BAB V

ANALISIS DATA DAN PEMBAHASAN

5.1 Metode Time Series Analisis

Langkah-langkah yang dilakukan dalam peramalan ini adalah mengumpulkan data lalulintas penumpang terjadual bandara Adisucipto yang diperoleh dari tahun 1993 sampai dengan 2002 dapat di lihat pada tabel 4.1, dari data tersebut di analisis dengan menggunakan Model Ekstrapolasi Garis Kecenderungan dan Model Dekomposisi.

5.1.1 Model Ekstrapolasi Garis Kecenderungan

Model ini menggunakan 3 metode untuk mendapatkan nilai peramalan yang Perhitungannya diuraikan seperti dibawah ini ;

a. Ekstrapolasi Liniear untuk penumpang datang

Menggunakan data pada tabel 4.1 di cari nilai Regresi (r) dengan menggunakan persamaan (3.1) .

$$r = \frac{(10 \times 23960900) - (55 \times 4956050)}{\sqrt{((10 \times 385 - (55)^2 (10 \times (3.2 \times 10^{12}) - (4956050)^2))}}$$

$$r = -0.421$$

Data pada tabel 4.1 digunakan juga menghitung nilai a dengan persamaan 3.2 di dapat :

$$a = \frac{(4956050 \times 385) - (55 \times 23960900)}{(10 \times 385) - (55)^2}$$

a = 715430

dan dengan persamaan 3.3 di hitung nilai b di dapat :

$$b = \frac{(10 \times 23960900) - (55 \times 4956050)}{(10 \times 385) - (55)^2}$$

b = -39968

Perhitungan Ekstrapolasi linier seluruhnya dapat di lihat pada Tabel 5.1 berikut.

Tabel 5.1 Hasil analisis dengan Ekstrapolasi linear

Urai		E	Ekstrapolasi Linear				
Urais	ICI A	A ra	a	b			
	Berangkat	-0.421	715430	-39968			
Penumpang	Datang	-0.418	723861	-39931			
	Transit	0.283	44875.5	2086.6			
Bagasi	Muat	-0.065	3850756	-46639			
Dayası	Bongkar	-0.116	3936750	-79485			
Barang	Muat	-0.589	2747665	-210142			
Barany	Bongkar	-0.12	1777186	-35474			
Pos	Muat	-0.185	573451	-17287			
FUS	Bongkar	0.037	364778	1758.5			

Sumber: Hasil analisis, 2003.

b. Ekstrapolasi Eksponensial untuk penumpang datang

Data pada tabel 4.1, di cari nilai Regresi (r) dengan menggunakan persamaan (3.9) maka di dapat

$$r = \frac{(10 \times 707.2541) - (55 \times 129.8333)}{\sqrt{((10 \times 385) - (55)^2 (10 \times 1688.17) - (129.8333)^2))}}$$

r = -2.389

Dan data pada tabel 4.1 digunakan juga menghitung nilai a dengan persamaan 3.7 di dapat

$$\ln a = \frac{129.8333 - (-0.0819 \times 55)}{10}$$

ln a = 13.4339

dan dengan persamaan 3.8 di hitung nilai b, maka di dapat

$$b = \frac{(10 \times (707.2541) - (55 \times 129.8333)}{(10 \times 385) - (55)^2}$$

b = -0.0819

Perhitungan Ekstrapolasi Eksponensial seluruhnya dapat di lihat pada Tabel 5.2 berikut.

Tabel 5.2 Hasil analisis dengan Ekstrapolasi Eksponensial

Uraia	200	Eksponensial				
Uran	all	r	Lna	b		
	Berangkat	-2.389	13.4339	-0.0819		
Penumpang	Datang	-2.332	13.4439	-0.08		
107	Transit	1.023	10.6801	0.0353		
Bagasi	Muat	1.047	14.7183	0.0355		
Dayası	Bongkar	-0.09	14.9504	-0.0031		
Barang	Muat	-3.805	14.8269	-0.13		
Dalaily	Bongkar	-0.051	14.1619	-0.0017		
Pos	Muat	-2.026	13.249	-0.0684		
FU3	Bongkar	0.095	12.7508	0.0033		

Sumber: Hasil analisis, 2003

c. Ekstrapolasi Modifikasi Eksponensial untuk penumpang datang

Data pada tabel 4.1, di cari nilai Regresi (r) dengan menggunakan persamaan (3.16) maka di dapat

$$r = \frac{(10 \times 151.4563) - (11.9264 \times 129.8333)}{\sqrt{((10 \times 27.6502) - (11.9264)^2)(10 \times 1688.17) - (129.8333)^2))}}$$

$$r = -0.585$$

Dan data pada tabel 4.1 digunakan juga menghitung nilai a dengan persamaan 3.12 di dapat

$$\ln a = \frac{129.8333 - (-0.1225 \times 11.96502)}{10}$$

 $\ln a = 13.1294$

dan dengan persamaan 3.13 nilai b di dapat,

$$b = \frac{151.4563 - (11.9264 \times 129.8333)}{(10 \times 27.6502) - (11.9264)^2}$$

b = -0.1225

Perhitungan Modofikasi Eksponensial seluruhnya dapat di lihat pada Tabel 5.3 berikut.

Tabel 5.3 Hasil analisis dengan Ekstrapolasi Modifikasi Eksponensial

Urai		Modifikasi Eksponensial					
Ulai	an S		Ln a	b			
- // -	Berangkat	-0.585	13.1294	-0.1225			
Penumpang	Datang	-0.584	13.1477	-0.1204			
	Transit	1.023	10.6801	0.0353			
Bagasi	Muat	0.122	10.8529	0.018			
Dayası	Bongkar	-0.21	14.9864	-0.0445			
Barang	Muat	-0.662	14.2954	-0.1518			
Darang	Bongkar	-0.212	14.2033	-0.0428			
Pos	Muat	-0.214	12.9468	-0.0623			
FOS	Bongkar	0.041	12.7615	0.0062			

Sumber: Hasil analisis, 2003.

Pemilihan untuk menentukan model yang akarı di pakai untuk menentukan lalu lintas dari ketiga model tersebut yaitu yang mempunyai nilai regresi yang paling besar.

Nilai regresi untuk penumpang datang yang di dapat adalah:

Ekstrapolasi	Eksponensial	Modifikasi
-0.421	-2.389	-0.585

Di ambil nilai regresi yang terbesar adalah dengan model ekstrapolasi r= -0.421 maka nilai Y di hitung dengan persamaan ekstrapolasi

Y=a+bX (X = tahun setelah pengamatan).

 $Y_{2013} = 715430 + (-39968 \times 11) = -123898$ orang penumpang

Hasil dari semua perhitungan peramalan penumpang dengan garis kecenderungan dapat di lihat pada tabel 5.4.

Tabel 5.4 Hasil peramalan dengan model ekstrapolasi garis kecenderungan

Tahun	Penumpang		Bagasi		Barang		Pos		
lanun	datang	berangkat	transit	muat	bongkar	muat	bongkar	muat	bongkar
2003	284620	275780	67828	3000535	3006827	436102	1386980	383295	357575.2
2004	244689	235812	69915	3000663	2997548	225960	1384556	366008	358756.2
2005	204758	195844	72001	3000780	2988297	15817	1382137	348721	359941.1
2006	164827	155875	74088	3000889	2979076	-194325	1379722	331434	361129.9
2007	124896	115907	76175	3000990	2969882	-404467	1377311	314147	362322.6
2008	84965	75939	78261	3001085	2960717	-614609	1374904	296860	363519.2
2009	45034	35971	80348	3001174	2951580	-824751	1372502	279573	364719.8
2010	5103	-3997	82434	3001258	2942472	-1034893	1370103	262286	365924.4
2011	-34828	-43965	84521	3001337	2933391	-1245036	1367709	244999	367132.9
2012	-74759	-83934	86608	3001412	2924339	-1455178	1365320	227712	368345.4
2013	-114690	-123902	88694	3001484	2915314	-1665320	1362934	210425	369562

Sumber: Hasil analisis, 2003

5.1.2 Model Dekomposisi

Model ini dengan menggunakan data yang sama yaitu pada pada tabel 4.1 yang dijabarkan kedalam bentuk bulanan seperti lampiran 6, diuraikan berupa jumlah pemakai jasa transportasi udara berdasarkan Bulanan untuk tahun 1993 sampai dengan 2002, model ini digambarkan pada persamaan 3.17 yaitu $X_t = I_t \times T_t \times C_t \times E_t$, persamaan ini diuraikan pada bagian berikut ini :

1. Penentuan Trend (T)

Data tahun 1993 sampai dengan tahun 2002 di cari Trend dengan menggunakan metode ekstrapolasi kecenderungan untuk masing masing model yaitu ekstrapolasi linier, ekstrapolasi eksponensial, modifikasi eksponensial. Perhitungan metode ekstrapolasi kecenderungan serupa dengan sebelumnya.

2. Menentukan Indeks musiman (1)

metode ini menghitung rasio rata-rata bergerak yang meliputi 12 bulan yang terlampir pada lampiran 6, untuk menghitung indek musiman di cari nilai x terpusat seperti pada tabel 5.5 sebagi berikut.

Tabel 5.5 Mencari nilai X terpusat

Tahun	Bulan	Total	Rata-Rata Bergerak 12 Bulan	Rata-Rata Bergerak 12 Bulan Terpusat	X Terpusat (%)
a	b	C	d	е	F
1993	1	188139			
	2	193357			
	3	195561			<u> </u>
	4	164373			·
	5	203495			
	6	251090	222480.6667		
	7	268593	215417.8333	218949.25_	122.6736
	8	240604	208159.0833	211788.4583	113.6058
	9	235412	200817.5833	204488.3333	115.1225
	10	239787	194646.9167	197732.25	121.2685
	11	243090	187007.5833	190827.25	127.3875
	12	246267	177581.5	182294.5417	135.0929
1994	1	103385	167498.3333	1725 39.9167	59.91947
4	2	106252	158465.9167	1 62 982.125	65.19243
	3	107463	149628.4167	154047.1667	69.7598
- 3	4	90325	140626.6667	145127.5417	62.23836

Sumber: Hasil analisis, 2003

Kolom a, b, c, di dapat dari dari lampiran 6, untuk kolom d adalah ratarata bergerak 12 bulan misal nilai 222480.6667 adalah rata-rata dari bulan Januari 1993 sampai dengan Desember 1993 demikian seterusnya, kolom e adalah rata - rata nilai pada kolom dengan nilai kolom d sebelumnya misalnya nilai (222480.6667+215417.8333)/2 =218949.25 dan seterusnya, kolom f adalah nilai kolom c di bagi nilai pada kolom e dikalikan 100% misal (268593 / 218949.25) X 100%=122.6736 %.

Mencari indek musiman (I) pada kolom f dirata-ratakan pada bulan yang sama misalnya bulan Januari dari seluruh tahun dirata-rata, kemudian di bagi rata-rata nilai pada 12 bulan yang akan diamati.

Misal Indek musiman untuk bulan Januari tahun 1993 di hitung seprti berikut;

Nilai rata-rata januari dari seluruh tahun (59.9147 + 52.59871 + 110.8479 + 54.47227 + 46.65359 + 118.7553 + 116.4051 + 106.5108 + 109.8405) /10 = 77.60036

Nilai rata-rata kolom f tahun 1992

(122.6736 + 113.6058 + 115.1225 + 121.2685 + 127.3875 + 135.0929) / 6 = 122.5251

I = 77.60036 / 122.5251 = 0.63334

hasil perhitungan indeks musiman terangkum pada lampiran 5.

3. Menentukan nilai siklis (C)

nilai siklis di dapat dengan mengalikan nilai trend dan indeks musiman,

C = 199835 X 0.63334 =1.486513

hasil perhitungan terangkum pada lampiran 6.

untuk menentukan nilai Y, dapat dilakukan dengan cara seperti pada tabel 5.6 berikut.

Tabel 5.6 Menetukan nilai Y tahun 2003

	2003	
Indek	trend	WALL STORY
37175	24684.6	25056.35
31834	24707.2	25025.54
37425	24729.8	25104.05
30887	24752.4	25061.27
33082_	24775	25105.82
36257	24797.6	25160.17
41385	24820.2	25234.05
43653	24842.8	25279.33
37575	24865.4	25241.15
39966	24888	25287.66
35349	24910.6	25264.09
38325	24933.2	25316.45
_	297706.8	302135.93

Sumber: hasil analisis, 2003

Mencari indek dengan mengambil nilai tengah dari masing masing tahun data yang ada dari tahun1993 sampai 2002, trend di dapat dari rumus

Y = a + bX, dari hitungan ekstrapolasi sebelumnya adalah;

Y= 58936.676 + 271.349 X, dimana nilai 271.349 / 12 = 22.6

sehingga penambahan untuk pengguna bertambah 22.6, misal untuk mendapatkan niali trend untuk tahun 2003 Januari ditambahkan 22,6 dari trend tahun sebelumnya yaitu Desember 2002.

Mencari Y dengan cara

Y= Indek+(trend/100)

Y Januari 2003 = 37175+(246896/100) = 25056.35

Hasil model dekomposisi ini disajikan pada tabel 5.7 berikut.

Tabel 5.7 Hasil peramalan dengan model dekomposisi.

Tahun		Penumpang			Bagasi		ing	Pos	
ranun	datang	berangkat	transit	bongkar	muat	bongkar	muat	bongkar	muat
2003	302136	294324	29729	2430351	1544701	1235278	723236	245629	280735
2004	305332	297578	32983	2433605	154795 6	1238533	726491	248884	283989
2005	308645	300832	36238	2436860	1551210	1241787	729745	252138	287244
2006	311899	304087	39492	2440114	1554465	1245042	733000	255392	290498
2007	315154	307341	42747	2443368	1557719	1248296	736254	258647	293752
2008	318408	310596	46001	2446623	1560973	1251550	739508	261901	297007
2009	321662	313850	49255	2449877	1564228	1254805	742763	265156	300261
2010	324917	317104	52510	2453132	1567482	125 805 9	746017	268410	303516
2011	328171	320359	55764	2456386	1570737	1261314	749272	271664	306770
2012	331426	323613	59019	2459640	1571008	1264568	752526	274919	310024
2013	334680	326868	62273	2462895	1577244	1267822	755780	278173	313279

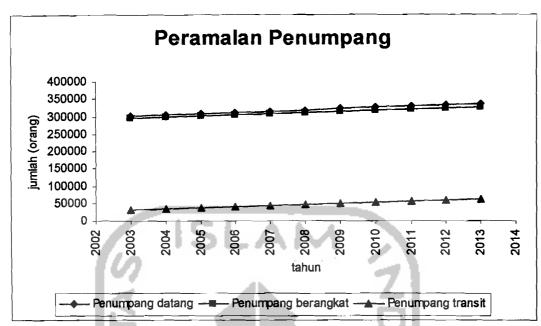
Sumber: Hasil Analisisi, 2003

5.1.3 Pembahasan Hasil Peramalan

Analisi perhitungan peramalan lalu-lintas *runway* bandara Adisucipto dengan menggunakan Model Ekstrapolasi Garis Kecenderungan dan Model Dekomposisi pada prinsipnya mempunyai tujuan yang sama, yaitu meramalkan

jumlah pengguna jasa transportasi udara di bandara Adisucipto untuk kebutuhan tahun 2013.

5.1.3.1 Tinjauan umum

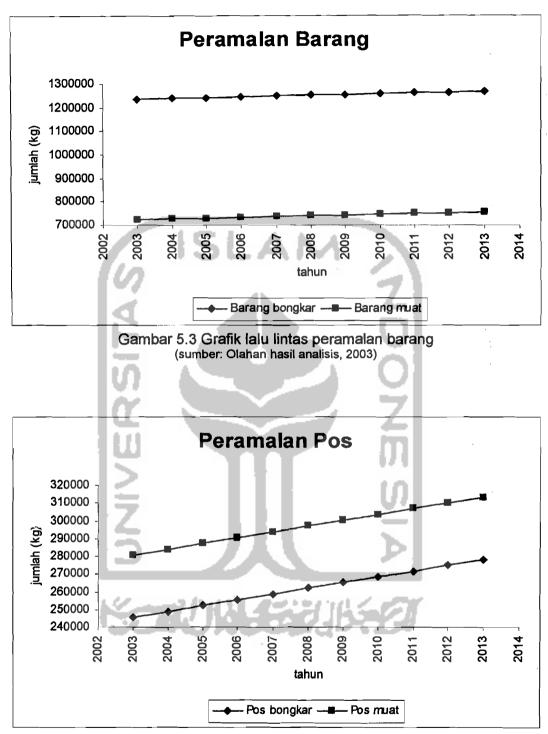

Berdasarkan perhitungan dengan menggunakan Model Ekstrapolasi Garis Kecenderungan dan Model Dekomposisi, di dapatlah hasil peramalan yang terbesar yaitu menggunakan model Dekomposisi sehingga nilai ini yang yang akan di pakai sebagai data dalam peramalan lalu lintas bandara Adisucipto dan merancang lapis perkerasan lentur *runway* pada bandar udara Adisucipto. Hasil tersebut di rangkum dalam tabel 5.8 berikut.

Tabel 5.8 Peramalan lalu lintas yang di pakai untuk merencanakan perkerasan.


Tahun	1	Penumpang		Bag	asi	Bara	ıng	Po	S
Ianun	datang	berangkat	transit	bongkar	muat	bongkar	muat	bongkar	muat
2003	302136	294324	29729	2430351	1544701	1235278	723236	245629	280735
2004	305332	297578	32983	2433605	1547956	1238533	726491	248884	283989
2005	308645	300832	36238	2436860	1551210	1241787	729745	252138	287244
2006	311899	304087	39492	2440114	1554465	1245042	733000	255392	290498
2007	315154	307341	42747	2443368	15 57719	1248296	736254	258647	293752
2008	318408	310596	46001	2446623	1560973	1251550	739508	261901	297007
2009	321662	313850	49255	2449877	1564228	1254805	742763	265156	300261
2010	324917	317104	52510	2453132	1567482	1258059	746017	268410	303516
2011	328171	320359	55764	2456386	1570737	1261314	749272	271664	306770
2012	331426	323613	59019	2459640	1571008	1264568	752526	274919	310024
2013	334680	326868	62273	2462895	1577244	1267822	755780	278173	313279

Sumber: Hasil Analisisi, 2003

Jumlah peramalan lalu lintas udara pada tabel 5.6 di atas di rangkum dalam bentuk grafik seperti pada gambar 5.1 untuk penumpang, gambar 5.2 untuk bagasi, gambar 5.3 untuk barang dan gambar 5.4 untuk pos, sebagai berikut.



Gambar 5.1 Grafik lalu lintas peramalan penumpang. (sumber: Olahan hasil analisis, 2003)

Gambar 5.2 Grafik lalu lintas peramalan bagasi (sumber: Olahan hasil analisis, 2003)

Gambar 5.4 Grafik lalu lintas peramalan pos (sumber: Olahan hasil analisis, 2003)

Peramalan Setelah dilakukan analisis menggunakan dekomposisi di dapat sebagai berikut :

1. Peramalan penumpang

Peramalan jumlah penumpang yang datang, berangkat dan transit dapat di lihat pada Gambar 5.1, Peramalan dengan model dekomposisi mengalami kenaikan tetapi tidak terlalu besar hanya berkisar 1000 penumpang pertahun di dapat nilai penumpang pada tahun 2013 adalah untuk penumpang datang = 334680 orang, penumpang berangkat = 326868 orang dan penumpang transit = 62273 orang, Nilai ini dijadikan peramalan penumpang untuk tahun 2013.

2. Peramalan Bagasi

Peramalan jumlah bagasi yang datang dan berangkat dapat di lihat pada Gambar 5.2, Peramalan dengan model dekomposisi mengalami kenaikan tetapi tidak terlalu besar hanya berkisar 1000 pertahun di dapat nilai bagasi pada tahun 2013 adalah untuk bagasi datang = 2462895 kg dan bagasi berangkat = 1577244 kg. Nilai ini yang dijadikan nilai peramalan bagasi untuk tahun 2013.

3. Peramalan Barang

Peramalan jumlah baraang yang datang dan berangkat dapat di lihat pada Gambar 5.3. Peramalan dengan model dekomposisi mengalami kenaikan tetapi tidak terlalu besar hanya berkisar 1000 pertahun di dapat nilai barang pada tahun 2013 adalah untuk barang datang = 1267822 kg dan barang berangkat = 755780 kg. Nilai ini yang dijadikan nilai peramalan barang untuk tahun 2013.

4. Peramalan Pos

Peramalan jumlah pos yang datang dan berangkat dapat di lihat pada Gambar 5.4. Peramalan dengan model dekomposisi mengalami kenaikan tetapi tidak terlalu besar hanya berkisar 1000 pertahun di dapat nilai pos pada tahun 2013 adalah untuk pos datang = 278173 kg dan pos berangkat = 575287 kg. Nilai ini yang dijadikan nilai peramalan pos untuk tahun 2013.

Perbedaan peramalan pos dengan peramalan pelayanan jasa lainnya yaitu pada pengguna jasa pos ini mengalami kenaikan yang tidak terlalu tinggi dibanding dengan pelayanan lain, hal ini dipengaruhi oleh perkembangan teknologi yang sangat cepat sehingga untuk melakukan komunikasi surat-menyurat tidak lagi harus menggunakan jasa Pos karena sudah tergantikan dengan fasilitas e-mail melalui internet, small message service (sms) dan multimedia massage service (mms) melalui ponsel yang lebih mudah digunakan dan tidak terbatas waktu sehingga sangat mempengaruhi nilai jumlah pemakai jasa pos saat ini maupun tahun-tahun mendatang.

5.2 Volume Pesawat Terbang

Volume pesawat terbang yang di pakai untuk perancangan FAA sebagai pendekatan di ambil dari volume yang di dapat dari perbandingan antara lalu lintas penumpang berangkat pada tahun 2002 (438.477 orang) dengan jumlah pesawat yang beroperasi pada tahun 2002 (5.517 pesawat), dengan asumsi hasil perbandingan tersebut digunakan untuk mencan volume pesawat terbang tahun 2013 yang berdasarkan pada jumlah penumpang berangkat pada tahun 2013

(326.868 orang). Data volume pesawat untuk tahun 2002 adalah seperti pada tabel 5.9 berikut.

Tabel 5.9 Volume pesawat tahun 2002.

type	F	F-28	F-28	F	B-737	B-737	B-737	B-737	MD	jumlah
pesawat	28	300	400	100	200	300	400	500	82	
volume pesawat	552	61	220	152	172	2768	1397	24	171	5517

Sumber: PT Angkasa Pura I Jogjakarta, 2002

Persentase jumlah pesawat tiap tipe terhadap jumlah total pesawat di hitung menurut data jumlah pesawat pada tahun 2002. Hasil persentase tersebut di anggap tetap sampai tahun 2013. Perhitungan persentase pesawat adalah sebagai berikut,

% pesawat F-28 =
$$\frac{\text{volume pesawat F - 28}}{\Sigma \text{ volume pesawat tahun 2002}} \times 100\%$$

= $\frac{552}{5517} \times 100\%$
= 10,01 %

Jumlah penumpang pada pesawat type F-28 = % pesawat x Σ penumpang

$$= 10,01 \% \times 438.477 = 43.872$$
 orang.

Untuk type pesawat yang lain di rangkum dalam tabel 5.10 berikut.

Tabel 5.10 Persentase berdasarkan type pesawat.

Type Pesawat	Volume Peesawat Berangkat Tahun 2002	% pesawat	Penumpang Berangkat tahun 2002
F-28	552	10,01	43872
F-28-300	61	1,11	4848
F-28-400	220	3,99	17485
F-100	152	2,76	12081
B-737-200	172	3,12	13670
B-737-300	2768	<u>50,1</u> 7	219994
B-737-400	1397	25,32	111030
B-737-500	24	0,44	1907
MD-82	171	3,10	13591
total	5517	100	438477

Sumber: Hasil analisis, 2003.

Jumlah penumpang berdasarkan type pesawat dapat di hitung dengan cara mengalikan total peramalan penumpang tahun 2013 (326.868 orang) dengan persentase tiap type pesawat yang di cari. Jumlah penumpang berdasarkan type pesawat dapat di hitung dengan cara sebagai berikut,

Jumlah penumpang pesawat type F-28 = % pesawat x Σ penumpang tahun 2013

untuk jumlah penumpang dengan type pesawat terbang yang lain dapat di lihat pada tabel 5.11.

Volume pesawat per type untuk tahun 2013 di hitung dengan mengalikan hasil total ramalan penumpang berangkat pada tahun 2013 dengan volume pesawat tahun 2002 dan kemudian di bagi dengan jumlah penumpang pada tahun 2002. Volume pesawat terbang dapat di cari dengan persamaan 4.1 sebagai benkut:

Vol. pesawat berangkat th. 2013 =

penumpang berangkat th 2013 × vol. pesawat berangkat th. 2002

penumpang berangkat th. 2002

$$=\frac{326.868\times5.517}{438.477}=3.727 \text{ pesawat.}$$

Untuk mengetahui volume tiap type pesawat, dapat di cari dengan cara sebagai berikut,

Volume pesawat type F-28=

penumpang berangkat th 2013 dgn pesawat type F - 28 × pesawat berangkat th. 2002 dgn pesawat type F - 28 penumpang berangkat th. 2002 dgn pesawat type F - 28

$$= \frac{32.705 \times 552}{43.872} = 373 \text{ pesawat.}$$

Volume pesawat terbang untuk tahun 2013 berdasarkan type pesawat dapat di lihat pada tabel 5.11 berikut.

Tabel 5.11 Volume pesawat tahun 2002 dan tahun 2013.

Type Pesawat	Volume Pesawat Berangkat Tahun 2002	Penumpang Berangkat tahun 2002	Penumpang Berangkat tahun 2013	Volume Pesawat Berangkat Tahun 2013
F-28	552	43872	32705	373
F-28-300	61	4848		41
F-28-400	220	17485	13034	149
F-100	152	12081	9006	103
B-737-200	172	13670	10191	116
B-737-300	2768	219994	163997	1870
B-737-400	1397	111030	82769	944
B-737-500	24	1907	1422	16
MD-82	171	13591	10131	116
total	5517	438477	326868	3727

Sumber: Hasil analisis, 2003.

5.3 Metode Perancangan FAA

Metode perancangan lapis keras lentur landasan pacu dengan menggunakan metode FAA, dilakukan dengan langkah-langkah seperti pada gambar 3.1.

5.3.1 Pesawat Rencana

Pesawat di pilih dari pesawat yang beroperasi di bandar udara yang menghasilkan total EAD terbesar, sehingga di dapat ketebalan lapis keras terbesar. Pesawat rencana di ambil dari beberapa Jenis pesawat yang memiliki frekwensi penerbangan yang besar. Jenis pesawat tersebut dapat di lihat pada tabel 5.12 berikut:

Tabel 5.12 Pemilihan pesawat rencana.

Jenis Pesawat	MTOW (kg)	Tipe Roda	Distribusi <i>Main Gear</i> (%)
F-28	29.484	DW	46,3
F-28-300	29.484	DW	46,3
F-28-400	29.484	DW	46,3
F-100	44.680	DW	47,8
B-737-200	45.722	DW	46,4
B-737-300	61.462	DW	45,9
B-737-400	64.864	DW	46,9
B-737-500	60.781	DW	46,1
MD- 8 2	68.266	DW	47,6
	F-28 F-28-300 F-28-400 F-100 B-737-200 B-737-300 B-737-400 B-737-500	F-28 29.484 F-28-300 29.484 F-28-400 29.484 F-100 44.680 B-737-200 45.722 B-737-300 61.462 B-737-400 64.864 B-737-500 60.781	F-28 29.484 DW F-28-300 29.484 DW F-28-400 29.484 DW F-100 44.680 DW B-737-200 45.722 DW B-737-300 61.462 DW B-737-400 64.864 DW B-737-500 60.781 DW

(DW : Dual Wheel) Sumber: FAA

5.3.2 Menentukan EAD Pesawat Campuran (R₂)

Setiap roda pendaratan utama pesawat campuran dikonversikan terlebih dahulu ketipe roda pendaratan utama pesawat rencana, dengan cara mengikuti tabel 3.1. hasil konversi ketipe roda pendaratan utama pesawat rencana, dapat di lihat dalam tabel 5.13 berikut:

Tabel 5.13 Konversi ketipe roda pendaratan utama pesawat rencana.

No	Jenis Pesawat	Tipe Roda	Tipe Roda Konversi	Faktor Konversi	Pergerakan Tahun 2013	Pergerakan Konversi (R ₂)
1	F-2 8	DW	DW	1,0	37 3	373
2	F-28-300	DW	DW	1,0	41	41
3	F-28-400	DW	DW	1,0	149	149
4	F-100	DW	DW	1,0	103	103
5	B-737-200	DW	DW	1,0	116	116
6	B-737-300	DW	DW	1,0	1870	1870
7	B-737-400	DW	DW	1,0	944	944
8	B-737-500	DW	DW	1,0	16	16
9	MD-82	DW	DW	1,0	116	116

Sumber: Hasil analisis, 2003

5.3.3 Menentukan Beban Roda Pesawat W₁ dan W₂

Beban roda pesawat rencana (W1) dan pesawat campuran (W2) di dapat dengan menggunakan persamaan 3.19 dan 3.20. Dari tabel 5.6 di dapat data karakteristik untuk semua jenis pesawat. Beban roda yang di dapat sebagai berikut:

1. Pesawat rencana:

a. B-737-300

$$W_1 = 46.3 \% \times 61.462 \times \frac{1}{2} = 14.105,529 \text{ kg}$$

b. **B-737-400**

$$W_1 = 46.3 \% \times 64.864 \times \frac{1}{2} = 15.210,608 \text{ kg}$$

c. MD-82

$$W_1 = 47,6 \% \times 68.266 \times \frac{1}{2} = 16.247,31 \text{ kg}$$

Pesawat rencana tersebut diambil berdasarkan nilai MTOW (maximum take off weigh) yang terbesar dari semua jenis pesawat, dan untuk tipe pesawat yang lain, di rangkum dalam lampiran 8.

2. Pesawat campuran

a. **F-28**

$$W_2 = 46.3 \times 29.484 \times \frac{1}{2} = 6.825,546 \text{ kg}$$

b. F-28-300

$$W_2 = 46.3 \times 29.484 \times \frac{1}{2} = 6.825,546 \text{ kg}$$

c. F-28-400

$$W_2 = 46.3 \times 29.484 \times \frac{1}{2} = 6.825,546 \text{ kg}$$

d. F-100

$$W_2 = 47.8 \times 44.680 \times \frac{1}{2} = 10.678,52 \text{ kg}$$

e. B-737-200

$$W_2 = 46.4 \times 45.722 \times \frac{1}{2} = 10.607,504 \text{ kg}$$

f. B-737-300

$$W_2 = 46.3 \times 61.462 \times \frac{1}{2} = 14.105,529 \text{ kg}$$

g. **B-737-400**

$$W_2 = 46.3 \times 64.864 \times \frac{1}{2} = 15.210,608 \text{ kg}$$

h. **B-737-500**

$$W_2 = 46.1x 60.781 \times \frac{1}{2} = 14.010,0205 \text{ kg}$$

i. MD-82

$$W_2 = 47.6 \times 68.266 \times \frac{1}{2} = 16.247,308 \text{ kg}$$

Untuk hitungan beban roda pesawat rencana dan campuran di rangkum dalam tabel 5.14.

5.3.4 Menentukan EAD (R₁)

EAD pesawat rencana (R_1), di dapat dengan menggunakan persamaan 3.18. Hitungan EAD pesawat rencana (R_1) untuk semua pesawat campuran (R_2) adalah sebagai berikut:

a. Equivalent Annual Departures pesawat rencana **B-737-300** (R_1), untuk pesawat campuran **B-737-300** (R_2 = 5689) adalah sebagai berikut:

$$Log R_1 = Log R_2 \times \left[\frac{W_2}{W_1}\right]^{\frac{1}{2}}$$

Log R₁ = Log 5689 x
$$\left[\frac{14105,53}{14105,53}\right]^{\frac{1}{2}}$$

$$Log R_1 = 3,755$$

$$R_1 = 10^{3,755} = 5689$$

b. Equivalent Annual Departures pesawat rencana **B-737-300** (R₁), untuk pesawat campuran **F-28** (R₂= 511) adalah sebagai berikut:

$$Log R_1 = Log R_2 \times \left[\frac{W_2}{W_1}\right]^{\frac{1}{2}}$$

Log R₁ = Log 1135 x
$$\left[\frac{6825,546}{14105,53} \right]^{\frac{1}{2}}$$

$$Log R_1 = 2.12513$$

$$R_1 = 10^{2,12513} = 133,39076$$

EAD pesawat rencana untuk semua pesawat campur di rangkum dalam tabel 5.14 berikut:

no.	Pesawat Rencana	Pesawat Campur	MTOW (kg)	MG	W1	W2	R2	R1
		F-28	29484	0.463	14105.529	6825.546	373	61
		F-28-300	29484	0.463	14105.529	6825.546	41	13
		F-28-400	29484	0.463	14105.529	6825.546	149	32
		F-100	44680	0.478	14105.529	10678.520	103	56
1	B-737-300	B-737-200	45722	0.464	14105.529	10607.504	116	62
•	D-737-300	B-737-300	61462	0.459	14105.529	14105.529	1870	1870
		B-737-400	64864	0.469	14105.529	15210.608	944	1228
		B-737-500	60781	0.461	14105.529	14010.021	16	16
		MD-82	68266	0.476	14105.529	16247.308	116	164
		15		AA	4		ΣR1	3502
	B-737-400	F-28	29484	0.463	15210.608	6825.546	373	53
		F-28-300	29484	0.463	15210.608	6 825.546	41	12
		F-28-400	29484	0.463	15210.608	6 825.546	149	29
		F-100	44680	0.478	15210.608	1 0 678.520	103	48
2		B-737-200	45722	0.464	15210.608	10607.504	116	53
2	D-131-400	B-737-300	61462	0.459	15210.608	14105.529	1870	1415
	17	B-737-400	64864	0.469	15210.608	15210.608	944	944
	10	B-737-500	60781	0.461	15210.608	14010.021	16	14
	l i	MD-82	68266	0.476	15210.608	16247.308	116	135
	19			-	7 Z		ΣR1	2703
		F-28	29484	0.463	16247.308	6 825.546	373	46
	MD-82	F-28-300	29484	0.463	16247.308	6 825.546	41	11
		F-28-400	29484	0.463	16247.308	6 825.546	149	26
		F-100	44680	0.478	16247.308	1 0 678.520	103	43
3		B-737-200	45722	0.464	16247.308	1 0 607.504	116	47
		B-737-300	61462	0.459	16247.308	14105.529	1870	1118
	1 -	B-737-400	64864	0.469	16247.30 8	15 210.608	944	756
		B-737-500	60781	0.461	16247.308	14010.021	16	13
		MD-82	68266	0.476	16247.308	16247.308	116	116
	. 4	- 4-					ΣR1	2175

(FK: Faktor Koreksl; MG: Main Gear) Sumber: Hasli analisis, 2003.

Hasil perhitungan EAD pesawat terbang untuk tipe pesawat secara keseluruhan dapat di lihat pada lampiran 8.

5.3.5 Menentukan Tebal Lapis Keras

Dari tabel 5.12 dan 5.14, di dapat data perancangan untuk metode FAA sebagai berikut:

1. Jenis pesawat rencana B-737-300

- a. MTOW = 61.462 kg = 135.498,2363 lbs
- b. Total EAD = 3.502 pesawat.
- c. Nilai CBR subgrade 6%, CBR subbase course 25%, CBR base course 80%

Dengan memasukkan nilai CBR *subgrade* 6% dan EAD sebesar 3.502 pesawat pada lampiran 1, maka di dapat tebal total lapis keras rencana sebesar:

$$H_t = H_t \text{ dari grafik} + (15\% \times H_t)$$
 $H_t = 30 \text{ in} + (15\% \times H_t)$
 $= [30 + (15\% \times 30)] \times 2,54 = 87,63 \text{ cm} \sim 87,7 \text{ cm}$

(15% adalah angka aman yang di pakai untuk menambahkan ketebalan perkerasan pada saat pengerjaan struktur yaitu sebesar 15% dari total tebal perkerasan)

Tebal base course dapat dengan cara memasukkan data CBR sub base course 25% dan total EAD sebesar 3.502 pesawat pada lampiran 1, maka di dapat tebal tebal surface course dan base course sebesar:

$$H_1 + H_2 = 11 \text{ in} + [(15\% \times H_1 + H_2)]$$

= $[11 + (15\% \times 11)] \times 2,54 = 32,131 \text{ cm} \sim 32,2 \text{ cm}$
 $H_1 = 10,5 \text{ cm} \text{ (tebal minimal surface course adalah 4 in} = 10,16 \text{ cm} \sim 10,5 \text{ cm})$
 $H_2 = 32,2 - 10,5 = 21,7 \text{ cm}$

Kontrol tebal *basecourse* minimum digunakan lampiran 2, rnaka di dapat tebal *base* course minimum sebesar:

$$H_2$$
 = 11,4 in
= 11,4 x 2,54 = 28,956 cm ~ 29 cm > 21,7 cm
di pakai tebal *base course* = 29 cm

setelah tebal *surface course* dan *base course* di dapat, maka tebal *sub base course* di dapat dari;

$$H_3 = H_t - (H_1 + H_2)$$

= 87,7 -(10,5 + 29) = 48,2 cm

 Perhitungan jenis pesawat rencana B-737-400, dan MD-82 yang telah ditambah dengan angka aman sebesar 15% dari total perkerasan, hasilnya terangkum dalam tabel 5.15 berikut.

Tabel 5.15 Tebal lapis keras lentur berdasarkan pesawat rencana.

Levices	J	na	
Lapisan	B - 737 - 300	B - 737 - 400	MD - 82
Surface Course (H ₁) cm	10,5	10,5	10,5
Base Course (H ₂) cm	29	29,8	29,3
Sub Base Course (H ₃) cm	48,2	51,2	49,3
Tebal total (cm)	87,7	91,5	89,1

Sumber: Hasil analisis, 2003

Tebal lapis keras lentur untuk masing-masing lapisan berdasarkan semua tipe pesawat dapat di lihat pada lampiran 9.

5.3.6 Hasil Akhir Tebal Lapis Keras Metode FAA

Berdasarkan tabel 5.15, dapat di lihat bahwa pesawat jenis B-737-400 membutuhkan lapis perkerasan lentur yang lebih tebal, sehingga pesawat B-737-400 di pakal sebagal pesawat rencana yang sesungguhnya.

5.3.7 Perbandingan Tebal Lapis Keras Lentur Runway yang Ada

Dari hasil analisis lapis keras lentur pada tabel 5.15, dilakukan perbandingan terhadap tebal lapis keras *runway* yang ada. Perbandingan tersebut dapat di lihat pada tabel 5.16 berikut ini:

Tabel 5.16 Perbandingan tebal lapis keras lentur *runway*.

Lapisan	Tebal <i>runway</i> yang Ada (cm)	Tebal <i>runway</i> Hasil Analisis (cm)
Surface Course	17,5	10,5
Base Course	30	29,8
Sub Base Course	45	51,2
Total perkerasan	92,5	91,5

Sumber: Hasil analisis, 2003.

Dari tabel 5.16 di atas, dapat di lihat bahwa tebal lapis keras lentur *runway* yang ada sekarang masih mampu mendukung beban lalu lintas udara sampai dengan tahun 2013 mendatang, karena ketebalan yang ada sebesar 92,5 cm dan kebutuhan pada tahun 2013 mendatang adalah sebesar 91,5 cm.

Berdasarkan kondisi tebal perkerasan yang ada sekarang (92,5 cm), dilakukan analisis perhitungan untuk menghitung kondisi perkerasan yang mampu menahan beban pada tahun tertentu. Dengan cara *trial* di dapat kondisi kritis adalah pada tahun 2018. Untuk perhitungan ketebalan tersebut di pakai pesawat rencana yakni pesawat B-737-400 (sesuai hasil analisis) dan pesawat B-737-300 (pesawat rencana ketika perencanaan peningkatan ketebalan *runway* bandara Adisucipto). EAD dari kedua jenis pesawat tersebut untuk tahun 2018 terangkum dalam tabel 5.17 berikut,

المرابع المنطقة المنافقة

Tabel 5.17 FAD pesawat rencana untuk tahun 2018.

no.	Pesawat Rencana	Pesawat Campur	MTOW (kg)	MG	W1	W2	R2	R1
		F-28	29484	0.463	14105.529	6825.546	391	64
		F-28-300	29484	0.463	14105.529	6825.546	43	14
		F-28-400	29484	0.463_	14105.529	6825.546	156	34
		F-100	44680	0.478	14105.529	10678.520	108	59
1	B-737-300	B-737-200	45722	0.464	14105.529	10607.504	122	64
•	B-737-300	B-737-300	61462	0.459	14105.529	14105.529	1963	1963
		B-737-400	64864	0.469	14105.529	15210.608	991	1291
		B-737-500	60781	0.461	14105.529	14010.021	17	17
ı		MD-82	6 82 66	0.476	14105.529	16247.308	121	172
		la i						3677
		F-28	29484	0.463	15210.608	6825.546	391	55
		F-28-300	29484	0.463	15210.608	6825.546	43_	12
	i i	F-28-400	29484	0.463	15210.6 0 8	6825.546	156	29
		F-100	44680	0.478	15210.608	10678.520	108	50
2	B-737-400	B-737-200	45722	0.464	15210.608	10607.504	122	55
_		B-737-300	61462	0.459	15210.608	14105.529	1963	1483
		B-737-400	64864	0.469	15210.608	15210.608	991	991
		B-737-500	60781	0.461	15210.608	14010.021	17	15
		10.0	-			T	\	
	11	MD-82	68266	0.476	15210.608	1 62 47.308	121	142

(FK: Faktor Koreksi; MG: Main Gear) Sumber: Hasil analisis, 2003.

Berdasarkan tabel 5.17, di dapat tebal untuk masing-masing lapisan dari kedua pesawat rencana yang terangkum dalam tabel 5.18 berikut,

Tabel 5.12 Tebal lapis keras lentur berdasarkan pesawat rencana untuk tahun 2018.

Lapisan	Jenis Pesawat Rencana			
Lapisan	B - 737 - 300	B - 737 - 400		
Surface Course (H ₁) cm	10,5	10,5		
Base Course (H ₂) cm	29,5	30,5		
Sub Base Course (H ₃) cm	48,5	51,5		
Tebal total (cm)	88,5	92,5		

Sumber: Hasil analisis, 2003

Dari tabel 5.12 dapat disimpulkan bahwa ketebalan yang ada sekarang hanya mampu menahan beban lalu lintas udara sampai dengan tahun 2018 dengan pesawat rencana B-737-400.

5.3.8 Pembahasan Perkerasan

Pesawat rencana yang digunakan adalah pesawat yang menghasilkan ketebalan *runway* yang terbesar, pesawat rencana mempertimbangkan nilai EAD, MTOW dan frekwensi penerbangan. Pesawat rencana tersebut adalah pesawat B-737-400, pesawat B-737-400 digunakan karena nilai EAD, MTOW dan frekwensi penerbangan yang dihasilkan dan dibandingkan dengan jenis pesawat rencana lainya menghasilkan ketebalah yang paling besar, analisisnya dapat di lihat pada tabel 5.15 dimana hasil ketebalah berbeda pada lapisan *Base Course* dan *Sub Base Course*.

Pesawat rencana yang digunakan pada saat perencanaan peningkatan tebal lapis keras *runway* bandara Adisucipto menggunakan pesawat B-737-300. Berbeda dengan hasil analisis yang menggunakan pesawat B-737-400 karena berdasarkan perhitungan dari pesawat tersebut menghasilkan tebal perkerasan yang lebih besar dari pesawat B-737-300.

Ketebalan perkerasan yang di dapat dari hasil analisis dan ketebalan yang ada sekarang mempunyai perbedaan dalam pemakaian metode perhitungan perkerasan yaitu metode FAA yang di pakai untuk analisis perkerasan dan metode CBR yang di pakai perencana untuk merancang perkerasan bandara Adisucipto.

Berdasarkan kondisi tebal perkerasan dan jumlah lalu lintas yang ada, penambahan tebal perkerasan dapat dilakukan pada tahun 2018. Hal ini dikarenakan bahwa pada tahun tersebut, dari hasil analisis dengan metode FAA di dapat tebal total sebesar 92,5 cm dengan pesawat rencana B-737-400. Angka tersebut sama dengan tebal total lapis keras yang ada sekarang (92,5 cm).