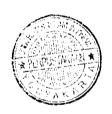
PERPUSTAKAAN FTSP UII

HADIAM/BELI TGL. TERIMA: 28 03 2003

NO. JUDUL : 000 391


NO MOUK :_

NO. HV. : 512 000391001

TUGAS AKHIR

PENINJAUAN DAN PERANCANGAN KEMBALI STRUKTUR PERKERASAN LENTUR DENGAN METODE BINA MARGA

(STUDI KASUS : JALAN WATES - PURWOREJO DIY)

DISUSUN OLEH:

SITTI AMIRAH 98511116 SABDOYONO WIYASA H.W 98511252

JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK SIPIL DAN PERENCANAAN UNIVERSITAS ISLAM INDONESIA YOGYAKARTA 2003

HALAMAN PENGESAHAN

TUGAS AKHIR PENINJAUAN DAN PERANCANGAN KEMBALI SIRUKTUR PERKERASAN LENTUR DENGAN METODE RINA MARGA (STUDI KASUS: JALAN WATES – PURWOREJO DIY)

DISUSUN OLEH:

SITTI AMIRAH

No. Mhs: 98511110

SABDOYONO WIYASA H.W

No. Mhs: 98 511 252

Telah diperiksa dan disetujui oleh:

Ir. H. Balya Umar, MSc Dosen Pembimbing I

Ir. Miftahul Fauziah, MT Dosen Pembimbing II

Tanggal:

Tanggal: 08 Marct 03

KATA PENGANTAR

Bismillahirrahmanirrahim

Assalamu 'alaikum Wr. Wb.

Puji syukur penyusun panjatkan kehadirat Allah SWT yang telah melimpahkan rahmat dan hidayahNya sehingga dapat menyelesaikan penulisan Tugas Akhir ini

Penulisan Tugas Akhir merupakan salah satu persyaratan akademis guna memperoleh jenjang kesarjanaan Jenjang Strata-1 Teknik Sipil, pada Jurusan Teknik Sipil, Fakultas Teknik Sipil dan Perencanaan, Universitas Islam Indonesia, Yogyakarta.

Penyusunan Tugas Akhir dititikberatkan pada perancangan ulang dan perancangan lapis tambah perkerasan lentur Ruas Jalan Sentolo – Milir dengan mengambil judul " Peninjauan dan Perancangan Kembali Struktur Perkerasan Lentur dengan Metode Bina Marga (Studi Kasus : Jalan Wates-Purworejo DIY)"

Selama penelitian dan penyusunan Tugas Akhir ini, penyusun banyak memperoleh bantuan dan petunjutk yang bermanfaat dari berbagai pihak. Untuk itu, penyusun menghaturkan terima kasih yang sebesar-besarnya kepada:

Bapak Ir. H. Balya Umar, MSc, selaku Dosen Pembimbing I dan Dosen Penguji
Tugas Akhir yang telah memberikan dukungan, arahan, bimbingan, dan
masukan berharga dalam penyusunan Tugas Akhir,

2. Ibu Ir. Miftahul Fauziah, MT, selaku Dosen Pembimbing II dan Dosen Penguji Tugas Akhir atas dukungan, arahan, bimbingan, dan masukan yang bermanfaat dalam penyusunan Tugas Akhir,

3. Bapak Ir. Subarkah, MT, selaku Dosen Penguji Tugas Akhir yang telah banyak memberikan gagasan baru bagi penyusun.

4. Bapak Prof. Ir. Widodo, MSCE, PhD, selaku Dekan Fakultas Teknik Sipil dan Perencanaan, Universitas Islam Indonesia Yogyakarta,

 Bapak Ir. Munadhir, MT, selaku Ketua Jurusan Teknik Sipil, Fakultas Teknik Sipil dan Perencanaan, Universitas Islam Indonesia Yogyakarta,

 Keluarga, teman – teman, dan pihak – pihak yang telah memberikan bantuan kepada penyusun dalam menyelesaikan Tugas Akhir ini.

Dalam penyusunan Tugas Akhir ini masih banyak terdapat kekurangan sehingga saran dan kritik yang membangun sangat diharapkan agar Tugas Akhir ini menjadi lengkap dan sempurna serta dapat memberikan manfaat bagi semua pihak.

Wabillahittaufikwalhidayah

Wassalamu'alaikum wr. Wb.

Yogyakarta, Februari 2003

Penyusun

SITTI AMIRAH/98511116 SABDOYONO WIYASA/98511252

DAFTAR ISI

LEMBAR JUDUL	
LEMBAR PENGESAHAN	i
KATA PENGANTAR	iii
DAFTAR ISI	V
DAFTAR TABEL	vi
DAFTAR GAMBAR	viii
DAFTAR LAMPIRAN	ix
INTISARI	X
BAB I PENDAHULUAN	1
1.1 Latar Belakang	1
1.2. Tujuan Penelitian	2
1.3. Manfaat Penelitian	2
1.4. Batasan Masalah	3
BAB II TINJAUAN PUSTAKA	4
2.1 Perkerasan Lentur	4
2.2 Kinerja Perkerasan.	5
2.3 Lapis Tambahan	6
BAB III LANDASAN TEORI	7
3.1 Metode Analisa Komponen Bina Marga	7
3.2 Evaluasi Nilai Struktural Perkerasan	20

3.3 Metode Bina Marga 01/MN/B/1983	24
BAB IV METODE PENELITIAN	30
4.1 Proses Penelitian	30
4.2 Alat dan Bahan	32
4.3 Bagan Alir Penelitian	34
BAB V ANALISA DAN PERANCANGAN	35
5.1 Hasil Pengumpulan Data	35
5.2 Analisis Perhitungan	40
5.3 Rekapitulasi Hasil Perancangan	61
BAB VI KESIMPULAN DAN SARAN	65
6.1 Kesimpulan	65
6.2 Saran	66
DAFTAR PUSTAKA	
LAMPIRAN	

DAFTAR TABEL

Tabel	Uraian	Hal
Tabel 3.1	Nilai R untuk perhitungan CBR segmen	8
Tabel 3.2	Faktor Regional	9
Tabel 3.3	Koefisien Distribusi ke lajur rencana	9
Tabel 3.4	Pedoman Penentuan Jumlah Lajur	10
Tabel 3.5	Distribusi Beban Sumbu dan Angka Ekivalen Tiap Golongan Kendaraan	13
Tabel 3.6	Indeks Permukaan pada awal umur rencana (Ipo)	14
Tabel 3.7	Indeks Permukaan pada akhir umur rencana (IPt)	15
Tabel 3.8	Koefisien Kekuatan Relatif	16
Tabel 3.9	Tebal Minimum Lapisan Perkerasan	17
Tabel 3.10	Nilai Kondisi Perkerasan Jalan	18
Tabel 5.1	Hasil Survei Volume Lalu Lintas Tanggal 2,3, dan 4 November 2002 dalam 2 arah	36
Tabel 5.2	Data volume lalu lintas tahun 1997	37
Tabel 5.3	Daftar Tebal Lapis Perkerasan dan Jenis Perkerasan	37
Tabel 5.4	Data Curah Hujan	38
Tabel 5.5	Hasil Pengujian CBR	39
Tabel 5.6	Daftar Hasil Penelitian Lendutan	40
Tabel 5.7	Nilai LEP untuk LHR berdasarkan hasil survei pada tanggal 2, 3, dan 4 November 2002	42
Tabel 5.8	Angka Pertumbuhan Lalu Lintas Tiap Golongan Kendaraan	43
Tabel 5.9	Tabel Perhitungan LEA	44
Tabel 5.10	Koefisien Kekuatan Relatif Lapis Perkerasan	50
Tabel 5.11	Tabel Harga Lendutan Balik Tiap Titik Pemeriksaan	52
Tabel 5.12	Daftar Hasil Perhitungan AE 18 KSAL	54
Tabel 5.13	Tabel Harga Kemiringan Titik Belok Tiap Titik Pemeriksaan	58

DAFTAR GAMBAR

No	Uraian	Hal
2.1	Susunan Lapis Perkerasan	4
2.2	Kurva Kinerja Perkerasan	5
3.1	Bagan Alir Perhitungan Tebal Perkerasan Metoda Analisa	19
3.2	Alat Benkleman Beam	21
3.3	Posisi Beban dan Jenis Pembacaan Benkleman Beam	22
4.1	Bagan Alir Prosedur Penelitian	34
5.1	Susunan Lapis Keras Perancangan Ulang Metode Analisa Komponen Bina Marga 1987	49
5.2	Susunan Lapis Keras Setelah Overlay Metode Analisa Komponen Bina Marga 1987	51
5.3	Grafik Lendutan Balik	53
5.4	Grafik Kemiringan Titik Belok	59
5.5	Susunan Lapis Keras (Existing Road)	62
5.6	Hasil Perancangan Ulang Metode Analisa Komponen Bina Marga 1987	62
5.7	Susunan LapisLeras (Existing Road)	63
5.8	Hasil Overlay Metode Analisa Komponen Bina Marga 1987	63
5.9	Hasil Overlay Metode Lendutan Balik Bina Marga	64

DAFTAR LAMPIRAN

No	Uraian
1	Korelasi DDT dan CBR
2	Nomogram-nomogram Penentuan ITP Metode Analisa Komponen Bina Marga 1987
3	Grafik Penentuan Lendutan Balik Ijin Metode Lendutan Balik Bina Marga
4	Grafik Penentuan Tebal Lapis Tambah Metode Lendutan Balik Bina Marga
5	Grafik Penentuan Tebal LapisTambah dengan Kemiringan Titik Belok Bina Marga
6	Rekapitulasi Survei Volume Lalu Lintas
7	Data Volume Lalu Lintas 1997
8	Susunan Lapis Keras Existing Road
9	Data Curah Hujan
10	Pengujian CBR
11	Hasil Pemeriksaan Benkleman Beam
12	Riwayat Penanganan Jalan

INTISARI

Peningkatan mobilitas penduduk menyebabkan pertumbuhan lalu lintas meningkat dari tahun ke tahun sehingga terjadi repetisi beban lalu lintas yang semakin meningkat pada perkerasan jalan. Dengan peningkatan volume lalu lintas ini perkerasan jalan (*existing road*) mengalami penurunan kondisi struktural. Ruas Jalan Sentolo Milir mengalami gejala kerusakan sehingga dirasakan perlunya untuk dilakukan peninjauan dan perancangan kembali struktur perkerasan dan perancangan *overlay* sehingga perkerasan mampu mendukung beban lalu lintas di tahun – tahun mendatang.

Volume lalu lintas diperoleh dengan melakukan survei lalu lintas selama 3x24 jam, yaitu pada tanggal 2, 3, dan 4 November 2002 di daerah Sentolo. Pengujian CBR dilakukan di laboratorium dalam keadaan jenuh dengan mengambil sampel tanah pada 4 titik. Evaluasi nilai struktural dilakukan dengan cara mengukur nilai lendutan dengan *Benkleman Beam* sehingga dengan nilai lendutan balik tersebut dapat dilakukan perancangan *overlay* dengan Metode Lendutan Balik Bina Marga. Dengan melakukan pengumpulan data struktural existing road baik data primer maupun sekunder dan pengamatan secara visual, perancangan ulang dan perancangan *overlay* dilakukan dengan Metode Analisa Komponen Bina Marga 1987.

Dari hasil pengamatan lendutan dengan *Benkleman Beam* dapat dilihat bahwa pada segmen I (Sta 16+200-Sta 17+400) nilai lendutan balik segmen mencapai nilai 4.177 mm, segmen II (Sta 18+200-Sta 18+800) lendutan balik mencapai nilai 98.9 mm, segmen III lendutan balik segmen mencapai nilai 2.3 mm, dan segmen IV lendutan balik mencapai nilai 70.15 mm. Dengan mengamati nilai lendutan pada tiap segmen, maka pada segmen I, II, dan IV tidak dapat dilakukan *overlay* karena nilai lendutan terlampau besar dan grafik penentuan tebal *overlay* Bina Marga 1983 tidak dapat meng-*cover* nilai tersebut dan pada segmen III diperoleh perhitungan *overlay* dengan Metode Lendutan Balik Bina Marga berupa LASTON setebal 10 cm. Namun bila dikontrol dengan nilai kemiringan titik belok, tidak dapat dilakukan overlay dengan Metode Bina Marga 1983. Berdasarkan penelitian dan perhitungan dengan Metode Analisa Komponen Bina Marga Ruas Jalan Sentolo-Milir membutuhkan *overlay* berupa LASTON setebal 10 cm dan perancangan kembali perkerasan terdiri dari pondasi bawah berupa Sirtu Kelas A 35 cm, pondasi atas berupa Batu Pecah Kelas A 20 cm, dan lapis permukaan LASTON 10 cm.

BAB I

PENDAHULUAN

1.1. Latar Belakang

Jalan raya merupakan moda atau sarana yang sangat penting bagi kehidupan manusia. Di dalam hidupnya manusia selalu mencari kebutuhan hidup dan berkomunikasi seehingga jalan raya dibutuhkan sebagai alat transportasi yang dapat memindahkan manusia atau barang dari suatu tempat ke tempat yang lain. Perkembangan teknologi tentang jalan raya ini dimulai dengan sejarah perkembangan manusia yang selalu berusaha untuk memenuhi kebutuhan hidupnya. Di dalam sejarah tercatat pernah dibuat jalan dari Anyer sampai Panarukan pada masa penjajahan Belanda, namun belum direncanakan secara teknis geometrinya maupun lapis perkerasannya. Pada abad ke-18 baru ditemukan bentuk perkerasan oleh *Thomas Telford* dan *John Londer Mac Adam*, sedangkan perencanaan geometrik jalan raya baru dikenal pada tahun 1960.Struktur perkerasan dengan menggunakan campuran panas *(hotmix)* dikenal pada tahun 1975

Jalan mempunyai peranan penting dalam bidang sosial, ekonomi, politik, strategi/militer dan kebudayaan sehingga jalan bisa dijadikan barometer tentang tingginya kebudayaan dan kemajuan ekonomi suatu daerah/bangsa.

Tingginya pertumbuhan penduduk seiring dengan bertambahnya waktu, perkembangan dalam bidang sosial ekonomi politik budaya, peningkatan mobilitas penduduk menyebabkan volume lalu lintas bertambah padat.

Peningkatan volume lalu lintas menyebabkan kenaikan beban dan repetisi beban pada perkerasan.

Kerusakan pada perkerasan jalan antara lain disebabkan oleh meningkatnya repetisi beban lalu lintas, sistem drainase yang kurang baik yang mengakibatkan naiknya air akibat sifat kapilaritas, material konstruksi perkerasan dan sistem pengolahan bahan yang kurang baik, iklim, kondisi tanah dasar yang tidak stabil, dan kurang baiknya proses pemadatan lapisan di atas tanah dasar.

Dengan gejala visual yang diamati di jalan Wates menuju Purworejo dirasakan perlunya peninjauan kembali kondisi perkerasan dan perencanaan kembali perkerasan dengan volume lalu lintas dan data struktural yang diperbaharui.

1.2. Tujuan Penelitian

Tujuan dari penelitian ini adalah:

- 1. Merancang kembali struktur perkerasan
- 2. Merancang tebal lapisan tambahan
- 3. Mengevaluasi kemungkinan dilakukan *overlay* berdasarkan pengukuran lendutan balik.

1.3. Manfaat penelitian

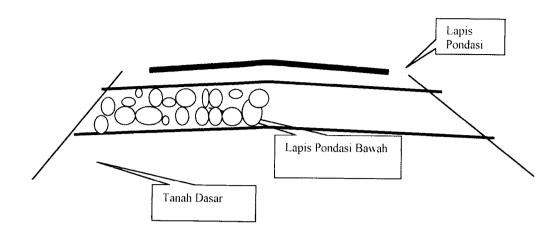
Hasil penelitian ini diharapkan dapat bermanfaat dan memberikan kontribusi bagi pihak yang berhubungan dengan pemeliharaan jalan dan pihak lain yang mengalami masalah serupa.

1.4. Batasan Masalah

Agar penelitian ini dilakukan tidak menyimpang dari tujuan – tujuannya maka diberi batasan sebagai berikut :

- Penelitian dilakukan sepanjang 8.32 km pada ruas Sentolo Milir yaitu di Jalan Wates Km. 16,08 – Km. 24,40.
- 2. Survey kelayakan struktural dengan menggunakan alat Benkleman Beam.
- 3. Perancangan tebal lapis tambahan dan perancangan ulang struktur perkerasan menggunakan data hasil survey.
- 4. Pengambilan data volume lalu lintas dilakukan selama 3 x 24 jam pada hari hari yang mewakili di daerah Sentolo.
- Perancangan ulang struktur perkerasan menggunakan metode Analisa Komponen SKBI 1987.
- Perancangan lapisan tambahan (overlay) menggunakan metode Analisa
 Komponen SKBI 1987 dan Metode Lendutan Balik Bina Marga
 01/MN/B/1983.

BABII


TINJAUAN PUSTAKA

Perkerasan jalan adalah konstruksi yang dibangun di atas lapisan tanah dasar (*sub grade*), yang berfungsi untuk menopang beban lalu lintas. Jenis konstruksi perkerasan jalan pada umumnya ada 2 jenis, yaitu perkerasan lentur (*flexible pavement*) dan perkerasan kaku (*rigid pevement*). Selain dari dua jenis tersebut, sekarang telah banyak digunakan jenis gabungan (*composite pavement*), yaitu perpaduan antara lentur dan kaku (Sukirman, 1999).

2.1. Perkerasan Lentur

Konstruksi perkerasan lentur (*flexible pavement*) adalah perkerasan yang meggunakan aspal sebagai bahan pengikat. Konstruksi perkerasan lentur terdiri dari lapisan-lapisan yang diletakkan di atas tanah dasar yang telah dipadatkan. Lapisan-lapisan tersebut berfungsi untuk menerima beban lalu intas dan menyebarkannya ke lapisan di bawahnya (Sukirman, 1999).

Pada umumnya struktur perkerasan lentur terdiri atas lapis permukaan, lapis pondasi bawah, lapis pondasi atas, dan tanah dasar seperti pada gambar 2.1.

Gambar 2.1 Susunan Lapis Perkerasan

2.2. Lendutan, Lendutan Balik, dan Lapis Tambahan

Lendutan merupakan pengukuran besarnya gerak turun vertikal pada permukaan jalan akibat gaya di atasnya. Lendutan balik adalah besarnya lendutan balik vertikal permukaan jalan akibat dihilangkan beban diatasnya. (Bina Marga 1983).

Pengukuran lendutan balik dengan menggunakan *Benkleman Beam* dapat menunjukkan kemungkinan perlunya dilakukan overlay pada struktur lapis keras. Konstruksi jalan yang mengalami penurunan nilai struktural perlu diberikan lapis tambahan untuk dapat kembali mempunyai nilai kekuatan, tingkat kenyamanan, tingkat kekedapan terhadap air, dan tingkat kecepatannya mengalirkan air (Sukirman, 1999).

Perancangan lapis tambahan adalah merencanakan tebal lapisan yang ditambahkan pada perkerasan yang ada sehingga menambah nilai struktural perkerasan dan memperpanjang umur pelayanan (NAASRA, 1987)

Lendutan yang diakibatkan oleh peningkatan volume lalulintas dapat berkurang sampai lebih kecil dari lendutan yang diizinkan dengan memberi lapis tambahan (Sukirman, 1999).

BABIII

LANDASAN TEORI

III.1. Metode Analisa Komponen Bina Marga

Langkah-langkah perencanaan tebal lapisan perkerasan dengan menggunakan metode ini ialah :

3.1.1 Menentukan nilai daya dukung tanah dasar.

Daya dukung tanah dasar (*sub grade*) pada perencanaan perkerasan lentur berkorelasi dan dinyatakan dengan nilai CBR (*California Bearing Ratio*) yang menyatakan kualitas tanah dasar dibandingkan dengan bahan standar berupa batu pecah yang mempunyai nilai CBR sebesar 100 % dalam memikul beban lalu lintas.

Dengan memperhatikan nilai CBR yang diperoleh, keadaan lingkungan, kondisi tanah dasar di sepanjang jalan, maka CBR tanah dasar dapat ditentukan. Dari nilai CBR yang diperoleh dapat ditentukan nilai Daya Dukung Tanah (DDT) dengan mempergunakan nomogram pada lampiran 1.

Pengujian CBR dilakukan pada beberapa titik dan penentuan CBR yang mewakili dapat ditentukan secara analitis dengan menggunakan persamaan 3.1 (Sukirman, 1999).

$$CBR_{segmen} = CBR_{rata-rata} - (CBR_{maks} - CBR_{min}) / R$$
(3.1)

dengan:

CBR_{segmen} = CBR yang mewakili

 $CBR_{maks} = CBR maksimum$

 $CBR_{min} = CBR minimum$

CBR_{rata-rata} = Jumlah nilai CBR/jumlah titik

R = nilainya tergantung jumlah data dan ditentukan berdasarkan tabel 3.1

Tabel 3.1 Nilai R untuk perhitungan CBR segmen

Jumlah titik	Nilai
Pengamatan	R
2	1.41
3	1.91
4	2.24
5	2.48
6	2.67
7	2.83
8	2.96
9	3.08
>10	3.18

Sumber : Sukirman 1999

3.1.2 Menentukan Umur Rencana jalan yang hendak direncanakan.

Umur rencana perkerasan jalan ditentukan atas dasar pertimbanganpertimbangan klasifikasi fungsional jalan, pola lalu lintas serta nilai ekonomi yang bersangkutan.

3.1.3 Menentukan faktor regional

Faktor Regional berguna untuk memperhatikan kondisi jalan yang berbeda antara jalan yang satu dengan yang lain. Bina Marga memberikan angka yang bervariasi menurut daftar pada tabel 3.2

Tabel 3.2: Faktor Regional

	Kelandai	Kelandaian I(<6%)		Kelandaian II(6-10%)		Kelandaian III(>10%)	
Curah Hujan	% Kenda	raan Berat	% Kendaraan Berat		% Kendaraan Berat		
	≤ 30%	>30%	≤ 30%	>30%	≤ 30%	>30%	
Iklim I							
<900 mm/th	0.5	1.0-1.5	1	1.5-2.0	1.5	2.0-2.5	
Iklim II		<u> </u>					
≥ 900mm/th	1.5	2.0-2.5	2	2.5-3.0	2.5	3.0-3.5	

Sumber: Bina Marga 1987

Cat: pada bagian-bagian jalan tertentu, seperti persimpangan, pemberhentian atau tikungan tajam (jari-jari 30 m) FR ditambah dengan 0.5. Pada daerah rawa-rawa FR ditambah dengan 1.0.

3.1.4 Menentukan Lintas Ekivalen Rencana (LER)

Penentuan lintas ekivalen rencana dengan menggunakan tahap – tahap sebagai berikut :

a. Koefisien Distribusi Kendaraan (C)

Koefisien distribusi kendaraan merupakan prosentase kendaraan pada lajur rencana dengan menggunakan tabel 3.3 di bawah ini .

Tabel 3.3 Koefisien Distribusi ke lajur rencana

Jumlah Lajur	Kendaraa	n Ringan*	Ringan* Kendaraan B		
	1 arah	2 arah	1 arah	2 arah	
l lajur	1	1	1	1	
2 lajur	0.6	0.5	0.7	0.5	
3 lajur	0.4	0.4	0.5	0.475	
4 lajur		0.3		0.45	
5 lejur		0.25		0.425	
6 lajur		0.2		0.4	

Sumber: Bina Marga 1987

Menurut Bina Marga, jika ruas jalan tersebut tidak memiliki batas lajur, maka jumlah lajur dapat ditentukan dengan berpedoman pada tabel 3.4

^{*} berat total kendaraan < 5 ton

^{**} berat total kendaraan > 5 ton

Tabel 3.4 Pedoman Penentuan Jumlah Lajur

Lebar Perkerasan (L)	Jumlah Lajur (m)
$L \le 5.5 \text{ m}$	1 lajur
$5.50 \text{ m} \le L \le 8.25 \text{ m}$	2 lajur
$8.25 \text{ m} \le L \le 11.25 \text{ m}$	3 lajur
$11.25 \text{ m} \le L \le 15.00 \text{ m}$	4 lajur
$15.00 \text{ m} \le L \le 18.75 \text{ m}$	5 lajur
$18.75 \text{ m} \le L \le 22.00 \text{ m}$	6 lajur

Sumber: Bina Marga 1987

b. Angka Ekivalen (E) Beban Sumbu Kendaraan

Angka ekivalen dari suatu beban gandar kendaraan adalah angka yang menyatakan jumlah lintasan sumbu tunggal seberat 8.16 ton (18000 lbs) yang akan menyebabkan derajat kerusakan yang sama apabila beban gandar tersebut lewat satu kali.

Angka ekivalen (E) masing-masing golongan beban sumbu (setiap kendaraan) ditentukan menurut persamaan :

Esumbu tunggal = (beban sumbu tunggal,
$$kg/8160$$
)⁴ (3.2)

Esumbu ganda = (beban sumbu ganda,
$$kg/8160$$
)⁴ $x0.086$ (3.3)

Pada tabel 3.5 dapat dilihat konfigurasi beban sumbu kendaraan dan angka ekivalen beban sumbu standar yang diberikan oleh Bina Marga.

c. Lalulintas Harian Rata-rata (LHR)

Lalu lintas harian rata – rata setiap jenis kendaraan ditentukan pada awal umur rencana, yang dihitung untuk dua arah pada jalan tanpa median atau masing – masing arah pada jalan dengan median. Data volume lalu lintas dapat diperoleh dari pos – pos rutin yang ada disekitar lokasi. Jika tidak terdapat pos – pos rutin di

dekat lokasi atau untuk pengecekan data , perhitungan volume lalu lintas dapat dilakukan secara manual ditempat – tempat yang di anggap perlu. Perhitungan dapat dilakukan selama 3×24 jam atau 3×16 jam terus menerus. Dengan memperhatikan faktor hari, bulan, musim dimana perhitungan dilakukan, dapat diperoleh data lalu lintas harian rata – rata yang representatif.

d. Lintas Ekivalen Permukaan (LEP)

Lintas Ekivalen pada awal umur rencana dihitung dengan persamaan:

$$LEP = \sum_{j=1}^{n} LHRj x Cj x Ej$$
 (3.4)

dengan:

Ej = Angka Ekivalen tiap jenis kendaraan

Cj = Koefisien Distribusi tiap jenis kendaraan

e. Lintas Ekivalen Akhir (LEA)

Lintas ekivalen di akhir umur rencana ditentukan dengan menggunakan persamaan:

LEA =
$$\sum_{j=1}^{n} LHRj (1+i)^{UR} x Cj x Ej$$
 (3.5)

dengan:

i = pertumbuhan lalu lintas

j = jenis kendaraan

Angka pertumbuhan lalu lintas (i) ditentukan berdasarkan persamaan 3.6 dan 3.7 berikut.

$$b = a (1 + i)^n$$
 (3.6)

$$i = [(b/a) - 1] \cdot 100\%$$
 (3.7)

dengan:

b = volume lalu lintas tahun ke n (kend/hr)

a = volume lalu lintas pada ke tahun a (kend/hr)

i = tingkat pertumbuhan lalu lintas (%)

n = jumlah tahun

f. Lintas Ekivalen Tengah (LET)

Lintas ekivalen tengah dihitung dengan menggunakan persamaan:

$$LET = \frac{1}{2} (LEP + LEA)$$
 (3.8)

g. Lintas Ekivalen Rencana (LER)

Lintas ekivalen rencana dihitung dengan menggunakan persamaan:

$$LER = LET \times FP \tag{3.9}$$

Faktor Penyesuaian (FP) ditentukan dengan persamaan:

$$FP = UR/10$$
 (3.10)

dengan:

LET = Lintas Ekivalen Tengah

LEP = Lintas Ekivalen Permulaan

LEA = Lintas Ekivalen Akhir

FP = Faktor Penyesuaian (FP) = UR/10

UR = Umur Rencana.

Tabel 3.5 Distribusi Beban Sumbu dan Angka Ekivalen Tiap Golongan Kendaraan

-						_	
	KONFIGURASI SUMBU & TIPE	BERAT KOSONG (ton)	BEBAN MUATAN MAKSIMUM (ton)	BERAT TOTAL MAKSIMUM (100)		UE 18 KSAL MAKSIMUM	
	1.1 HP	1,5	0,5	2,0	0,000	0,0004	50% 50%
7	1.2 BUS	3	6	9	0,0037	0,3006	34% 66% RODA TUNGGAL
	1.2L TRUK	2,3	6	8,3	0,0013	0,2174	34% 66%
	1.2H TRUK	4,2	14	18,2	0,0143	5,0264	34% 66%
	1.22 TRUK	5	20	25	0,0044	2,7416	25% 75% 27.8% 27.8%
	.2+2.2 Railer	6,4	25	31,4	0,0085	4,9283	18% 24% 24% 24%
	1.2-2 Railer	6,2	20-	26, 2	0,0192	5,1179	18% 41% 41%
	.2-22 Railer	10	32	42 0	,0327	0,183	18% 28% 54% 27% \$ 27% 10 0 0

Sumber : Bina Marga 1983

3.1.5 Menentukan Indeks Permukaan

Indeks Permukaan (IP) adalah suatu angka yang digunakan untuk menyatakan kerataan / kehalusan serta kekokohan permukaan perkerasan jalan yang bertalian dengan tingkat pelayanan bagi lalulintas yang lewat.

3.1.5.1 Indeks Permukaan Awal (Ipo)

Indeks Permukaan Awal dapat ditentukan dengan menggunakan tabel 3.6 yang penentuannya disesuaikan dengan jenis lapis permukaan.

Tabel 3.6: Indeks Permukaan pada awal umur rencana (Ipo)

Jenis Lapis Permukaan	lpo	Roughness * (mm/km)
Laston	≥ 4	≤ 1000
	3.9-3.5	> 1000
Lasbutag	3.9-3.5	≤ 2000
	3.4-3.0	> 2000
HRA	3.9-3.5	≤ 2000
	3.4-3.0	>2000
Burda	3.9-3.5	<2000
Burtu	3.4-3.0	<2000
Lapen	3.4-3.0	≤ 3000
	2.9-2.5	>3000
Latasbum	2.9-2.5	
Buras	2.9-2.5	
Latasir	2.9-2.5	
Jalan Tanah	≤ 2.4	
Jalan Kerikil	≤ 2.4	

Sumber : Bina Marga 1987

3.1.5.2 Indeks Permukaan Terminal (Ipt)

Indeks Permukaan Terminal dari perkerasan dapat ditentukan dengan tabel 3.7 yang penentuannya berdasarkan Lintas Ekivalen Rencana dan klasifikasi jalan.

^{*}Alat pengukur roughmeter yang dipakai adalah roughmeter NAASRA, yang dipasang pada kendaraan standar Datsun 1500 Stasiun Wagon, dengan kecepatan kendaraan ±32 km/jam.

Tabel 3.7: Indeks Permukaan pada akhir umur rencana (IPt)

	·		lpt			
LER	Klasifikasi Jalan					
(Lintas Ekevalen Rencana)	Lokal	Kolektor	Arteri	Tol		
< 10	1.0 - 1.5	1.5	1.5 - 2.0	-		
10 – 100	1.5	1.5 - 2.0	2	-		
100 - 1000	1.5 - 2.0	2	2.0 - 2.5	-		
> 1000	-	2.0 - 2.5	2.5	-		

Sumber : Bina Marga 1987

3.1.6 Menentukan Indeks Tebal Perkerasan (ITP)

Indeks Tebal Perkerasan (ITP) atau Structural Number (SN) adalah angka yang berhubungan dengan penentuan tebal perkerasan. Dalam menentukan tebal perkerasan lentur, yang akan dihitung adalah ITP atau SN menurut persamaan :

$$ITP = a1.D1 + a2.D2 + a3.D3$$
 (3.11)

dengan:

a = koefisien kekuatan relatif bahan

D = tebal lapis perkerasan

1,2,3 menunjukkan lapis permukaan, lapis pondasi, dan lapis pondasi bawah.

3.1.6.1 Koefisien Kekuatan Relatif Bahan (a)

Koefisien kekuatan relatif adalah merupakan ukuran kemampuan bahan (lapis perkerasan) dalam menjalankan fungsinya sebagai bagian dari perkerasan. Koefisien ini ditetapkan secara empiris untuk tiap jenis bahan.

Nilai a tergantung pada kualitas dan fungsi bahan lapis perkerasan tersebut. Penentuan koefisien relatif bahan dapat dilihat dalam tabel 3.8

Tabel 3.8 Koefisien Kekuatan Relatif

Koe	fisien Kel	cuatan				
	Relatif			tan Bahan		Jenis
al	<u>a2</u>	a3	+	Kt(kg/cm2)	CBR	Bahan
0.4			744			
0.35			590			
0.32		1	454			LASTON
0.3			340			
0.35		1	744			
0.31			590			
0.28	į	1	454			Ashuton
0.26			340			
0.3			340			Hot Rolled Asphalt
0.26			340			Aspal Makadam
0.25		 			İ	LAPEN (mekanis)
0.2						LAPEN (manual)
]	0.28	 	590			
	0.26		454			LASTON atas
!	0.24		340			
	0.23					LAPEN (mekanis)
1	0.19		! <u>!</u>			LAPEN (manual)
	0.15			22		Stabilitas tanah dgn semen
	0.13		! ! ! !	18		
	0.15			22		Stabilitas tanah dgn kapur
	0.13			18		
į	0.14				100	Pondasi macadam(basah)
	0.12				6Ü	Pondasi macadam(kering)
	0.14				100	Batu Pecah (Kelas A)
	0.13				80	Batu Pecah (Kelas B)
****	0.12				60	Datu Pecah (Kelas C)
		0.13			70	Sirtu/pitrun (Kelas A)
 		0.12	 		50	Sirtu/pitrum (Kelas B)
		0.11			30	Sirtn/pitrun (Kelas C)
		û. î			20	Tanah/lempung kepasiran

Sumber: Bina Marga 1987

3.1.6.2 Tebal Perkerasan (D)

Perkiraan besarnya ketebalan masing – masing jenis lapis perkerasan ini tergantung dari nilai minimum yang telah diberikan oleh Bina Marga. Tebal minimum dari masing – masing jenis perkerasan dapat dilihat pada tabel 3.9 berikut.

Tabel 3.9 Tebal Minimum Lapisan Perkerasan

Lapisan Permukaan

ITP	Tebal Minimum(cm)	Bahan
< 3.00		Lapisan Pelindung, BURAS, BURTU/BURDA
3.00 - 6.70	5	LAPEN/aspal macadam, HRA, asbuton, LASTON
6.71 - 7.49	7.5	LAPEN/aspal macadam, HRA, asbuton, LASTON
7.50 - 9.99	7.5	Asbuton, LASTON
>> 10.00	10	LASTON

Sumber: Bina Marga 1987

Lapisan Pondasi

ITP	Tebal Minimum (cm)	Bahan
< 3.00	15	Batu pecah, Stabilitas tanah dgn semen,
		Stabilitas tanah dgn kapur
3.00-7.49	20	Batu pecah, Stabilitas tanah dgn semen,
		Stabilitas tanah dgn kapur
	10	LASTON ATAS
7.90-9.99	20*	Batu pecah, Stabilitas tanah dgn semen, Stabilitas tanah dgn kapur, pondasi macadam
	15	LASTON ATAS
10.00-12.24	20	Batu pecah, Stabilitas tanah dgn semen atau kapur, pondasi macadam, LAPEN, LASTON ATAS
>>12.15	25	Batu pecah, Stabilitas tanah dgn semen atau kapur, pondasi macadam, LAPEN, LASTON ATAS

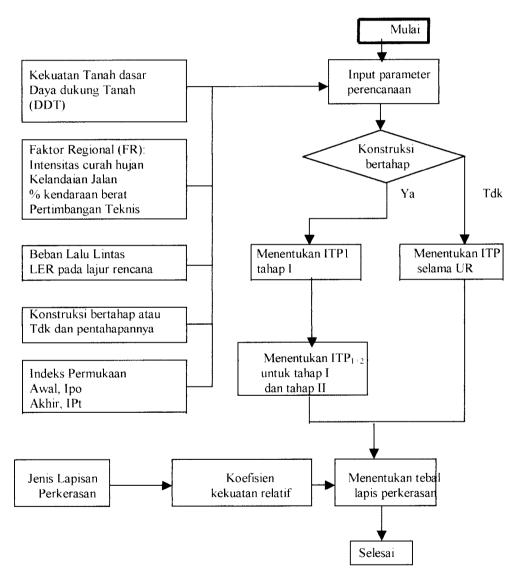
Sumber: Bina Marga 1987

^{*}Batas 20 cm tersebut dapat diturunkan manjadi 15 cm bila untuk pondasi bawah digunakan material berbutir kasar.

Indeks Tebal Perkerasan ini ditentukan oleh Lintas Ekivalen Rencana (LER), Daya Dukung Tanah (DDT), Faktor Regional (FR), Indeks Permukaan (Ipo dan Ipt) dengan menggunakan nomogram – nomogram pada lampiran 2.

3.1.7 Pelapisan Tambahan

Perhitungan lapisan tambahan adalah dengan mengurangi ITP jalan yang ada dengan ITP yang sesuai dengan kondisi sekarang dan beberapa tahun ke depan. Kondisi perkerasan jalan lama (*existing road*) dinilai sesuai daftar pada tabel 3.10


Tabel 3.10 Nilai Kondisi Perkerasan Jalan

1. Lapis Permukaan:	
Umumnya tidak retak,hanya sedikit deformasi pada jalur roda	90-100%
Terlihat retak halus, sedikit deformasi pada jalur roda namun masih stabil	70-90%
Retak sedang, beberapa deformasi pada jalur roda,	
pada dasarnya masih menunjukkan kestabilan	50-70%
Retak banyak,demikian juga deformasi pada jalur roda,	
menunjukkan gejala ketidakstabilan	30-50%
2. Lapis Pondasi :	
a. Pondasi Aspal Beton atau Penetrasi Macadam	
Umumnya tidak retak	90-100%
Terlihat retak halus,namun masih tetap stabil	70-90%
Retak sedang,pada dasarnya masi menunjukkan kestabilan	50-70%
Retak banyak,menunjukkan gejala ketidakstabilan	30-50%
b. Stabilisasi Tanah dengan Semen atau Kapur	
Indeks Plastisitas (<i>Plasticity Indeks</i> =PI)≤10	70-100%
c. Pondasi Macadam atau Batu Pecah :	
Indeks Plastisitas (<i>Plasticity Indeks</i> =PI)≤6	80-100%
3. Lapis Pondasi Bawah	
Indeks Plastisitas (Plasticity Indeks=PI)≤6	90-100%
Indeks Plastisitas (Plasticity Indeks=PI)> 6	70-90%

Sumber: Bina Marga 1987

3.1.8 Bagan alir prosedur perencanaan

Prosedur perancangan perkerasan lentur Metode Analisa Komponen Bina Marga digambarkan pada gambar 3.1

Gambar 3.1 Bagan Alir Perhitungan Tebal Perkerasan Metoda Bina Marga'87 Sumber : Bina Marga 1987

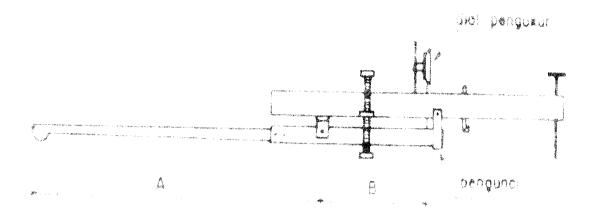
3.2 Evaluasi Kondisi Struktural Perkerasan

Pada dasarnya pemeriksaan kondisi struktural dengan benkelman beam merupakan pengukuran besarnya gerak turun vertikal pada permukaan jalan akibat gaya di atasnya, yang disebut lendutan.

Pemeriksaan dengan alat *benkleman beam* yang umum digunakan Bina Marga adalah pemeriksaan lendutan balik dan pengukuran lendutan balik titik belok.

Faktor-faktor yang mempengaruhi data antara lain (Sukirman, 1999):

a. Faktor Koreksi Beban (Fl)


Beban truk pemeriksaan mempengaruhi harga lendutan. Jika beban truk tidak standar (8.16 ton), maka harga lendutan harus dikoreksi dengan menggunakan faktor koreksi beban. Faktor koreksi beban ditentukan berdasarkan persamaan 3.12 berikut.

$$FI = Beban standar, 8.16 ton / Beban truk pemeriksa$$
 (3.12)

b. Faktor Pengali (Fm)

Panjang dan perbandingan batang benkelman beam mempengaruhi hasil perhitungan lendutan sehingga sebelum digunakan perbandingan antara Dim A/Dim B harus ditentukan. Faktor pengali ditentukan berdasarkan gambar 3.2 dan persamaan 3.13

$$Fm = Dim A / Dim B \tag{3.13}$$

Gambar 3.2 Alat Benkelman beam Sumber: Sukirman 1999

c. Faktor Koreksi (Fe)

Faktor koreksi diperlukan karena pengaruh musim dan lingkungan akan mempengaruhi hasil pemeriksaan. Bina Marga menentukan besarnya Fe sebagai berikut :

- 1. Fe = 1.0, jika pemeriksaan pada musim penghujan.
- 2. Fe = 1.5, jika pemeriksaan di musim kemarau.
- 3. Fe = 1.0 1.5, jika pemeriksaan di awal musim kemarau dan musim penghujan.
- 4. Fe = 1.0, jika pemeriksaan di musim kemarau dan lokasi pemeriksaan pada daerah dengan muka air tanah tinggi.
- 5. Fe = 0.9 1.0 jika pemeriksaan di lokasi yang kondisi drainasenya jelek.

Pembacaan yang dilakukan pada pemeriksaan dengan henkelman beam adalah

(Sukirman, 1999):

1. Pembacaan awal (d1), dilakukan pada saat posisi beban tepat berada pada

tumit batang (gambar 3.3) dan seringkali dinolkan.

2. Pembacaan kedua (d2), yaitu pada saat posisi beban berada pada jarak X_{12}

dari titik awal. $X_{12}=30\ \text{cm}$ untuk jenis permukaan penetrasi dan $X_{12}=40$

cm untuk jenis permukaan aspal beton (gambar 3.3).

3. Pembacaan ketiga (d3), yaitu pada saat posisi beban pada jarak C dari titik

awal (gambar 3.3). C adalah jarak dari tumit batang sampai kaki depan.

4. Pembacaan keempat (d4), adalah pembacaan pada saat posisi beban

berada pada jarak 6 meter dari titik awal (gambar 3.3).

Gambar 3.3 Posisi beban dan jenis pembacaan

Sumber: Sukirman 1999

22

3.2.1 Analisa dan Perhitungan Data Pembacaan

3.2.1.1 Lendutan Balik

Lendutan balik adalah besarnya lendutan balik vertikal permukaan jalan akibat dihilangkan beban diatasnya. Lendutan balik dapat ditentukan menggunakan persamaan 3.14 (Sukirman, 1999).

$$d = Fm \cdot Fl \cdot Fe (d4 - d1)$$
 (3.14)

dengan:

d = lendutan balik

Fm = Faktor pengali (persamaan 3.13)

Fl = Faktor koreksi beban (persamaan 3.12)

Fe = Faktor koreksi

d4 = pembacaan keempat

d1 = pembacaan awal

3.2.1.2 Kemiringan Titik Belok (tg θ)

Kemiringan titik belok ditentukan berdasarkan persamaan 3.15 berikut (Sukirman, 1999).

$$tg \theta = [(d2 - d1)/X_{12}] \cdot Fm \cdot Fl \cdot Fe$$
 (3.15)

dengan:

 $tg \theta = kemiringan titik belok$

d2 = pembacaan kedua

d1 = pembacaan awal

Fm = Faktor pengali (persamaan 3.13)

F1 = Faktor koreksi beban (persamaan 3.12)

Fe = Faktor koreksi

3.3 Metode Bina Marga 01/MN/B/1983

Perhitungan lapis tambahan dengan cara lendutan balik hendaknya dikontrol dengan cara kemiringan titik ($tg\phi$) dan tebal lapis tambahan rencana diambil yang terbesar.

3.3.1.Perhitungan Tebal Lapisan Tambahan Lendutan Balik

Tahap – tahap penentuan tebal lapis tambahan dengan lendutan balik adalah (Bina Marga, 1983) :

I. Perhitungan Lendutan Balik

Tahap – tahap perhitungan lendutan balik :

- Lendutan balik (rebound deflection) tiap-tiap titik dihitung dengan persamaan
 3.14
- 2. Menggambar nilai lendutan balik tiap titik pemeriksaan yang diperoleh. Jika tiap titik pemeriksaan menggunakan lebih dari satu alat benkelman beam, maka digambar nilai lendutan balik rata-rata dari tiap titik pemeriksaan tersebut.
- 3. Menghubungkan nilai –nilai lendutan balik sehingga merupakan grafik lendutan balik.

- 4. Menempatkan panjang seksi jalan dengan mengusahakan agar tiap-tiap seksi jalan tersebut mempunyai lendutan balik yang kurang lebih seragam.
- 5. Untuk menentukan besarnya lendutan balik yang mewakili suatu seksi jalan tersebut (*representative rebound deflection*) dipergunakan persamaan yang disesuaikan dengan fungsi jalan ,sebagai berikut:

(1)
$$D = \overline{d} + 2 S \text{ untuk jalan arteri/ tol}$$
 (3.16)

(2)
$$D = d + 1,64 \text{ S}$$
 untuk jalan kolektor (3.17)

(3)
$$D = \overline{d} + 1,28 \text{ S} \text{ untuk jalan lokal}$$
 (3.18)

$$S = \sqrt{\frac{n(\Sigma d^2) - (\Sigma d)^2}{n(n-1)}}$$
(3.19)

dengan:

 $\frac{\Delta}{d} = \frac{\Sigma d}{n}$ (lendutan balik rata-rata, dalam suatu seksi jalan)

d = lendutan balik tiap titik di dalam seksi jalan.

D = Lendutan balik yang mewakili suatu seksi jalan

n = jumlah titik pemeriksaan pada suatu seksi jalan

S = standar deviasi

II. Perhitungan Lapis Tambahan

Tahap – tahap perhitungan tebal lapis tambahan:

- 1. Pengumpulan data lalu lintas yang diperlukan pada jalan yang bersangkutan antara lain lalu lintas harian rata-rata (LHR) dan jumlah lalu lintas rencana (design trafic number) ditentukan atas dasar jumlah jalur dan jenis kendaraan.
- Menghitung besarnya jumlah ekivalen harian rata-rata terhadap satuan 8,16 ton beban as tunggal dengan menjumlahkan hasil perkalian masing-masing jenis lalu lintas harian rata-rata tersebut.
- 3. Menentukan umur rencana dan perkembangan lalu lintas.
- 4. Menentukan jumlah lalu lintas secara akumulatif selama umur rencana dengan persamaan 3.21 dan 3.22 berikut.

$$AE 18 KSAL = 365 x N x LEP$$
 (3.20)

$$N = \frac{1}{2} \left[1 + (1 + R)^{n} + 2 (1 + R) - \frac{(1+R)^{n-1} - 1}{R} \right]$$
 (3.21)

dengan:

AE 18 KSAL = Accumulative Equivalent 18 Kip Single Axle Load

LEP = Lintas Ekivalen Permulaan (persamaan 3.4)

365 = Jumlah hari dalam satu tahun.

N = Faktor umur rencana yang sudah disesuaikan dengan perkembangan lalu lintas

- R = Perkembangan Lalu Lintas
- n = Umur Rencana
- 5. Berdasarkan hasil AE 18 KSAL dari grafik hubungan antara lendutan balik yang diijinkan pada lampiran 3 akan diperoleh lendutan balik yang diijinkan.
- 6. Berdasarkan lendutan balik yang ada (sebelum diberi lapis tambahan) dengan menggunakan grafik pada lampiran 4 dapat ditentukan tebal lapisan tambahan yang nilai lendutan baliknya tidak boleh melebihi lendutan balik yang diijinkan .

3.3.2 Perhitungan Tebal Lapis Tambahan dengan Kemiringan Titik Belok.

Tahapan untuk menentukan tebal lapis tambahan dengan menggunakan kemiringan titik belok :

- I. Perhitungan kemiringan titik belok
 - Setelah mendapatkan data lapangan yang berupa hasil pembacaan tiap titik pemeriksaan , maka tangen (kemiringan) titik belok tiap-tiap titik dihitung dengan menggunakan persamaan 3.15.
 - 2. Menggambar nilai kemiringan titik belok tiap titik pemeriksaan yang diperoleh.
 - Menghubungkan nilai kemiringan titik belok sehingga merupakan grafik kemiringan titik belok .

- 4. Menempatkan panjang seksi jalan dengan mengusahakan agar tiap-tiap seksi jalan tersebut mempunyai tangen φ yang kurang lebih seragam.
- 5. Untuk menentukan tg φ yang mewakili satu seksi jalan tersebut(representative slope of deflection basin) dengan menggunakan persamaan:

$$Tg \phi = \overline{tg \phi} + 2S \text{ untuk jalan arteri}$$
 (3.22)

$$Tg \phi = tg \phi + 1,64 S \text{ untuk jalan kolektor}$$
 (3.23)

$$Tg \phi = tg \phi + 1,28 S \text{ untuk jalan lokal}$$
 (3.24)

$$S = \sqrt{\frac{n(\Sigma t g \phi^{-2}) - (\Sigma t g \phi^{-})^2}{n(n-1)}}$$
(3.25)

dengan:

 $Tg \phi = Tg \phi$ yang mewakili suatu seksi jalan

$$tg \phi = tg \phi (tg \phi rata-rata, dalam suatu seksi jalan)$$

 $tg \phi = tg \phi$ tiap titik dalanm seksi jalan

n = jumlah titik pemeriksaan pada suatu seksi jalan.

S = Standar deviasi

II. Perhitungan lapis tambahan

Berdasarkan hasil AE 18 KSAL dari perhitungan lapis tambahan lendutan balik, dari grafik hubungan antara nilai tg ϕ dan tebal lapis yang dibutuhkan pada lampiran 5 akan diperoleh tebal lapis tambahan yang nilai tg ϕ nya tidak boleh melebihi nilai tg ϕ yang terjadi.

BAB IV

METODE PENELITIAN

4.1. Proses Penelitian

Proses penelitian dilaksanakan dalam 5 tahapan, yaitu tahap persiapan, tahap pekerjaan lapangan, tahap pengujian laboratorium, tahap analisa, dan tahap penyusunan laporan.

4.1.1. Tahap Persiapan

Tahap persiapan meliputi:

- a. Peninjauan Lokasi
- b. Mengurus ijin kegiatan penelitian
- c. Mengumpulkan referensi dan informasi informasi yang berkaitan
- d. Pengajuan proposal

4.1.2. Tahap Pekerjaan Lapangan

Tahap pekerjaan lapangan ini dibagi menjadi 3 tahap, yaitu:

a. Menghitung volume lalu lintas

Perhitungan volume lalu lintas dilakukan 3 x 24 jam pada hari-hari tertentu (Sabtu, Minggu, Senin)

Dalam satu hari dibagi menjadi 3 kelompok, kelompok 1 jam 06.00-14.00, kelompok 2 jam 14.00-22.00, dan kelompok 3 jam 22.00-06.00

b. Mengambil sampel tebal lapis perkerasan.

Pengambilan sampel dilakukan dengan dengan meletakkan alat *core* drill ke titik yang telah ditentukan untuk mengambil sampel. Kemudian mengidentifikasi sampel sesuai lokasinya.

c. Pemeriksaan dengan alat benkelman beam

Pemeriksaan ini menggunakan truck yang dimuati beban hingga masing-masing roda belakang ban ganda sebesar $(4,08 \pm 0,045)$ ton atau (9.000 ± 100) lbs. Kemudian memeriksa arloji pengukur serta membersihkannya dengan minyak, guna memperkecil gesekan dan mengurangi terjadinya karat. Pemasangan arloji pengukur pada tangkai *Benkelman Beam* sedemikian rupa hingga batang arloji pengukur arahnya vertikal .

4.1.3. Tahap Pengujian Laboratorium

Pengujian sampel di laboratorium untuk menentukan CBR laboratorium.

Tahap pengujian ini antara lain:

- a. Pengujian kadar air pada sampel tanah.
- b. Mengambil contoh tanah kering dan mencampur tanah dengan air sampai kadar air optimum
- c. Memadatkan contoh tanah yang dicampur dengan air
- d. Meletakkan benda uji beserta keping alas di atas mesin penetrasi.
- e. Merendam benda uji.
- f. Memberikan pembebanan secara teratur sehingga kecepatan penetrasi stabil

g. Mengeluarkan benda uji dari cetakan dan menentukan kadar airnya

4.1.4. Tahap Analisa

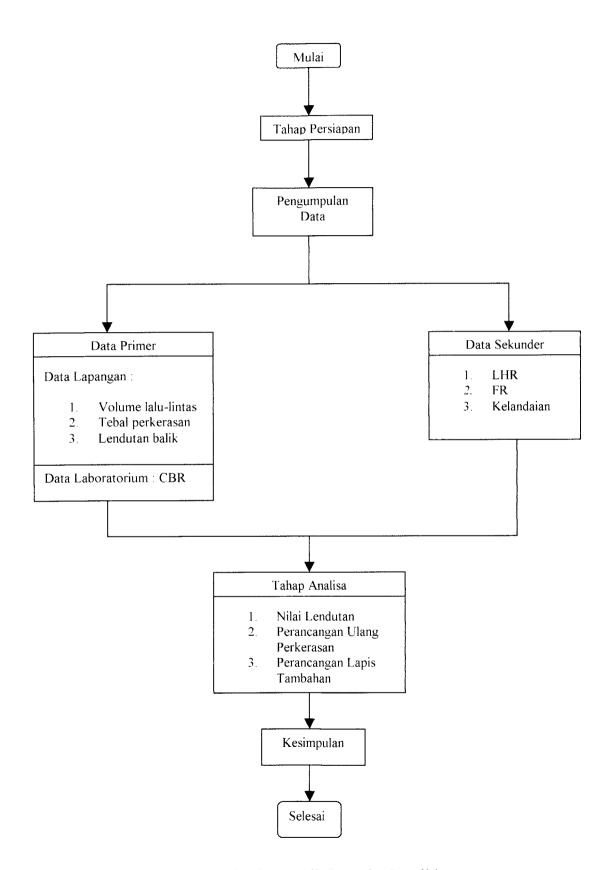
Tahap analisa terdiri atas:

- a. Perancangan kembali struktur perkerasan dan perancangan *overlay* dengan metode Analisa Komponen Bina Marga 1987.
- b. Analisis nilai lendutan sebagai hasil pemeriksaan *benkelman beam*.
- c. Perancangan overlay dengan menggunakan lendutan balik.

4.1.5. Tahap Penyusunan Laporan

4.2 Alat dan Bahan

- 4.2.1. Perhitungan volume lalu lintas
 - a. Alat penghitung jumlah kendaraan yang lewat (Hand Tally Counter)
 - b. Formulir perhitungan volume lalu lintas
- 4.2.2. Pengambilan sampel dengan core drill
 - a. Pengebor aspal
 - b. Busa untuk menghilangkan air dalam lubang
 - c. Pemahat untuk membantu mengambil sampel core drill
 - d. Jangka sorong untuk mengetahui tebal lapisan


4.2.3 Penelitian CBR laboratorium

- a. Mesin penetrasi.
- b. Cetakan logam berbentuk silinder
- c. Piringan pemisah dari logam
- d. Alat penumbuk
- e. Alat pengukur pengembangan (swell)

- e. Alat pengukur pengembangan (swell)
- f. Peralatan bantu lainnya(talam, alat perata, bak peredam dll)
- 4.2.4 Pemeriksaan dengan Benkelman Beam
 - a. Truck dengan berat kosong $(4\pm 0,1)$ ton
 - b. Alat Benkelman Beam
 - c. Rollmeter
 - d. Formulir lapangan

4.3 Bagan Alir Penelitian

Bagan alir prosedur penelitian dapat dilihat pada gambar 4.1.

Gambar 4.1 Bagan Alir Prosedur Penelitian

BAB V

ANALISA DAN PERANCANGAN

5.1. Hasil Pengumpulan Data

Pengumpulan data dilakukan untuk memudahkan analisa. Berikut ini disajikan hasil pengumpulan data.

5.1.1. Kondisi Lapis Keras

Kondisi perkerasan ruas jalan Sentolo-Milir adalah sebagai berikut :

a. Tipe jalan : jalan arteri 2 arah tanpa batas jalur

b. Lebar perkerasan : 7 m

c. Lebar bahu jalan : rata-rata 1 meter

d. Kondisi medan : rata-rata lurus dan datar

e. Kondisi permukaan jalan : pada daerah tertentu mengalami kerusakan

seperti retak.

5.1.2. Beban Lalu Lintas

Pengamatan jumlah kendaraan yang lewat dilakukan selama 3 x 24 jam, yaitu pada hari Sabtu, 2 November 2002 ; Minggu, 3 November 2003 ; Senin, 4 November 2002 di daerah SPBU Sentolo.

Jenis-jenis kendaraan yang diamati berdasarkan klasifikasi kendaraan dari Dinas Pekerjaan Umum Propinsi DIY serta Dinas Lalu Lintas dan Angkutan Jalan Raya Propinsi DIY yang dibagi menjadi 8 golongan kendaraan yaitu :

- a. Golongan I, yaitu kendaraan ringan berupa kendaraan pribadi (sedan, jeep, minibus/*Stasion Wagon*), mobil angkutan penumpang (taxi, mikro bus), dan kendaraan angkutan barang (*pick up*, mikro truk, *colt box*)
- b. Golongan II, yaitu berupa bus.
- c. Golongan III, yaitu truk ringan dengan berat total maksimum 8.3 ton.
- d. Golongan IV, yaitu truk sedang dengan berat total maksimum 18.2 ton
- e. Golongan V, yaitu truk berat dengan berat total maksimum 25 ton.
- f. Golongan VI, yaitu berupa truk gandeng.
- g. Golongan VII, yaitu trailer dengan berat total maksimum 26.2 ton.
- h. Golongan VIII, yaitu trailer dengan berat total maksimum 42 ton.

Hasil pencacahan jumlah kendaraan disajikan pada tabel 5.1 berikut, selengkapnya disajikan pada lampiran 6.

Tabel 5.1 Hasil Survei Volume Lalu Lintas Tanggal 2,3, dan 4 November 2002 dalam 2 arah

, ,		Golongan Kendaraan							Total	
Tgl	I	П	Ш	IV	V	VI	VII	VIII	(Kend/hr/2arah)	
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	
2-Nov-02	10401	1674	1780	367	239	93	57	188	14799	
3-Nov-02	9912	1772	1231	266	212	9	10	208	13620	
4-Nov-02	8469	1304	1796	331	211	100	65	166	12442	

Sumber: Hasil Survey Lalu Lintas 2002

Berdasarkan data pada lampiran 7 yang diperoleh dari Bina Marga DIY, volume lalu lintas pada tahun 1997 dapat dilihat pada tabel 5.2 berikut.

Tabel 5.2 Data volume lalu lintas tahun 1997

Golongan Kendaraan	Jumlah Kend/hr/2arah
I	10383
II	1325
III, IV	1972
V, VI, VII, dan VIII	401
Total	14081

Sumber: Bina Marga 1997

5.1.3. Bahan Lapis Keras

Berdasarkan data yang diperoleh dari Dinas Pekerjaan Umum, Sub Dinas Bina Marga, Propinsi DIY bahan lapis keras yang digunakan pada ruas Sentolo-Milir dapat dilihat pada tabel 5.3 berikut. Selengkapnya potongan perkerasan dapat dilihat pada lampiran 8.

Tabel 5.3 Daftar Tebal Lapis Perkerasan dan Jenis Perkerasan

Lapisan Perkerasan	Jenis	Material	Tebal Lapisar
(1)	(2)	(3)	(4)
Lapis Permukaan AC	Laston (Asphalt Concrete)	AC	3 cm
Lapis Permukaan ATB	Laston (Asphalt Concrete)	AC	3 cm
Lapis Permukaan (Lapen)	Lapis Penetrasi	Lapen	7 cm
Lapis Pondasi Atas	Sirtu	Sirtu	8 cm
Lapis Pondasi Bawah	Agregat Kelas B(BTK)	Batu Kali	20 cm
Lapis Pondasi Bawah	Pasir	Pasir	20cm
Tanah Dasar	Tanah Padat	Tanah Padat	_

Sumber : Subdin Bina Marga DIY

5.1.4. Kondisi Lingkungan

Menurut Dinas Pekerjaan Umum, Sub Dinas Bina Marga, Propinsi DIY, ruas Sentolo Milir termasuk dalam golongan medan datar dan lurus dengan kelandaian tidak lebih dari 6 %.

Berdasarkan data yang diperoleh dari Biro Pusat Statistik DIY, diperoleh data curah hujan di daerah Sentolo 1885 ≥ 900 mm/thn. Pada tabel 5.4 akan disajikan data curah hujan, selengkapnya dapat dilihat pada lampiran 9.

Tabel 5.4 Data Curah Hujan

Bulan	Curah Hujan (mm)
Januari	347
Februari	274
Maret	247
April	108
Mei	49
Juni	54
Juli	85
Agustus	l
September	_
Oktober	340
November	220
Desember	160
Total	1885

Sumber: Biro Pusat Statistik 2001

5.1.5. Tanah Dasar

Penelitian tanah dasar di laboratorium dilakukan untuk mengetahui nilai CBR tanah dasar. Pengujian CBR dilakukan pada 4 sampel (lampiran 10) dan hasilnya disajikan pada tabel 5.5 berikut.

Tabel 5.5 Hasil Pengujian CBR

Sampel	Harga	CBR (%)	Nilai CBR
	0.1"	0.2"	(%)
(1)	(2)	(3)	(4)
A	11.97	10.31	11.97
В	11.47	9.98	11.47
С	11.72	9.98	11.72
D	10.97	10.3	10.97

Sumber: Hasil Pengujian CBR Laboratorium 2002

Berdasarkan data yang diperoleh pada tabel 5.5, persamaan 3.1, dan tabel 3.1 ditentukan nilai CBR segmen yang mewakili sebagai berikut.

$$CBR_{rata-rata} = (\ 11.97 + 11.47 + 11.72 + 10.97\)\ \%\ /\ 4 = 11.5325\ \%$$

$$CBR_{maks} = 11.97\ \%$$

$$CBR_{min} = 10.97\ \%$$

$$R = 2.24$$

$$CBR_{seamen} = 11.5325 - (11.97 - 10.97\)\ /\ 2.24 = 11.08\ \%\ \approx\ 11\ \%$$

5.1.6. Pemeriksaan Benkelman Beam

Hasil pemeriksaan lendutan dengan menggunakan *benkleman beam* dapat dilihat pada tabel 5.6 dan selengkapnya dapat dilihat pada lampiran 11.

Tabel 5.6 Daftar Hasil Penelitian Lendutan

KM	d1		Kiri		Kanan			
		d2	d3	d4	d2	d3	d4	
16+200	0	0	0.13	0.25	0	0.13	0.25	
16+600	0	0.25	0.33	0.4	0.25	0.33	0.4	
17+000	0	0.5	1	1.5	0.5	1	1.5	
17+400	0	0.1	0.15	0.2	0.1	0.15	0.2	
18+200	0	27	35	43	27	35	43	
18+600	0	24.5	31.75	39	24.5	31.75	39	
18+800	0	5	12.25	19.5	5	12.25	19.5	
19+400	0	0	0	0	0	0	0	
20+000	0	0	0	0	0	0	0	
20+400	0	1	1	1	1	1	1	
21+100	0	0	0	0	0	0	0	
21+600	0	0	0.88	1.75	0	0.88	1.75	
22+000	0	0.5	1.25	2	0.5	1.25	2	
22+700	0	3	11.5	20	3	11.5	20	
23+000	0	14	16	18	14	16	18	
23+400	0	0	5.5	11	0	5.5	11	
23+700	0	21	25.75	30.5	21	25.75	30.5	
23+900	0	0	2	4	0	2	4	
24+000	0	1.5	4.25	7	1.5	4.25	7	
24+200	0	14.5	20	25.5	14.5	20	25.5	
24+400	0	3.5	11	18.5	3.5	11	18.5	

Sumber: Hasil Pemeriksaan Benkelman Beam 2002

5.2. Analisis Perhitungan

Analisis perhitungan dilakukan setelah pengumpulan data dilakukan. Metode Analisa Komponen Bina Marga digunakan dalam perancangan kembali struktur perkerasan lentur dan perencanaan tebal lapis tambahan. Selain itu, perencanaan tebal lapis tambahan juga dihitung menggunakan Metode Lendutan Balik Bina Marga 01/MN/B/1983

5.2.1. Metode Analisa Komponen Bina Marga 1987

5.2.1.1 Menentukan Lintas Ekivalen Permulaan (LEP)

Data yang dibutuhkan untuk menentukan LFP adalah:

a Lalu Lintas Harian Rata-Rata (LHR)

Lalu Lintas Harian Rata-Rata diperlukan sebagai acuan dalam analisis ini sebab mempengaruhi beban yang akan dipikul oleh perkerasan. Data LHR ini diperoleh dari hasil survei volume lalu lintas dan hasilnya dapat dilihat pada tabel 5.1

b. Angka Ekivalen (E) Beban Sumbu Kendaraan

Angka Ekivalen tiap sumbu kendaraan ditentukan berdasarkan persamaan 3.2 dan 3.3. Pada tabel 3.5 dapat dilihat konfigurasi beban sumbu kendaraan dan angka ekivalen beban sumbu standar yang diberikan oleh Bina Marga

c. Koefisien Distribusi Kendaraan (C)

Ruas jalan Sentolo-Milir tidak memiliki batas lajur, sehingga berdasarkan tabel 3.4 dengan lebar perkerasan 7 m dengan 2 arah ruas jalan memiliki 2 lajur. Berdasarkan tabel 3.3 ditentukan koefisien distribusi kendaraan, vaitu

- a. Kendaraan ringan dengan berat total < 5 ton, C = 0.5
- b. Kendaraan berat dengan berat total ≥ 5 ton, C = 0.5

Dengan menggunakan data tersebut, LEP dapat ditentukan dengan menggunakan persamaan 3.4. Hasil analisis LEP disajikan pada tabel 5.7.

Tabel 5.7 Nilai LEP untuk LHR berdasarkan hasil survei pada tanggal 2, 3, dan 4 November 2002

Golongan	LHR	LHR	LHR	C	Е	LEP	LEP	LEP
Kendaraan	2-Nov-02	3-Nov-02	4-Nov-02			2-Nov-02	3-Nov-02	4-Nov-02
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
1	10401	9912	8469	0.5	0.0004	2.0802	1.9824	1.6938
II	1674	1772	1304	0.5	0.3006	251.6022	266.3316	195.9912
Ш	1780	1231	1796	0.5	0.2174	193.486	133.8097	195.2252
ΙV	367	266	331	0.5	5.0264	922.3444	668.5112	831.8692
V	239	212	211	0,5	2.7416	327.6212	290.6096	289.2388
VI	93	9	100	0.5	4.9283	229,16595	22.17735	246.415
VII	57	10	65	0.5	6.1179	174.36015	30.5895	198.83175
VIII	188	208	166	0.5	10.183	957.202	1059.032	845.189
Total	14799	13620	12442			3057.8621	2473.0434	2804.454

Nilai LHR yang digunakan adalah hasil pengamatan pada tanggal 2 November 2002, yaitu pada nilai LEP terbesar = 3057.8621≈ 3058.

5.2.1.2. Menentukan Lintas Ekivalen Akhir (LEA)

Data yang digunakan dalam analisis ini adalah :

a. Lalu Lintas Harian Rata-Rata (LHR)

LHR yang digunakan berdasarkan nilai LEP terbesar, yaitu pada tanggal 2 November 2002 seperti yang disajikan pada tabel 5.7

b. Umur Rencana

Perancangan perkerasan direncanakan dengan umur rencana (UR) 10 tahun.

c. Pertumbuhan Lalu Lintas

Pertumbuhan lalu lintas (i) digunakan untuk memprediksi volume lalu lintas untuk 10 tahun mendatang, yakni pada akhir umur rencana.

Perhitungan angka pertumbuhan menggunakan data pada tabel 5.1 dan 5.2 dengan persamaan 3.7. Analisis pertumbuhan lalu lintas selengkapnya disajikan pada tabel 5.8 berikut.

Tabel 5.8 Angka Pertumbuhan Lalu Lintas Tiap Golongan Kendaraan

Golongan				
Kendaraan	n	a	ь	$i = ((b/a)^{1} - 1).100\%$
(1)	(2)	(3)	(4)	(5)
I	5	10383	10401	0.03
П	5	1325	1674	4.8
III,IV	5	1972	2147	1.71
V,VI,VII,VIII	5	401	577	7.6

Dari perhitungan angka pertumbuhan pada tabel 5.8 dapat ditentukan angka pertumbuhan selama umur rencana (i_{UR}) yaitu :

$$i_{UR} = (0.03 + 4.8 + 1.71 + 7.6)/4$$

= 3.535 = 3.6 %

Berdasarkan data-data tersebut, dapat ditentukan LEA dengan menggunakan persamaan 3.5 , yang hasilnya disajikan dalam tabel 5.9 berikut.

Tabel 5.9 Tabel Perhitungan LEA

Golongan	LHR	С	Е	i	UR	LEA
Kendaraan						
(1)	(2)	(3)	(4)	(5)	(6)	(7)
I	10401	0.5	0.0004	0.036	10	2.962802116
II	1674	0.5	0.3006	0.036	10	358.3537787
Ш	1780	0.5	0.2174	0.036	10	275.5796222
IV	367	0.5	5.0264	0.036	10	1313.683271
V	239	0.5	2.7416	0.036	10	466.6266631
VI	93	0.5	4.9283	0.036	10	326.3981163
VII	57	0.5	6.1179	0.036	10	248.33892
VIII	188	0.5	10.183	0.036	10	1363.330502
Total	14799					4355.273676

Dari hitungan LEA pada tabel 5.9 diperoleh nilai LEA = 4355.273676 ≈ 4356.

5.2.1.3 Menentukan LET dan LER

Data yang dibutuhkan untuk menentukan nilai LET dan LER adalah :

a. LEP

Berdasarkan hitungan pada tabel 5.7 diperoleh nilai LEP = 3058

b. LEA

Berdasarkan hitungan pada tabel 5.9 diperoleh nilai LEA = 4356

c. Faktor Penyesuaian (FP)

Faktor penyesuaian dipengaruhi umur rencana, yaitu 10 tahun. Berdasarkan persamaan 3.10, maka :

$$FP = 10/10 = 1$$

Berdasarkan persamaan 3.8 dan 3.9, dengan menggunakan data-data tersebut, maka :

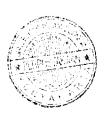
LET =
$$\frac{1}{2}$$
 (3058 + 4356) = 3707
LER = 3707 x 1 = 3707

5.2.1.4 Menentukan Faktor Regional (FR).

Data yang digunakan untuk menentukan faktor regional adalah:

a. Persen Kendaraan Berat

Persen kendaraan berat terhadap total kendaraan yang lewat dapat ditentukan berdasarkan data LHR yang disajikan pada tabel 5.9.


% Kend. berat =
$$[(1674+1780+367+239+93+57+188)/14799]x100\%$$

= 29.72 % \leq 30%

b. Kelandaian

Ruas Sentolo Milir termasuk dalam golongan medan datar dan lurus dengan kelandaian tidak lebih dari 6 %.

c. Curah hujan

Berdasarkan data pada tabel 5.4 daerah Sentolo memiliki curah hujan 1885 ≥ 900 mm/th.

Dengan menggunakan tabel 3.2 dan data-data tersebut, maka FR yang digunakan adalah 1.5

5.2.1.5 Menentukan Indeks Permukaan Awal (IPo)

Berdasarkan jenis lapis permukaan LASTON dengan menggunakan tabel 3.6 maka digunakan IPo = 4.

5.2.1.6 Menentukan Indeks Permukaan Akhir (IPt)

Data yang dibutuhkan untuk menentukan IPt adalah:

a. LER

Berdasarkan langkah 5.2.1.3, diperoleh nilai LER = 3707

b. Klasifikasi jalan

Ruas jalan Sentolo Milir melayani angkutan utama dengan ciri-ciri perjalanan jarak jauh dan kecepatan rata-rata tinggi sehingga di klasifikasikan sebagai jalan arteri.

Dengan menggunakan data yang ada, ditetapkan nilai IPt berdasarkan tabel 3.7 yaitu 2.5.

5.2.1.7 Menentukan Indeks Tebal Perkerasan (ITP)

Data yang dibutuhkan dalam analisis ITP adalah :

a. Daya Dukung Tanah (DDT)

Berdasarkan nilai CBR yang diperoleh pada data V.1.5, yaitu 11% dan menggunakan nomogram pada lampiran 1 diperoleh DDT = 6.2

b. Lintas Ekivalen Rencana (LER)

Pada tahap 5.2.1.3 diperoleh LER₂₀₁₂ = 3707

c. Faktor Regional (FR)

Pada tahap 5.2.1.4 diperoleh FR = 1.5

d. Indeks Permukaan (IPo dan IPt)

Pada tahap 5.2.1.5 diperoleh IPo = 4.

Pada tahap 5.2.1.6 diperoleh IPt = 2.5

Dengan menggunakan data DDT, LER, FR, IPo, dan IPt berdasarkan nomogram pada lampiran 2, diperoleh nilai $\overline{\text{ITP}}_{2012} = 10.5$

5.2.1.8 Perancangan Lapis Keras

Perancangan Lapis keras untuk umur rencana 10 tahun memerlukan data sebagai berikut :

a. Indeks Tebal Perkerasan

Berdasarkan tahap 5.2.1.7 diperoleh ITP untuk umur rencana 10 tahun, yaitu $\overline{}$ $ITP_{2012} = 10.5$.

b. Tebal Minimum Lapis Keras (Dmin)

Berdasarkan nilai $ITP_{2012} = 10.5$, dengan menggunakan tabel 3.9 ditentukan tebal minimum lapis keras dan bahan yang digunakan. Untuk lapis permukaan tebal minimum 10 cm dengan bahan LASTON dan untuk lapis pondasi tebal minimum 20 cm dengan bahan batu pecah.

c. Koefisien Kekuatan Relatif Bahan (a)

Bahan yang digunakan dalam re-design ini adalah:

1. Lapis Permukaan

Lapis Permukaan menggunakan LASTON. Dengan menggunakan tabel 3.8 diperoleh koefisien kekuatan relatif $(a_1) = 0.32$

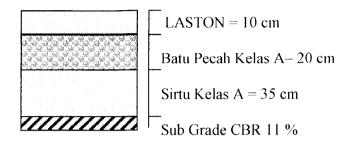
2. Lapis Pondasi Atas

Lapis pondasi atas menggunakan batu pecah (kelas A). Dengan menggunakan tabel 3.8 diperoleh koefisien kekuatan relatif (a_2) = 0.14.

3. Lapis Pondasi Bawah

Lapis Pondasi Bawah menggunakan sirtu (kelas A). Dengan menggunakan tabel 3.8 diperoleh koefisisen kekuatan relatif (a₃) = 0.13.

Dengan menggunakan data tersebut, maka dapat ditentukan tebal tiap lapis perkerasan dengan menggunakan persamaan 3.11.


$$\overline{\text{ITP}}_{2012} = a_1.D_1 + a_2.D_2 + a_3. D_3$$

 $10.5 = 0.32. D_1 + 0.14. D_2 + 0.13. D_3$

Dipakai $D_1 = 10 \text{ cm} = D \text{min} (10 \text{cm}); D_2 = 20 \text{ cm} = D \text{min} (20 \text{cm}),$

maka D_3 34.615 \approx 35 cm.

Sehingga ITP =
$$(0.32 \times 10) + (0.14 \times 20) + (0.13 \times 35) = 10.55$$

Dari analisa di atas, maka susunan lapis keras dapat dilihat pada gambar 5.1 berikut.

Gambar 5.1 Susunan Lapis Keras Perancangan Kembali

5.2.1.9 Perhitungan Tebal Lapis Tambahan

Tahap-tahap analisis tebal lapis tambahan adalah sebagai berikut :

Menentukan nilai kondisi perkerasan jalan sebelum diberi lapis tambahan.
 Nilai kondisi perkerasan dilakukan dengan melakukan pengamatan secara visual dan dengan menggunakan tabel 3.10 nilai kondisi perkerasan adalah

a. Lapis Permukaan

sebagai berikut:

Terlihat retak halus, sedikit deformasi pada jalur roda namun masih tetap stabil, nilai kondisi perkerasan 70 – 90 %.

b. Lapis Pondasi Atas

Pondasi batu pecah memiliki nilai kondisi perkerasan 80 – 100 %.

c. Lapis Pondasi Bawah

Di beri nilai kondisi perkerasan 90 %.

2. Analisa komponen tiap lapis perkerasan

Berdasarkan data jenis lapis keras pada tabel 5.3 dengan menggunakan tabel 3.8 tiap lapis perkerasan mempunyai koefisien kekuatan relatif (a) yang disajikan pada tabel 5.10 berikut.

Tabel 5.10 Koefisien Kekuatan Relatif Lapis Perkerasan

Lapisan Perkerasan	Jenis	Tebal Lapisan (D)	a
(1)	(2)	(4)	(5)
Lapis Permukaan AC	Laston (Asphalt Concrete)	3 cm	0.32
Lapis Permukaan ATB	Laston (Asphalt Concrete)	3 cm	0.32
Lapis Pondasi Atas	Lapis Penetrasi	7 cm	0.23
Lapis Pondasi Atas	Sirtu	8 cm	0.13
Lapis Pondasi Bawah	Agregat Kelas B(BTK)	20 cm	0.12
Lapis Pondasi Bawah	Pasir	20cm	0.1

3. Menentukan $\overline{\text{ITP}}$ perkerasan sebelum diberi lapis tambahan ($\overline{\text{ITP}}_{2002}$).

Dengan menggunakan data nilai kondisi perkerasan dan koefisien kekuatan relatif pada tabel 5.10 dapat ditentukan ITP perkerasan sebelum di beri lapis tambahan dengan menggunakan persamaan 3.11.

$$\overline{\text{ITP}}_{2002} = \{70\% \text{ x } [(0.32 \text{ x } 3) + (0.32 \text{ x } 3)]\} + \{80\% \text{ x } [(0.23 \text{ x } 7) + (0.13 \text{ x } 8)] + \{90\% \text{ x } [(0.12 \text{ x } 20) + (0.1 \text{ x } 20)]\}\}$$

$$= 7.424$$

4. Dengan nilai ITP₂₀₀₂ dan ITP₂₀₁₂ dapat ditentukan tebal lapis tambahan yang dibutuhkan.

$$\Delta \overline{\text{ITP}} = \overline{\text{ITP}}_{2012} - \overline{\text{ITP}}_{2002} = 10.5 - 7.424 = 3.076$$

5. Menentukan tebal lapis tambahan (D)

Lapis tambahan menggunakan LASTON (AC), dengan koefisien kekuatan relatif (a) = 0.32.

$$\Delta \overline{\text{ITP}} = a \cdot D$$

3.076 = 0.32.D, D = 9.6125 \approx 10 cm.

Dari analisis di atas susunan lapis perkerasan setelah di beri lapis tambahan LASTON setebal 10 cm dapat dilihat pada gambar 5.2 berikut.

Lapis Tambah, Laston 10 cm
Laston 6 cm
Lapen 7 cm
Sirtu 8 cm
Batu Kali 20 cm
Pasir 20 cm

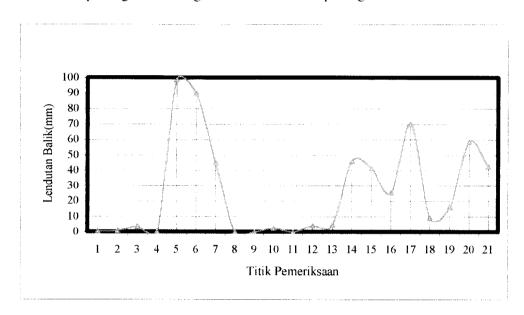
Gambar 5.2 Susunan Lapis Keras Setelah Diberi Lapis Tambahan

5.2.2. Metode Bina Marga 01/MN/B/1983

5.2.2.1. Analisis Tebal Lapis Tambahan dengan Lendutan Balik

Tahap-tahap untuk menganalisis lapis tambahan dengan menggunakan harga lendutan balik adalah :

1. Menentukan harga lendutan balik.


Harga lendutan balik dihitung berdasarkan persamaan 3.14 dengan menggunakandata pada tabel 5.6 dan lampiran 11. Harga lendutan balik tiap titik disajikanpada tabel 5.11.

Tabel 5.11 Tabel Harga Lendutan Balik (mm) Tiap Titik Pemeriksaan

Titik	KM	dl	d4	Fm	Fl	Fe	d
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
1	16+200	0	0.25	2	1	1.15	0.575
2	16+600	0	0.4	2	1	1.15	0.92
3	17+000	0	1.5	2	1	1.15	3.45
4	17+400	0	0.2	2	1	1.15	0.46
5	18+200	0	43	2	1	1.15	98.9
6	18+600	0	39	2	1	1.15	89.7
7	18+800	0	19.5	2	1	1.15	44.85
8	19+400	0	0	2	1	1.15	0
9	20+000	0	0	2	1	1.15	0
10	20+400	0	1	2	1	1.15	2.3
11	21+100	0	0	2	1	1.15	0
12	21+600	0	1.75	2	1	1.15	4.025
13	22+000	0	2	2	1	1.15	4.6
14	22+700	0	20	2	1	1.15	46
15	23+000	0	18	2]	1.15	41.4
16	23+400	0	11	2	1	1.15	25.3
17	23+700	0	30.5	2	1	1.15	70.15
18	23+900	0	4	2	1	1.15	9.2
19	24+000	0	7	2	1	1.15	16.1
20	24+200	0	25.5	2	1	1.15	58.65
21	24+400	0	18.5	2	1	1.15	42.55

2. Menggambar grafik nilai lendutan balik.

Dengan menggunakan nilai lendutan balik tiap titik pemeriksaan pada tabel 5.11 kolom 8 dapat digambarkan grafik lendutan balik pada gambar 5.3

Gambar 5.3 Grafik lendutan balik tiap titik pemeriksaan

3. Menentukan Lendutan Balik Ijin

Data yang dibutuhkan untuk menentukan lendutan balik ijin :

- a. Lintas Ekivalen Permulaan (LEP)Data LEP dapat dilihat pada tabel 5.7 kolom 7.
- b. Angka Ekivalen (*Unit Equivalent 18 Kip Single Axle Load*)
 UE 18 KSAL (*Unit Equivalent 18 Kip Single Axle Load*) dapat dilihat pada tabel 3.5 untuk tiap jenis kendaraan.

c. Faktor Umur Rencana (N)

Untuk umur rencana (n) = 10 tahun dan pertumbuhan lalu lintas (R) = 3.6%, dengan menggunakan persamaan 3.21 ditentukan N = 11.99

d. Accumulative Equivalent 18 Kip Single Axle Load (AE 18 KSAL)

Dengan data LEP dan Faktor Umur Rencana (N) dapat ditentukan harga AE 18 KSAL menggunakan persamaan 3.20. Perhitungan AE 18 KSAL disajikan dalam tabel 5.12 berikut.

Tabel 5.12 Daftar Hasil Perhitungan AE 18 KSAL

Golongan Kendaraan LEP		N	AE 18 KSAL
(1)	(2)	(3)	(4)
I	2.0802	11.99	9103.68327
II	251.6022	11.99	1101099.288
Ш	193.486	11.99	846762.4561
IV	922.3444	11.99	4036501.915
V	327.6212	11.99	1433785.039
VI	229.16595	11.99	1002910.405
VII	174.36015	11.99	763061.0425
VIII	957.202	11.99	4189050.973
Total	3057.8621	11.99	13382274.8

Dari tabel 5.12 diperoleh nilai AE 18 KSAL = $13382274.8 \approx 1.3 \cdot 10^7$.

Dengan menggunakan grafik pada lampiran 3 ditentukan lendutan balik ijin untuk AE 18 KSAL 1.3 10^7 adalah 1.2 mm.

Dari daftar lendutan balik pada tabel 5.11 dapat dilihat bahwa rata-rata lendutan yang terjadi melebihi lendutan balik yang diijinkan.

4. Menentukan segmen jalan dan lendutan balik yang mewakili segmen jalan.

Dengan memperhatikan tabel 5.11 dan gambar 5.3, maka ruas jalan dibagi menjadi 4 segmen:

a. Segmen I, berada pada Sta 16 + 200 - 17 + 400.

Berdasarkan persamaan 3.16 dan 3.19 lendutan balik yang mewakili segmen ditentukan sebagai berikut.

Titik	d d ²		
(1)	(2)	(3)	
1	0.575 0.330625		
2	0.92	0.8464	
3	3.45	11.9025	
4	0.46	0.2116	
n = 4	$\Sigma d = 5.405$	$\Sigma d^2 = 13.291125$	

$$S = \sqrt{\frac{4(13.291125) - (5.405)^2}{4(4-1)}}$$

$$S = 1.413$$

$$d = \underbrace{5.405}_{A} = 1.35125$$

$$D = 1.351 + (2.1.413) = 4.177$$

- b. Segmen II, berada pada Sta 18 + 200 18 + 800.
- c. Segmen III, berada pada Sta 19 + 400 21 + 100.

Berdasarkan persamaan 3.16 dan 3.19 lendutan balik yang mewakili segmen ditentukan sebagai berikut.

Titik	D	d ²
(1)	(2)	(3)
1	0	0
2	0	0
3	2.3	5.29
4	0	0
n = 4	$\Sigma d = 2.3$	$\Sigma d^2=5.29$

$$S = \sqrt{\frac{4(5.29) - (2.3)^2}{4(4-1)}}$$

$$\frac{S}{d} = \frac{1.15}{4} = 0.575$$

$$D = 0.575 + (2 \times 1.15) = 2.875$$

d. Segmen IV, berada pada Sta 21 + 600 - 24 + 400.

5. Analisis tebal lapis tambahan.

Dengan mengamati nilai lendutan pada tiap titik pemeriksaan, maka perancangan tebal lapis tambahan dapat dilakukan pada segmen III, sedangkan nilai lendutan balik pada segmen I, II, dan IV terlampau besar sehingga grafik penentuan tebal *overlay* metode Bina Marga 1987 tidak dapat meng-*cover* nilai lendutan balik tersebut.

Perancangan tebal lapis tambahan pada segmen III adalah sebagai berikut:

Lendutan balik ijin = 1.2 mm

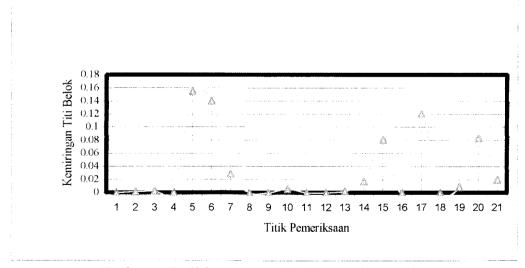
Lendutan balik segmen = 2.875 mm

Dengan menggunakan data tersebut dapat ditentukan tebal lapis tambah berdasarkan grafik pada lampiran 4 yaitu 10 cm AC (LASTON).

5.2.2.2. Analisis Tebal Lapis Tambahan dengan Kemiringan Titik Belok

Tahap-tahap untuk menganalisis lapis tambahan dengan menggunakan harga kemiringan titik belok adalah :

1. Menentukan harga kemiringan titik belok.


Harga kemiringan titik belok dihitung berdasarkan persamaan 3.15 dengan menggunakan data pada tabel 5.6 dan lampiran 11. Harga kemiringan titik belok tiap titik pemeriksaan disajikan pada tabel 5.13 berikut.

2. Menggambar grafik kemiringan titik belok.

Dengan menggunakan harga kemiringan titik belok tiap titik pemeriksaan pada tabel 5.13 kolom 9 dapat digambarkan grafik kemiringan titik belok pada gambar 5.4

Tabel 5.13 Tabel Harga Kemiringan Titik Belok Tiap Titik Pemeriksaan

Titik	KM	dl	d2	Fm	FI	Fe	X12	tg ()
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
1	16+200	0	0	2	I	1.15	40	0
2	16+600	()	0.25	2	l	1.15	40	0.0014375
3	17+000	0	0.5	2	ı	1.15	40	0.002875
4	17+400	0	0.1	2	l	1.15	40	0.000575
5	18+200	0	27	2	ı	1.15	40	0.15525
6	18+600	0	24.5	2	1	1.15	40	0.140875
7	18+800	()	5	2	ı	1.15	40	0.02875
8	19+400	0	0	2	1	1.15	40	0
9	20+000	0	0	2	1	1.15	40	0
10	20+400	0	1	2	1	1.15	40	0.00575
11	21+100	0	0	2	l	1.15	40	0
12	21+600	0	0	2	1	1.15	40	0
13	22+000	0	0.5	2	l	1.15	40	0.002875
14	22+700	()	3	2	1	1.15	4()	0.01725
15	23+000	0	14	2	1	1.15	40	0.0805
16	23+400	0	0	2	1	1.15	40	0
17	23+700	0	21	2	1	1.15	40	0.12075
18	23+900	0	0	2	I	1.15	40	0
19	24+000	()	1.5	2	l	1.15	40	0.008625
20	24+200	θ	14.5	2	1	1.15	40	0.083375
21	24+400	0	3.5	2	l	1.15	40	0.020125

Gambar 5.4 Grafik kemiringan titik belok tiap titik pemeriksaan

3. Menentukan segmen jalan dan tan θ yang mewakili segmen jalan.

Dengan memperhatikan tabel 5.11 dan gambar 5.4, maka ruas jalan dibagi menjadi 4 segmen:

a. Segmen I, berada pada Sta 16 + 200 – 17 + 400.

Berdasarkan persamaan 3.22 dan 3.25 tan θ yang mewakili segmen ditentukan sebagai berikut.

Ţitik	tan θ	$\tan \theta^2$
(1)	(2)	(3)
1	0	0
2	0.0014375	2.06641E-06
3	0.002875	8.26563E-06
4	0,000575	3.30625E-07
n = 4	$\sum \tan\theta = 0.0048875$	$\sum \tan \theta^2 = 1.06627E-05$

$$S = \sqrt{\frac{4 (0.0000106627) - (0.0048875)^2}{4 (4 - 1.)}}$$

$$\frac{S}{tg \theta} = \frac{0.00125}{0.0048875} = 0.00122$$

$$Tg\;\theta\;=\;0.00122 + (\;2\;x\;0.00125\;) = 0.00372$$

- b. Segmen II, berada pada Sta 18 + 200 18 + 800.
- c. Segmen III, berada pada Sta 19 + 400 21 + 100.

Berdasarkan persamaan 3.22 dan 3.25 tan θ yang mewakili segmen ditentukan sebagai berikut.

Titik	tan θ	$\tan \theta^2$
(1)	(2)	(3)
1	0	0
2	0	0
3	0.00575	0.0000330625
4	0	0
5	0	0
n = 5	$\sum \tan\theta = 0.00575$	$\sum \tan \theta^2 = 0.0000330625$

$$S = \sqrt{\frac{5 (0.0000330625) - (0.00575)^2}{5 (5 - 1)}}$$

$$\frac{S}{\log \theta} = \frac{0.00257}{0.00575} = 0.00192$$

$$Tg\;\theta\;=\;0.00192 \pm (\;2\;x\;0.00257\;) = 0.007057$$

d. Segmen IV, berada pada Sta 21 + 600 –24 + 400.

4. Analisa Tebal Lapis Tambah

Dengan mengamati nilai tan θ pada tiap titik pemeriksaan, maka perancangan *overlay* dapat dilakukan pada segmen I, sedangkan nilai tan θ pada segmen I, II, dan IV terlampau besar sehingga grafik penentuan tebal overlay berdasarkan nilai tan θ pada metode Bina Marga 1983 tidak dapat meng-*cover* nilai tan θ tersebut.

Perancangan overlay pada segmen I adalah sebagai berikut:

AE 18 KSAL =
$$13382274.8 \approx 1.3 \cdot 10^7$$
.

$$Tg \theta = 0.00122 + (2 \times 0.00125) = 0.00372$$

Dengan menggunakan data tersebut berdasarkan grafik pada lampiran 5 tidak dapat ditentukan tebal *overlay* karena grafik tersebut tidak dapat mengakomodasi data yang ada.

5.3. Rekapitulasi Hasil Perancangan

5.3.1. Metode Analisa Komponen Bina Marga 1987

5.3.1.1 Perancangan Kembali Struktur Perkerasan

Berdasarkan hasil perhitungan perancangan kembalilapis perkerasan dengan menggunakan data hasil survey, susunan lapis perkerasan (*Existing Road*) dan susunan lapis perkerasan hasil perancangan kembali untuk umur rencana 10 tahun dapat dilihat pada gambar 5.5 dan 5.6 berikut.

Laston 6 cm
Lapen 7 cm
Sirtu 8 cm
Batu Kali 20 cm
Pasir 20 cm

Gambar 5.5 Susunan Lapis Keras (Existing Road)

Gambar 5.1 Susunan Lapis Keras Perancangan Ulang

5.3.1.2 Tebal Lapis Tambah (Overlay)

Berdasarkan hasil perhitungan perancangan tebal lapis tambah dengan menggunakan data hasil survey, susunan lapis perkerasan (*Existing Road*) dan susunan lapis perkerasan setelah diberi lapis tambah dapat dilihat pada gambar 5.7 dan 5.8 berikut.

Laston 6 cm
Lapen 7 cm
Sirtu 8 cm
Batu Kali 20 cm
Pasir 20 cm

Gambar 5.7 Susunan Lapis Keras (Existing Road)

Lapis Tambah, Laston 10 cm
Laston 6 cm
Lapen 7 cm
Sirtu 8 cm
Batu Kali 20 cm
Pasir 20 cm

Gambar 5.8 Susunan Lapis Keras Setelah Diberi Lapis Tambahan

5.3.2. Metode Bina Marga 01/MN/B/1983

5.3.2.1 Nilai Struktural Perkerasan

Berdasarkan hasil survey nilai lendutan dengan menggunakan *benkleman* beam dapat dilihat bahwa nilai lendutan yamg terjadi pada titik – titik pemeriksaan mempunyai nilai yang sangat besar (lihat tabel 5.11)

Dari pengamatan tersebut dapat dilihat bahwa perkerasan pada titik pemeriksaan mengalami penurunan kondisi struktural.

5.3.2.2 Tebal Lapis Tambah

Berdasarkan hasil analisis *overlay* dengan menggunakan metoda Bina Marga 1983 berdasarkan nilai lendutan balik yang dikontrol dengan nilai kemiringan titik belok (diambil nilai yang terbesar) ditunjukkan adanya penurunan kondisi struktural. Penentuan tebal lapis tambahan tidak bisa ditentukan berdasarkan nilai lendutan balik.

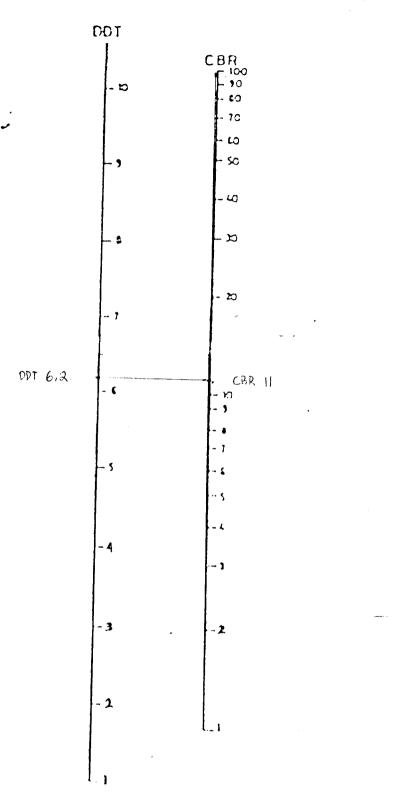
BAB VI

KESIMPULAN DAN SARAN

6.1 KESIMPULAN

Berdasarkan pengamatan langsung, analisa, perancangan ulang perkerasan, dan perancangan tebal lapis tambah (*overlay*) terhadap ruas jalan Sentolo – Milir yaitu di Jalan Wates Km. 16,08 – Km. 24,40 berdasarkan metode Analisa Komponen Bina Marga 1987 dan Metode Lendutan Balik Bina Marga 01/MN/B/1983 dapat disimpulkan bahwa:

- Ruas Jalan Sentolo Milir Jalan Wates Km. 16.08 Km. 24.40, tidak mampu mendukung beban lalu lintas hingga tahun 2012 berdasarkan analisa dengan menggunakan metode Analisa Komponen Bina Marga 1987.
- Ruas Jalan Sentolo Milir Jalan Wates Km. 16.08 Km. 24.40, membutuhkan lapis tambah berupa LASTON setebal 10 cm untuk mendukung beban lalu lintas hingga tahun 2012 berdasarkan analisa dengan menggunakan metode Analisa Komponen Bina Marga 1987.
- Ruas Jalan Sentolo Milir Jalan Wates Km. 16.08 Km. 24.40 tidak dapat dilakukan overlay berdasarkan analisa dengan menggunakan metode Lendutan Balik Bina Marga 01/MN/B/1983.

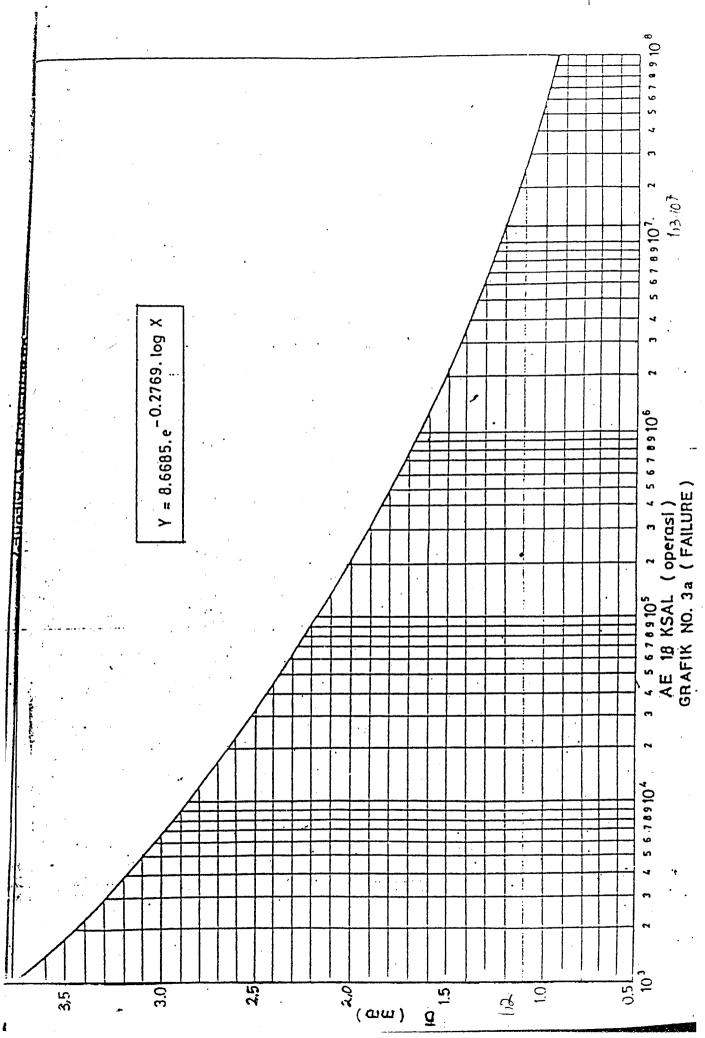

6.2 SARAN

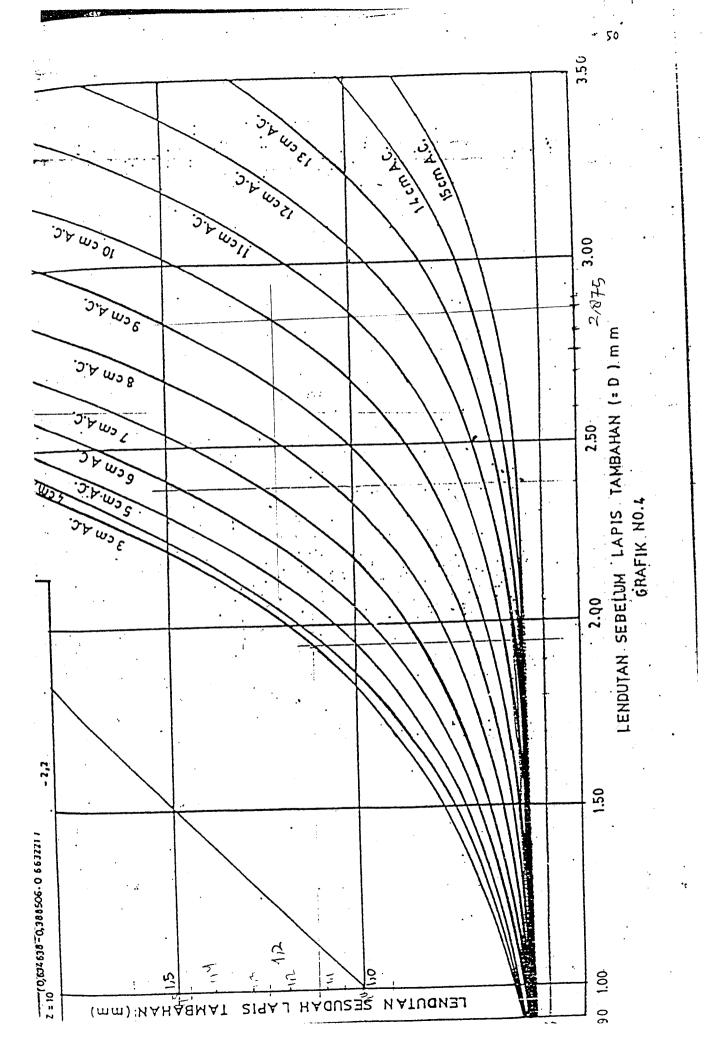
Berdasarkan kesimpulan di atas, maka pada penelitian ini kami memberikan saran sebagi berikut :

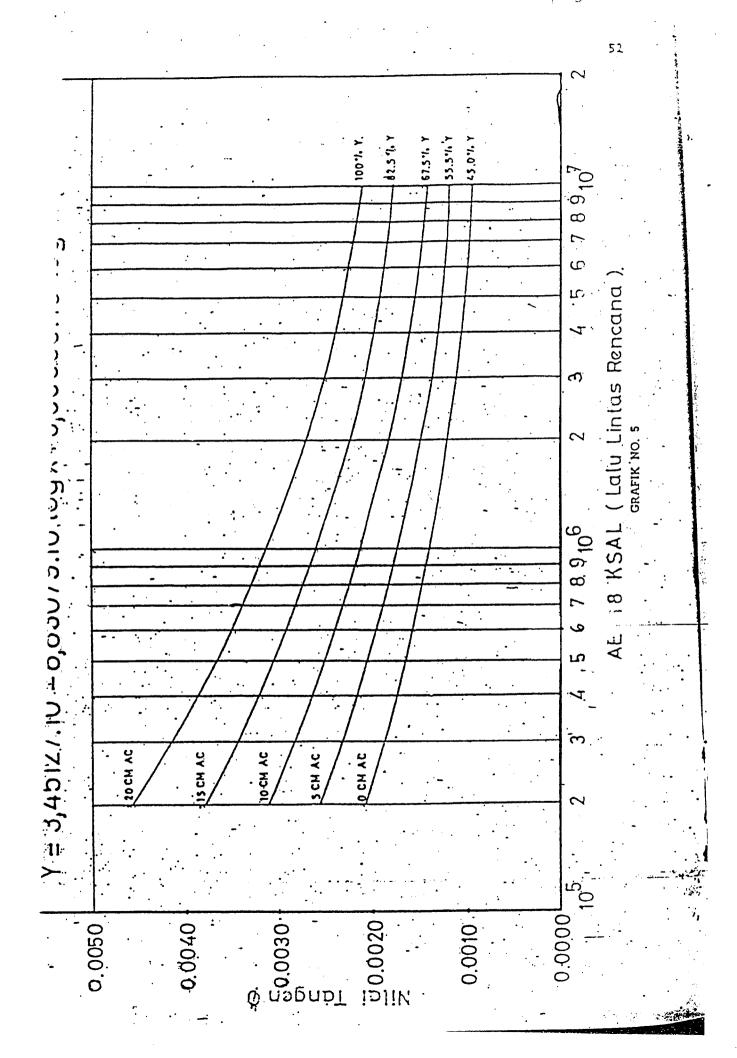
- Pemeliharaan struktur lapis perkerasan harus dilakukan secara berkala sehingga kerusakan yang terjadi dapat segera diatasi sehingga tidak menimbulkan kerusakan yang menyebabkan penurunan atau bahkan hilangnya nilai struktural perkerasan.
- Dari hasil penelitian dirasakan perlunya diadakan penelitian struktur lapis lapis perkerasan.

DAFTAR PUSTAKA

- AASHTO, 1986, Guide For Design of Pavement, USA.
- Bina Marga, 1983, Manual Pemeriksaan Jalan dengan Alat Benkleman Beam No.01 MN B 1983, Badan Penerbit Departemen Pekerjaan Umum, Jakarta.
- Bina Marga, 1987, Petunjuk Perencanaan Tebal Perkerasan Lentur Jalan Raya dengan Metoda Analisa Komponen SKBI-2.3.26, 1987, Badan Penerbit Departemen Pekerjaan Umum, Jakarta.
- Jumadi, S, 1999, Analisis Tebal Lapis Keras Ruas Jalan Solo Km 8.8 dengan Metode Bina Marga dan AASHTO 1986, Tugas Akhir UII, Yogyakarta.
- NAASRA, 1987, Pavement Design. A Guide to the Structural Design of Road Pavements, Australia.
- Sukirman, S, 1999, Perkerasan Lentur Jalan Raya, Nova Bandung.
- Syarif, U, 2000, Evaluasi Tingkat Kerusakan Perkerasan Lentur pada Ruas Jalan K.H. Ahmad Dahlan Daerah Istimewa Yogyakarta, Tugas Akhir UII, Yogyakarta.
- Wright, Paul H, 1996, Highway Engineering, USA.




Gamber 1
KORELASI DDT DAN CBR


Catatan : Hubungan nilai CBR dengan garis mendatar kesebelah kiri diperoleh nilai DDT.

11 a.

REKAPITULASI SURVEI VOLUME LALU LINTAS

2 ARAH Bus Truk Truk <t< th=""><th>Hari/Tanggal</th><th>SABTU 2-11-2002</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>	Hari/Tanggal	SABTU 2-11-2002							
MP Bus Truk Truk Truk Truk Truik Truik Truik Truik Truik Truik Truik Truik semi Truik semi trailer Truik semi trailer Truik semi Truik semi trailer Denative semi trailer Truik semi trailer Truik semi trailer Denative s	Arah	2 ARAH							
1.1 1.2 1.2.1 1.2.2 1.2.2 1.2.2 Scdanjeep, Bus Kecil, Polity Minibuss Bus Kecil, Polity Minibuss Rugan Berat (tronton) Truk Tandom Truk Semi Truk Semi Truk Age 4.2	Jns Ken	MP	Bus	Truk	Truk	Truk	Trailer	Trailcr	Trailer
2 9 8.3 18.2 25 26.2 42 ScdanJoep, Edus Keell, Tank Minds Trak Registration Trak Registration Trak Registration Trak Registration Trak semi trailor Indication 700 415 7 6 5 3 4 800 554 122 36 12 6 5 3 700 455 122 6 5 4 5 3 800 457 98 14 5 4 5 4 800 457 98 14 5 4 5 4 5 100 583 113 96 12 6 5 4 5 100 583 113 96 12 4 5 4 5 100 583 113 96 12 4 5 4 1 100 583 113 105 15 12 4<	Sumbu	1.1	1.2	1.2L	1.2H	1.22	1.2-2	1.2-22	1.2+2.2
Sedanjeep, Paus Keeril, Paus Kemile Trulk Profit Trulk Trulk Trulk Trulk Trulk Trulk Trulk Trulk Semil Uraller Profit Trulk	Brt(ton)	2	6	8.3.	18.2	25	26.2	42	31.4
N.V.Combinasi Bus Scdang, Bus Besar Ringan Berat (tronton) (tronton) trailer (tronton) Berat, medicign 700 415 1.27 36 1.2 6 5 3 78.00 564 1.27 49 8 7 6 3 3 98.00 457 98 58 14 5 4 5 3 99.00 457 98 38 14 5 4 5 3 1000 582 1102 120 12 3 4 5 4 5 9 1100 456 97 83 12 2 4 5 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 9 7 9 9 1 1 2 1 1 1 1 1 1 1 1 1 1		Sedan, jeep,	Bus Kecil,	Truk	Truk	Truk Tandom	Truk semi	Truk semi trailer	Truk Gandeng
Pickup, Minibus Bus Bear 3 menengal row per likemas 97.00 415 77 6 5 0 98.00 564 122 49 8 7 6 3 90.00 457 98 12 6 5 4 5 0 10.00 582 102 120 12 3 4 5 4 5 11.00 583 1133 96 22 4 2 6 7 6 7 6 7 6 7 1 7 6 7 6 7 6 7 6 7 6 7 6 7 7 6 7 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 7 6 7 7 6 7 7 7 7 7 <	Waktu	SW,Kombinasi	Bus Sedang,	Ringan	Berat	(tronton)	trailer	Berat,	
415 77 36 12 6 5 0 564 122 49 8 1 6 5 0 584 122 49 8 14 5 4 5 582 102 120 12 3 4 5 6 583 102 120 12 4 5 6 5 496 97 83 12 4 2 6 6 6 496 97 113 103 12 4 2 6 7 6 6 7 6 <td></td> <td>Pickup, Minibus</td> <td>Bus Besar</td> <td></td> <td></td> <td></td> <td>menengah</td> <td>truk peti kemas</td> <td></td>		Pickup, Minibus	Bus Besar				menengah	truk peti kemas	
564 122 49 8 7 6 3 457 98 38 14 5 4 5 482 102 138 14 5 4 5 583 132 96 22 4 2 6 496 97 83 12 2 1 3 456 131 105 12 2 1 3 672 131 105 12 4 2 6 673 132 117 18 15 4 1 3 675 192 17 15 9 12 4 1 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 1 3 4 4 4 1 4 4 4 4 4 4 4 4	06.00-07.00	415	77	36	12	9	5	0	∞
457 98 58 14 5 4 5 582 102 120 12 3 3 7 8 496 97 83 12 22 4 5 6 496 97 83 12 22 4 5 6 552 131 105 19 6 0 2 6 652 102 117 18 15 6 0 2 6 652 102 117 18 15 4 1 1 1 6 0 2 6 0 2 1	07.00-08.00	564	122	49	8	7	9	3	4
582 102 120 12 3 3 7 583 133 96 22 4 2 6 496 97 83 12 6 0 2 652 131 105 19 6 0 2 6 652 102 115 18 15 4 1	00.60-00.80	457	86	58	14	5	4	5	7
583 133 96 22 4 2 6 496 97 83 12 2 1 3 496 97 83 12 2 1 3 652 131 105 117 18 6 0 2 652 102 117 18 15 9 12 1 675 98 120 16 10 5 4 1 728 140 108 22 16 2 5 4 623 89 98 14 12 11 3 4 515 48 46 12 5 3 1 3 515 48 40 14 6 1 4 4 514 13 5 5 4 4 6 14 6 1 4 4 7 38	09.00-10.00	582	102	120	12	3	3	7	5
496 97 83 12 2 1 3 575 131 105 19 6 0 2 652 112 117 18 6 0 2 675 98 117 15 12 1 8 673 140 108 22 16 2 8 4 728 140 108 22 16 2 5 4 4 623 89 98 14 12 11 3 6 7 4 4 4 12 11 3 1 3 1 3 1 3 1 3 1 3 1 4 1 1 4 1 1 4 1 1 4 1 1 1 1 4 1 1 4 1 1 4 1 1 1 1 1 1	10.00-11.00	583	133	96	22	4	2	9	5
652 131 105 19 6 0 2 652 102 117 18 15 4 1 652 102 117 18 15 4 1 652 102 117 15 12 12 8 722 135 103 16 5 4 4 623 89 98 14 12 11 3 6 515 48 46 12 5 3 1 3 1 3 1 3 1 3 1 3 1 4 1 3 1 4 1 3 1 4	11.00-12.00	496	26	83	12	2	1	3	8
652 102 117 18 15 4 1 1 675 98 120 15 9 12 8 12 8 12 8 12 8 12 8 12 8 8 12 8 4	12.00-13.00	575	131	105	61	9	0	2	11
675 98 120 15 9 12 8 722 135 103 16 10 5 4 8 728 140 108 22 16 2 5 4 623 89 98 14 12 11 3 5 515 48 46 12 5 3 1 3 545 40 65 18 8 2 4 1 376 22 59 23 12 4 1 435 21 48 18 8 5 1 4 435 21 48 18 10 2 4 1 436 14 6 14 6 1 4 1 435 14 59 9 18 5 1 1 80 34 14 1 1 1 <	13.00-14.00	652	102	117	18	15	4	1	10
722 135 103 16 10 5 4 728 140 108 22 16 2 5 623 89 98 14 12 11 3 5 515 48 46 12 5 3 1 3 545 40 65 18 8 2 4 1 376 22 59 23 12 4 1 1 4 1 1 4 1 1 4 1 1 4 1 1 4 1 4 1 4 1 4 4 1 4 4 1 4 4 1 4 4 1 4 4 1 4 4 1 4 4 1 4 4 1 4 4 1 4 4 1 4 4 4 1 4 4	14.00-15.00	675	86	120	15	6	12	8	8
728 140 108 22 16 2 5 623 89 98 14 12 11 3 515 48 46 12 5 3 1 545 40 65 18 8 2 1 376 22 59 23 12 4 1 435 23 53 16 5 5 1 435 21 48 18 10 2 4 142 9 54 19 21 4 6 1 98 13 62 20 19 6 1 9 83 14 59 9 18 6 1 9 80 38 32 64 8 14 6 1 9 80 38 13 14 1 1 1 1 1 1	15.00-16.00	722	135	103	91	10	5	4	17
623 89 98 14 12 11 3 515 48 46 12 5 3 1 545 40 65 18 8 2 1 376 22 59 23 12 4 1 385 23 53 16 5 1 4 435 21 48 18 10 2 4 1 142 9 54 19 6 1 2 4 142 9 54 19 21 2 4 1 98 13 62 20 19 6 1 1 95 32 64 8 14 6 1 2 1 80 33 58 11 12 1 2 1 10401 1674 180 36 93 57 1	16.00-17.00	728	140	801	22	16	2	5	4
515 48 46 12 5 3 1 545 40 65 18 8 2 4 376 22 59 23 12 4 1 385 23 53 16 5 5 1 1 435 21 48 18 10 2 4 1	17.00-18.00	623	68	86	14	12	11	3	2
545 40 65 18 8 2 6 376 22 59 23 12 4 1 385 23 53 16 5 5 1 1 435 21 48 18 10 2 4 1 4 1 4 1 6 1 4 1 1 4 1 6 1 4 1	18.00-19.00	515	48	46	12	5	3	1	5
376 22 59 23 12 4 16 5 5 1 7 7 1 4 1 4 1 6 1 7 4 1 4 1 6 1 6 1 7 4 1 6 1 6 4 7 4 8 1 8 4 9 1 6 1 1 2 1 4<	19.00-20.00	545	40	65	18	8	2		5
385 23 53 16 5 5 1 435 21 48 18 10 2 4 234 18 10 2 4 6 1 142 9 54 19 6 1 6 1 98 13 62 20 19 6 1 1 83 14 59 9 18 5 1 1 95 32 64 8 14 6 1 0 80 38 58 11 12 1 2 1 93 341 72 79 15 14 1 2 10401 1674 1780 367 239 93 57 1	20.00-21.00	376	22	59	23	12	4		12
435 21 48 18 10 2 4 234 18 40 14 6 1 7 142 9 54 19 6 1 7 98 13 62 20 19 6 1 1 10 83 14 59 9 18 5 1 1 10 95 32 64 8 14 6 1 1 1 80 38 58 11 12 1 2 1 1 341 72 79 15 14 1 2 1 1 10401 1674 1780 367 339 93 57	21.00-22.00	385	23	53	91	5	5	1	11
24.00 234 18 40 14 6 1 6 1 -01.00 142 9 54 19 21 2 2 -02.00 98 13 62 20 19 6 1 1 -03.00 83 14 59 9 18 5 1 1 -04.00 95 32 64 8 14 6 1 1 -05.00 80 38 58 11 12 1 2 1 -06.00 341 72 79 15 14 1 2 1 -06.00 341 16401 1674 1780 367 239 93 57 1	22.00-23.00	435	21	48	18	10	2	4	8
01.00 142 9 54 19 21 2 02.00 98 13 62 20 19 6 1 03.00 83 14 59 9 18 5 1 1 04.00 95 32 64 8 14 6 1 1 -05.00 80 38 58 11 12 1 2 1 -06.00 341 72 79 15 14 1 2 1 -06.00 341 16401 1674 1780 367 239 93 57 1	23.00-24.00	234	18	40	14	9	1		7
02.00 98 13 62 20 19 6 1 03.00 83 14 59 9 18 5 1 1 04.00 95 32 64 8 14 6 1 1 05.00 80 38 58 11 12 1 1 2 06.00 341 72 79 15 14 1 2 1 10401 1674 1780 367 239 93 57 1	00.00-01.00	142	6	54	19	21	2		9
03.00 83 14 59 9 18 5 1 04.00 95 32 64 8 14 6 1 1 05.00 80 38 58 11 12 1 2 06.00 341 72 79 15 14 1 2 10401 1674 1780 367 239 93 57	01.00-02.00	86	13	62	20	19	9		6
04.00 95 32 64 8 14 6 1 -05.00 80 38 58 11 12 . 1 2 -06.00 341 72 79 15 14 1 2 -06.00 341 1674 1780 367 239 93 57	02.00-03.00	83	14	59	6	18	5		7
-05.00 80 38 58 11 12 . 1 1 -06.00 341 72 79 15 14 1 2 10401 1674 1780 367 239 93 57	03.00-04.00	95	32	64	8	14	9	-	9
-06.00 341 72 79 15 14 1 2 10401 1674 1780 367 239 93 57	04.00-05.00	08	38	58	11	12	, 1		11
10401 1674 1780 367 239 93 57	05.00-06.00	341	72	62	15	14	1	2	6
	Total	10401	1674	1780	367	239	93	57	188

REKAPITULASI SURVEI VOLUME LALU LINTAS

Hari/Tanggal	Minggu / 3-11-2002							
Arah	2 ARAH							
Jns Ken	MP	Bus	Truk	:	Truk	Trailer	Trailer	Trailer
Sumbu	1.1	1.2	1.2L		1.22	1.2-2	1.2-22	1.2+2.2
Brt(ton)	2	6	8.3		25	26.2	42	31.4
	Sedan, jeep,	Bus Kecil,	Truk	Truk	Truk Tandom	Truk semi	Truk semi trailer	Truk Gandeng
Waktu	SW,Kombinasi	Bus Sedang,	Ringan		(tronton)	trailer	Berat,	
	Pickup, Minibus	Bus Besar				menengah	truk peti kemas	
00.70-00.60	321	69	16	10	2	1	•	∞
00.80-00.70	448	142	45	6	9	1	-	5
08.00-09.00	408	601	48	12	4	ŧ	-	4
00.00-10.00	525	107	49	10	8	•		13
10.00-11.00	658	117	63	13	5	1	•	7
11.00-12.00	549	120	62	16	4	•	•	9
12.00-13.00	485	111	61	5	13	-	2	5
13.00-14.00	483	26	70	11	8	•		3
14.00-15.00	200	127	83	10	8	•		8
15.00-16.00	809	121	63	19	-12	•	•	6
16.00-17.00	772	125	81	10	13	1	•	10
17.00-18.00	685	92	52	18	11		1	7
18.00-19.00	402	46	40	7	5	1	•	4
19.00-20.00	465	29	49	13	9	•	•	7
20.00-21.00	390	43	47	12	15	1	•	10
21.00-22.00	381	27	94	14	15	•	•	12
22.00-23.00	275	27	11	13	9	2	•	21
23.00-24.00	361	17	37	15	7	ı	4	12
00.00-01.00	106	24	51	10	7	•	•	14
01.00-02.00	76	15	43	5	15	1	•	12
02:00-03:00	187	26	40	13	10	1	,	13
03.00-04.00	108	36	39	9	10	2	-	9
04.00-05.00	261	47	45	6	6	•	•	∞
05.00-06.00	231	09	09	9	10	1		4
Total	9912	1772	1231	266	212	6	10	208

REKAPITULASI SURVEI VOLUME LALU LINTAS

Hari/Tanggal	Senin/ 4-11-2002							
Arah	2 ARAH							
Jns Ken	MP	Bus	Truk	Truk	Truk	Trailer	Trailer	Trailer
Sumbu	1.1	1.2	1.2L	1.2H	1.22	1.2-2	1.2-22	1.2+2.2
Brt(ton)	2	6	8.3	18.2	25	26.2	42	31.4
	Sedan, jeep,	Bus Kecil,	Truk	Truk	Truk Tandom	Truk semi	Truk semi trailer	Truk Gandeng
Waktu	SW,Kombinasi	Bus Sedang,	Ringan	Berat	(tronton)	trailer	Berat,	
	Pickup, Minibus	Bus Besar				menengah	truk peti kemas	
06.00-07.00	321	71	45	8	5	9	1	7
07.00-08.00	452	71	51	9	5	4	3	2
08.00-09.00	420	81	62	10	5	9	6	. 6
09.00-10.00	472	83	117	6	5	4	9	4
10.00-11.00	556	88	111	24	4	2	2	8
11.00-12.00	395	54	87	14	1	2	2	3
12.00-13.00	412	11	117	21	5	4	4	10
13.00-14.00	525	58	128	20	17	11	8	10
14.00-15.00	501	18	103	91	7	11	10	6
15.00-16.00	518	16	104	14	6	3	5	15
16.00-17.00	533	96	105	15	14	8	3	9
17.00-18.00	529	06	96	11	15	9	5	4
18.00-19.00	395	45	45	12	9	2		4
19.00-20.00	434	45	61	17	3	4	•	3
20.00-21.00	464	18	62	20	15	2	•	13
21.00-22.00	209	28	47	14	6	4		6
22.00-23.00	231	11	42	16	8	3	9	7
23.00-24.00	165	15	32	12	3	1	1	6
00.00-01.00	72	7	52	16	7	9	•	5
01.00-02.00	106	12	61	13	15	5	'	9
02.00-03.00	96	15	61	11	16	. 3	2	5
03.00-04.00	163	30	63	6	16	1	•	5
04.00-05.00	231	42	53	6	10	•	1	6
05.00-06.00	269	89	74	8	11	2	2	7
Total	8469	1304	1796	331	211	100	65	166

BINA MARGA - IRMS INTERURBAN ROAD MANAGEMENT SYSTEM · CENTRAL DATABASE

TRAFFIC REPORT

			٠.	•	٠.				٠,٠								
:	nce:	26 -	DIÝ.		•												
r	nce:	97		}	i.,					j´	٠. ح	· 5	44	-2.	6	-Pa	ge g:
===	•		· · · · · ·									· · · · · · ·		- U 			
(ic	Link	7.7	DT	PC		Cst	Bus			Xotor	110	Otil	Util	Bus	Truck	Truck	NonXot
t		KBT	Total	XBT	Total	ĭ	7	X	1	Cycle		1	2		2-ari	J-ari	Irri
						 						i				1.	
					46 146	١.,		.,		0 110	(190		3 07/	1 115	1 077	101	
	001	14,080	24,907	21,903	25,425			- 1	3	9,739	6,478	1,831	2,074 2,103	1,325	1,972	401 604	1,088
2	002	14,254	25,346	22, (23)	26,145	13	10	13		10,091 19,633	6,416 9,561	1,891	2,103	1,355 1,190	880	127	1,199
211	002 K1	18,673	(3,912)	24,936	35,450	88	4	اد	' '	19,456	9,008	3,599	2,881	706	632	80	5,081
2 X 2	002 K2	16,907	41,444	21,954	J1,899	64	13	15	8	24,146	8,956	9,018	6,774	1,933	5,718	3,010	-10,570
) JX 1	003 K1	38,409 21,905	73,125 61,895	67,180 27,594	83,786 42,373	96	13	",	°	33,615	12,313	1,381	4,252	865	91	3,010	6,375
3K2	003 K2	22,686	69,508	27,835	42,628	93	1			12,706	13,615	1,745	2,680	1,548	98	•	4,116
383	003 K3	23,128	67,891	28,477	12,788	91	8	1		10,602	13,523	5,249	2,371	1,753	232		4,151
:41	001 1	12,806	24,091	10,962	26,178	12	1	;	10	3,091	3,155	3,340	2,136	1,115	1,555	1,114	3,194
42	001 2	11,816	22,473	19,473	24,399	12		,	11	7,641	2,331	3,532	1,992	1,095	1,038	1,241	3,015
121	004 KI	17,290	42,509	23,039	33,354	1 29		1 3		19,952	9,053	3,471	2,855	1,157	593	166	5,267
452	004 X2	9,901	23,440	13,435	19,038	89		ı	$\{ i \}$	10,511	5,249	1,596	1,774	764	349	70	2,928
433	62 E3	17,837	42,313	23,955	34,300	29	1	3	1	13,841	9,202	3,582	3,027	1,305	618	103	5,635
.5	005	13,984	25,407	22,904	28,278	12			9	8,065	3,331	(,322	2,473	1,274	1,271	1,314	3,358
6	006	12,407	23,284	20,062	25,239	13		ı	9	7,600	3,017	4,006	2,019	1,051	1,144	1,171	3,277
1	007	6,473	16,535	11,844	19,158				13	3,664	1,284	1,581	916	992	866	834	6,398
5	015	5,543	13,250	9,736	13,411	1				5,376	1,699	826	846	1,322	673	177	2,331
511	015 K1	16,918	38,464	22,515	31,897		6			16,299	8,127	3,444	3,029	1,075	541	102	5,247
SK2	015 K2	16,493	37,910	21,839	31,011	90	1	2	1	16,326	8,583	3,436	2,827	1,111	446	91	5,091
SKJ	015 K3	6,791	14,966	12,263	15,989	56		9	3	, ,,,,,	1,912	996	897	2,187	608	191	2,244
\$1.4	015 K4	16,874	18,767		32,041	89			1	16,732	8,639	3,364	3,012	1,199	616	- 44	5,161
SKS	015 KS	17,104	39,403	23,091	32,608	89		1 4	١.	17,012	8,689	3,427	3,068	1,221	628	72	5,257
SK6	015 K6	16,755		21,737	30,464			1	Į 1	15,800	9,095	3,511	2,623	1,124	262	1(0	(,777
:517	015 K7	19,357	43,090	15,794	36,122			1 .	١.	17,873	10,700	3,319	3,217	1,306	738	11	5,860
1218	015 K8	7,916	16,419	14,567	18,489						2,300	1,068	898	2,644	810 696	256 676	2,415 2,212
12K9	015 K9	7,848	15,282	14,996	18,514	51			9	5,222	1,949	1,026	1,004	2,498 2,196	716	204	2,279
171	017 1	9,452	20,312 12,626	15,263 10;881	19,687	3		1	1	8,581 5,100	3,939 2,311	1,900	2,355	138	281	54	186
172	017 2	6,700						1	;	1,830	2,048	1,782	2,124		272	52	
18	018	3,726					I	23	 -	7,925				116		1	317
19	019	1,600				66	15			3,508	604		482	389	481	5	
26	026	7,850					13	17			1,637	2,374	914	1,016	1,367	542	
282	028 7	9,049											1,761	1,073		170	
30	030	2,336								1,403	512		681	91	229	1	1,239
381	038 1	15,239						1		1						110	
187	018 7		11 428				1 3	115	1 1							502	

1 15 5 15

382

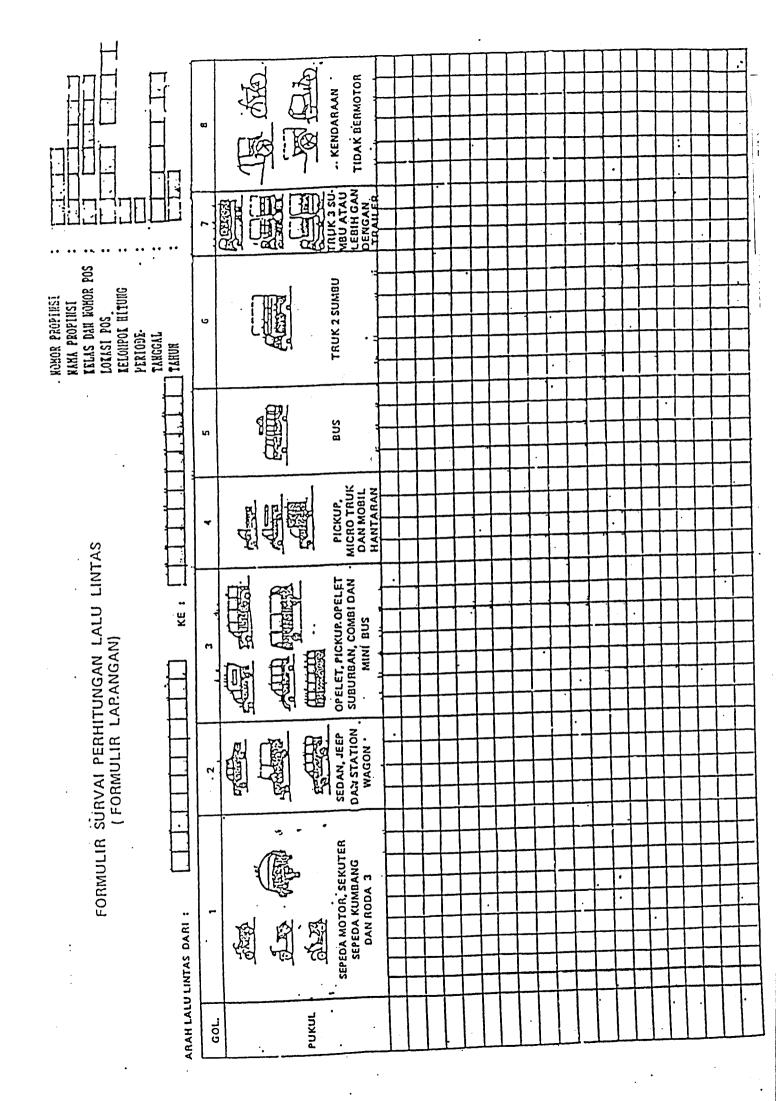
038 2

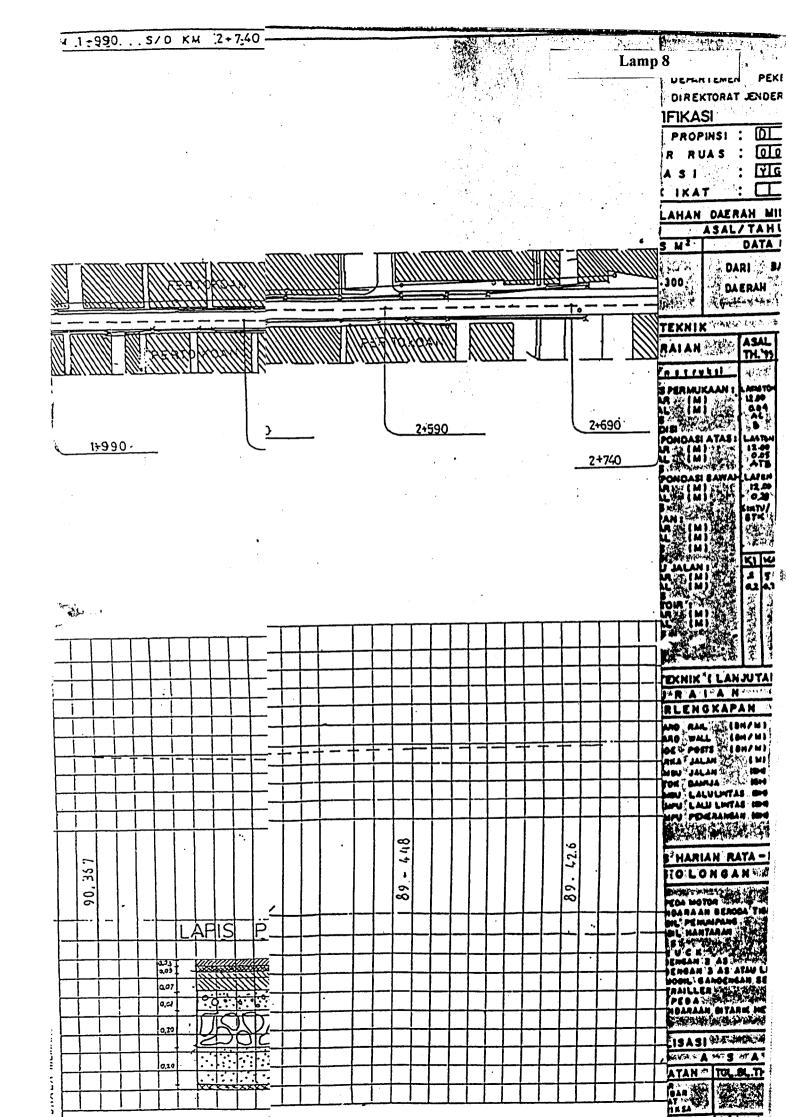
15,816 31,428 24,789 30,126 77

3 13,163 3 13,699

7,764

1,118


3,359


2,298

175

1,913

502

GeografilChangraphy

Average rainfall per month by district in Kulon Progo Regency Menurut Kecamatan Per Bulan di Kabupaten Kulon Progo Rata-rata Curah Hujan dan Hari Hujan Tabel/Tabel: 1.7 2001

Average rainfall per month by district in Kulon Progo Regency Menurut Kecamatan Per Bujan di Kabupaten Kulon Progo Rata-rata Curah Hujan dan Hari Hujan

2001

1

	Jan Jan	Јапиал Јапиагу	Pcbi Febr	Pebruari February	Marct March	Marct Murch
Kecamatan <i>Disarist</i>	Curah Hujan	Hari Hujan	Curah Hujan	Hani Hujan	Curah Hujan	Han Hujan
	Rainy (mm)	Kain day (hh)	Rainy (mm)	Rain day (hh)	Rainy (mm)	Kain day (hh)
€	(3)	(9)	(3)	(4)	(5)	(9)
1. Temon	g; H	13	262	13	206	12
2. Wates	610	25	299	14	573	11
3. Panjatan	23.5	23	130	12	141	17
4. Calun	500	81	968	13	388	1.1
5. Lendah	18 \ 18 \	25	,30°.	£1	357	22
6. Sentolo	34.7	73	274	Σ	247	13
7. Pengasilı	41.7	54	213	10	260	ន
8. Kokap	567	. 11	522	15	406	20
9 Cirmulyo	c4	<u>-</u> دد	떠	<u>د</u> د	ਲੰ	⊭ :
10. Nanggulan	16/	24	570	18	1,092	. 54
11. Kalibawang	219	20	298	15	501	2.4
12. Samigaluh	269	11	248	11	441	18
Raa-raa/Average 2001	466	21	328	13	419	18
Rata-ratal/weruge 2000	6 <u>55</u>	14	995	14	336	13
		1 1				

Dinas Pertanian dan Kelautan Kabupaten Kulon Progo Agricuture and Sea Services of Kulon Progo Regency Sumber Data Source

Congrafil Centeruphy_

Kulon Progo Dalam Angkal Kulon Progo in Figure

	¥ ÷	April April	N	Mci May	Ju	June
Kecumatan Disrici	Curah Hujan <i>Rainy</i> (mm)	Han Hujan <i>Rain day</i> (hh)	Curah Hujan <i>Rainy</i> (mm)	Hari Hujan <i>Rain day</i> (hh)	Curah Hujan <i>Rainy</i> (mm)	Han Hujan <i>Rain dey</i> (lül)
(1)	(E)	(9)	(9)	(10)	(11)	(12)
1. Temon	65	co	33	m	<u>0</u>	च
2. Wates	47	ch.	7.5	₹1	51	r-
3. Panjatan	33		22	۲٦	22	ν-1
4. Caim	S	٧٠.	æ	-	30	ν.
S. Lendah	65	ч ;	£, 33	C-1	<u>o</u>	٣.
6. Sentolo	> 🕱	10	> 같	ţ.	¥.	У,
7. Pengusili	92	S	28		i.V	n
8. Kokap	71	10	23	9	74	5
9. Girimulyo	ద	۲4 .	ĸ	ಜ	cz.	
10. Nanggulan	388	10	1 205	. 5	193	, 6
11. Kalibawang	, 274	14	138	5	51	ব
12. Samigaluh	222	10	52	4	125	10
Rata-rata/Average 2001	133	6	69	4.	63	5
Rata-rata/Averuge 2000	324	13	123	&	ýE	, 2
0	Jack some	Caldo Vobine	Dan Vilan Dan	0.5		

Dinas Pertanian dan Kelautan Kabupaten Kulon Progo Services of Kulon Progo Regency Sumber Data Source

Kulon Progo Dalam Anghal Kulon Progo in Figur

Average rainfall per mouth by district in Kulon Progo Regency Menurut Kecamatan Per Bulan di Kabupaten Kulon Progo Lanjutan Tabel/ Commuea Twee : 1.7 Rata-rata Curah Hujan dan Hazi Hujan

Average rainfall per month by district in Kulon Progo Regency Rafa-rate C rah Hujan dan Hafi Hujan Menunit Kecamatan Per Bulan di Kabupaten Kulon Progo

2001

Curah Hujan Hujan Hujan Hujan Hujan Hujan Kainy Kainy Kainy Kainy Kainan 1. Temon 208 208 3. Paujatan 7.2 4. Calur 16.1 6. Sentolo 8.5 2. Pengasih 16.1 8. Kokap 11.7 9. Girimulyo 1.7 9. Girimulyo 1.7 9. Girimulyo 1.7 10. Nanggulan 7.2	Han Hujan Kaire day (14)	Curah Hujan Rainy (mra)	Hari Hujan Rein dey. (lth) 3	Curah Hujan <i>Reiny</i> (mmi)	Han
(mm) (mm) (13) 161 161 161 163 85 705 705	(14) (14)	(48) (114)	(th) (th) (th) 3	Rainy (mm)	Hujan
(13) 208 77 161 161 85 705 117	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(3)	3		Rain day
208 772 161 161 85 705 717 117	4 , 6 , 6	. 77 '9		(1)	£.
161 161 161 705 717	i na ké V	7 9	г - .	<i>c</i> 1	
72 161 161 85 705 117	יי יי יי	, <u>o</u>	·	•	•
161 161 85 705 117	v. v			٠,5	-
161 85 705 117	4	•	•	•	•
205 705 117	••	•	•	•	1
705	сı	-		•	
117		•	•	•	ı
- 22	ग	•	•	•	•
	رد	.,	., -		.,
	ır.	•	1	•	•
11. Kalibawang 42	2	•	1	Î	1
12. Samigaluh	3	•	,		
Rata-rata/Average 2001 155	3	11	0	-	0
Ruta-tulu/Average 2000		49	2	22	-

: Dinas Pertanian dan Kelautan Kabupaten Kulon Progo : Agriculure and Sea Services of Kulon Progo Regency Sumber Data Source

Geografil Geography_

Kulon Progo Dalam Augka Kulon Progo in Figure

															-	
Desember December	Hari Hujan <i>Rain day</i> (Ut)	(24)	16	23	13	2	14	10	Ξ	13	~	12	14	œ	14	0
Dasa	Cumh Hujan <i>Rain</i> y (mm)	(23)	200	621	113	211	113	160	141	360	ద	: 131	. <u>%</u>	7.5	216	189
Nopember November	Hari Hujan <i>Rain day</i> Oth)	(22)	=	12	13	7	14	18	<u>8</u> 1	σı	R	, 22	20	17	16	17
Nope	Curah Hujan <i>Rainy</i> (mm)	(24)	300	526	115	237	237	220	275	399	ፈ	535	57.5	366	344	598
ber	Hari Hujan Rain day	(20)	i i	ঘ	<u>.</u>	13	17	17	15	23	ĸ	17	11	1.5	91	10
Oktober October	Curah Hujati Rainyi	(19)	732	203	150	371	371	340	423	803	∝	\$05	393	501	436	164
!	Kecamatan District	5	1. Temon	2. Wates	3. Panjatan	4. Galur	5. Lendah	o. Sentolo	7. Pengasih	8. Kokap	9 Girimulyo	10. Nanggulan	11. Kalibawang	12. Samigaluh	Ralu-rala bulmim Monthly Average Kulon Progo 2001	Rata-rata bulanan/ Monthly Average Kulon Propo 2000
															•	

Kinlon Progo 2000
Sumber Data : Dinas Pertanian dan Kelaudan Kabupaten Kulon Progo
Source : Agriculture and Sea Services of Kulon Progo Regency

Kulan Proga Dalam Angkal Kulan Proga in Figur

Lamp 9(b)

Gengrati/Congruphy

JALAN KALIURANG KM 14,4 TELP. (0274) 895042 YOGYAKARTA

PENGUJIAN CBR LABORATORIUM SNI-1744-1989-F

Proyek	TANAH	JALAN S	SENTOL	O-MILIF	₹
Lokasi	SENTO	LO			
No titik	:				
- Standar	d		.lumlah	pukulan	56 X
Standar			Juiman	partaiari	•••
Pengemb	angan	15-Nop			
Tanggal		12:00			
Jam		5.93	6.76	7.3	7.65
Pembaca		5.93	0.83	0.54	0.35
Pengemb	angan	7.4821	0.00	0.54	0.00
LRC		7.4021			
Penetrasi	- D	Db		Beban	
Waktu		Pembacaan		(lbs)	
(menit)	runan	Arloji	Bawah	Atas	Bawah
	(inc)	Atas 0	Dawaii 0	0	0
0	0.000	6		44.8926	0
1/4	0.013			89.7852	
1/2	0.025			224.463	
1	0.050			299.284	0
11/2	0.075			359.141	0
2	0.100 0.150			418.998	
3					
4	0.200			463.89	
6	0.300			523.747 568.64	- 0
8	0.400				- 6
10	0.500	81		606.05	
Kadar Air				1	II .
Tanah bas	ah + cawan	(W1 gr)		29.05	24.50
Tanah keri	ng + cawan	(W2 gr).		24.09	20.82
Cawan kos	ong (W3 gra	am)		13.99	13.50
Air (W1-W2	2 gram) (1)		4.96	3.68
	ng (W2-W3			10.10	7.32
Kadar Air (1)/(2)x100 %	6		49.11	50.27
			Harga	CBR	
		0,1"	ridige	0.2"	
Atas		10,1			
		11.97	%	10.31	%
		0,1"		0,2"	
Bawah					
			%	<u></u>	%

Dikerjakan

Tanggal

: 18 NOVEMBER 2002

Sabdoyono & Sitti Amirah

SAMPLE A

	Sebelum	Sesudah
Berat tanah + cetakan	11352	11382
Berat cetakan	3881.5	3881.5
Berat tanah basah	7470.5	7500.5
lsi cetakan	3231.51	3541.16
Berat isi basah	2.312	2.118
Kadar air, w (%)	19.67	49.69
Berat isi kering	1.544	1.415
1710		

ATAS

Jogjakarta, : 18 NOVEMBER 2002 DiPeriksa oleh :

> Ir. Iskandar S, MT Kalab. Jalan Raya

JALAN KALIURANG KM 14,4 TELP. (0274) 895042 YOGYAKARTA

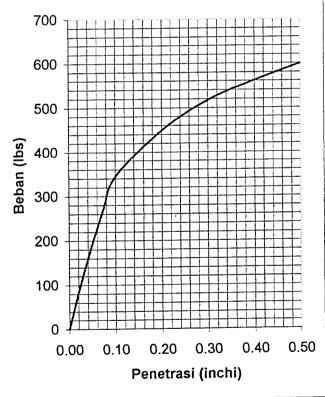
PENGUJIAN CBR LABORATORIUM SNI-1744-1989-F

Lokasi	okasi <u>SENTOLO</u>							
No titik	:							
Standar	d		Jumlah	pukulan	56 X			
Pengemb	angan							
Tanggal		15-Nop	16-Nop		18-Nop			
Jam		12:00		12:00	12:00			
Pembaca	an	6.7	6.92	7.025	7.13			
Pengemb	angan	6.7	0.22	0.105	0.105			
LRC		7.4821						
Penetrasi								
Waktu	Penu-	Pembacaan	: Beban		1			
(menit)	runan	· Arloji		(lbs)				
	(inc)	Atas	Bawah	Atas	Bawah			
0	0.000	0	0	0	0			
1/4	0.013	3		22.4463	0			
1/2	0.025	18		134.678	0			
1	0.050	26		194.535	0			
11/2	0.075	35		261.874	0			
2	0.100	46		344.177	0			
3	0.150	51		381.587	0			
4	0.200	60		448.926	0			
6	0.300	69		516.265	0			
	8 0.400 75			561.158	0			
10	0.500	80		598.568	0			
10 0.500 30 000.000								
Kadar Air				1	- 11			
	ah + cawan ((W1 gr)		32.18	36.68			
	ng + cawan			26.68	29.57			
	ong (W3 gra			13.99	13.03			
	gram) (1		····	5,50	7.11			
	ng (W2-W3 (12.69	16.54			
	1)/(2)×100 %			43.34				
Madai Ali (1)/(2)/(100 //	<u></u>			L			
			Harga	CBR				
		0,1"	90	0.2"				
Atas		10,1		- '				
71143		11.47	%	9.98	%			
		0,1"		0,2"				
Bawah		 ", '		, <u>-</u>				
Dawaii		 	%	 	%			
		<u> </u>	-/0		,,			

Proyek TANAH JALAN SENTOLO-MILIR

Tanggal

: 18 NOVEMBER 2002


Dikerjakan

Sabdoyono & Sitti Amirah

SAMPLE B

	Sebelum	Sesudah
Berat tanah + cetakan	10652	10624
Berat cetakan	4013	4013
Berat tanah basah	6639	6611
Isi cetakan	3231.51	3308.93
Berat isi basah	2.054	1.998
Kadar air, w (%)	17.11	43.165
Berat isi kering	1.435	1.396

ATAS

Jogjakarta,

: 18 NOVEMBER 2002

DiPeriksa oleh :

Ir.Iskandar S ,MT Kalab.Jalan Raya

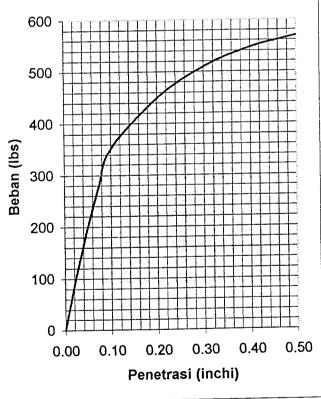
JALAN KALIURANG KM 14,4 TELP. (0274) 895042 YOGYAKARTA

PENGUJIAN CBR LABORATORIUM SNI-1744-1989-F

Proyek TANAH JALAN SENTOLO-MILIR								
Lokasi	SENTO	_O						
No titik	:							
- Standar			Jumlah	pukulan	56 X			
			o a man	Partara				
Pengemb	angan	15-Non	16-Non	17-Nop	18-Non			
Tanggal		12:00	12:00	12:00	12:00			
Jam		6.2	7.23	7.85	8.47			
Pembaca		6.2	1.03	0.62	0.62			
Pengemb	angan	7.4821	1.00]	0.02	0.02			
LRC	i	7.4021						
Penetrasi				Beban				
Waktu		Pembacaan			İ			
(menit)	runan	Arloji		(lbs)	Bawah			
	(inc)	Atas	Bawah	Atas				
0	0.000	0	0	0	- 0			
1/4	0.013	3		22.4463	0			
1/2	0.025	19		142.16	0			
1	0.050	26		194.535	0			
11/2	0.075	38		284.32	0			
2	0.100	47		351.659	0			
3	0.150	52		389.069	0			
4	0.200	60	<u> </u>	448.926	0			
6	0.300	68		508.783	0			
8	0.400	73		546.193	0			
10	0.500	76	İ	568.64	0			
Kadar Air I II								
Tanah bas	ah + cawan	(W1 gr)		28.05	32.12			
	ng + cawan			23.92	26.66			
	song (W3 gra			13.93	13.98			
	2 gram) (1			4.13	5.46			
	ng (W2-W3			9.99	12.68			
	1)/(2)×100 %			41.34	43.06			
Tradam ram y	.,,,							
1			Harga	CBR				
}		0,1"		0,2"				
Atas								
71103		11.72	2 %	9.98	%			
		0,1"		0,2"				
Bawah		 '-		1				
Davial		 	%	1	%			
L	% %							

Tanggal

: 18 NOVEMBER 2002


Dikerjakan Sabo

Sabdoyono & Sitti Amirah

0.4			-	\sim
SA	ιW	r	_=	\sim

	Sebelum	Sesudah
Berat tanah + cetakan	10657	10693
Berat cetakan	3836	3836
Berat tanah basah	6821	6857
Isi cetakan	3231.51	3640.18
Berat isi basah	2.111	1.884
Kadar air, w (%)	22.52	42.2
Berat isi kering	1.484	1.325
L		

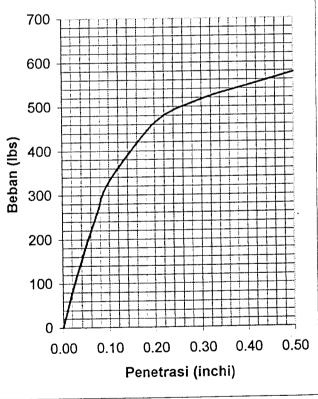
ATAS

Jogjakarta, : 18 NOVEMBER 2002 DiPeriksa oleh :

> Ir.Iskandar S,MT Kalab.Jalan Raya

JALAN KALIURANG KM 14,4 TELP. (0274) 895042 YOGYAKARTA

PENGUJIAN CBR LABORATORIUM SNI-1744-1989-F


Lokasi SENTC	10			Proyek TANAH JALAN SENTOLO-MILIR							
Lokasi SENTOLO											
No titik:											
Standard		Jumlah I	pukulan	56 X							
Pengembangan	15-Non	16-Nop	17-Non	18-Nop							
Tanggal	12:00		12:00	12:00							
Jam	3.34			5.04							
Pembacaan	3.34		0.46	0.46							
Pengembangan	7.4821	0.70	0.10	0.10							
LRC	17.4021										
Penetrasi	Pembacaar	L	Beban								
Waktu Penu-	1	ı	(lbs)	.							
(menit) runari	Arloji Atas	Bawah	Atas	Bawah							
(inc) 0 0.000		Dawaii 0	0	0							
			22.4463	0							
1/4 0.013			142.16	0							
1/2 0.025			194.535	0							
1 0.050			276.838	0							
11/2 0.075			329.212	0							
2 0.100	+		389.069	0							
3 0.150	 		463.89	- 0							
4 0.200		+	516.265								
6 0.300			546.193								
8 0.400		 	576.122								
10 0.500	370.122										
Kodar Air											
Kadar Air	A44 . 3		32.44								
Tanah basah + cawan			26.52								
Tanah kering + cawan			13.40								
Cawan kosong (W3 gr			5.92								
Air (W1-W2 gram) (13.12								
Tanah kering (W2-W3			45.12								
Kadar Air (1)/(2)x100 °	%		45.12	41.53							
			000								
1	0.47	marga	CBR								
	0,1"		0,2"								
Atas	40.0	7 0/	10.31	9/							
	10.97	76	0,2"	76							
Bawah	1										
	1	%		%							

Tanggal Dikerjakan : 18 NOVEMBER 2002 Sabdoyono & Sitti Amirah

SAMPLE D

	Sebelum	Sesudah	
Berat tanah + cetakan	10862	10881	
Berat cetakan	3967	3967	
Berat tanah basah	6895	6914	
Isi cetakan	3231.51	3537.56	
Berat isi basah	2.134	1.954	
Kadar air, w (%)	23.20	43.525	
Berat isi kering	1.487	1.362	

ATAS

Jogjakarta, : 18 NOVEMBER 2002 DiPeriksa oleh :

> Ir. Iskandar S, MT Kalab.Jalan Raya

No. Ruas Jalan	10:	A =	2 M	FM (A/B)	2.00
Nama Ruas Jalan	: Sentolo - Milir, Kab Kulon Progo	B =	1 M	FL(8,2/W)	1.00
Dikerjakan	: Sabdoyono, Siti Amirah	W =	8.2 TON	FE(1-1,15)	1.15
Fanggel	: 4 Nopember 2002				

			dki,dka = FM	$dki,dka = FM \times FL \times FE \times (d4 - d1)$	34 - d1)			
N.A.	lb	x 1-2 cm	Kiri			Kanan		
<u> </u>			d2	d3	†P	d2	d3	d4
16 + 200	0	40	0.00	0,13	0.25	0.00	0.13	0.25
16 + 600	0	40	0.25	0.33	0.40	0.25	0.33	0.40
17 + 0	0	4.0	0.50	1.00	1.50	0.50	1.00	1.50
17 + 400	0	4.0	0.10	0.15	0.20	01.0	0.15	0.20
18 + 200	0	40	27.00	35.00	43.00	27.00	35.00	43.00
18 + 600	0	40	24.50	31.75	39.00	24.50	31.75	39.00
18 + 800	0	40	5.00	12.25	19.50	5.00	12.25	19.50
19 + 400	0	40	0.00	0.00	0.00	0.00	00.0	0.00
20 + ()	0	40	0.00	00'0	0.00	00.0	00.00	00.00
20 + 400	0	40	1.00	00'1	1.00	1.00	1.00	1.00
21 + 100	0	40	0.00	00'0	0.00	00.00	0.00	0.00
21 + 600	0	40	0.00	0.88	1.75	0.00	0.88	1.75
22 + 0	0	40	0.50	1.25	2.00	0.50	1.25	2.00
22 + 700	0	40	3.00	11.50	20.00	3.00	11.50	20.00
23 + 0	0	40	14.00	00'91	00.81	14.00	16.00	18.00
23 + 400	0	40	00 0	5.50	11.00	00 0	5.50	11.00
23 + 700	0	40	21.00	25.75	30.50	21.00	25.75	3(_50
23 + 900	0	40	0.00	2.00	4 00	000	2 00	4 00
24 + 0	0	40	1.50	4.25	7.00	1.50	4 25	7 00
24 + 200	0	40	14.50	20.00	25.50	14.50	20.00	25.50
24 + 400	0	40	3.50	11.00	18.50	3 50	11.00	18.50

RIWAYAT PENANGANAN JALAN

Lamp 12(4)

JALAN JURUSAN

Bantar - Sentolo / Sentolo - Milir

NO. RUAS: 004/005

STATUS PANJANG NASIONAL PAR 9.340 M.

KONSTRUKSI AWAL

KM. (DARI KM. 15.060 S/D. KM. 24.400)

5	TAHUN	JENIS HAR	PENANC TING	BANG	LOKASI KM - KM	KONSTRUKSI LAPEN/HOTMIX	PELAKSANA	BIAYA / SUMBER DANA	KET.
, 1	ANGGARAN 2	3 3	4	5	6	7	3	9	
	1974 / 1975	v	_	-	15.060 - 24.400	_	Swakelola		APBN
	1975 / 1976	-	v	_	15.060 - 24.400	Lapen	Yogya – Cilacap		APBN
	1976 / 1977	-	v	-	15.060 - 24.400	Lapen	Yogya – Cilacap		APBN
	1977 / 1978	-	v	_	15.060 - 24.400	Lapen	Yogya – Cilacap	-	APBN
	1978 / 1979	-	, v	-	15.060 - 24.400	Lapen	Yogya – Cilacap		APBN
	1979 / 1980	-	v	-	15.060 - 24.400	Lapen	Yogya – Cilacap		APBN
	1980 / 1981	-	v	_	15.060 - 24.400	Lapen	Yogya – Cilacap		APBN
	1981 / 1982	-	v	-	15.060 - 24.400	Lapen	Yogya – Cilacap		APBN
	1982 / 1983	v	-		15.060 - 24.400	Hotmix	U.P.C.A.		APBN
	1983 / 1984	v	_	-	15.060 - 24.400	Hotmix	U.P.C.A.		APBN
	1984 / 1985	v	-	-	15.060 - 24.400	Hotmix	U.P.C.A.	. .	APBN
	1985 / 1986	v	_	-	22.200 - 22.500	Lapen	PB. Sewn Tomo		APBN
	1986 / 1987	v	-	-	15.060 - 24.400	Hotmix	U.P.C.A.	· -	APBN
į	1987 / 1988	v	-	-	15.060 - 24.400	Hotmix		896.625.710	APBN
	1988 / 1989	v	-	-	16.080 - 24.400	Hotmix		808.177.000	APBN
!	1989 / 1990	v	-	-	15.060 - 24.400	-	PB. Pemb. Utama		APBN
	1990 / 1991	v	-	-	15.060 - 24.400	-	Swakelola		APBN
ار	1991 / 1992	v	-	-	15.060 - 24.400	-	Swakelola	80.102.885,71	APBN
	1992 / 1993	v	-		16.080 - 24.400		Swakelola	146.891.000	APBN
	1993 / 1994	v	-		15.060 - 24.400		Swakelola	•	APBN
	1994 / 1995	v	-	-	15.060 - 24.400	Hotmix / AC	PB. Jati Agung		APBN
	1995 / 1996	, v	-	. –	15.060 - 24.400	-	Swakelola		APBN
 	1996 / 1997	v	·	-	15.060 - 24.400	-	Swakelola	162.583.967	APBN
	1997 / 1998	ν	-		15.060 - 16.200	Hotmix / AC	PB. Yoga Таша	,	APBN
	1998 / 1999	v	-	_	17.900 - 20.500	Hotmix / AC	PB. Yoga Tama	295.686.886,88	APBN
		v	_	-	18.650 - 18.800	GEOTEKTIL _			
	1999 / 2000	v	_		15.060 - 24.400	_	Swakelola		APBN

YOGYAKARTA, 31 - 8 - 2000

Pengamat Jalan

Juru Jalan

(MUCH. SAMIDI)

(WIJI HARYANTO)

Kepala Seksi Bina Marga

Bambang Bagya Raharjo NIP. 490018473