Lembar Pengesahan

TUGAS AKHIR

ANALISIS PONDASI DANGKAL PADA TEPI ATAS TANAH LERENG

Disusun oleh:

Nama: M.SIRRIL WAFANo. Mhs.: 95310156NIRM: 950051013114120154

Nama: EL GHARIF H.ANo. Mhs.: 93310074NIRM: 930051013114120073

Telah diperiksa dan disetujui oleh :

Tanggal : 101 Tanggal

LEMBAR PERSEMBAHAN

Tugas akhır ını kamı persembahkan untuk :

Orang tuaku sebagai wujud bhakti dari penulis

Kakak-kakakku

Teman-teman Cempaka 15, Yayan, Idhoet, Ipunk Smolik, Adı Rimba, Erlan

Maldını, Mojes, Didiet, Jawak, Teddy

Para Alumni Cempaka 15, Agung, Rafit, Donny, Bello, Memed

Rekan-rekan kerja, Wawan, Penjol

Teman-teman Malaka, Anto, Hafıdz, Mıla, Aam, Richoe, Babeh, Jeplits

Dan semua teman yang tidak bisa disebutkan satu persatu.

Terima Kasih atas semua bantuan dan dukungannya, baik fisik maupun non fisik, yang tiada terhingga artinya.

		2.5.3	Faktor-faktor Penyebab Terjadinya Longsoran	.23
		2.5.4	Metode Analisis Stabilitas Lereng	24
	2.6	5. Stabi	litas Lereng dengan Tinggi Tebatas	33
	2.7	. MRS	Slope	.36
		2.7.1	. Input Data	.36
		2.7.2	Ouput Data	.37
	2.8	. Lapis	an Geotekstil	39
		2.8.1	Pengertian dan Jenis Geotekstil	.39
		2.8.2	Fungsi Geotekstil	.40
BAB III	I MI	ETOD	E PENELITIAN	
	3.1	Tahaj	o Persiapan	.42
	3.2	Tahaj	o Analisis	.42
	3.3	Pemb	ahasan dan Kesimpulan	. 42
BAB IV	AN	IALISI	IS DAN PEMBAHASAN	
	4.1	Data	Perencanaan	44
	4.2	Anali	sis Stabilitas Lereng dengan Metode Irisan (Fellinius)	.44
		4.2.1	Sudut Kemiringan Lereng 15°	.44
		4.2.2	Sudut Kemiringan Lereng 30°	46
		4.2.3	Sudut Kemiringan Lereng 45°	48
		4.2.4	Sudut Kemiringan Lereng 60°	50
	4.3	Analis	sis Pondasi Dangkal	52
		4.3.1	Menghitung Beban Air	52
		4.3.2	Menghitung Dimensi Pondasi	53

e

4.4 Analisis Stabilitas Lereng dengan Diberi Beban dengan Metode
Irisan (Fellinius)55
4.4.1 Sudut Kemiringan Lereng 15°
4.4.2 Sudut Kemiringan Lereng 30°
4.4.3 Sudut Kemiringan Lereng 45°
4.4.4 Sudut Kemiringan Lereng 60°60
4.5 Desain Perkuatan Lereng dengan Geotekstil
4.5.1 Tegangan Lateral Akibat Beban Titik
. 4.5.2 Perencanaan Lapisan Geotekstil Pada Tanah Miring dengan
Sudut Lereng 45° dengan Diberi Beban
4.5.3 Perencanaan Lapisan Geotekstil Pada Tanah Miring dengan
Sudut Lereng 60°69
4.5.4 Perencanaan Lapisan Geotekstil Pada Tanah Miring dengan
Sudut Lereng 60° dengan Diberi Beban
BAB V KESIMPULAN DAN SARAN
5.1 Kesimpulan
5.2 Saran
DAFTAR PUSTAKA
LAMPIRAN

4.12 Perencanaan lapisan Geotekstil pada tanah miring sudut 45°	5
4.13 Perencanaan jarak geotekstil	58
4.14 Perencanaan lapisan Geotekstil pada tanah miring sudut 60°6	9
4.15 Perencanaan jarak geotekstil sudut 60°7	1
4.16 Perencanaan lapisan Geotekstil pada tanah miring sudut 60° dengan diberi	
beban7	'3

•

DAFTAR TABEL

2.1 Nilai n,e,w, γ_d , dan γ_b untuk tanah keadaan asli lapangan
4.1 Perhitungan stabilitas lereng dengan sudut 15°
4.2 Perhitungan stabilitas lereng dengan sudut 30°48
4.3 Perhitungan stabilitas lereng dengan sudut 45°50
4.4 Perhitungan stabilitas lereng dengan sudut 60°51
4.5 Bearing Capacity Factors
4.6 Perhitungan stabilitas lereng dengan sudut 15°56
4.7 Perhitungan stabilitas lereng dengan sudut 30°58
4.8 Perhitungan stabilitas lereng dengan sudut 45°60
4.9 Perhitungan stabilitas lereng dengan sudut 60°62
4.10 Perhitungan perkuatan lereng dengan geoteksil sudut 45° dengan diberi beban
4.11 Perhitungan perkuatan lereng dengan geotekstil sudut 60°71
4.12 Perhitungan perkuatan lereng dengan geotekstil sudut 60° dengan diberi
beban

ABSTRAKSI

Dalam merencanakan konstruksi bangunan teknik sipil, ditemukan berbagai kondisi alam yang berbeda-beda, diantaranya adalah daerah lereng yaitu lahan dengan perbedaan elevasi tanah yang cukup besar, sehingga dituntut untuk merencanakan tipe pondasi yang cocok dan aman, agar bahaya longsor dapat dihindari. Dengan demikian diharapkan akan didapatkan data batas-batas keamanan stabilitas lereng dengan beban pondasi dangkal, dan akan memberi masukan rekayasa konstruksi tentang pondasi dangkal pada tanah lereng.

Konstruksi bangunan yang dipilih adalah menara air yang ukurannya ditentukan, dengan menggunakan pondasi dangkal, pada daerah lereng homogen, tinggi 6 meter, muka air tanah sedalam 2 meter, dengan 4 sudut kemiringan 15°, 30°, 45° dan 60°. Dari data-data yang ada lereng dianalisis dalam kondisi asli tanpa diberi beban bangunan, kemudian lereng dianalisis dengan diberi beban bangunan, analisis tersebut menggunakan program MRSSlope untuk mencari jari-jarinya dan manual menggunakan metode irisan berdasarkan cara Fellinius untuk mencari angka keamanannya. Pada sudut kemiringan 15°, 30°, 45° tanpa diberi beban, dan sudut kemiringan 15°, 30° dengan diberi beban lereng aman, sedang pada sudut 60° tanpa beban dan sudut 45°, 60° dengan diberi beban lereng akan diberi perkuatan tanah berupa lapisan geotekstil Woven Multitex, yaitu geotekstil yang ditenun dalam pembuatannya, sehingga akan didapatkan bangunan yang aman dari bahaya longsor.

Berdasarkan analisis, kemiringan lereng dan pembebanan akan mempengaruhi angka keamanan lereng terhadap bahaya longsor. Pada sudut kemiringan 15°, 30°, 45° tanpa beban lereng aman terhadap longsor, sedang pada sudut 60° tanpa beban lereng tidak aman. Pondasi bujur sangkar dengan B = 0,4 m aman mendukung beban menara air dengan P = 2,224 T. Pada sudut kemiringan 15°, 30° dengan beban struktur, lereng aman, sedang pada sudut 45°, 60° dengan beban struktur lereng tidak aman. Lapisan geotekstil Woven Multitex dengan tegangan tarik ijin sebesar 4,01 ton, memberikan perkuatan tanah yang cukup sehingga pada sudut 60° tanpa beban, dan sudut 45°, 60° dengan beban, struktur lereng aman terhadap longsor. b. Penurunan pondasi harus masih dalam batas-batas nilai yang ditoleransikan.
 Khususnya penurunan yang tidak sama harus tidak mengakibatkan kerusakan pada strukturnya.

2.2 Berat Volume Tanah dan Hubungan-hubungannya

Bagian-bagian tanah dapat digambarkan dalam bentuk diagram fase, seperti yang ditunjukkan pada Gambar 2.3.

Gambar 2.3 Diagram fase tanah (Sumber : Hardiyatmo,HC, Mekanika Tanah 1,1992)

Gambar 2.3a memperlihatkan elemen tanah yang mempunyai volume V dan berat total W, sedang Gambar 2.3b memperlihatkan hubungan berat dan volumenya. Dari gambar tersebut dapat dibentuk persamaan berikut :

(sumber : Hardiyatmo, HC, Mekanika Tanah 1, 1992)

dan

(sumber : Hardiyatmo, HC, Mekanika Tanah 1, 1992)

(sumber : Hardiyatmo, HC, Mekanika Tanah 1, 1992)

dengan :

 W_s = berat butiran padat

$W_w = berat air$

 V_s = volume butiran padat

 $V_w =$ volume air

 V_a = volume udara

Berat udara dianggap sama dengan nol. Hubungan-hubungan volume yang biasa digunakan dalam mekanika tanah adalah angka pori, porositas dan derajat kejenuhan. Adapun hubungan-hubungan adalah sebagai berikut :

(sumber : Hardiyatmo, HC, Mekanika Tanah 1, 1992)

dengan :

w = kadar air, dinyatakan dalam persen

 $W_w = berat air$

 $W_s = berat butiran$

(sumber : Hardiyatmo, HC, Mekanika Tanah 1, 1992)

dengan :

n = porositas, dinyatakan dalam persen atau desimal

 $V_v =$ volume rongga

V = volume total

(sumber : Hardiyatmo, HC, Mekanika Tanah 1, 1992)

dengan :

e = angka pori, dinyatakan dalam desimal

 $V_v = volume rongga$

 V_s = volume butiran

(sumber : Hardiyatmo, HC, Mekanika Tanah 1, 1992)

dengan :

 γ_b = berat volume basah

W = berat butiran tanahtermasuk air dan udara

V = volume total

(sumber : Hardiyatmo, HC, Mekanika Tanah 1, 1992)

dengan :

 γ_d = berat volume kering

 W_s = berat butiran

V = volume total

(sumber : Hardiyatmo, HC, Mekanika Tanah 1, 1992)

dengan :

- S = derajat kejenuhan
- $V_w =$ volume air
- $V_v =$ volume total rongga tanah

Bila tanah dalam keadaan jenuh maka S = 1

Dari persamaan-persamaan tersebut diatas dapat disajikan hubungan antara

Masing-masing persamaan, yaitu :

a. Hubungan antara angka pori (e) dengan porositas (n)

(sumber : Hardiyatmo, HC, Mekanika Tanah 1, 1992)

(sumber : Hardiyatmo, HC, Mekanika Tanah 1, 1992)

b. Berat volume basah dapat dinyatakan dalam rumus berikut

(sumber : Hardiyatmo, HC, Mekanika Tanah 1, 1992)

c. Untuk tanah jenuh air (S=1)

(sumber : Hardiyatmo, HC, Mekanika Tanah 1, 1992)

dengan :

 γ_{sat} = berat volume tanah jenuh air

 $\gamma_{\rm w}$ = berat volume air

d. Untuk tanah kering sempurna

(sumber : Hardiyatmo, HC, Mekanika Tanah 1, 1992)

e. Bila tanah terendam air

(sumber : Hardiyatmo, HC, Mekanika Tanah 1, 1992)

(sumber : Hardiyatmo, HC, Mekanika Tanah 1, 1992)

dengan :

 γ' = berat volume tanah terendam air

Nilai-nilai porositas, angka pori dan berat volume pada keadaan asli di alam dari berbagai jenis tanah, diberikan pada tabel 2.1.

Macam tanah	n	e	w	γd	γь
iviacani tanan	(%)		(%)	(gr/cm ³)	(gr/cm ³)
Pasir seragam, tidak padat	46	0,85	32	1,43	1,89
Pasir seragam, padat	34	0,51	19	1,75	2,09
Pasir berbutir campuran, tidak padat	40	0,67	25	1,59	1,99
Pasir berbutir campuran, padat	30	0,43	16	1,86	2,16
Lempung lunak sedikit organis	66	1,90	70	-	1,58
Lempung lunak sangat organis	75	3,0	110	_	1,43

Tabel 2.1 Nilai n,e,w, γ_d , dan γ_b untuk tanah keadaan asli lapangan

(sumber : Terzaghi, 1947 dikutip dari Hardiyatmo, HC, Mekanika Tanah 1, 1992)

(sumber : Hardiyatmo, HC, Mekanika Tanah 2, 1994)

dengan :

 M_r = jumlah momen yang menahan (tm)

 M_d = jumlah momen yang menggerakkan (tm)

atau

(sumber : Hardiyatmo, HC, Mekanika Tanah 2, 1994)

dengan :

F = faktor aman

W = berat tanah (ton)

 L_{AC} = panjang bagian lingkaran AC (m)

 $c = kohesi (t/m^2)$

- R = jari-jari lingkaran bidang lonsor yang ditinjau (m)
- y = jarak pusat berat W tehadap O

Jika lereng dipengaruhi oleh aliran rembesan air tanah, maka diperlukan untuk menggambar gambar garis freatis dan sketsa jaring arusnya (*flow-net*). Garis-garis ekuipotensial memotong lingkaran longsoran dengan tinggi energi yang diketahui. Tekanan pada titik ini dapat dihitung untuk memberikan diagram tekanan seperti yang dilihat pada Gambar 2.7.

Jumlah tekanan air pori (U) dapat dihitung secara integrasi, dimana titik tangkap gaya U ini akan melewati titik O. Nilai vektor gaya W dapat diperoleh dengan cara menambahkan U dengan vektor W¹. Dengan cara keseimbangan momen dapat diperoleh jarak y. Nilai faktor aman dapat dihitung dengan :

(sumber : Hardiyatmo, HC, Mekanika Tanah 2, 1994)

dengan :

R = jari-jari bidang longsor (m)

 $c = kohesi (t/m^2)$

 L_{AC} = panjang bagian lingkaran AC (m)

keseimbangan dari tiap irisan diperhatikan. Gambar 2.7 memperlihatkan suaru irisan dengan gaya-gaya yang bekerja padanya. Gaya-gaya ini terdiri dari gaya geser (X_r dan X_l) dan gaya normal efektif (E_r dan E_l) di sepanjang sisi irisannya, dan juga resultan gaya efektif (T_i) dan resultan gaya normal efektif (N_i) yang bekerja di sepanjang dasar irisannya. Pada irisannya, tekanan air pori U_l dan U_r bekerja di kedua sisinya, dan tekanan air pori U_i pada dasarnya. Dianggap tekanan air pori sudah diketahui sebelumnya. Metode irisan yang digunakan antara lain :

1) Metode Fellinius

Analisis stabilitas lereng cara Fellinius (1927) (dikutip dari Hardiyatmo, HC, Mekanika Tanah 2, 1994) menganggap gaya-gaya yang bekerja pada sisi kanan-kiri dari sembarang irisan mempunyai resultan nol pada arah tegak lurus bidang longsornya. Dengan anggapan ini, keseimbangan arah vertikal dari gaya-gaya yang bekerja dengan memperhatikan tekanan air pori adalah :

$$N_i + U_i = W_i \cos \theta_i$$

atau

(sumber : Hardiyatmo, HC, Mekanika Tanah 2, 1994)

Faktor aman didefinisikan sebagai :

$$F = \frac{\sum M_r}{\sum M_d}$$

dengan :

 $M_r = jumlah momen yang menahan (tm)$

 $M_d = jumlah momen yang menggerakkan (tm)$

Lengan momen dari berat massa tanah tiap irisan adalah R sin θ , maka :

(sumber : Hardiyatmo, HC, Mekanika Tanah 2, 1994)

dengan :

- R = jari-jari lingkaran bidang longsor
- n = jumlah irisan
- W_i = berat massa tanah irisan ke-i
- θ_I = sudut yang didefinisikan pada Gambar 2.7

Dengan cara yang sama, momen yang menahan yang akan longsor adalah :

Karena itu, persamaan untuk faktor amannya menjadi :

Bila terdapat air pada lerengnya, tekanan air pori pada bidang longsor tidak berpengaruh pada M_d , karena resultan gaya akibat tekanan air pori lewat titik pusat lingkaran. Substitusi persamaan (2.29) ke persamaan (2.32) diperoleh :

(sumber : Hardiyatmo, HC, Mekanika Tanah 2, 1994)

(sumber : Hardiyatmo, HC, Mekanika Tanah 2, 1994)

dengan :

 σ = tegangan normal total pada bidang longsor

 μ = tekanan air pori, untuk irisan ke-i

Nilai $T_i = \tau a_i$, yaitu nilai gaya geser yang berkembang pada bidang longsor untuk keseimbangan batas, karena itu :

Kondisi keseimbangan momen terhadap pusat rotasi O antara berat massa tanah yang akan longsor dengan gaya geser total pada bidang longsornya dapat dinyatakan oleh (gambar 2.7) :

dengan x_i adalah jarak W_i ke pusat rotasi O. dari persamaan (2.34) dan (2.36) dapat diperoleh :

Dari kondisi keseimbangan vertikal, jika $X_1 = X_i$ dan $X_r = X_{i+1}$:

Dengan $N'_{i} = N_{i} - u_{i}a_{i}$, substitusi persamaan (2.35) ke persamaan (2.38), dapat diperoleh persamaan :

Substitusi persamaan (2.39) ke persamaan (2.37), diperoleh :

$$F = \frac{R \sum_{i=1}^{i=n} c' a_i + tg \phi' \left(\frac{W_i + X_i - X_{i+1} - u_i a_i \cos \theta_i - c' a_i \sin \theta_i / F}{\cos \theta_i + \sin \theta_i tg \phi' / F} \right)}{\sum_{i=1}^{i=n} W_i x_i} \dots \dots (2.40)$$

Untuk penyederhanaan dianggap $X_i - X_{i+1} = 0$ dan dengan mengambil:

Substitusi persamaan (2.41) dan (2.42) ke persamaan (2.40), diperoleh persamaan faktor aman :

(sumber : Hardiyatmo, HC, Mekanika Tanah 2, 1994)

dengan :

F = faktor aman

c' = kohesi tanah efektif

 ϕ' = sudut gesek dalam tanah efektif

 $b_i = lebar irisan ke-i$

 W_i = berat irisan tanah ke-i

 θ_i = sudut yang didefinisikan dalam gambar 2.7

ui = tekanan air pori pada irisan ke-i

Persamaan faktor aman Bishop ini lebih sulit pemakaiannya dibandingkan dengan metode Fellinius. Lagi pula membutuhkan cara coba-coba (*trial and error*), Karena nilai faktor aman F nampak di kedua sisi persamaannya. Akan tetapi cara ini telah terbukti memberikan nilai faktor aman yang mendekati nilai faktor aman dari hitungan yang telah dilakukan dengan cara lain yang lebih teliti. Lokasi lingkaran longsor kritis dari metode Bishop (1955), biasanya mendekati dengan hasil pengamatan di lapangan. Karena itu, walaupun metode Fellinius lebih mudah, metode Bishop lebih disukai karena menghasilkan penyelesaian yang lebih teliti (Hardiyatmo, HC, Mekanika Tanah 2, 1994).

2.6 Stabilitas Lereng dengan Tinggi Terbatas

Pengamatan longsoran lereng yang dilakukan oleh Collin (1846), menunjukkan bahwa kebanyakan peristiwa longsoran tanah terjadi dengan bentuk bidang longsor yang berupa lengkungan. Sebab terjadinya longsoran adalah karena tidak tersedianya kuat geser tanah yang cukup untuk menahan tanah longsor ke bawah, pada bidang longsornya.

Metode yang digunakan dalam analisis stabilitas lereng menggunakan cara Fellinius. Analisis stabilitas lereng cara Fellinius (1927), menganggap gaya-gaya yang bekerja pada sisi kanan-kiri dari sembarang irisan mempunyai resultan nol pada sedang untuk tebal lapisan kedua adalah selisih dari tinggi lereng dikurangi dengan tebal lapisan pertama.

3. Keadaan muka air tanah

Muka air tanah hanya bisa pada lereng saja, dengan ketinggian muka air dari 0,00 (muka tanah asli) hingga maksimum setinggi lereng yang didesain.

4. Properti bahan perkuatan

Apabila kita mendesain lereng dengan menggunakan perkuatan geotekstil maka kita membutuhkan properti dari geotekstil yang kita pakai tersebut, seperti kuat tarik ijin geotekstil, panjang perkuatan geotekstil dan tebal lapisan perkuatan.

2.7.2 Output Data

Setelah semua data yang diperlukan dimasukkan, maka *MRSSlope* akan mengolah data tersebut dan menghasilkan gambar garis keruntuhan dan angka keamanan dari lereng yang telah didesain. *Print output* dari *MRSSlope* berupa data dari lereng serta angka keamanan saja. *MRSSlope* juga telah memberikan angka keamanan yang paling minimal, tetapi angka keamanan yang lebih kecil dari 0 ($F_s < 0$) tidak dapat keluar pada *print output MRSSlope* tersebut.

Gambar 2.8 Bagan alir MRSSlope

Gambar 4.1 Garis keruntuhan kritis dengan sudut 15°

Perhitungan berat air (ui) = volume irisan terendam air x berat volume air (γ_w), dengan $\gamma_w = 9,81 \text{ kN/m}^3$.

Gambar 4.2 Garis keruntuhan kritis dengan sudut 30°

Perhitungan berat air (ui) = volume irisan terendam air x berat volume air (γ_w), dengan $\gamma_w = 9,81 \text{ kN/m}^3$.

r	Y	*****						
Irisan	Berat Wi	Sudut	Wi cos θ	Wi sin θ	ui	ai	Ui =ui x	Wi cos θ - Ui
no	(KN)	θ	(KN)	(KN)	(KN)		ai	
1	17.460	-25.0	15.824	-7.379	2.453	1.80	4.415	11.410
2	55.872	-13.0	54.440	-12.568	7.848	1.80	14.126	40.314
3	90.792	-2.5	90.706	-3.960	12.753	1.80	22.955	67.750
4	125.712	8.0	124.489	17.496	17.658	1.80	31.784	92.704
5	164.124	19.0	155.182	53.434	19.620	1.80	35.316	119.866
6	181.584	30.5	156.458	92.161	19.620	1.80	35.316	121.142
7	238.271	45.0	168.483	168.483	12.550	2.67	33.509	134.975
8	169.613	63.5	75.681	151.793	0.000	3.96	0.000	75.681
1a	15.365	-25.0	13.925	-6.494	1.962	1.98	3.885	10.041
2a	42.253	-13.0	41.170	-9.505	5.397	1.98	10.686	30.484
3a	49.935	-2.5	49.887	-2.178	6.377	1.98	12.625	37.262
4a	48.015	8.0	47.548	6.682	6.130	1.98	12.137	35.410
5a	30.729	19.0	29.055	10.004	3.920	1.98	7.762	21.293
6a	4.365	30.5	3.761	2.215	1.105	0.99	1.094	2.667
			1026.609	369.670				800.999

Tabel 4.2 Perhitungan stabilitas lereng dengan sudut 30°

$$F = \frac{\left[(1.4 \times 18.24) + (800.999 \times tg \, 37) \right]}{369.67} = 1.702$$

4.2.3 Sudut Kemiringan Lereng 45°

Panjang
$$\overline{AC} = \frac{\angle AOC}{360} \times 2\pi R = \frac{84}{360} \times 2\pi 10.44 = 15.3 \, m$$

Perhitungan kemantapan lereng dilakukan dengan jari-jari garis keruntuhan kritis disesuaikan dengan perhitungan hasil program *MRSSlope*, seperti pada gambar 4.3.

			Wi aas A	WisinA		ai	Ui =ui x	Wi $\cos \theta$ - Ui
Irisan	Berat W1	Sudut	wi cos o	WI SIII O			ai	
no	(KN)	θ	(KN)	<u>(KN)</u>	(KN)	1.00	6.079	18 097
1	24 832	-11.00	24.376	-4.738	3.924	1.60	0.270	F5 562
2	71 196	-3.00	74.394	-3.899	11.770	1.60	18.832	55.502
2	107.064	6.00	126 567	13,303	20.111	1.60	32.177	94.390
3	127.204	16.00	177 384	50 864	19.620	1.64	32.177	145.207
4	184.532	16.00	177.304	75 315	16 675	1.64	27.347	127.071
5	171.806	26.00	154.410	102 627	12,260	2 00	24.520	116.734
6	174.600	36.00	141.254	102.027	5 200	2.00	12 777	80,733
7	142.532	49.00	93,509	107.570	5.390	2.37	0.000	23 884
8	49.265	61.00	23.884	43.088	0.000	2.31	0.000	4 6 2 7
10	6 363	_11 00	6,246	-1.214	0.981	1.64	1.609	4.037
	10,000	3.00	12 709	-0.666	1.962	1.64	3.218	9.491
2a	12.720	-5.00	12,100	1 330	1 962	1.64	3.218	9.439
3a	12.726	6.00	12.000	0.455	0.385	0.82	0.316	1.269
4a	1.649	16.00	1.585	0.455	0.303	1 0.02		686 515
	······································		848.982	357.395				000.010

Tabel 4.3 Perhitungan stabilitas lereng dengan sudut 45°

$$F = \frac{\left[(1.4 \times 15.3) + (686.515 \times tg \, 37) \right]}{357.395} = 1.51$$

4.2.4 Sudut Kemiringan Lereng 60°

Panjang
$$\overline{AC} = \frac{\angle AOC}{360} \times 2\pi R = \frac{80}{360} \times 2\pi 9.12 = 13.05 \, m$$

Perhitungan kemantapan lereng dilakukan dengan jari-jari garis keruntuhan kritis disesuaikan dengan perhitungan hasil program *MRSSlope*, seperti pada gambar 4.4.

Perhitungan berat Wi = volume irisan x berat volume tanah (γ) sedang untuk tanah yang terendam air perhitungan berat Wi = volume irisan x berat volume tanah terendam air (γ ').

Perhitungan berat air (ui) = volume irisan terendam air x berat volume air (γ_w), dengan $\gamma_w = 9,81 \text{ kN/m}^3$.

Gambar 4.4 Garis keruntuhan kritis dengan sudut 60°

Perhitungan	selanjutnya	dipresentasikan	dalam	tabel 4	1.4.
0	· J J				

Irisan	Berat Wi	Sudut	Wi cos θ	Wi sin θ	ui	ai	Ui =ui x	Wi $\cos \theta$ - Ui
no	(KN)	θ	(KN)	(KN)	(KN)		ai	
1	37.830	-5.00	37.686	-3.297	6.377	1.50	9.565	28.121
2	113.490	4.00	113.214	7.917	19.130	1.50	28.695	84.519
3	181.990	14.50	176.193	45.567	19.130	1.59	30.417	145.776
4	166.568	25.00	150.962	70.395	16.675	1.59	26.513	124.449
5	170.448	35.00	139.623	97.765	12.750	1.91	24.353	115.270
6	138.430	49.00	90.818	104.474	5.885	2.23	13.124	77.695
7	73.330	62.50	33.860	65.045	0.000	2.70	0.000	33.860
1a	4.394	-5.00	4.377	-0.383	0.735	1.51	1.110	3.267
2a	5.859	4.00	5.845	0.409	0.980	1.51	1.480	4.365
			752.578	369.049				617.322

Tabel 4.4 Perhitungan stabilitas lereng dengan sudut 60°

$$F = \frac{\left[(1.4 \times 13.05) + (617.322 \times tg \, 37) \right]}{369.049} = 1.32$$

Beban yang didukung pondasi (P) = $P_{bak} + P_w + P_k = 1,104+0,64+0,48 = 2.224$ ton

4.3.2 Menghitung Dimensi Pondasi

Gambar 4.6 Pondasi Telapak

Dengan data tanah :

$$\gamma_b = 1,94 \text{ t/m}^3$$
 $c = 1,4 \text{ t/m}^2$
 $\gamma_{bin} = 2,4 \text{ t/m}^3$ $\emptyset = 37^{\circ}$

Tabel 4.5 Faktor daya dukung untuk persamaan renag									
Ø	Nc	Nq	Nγ	K _{pγ}					
34	52.6	36.5	36						
25	57.8	41.4	42.4	82.0					
35	57.0		100.4	1/10					
40	95.7	81.3	100.4	141.0					
45	172.3	173.3	297.5	298.0					
48	258.3	287.9	780.1						
	1			1 P					

Tabel 4 5 Faktor daya dukung untuk persamaan Terzaghi

(sumber : Bowles, JE, Analisis dan Desain Pondasi, 1991)

Dari hasil interpolasi Tabel 4.5, Didapat :

$$N_q = 57.36 ; N_c = 72.96 ; N_\gamma = 65.6$$

$$p_o = \gamma_b D_f = 1.94 \times 1.2 = 2.328 \text{ t/m}^2$$

$$\gamma' = \frac{(G_s - 1)\gamma_w}{1 + e} = \frac{(2.66 - 1)!}{1 + 0.75} = 0.95 \text{ t/m}^3$$

$$\gamma_{rt} = \gamma' + \left(\frac{z}{B}\right)(\gamma_b - \gamma') = 0.95 + \left(\frac{0.8}{B}\right)(1.94 - 0.95)$$

$$\gamma_{rt} = 0.95 + \frac{0.792}{B}$$

Dengan memakai persamaan Terzaghi dan keruntuhan geser umum maka :

$$q_{un} = 1,3cN_c + p_o(N_q - 1) + 0,4\gamma_r BN_r$$

$$q_{un} = 1,3.1,4.72,96 + 2,328(57,36 - 1) + 0,4(0,95 + \frac{0,792}{B})B.65,6$$

$$q_{un} = 147,1 + 14,93B$$

$$\frac{q_{un}}{3} = q_n$$

$$\frac{1}{3}(147,1 + 14,93B) = \frac{2,224}{B^2} + (1,2.1,94)$$

$$49,03 + 4,98B = \frac{2,224}{B^2} + 2,328$$

$$4,98B^3 + 46,782B^2 - 2,224 = 0$$

Didapat B = 0,85 m

Kontrol Stabilitas

$$q_{s} = \frac{q_{un}}{3} + D_{f}\gamma$$

$$q_{s} = \frac{1}{3}(147, 1 + 14, 93.0, 85) + 1, 2.1, 94 = 55, 592 \quad t/m^{2}$$

$$\sigma_{ijd} = \frac{P}{A} + D_{f}\gamma_{b} = \frac{2,224}{0,85x0,85} + 1, 2.1, 94 = 5,406 \quad t/m^{2} < q_{s} \quad (\text{aman})$$

Perhitungan berat air (ui) = volume irisan terendam air x berat volume air (γ_w), dengan $\gamma_w = 9.81 \text{ kN/m}^3$.

Perhitungan selanjutnya dipresentasikan dalam tabel 4.6.

				Wi sin A		ai		Wi $\cos \theta$ -
Irisan	Berat Wi	Sudut	W1 COS Ø	WISHIO	(Tar)		Ui =ui x ai	Ui
no	(Ton)	θ	(Ton)	(Ton)	(100)			
	3 492	-20	3.281	-1.194	0.9	3.0	2.7	0.581
1	5.472		6.831	-1 452	1.8	3.0	5.4	1.431
2	6.984	-12	0.031	-1.152	2.2	3.0	99	2.886
3	12.804	-3	12.786	-0.670	5.5	3.0		2.06
4	17.460	6	17.360	1.825	4.5	3.0	13.5	3.80
	22.116	15	21 360	5.724	5.7	3.0	17.1	4.26
2	22.110	15	24.(20	10.461	63	3.15	19.845	4.785
6	26.772	23	24.630	10.401	0.5	2 109	14.43	4 869
7	23.280	34	19.299	13.018	4.2	3.198	14.45	0.070
8	14,100	44	10.143	9.795	0.3	3.91	1.773	8.970
	2 254	51	2 048	2.529	0	0.888	0	2.048
9	3.234					+		
						2 100	2.26	0.468
1a	4.074	-20	3.828	-1.393	1.05	3.198	5.50	1.00
22	8 148	-12	7.970	-1.694	2.1	3.198	6.71	1.26
24	10.470	2	10.462	-0 548	2.7	3.198	8 8.63	1.832
3a	10.470		10.402	1.005	27	3 198	8.63	1.832
4a	10.476	6 6	10.418	1.095	2.1	5.17	5 750	0.99
5a	6.984	15	6.746	1.807	1.8	3.198	5 5.750	0.55
60	1 764	1 23	1.607	0.689	0.45	2.3	3 1.035	0.572
oa	1.70		150 7/0	12 37	<u> </u>			40.644
			158.705	42.57	⁻			

Tabel 4.6 Perhitungan stabilitas lereng dengan sudut 15°

Perhitungan berat air (ui) = volume irisan terendam air x berat volume air (γ_w), dengan $\gamma_w = 9,81 \text{ kN/m}^3$.

Perhitungan selanjutnya dipresentasikan dalam tabel 4.7.

Irisan	Berat Wi	Sudut	Wi cos θ	Wi sin θ	ui	ai	Ui =ui x	Wi cos θ
no	(KN)	θ	(KN)	(KN)	(KN)		a1	- U1
1	17.460	-25.0	15.824	-7.379	2.453	1.80	4.415	11.410
2	55.872	-13.0	54,440	-12.568	7.848	1.80	14.126	40.314
3	90.792	-2.5	90.706	-3.960	12.753	1.80	22.955	67.750
4	125.712	8.0	124.489	17.496	17.658	1.80	31.784	92.704
5	164.124	19.0	155.182	53.434	19.620	1.80	35.316	119.866
6	181.584	30.5	156.458	92.161	19.620	1.80	35.316	121.142
7	249.791	45.0	176.029	176.029	12.550	2.67	33.509	143.120
8	194.968	63.5	86.994	174.484	0.000	3.96	0.000	86.994
1a	15.365	-25.0	13.925	-6.494	1.962	1.98	3.885	10.041
2a	42.253	-13.0	41.170	-9.505	5.397	1.98	10.686	30.484
3a	49.935	-2.5	49.887	-2.178	6.377	1.98	12.625	37.262
4a	48.015	8.0	47.548	6.682	6.130	1.98	12.137	35.410
5a	30.729	19.0	29.055	10.004	3.920	1.98	7.762	21.293
6a	4.365	30.5	3.761	2.215	1.105	0.99	1.094	2.667
. <u></u>			1046.07	391.021				820.458

Tabel 4.7 Perhitungan stabilitas lereng dengan sudut 30°

$$F = \frac{\left[\left(1.4 \times 18.24 \right) + \left(820.458 \times tg \, 37 \right) \right]}{391.021} = 1.646$$

4.4.3 Sudut Kemiringan Lereng 45°

Panjang
$$\overline{AC} = \frac{\angle AOC}{360} \times 2\pi R = \frac{84}{360} \times 2\pi 10.44 = 15.3 \, m$$

Perhitungan berat air (ui) = volume irisan terendam air x berat volume air (γ_w), dengan $\gamma_w = 9,81 \text{ kN/m}^3$.

Perhitungan selanjutnya dipresentasikan dalam tabel 4.8.

Irisan	Berat Wi	Sudut	Wi $\cos \theta$	Wi sin θ	ui	ai	Ui =ui x	Wi cos θ -
no	(KN)	θ	(KN)	(KN)	(KN)		ai	Ui
1	24.832	-11.00	24.376	-4.738	3.924	1.60	6.278	18.097
2	74.496	-3.00	74.394	-3.899	11.770	1.60	18.832	55.562
3	127.264	6.00	126.567	13.303	20.111	1.60	32.177	94.390
4	184.532	16.00	177.384	50.864	19.620	1.64	32.177	145.207
5	177.566	26.00	159.595	77.840	16.675	1.64	27.347	132.248
6	180.395	36.00	145.943	106.034	12.260	2.00	24.520	121.423
7	142.532	49.00	93.509	107.570	5.396	2.37	12.777	80.733
8	49.265	61.00	23.884	43.088	0.000	2.37	0.000	23.884
1a	6.363	-11.00	6.246	-1.214	0.981	1.64	1.609	4.637
2a	12.726	-3.00	12.709	-0.666	1.962	1.64	3.218	9.491
3a	12.726	6.00	12.656	1.330	1.962	1.64	3.218	9.439
4a	1.649	16.00	1.585	0.455	0.385	0.82	0.316	1.269
			858.848	379.966				696.380

Tabel 4.8 Perhitungan stabilitas lereng dengan sudut 45°

$$F = \frac{\left[(1.4 \times 15.3) + (696.38 \times tg \, 37) \right]}{379.986} = 1.4413$$

4.4.4 Sudut Kemiringan Lereng 60°

Panjang
$$\overline{AC} = \frac{\angle AOC}{360} \times 2\pi R = \frac{80}{360} \times 2\pi 9.12 = 13.05 \, m$$

				NU: 100		ai	Ui =ui x	Wi cos θ
Irisan	Berat Wi	Sudut	Wi cos θ	Wi sin e	ui	41	ai	- Hi
n 0	(KN)	θ	(KN)	(KN)	(KN)		<u>a</u> 1	
10		<u> </u>	27.686	-3 297	6.377	1.50	9.565	28.121
1	37.830	-5.00	37.000	-0.201	10.120	1 50	28 695	84 519
2	113.490	4.00	113.214	7.917	19,130	1.50	20.000	445 770
2	181 000	14 50	176 193	45.567	19,130	1.59	30.417	145.776
3	101.990	05.00	164.012	76 480	16 675	1.59	26.513	137.499
4	180.968	25.00	164.013	10.400	10.010	1.01	24 353	134 172
5	193,523	35.00	158.525	111.000	12.750	1.91	24.000	77.005
l c	129 120	19.00	90.818	104.474	5.885	2.23	13.124	//.695
в	130.430	40.00		65 045	0 000	2 70	0.000	33.860
7	73.330	62.50	33,860	65.045	0.000	2.70	1 110	3 267
12	4 394	-5.00	4.377	-0.383	0.735	1.51	1.110	5.207
	5 050	1 00	5 845	0 409	0.980	1.51	1.480	4.365
2a	5.859	4.00	0.045	0.100		1	<u>1</u>	649 275
			784.531	387.212	ļ			040.210

Tabel 4.9 Perhitungan stabilitas lereng dengan sudut 60°

$$F = \frac{\left[\left(1.4 \times 13.05 \right) + \left(649.275 \times tg \, 37 \right) \right]}{387.212} = 1.31$$

4.5 Desain Perkuatan Lereng Dengan Geotekstil

4.5.1 Tegangan Lateral Akibat Beban Titik

Gambar 4.11 Tekanan Tanah pada Dinding akibat Beban Titik

Bila m \leq 0,4 maka

$$\sigma_h = \frac{0.28P}{H^2} \frac{n^2}{\left(0.16 + n^2\right)^3}$$

dengan:

- $\sigma_h = tekanan \ tanah \ lateral \ (t/m^2)$
- P = beban (ton)

m = x/H

- n = z/H
- x = jarak tepi atas lereng terhadap beban pondasi
- z = tinjauan jarak tekanan tanah lateral dari muka tanah

maka didapat,

$$\sigma_{h_1} = \frac{0.28 \times 2.224}{6^2} \frac{0.16^2}{(0.16 + 0.16^2)^3} = 0.068 \text{ t/m}^2$$
$$\sigma_{h_2} = \frac{0.28 \times 2.224}{6^2} \frac{0.33^2}{(0.16 + 0.33^2)^3} = 0.095 \text{ t/m}^2$$
$$\sigma_{h_3} = \frac{0.28 \times 2.224}{6^2} \frac{0.5^2}{(0.16 + 0.5^2)^3} = 0.06 \text{ t/m}^2$$

$$\sigma_{h4} = \frac{0,28 \times 2,224}{6^2} \frac{0,667^2}{\left(0,16+0,667^2\right)^3} = 0,034 \quad t/m^2$$

$$\sigma_{h5} = \frac{0.28 \times 2.224}{6^2} \frac{0.83^2}{(0.16 + 0.83^2)^3} = 0.019 \text{ t/m}^2$$

$$\sigma_{h6} = \frac{0,28 \times 2,224}{6^2} \frac{1,0^2}{(0,16+1,0^2)^3} = 0,011 \quad \text{t/m}^2$$

Didapat $\sum \sigma_h = 0,287 \text{ t/m}^2$

b. Stabilitas terhadap gaya geser

$$Sf_{s} = \sum \frac{gaya \, menahan}{gaya \, dorong}$$

$$Sf_{s} = \frac{\left(c + \left(\frac{W_{1} + W_{2}}{l}\right) \tan \phi\right) l}{P_{a} + P_{t}}$$

$$Sf_{s} = \frac{\left(1, 4 + \left(\frac{16,005}{3,5}\right) \tan 37\right) 3,5}{7.2657 + 0} = 2,334 > 1,5 \text{ aman}$$

4.5.4 Perencanaan Lapisan Geotekstil Pada Tanah Miring Dengan Sudut Lereng

60° Dengan Diberi Beban

Dalam Analisis perencanaan digunakan data-data sebagai berikut :

- a. Tanah
 - Tanah Homogen
 - Sudut Gesek Dalam (\emptyset) = 37°
 - Kohesi Tanah (c) = $1,4 \text{ t/m}^2$
 - Berat Volume Tanah (γ) = 1,94 t/m³
- b. Geotekstil

Geotekstil yang digunakan dalam perencanaan ini adalah geotekstil jenis woven dengan spesifikasi sebagai berikut:

- Geotekstil *Woven Multitex* dengan tegangan tarik ijin = 4,01 ton
- c. Dimensi Perencanaan :
 - Tinggi Lereng (H) = 6 m

- Beban titik (P) = 2,224 T
- Lereng dengan kemiringan (β) = 60°

Penyelesaian :

- 1. Tinjauan terhadap stabilitas gaya internal
 - a. Tekanan Tanah Aktif

$$K_{a} = \tan^{2}(45 - \frac{\phi}{2})$$

$$K_{a} = \tan^{2}(45 - \frac{37}{2}) = 0,248$$

$$\sigma_{h} = k_{a}.\gamma.z + \frac{0,28P}{H^{2}} \frac{n^{2}}{(0,16 + n^{2})^{3}}$$

$$\sigma_{h} = 0,248 \times 1,94 \times z_{1} + 0,248 \times 0,95 \times z_{2} + 0,077$$

$$\sigma_{h} = 0,481z_{1} + 0,236z_{2} + 0,077$$

- 2. Tinjauan terhadap stabilitas eksternal
 - a. Stabilitas terhadap bahaya guling

$$P_a = 0.5.\gamma_b \cdot H^2 \cdot k_a - 2.c.\sqrt{k_a}$$