0.0407 29 56 1138 1370 1212 0.0409 30 58 1160 1425 1247 0.0407 31 60 1226 1486 1280 0.0401 32 62 1248 1547 1363 0.0401 33 64 1322 1602 1467 0.0400 34 66 1349 1670 1505 0.0395	19	- 36	735	876	792	0.0411
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20	38	768	928	840	0.0409
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	21	40	828	968	875	0.0413
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	22	42	844	1011	885	0.0415
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	23	44	924	1053	892	0.0418
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	24	46	936	1105	903	0.0416
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	25	48	1018	1151	1045	0.0417
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	26	50	1022	1215	1061	0.0412
28 54 1122 1328 1159 0.0407 29 56 1138 1370 1212 0.0409 30 58 1160 1425 1247 0.0407 31 60 1226 1486 1280 0.0404 32 62 1248 1547 1363 0.0401 33 64 1322 1602 1467 0.0400 34 66 1349 1670 1505 0.0395 35 68 1435 1760 1565 0.0395	27	52	1044	1273	1120	0.0408
29 56 1138 1370 1212 0.0409 30 58 1160 1425 1247 0.0407 31 60 1226 1486 1280 0.0404 32 62 1248 1547 1363 0.0401 33 64 1322 1602 1467 0.0400 34 66 1349 1670 1505 0.0395 35 68 1435 1750 1565 0.0395	28	54	1122	1328	1159	0.0407
30 58 1160 1425 1247 0.0407 31 60 1226 1486 1280 0.0404 32 62 1248 1547 1363 0.0401 33 64 1322 1602 1467 0.0400 34 66 1349 1670 1505 0.0395 35 68 1435 1750 1565 0.0395	29	56	1138	1370	1212	0.0409
31 60 1226 1486 1280 0.0404 32 62 1248 1547 1363 0.0401 33 64 1322 1602 1467 0.0400 34 66 1349 1670 1505 0.0395 35 68 1435 1750 1565 0.0390	30	58	1160	1425	1247	0.0407
32 62 1248 1547 1363 0.0401 33 64 1322 1602 1467 0.0400 34 66 1349 1670 1505 0.0395 35 68 1435 1750 1565 0.0290	31	60	1226	1486	1280	0.0404
33 64 1322 1602 1467 0.0400 34 66 1349 1670 1505 0.0395 35 68 1435 1750 1565 0.0395	32	62	1248	1547	1363	0.0401
34 66 1349 1670 1505 0.0395 35 68 1435 1750 1565 0.0395	33	64	1322	1602	1467	0.0400
35 68 1435 1750 1565 0.0280	34	66	1349	1670 —	-1505	0.0395
55 1750 1750 1505 0.0389	35	68	1435	1750	1565	0.0389
36 70 1446 1860 1580 0.0376	36	70	1446	- 1860	1580	0.0376
37 72 1520 1915 1610 0.0376	37	72	1520	1915	1610	0.0376
38 74 1537 1968 1625 0.0376	38	74	1537	1968	1625	0.0376
39 76 1542 2015 1646 0.0377	39	76	1542	2015	1646	0.0377
40 76 1551 2058 1660 0.0369	40	76	1551	2058	1660	0.0369
41 74 1675 2129 1735 0.0348	41	74	1675	2129	1735	0.0348
42 74 1738 2175 1817 0.0340	42	74	1738	2175	1817	0.0340
43 70 1795 2237 1884 0.0313	43	70	1795	2237	1884	0.0313

TABEL BEBAN-LENDUTAN HASIL UJI PROFIL CASTELLA L_b 1500 mm

NO	BEBAN	DIAL 1	DIAL 2	DIAL 3	Ρ/Δ
	(kN)	(mm)	(mm)	(mm)	(kN/mm)
1	0	0	0	0	0
2	2	82	60	49	0.0333
3	4	84	90	76	0.0444
4	6	106	140	120	0.0429
5	8	181	188	167	0.0426
6	10	194	231	210	0.0433
7	12	280	281	253	0.0427
8	14	287	326	297	0.0429
9	16	306	370	339	0.0432
10	18	381	424	390	0.0425
11	20	396	464	425	0.0431
12	22	476	519	476	0.0424
13	24	489	555	512	0.0432
14	26	579	615	566	0.0423
15	28	585	660	608	0.0424
16	30	609	714	660	0.0420
17	32	681	758	701	0.0422
18	34	700	813	751	0.0418
19	36	778	862	790	0.0418
20	38	799	922	853	0.0412
21	40	882	976	906	0.0410
22	42	894	1023	950	0.0411
23	44	976	1085	1009	0.0406
24	46	1000	1147	1067	0.0401
25	48	1081	1197	1115	0.0401
26	50	1093	1238	1154	0.0404
27	52	1118	1282	1194	0.0406
28	54	1191	1347	1254	0.0401
29	56	1271	1396	1301	0.0401
30	58	1288	1448	1348	0.0401
31	60	1313	1498	1394	0.0401
32	62	1388	1561	1448	0.0397
33	64	1414	1615	1495	0.0396
34	66	1484	1664	1537	0.0397
35	68	1506	1720	1592	0.0395
36	70	1588	1795	1651	0.0390
37	72	1684	1890	1739	0.0381
38	74	1900	2172	1981	0.0341
39	74	2118	2509	2240	0.0295
40	62	2188	2518	2228	0.0246
41	62	2204	2547	2246	0.0243

TABEL BEBAN-LENDUTAN HASIL UJI PROFIL CASTELLA L_b 2000 mm

	BEBAN	DIAL 1	DIAL 2	DIAL 3	Ρ/Δ
NO	(kN)	(mm)	(mm)	(mm)	(kN/mm)
1	0	0	0	0	0
2	2	82	44	36	0.0455
3	4	90	85	72	0.0471
4	6	177	135	118	0.0444
5	8	192	199	172	0.0402
6	10	281	252	225	0.0397
7	12	297	306	274	0.0392
8	14	379	353	317	0.0397
9	16	393	406	366	0.0394
10	18	472	454	410	0.0396
11	20	488	507	456	0.0394
12	22	510	556	501	0.0396
13	24	582	601	544	0.0399
14	26	603	652	597	0.0399
15	-28	679	700	637	0.0400
16	30	691	734	669	0.0409
17	32	778	790	720	0.0405
18	34	790	836	759	0.0407
19	36	816	888	805	0.0405
20	38	889	943	854	0.0403
21	40	925	1001	910	0.0400
22	42	988	1050	951	0.0400
23	44	1007	1100	1000	0.0400
24	46	1084	1154	1051	0.0399
25	48	1109	1208	1102	0.0397
26	50	1181	1258	1143	0.0397
27	52	1201	1312	1192	0.0396
28	54	1282	1365	1241	0.0396
29	56	1296	1407	1280	0.0398
30	58	1375	1455	1320	0.0399
31	60	1389	1500	1360	0.0400
32	62	1413	1548	1405	0.0401
33	64	1488	1607	1455	0.0398
34	66	1583	1688	1523	0.0391
35	68	1624	1760	1582	0.0386
36	70	1696	1826	1637	0.0383
37	70	1781	1926	1682	0.0363
38	64	1799	1954	1698	0.0328
39	62	1878	1981	1715	0.0313

TABEL BEBAN-LENDUTAN HASIL UJI PROFIL CASTELLA L_b 2500 mm

	RERAN	DIAL 1	DIAL 2	DIAL 3	Ρ/Δ
NO	(kN)	(mm)	(mm)	(mm)	(kN/mm)
1	0	0	0	0	0
2	2	40	47	44	0.0426
3	4	73	89	85	0.0449
4	6	170	213	194	0.0282
5	8	200	362	315	0.0221
6	10	420	518	486	0.0193
7	12	525	630	584	0.0190
8	14	623	747	687	0.0187
9	16	739	885	797	0.0181
10	18	868	1035	914	0.0174
11	20	948	1125	999	0.0178
12	22	1059	1250	1106	0.0176
13	24	1143	1346	1196	0.0178
14	26	1253	1471	1201	0.0177
15	28	1337	1565	1392	0.0179
16	30	1442	1688	1495	0.0178
17	32	1549	1812	1598	0.0177
18	34	1648	1923	1695	0.0177
19	36	1762	2056	1801	0.0175
20	38	1919	2239	1987	0.0170
21	40	2006	2340	2082	0.0171
22	42	2128	2484	2194	0.0169
23	44	2367	2645	2376	0.0166
24	46	2417	2827	2491	0.0163
25	48	2559	2998	2617	0.0160
26	50	2758	3228	2810	0.0155
27	52	2930	3427	2985	0.0152
28	54	3185	3730	3205	0.0145
29	56	3430	4016	3482	0.0139
30	58	3746	4380	3786	0.0132
31	60	4046	4727	4092	0.0127
32	62	4696	5484	4700	0.0113
33	62.5	5450	6324	5396	0.0099
34	62.5	5725	6620	5772	0.0094
35	62.5	5912	- 6828	5890	0.0092

TABEL BEBAN-LENDUTAN HASIL UJI PROFIL-I DENGAN L_b 960 mm

Kurva beban-deformasi Profil Castella dan Profil-I

PERHITUNGAN TEGANGAN TEKAN PADA SAYAP AKIBAT BEBAN TERPUSAT PROFIL CASTELLA

Profil Castella dengan L_b 960 mm

Diketahui :

$$F_{cr} = \frac{\pi^2 E}{12(1-\mu^2)} \frac{k}{\left(\frac{b}{T}\right)^2}$$

$$k = \frac{12(1-\mu^2)\left(\frac{b}{T}\right)^2 F_{cr}}{\pi^2 E} = \frac{12(1-0.3^2)\left(\frac{37.5}{6}\right)^2 150}{\pi^2 2 \times 10^5} = 0.032$$

Profil Castella dengan L_b 980 mm

Diketahui :

Profil Castella dengan L_b 1000 mm

Diketahui :

 $R = \frac{1}{2}P = 39000 N$

N = 50 mm

 $t_w = 5 \text{ mm}$

$$F_{cr} = \frac{\pi^2 E}{12(1-\mu^2)} \frac{k}{\left(\frac{b}{T}\right)^2}$$

$$k = \frac{12(1-\mu^2)\left(\frac{b}{T}\right)^2 F_{cr}}{\pi^2 E} = \frac{12(1-0.3^2)\left(\frac{37.5}{6}\right)^2 130}{\pi^2 2 \times 10^5} = 0.028$$

Profil Castella dengan L_b 1500 mm

Diketahui:

$$R = \frac{1}{2}P = 38000 \text{ N}$$

$$N = 50 \text{ mm}$$

$$t_w = 5 \text{ mm}$$

$$k = 5 \text{ mm}$$

$$b = \frac{1}{2}P = 75/2 = 37.5 \text{ mm}$$

$$T = t_r = 6 \text{ mm}$$

$$F_{cr} = \frac{R}{t_w(N+2k)}$$

$$F_{cr} = \frac{38000}{5(50 + (2 \times 5))} = 126.667 Mpa$$
Koefisien tekuk plat sayap :
$$F_{cr} = \frac{\pi^2 E}{12(1 - \mu^2)} \frac{k}{(\frac{b}{T})^2}$$

$$k = \frac{12(1 - \mu^2)(\frac{b}{T})^2 F_{cr}}{\pi^2 E} = \frac{12(1 - 0.3^2)(\frac{37.5}{6})^2 126.667}{\pi^2 2 \times 10^5} = 0.027$$

Profil Castella dengan L_b 2500 mm

Diketahui:

 $R = \frac{1}{2}P = 35000 N$ N = 50 mm $t_w = 5 \text{ mm}$ k = 5 mm= 75/2 = 37.5 mm $= b_{f}/2$ b ZDOZM $T = t_f = 6 mm$ $F_{cr} = \frac{R}{t_w \left(N + 2k \right)}$ $F_{cr} = \frac{35000}{5(50 + (2 \times 5))}$ =116.667*Mpa* Koefisien tekuk plat sayap : $F_{cr} = \frac{\pi^2 E}{12(1-\mu)}$ (b) $k = \frac{12\left(1 - \mu^2 \left(\frac{b}{T}\right)^2 F_{cr}}{\pi^2 E} = \frac{12\left(1 - 0.3^2 \left(\frac{37.5}{6}\right)^2 116.667\right)}{\pi^2 2 \times 10^5} = 0.025$

HUBUNGAN MOMEN-KELENGKUNGAN HASIL UJI

BEBAN (kN)	MOMEN (kN/m)	Fcr (Mpa)	REGANGAN	KELENGKUNGAN (1/m)
0	0	0	0	0
2	1.2833	0.0167	8.3502E-08	1.2102E-09
4	2.5667	0.0334	1.6700E-07	2.4203E-09
6	3.8500	0.0501	2.5051E-07	3.6305E-09
8	5.1333	0.0668	3.3401E-07	4.8407E-09
10	6.4167	0.0835	4.1751E-07	6.0509E-09
12	7.7000	0.1002	5.0101E-07	7.2610E-09
14	8.9833	0.1169	5.8451E-07	8.4712E-09
16	10.2667	0.1336	6.6802E-07	9.6814E-09
18	11.5500	0.1503	7.5152E-07	1.0892E-08
20	12.8333	0.1670	8.3502E-07	1.2102E-08
22	14.1167	0.1837	9.1852E-07	1.3312E-08
24	15.4000	0.2004	1.0020E-06	1.4522E-08
26	16.6833	0.2171	1.0855E-06	1.5732E-08
28	17.9667	0.2338	1.1690E-06	1.6942E-08
30	19.2500	0.2505	1.2525E-06	1.8153E-08
32	20.5333	0.2672	1.3360E-06	1.9363E-08
34	21.8167	0.2839	1.4195E-06	2.0573E-08
36	23.1000	0.3006	1.5030E-06	2.1783E-08
38	24.3833	0.3173	1.5865E-06	2.2993E-08
40	25.6667	0.3340	1.6700E-06	2.4203E-08
42	26.9500	0.3507	1.7535E-06	2.5414E-08
44	28.2333	0.3674	1.8370E-06	2.6624E-08
46	29.5167	0.3841	1.9205E-06	2.7834E-08
48	30.8000	0.4008	2.0040E-06	2.9044E-08
50	32.0833	0.4175	2.0876E-06	3.0254E-08
52	33.3667	0.4342	2.1711E-06	3.1465E-08
54	34.6500	0.4509	2.2546E-06	3.2675E-08
56	35.9333	0.4676	2.3381E-06	3.3885E-08
58	37.2167	0.4843	2.4216E-06	3.5095E-08
60	38.5000	0.5010	2.5051E-06	3.6305E-08
62	39.7833	0.5177	2.5886E-06	3.7515E-08
62.5	40.1042	0.5219	2.6094E-06	3.7818E-08
62.5	40.1042	0.5219	2.6094E-06	3.7818E-08
62.5	40.1042	0.5219	2.6094E-06	3.7818E-08

Tabel Nilai Kelengkungan Profil-I dengan L_b 960 mm

Dari hasil perhitungan dapat ditunjukkan dengan grafik nilai kelengkungan yang terjadi pada profil-*I*, yaitu:

Dari pengujian profil *Castella* dengan variasi didapat nilai kelengkungan sebagai berikut:

BEBAN (kN)	MOMEN (kN/m)	Fcr (Mpa)	REGANGAN	KELENGKUNGAN (1/m)
0	0	0	0	0
2	1.2833	0.0095	4.7414E-08	4.1591E-10
4	2.5667	0.0190	9.4828E-08	8.3182E-10
6	3.8500	0.0284	1.4224E-07	1.2477E-09
8	5.1333	0.0379	1.8966E-07	1.6636E-09
10	6.4167	0.0474	2.3707E-07	2.0796E-09
12	7.7000	0.0569	2.8448E-07	2.4955E-09
14	8.9833	0.0664	3.3190E-07	2.9114E-09
16	10.2667	0.0759	3.7931E-07	3.3273E-09
18	11.5500	0.0853	4.2673E-07	3.7432E-09
20	12.8333	0.0948	4.7414E-07	4.1591E-09
22	14.1167	0.1043	5.2155E-07	4.5750E-09
24	15.4000	0.1138	5.6897E-07	4.9909E-09
26	16.6833	0.1233	6.1638E-07	5.4068E-09
28	17.9667	0.1328	6.6379E-07	5.8228E-09
30	19.2500	0.1422	7.1121E-07	6.2387E-09
32	20.5333	0.1517	7.5862E-07	6.6546E-09
34	21.8167	0.1612	8.0604E-07	7.0705E-09
36	23.1000	0.1707	8.5345E-07	7.4864E-09
38	24.3833	0.1802	9.0086E-07	7.9023E-09
40	25.6667	0.1897	9.4828E-07	8.3182E-09
42	26.9500	0.1991	9.9569E-07	8.7341E-09
44	28.2333	0.2086	1.0431E-06	9.1500E-09
46	29.5167	0.2181	1.0905E-06	9.5660E-09
48	30.8000	0.2276	1.1379E-06	9.9819E-09
50	32.0833	0.2371	1.1853E-06	1.0398E-08
52	33.3667	0.2466	1.2328E-06	1.0814E-08
54	34.6500	0.2560	1.2802E-06	1.1230E-08
56	35.9333	0.2655	1.3276E-06	1.1646E-08
58	37.2167	0.2750	1.3750E-06	1.2061E-08
60	38.5000	0.2845	1.4224E-06	1.2477E-08
62	39.7833	0.2940	1.4698E-06	1.2893E-08
64	41.0667	0.3034	1.5172E-06	1.3309E-08
66	42.3500	0.3129	1.5647E-06	1.3725E-08
68	43.6333	0.3224	1.6121E-06	1.4141E-08
70	44.9167	0.3319	1.6595E-06	1.4557E-08
72	46.2000	0.3414	1.7069E-06	1.4973E-08
74	47.4833	0.3509	1.7543E-06	1.5389E-08
76	48.7667	0.3603	1.8017E-06	1.5805E-08

Tabel Nilai Kelengkungan Castella L_b 960 mm

	,	······································	
50.0500	0.3698	1.8491E-06	1.6221E-08
51.3333	0.3793	1.8966E-06	1.6636E-08
52.6167	0.3888	1.9440E-06	1.7052E-08
53.9000	0.3983	1.9914E-06	1.7468E-08
55.1833	0.4078	2.0388E-06	1.7884E-08
56.4667	0.4172	2.0862E-06	1.8300E-08
57.7500	0.4267	2.1336E-06	1.8716E-08
57.7500	0.4267	2.1336E-06	1.8716E-08
53.2583	0.3935	1.9677E-06	1.7260E-08
53.2583	0.3935	1.9677E-06	1.7260E-08
51.3333	0.3793	1.8966E-06	1.6636E-08
	50.0500 51.3333 52.6167 53.9000 55.1833 56.4667 57.7500 57.7500 53.2583 53.2583 51.3333	50.0500 0.3698 51.3333 0.3793 52.6167 0.3888 53.9000 0.3983 55.1833 0.4078 56.4667 0.4172 57.7500 0.4267 57.7500 0.4267 53.2583 0.3935 53.2583 0.3935 51.3333 0.3793	50.05000.36981.8491E-0651.33330.37931.8966E-0652.61670.38881.9440E-0653.90000.39831.9914E-0655.18330.40782.0388E-0656.46670.41722.0862E-0657.75000.42672.1336E-0657.75000.42672.1336E-0653.25830.39351.9677E-0653.25830.39351.9677E-0651.33330.37931.8966E-06

Lanjutan Tabel Nilai Kelengkungan Castella L_b 960 mm

Dari hasil perhitungan dapat ditunjukkan dengan grafik nilai kelengkungan yang terjadi pada profil *Castella* dengan L_b 960 mm, yaitu:

Kurva momen-kelengkungan profil Castella L_b 960 mm

BEBAN	N MOMEN			KELENCKUNCAN
(kN)	(kN/m)	Fer (Mpa)	REGANGAN	ALLENGKUNGAN (1/m)
0	0	0	0	0
2	1.2833	0.0095	4.7414E-08	4 1591F-10
4	2.5667	0.0190	9.4828E-08	8 3182F-10
6	3.8500	0.0284	1.4224E-07	1 2477F-09
8	5.1333	0.0379	1.8966E-07	1.2477E-09
10	6.4167	0.0474	2.3707E-07	2 0796F-09
12	7.7000	0.0569	2.8448E-07	2.0770E-09
14	8.9833	0.0664	3.3190E-07	2.4755E-09
16	10.2667	0.0759	3.7931E-07	3 3273E-09
18	11.5500	0.0853	4.2673E-07	3 7432E 00
20	12.8333	0.0948	4.7414E-07	4 1591E 09
22	14.1167	0.1043	5.2155E-07	4.1391E-09
24	15.4000	0.1138	5.6897E-07	4.9730E-09
26	16.6833	0.1233	6 1638E-07	5.4068E.00
28	17.9667	0,1328	6.6379E-07	5.4008E-09
30	19.2500	0.1422	7.1121E-07	6.22875.00
32	20.5333	0.1517	7.5862E.07	0.238/E-09
34	21.8167	0.1612	8.0604E.07	0.0346E-09
36	23.1000	0.1707	8.0004L-07	7.0705E-09
38	24.3833	0.1802	0.0345E-07	7.4864E-09
40	25.6667	0.1897	9.0080E-07	7.9023E-09
42	26.9500	0.1991	9.4020E-07	8.3182E-09
44	28.2333	0.2086	9.9309E-07	8./341E-09
46	29.5167	0.2080	1.0431E-06	9.1500E-09
48	30.8000	0.2181	1.0903E-06	9.5660E-09
50	32.0833	0.2270	1.13/9E-00	9.9819E-09
52	33.3667	0.2371	1.1033E-00	1.0398E-08
54	34.6500	0.2400	1.2320E-00	1.0814E-08
56	35,9333	0.2555	1.2802E-06	1.1230E-08
58	37.2167	0.2055	1.3270E-06	1.1646E-08
60	38,5000	0.2750	1.3730E-06	1.2061E-08
62	39.7833	0.2043	1.4224E-00	<u>1.2477E-08</u>
64	41.0667	0.3034	1.4098E-06	1.2893E-08
66	42.3500	0.3120	1.51/2E-06	1.3309E-08
68	43 6333	0.3224	1.304/E-06	1.3725E-08
70	44 9167	0.3224	1.6121E-06	1.4141E-08
72	46 2000	0.3319	1.6595E-06	1.4557E-08
74	47 4833	0.3414	1.7069E-06	1.4973E-08
76	48 7667	0.3509	1./543E-06	1.5389E-08
78	50.0500	0.3003	1.8017E-06	1.5805E-08
80	51 3332	0.3098	1.8491E-06	1.6221E-08
82	57 6167	0.3793	1.8966E-06	1.6636E-08
84	53 0000	0.3888	1.9440E-06	1.7052E-08
80	51 2222	0.3983	1.9914E-06	1.7468E-08
00	51.5555	0.3793	1.8966E-06	1.6636E-08

Tabel Nilai Kelengkungan Castella L_b 980 mm

80	51,3333	0.3793	1.8966E-06	1.6636E-08
80	51.3333	0.3793	1.8966E-06	1.6636E-08

Lanjutan Tabel Nilai Kelengkungan Castella L_b 980 mm

Dari hasil perhitungan dapat ditunjukkan dengan grafik nilai kelengkungan yang terjadi pada profil *Castella* dengan L_b 980 mm, yaitu:

Kurva momen-kelengkungan profil Castella Lb 980 mm

BEBAN MOMEN (kN) (kN/m)		Fcr (Mpa)	REGANGAN	KELENGKUNGAN (1/m)
0	0	0	0	0
2	1.2833	0.0095	4.7414E-08	4.1591E-10
4	2.5667	0.0190	9.4828E-08	8.3182E-10
6	3.8500	0.0284	1.4224E-07	1.2477E-09
8	5.1333	0.0379	1.8966E-07	1.6636E-09
10	6.4167	0.0474	2.3707E-07	2.0796E-09
12	7.7000	0.0569	2.8448E-07	2.4955E-09
14	8.9833	0.0664	3.3190E-07	2.9114E-09
16	10.2667	0.0759	3.7931E-07	3.3273E-09
18	11.5500	0.0853	4.2673E-07	3.7432E-09
20	12.8333	0.0948	4.7414E-07	4.1591E-09
22	14.1167	0.1043	5.2155E-07	4.5750E-09
24	15.4000	0.1138	5.6897E-07	4.9909E-09
26	16.6833	0.1233	6.1638E-07	5.4068E-09
28	17.9667	0.1328	6.6379E-07	5.8228E-09
30	19.2500	0.1422	7.1121E-07	6.2387E-09
32	20.5333	0.1517	7.5862E-07	6.6546E-09
34	21.8167	0.1612	8.0604E-07	7.0705E-09
36	23.1000	0.1707	8.5345E-07	7.4864E-09
38	24.3833	0.1802	9.0086E-07	7.9023E-09
40	25.6667	0.1897	9.4828E-07	8.3182E-09
42	26.9500	0.1991	9.9569E-07	8.7341E-09
44	28.2333	0.2086	1.0431E-06	9.1500E-09
46	29.5167	0.2181	1.0905E-06	9.5660E-09
48	30.8000	0.2276	1.1379E-06	9.9819E-09
50	32.0833	0.2371	1.1853E-06	1.0398E-08
52	33.3667	0.2466	1.2328E-06	1.0814E-08
54	34.6500	0.2560	1.2802E-06	1.1230E-08
56	35.9333	0.2655	1.3276E-06	1.1646E-08
58	37.2167	0.2750	1.3750E-06	1.2061E-08
60	38.5000	0.2845	1.4224E-06	1.2477E-08
62	39.7833	0.2940	1.4698E-06	1.2893E-08
64	41.0667	0.3034	1.5172E-06	1.3309E-08
66	42.3500	0.3129	1.5647E-06	1.3725E-08
68	43.6333	0.3224	1.6121E-06	1.4141E-08
70	44.9167	0.3319	1.6595E-06	1.4557E-08
72	46.2000	0.3414	1.7069E-06	1.4973E-08
74	47.4833	0.3509	1.7543E-06	1.5389E-08
76	48,7667	0.3603	1.8017E-06	1.5805E-08
78	50.0500	0.3698	1.8491E-06	1.6221E-08
78	50,0500	0.3698	1.8491E-06	1.6221E-08
75	48,1250	0.3556	1.7780E-06	1.5597E-08
75	48,1250	0.3556	1.7780E-06	1.5597E-08
75	48.1250	0.3556	1.7780E-06	1.5597E-08

Tabel Nilai Kelengkungan Castella L_b 1000 mm

Dari hasil perhitungan dapat ditunjukkan dengan grafik nilai kelengkungan yang terjadi pada profil Castella dengan L_b 1000 mm, yaitu:

BEBAN	MOMEN	Fcr (Mpa)	REGANGAN	KELENGKUNGAN (1/m)
(kN)			0	0
0	1 2922	0.0095	4.741E-08	4.1591E-10
2	1.2833	0.0190	9.483E-08	8.3182E-10
4	2.5007	0.0790	1.422E-07	1.2477E-09
6	3.8500	0.0234	1 897E-07	1.6636E-09
8	5.1333	0.0377	2 371E-07	2.0796E-09
10	6.4167	0.0474	2.845E-07	2.4955E-09
12	7.7000	0.0509	3 319E-07	2.9114E-09
14	8.9833	0.0004	3 793E-07	3.3273E-09
16	10.2667	0.0739	4.267E-07	3.7432E-09
18	11.5500	0.0833	4.201E-07	4.1591E-09
20	12.8333	0.0948	5.216E-07	4.5750E-09
22	14.1167	0.1043	5.690E-07	4.9909E-09
24	15.4000	0.1138	6.164E-07	5.4068E-09
26	16.6833	0.1233	6.638E-07	5.8228E-09
28	17.9667	0.1328	7.1125.07	6.2387E-09
30	19.2500	0.1422	7.1120-07	6 6546E-09
32	20.5333	0.1517	7.360E-07	7.0705E-09
34	21.8167	0.1612	8.000E-07	7 4864E-09
36	23.1000	0.1707	8.555E-07	7.9023E-09
38	24.3833	0.1802	9.009E-07	8 3182E-09
40	25.6667	0.1897	9.483E-07	8 7341E-09
42	26.9500	0.1991	9.957E-07	9 1500E-09
44	28.2333	0.2086	1.043E-00	9 5660E-09
46	29.5167	0.2181	1.091E-06	9.5000E 09
48	30.8000	0.2276	1.138E-00	1.0398F-08
50	32.0833	0.2371	1.185E-06	1.0914E 08
52	33.3667	0.2466	1.233E-06	1.0814E-08
54	34.6500	0.2560	1.280E-06	1.1230E-08
56	35.9333	0.2655	1.328E-06	1.1040E-08
58	37.2167	0.2750	1.375E-06	1.2001E-08
60	38.5000	0.2845	1.422E-06	1.247712-08
62	39.7833	0.2940	1.470E-06	1.20952-08
64	41.0667	0.3034	1.517E-06	1.3309E-08
66	42.3500	0.3129	1.565E-06	1.3/25E-08
68	43.6333	0.3224	1.612E-06	1.4141E-V0
70	44.9167	0.3319	1.659E-06	1.455/E-08
72	46.2000	0.3414	1.707E-06	1.49/3E-U8
74	47.4833	0.3509	1.754E-06	1.5389E-08
76	48.7667	0.3603	1.802E-06	1.5805E-08
76	48.7667	0.3603	1.802E-06	1.5805E-08
70	47.4833	0.3509	1.754E-06	1.5389E-08
74	47 4833	0.3509	1.754E-06	1.5389E-08
70	44 9167	0.3319	1.659E-06	1.4557E-08

Tabol Nilai Kelengkuligan Castena D _p 1000 mm	Tabel	Nilai	Kelengkungan	Castella	Lb	1500	mm
--	-------	-------	--------------	----------	----	------	----

Dari hasil perhitungan dapat ditunjukkan dengan grafik nilai kelengkungan yang terjadi pada profil *Castella* dengan L_b 1500 mm, yaitu:

BEBAN MOMEN (kN) (kN/m)		Fcr (Mpa)	REGANGAN	KELENGKUNGAN (1/m) 0 4.1591E-10
	0	0	0	0
2	1 2833	0.0095	4.7414E-08	4.1591E-10
	2 5667	0.0190	9.4828E-08	8.3182E-10
6	3 8500	0.0284	1.4224E-07	1.2477E-09
	5 1333	0.0379	1.8966E-07	1.6636E-09
10	6 4167	0.0474	2.3707E-07	2.0796E-09
10	7 7000	0.0569	2.8448E-07	2.4955E-09
12	8 9833	0.0664	3.3190E-07	2.9114E-09
16	10 2667	0.0759	3.7931E-07	3.3273E-09
18	11 5500	0.0853	4.2673E-07	3.7432E-09
20	12 8333	0.0948	4.7414E-07	4.1591E-09
20	14.1167	0.1043	5.2155E-07	4.5750E-09
24	15,4000	0.1138	5.6897E-07	4.9909E-09
24	16 6833	0.1233	6.1638E-07	5.4068E-09
20	17.9667	0.1328	6.6379E-07	5.8228E-09
30	19 2500	0.1422	7.1121E-07	6.2387E-09
30	20 5333	0.1517	7.5862E-07	6.6546E-09
34	21.8167	0.1612	8.0604E-07	7.0705E-09
36	23 1000	0.1707	8.5345E-07	7.4864E-09
38	24 3833	0.1802	9.0086E-07	7.9023E-09
40	25 6667	0.1897	9.4828E-07	8.3182E-09
40	26,9500	0.1991	9.9569E-07	8.7341E-09
42	28 2333	0.2086	1.0431E-06	9.1500E-09
46	29 5167	0.2181	1.0905E-06	9.5660E-09
40	30,8000	0.2276	1.1379E-06	9.9819E-09
50	32,0833	0.2371	1.1853E-06	1.0398E-08
52	33 3667	0.2466	1.2328E-06	1.0814E-08
54	34 6500	0.2560	1.2802E-06	1.1230E-08
56	35.9333	0.2655	1.3276E-06	1.1646E-08
58	37.2167	0.2750	1.3750E-06	1.2061E-08
60	38,5000	0.2845	1.4224E-06	1.2477E-08
62	39,7833	0.2940	1.4698E-06	1.2893E-08
64	41.0667	0.3034	1.5172E-06	1.3309E-08
66	42.3500	0.3129	1.5647E-06	1.3725E-08
68	43,6333	0.3224	1.6121E-06	1.4141E-08
70	44,9167	0.3319	1.6595E-06	1.4557E-08
72	46.2000	0.3414	1.7069E-06	1.4973E-08
74	47.4833	0.3509	1.7543E-06	1.5389E-08
74	47.4833	0.3509	1.7543E-06	1.5389E-08
62	39.7833	0.2940	1.4698E-06	1.2893E-08
62	39.7833	0.2940	1.4698E-06	1.2893E-08

Tabel Nilai Kelengkungan Castella L_b 2000 mm

Dari hasil perhitungan dapat ditunjukkan dengan grafik nilai kelengkungan yang terjadi pada profil *Castella* dengan L_b 2000 mm, yaitu:

BEBAN (kN)	MOMEN (kN/m)	Fcr (Mpa)	REGANGAN	KELENGKUNGAN (1/m)
0	0	0	0	0
2	1.2833	0.0095	4.7414E-08	4.1591E-10
4	2.5667	0.0190	9.4828E-08	8.3182E-10
6	3.8500	0.0284	1.4224E-07	1.2477E-09
8	5.1333	0.0379	1.8966E-07	1.6636E-09
10	6.4167	0.0474	2.3707E-07	2.0796E-09
12	7.7000	0.0569	2.8448E-07	2.4955E-09
14	8.9833	0.0664	3.3190E-07	2.9114E-09
16	10.2667	0.0759	3.7931E-07	3.3273E-09
18	11.5500	0.0853	4.2673E-07	3.7432E-09
20	12.8333	0.0948	4.7414E-07	4.1591E-09
22	14.1167	0.1043	5.2155E-07	4.5750E-09
24	15.4000	0.1138	5.6897E-07	4.9909E-09
26	16.6833	0.1233	6.1638E-07	5.4068E-09
28	17.9667	0.1328	6.6379E-07	5.8228E-09
30	19.2500	0.1422	7.1121E-07	6.2387E-09
32	20.5333	0.1517	7.5862E-07	6.6546E-09
34	21.8167	0.1612	8.0604E-07	7.0705E-09
36	23.1000	0.1707	8.5345E-07	7.4864E-09
38	24.3833	0.1802	9.0086E-07	7.9023E-09
40	25.6667	0.1897	9.4828E-07	8.3182E-09
42	26.9500	0.1991	9.9569E-07	8.7341E-09
44	28.2333	0.2086	1.0431E-06	9.1500E-09
46	29.5167	0.2181	1.0905E-06	9.5660E-09
48	30.8000	0.2276	1.1379E-06	9.9819E-09
50	32.0833	0.2371	1.1853E-06	1.0398E-08
52	33.3667	0.2466	1.2328E-06	1.0814E-08
54	34.6500	0.2560	1.2802E-06	1.1230E-08
56	35.9333	0.2655	1.3276E-06	1.1646E-08
58	37.2167	0.2750	1.3750E-06	1.2061E-08
60	38.5000	0.2845	1.4224E-06	1.2477E-08
62	39.7833	0.2940	1.4698E-06	1.2893E-08
64	41.0667	0.3034	1.5172E-06	1.3309E-08
66	42.3500	0.3129	1.5647E-06	1.3725E-08
68	43.6333	0.3224	1.6121E-06	1.4141E-08
70	44.9167	0.3319	1.6595E-06	1.4557E-08
70	44.9167	0.3319	1.6595E-06	1.4557E-08
64	41.0667	0.3034	1.5172E-06	1.3309E-08
62	39.7833	0.2940	1.4698E-06	1.2893E-08

Tabel Nilai Kelengkungan Castella L_b 2500 mm

Dari hasil perhitungan dapat ditunjukkan dengan grafik nilai kelengkungan yang terjadi pada profil Castella dengan L_b 2500 mm, yaitu:

PERHITUNGAN LENDUTAN TEORITIS

1. Profil-L

P = 37.424 kN = 37424 N

 $E = 2 \times 10^5 MPa.$

 $I_x = 5763330 \text{ mm}^4$.

 $EI = 2x10^5 x5763330 = 1.153x10^{12} \text{ N/mm}^2.$

L = 3850 mm

$$P = 37.424 \text{ kN} = 37424 \text{ N}$$

$$E = 2 \times 10^{5} \text{ MPa.}$$

$$I_{x} = 5763330 \text{ mm}^{4}.$$

$$EI = 2x10^{5} \times 5763330 = 1.153 \times 10^{12} \text{ N/mm}^{2}.$$

$$L = 3850 \text{ mm}$$

$$\Delta = \frac{23 \times P \times L^{3}}{1296 \times EI} = \frac{23x37424x3850^{3}}{1296x1.153x10^{12}} = 32.872 \text{ mm}$$

2. Balok Castella

P = 60.16 kN = 60160 N

 $E = 2 \times 10^5 \text{ MPa.}$

 $I_x = 14831278.77 \text{ mm}^4$.

$$EI = 2x10^5 x14831278.77 = 2.966x10^{12} \text{ N/mm}^2.$$

L = 3850 mm

$$\Delta = \frac{23 \times P \times L^3}{1296 \times EI} = \frac{23x60160x3850^3}{1296x2.966x10^{12}} = 20.542 \text{ mm}$$
DOKUMENTASI HASIL PENELITIAN

Gambar 10.1 Foto sample Castella sebelum pengujian

Gambar 10.2 Foto sample Castella dengan L_b 1500 mm setelah pengujian

Gambar 10.3 Foto sample Castella dengan L_b 2000 mm setelah pengujian

Gambar 10.4 Foto sample Castella dengan L_b 2500 mm setelah pengujian

Gambar 10.5 Foto sample Castella dengan L_b 960 mm setelah pengujian

Gambar 10.6 Foto sample Castella dengan L_b 980 mm setelah pengujian

Gambar 10.7 Foto sample Castella dengan Lb 1000 mm setelah pengujian

Gambar 10.8 Foto sample profil-I dengan Lb 960 mm sebelum pengujian

Gambar 10.9 Foto sample profil-l dengan L_b 960 mm setelah pengujian