TUGAS AKHIR

KUAT TEKAN KOLOM TERSUSUN DARI PROFIL C BENTUKAN DINGIN DENGAN BATANG PERANGKAI DIAGONAL

Diajukan kepada Universitas Islam Indonesia untuk memenuhi sebagian persyaratan memperoleh derajat sarjana S-1 Teknik Sipil

Disusun Oleh:

Nama	: L. Kholid Karyadi
No. Mhs	: 97 511 229
NIRM	: 970051013114120367
Nama	: Yousef Al Azhar
No. Mhs	: 97 511 205
NIRM	: 970051013114120389

JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK SIPIL DAN PERENCANAAN UNIVERSITAS ISLAM INDONESIA YOGYAKARTA 2003

LEMBAR PENGESAHAN TUGAS AKHIR

KUAT TEKAN KOLOM TERSUSUN DARI PROFIL C BENTUKAN DINGIN DENGAN BATANG PERANGKAI DIAGONAL

Disusun Oleh:

Nama	: L. Kholid Karyadi
No. Mhs	97 511 229
NIRM	970051013114120367
3 .	Voucof Al-Azhar

Nama No. Mhs NIRM : Yousef Al-Azhar : 97 511 205 : 970051013114120389

Telah diperiksa dan disetujui oleh:

Ir. HM. Samsudin, MT. Dosen Pembimbing I

Ir. Fatkhurrohman N., MT. Dosen Pembimbing II

Tanggal: 30 00 108-2003 Tanggal: 30

MOTTO

"Sesungguhnya bersama kesukaran pasti ada kemudahan" Al-Qur'an (Asy-Syarh:5) Karya ini kupersembahkan kepada yang tercinta:

.

.

Kedua Orang Tuaku Kakak-kakak dan Adik-Adikku

KATA PENGANTAR

Assalamu ' alaikum Wr. Wb.

Puji syukur kehadirat Allah SWT atas karunia dan rahmat-Nya hingga penyusun dapat melaksanakan serta menyusun laporan Tugas Akhir ini dengan baik.

Laporan Tugas Akhir ini disusun sebagai syarat menempuh jenjang pendidikan Strata Satu (S-1) pada Fakultas Teknik Sipil dan Perencanaan Jurusan Teknik Sipil Universitas Islam Indonesia, Yogyakarta. Dalam menyusun laporan Tugas Akhir ini, sebelumnya penyusun telah melakukan pengujian pada Laboratorium Mekanika Rekayasa Fakultas Teknik Sipil dan Perencanaan Jurusan Teknik Sipil Universitas Islam Indonesia, Yogyakarta.

Selama melaksanakan dan menyusun laporan Tugas Akhir, penyusun mendapatkan banyak bimbingan dan bantuan dari berbagai pihak, dalam kesempatan ini penyusun menyampaikan terima kasih kepada:

- Prof. Ir. H. Widodo, MSCE, Ph.D., selaku Dekan Fakultas Teknik Sipil dan Perencanaan Universitas Islam Indonesia,
- 2. Ir. H. Munadhir, MS., selaku Ketua Jurusan Teknik Sipil dan Perencanaan Fakultas Teknik Sipil dan Perencanaan Universitas Islam Indonesia,
- 3. Bapak Ir. H. Samsudin, MT., selaku Dosen Pembimbing I,
- 4. Bapak Ir. Fatkhurrohman N., MT., selaku Dosen Pembimbing II,

- 5. Bapak Ir. H. Susastrawan, MS., selaku Dosen Penguji,
- 6. Kedua Orang Tua Tercinta, atas segala bimbingan, nasehat dan dukungannya,
- 7. Kepada Ir. L. Makrup, MT., beserta keluarga atas segala dukungannya,
- Seluruh pihak yang telah membantu baik secara langsung maupun tidak langsung.

Semoga seluruh amal dan kebaikan yang diberikan dapat diterima dan mendapatkan ridho dari Allah SWT.

Penyusun menyadari bahwa laporan Tugas Akhir ini belum dapat dikatakan sempurna karena masih terdapat banyak kekurangan. Oleh karena itu, dalam kesempatan ini penyusun mengharapkan saran dan kritik yang bersifat membangun demi kesempurnaan laporan Tugas Akhir ini. Penyusun berharap semoga laporan Tugas Akhir ini dapat bermanfaat bagi kita semua.

Wassalamu 'alaikum Wr. Wb.

Yogyakarta, 17 Agustus 2003

Penulis

DAFTAR ISI

LEMBAR	JUDUL	i
LEMBAR	R PENGESAHAN	ii
HALAMA	AN MOTTO	iii
HALAM	AN PERSEMBAHAN	iv
KATA PI	ENGANTAR	v
DAFTAR	R ISI	vii
DAFTAR	SIMBOL	x
DAFTAF	R GAMBAR	xii
DAFTAR	TABEL	XV
DAFTAF	RLAMPIRAN	xvii
ABSTRA	KSI	xvii
BAB I	PENDAHULUAN	1
	1.1. Latar Belakang	1
	1.2. Tujuan Penelitian	2
	1.3. Manfaat Penelitian	3
	1.4. Batasan Masalah	3
	1.5. Bagan Alir Penelitian	4
BAB II	TINJAUAN PUSTAKA	5
BAB III	LANDASAN TEORI	8
	3.1. Kolom Tersusun	8
	3.2. Panjang Efektif	10
	3.3. Kuat Tekan	11
	3.3.1. Tekuk lokal	12
	3.3.2. Tekuk keseluruhan	16
	3.3.3. Hubungan tekuk lokal dan tekuk lentur	18

	3.3.4 Tekuk inelastis	20
	3.3.5. Tegangan kritis metode AISC	22
	3.3.6. Pengaruh gaya geser pada kolom tersusun	24
	3.5. Hipotesis	27
BAB IV	METODOLOGI PENELITIAN	28
	4.1. Metode Penelitian	28
	4.2. Bahan dan Alat yang Digunakan	28
	4.2.1. Bahan	28
	4.2.2. Peralatan penelitian	29
	4.3. Pembuatan Benda Uji	31
	4.4. Pengujian Benda Uji	33
	4.4.1. Uji pendahuluan	33
	4.4.2. pengujian kolom tersusun	34
	4.5. Analisis Hasil Pengujian	34
BAB V	HASIL DAN PEMBAHASAN	35
	5.1. Hasil Pengujian	35
	5.1.1. Hasil uji pendahuluan	35
	5.1.1.1. Uji kuat tarik baja	35
	5.1.1.2. Uji kuat geser sambungan las	36
	5.1.1.3 Uji kuat tekan profil light lipped channal	38
	5.1.2 Hasil pengujian kolom tersusun	41
	5.2. Pembahasan	58
	5.2.1. Pembahasan uji pendahuluan	58
	5.2.1.1. Pembahasan uji kuat tarik baja	58
	5.2.1.2. Pembahasan uji kuat geser sambungan las	59
	5.2.1.3. Pembahasan uji kuat tekan profil	
	light lipped channal	59
	5.2.2. Pembahasan pengujian kolom tersusun	62
	5.2.2.1. Beban kritis (Pcr)	62
	5.2.2.2. Hubungan momen-kelengkungan (M- Φ)	70

5.2.2.3. Tegangan kritis (F_{cr})	72
5.2.2.4. Perhitungan koefisien tekuk plat (k)	74
5.2.2.4. Perhitungan modulus tangen	
dan modulus tereduksi $(E_t - E_r)$	78
5.3. Perhitungan Teoritis	79
5.3.1. Perhitungan teoritis metode Bleich	79
5.3.2. Perhitungan teoritis metode AISC	82
5.4. Perbandingan Hasil Pengujian dengan Perhitungan Teoritis	86
5.4.1. Perbandingan hasil pengujian dengan metode Bleich	86
5.4.2. Perbandingan hasil pengujian dengan metode AISC	89
BAB VI KESIMPULAN DAN SARAN	91
6.1. Kesimpulan	91
6.2. Saran	92
DAFTAR PUSTAKA	93
LAMPIRAN	

DAFTAR SIMBOL

$\mathbf{A}_{\mathbf{d}}$: Luas penampang satu batang diagonal
A _b	: Luas penampang satu batang horisontal
a	: Jarak antar profil dari tepi terluar bahan
b	: Lebar profil
b/t	: Rasio lebar terhadap tebal
d	: panjang batang diagonal
E	: Modulus elastis
Ει	: Modulus tangen
Er	: Modulis reduksi
$\mathbf{F}_{\mathbf{cr}}$: Tegangan kritis
F_y	: Tegangan leleh
$\mathbf{F}_{\mathbf{u}}$: Tegangan ultimit
h	: Panjang batang horisontal
k	: Koefisien tekuk plat
K	: Faktor tekuk keseluruhan
L	: Panjang batang keseluruhan
L_1	: Panjang elemen batang yang dibatasi oleh ujung-ujung batang penghubung
Р	Beban
P _{cr}	: Beban kritis
r	: Radius girasi
$t_{\rm f}$: Tebal profil
μ	: Angka poisson
Ι	: Inersia kolom tersusun
\mathbf{I}_0	: Inersia batang perangkai
σ	: Tegangan
Φ	: Kekakuan

: Luas profil

Α

 λ : Kelangsingan

DAFTAR GAMBAR

Gambar 1.1	Bagan alir prosedur penelitian	4
Gambar 3.1.	Sumbu bahan dan sumbu bebas bahan pada kolom tersusun	9
Gambar 3.2	Bentuk variasi batang tersusun	10
Gambar 3.3	Faktor panjang efektif untuk kolom dengan berbagai	
	kondisi ideal	11
Gambar 3.4	Titil pusat beban sentris	12
Gambar 3.5	Koefisien tekuk elastis untuk tekan pada pelat segi empat datar	15
Gambar 3.6	Rasio tebal terhadap lebar berbagai tampang profil	16
Gambar 3.7	Batang Lurus yang dibebani gaya tekan aksial	16
Gambar 3.8	Teori modulus tangen Engesser	20
Gambar 3.9	Grafik tegangan berdasarkan persamaan Euler,	
	tangen modulus dan modulus tereduksi.	21
Gambar 3.10	Grafik hubungan KL/r dengan Fa beberapa negara	24
Gambar 3.11	Gaya geser ideal	25
Gambar 3.12	Kolom tersusun yang dibebani gaya aksial	25
Gambar 4.1	Universal Testing Material Shimatzu UMH30	29
Gambar 4.2	Bentuk fisik Loading Frame	30
Gambar 4.3	Hidrolic Jack	30
Gambar 4.4	Benda uji kuat tarik baja	31
Gambar 4.5	Benda uji kuat geser las	31

.

Gambar 4.6	Sampel uji tekan profil light lipped channal	32
Gambar 4.7	Kolom tersusun perangkai diagonal dan horizontal	32
Gambar 4.8	Gambar pengujian tidur	34
Gambar 5.1	Grafik beban dan lendutan profil tanpa plat dasar	38
Gambar 5.2	Grafik beban dan lendutan profil dengan plat dasar	40
Gambar 5.3	Gambar pengujian tidur	41
Gambar 5.4	Grafik beban dan lendutan Dial 1	43
Gambar 5.5	Grafik beban dan lendutan Dial 2	45
Gambar 5.6	Grafik beban dan lendutan Dial 3	47
Gambar 5.7	Grafik beban dan lendutan Dial 4	49
Gambar 5.8	Grafik beban dan lendutan Dial 5	51
Gambar 5.9	Grafik beban dan lendutan Dial A	53
Gambar 5.10	Grafik beban dan lendutan Dial B	55
Gambar 5.11	Grafik beban dan lendutan Dial C	57
Gambar 5.12	Grafik Perbandingan beban krtiis (Pcr) hasil pengujian	
	dan hasil regresi pada profil tanpa plat dasar	61
Gambar 5.13	Grafik Perbandingan beban krtiis (Pcr) hasil pengujian	
	dan hasil regresi pada profil dengan plat dasar	61
Gambar 5.14	Grafik Perbandingan tegangan kritis (fcr) pada profil	
	tanpa plat dasar dengan profil dengan plat dasar	62
Gambar 5.15	Grafik Perbandingan beban krtiis (Pcr) hasil pengujian	
	dan hasil regresi pada kolom tersusun	63

Gambar 5.16 Grafik beban krtiis (Pcr) fungsi kel	angsingan (L/r),
--	------------------

	untuk nilai (L/r) lebih dai 0 sampai dengan 300	64
Gambar 5.17	Deformasi kolom K1 pada saat kritis	65
Gambar 5.18	Deformasi kolom K2 pada saat kritis	66
Gambar 5.19	Deformasi kolom K3 pada saat kritis	66
Gambar 5.20	Deformasi kolom K4 pada saat kritis	67
Gambar 5.21	Deformasi kolom K5 pada saat kritis	67
Gambar 5.22	Deformasi kolom K6 pada saat kritis	68
Gambar 5.23	Deformasi kolom K7 pada saat kritis	68
Gambar 5.24	Deformasi kolom K8 pada saat kritis	69
Gambar 5.25	Grafik Hubungan momen-kelengkungan	71
Gambar 5.26	Grafik Perbandingan nilai tegangan kritis (Fcr)	
	fungsi L1/r pada kolom tersusun	73
Gambar 5.27	Grafik perbandingan nilai tegangan kritis (Fcr)	74
Gambar 5.28	Grafik perbandingan nilai k	76
Gambar 5.29	Grafik perbandingan nilai rasio b/t	77
Gambar 5.30	Rasio tebal terhadap tebal berbagai tampang profil	77
Gambar 5.31	Grafik perbandingan nilai modulus tangen	
	dan modulus terduksi	79
Gambar 5.32	2 Grafik perbandingan tegangan kritis (Fcr)	
	dengan metode Bleich	83
Gambar 5.33	3 Grafik tegangan berdasarkan metode AISC	87

Gambar 5.34	Grafik perbandingan tegangan kritis (Fcr) hasil pengujian	
	dengan tegangan kritis metode Bleich	89
Gambar 5.34	Grafik perbandingan tegangan kritis (Fcr) hasil pengujian	
	dengan tegangan kritis metode AISC	91

DAFTAR TABEL

Tabel 5.1	Hasil pengujian kuat tarik baja	36
Tabel 5.2	Hasil pengujian kuat geser sambungan las	36
Tabel 5.3	Hasil pengujian kuat tekan profil light lipped channal	
	tanpa pelat dasar	37
Tabel 5.4	Hasil pengujian kuat tekan profil light lipped channal	
	dengan pelat dasar	39
Tabel 5.5	Hasil pengujian Dial 1	42
Tabel 5.6	Hasil pengujian Dial 2	44
Tabel 5.7	Hasil pengujian Dial 3	46
Tabel 5.8	Hasil pengujian Dial 4	48
Tabel 5.9	Hasil pengujian Dial 5	50
Tabel 5.10	Hasil pengujian Dial A	52
Tabel 5.11	Hasil pengujian Dial B	54
Tabel 5.12	Hasil pengujian Dial C	56
Tabel. 5.1.	3. Analisa hasil uji kuat tarik baja	58
Tabel. 5.14	4. Analisa hasil uji kuat geser sambungan las	59
Tabel 5.15	Perbandingan beban kritis (P_{cr}) dan tegangan kritis (F_{cr})	
	profil tanpa plat dasar dan profil dengan plat dasar	60
Tabel 5.16	6 Regresi beban kritis (P _{cr}) kolom tersusun	63
Tabel 5.17	7 Hubungan momen dan kelengkungan	70
Tabel 5.18	3 Analisa kekakuan dari hubungan momen-kelengkungan	71

Tabel 5.19	Perhitungan tegangan kritis hasil pengujian kolom tersusun	72
Tabel 5.20	Perbandingan hasil perhitungan tegangan kritis (F _{cr})	73
Tabel 5.21	Perbandingan koefisien tekuk plat dan rasio b/t	76
Tabel 5.22	Perhitungan mpdulus tangen dan modulus terduksi	79
Tabel 5.23	Perhitungan tegangan kritis (F _{er}) metode Bleich dengan	
	menggunakan modulus tangen	82
Tabel 5.24	Perhitungan tegangan kritis (F _{cr}) metode Bleich	
	dengan menggunakan modulus tereduksi	82
Tabel 5.25	Perhitungan tegangan kritis (F_{cr}) dan tegangan ijin (F_a)	
	metode AISC	86
Tabel 5.26	Perbandingan tegangan kritis (F_{cr}) hasil pengujian	
	dengan hasil perhitungan metode Bleich	88
Tabel 5.27	Perbandingan tegangan kritis (F _{cr}) hasil pengujian	
	dengan hasil perhitungan metode AISC	90

DAFTAR LAMPIRAN

- Lampiran 1 : Hitungan properti dimensi benda uji.
- Lampiran 2 : Hitungan regresi pembebanan.
- Lampiran 3 : Gambar benda uji.
- Lampiran 4 : Foto pengujian.
- Lampiran 5 : Lembar konsultasi.

ABSTRAKSI

Profil lip chanal (light lipped channal) bentukan dingin (cold-formed) banyak dipakai terbatas sebagai komponen struktur ringan yang memikul beban kecil misalnya balok atap (gording). Pembentukan balok susun dari profil light lipped channal bentukan dingin dan pelat diharapkan mampu memikul beban yang cukup besar dan efisien. Tinggi penampang profil light lipped aksial channal bentukan dingin biasanya kurang dari 200 mm dan terbuat dari pelat tipis sehingga penampangnya mempunyai rasio kelangsingan (b/t) cukup besar. Kondisi di atas mengakibatkan penampang rawan akan instabilitas/tekuk sehingga mengalami kegagalan dini. Penggabungan profil light lipped channal bentukan dingin menjadi kolom tersusun perangkai diagonal dan horizontal, diharapkan meningkatkan kapasitas dari elemen-elemen penyusun kolom tersebut, sehingga perlu adanya penelitian eksperimental tentang kuat tekan dengan variasi jarak (L1). Semakin panjang jarak batang yang dibatasi oleh elemen-elemen perangkai (L1) maka kuat tekan kolom akan meningkat, akan tetapi semakin panjang batang perangkai diagonal kekuatan kolom akan semakin menurun.

Pada penelitian eksperimental ini menggunakan 8 buah benda uji dengan lebar kolom (a) konstan sebesar 120 mm, (b) rasio b/t konstan dan panjang bentang (L) konstan 3000 mm. Benda uji menggunakan variasi rasio $L_1/r_{min} =$ 12,831, 19,247, 25,663, 32,494, 38,494, 44,910, 51,326, dan 57,742. Tumpuan yang digunakan berupa tumpuan sederhana dengan anggapan bahwa nilai K=1. Benda uji ditempatkan di *Loading Frame* dengan posisi tidur, kemudian ditekan dengan *Hidraulik Jack* dengan pembebanan *statik monotonik* dengan kenaikan sebesar 350 kg.

Berdasarkan ekperimen yang dilakukan dapat diketahui bahwa beban kritis benda uji (kolom K1; P_{cr} = 3675kg, kolom K2; P_{cr} = 3850kg, kolom K3; P_{cr} = 2975 kg, kolom K4; P_{cr} = 3150 kg, kolom K5; P_{cr} = 3150 kg, kolom K6; P_{cr} = 2975 kg, kolom K7, P_{cr} = 2625 kg, kolom K8; P_{cr} = 2625 kg). Nilai koefisien tekuk (k) berkisar antara 1,131 sampai dengan 1,614. Pada pengujian ini nilai Tegangan kritis (F_{cr}) berdasarkan hasil pengujian laboratorium berada di bawah hitungan teoritis *Bleich* dengan menggunakan modulus tangen dan modulus tereduksi. Sedangkan bila dibandingkan dengan tegangan ijin metode AISC, tegangan kritis (F_{cr}) berdasarkan hasil pengujian laboratorium pada $L_1/r < 50$ masih lebih besar bila dibandingkan tegangan ijin perencanaan metode AISC, akan tetapi pada $L_1/r > 50$ tegangan kritis hasil pengujian berada di bawah tegangan ijin metode AISC.

BAB I PENDAHULUAN

1.1 Latar Belakang Masalah

Kolom tersusun merupakan sebuah solusi untuk mendapatkan kolom yang lebih efisisien pada kolom panjang yang menerima beban berat, karena dengan luas tampang yang sama dengan profil solid, kolom tersusun mempunyai inersia yang lebih besar sehingga kapsitas kolom tersusun menjadi lebih besar. Persoalan yang dihadapi pada kolom tersusun adalah peristiwa instabilitas/tekuk yang sering terjadi, hal ini disebabkan karena elemen kolom tersusun memiliki rasio b/t besar, sehingga memungkinkan terjadinya tekuk lokal. Tekuk lokal menyebabkan elemen yang tertekuk tidak dapat lagi menanggung penambahan beban, dengan kata lain efisiensi penampang berkurang. Keruntuhan akibat tekuk lokal ini terjadi pada batang yang langsing di mana tegangan kritis (F_{er}) yang dimiliki oleh pelat jauh di bawah tegangan lelehnya (F_y) .

Penggunaan profil bentukan dingin lebih ekonomis dan lebih efisien untuk menahan beban yang ringan. Profil bentukan dingin *(cold formed)* dapat dibentuk menjadi berbagai macam bentuk sehingga penggunaannya lebih fleksibel. Meskipun memiliki keunggulan seperti tersebut di atas penggunaan profil bentukan dingin sebagai komponen struktur bangunan di Indonesia masih kurang dan pedoman perencanaan profil bentukan dingin masih kurang. Profil bentukan dingin memiliki beberapa kekurangan, proses pembentukannya mengakibatkan salah satu bagian pada profil bentukan dingin sudah mengalami tegangan bahkan mencapai tegangan leleh. Kekurangan lainnya yang dimiliki profil bentukan dingin adalah elemen plat penyusun profil bentukan dingin memiliki ketebalan yang kecil sehingga kemungkinan terjadi tekuk lokal besar, tekuk lokal menyebabkan efisiensi penampang berkurang.

Penelitian ini meneliti tentang kapasitas kolom tersusun dari profil *light lipped channel* yang merupakan salah satu profil bentukan dingin dan pengaruh kelangsingan kolom sebagai komponen struktur yang menerima beban aksial tekan. Dengan kondisi di atas maka perlu diadakan suatu penelitian tentang kuat tekan kolom tersusun dengan profil *light lipped channel* bentukan dingin perangkai diagonal dan horizontal dengan variasi jarak batang perangkai.

1.2 Tujuan Penelitian

Dalam penelitian ini dilakukan pengujian kuat tekan kolom tersusun, tujuan dari penelitian ini adalah:

- untuk mendapatkan perbandingan kuat tekan kolom tersusun dari dari dua profil *light lipped channel* yang disatukan secara *front to front* dengan variasi jarak batang perangkai horizontal (L_l).
- 2. mengetahui koefisien tekuk plat kolom tersusun dari dua profil *light lipped channel* yang disatukan secara *front to front* dengan perangkai diagonal dan horizontal

- 3. mengetahui bentuk deformasi kolom tersusun dari dua profil *light lipped channel* yang disatukan secara *front to front* yang dibebani beban aksial tekan sentris
- 4. mengetahui perbandingan kapasitas kolom kolom tersusun dari dua profil *light lipped channel* yang disatukan secara *front to front* dengan teori kapasitas kolom yang dikemukakan oleh *Bleich* dan pedoman perencanaan kolom metode AISC.

1.3 Manfaat Penelitian

Manfaat yang hendak dicapai dalam penulisan tugas akhir ini adalah sebagai berikut,

- 1. untuk mengetahui pengaruh kelangsingan pada kolom tersusun dari profil *light lipped channel* bentukan dingin perangkai diagonal.
- 2. mengetahui beban maksimal yang dapat ditahan oleh kolom kolom tersusun penampang kotak dari dua profil *light lipped channel* yang disatukan secara *front to front* pada tiap variasi L_1/r .
- 3. mengetahui tegangan kritis atau F_{cr} yang terjadi pada tiap variasi $L_{l'}r$ kolom kolom tersusun dari dua profil *light lipped channel* yang disatukan secara *front to front*
- 4. mengetahui grafik hubungan F_{cr} fungsi L_{l}/r yang terjadi

1.4 Batasan Masalah

Supaya penelitian dapat terarah dan sesuai dengan maksud dan tujuan penelitian maka diperlukan batasan sebagai berikut:

- profil baja yang digunakan dalam penelitian ini adalah profil *light lipped* channel 2C60x30x1,2 yang dirangkai saling berhadapan (front to front) menggunakan perangkai diagonal dan horizontal,
- 2. batang perangkai menggunakan plat baja 15x2,0 mm yang dirangkai menggunakan sambungan las,
- 3. tinggi benda uji adalah 3000 mm dengan lebar 120 mm,
- 4. kolom diasumsikan dengan tumpuan sendi-sendi (K =1).
- 5. kolom dibebani dengan beban aksial sentris dengan dibebani statis monotonik,
- rasio L₁/r dari profil light lipped channel ganda bervariasi yaitu: 12,831, 19,247, 25,663, 32,494, 38,494, 44,910, 51,326, dan 57,742.
- 7. tegangan residu dari bahan tidak ditinjau,
- 8. perhitungan tegangan kritis menggunakan teori Bleich dan metode AISC.

1.5 Bagan Alir Penelitian

Gambar 1.1. Bagan alir prosedusr penelitian

BAB II TINJAUAN PUSTAKA

Kolom dapat dikategorikan berdasarkan panjangnya, kolom pendek adalah jenis kolom yang kegagalannya berupa kegagalan material (ditentukan oleh kekuatan material). Kolom panjang adalah kolom yang kegagalannya ditentukan oleh tekuk *(buckling)*, jadi kegagalannya adalah kegagalan karena ketidakstabilan, bukan karena kekuatannya. Pada kolom panjang, dimensi dalam arah memenjang jauh lebih besar bila dibandingkan dengan dimensi arah lateral. Karena adanya potensi menekuk pada jenis kolom ini, maka kapasitas pikul-bebannya menjadi lebih kecil *(Schodek, 1991)*.

Pada beban dengan besar tertentu suatu batang yang lurus, homogen dan dibebani secara sentris akan menjadi tidak stabil. Hal ini berarti dengan beban tersebut suatu kolom mulai melentur, meskipun tidak ada beban lentur yang bekerja (Gaylord and Gaylord, 1972).

Kekuatan kolom dipengaruhi oleh faktor tekuk (buckling) atau lenturan mendadak akibat ketidakstabilan, terjadi sebelum kekuatan batang sepenuhnya tercapai (Salmon dan Johnson, 1990).

Tekuk lokal (local bucling) dan tekuk keseluruhan (bend buckling) dari suatu kolom akan terjadi secara bersamaan apabila tegangan kritis pelat sama dengan tegangan kritis kolom secara keseluruhan (Gaylord dan Gaylord, 1972).

Panjang efektif untuk sebuah kolom adalah panjang kolom berujung sendi ekivalen, baik riil maupun imajiner. (Gere dan Timoshenko, 2000)

Peristiwa tekuk pada komponen struktur dari pelat baja dapat terjadi dalam bentuk tekuk keseluruhan dan tekuk lokal *(local buckling)*. Tekuk keseluruhan merupakan fungsi dari kelangsingan *(KL/r)*. Tekuk setempat dapat terjadi lebih dahulu pada salah satu elemen penyusun penampang sebelum tegangan kritis terlampaui *(Salmon dan Johnson, 1990)*.

Menurut Engesser (1889), kolom tetap lurus sampai sesaat sebelum runtuh dan modulus elastisitas pada saat runtuh adalah tangen sudut garis singgung pada kurva tegangan regangan.

Nilai k dipengaruhi oleh rasio a/b dan kondisi dari tepi-tepi pelat di mana semakin besar nilai a/b maka nilai k akan mendekati konstan. Tampak bila (b/t) kecil nilai k mendekati 0.425 untuk pelat yang tidak diperkuat, dalam hal ini nilai tersebut dimiliki oleh sayap dan nilai k untuk pelat yang diperkuat adalah 4, dalam hal ini dimiliki oleh badan. Dengan demikian tampak bahwa nilai k untuk pelat yang tidak diperkuat naik sepuluh kali lipat dari nilai k untuk pelat yang tidak diperkuat (Salmon dan Johnson, 1990).

Oleh karena profil tersusun terdiri dari elemen-elemen pelat, kekuatan penampang kolom yang didasarkan pada kelangsingan keseluruhan hanya dapat tercapai jika elemen pelat tersebut tidak tekuk setempat. Tekuk setempat elemen pelat dapat mengakibatkan kehancuran penampang keseluruhan yang terlalu dini, atau paling sedikit menyebabkan tegangan menjadi tidak merata dan mengurangi kekuatan keseluruhan (Salmon dan Johnson, 1990).

Struktur kolom tersusun dari profil *light lipped channel* adalah salah satu elemen struktur bentukan dingin yaitu elemen struktur yang terbuat dari lembaran plat yang memiliki ketebalan kurang dari 4,5 mm yang dibentuk dalam keadaan dingin dan digunakan untuk menahan beban aksial tekan. Seperti elemen struktur berdinding tipis lainnya, kolom berdinding tipis memiliki rasio lebar terhadap tebal (b/t) besar.(*Vazirani dan Ratwani*, 1977).

Batang tersusun adalah dua batang atau lebih, satu dengan yang lainya dihubungkan sedemikian rupa sehingga membentuk suatu kesatuan. Untuk membentuk batang tersusun diperlukan penghubung berupa pelat atau batang penghubung. Batang penghubung dapat disusun melintang, diagoanal dan kombinasi melintang dengan diagonal. Selain itu penghubung dapat juga berupa pelat menerus. Hubungan batang dengan penghubungnya dapat dilaksanakan dengan baut, paku keling dan las *(PADOSBAJAYO, 1992)*.

Penyambungan antara batang-batang tersusun dengan memakai batang ikat/diagonal *(lacing)* bermanfaat agar semua komponen bekerja sebagai satu kesatuan. Komponen geser dari beban aksial timbul ketika batang tekan melentur. Besarnya pengaruh geser terhadap kolom sebanding dengan besarnya deformasi yang ditimbulkan oleh gaya geser *(Salmon dan Johnson, 1990)*.

Fungsi penghubung ialah untuk menahan gaya lintang yang timbul sepanjang kolom, sehingga batang tersusun dapat membentuk satu kesatuan dalam hal mendukung beban (*PADOSBAJAYO*, 1992).

Kuat tekan kolom tersusun dipengaruhi oleh panjang batang diagonal dan luas penampang batang diagonal, semakin panjang batang perangkai diagonal maka kuat tekan kolom akan semakin menurun dan semakin besar luasan batang diagonal maka kekuatan kolom akan semakin besar (*Bleich*, 1952).

BAB III LANDASAN TEORI

3.1. Kolom Tersusun

Kolom merupakan batang desak karena beban yang bekerja adalah aksial desak sepanjang sumbu bahan. Kolom merupakan elemen struktur yang harus direncanakan dan dihitung secara cermat mengenai kekuatan terhadap beban yang bekerja karena elemen struktur ini berhubungan erat dengan kestabilan bangunan.

Ada beberapa hal yang menyebabkan kehancuran pada kolom, diantaranya adalah sifat kolom yang mengalami tekuk elastis atau tekuk inelastis. Sifat kolom yang mengalami suatu tekuk tertentu dipengaruhi oleh angka kelangsingan *(slenderness ratio)*. Berdasarkan kelangsingannya, batang tekan atau kolom dapat digololngkan dalam 3 macam, yaitu kolom langsing *(slender column)*, kolom sedang *(medium column)*, dan kolom gemuk *(stocky column)*.

Pada kolom atau batang tekan yang panjang dengan beban yang berat (misalnya pada rangka jembatan), kolom tersusun lebih banyak digunakan karena lebih hemat dibanding menggunakan profil tunggal. Pada profil tersusun, jarak antar profil dapat diatur, sehingga momen inersia (I) terhadap sumbu dapat memenuhi kebutuhan.

Profil tersusun dari profil-profil yang kecil, tipis dan ringan, tetapi dapat menghasilkan I yang besar. Pada komponen struktur tersusun yang terdiri dari beberapa elemen yang dihubungkan pada tempat-tempat tertentu, kekuatannya harus dihitung terhadap sumbu bahan dan sumbu bebas bahan. Sumbu bahan adalah sumbu yang memotong semua elemen komponen struktur itu; sedangkan, sumbu bebas bahan adalah sumbu yang sama sekali tidak, atau hanya memotong sebagian dari elemen komponen struktur itu. (lihat gambar 3.1):

x - x adalah sumbu bahan,

y - y adalah sumbu bebas bahan,

1-1 adalah sumbu minimum dari elemen komponen struktur,

— adalah pelat kopel.

Gambar 3.1. Sumbu bahan dan sumbu bebas bahan pada kolom tersusun (Kuzmanovic and Willems, 1977)

Fungsi perangkai ialah untuk menahan gaya lintang yang timbul sepanjang kolom, sehingga batang tersusun dapat membentuk satu kesatuan dalam hal mendukung beban. Susunan batang-batang perangkai seperti pada Gambar 3.2

Gambar 3.2. Bentuk variasi batang tersusun (Tata Cara Perencanaan Struktur Baja untuk Bangunan Gedung, 2000)

3.2. Panjang Efektif

Pembahasan kekuatan kolom sampai saat ini menganggap bahwa kedua ujung kolom adalah sendi atau tidak mengekang momen. Ujung yang tidak mengekang momen merupakan keadaan terlemah untuk batang tekan bila translasi salah satu ujung terhadap ujung lainnya dicegah. Untuk kolom berujung sendi, panjang ujung sendi ekivalen yang disebut *panjang efektif*, sama dengan panjang yang sesungguhnya, yakni K = 1,0.

Pada keadaan yang sesungguhnya, pengekangan momen diujung selalu ada dan titik belok pada kurva bentuk tekuk terjadi dititik yang bukan merupakan ujung batang. Jarak antara titik-titik belok, baik riil maupun imajiner adalah panjang efektif atau panjang ujung sendi ekivalen untuk kolom. (Salmon dan Johnson, 1990)

Gambar 3.3 Faktor panjang efektif untuk kolom dengan berbagai kondisi ideal. *(Gere dan Timoshenko, 2000)*

Dari Gambar 3.3 di atas tampak bahwa panjang efektif suatu kolom sangat dipengaruhi oleh dukungan yang diberikan pada kolom tersebut. Pada kolom dengan yumpuan sendi-sendi panjang efektif adalah sama dengan panjang sesengguhnya, sedangkan pada kolom dengan tumpuan jepit-bebas nilai panjang efektif adalah dua kali panjang sesungguhnya (2L).

3.3. Kuat Tekan

Kekuatan tekan suatu struktur kolom dalam menahan gaya tekan dipengaruhi oleh banyak faktor, antara lain, sifat bahan (meliputi tegangan leleh, tegangan residu, modulus elastisitas, dan lain-lain), geometri penampang (luas tampang, inersia tampang, bentuk tampang, rasio b/t, dan lain-lain), dan kelangsingan. Faktor yang dibahas dalam penelitian ini adalah faktor geometri penampang yang diwakili dengan rasio b/t dan faktor kelangsingan yang diwakili dengan rasio L_1/r . Rasio b/t berpengaruh pada kekuatan struktur kolom terhadap tekuk keseluruhan.

3.3.1. Tekuk lokal

Apabila beban bekerja eksentris (yaitu tidak bekerja di pusat berat penampang melintang), maka distribusi tegangan yang timbul tidak akan merata. Efek beban eksentris menimbulkan momen lentur pada elemen yang berintraksi dengan tegangan tekan langsung. Bahkan, apabila beban itu mempunyai eksentrisitas yang relatif besar, maka di seluruh bagian penampang yang bersangkutan dapat terjadi tegangan tekuk.

Gambar 3.4. Titik pusat beban sentris (Schodek, 1991)

Akan tetapi pada beban dengan besar tertentu suatu batang yang lurus, homogen dan dibebani secara sentris akan menjadi tidak stabil. Hal ini berarti dengan beban tersebut suatu kolom akan mulai melentur, meskipun tidak ada beban lentur yang bekerja.

Menurut Lambert Tall (1974), tekuk lokal adalah tekuk yang terjadi pada salah satu elemen penyusun tampang suatu struktur. Elemen kolom tersusun memiliki rasio b/t besar, sehingga memungkinkan terjadinya tekuk lokal. Tekuk lokal menyebabkan elemen yang tertekuk tidak dapat lagi menanggung penambahan beban, dengan kata lain efisiensi penampang berkurang. Keruntuhan akibat tekuk lokal ini terjadi pada batang yang langsing di mana tegangan kritis (F_{er}) yang dimiliki oleh pelat jauh di bawah tegangan lelehnya (F_y) .

Menurut Vaziranidan dan Ratwani (1977), secara umum hitungan kekuatan struktur kolom bentukan dingin pada dasarnya hampir sama dengan dengan struktur kolom profil gilas, tetapi ada beberapa perubahan yang perlu dilakukan. Perubahan tersebut perlu dilakukan karena ketebalan plat yang digunakan untuk menyusun struktur kolom bentukan dingin sangat kecil.

Tekuk lokal yang perlu ditinjau adalah stabilitas lentur plat. Persamaan diferensial umum tekuk plat homogen yang dikemukakan oleh Salmon dan Johnson (1994), adalah,

$$F_{cr} = k \frac{\pi^2 E}{12(1-\mu^2)(b/t)^2}$$
 3.1

di mana: F_{er} adalah tegangan kritis (Mpa), k adalah koefisien tekuk kolom, E adalah modulus elastis baja (2. 10⁵ Mpa), μ adalah angka poisson, dan b/t adalah rasio lebar terhadap tebal pelat.

Dari persamaan (3.1) tampak bahwa nilai F_{cr} dipengaruhi oleh koefisien tekuk (k) dan rasio lebar terhadap tebal (b/t). Semakin besar rasio b/t maka semakin kecil kekuatan pelat. Semakin besar nilai k maka semakin kecil kekuatan pelat, sehingga menyebabkan tekuk lokal baik pada sayap maupun badan. Kerusakan akibat tekuk dapat dicegah dengan cara memperkecil rasio lebar terhadap tebal (b/t) dan meningkatkan koefisien tekuk (k).

Sifat kekompakan suatu penampang dapat diketahui dengan menggunakan tegangan kritis (F_{cr}) pelat. Penampang dinamakan kompak apabila tegangan kritis

F_{cr} lebih dari tegangan bahan Fy. Apabila penampang yang memiliki F_{cr} kurang dari Fy tetapi masih lebih dari Fy dikurangi tegangan residu bahan Fr, maka penampang tersebut dinamakan setengah kompak. Apabila penampang yang memiliki F_{cr} kurang dari Fy dikurangi tegangan residu bahan Fr, maka penampang tersebut dinamakan tidak kompak.

Secara umum elemen-elemen tekan pelat dapat dibedakan atas dua kategori, yaitu:

- 1. Elemen yang diperkuat, yaitu: elemen yang bertumpu pada dua tepi yang sejajar arah tegangan tekan.
- 2. Elemen yang tidak diperkuat, yaitu: elemen yang bertumpu pada satu tepi dan bebas ditepi lainnya yang sejajar arah tegangan tekan.

Koefisien tekuk plat *k* dipengaruhi oleh jenis dukungan pada plat tersebut. Secara umum, elemen tekan plat dibedakan menjadi dua kategori yaitu, elemen yang diperkuat (elemen yang bertumpu pada dua tepi yang sejajar arah tegangan tekan) dan elemen yang tidak diperkuat (elemen yang bertumpu pada satu tepi dan bebas satu sisi lainnya yang sejajar arah tegangan tekan).

Gambar 3.5. Koefisien tekuk elastis untuk tekanan pada pelat segi empat datar (Salmon dan Johnson, 1990)

Gambar 3.5 memperlihatkan variasi koefisien tekuk k terhadap rasio a/b untuk kondisi tepi yang berbeda-beda, yaitu beberapa kombinasi jepit, tumpuan sederhana dan bebas. Nilai kekakuan terbesar terjadi pada kondisi tumpuan berupa tumpuan jepit-jepit seperti pada grafik A dengan nilai k = 6,97, nilai kekakuan pada kondisi tumpuan berupa tumpuan jepit-tumpuan sederhana seperti pada grafik B dengan nilai k = 5,42, nilai kekakuan pada kondisi tumpuan berupa tumpuan jepit-bebas seperti pada grafik D dengan nilai k = 1,277, sedangkan nilai kekakuan terkecil terjadi pada kombinasi tumpuan sederhana dan bebas seperti pada grafik E dengan nilai k = 0,425.

Akan tetapi ada perbedaan antara nilai k teoritis dengan nilai k hasil penelitian seperti yang dikemukakan *RM Barker* dan *JA Pucket (1997)*. sebagai contoh nilai k pada sayap adalah 0,425 tetapi pada penelitian nilai k adalah 0,56.

Gambar 3.6. Rasio tebal terhadap lebar berbagai tampang profil (RM Barker dan JA Pucket, 1997)

3.3.2. Tekuk keseluruhan

Menurut persamaan *Euler* yang dikemukakan oleh *Lambert Tall (1974)*, beban kritis kolom diturunkan dari persamaan pelenturan sebuah batang lurus yang semua seratnya tetap elastis hingga batang tersebut tidak mampu lagi menahan penambahan beban, batang tersebut memiliki dukungan sederhana pada ujung-ujungnya dan diberi gaya aksial tekan sentris.

Persamaan garis elastis untuk kolom yang ujungnya sendi-sendi ditunjukkan dengan persamaan (3.2) atau (3.9)

Gambar 3.7 Batang lurus dibebani gaya tekan aksial (Lambert Tall, 1972)

$$\frac{d^2 y}{dx^2} = -\frac{P_{cr}}{EI} y \tag{3.2}$$

$$\frac{d^2y}{dx^2} + \frac{P_{cr}}{EI}y = 0 \tag{3.3}$$

dengan E = modulus elastis, I = inersia, P = gaya aksial, y = pelenturan, bila diasumsikan $k^2 = P_{cr} / EI$

substitusi k^2 kedalam persamaan (3.3) maka akan diperoleh:

$$\frac{d^2y}{dx^2} + k^2y = 0$$
(3.4)

penyelesaian persamaan deferensial linear berordo dua ini dapat dinyatakan sebagai

$$y = A \sin kx + B \cos kx$$
(3.5)

untuk x = 0, nilai y = 0, maka 0 = A, 0+B, diperoleh B = 0

untuk x = L, nilai y = 0, diperoleh: $0 = A \sin(k.L_k)$

untuk sin $(k.L_k) = 0$, diperoleh:

$$k.L_k = N \pi$$
 atau $k = (N.\pi)/L_k$

substitusi nilai $k = (N, \pi)/L_k$ ke persamaan (3.5), maka:

$$P_{cr} = \frac{N^2 . \pi^2 . E.I}{{L_k}^2}$$
(3.6)

Menurut *Lambert Tall (1972)*, beban kritis adalah beban terkecil yang mampu mengakibatkan kolom tersebut dalam kondisi kritis. Kondisi dapat terjadi bila defleksi merupakan lendutan berkelengkungan tunggal *(single curvature)*, sehingga nilai N=1. Dengan demikian, beban kritis Euler untuk kolom yang berujung sendi-sendi adalah:

$$P_{cr} = \frac{\pi^2 . E.I}{L_k^2}$$
(3.7)

dengan L_k = panjang tekuk.

Bila masing-masing ruas persaman (3.7) dibagi dengan luas penampang batang A, maka diperoleh:

$$F_{cr} = \frac{\pi^2 . E.I}{A.L_k^2}$$
(3.8)

di mana, $I = A.r^2$ atau $r^2 = I/A$, maka,

$$F_{cr} = \frac{\pi^2 . E}{\left(L_k / r\right)^2}$$
(3.9)

dengan r = jari-jari kelembaman.

Persamaan (3.9) di atas memperlihatkan dengan jelas kapasitas pikul beban suatu kolom selalu berbanding terbalik dengan kuadrat panjang tekuk, sebanding dengan modulus elastis material dan momen inersia penampang. Semakin panjang kolom maka semakin kecil beban yang dapat menyebabkan kolom tersebut tertekuk, sebaliknya semakin pendek kolom maka semakin besar beban yang dapat menyebabkan kolom tersebut tertekuk.

3.3.3. Hubungan antara tekuk lokal dan tekuk lentur

Tekuk lokal dan tekuk lentur dapat terjadi secara bersamaan apabila tegangan kritis pelat sama dengan tegangan kritis kolom keseluruhan, seperti pada persamaan (3.10).

$$\mathbf{F}_{\rm cr \ pelat} = \mathbf{F}_{\rm cr \ keseluruhan} \tag{3.10}$$

Seperti pada persamaan 3.9 maka

(0 10)
$$F_{\rm cr\,keseluruhan} = \frac{\pi^2 E}{\left(KL/r\right)^2} \tag{3.11}$$

Sehingga

$$(KL/r) = \sqrt{\frac{\pi^2 E}{F_{crpelat}}}$$
(3.12)

dengan memasukkan persamaan (3.1) kedalam persamaan (3.12), maka

$$(KL/r) = \sqrt{\frac{\pi^2 E}{k\pi^2 E}}$$
(3.13)
$$\sqrt{\frac{12(1-\mu^2)(b/t)^2}{12(1-\mu^2)(b/t)^2}}$$

KL/r = (b/t)
$$\sqrt{\frac{12(1-\mu^2)}{k}}$$
 (3.14)

Dengan μ baja 0,3, sehingga

$$KL/r = \frac{3,3045(b/t)}{\sqrt{k}}$$
(3.15)

Dari persamaan (3.10) sampai persamaan (3.15) dapat diambil kesimpulan bahwa pada profil baja yang sama apabila semakin panjang batang tersebut maka KL/r akan semakin besar sehingga $F_{cr \ keseluruhan}$ akan semakin kecil bahkan bisa lebih kecil dari $F_{cr \ pelat}$, sehingga keruntuhan kolom diakibatkan oleh tekuk keseluruhan kolom. Sebaliknya, pada profil baja yang sama apabila semakin pendek batang tersebut maka KL/r akan semakin kecil sehingga $F_{cr \ keseluruhan}$ akan semakin besar bahkan bisa lebih besar dari $F_{cr \ pelat}$, sehingga keruntuhan kolom diakibatkan oleh tekuk lokal kolom.

3.3.4. Tekuk inelastis

Salmon dan Johnson (1990), oleh karena kolom dengan panjang yang umum tertekuk pada saat sejumlah seratnya menjadi inelastis, maka modulus elastisitas ketika tertekuk lebih kecil dari harga awalnya. Inilah dasar pemikiran dari Engesser, Consider, dan Shanley.

Menurut Engesser (1889) yang dikemukan oleh Gere dan Timoshenko, kolom tetap lurus sampai sesaat sebelum runtuh dan modulus elastisitas pada saat runtuh adalah tangen sudut garis singgung pada kurva tegangan regangan, Hubungan tersebut tampak Gambar 3.8.

Namun teori tersebut di atas tidak selaras dengan hasil percobaan, dan beban yang dihitungan lebih kecil dari kapasitas batas hasil percobaan. Hal utama yang membuat teori modulus tangen dipandang salah adalah tidak terjadinya pembalikan regangan pada saat batang berubah bentuk dari posisi lurus ke posisi lengkung. Pada tahun 1895, *Engesser* merubah teorinya dengan alasan bahwa selama melentur, sejumlah serat mengalami kenaikan regangan (yang memperkecil modulus tangen) dan beberapa serat tidak dibebani (Modulus yang lebih tinggi pada regangan yang mengecil); oleh karena itu harga modulus yang berlainan harus digunakan.

Gere dan *Timoshenko* (2000), Teori modulus terduksi lebih disukai karena sederhana dan mudah digunakan. Namun secara konseptual teori tersebut mempunyai kekurangan karena teori tersebut tidak memperhitungkankan perilaku kolom secara lengkap. Adapun persamaan modulus tereduksi dapat dilhat pada Persamaan 3.16 dan 3.17.

$$Er = \frac{4E.Et}{\left(\sqrt{E.} + \sqrt{Et}\right)^2}$$
3.16

$$Er = \frac{2E.Et}{E+Et}$$
3.17

Perbandingan nilai Et dan Er pada perhitungan tegangan kritis dapat dilihat pada Gambar 3.9.

Gambar 3.9. Grafik tegangan berdasarkan persamaan Euler, modulus tangen dan modulus terduksi (*PADOSBAJAYO*, 1992)

Dari Gambar 3.9 tampak bahwa teganan kritis kolom yang menggunakan modulus tangen (Et) berada di bawah tegangan kritis yang menggunakan modulus tereduksi (Er).

AISC mengemukakan hitungan tegangan krits yang mempertimbangkan tekuk lokal. Pengaruh tekuk lokal yang terjadi sebelum kekuatan kolom keseluruhan tercapai diperhitungkan dengan mengalikan tegangan maksimum yang dapat dicapai dengan faktor bentuk Q. Faktor bentuk Q dipengaruhi oleh bentuk penampang, dimana

$$O = Oa \cdot Os$$
 3.18

Faktor bentuk untuk elemen penampang yang tidak diperkuat adalah Qs. Faktor bentuk Qs diperhitungkan apabila,

$$\left(\frac{b}{t}\right) > \left(\frac{76}{\sqrt{Fy}}\right)$$
 3.19

Besar Qs menurut AISC adalah,

$$Qs = 1,340 - 0,00447 \left(\frac{b}{t}\right) \sqrt{Fy}$$
 3.20

Apabila semua elemen penampang diperkuat maka nilai Qs = 1,0.

Faktor bentuk untuk elemen penampang yang diperkuat adalah Qa. Faktor bentuk Qa diperhitungkan apabila,

$$\left(\frac{b}{t}\right) > \left(\frac{238}{\sqrt{Fy}}\right)$$
 3.21

Besar Qa menurut AISC adalah,

$$Qa = \frac{A_{ef}}{A_{bruto}}$$
 3.22

Luas efektif didapatkan dari lebar efektif, besar lebar efektif menurut penelitian AISC yang dilakukan pada baja ringan adalah,

$$\frac{b_E}{t} = \frac{253}{\sqrt{f}} \left(1 - \frac{50,3}{(b/t)\sqrt{f}} \right)$$
 3.23

dengan f adalah tegangan yang bekerja pada elemen.

Besar tegangan kritis menurut AISC dapat ditentukan dengan menggunakan persamaan tegangan kritis kolom seperti pada persamaan dibawah ini.

$$Fcr = QFy \left[1 - \frac{QFy}{4\pi^2 E} \left(\frac{KL}{r} \right)^2 \right]$$
3.24

Apabila

$$Cc = \sqrt{\frac{2\pi^2 E}{QFy}}$$
3.25

maka

$$Fcr = QFy \left[1 - \frac{KL/r^2}{2Cc^2} \right]$$
3.26

Apabila KL/r lebih dari Cc maka tegangan kritis yang terjadi adalah,

$$Fcr = \frac{\pi^2 E}{\left(\frac{KL}{r}\right)^2}$$
3.27

Penelitian tentang hubungan antara tegangan yang terjadi pada kolom dengan kelangsingan (*KL/r*) yang pernah dilakukan di beberapa negara memiliki bentuk grafik yang hampir sama. Penurunan tegangan kritis relatif kecil pada *KL/r* kecil (0 s/d ± 40), penurunan tegangan kritis terjadi relatif besar seiring dengan pertambahan *KL/r* untuk *KL/r* = ± 40 sampai dengan ± 160, dan kembali menjadi relatif datar untuk *KL/r* lebih dari ± 160. Hal ini dapat dilihat pada Gambar 3.10.

Gambar 3.10 Grafik hubungan KL/r dengan Fa beberapa negara (Lambert Tall, 1974)

3.3.6. Pengaruh gaya geser pada kolom tersusun

Bila batang mengalami lentur akibat gaya tekan aksial, pada batang tersebut bekerja komponen gaya yang arahnya tegak lurus terhadap sumbu batang, komponen gaya ini disebut gaya lintang.

Penyambungan antara batang-batang tersusun dengan memakai batang ikat/diagonal bermanfaat agar semua komponen bekerja sebagai satu kesatuan. Komponen geser dari beban aksial timbul ketika batang tekan melentur. Besarnya pengaruh geser terhadap pengurangan kekuatan kolom sebanding dengan besarnya deformasi yang ditimbulkan oleh gaya geser.

Besarnya gaya geser yang terjadi pada kolom yang disyaratkan oleh AASHTO adalah sebesar 2% dari gaya aksial yang diterima oleh kolom, hal ini dapat dilihat pada Gambar 3.11.

Gambar 3.11 Gaya geser ideal (Kuzmanovic and Willems, 1977)

Pada Gambar 3.11 dapat dilihat bahwa besarnya gaya geser yang terjadi pada kolom berkisar antara 1,9% sampai dengan 2 % pada L/r 50 sampai dengan 100, sedangkan pada L/r 0 sampai denga 50 gaya geser yang terjadi berkisar antara 10% sampai dengan 2% dari beban aksial yang diterima oleh kolom. *(Kuzmanovic and Willems, 1977)*

Gambar 3.12. Kolom tersusun yang dibebani gaya aksial (Bleich, 1952)

Menurut persamaan Engsser (1889) yang dikemukakan oleh Bleich (1952), mengemukakan bahwa persamaan beban kritis untuk kolom tersusun dengan kombinasi perangkai horizontal dan diagonal adalah:

$$P_c = \frac{\pi^2 E_l l}{\left(kL\right)^2} \tag{3.28}$$

dengan:

$$k = \sqrt{1 + \frac{\pi^2 E_t I_0}{L^2} \frac{1}{E \cdot L_1 \cdot h^2} \left(\frac{d^3}{A_d} + \frac{h^3}{A_b}\right)}$$
(3.29)

di mana: E_t adalah modulus tangen kolom, L adalah panjang kolom, L_1 adalah panjang elemen batang yang dibatasi oleh ujung-ujung batang penghubung, I_0 adalah Inersia batang perangkai ($I_0 = Ah^2/2$), d adalah panjang batang diagonal, h adalah panjang batang horizontal, A_d adalah luas penampang satu batang diagonal, A_b luas penampang satu batang horizontal. I_1 adalah momen inersia sumbu 1-1 (lihat Gambar 3.12.c).

Karena kolom tersusun yang akan diteliti dalam penelitian ini hanya menggunakan batang perangkai diagonal dua arah dan batang perangkai horizontal, maka persamaan (3.29) menjadi:

$$k = \sqrt{1 + \frac{\pi^2 E_t I_0}{L^2} \frac{d^3}{E \cdot L_1 \cdot h^2 A_d}}$$
(3.30)

Dari persamaan (3.30) dapat kita lihat bahwa semakin besar luas penampang batang diagonal maka nilai k akan semakin kecil. Semakin panjang batang perangkai diagonal maka nilai k akan semakin besar sehingga kekuatan kolom akn menurun. Bila Persamaan 3.30 dimasukkan ke persamaan 3.28 maka persamaan akan menjadi,

$$Pcr = \frac{\pi^2 . E_{I} . I}{\left(\sqrt{1 + \frac{\pi^2 . E . L_o}{L^2} \frac{d^3}{E . L_1 . h . A_d}} . L\right)^2}$$
(3.31)

Dari persamaan (3.31) dapat kita lihat bahwa Perbedaan panjang batang perangkai diagonal (L_d) pada kolom tersusun akan mempengaruhi nilai kelangsingan kolom, sehingga akan turut mempengaruhi kuat tekan dan tegangan kritis kolom tersusun. Semakin panjang batang perangkai diagonal maka nilai k akan semakin besar dan P_c akan semakin kecil. Semakin panjang elemen batang yang dibatasi oleh ujung-ujung batang penghubung (L_1) maka nilai k akan semakin kecil dan P_c akan semakin besar dan tegangan kritis (Fcr) akan membesar. Semakin besar luas penampang batang diagonal maka nilai k akan semakin kecil sehingga nilai P_{cr} akan semakin besar dan tegangan kritis (Fcr) akan membesar.

3.4. Hipotesis

Berdasarkan landasan teori di atas, dapat diambil hipotesis sebagai berikut:

- kapasitas kolom bentukan dingin berbanding terbalik dengan besar angka kelangsingan
- kapasitas kolom bentukan dingin tidak melebihi kapasitas tekuk plat penyusun kolom
- kapasitas kolom bentukan dingin sebenarnya masih lebih besar dari tegangan ijin rencana.

BAB IV PELAKASANAAN PENELITIAN

4.1. Metode Penelitian

Metode penelitian adalah urutan atau tata cara pelaksanaan penelitian dalam rangka mencari jawaban atas permasalahan penelitian yang diajukan dalam penulisan tugas akhir. Metode penelitian ini meliputi bahan dan alat, pembuatan benda uji, pengujian serta prosedur penelitian.

4.2. Bahan dan Alat yang Digunakan

Untuk kelancaran penelitian diperlukan beberapa peralatan dan bahan yang digunakan sebagai sarana mencapai maksud dan tujuan penelitian. Adapun bahan dan alat yang digunakan adalah sebagai berikut:

4.2.1 Bahan

Untuk kelancaran penelitian diperlukan beberapa peralatan dan bahan yang akan digunakan sebagai sarana mencapai maksud dan tujuan penelitian. Adapun bahan dan alat yang akan digunakan adalah sebagai berikut:

a. Baja profil dan perangkai

Baja profil yang digunakan adalah Profil 2C60x30x1,2 yang disambungkan pada kedua sisinya dengan cara *front to front* dan diberi perangkai horizontal dan diagonal berupa plat baja 15x2,0 mm, sehingga membentuk kolom tersusun.

b. Sambungan

Untuk menyatukan batang perangkai dan profil digunakan sambungan las.

4.2.2 Peralatan penelitian

Penelitian ini menggunakan beberapa peralatan sebagai sarana mencapai maksud dan tujuan. Adapun peralatan tersebut terdiri dari:

a. Mesin uji kuat tarik baja

Digunakan untuk mengetahui kuat tarik baja. Alat yang digunakan yaitu *Universal Testing Material* (UTM) merk Shimitzu type UMH-30 dengan kapasitas 30 ton, seperti pada Gambar (4.1).

Gambar 4.1. Universal Testing Material Shimatzu UMH30

b. Loading Frame

Untuk keperluan uji pembebanan digunakan *Loading Frame*, dari bahan baja profil WF 450x200x9x14, seperti pada Gambar (4.2). Bentuk dasar *Loading Frame* berupa portal segi empat yang berdiri di atas lantai beton (*rigid floor*) dengan perantara pelat dasar dari besi setebal 14 mm. Agar *Loading Frame* tetap stabil, pelat dasar dibaut ke lantai beton dan kedua kolomnya dihubungkan oleh balok WF 50x200x9x14. Posisi balok portal dapat diatur untuk menyesuaikan dengan bentuk dan ukuran model yang akan diuji.

Gambar 4.2. Bentuk fisik Loading Frame

c. Hidraulic Jack

Alat ini digunakan untuk memberikan pembebanan pada pengujian kuat tekan benda uji dengan beban sentris P yang mempunyai kapasitas maksimum 30 ton dengan ketelitian pembacaan sebesar 0,25 ton. Alat tersebut dapat dilihat pada gambar (4.3)

Gambar 4.3. Hidraulic Jack

4.3. Pembuatan Benda Uji

Benda Uji yang akan digunakan dalam penelitian dibuat terlebih dahulu kemudian diuji di laboratorium, benda uji tersebut berupa:

a. Tiga benda uji kuat tarik baja yang diambil dari profil

Gambar 4.4. Benda uji kuat tarik baja

b. Tiga benda uji kuat sambungan las

Gambar 4.5. Benda uji kuat geser las

c. 16 benda uji kuat tekan profil *light lipped channal*, terdiri dari: 8 benda uji profil Light Lipped channal tanpa plat dasar, dan 8 benda uji profil *light lipped channal* dengan plat dasar. Panjang benda uji bervarisi, diatur sesuai dengan panjang L₁ (jarak antara batang yang dibatasi elemen-elemen perangkai) pada pengujian kolom tersusun.

Gambar 4.6. Sampel uji tekan profil light lipped channal

d. Delapan benda uji kolom tersusun yang terbuat dari dua Profil C yang hubungkan dengan batang diagonal dan batang horizontal, dengan tinggi konstan, yaitu 3000 mm. Disatukan dengan alat sambung las pada tempat-tempat tertentu, dapat dilihat pada gambar 4.7.

Gambar 4.7. Kolom tersusun dengan perangkai diagonal dan horizontal

4.4 Pengujian Benda Uji

Tahap-tahap pengujian yang dilakukan dalam penelitian ini ada dua macam pengujian, yaitu: a) uji pendahuluan, dan b) pengujian kolom tersusun.

4.4.1. Uji pendahuluan

Pada uji pendahuluan ini ada tiga macam pengujian, yaitu pengujian kuat tarik baja, pengujian kuat sambungan las, dan pengujian kuat tekan profil *light lipped channal*.

- a. pengujian kuat tarik baja. Pengujian kuat tarik baja ini dilakukan untuk mengetahui tegangan leleh baja (Fy), tegangan ultimit baja (Fu), dan modulus elastis baja (E). Pada pengujian ini sampel baja yang diuji adalah seperti pada gambar 4.2.
- b. pengujian kuat sambungan las baja per sentimeter. Pengujian ini dilakukan dengan tujuan untuk mengetahui kekuatan geser las per sentimeter, sehingga akan didapatkan kekuatan las yang sesuai agar pada waktu pengujian sampel kolom tersusun, sampel tidak rusak pada lasnya. Sampel untuk uji kuat geser las dapat dilihat pada gambar 4.5.
- c. pengujian kuat tekan profil *light lipped channal* ini dilakukan untuk mengetahui koefisien tekuk (k) dari profil yang digunakan. Pada pengujian ini ada dua macam benda uji yang digunakan, yaitu: a) pengujian kuat tekan profil *light lipped channal* tanpa plat dasar, dan b) pengujian profil *light lipped channal* dengan plat dasar. Benda uji yang digunakan pada pengujian ini seperti tampak pada Gambar 4.6.

4.4.2. Pengujian kolom tersusun

Setelah uji pendahuluan dilakukan, kemudian sampel kolom tersusun yang telah dibuat dengan variasi jarak perangkai diuji kekuatan tekannya. Pengujian kolom ini dilakukan dengan pembebanan aksial sentris secara bertahap untuk mengetahui kekuatan tekan pada kolom tersusun. Agar sampel dapat terbebani secara aksial sentris, sebelum sampel diuji terlebih dahulu plat pada sampel tersubut ditandai untuk untuk mendapatkan titik tengah dari sampel tersebut, dan dial diletakkan pada tempat-tempat yang telah direncanakan. Setelah *hidrolik jack* dan dial terpasang dan pembebanan benda uji tersebut sudah dianggap sentris maka pengujian tekan dapat dilakukan. Pemasangan alat ukur (dial) diletakkan pada sumbu lemah dan sumbu kuat dari benda uji tersebut, untuk mengatisipasi terjadinya tekuk pada kedua arah sumbu tersebut.. Pengujian sampel pada penelitian ini dilakukan dengan cara uji tidur, seperti tampak pada Gambar 4.8.

Gambar 4.8. Gambar pengujian tidur

4.5 Analisis Hasil Pengujian

Hasil dari pengujian akan dijadikan data dalam menganalisis perilaku kolom berdinding tipis yang dibebani gaya aksial tekan, dan hubungan antara tekuk lokal dan tekuk lentur kolom berdinding tipis.

BAB V HASIL DAN PEMBAHASAN

5.1 Hasil Pengujian

Pengujian yang dilakukan meliputi pengujian pendahuluan dan uji kuat tekan kolom tersusun. Adapun uji pendahuluan berupa uji kuat tarik baja, uji kuat geser sambungan las, dan kuat tekan profil *light lipped channal* yang sesuai dengan elemen yang digunakan dalam menyusun kolom tersusun. Pengujian ini berguna untuk menentukan kekuatan bahan yang dipakai, dan hasil pengujian akan digunakan untuk mengetahui perilaku kolom bentukan dingin yang menerima beban aksial sentris.

5.1.1 Hasil uji pendahuluan

Hasil uji pendahuluan meliputi dimensi benda uji, beban leleh (Py), beban maksimum atau beban ultimit (Pu), dan beban pada saat putus. Hasil uji pendahuluan digunakan untuk menentukan tegangan leleh (Fy) dan tegangan ultimit (Fu) yang berguna untuk mengetahui perilaku kolom bentukan dingin. Uji pedahuluan juga meliputi pengujian kekuatan sambungan las dan kuat tekan profil *light lipped channal* yang digunakan untuk mengetahui koefisien tekuk plat (k).

5.1.1.1 Uji kuat tarik baja

Pengujian kuat tarik baja dilakukan dengan tiga buah sampel uji berupa plat dari profil *light lipped channal* yang dibentuk sesuai dengan standar pengujian kuat tarik baja. Adapun hasil uji pendahuluan kuat tarik baja disajikan dalam bentuk tabel berikut ini,

Benda Uji	Beban Leleh (Py)	Beban Ultimit (Pu)	Beban Putus
Sampel 1	335.0 kg	460.0 kg	155.0 kg
Sampel 2	362.5 kg	480.0 kg	175.0 kg
Sampel 3	362.5 kg	502.0 kg	190.0 kg

Tabel 5.1 Hasil Pengujian kuat tarik baja

5.1.1.2. Uji kuat geser sambungan las

Kekuatan las diuji dengan menggunakan tiga benda uji, masing-masing benda uji memiliki panjang las 1 cm. Adapun hasil pengujian sambungan las sebagai berikut,

Tabel 5.2. Hasil pengujian kuat geser sambungan las

Benda Uji	Beban Maksimum
Sampel 1	2345 kg
Sampel 2	3280 kg
Sampel 3	3720 kg

5.1.1.3. Hasil pengujian kuat tekan profil light lipped channal

Pengujian kuat tekan profil *light lipped channal* dilakukan dengan dua macam benda uji yaitu: a) profil tanpa plat dasar, dan b) profil dengan plat dasar. Pada masing-masing pengujian menggunakan 8 buah sampel benda uji, masing-masing benda uji memiliki panjang sesuai dengan panjang variasi L₁ dari kolom tersusun yang direncanakan. a. Hasil uji kuat tekan profil light lipped channal tanpa plat dasar

Hasil pengujian kuat tekan profil *light lipped channal* tanpa plat dasar disajikan dalam bentuk tabel dan grafik sebagai berikut,

Tabel 5.3. Hasil pengujian kuat tekan profil *light lipped channal*tanpa plat dasar.

				LEND	UTAN			
BEBAN	K1	K2	K3	K4	K5	K6	K7	K8
	$\lambda_{1=12,831}$	λ1=19,247	A 1=25,663	λ1=32,079	λ1=38,494	λ1=44,910	$\lambda_{1=51,326}$	$\lambda_{1=57,742}$
0	0	0	0	0	0	0	0	0
50	6	-8	-26	3	27	22	0	29
100	13	-7	-24	5	31	33	2	35
150	14	-6	-24	6	33	36	8	40
200	15	-5	-23	9	35	40	13	44
250	15	0	-22	14	36.5	44	20	47
300	16	1	-20	14	37	49	25	52
350	17	4	-19	17	37	52	31	54
400	18	8	-18	19	37	56	38	54.5
450	20	11	-16	21	37	62	42	53
500	21	16	-14	22	37	67	46	52
550	22	20	-11	26	35	72	51	50
600	25	25	-9	28	34	79	57	48
650	26	29	-6	31	33	85	64	47.5
700	28	36	-5	34	32	92	71	47.5
750	31	43	-2	37	30	102	79	47
800	33	48	2	40	28	110	91	46.5
850	34	55	4	44	26	123	104	46.5
900	36	60	7	47	26	134	115	47
950	37	66	12	51	25	150	119	51
1000	39	74	16	55	35	167	122	54
1050	41	83	22	62	40	203	130	57
1100	43	89	27	70	42	340	135	64
1150	45	99	33	80	45	1	144	72
1200	47	107	43	91	47		157	84
1250	51	120	54	108	49		172	97
1300	55	132	73	128	50		203	112
1350	58	144	106	153	52		252	130
1400	64	163	206	190	52		360	192
1450	71	185		380				252
1500	78	215						252
1550	89	290						
1600	105							
1650	152							

Data dari Tabel 5.3 dapat diitampilkan dalam bentuk gambar grafik beban dan lendutan, seperti pada Gambar 5.1 di bawah ini,

Gambar 5.1 Grafik beban dan lendutan uji kuat tekan profil tanpa plat

b. dasar Hasil uji kuat tekan profil *light lipped channal* dengan plat dasar
Pengujian kuat tekan profil *light lipped channal* dengan plat dasar juga
menggunakan 8 buah benda uji, masing-masing benda uji memiliki
panjang sesuai dengan panjang variasi L₁ (panjang batang yang dibatasi
oleh elemen-emen batang) dari kolom tersusun yang direncanakan. Hasil

pengujian kuat tekan profil *light lipped channal* dengan plat dasar ditampilkan dalam bentuk tabel dan grafik sebagai berikut,

				LEND	UTAN			
	K1	K2	K3	K4	K5	K6	K7	K8
BEBAN	λ1=12,831	λ1=19,247	λ1=25,663	λ1=32,079	λ1=38,494	λ1=44,910	$\lambda_{1=51,326}$	$\lambda_{1=57,742}$
0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
50	0.0	12.0	-3.0	0.0	0.0	60.0	82.0	10.0
100	0.0	12.0	-3.5	0.0	0.0	73.0	110.0	20.0
150	1.0	15.0	-4.0	1.0	0.0	78.0	137.0	27.5
200	1.0	19.0	-5.0	3.5	0.0	80.0	160.0	33.0
250	1.0	22.0	-5.5	5.0	0.0	86.0	175.0	37.0
300	1.5	24.0	-5.5	6.5	0.0	95.0	193.0	42.0
350	2.0	26.0	-5.5	8.0	0.0	101.0	205.0	46.0
400	3.5	27.0	-5.5	10.0	0.0	106.0	215.0	48.0
450	3.5	30.0	-5.5	12.0	1.0	110.0	225.0	51.0
500	4.0	31.0	-5.5	13.0	3.0	114.0	230.0	53.0
550	4.0	33.0	-5.0	15.0	7.0	116.0	238.0	55.0
600	4.5	35.0	-3.5	16.0	18.0	120.0	246.0	50.0
650	5.0	38.0	-2.0	18.0	22.0	123.0	251.0	56.5
700	6.0	41.0	-1.0	19.0	25.0	126.0	257.0	53.0
750	7.0	44.0	0.5	19.0	33.0	127.0	266.0	50.0
800	8.0	47.0	2.0	19.0	35.0	143.0	273.0	44.0
850	10.0	51.0	3.0	19.0	37.0	169.0	290.0	37.0
900	11.0	54.0	4.5	20.0	40.0	176.0	302.0	31.0
950	14.0	59.0	5.5	21.0	40.0	177.0	311.0	27.0
1000	19.0	63.0	10.0	22.0	40.0	165.0	315.0	23.0
1050	24.0	68.0	15.0	24.0	40.0	150.0	316.0	9.0
1100	28.0	73.0	23.0	27.0	40.0	129.0	313.0	
1150	34.0	79.0	36.0	33.0	37.0		309.0	
1200	39.0	86.0	45.0	40.0	37.0	1	294.0	
1250	45.0	91.0	54.0	50.0	37.0	l	1	
1300	51.0	99.0	65.0	62.0	38.0			
1350	55.0	107.0	82.0	75.0	41.0			
1400	64.0	118.0	184.0	90.0	45.0			
1450	82.0	136.0		105.0	55.0			
1500	141.0	154.0		120.0				
1550		188.0		134.0				
1600	1	285.0				1	1	

Tabel 5.4. Hasil pengujian kuat tekan profil *light lipped channal*dengan plat dasar

Data dari Tabel 5.4 dapat ditampilkan dalam bentuk gambar grafik beban dan lendutan, seperti pada Gambar 5.2 di bawah ini,

Gambar 5.2 Grafik beban dan lendutan uji kuat profil dengan plat dasar

5.1.2. Hasil pengujian kolom tersusun

Hasil yang didapatkan dari pengujian berupa besarnya beban yang bekerja dan defleksi dari kolom. Dari pengujian juga didapatkan beban maksimum yang mampu ditahan oleh kolom yang selanjutnya disebut beban kritis (P_{cr}).

Pengukuran lendutan yang terjadi pada kolom dilakukan pada pada tiga titik yang masing masing titik berjarak *1 6L*. Dial pertama (Dial 1) diletakkan pada jarak *1 6L* dari tepi yang langsung menerima beban (ujung yang terdapat dongkrak), dial kedua (Dial 2) diletakkan pada jarak *2 6L* dari tepi yang langsung menerima beban, dial ketiga (Dial 3) diletakkan pada jarak *3 6L* dari tepi (plat dasar dukungan), dial keempat (Dial 4) diletakkan pada jarak 1/6L dari plat dasar yang menerima beban, dan dial kelima (Dial 5) diletakkan pada jarak 1/6L dari plat dasar yang tidak menerima beban. Sebagai antisipasi apabila kerusakan terjadi pada sumbu kuat bahan diletakkan juga tiga dial pada arah sumbu kuat bahan. Dial pertama (Dial A) diletakkan pada jarak 1/4L dari plat dasar yang dibebani, dial kedua (Dial B) diletakkan di tengah-tengah bentang kolom, dan dial ketiga (Dial C) pada jarak 1/4L dari plat dasar *5.3* di bawah ini,

Gambar 5.3. Letak penempatan Dial

1. Hasil pengujian Dial 1

	BEBAN & LENDUTAN														
K	1	K	2	K	3	K	4	K	5	K	6	K	7	K	8
$\lambda_{I=I}$	2,831	$\hat{\lambda}_{I=I}$	9,247	$\hat{\lambda}_{I=2}$	5,663	$\lambda_{I=3}$	2,079	λ_{1-3}	8,494	$\hat{\lambda}_{I=4}$	4,910	λ1=5	1,326	$\hat{\lambda}_{1=5}$	7,742
Beban	Dial 1	Beban	Dial 1	Beban	Dial 1	Beban	Dial 1	Beban	Dial 1	Beban	Dial 1	Beban	Dial 1	Beban	Dial 1
Kg	0,01 mm	kg	0,01mm	Kg	0,01mm	kg	0,01mm	kg	0,01mm	kg	0,01mm	kg	0,01mm	kg	0,01mm
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
350	-9	350	4	350	5	350	0	350	38	350	8	350	14	350	36
700	-12	700	-1	700	41	700	1	700	59	700	10	700	28	700	95
1050	-18	1050	-3	1050	96	1050	1	1050	64	1050	21	1050	39	1050	144
1400	-38	1400	5	1400	148	1400	1	1400	112	1400	48	1400	53	1400	193
1750	-68	1750	10	1750	244	1750	9	1750	152	1750	83	1750	70	1750	261
2100	-77	2100	14	2100	425	2100	14	2100	194	2100	157	2100	91	2100	355
2450	-55	2450	18	2450	700	2450	16	2450	260	2450	219	2450	135	2450	498
2800	-10	2800	26	2800	595	2800	27	2800	278	2975	567	2625	333	2625	615
3150	100	3150	44	2975	1003	3150	110	3150	676	2100	731	2100	1255	1750	807
3500	435	3500	50	2100	2203	2800	283	2800	834	1750	804	1750	1774	1400	891
3650	617	3850	214	1750	1188	2450	335	2450	873						
2450	939	2800	362												
1750	1170	2625	440												

Tabel 5.5. Hasil pengujian Dial 1

Tabel 5.5 (Tabel beban dan lendutan Dial 1) dapat ditampilkan dalam bentuk grafik beban dan lendutan. Dari Gambar 5.4 (Grafik beban dan lendutan Dial 1) dapat dibandingkan besarnya lendutan yang terjadi pada kolom K1, K2, K3, K4, K5, K6, K7, dan K8 pada Dial 1, sehingga kekuatan kolom tersusun secara kasar bisa dibandingkan dari besar lendutan yang terjadi. Gambar grafik beban dan lendutan Dial 1 dapat dilihat pada Gambar 5.4.

Gambar 5.4. Grafik beban dan lendutan Dial 1

2. Hasil pengujian Dial 2

	BEBAN & LENDUTAN														
ĸ	1	K	2	K	3	K	4	K	5	K	6	K	7	K	8
2	2 0 2 1	λ1=1	9 247	$\Lambda_{I=2}$	5,663	$\lambda_{I=3}$	2,079	$\lambda_{I=3i}$	8,494	λ1=4	4,910	$\hat{\lambda}_{l=5}$	1,326	λ1 57	7,742
Reban	Dial 2	Beban	Dial 2	Beban	Dial 2	Beban	Dial 2	Beban	Dial 2	Beban	Dial 2	Beban	Dial 2	Beban	Dial 2
kg	0,01mm	kg	0,01mm	Kg	0,01mm	kg	0,01mm	kg	0,01mm	Kg	0,01 mm	kg	0,01mm	kg	0,01mm
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
350	-1	350	6	350	29	350	-9	350	65	350	38	350	18	350	50
700	-1	700	-11	700	80	700	-14	700	96	700	45	700	32	700	132
1050	-56	1050	-12	1050	195	1050	-25	1050	153	1050	90	1050	51	1050	207
1400	-70	1400	-14	1400	291	1400	-34	1400	217	1400	161	1400	75	1400	289
1750	-90	1750	-16	1750	460	1750	-41	1750	294	1750	258	1750	102	1750	414
2100	-111	2100	-13	2100	630	2100	-54	2100	383	2100	439	2100	140	2100	581
2450	-106	2450) 16	2450	828	2450	-61	2450	511	2450	837	2450	222	2450	846
2800	9	2800	39	2800	1170	2800	-50	2800	721	2975	1417	2625	607	2625	1312
3150	307	315	0 75	2975	2450	3150	50	3150	1378	2100	1766	2100	1780	1750	1562
3500	895	350	0 84	2100	2900	2800	315	2800	1736	1750	2128	1750	2157	1400	1768
365	0 140	5 385	0 274	1750	3400	2450	398	2450	2045	5					
245	0 202	7 280	0 280												
175	0 246	8 262	5 418	3											

Tahel	5.6.	Hasil	pengujian	Dial	2
Iauci		110011	Person jerro		

Tabel 5.6 (Tabel beban dan lendutan Dial 2) dapat ditampilkan dalam bentuk grafik beban dan lendutan. Dari Gambar 5.5 (Grafik beban dan Lendutan Dial 2) dapat dibandingkan besarnya lendutan yang terjadi pada kolom K1, K2, K3, K4, K5, K6, K7, dan K8 pada Dial 2, sehingga kekuatan kolom tersusun secara kasar bisa dibandingkan dari besar lendutan yang terjadi. Gambar grafik beban dan lendutan Dial 2 dapat dilihat pada Gambar 5.5.

Gambar 5.5. Grafik beban dan lendutan Dial 2

45

3. Hasil pengujian Dial 3

	BEBAN & LENDUTAN																
							BEL			V		K	6	K	7	K	3
	KI			K2	2	K.	3	K 4	4	Л .	,	1.		Â1-5	1326	$\lambda_{I=57}$	7,742
λ	.1=12	.831	λ_{I}	=]9	0,247	$A_{I=2}$	5,663	$\hat{\lambda}_{I=3}$	2,079	Λ] =3.	8,494	$\lambda_{I}=4$	4,910 Dial 2	Roban	Dial 3	Beban	Dial 3
Be	ban	Dial 3	Beba	an	Dial 3	Beban	Dial 3	Beban	Dial 3	Beban	Dial 3	Beban	0.01mm	kg	0,01mm	kg	0,01mm
	Kg	0,01 <i>m</i> m	kg		0,01mm	Kg	0,01mm	kg	0,01mm	кg	0,01111						0
	0	0	0		0	0	0	0	0	0	0	0	0	0	U	ľ	Ĭ
		10	25	0	-10	350	1	350	18	350	3	350	9	350	14	350	20
	350	10	35	0	-10	700	10	700	6	700	29	700	16	700	22	700	121
	700	14	70	0	-35	700	10	100	10	1050	106	1050	108	1050	30	1050	142
•	1050	7	10	50	-11	1050	17	1050	12	1050	100		000	1400	66	1400	234
.	1400	-25	14	00	-13	1400	220	1400	-14	1400	206	1400	209	1400			242
	1750	-57	17	50	-84	1750	417	1750	-25	1750	306	1750	485	1750	123	1750	342
		74	1 24	00	_85	2100	611	2100	.123	2100	409	2100	609	2100	205	2100	529
	2100	-/4		00	-00		040	2450	124	2450	609	2450	1200	2450	322	2450	825
	2450	-15	24	150) -85	245	1 019	2450				207	214	262	5 630	2625	1727
	2800	132	2 21	300	-78	280	0 1210	280	12	5 280	823	291					0420
	3150	323	3 3	150	ס -78	297	5 305	0 315	0 -5	315	0 181	5 210	0 264	3 210	0 123	9 1/50	2120
	3500) 115	3 3	50	0 -71	1 210	0 356	5 280	0 173	3 280	0 235	0 175	0 322	5 175	0 143	6 1400) 2549
				05	0 11	0 175	0 416	4 245	0 292	2 245	0 292	0					
	365	0 191	0 3	92					-								
	245	0 297	1 2	80	0 11	0											
	175	0 361	17 2	62	5 11	0											

Tabel 5.7. Hasil pengujian Dial 3

Tabel 5.7 (Tabel beban dan lendutan Dial 3) dapat ditampilkan dalam bentuk grafik beban dan lendutan. Dari Gambar 5.6 (Grafik beban dan Lendutan Dial 3) dapat dibandingkan besarnya lendutan yang terjadi pada kolom K1, K2, K3, K4, K5, K6, K7, dan K8 pada Dial 3, sehingga kekuatan kolom tersusun secara kasar bisa dibandingkan dari besar lendutan yang terjadi. Gambar grafik beban dan lendutan Dial 3 dapat dilihat pada Gambar 5.6.

Gambar 5.6. Grafik beban dan lendutan Dial 3

47

4. Hasil pengujian Dial 4

					BE	BAN	& L	ENI	דעכ	AN					
K	1	K	2	K.	3	K	4	K	5	K	6	K	7	K	8
21-1		$\hat{\lambda}_{l=l}$	9 247	$\lambda_{1=2}$	5,663	$\hat{\lambda}_{l=3}$	2,079	$\hat{\lambda}_{I=3}$	8,494	$\lambda_{I=4}$	4,910	$\hat{\lambda}_{l=5}$	1,326	λ1=5)	7,742
Beban	Dial4	Beban	Dial4	Beban	Dial4	Beban	Dial4	Beban	Dial4	Beban	Dial4	Beban	Dial4	Beban	Dial4
kg	0,01mm	kg	0,01mm	kg	0,01mm	kg	0,01mm	Kg	0,01mm	Kg	0,01mm	kg	0,01mm	kg	0,01mm
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
350	15	350	-15	350	25	350	-28	350	55	350	51	350	21	350	48
700	32	700	-12	700	75	700	63	700	86	700	66	700	46	700	122
1050	27	1050	-19	1050	182	1050	107	1050	159	1050	140	1050	72	1050	191
1400	-3	1400	-34	1400	273	1400	173	1400	241	1400	246	1400	113	1400	265
1750	-25	1750	-36	1750	428	1750	223	1750	341	1750	381	1750	153	1750	365
2100	-32	2100	-43	2100	576	2100	303	2100	457	2100	610	2100	196	2100	520
2450	-19	2450	-45	2450	766	2450	362	2450	609	2450	1114	2450	272	2450	765
2800	103	2800	-53	2800	1093	2800	407	2800	858	2975	1981	2625	472	2625	1559
3150	313	3150	-40	2975	2250	3150	355	3150	1556	2100	2552	2100	793	1750	1908
3500	979	3500	-16	2100	2611	2800	307	2800	1958	3 1750	3094	1750	1192	1400	2247
3650	177	7 3850	75	1750	3005	2450	410	2450	2347	7					
2450	281	2800	71												
1750	333	5 262	5 67												

Tabel 5.8. Hasil pengujian Dial 4

Tabel 5.8 (Tabel beban dan lendutan Dial 4) dapat ditampilkan dalam bentuk grafik beban dan lendutan. Dari Gambar 5.7 (Grafik beban dan Lendutan Dial 4) dapat dibandingkan besarnya lendutan yang terjadi pada kolom K1, K2, K3, K4, K5, K6, K7, dan K8 pada Dial 4, sehingga kekuatan kolom tersusun secara kasar bisa dibandingkan dari besar lendutan yang terjadi. Gambar grafik beban dan lendutan Dial 4 dapat dilihat pada Gambar 5.7.

Gambar 5.7. Grafik beban dan lendutan Dial 4

49

5. Hasil pengujian Dial 5

	BEBAN & LENDUTAN														
K	, 1	K	2	K.	3	K	4	K	5	K	6	K	7	K	8
n .		2	0.247	$\hat{\lambda}_{I=2}$	5 663	$\lambda_{1=3}$	2,079	$\lambda_{I=3i}$	8,494	$\hat{\lambda}_{I}=4$	4,910	$\lambda_{I=5}$	1,326	$\lambda_{I=57}$	7,742
$\mathcal{N}_{I=I}$	2,831 Diel5	7./≕/	9,247 Dial5	Beban	Dial5	Beban	Dial5	Beban	Dial5	Beban	Dial5	Beban	Dial5	Beban	Dial5
Ka	0,01mm	kg	0,01mm	kg	0,01mm	kg	0,01mm	kg	0,01mm	Kg	0,01mm	kg	0,01mm	kg	0,01mm
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
350	9	350	-4	350	15	350	-19	350	35	350	32	350	8	350	25
700	19	700	-8	700	47	700	45	700	57	700	43	700	20	700	42
1050	22	1050	-9	1050	110	1050	78	1050	106	1050	96	1050	31	1050	99
1400	18	1400	-9	1400	161	1400	124	1400	159	1400	146	1400	49	1400	135
1750	7	1750	-9	1750	246	1750	161	1750	222	1750	214	1750	67	1750	180
2100	3	2100	_4	2100	325	2100	215	2100	291	2100	417	2100	90	2100	242
2450	33	2450	0	2450	419	2450	252	2450	377	2450	516	2450	128	2450	341
2800	80	2800) 14	2800	571	2800	382	2800	499	2975	847	2625	215	2625	568
3150) 186	3150	28	2975	5 919	3150	356	3150	764	2100	1076	2100	310	1750	675
3500	473	350	0 45	2100	0 1061	2800	817	2800	899	1750	1829	1750	342	1400	761
3650	893	385	0 69	175	0 1218	3 2450	200 ⁻	2450) 103	7					
245	0 131	8 280	0 69												
175	0 173	1 262	5 67												

Tabel 5.9. Hasil pengujian Dial 5

Tabel 5.9 (Tabel beban dan lendutan Dial 5) dapat ditampilkan dalam bentuk grafik beban dan lendutan. Dari Gambar 5.8 (Grafik beban dan Lendutan Dial 5) dapat dibandingkan besarnya lendutan yang terjadi pada kolom K1, K2, K3, K4, K5, K6, K7, dan K8 pada Dial 5, sehingga kekuatan kolom tersusun secara kasar bisa dibandingkan dari besar lendutan yang terjadi. Gambar grafik beban dan lendutan Dial 5 dapat dilihat pada Gambar 5.8.

Gambar 5.8. Grafik beban dan lendutan Dial 5

6. Hasil pengujian Dial A

	BEBAN & LENDUTAN														
K	1	K	2	K	3	K	4	K	5	K	6	K	7	K	8
$\hat{\lambda}_{l=l}$	2.831	$\lambda_{I=1}$	9,247	$\hat{\lambda}_{I=2}$	5,663	$\lambda_{I=3}$	2,079	$\hat{\lambda}_{I=3}$	8,494	$\lambda_{I=4}$	4,910	$\lambda_{I=5}$	1,326	$\lambda_{I=5}$	7,742
Beban	DialA	Beban	DialA	Beban	DialA	Beban	DialA	Beban	DialA	Beban	DialA	Beban	DialA	Beban	DialA
kg	0,01mm	kg	0,01mm	kg	0,01mm	kg	0,01mm	kg	0,01mm	Kg	0,01mm	kg	0,01mm	kg	0,01mm
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
350	50	350	-1	350	0	350	0	350	0	350	0	350	0	350	1
700	125	700	-5	700	0	700	-1	700	0	700	8	700	9	700	11
1050	190	1050	-35	1050	3	1050	-4	1050	0	1050	9	1050	23	1050	98
1400	255	1400	-25	1400	4	1400	-18	1400	-32	1400	78	1400	105	1400	110
1750	320	1750	-26	1750	27	1750	-95	1750	-32	1750	37	1750	194	1750	191
2100	365	2100	-25	2100	42	2100	-95	2100	18	2100	36	2100	302	2100	221
2450	400	2450	-43	2450	42	2450	-65	2450	18	2450	37	2450	520	2450	419
2800	435	2800	42	2800	42	2800	-21	2800	90	2975	108	2625	1505	2625	888
3150	490	3150	42	2975	246	3150	23	3150	200	2100	125	2100	2250	1750	1178
3500	620	3500	135	2100	246	2800	210	2800	295	1750	205	1750	2465	1400	1398
3650	740	3850	138	1750	259	2450	910	2450	322						
2450	630	2800	440												
1750	570	2625	5 445												

Tabel 5.10. Hasil pengujian Dial A

Tabel 5.10 (Tabel beban dan lendutan Dial A) dapat ditampilkan dalam bentuk grafik beban dan lendutan. Dari Gambar 5.9 (Grafik beban dan Lendutan Dial 5) dapat dibandingkan besarnya lendutan yang terjadi pada kolom K1, K2, K3, K4, K5, K6, K7, dan K8 pada Dial A, sehingga kekuatan kolom tersusun secara kasar bisa dibandingkan dari besar lendutan yang terjadi. Gambar grafik beban dan lendutan Dial A dapat dilihat pada Gambar 5.9.

Gambar 5.9. Grafik beban dan lendutan Dial A

53

7. Hasil pengujian Dial B

	BEBAN & LENDUTAN														
		Ľ	2	K	2 1	K	4	K	5	K	6	K	7	K	8
K	1	, л	2		,		0.070	1 - 2	o 101	$\lambda_{l=4}$	4.910	$\hat{\lambda}_{I}=5$	1,326	λ1=5?	,742
$\lambda_{I=I}$	12,831	11-1	9,247	/1]=2	5,663	$\mathcal{N}_{I}=3.$	2,179 Dial9	Roban	DialB	Beban	DialB	Beban	DialB	Beban	DialB
Bebar	DialB	Bebar	DialB	Beban	DialB	Beban	0.01mm	ka	0,01mm	kg	0,01mm	kg	0,01mm	kg	0,01mm
kg	0,01mm	kg	0,01mm	kg	0,011111					<u> </u>			0	0	0
0	0	0	0	0	0	0	0	0	0	0	U		Ŭ		
250	15	350	2	350	0	350	-9	350	0	350	12	350	15	350	11
700	110	700	11	700	0	700	-33	700	o	700	18	700	40	700	39
1050) 200	1050	20	1050	9	1050	-59	1050	16	1050	29	1050	64	1050	65
140	300	1400	48	1400	19	1400	-96	1400	35	1400	35	1400	101	1400	94
175	0 370	175	n 63	1750	35	1750	-128	1750	72	1750	38	1750	158	1750	130
210	0 410	210	0 64	2100) 54	2100	-143	2100	98	2100	45	2100	237	2100	210
245	0 520	245	0 65	2450	82	2450) -125	2450	131	2450	75	2450	430	2450	380
280	0 516	5 280	0 90	2800	135	2800	.70	2800) 205	2975	5 165	2625	5 1340	2625	1192
315	50 54	315	0 110	297	5 898	3150	60	3150	447	2100	340	2100) 159	0 1750	1522
350	00 71	7 350	0 14	5 210	0 100	1 280	0 320	280	0 597	7 175	0 301	1750	0 176	0 1400	2122
36	50 92	0 38	50 12	5 175	0 112	8 245	0 110	0 245	0 599	Ð					
24	50 81	0 28	00 12	5											
17	50 72	20 26	25 12	.7											

Tabel 5.11. Hasil pengujian Dial B

Tabel 5.11 (Tabel beban dan lendutan Dial B) dapat ditampilkan dalam bentuk grafik beban dan lendutan. Dari Gambar 5.10 (Grafik beban dan Lendutan Dial B) dapat dibandingkan besarnya lendutan yang terjadi pada kolom K1, K2, K3, K4, K5, K6, K7, dan K8 pada Dial B, sehingga kekuatan kolom tersusun secara kasar bisa dibandingkan dari besar lendutan yang terjadi. Gambar grafik beban dan lendutan Dial B dapat dilihat pada Gambar 5.10.

Gambar 5.10. Grafik beban dan lendutan Dial B

8. Hasil pengujian Dial C

					BEL	BAN	& L	.ENI	דעכ	AN					
K	, 1	K	2	K	3	K4		K5		K6		K7		K8	
ĵ	$\hat{\lambda}_{1} = 10.247$ $\hat{\lambda}_{1} = 10.247$ $\hat{\lambda}_{1} = 10.247$		$\lambda_{1=2}$	5,663	$\hat{\lambda}_{1} = 32,079$		$\lambda_{1=38,494}$		λ _{1=44,910}		$\hat{\lambda}_{1}=51,326$		$\hat{\lambda}_{I}=57,742$		
Beban	DialC	Beban	DialC	Beban	DialC	Beban	DialC	Beban	DialC	Beban	DialC	Beban	DialC	Beban	DialC
kg	0,01mm	kg	0,01mm	kg	0,01mm	kg	0,01mm	kg	0,01mm	Kg	0,01mm	kg	0,01mm	kg	0,01mm
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
350	68	350	4	350	0	350	-5	350	0	350	6	350	7	350	19
700	150	700	9	700	6	700	-20	700	0	700	10	700	22	700	55
1050	221	1050	15	1050	17	1050	-26	1050	5	1050	19	1050	28	1050	85
1400	310	1400	36	1400	25	1400	-64	1400	13	1400	20	1400	57	1400	123
1750	410	1750	38	1750	45	1750	-80	1750	22	1750	19	1750	84	1750	163
2100	440	2100	55	2100	57	2100	-85	2100	32	2100	18	2100	128	2100	233
2450	485	2450	60	2450	84	2450	-55	2450	41	2450	25	2450	243	2450	330
2800	532	2800	78	2800	128	2800	10	2800	47	2975	28	2625	525	2625	770
3150	538	3150	95	297	5 250	3150	152	3150	140	2100	105	2100	930	1750	990
3500	536	3500	0 118	210	221	2800	480	2800) 170	1750	205	1750	960	1400	1317
3650	114	3850	0 172	2 175	0 190	2450	830	2450) 128						
3030	110	4 280	0 177	,											
475		5 260	5 17	,			ļ								
1/5	סטון ט	J 202		·									سيبيلي		

Tabel 5.12. Hasil pengujian Dial C

Tabel 5.12 (Tabel beban dan lendutan Dial C) dapat ditampilkan dalam bentuk grafik beban dan lendutan. Dari Gambar 5.11 (Grafik beban dan Lendutan Dial C) dapat dibandingkan besarnya lendutan yang terjadi pada kolom K1, K2, K3, K4, K5, K6, K7, dan K8 pada Dial C, sehingga kekuatan kolom tersusun secara kasar bisa dibandingkan dari besar lendutan yang terjadi. Gambar grafik beban dan lendutan Dial C dapat dilihat pada Gambar 5.11.

Gambar 5.11. Grafik beban dan lendutan Dial C

57

5.2 Pembahasan

5.2.1 pembahasan uji pendahuluan

Data yang diperoleh dari uji pendahuluan berguna untuk mendapatkan properti dari baja yang digunakan dalam pengujian. Tegangan leleh (F_y) didapatkan dengan membagi beban leleh dengan luas penampang $(F_y = P_y/A)$. Tegangan ultimit (F_u) didapatkan dengan membagi beban maksimum dengan luas penampang $(Fu = P_u/A)$. Kekuatan las didapatkan dengan membagi beban maksimum dengan panjang las, sehingga kekuatan las per satuan panjang (per milimeter) diketahui dengan cara tersebut.

5.2.1.1. Pembahasan uji kuat tarik baja

Hasil yang didapat dari uji kuat tarik baja disajikan dalam bentuk tabel berikut ini,

Benda Uji	Tegangan Leleh (F _y) Mpa	Tegangan Ultimit (F _u) Mpa	Tegangan Putus Mpa
I	136.931	188.025	63.356
П	148.172	196.200	71.531
III	148.172	205.193	77.663

Tabel. 5.13. Analisa hasil uji kuat tarik baja

Rerata hasil ketiga benda uji tarik digunakan sebagai mutu bahan benda uji yang digunakan. Rerata ketiga benda uji tersebut adalah sebagai berikut,

- 1. Tegangan leleh (Fy) = 144,425 MPa
- 2. Tegangan ultimit (Fu) = 196,473 MPa
- 3. Tegangan putus = 70,917 Mpa.

Hasil pengujian tarik baja di atas menunjukkan mutu baja yang digunakan dalam penelitian. Mutu baja yang digunakan dalam penelitian tidak memenuhi syarat untuk masuk sebagai baja struktur spesifikasi ASTM. Bedasarkan spesifikasi ASTM mutu baja terendah adalah A570 yang memiliki tegangan leleh (F_y) 170 Mpa.

5.2.1.2. Pembahasan uji kuat geser sambungan las

Kekuatan las diuji dengan menggunakan tiga benda uji. Semua benda uji memiliki panjang las 10 mm, Hasil yang didapat dari uji kuat geser disajikan dalam bentuk tabel berikut ini,

Benda Uji	Beban Maksimum (kg)	Tegangan Maksimum (Mpa)
Sampel 1	2345	230.0445
Sampel 2	3280	321.768
Sampel 3	3720	364.932

Tabel. 5.14. Analisa hasil uji kuat geser sambungan las

Jadi, rerata kekuatan las (Fu) adalah 305.582 Mpa. Tebal plat benda uji adalah 3 mm dengan proses SMAW diketahui tebal efektif (te) adalah 2,121 mm (te = 0,707 a). Rerata kekuatan gaya geser ijin adalah 194.442 kN/mm.

5.2.1.3. Pembahasan uji kuat tekan profil light lipped channal.

Data yang diperoleh dari uji pendahuluan ini berguna untuk mengetahui perilaku profil *light lipped channal* bentukan dingin. Dari pengujian ini bisa didapatkan nilai beban kritis dan tegangan kritis sehingga bisa mendapatkan nilai k (koefisien tekuk) profil *light lipped channal* dan dari pengujian ini juga diharapkan mampu memberikan penjelasan mengenai pengaruh pengelasan pada proses penyambungan perangkai pada kolom tersusun profil *light lipped channal*.

Karena nilai beban kritis (P_{er}) hasil pengujian masih sangat kasar maka nilainilia yang didapatkan diregresi terlebih dahulu. Perhitungan regresi beban kritis menggunakan regresi lengkung (eksponensial) karena data yang diperoleh dari hasil pengujian profil Sampel K1, K2, K3, K4, K5, K6, K7, dan K8 pada profil tanpa plat dasar dan profil dengan plat dasar mendekati bentuk lengkung. Persamaan regresi eksponensial dapat dilihat pada Persamaan 5.1. dan 5.2.

$$P_{cr} = 1615.48419 * e^{(-0.0035942596*L/r)} 5.1$$

$$P_{cr} = 1710.70324 * e^{-(-0.00689779246 * L/r)}$$
 5.2

Persamaan 5.1 adalah persamaan regresi untuk beban profil tanpa plat dasar, sedangkan Persamaan 5.2 adalah persamaan beban untuk profil dengan plat dasar. Adapun hasil perhitungan regresi pembebanan dan tegangan kritis (Fcr) pada profil *light lipped channal* disajikan dalam bentuk tabel di bawah ini,

Tabel 5.15. Perbandingan beban kritis pengujian (P_{er}) dan tegangan kritis (F_{er}) profil tanpa plat dasar dengan profil dengan plat dasar

		TAN	PROFIL PA PLAT D	ASAR	PROFIL DENGAN PLAT DASAR			
Benda Uji	L ₁ /r	P	P., Reg	F _{cr}	Pcr	P _{cr} Reg	Fcr	
		(kg)	(kg)	(Mpa)	(kg)	(kg)	(Mpa)	
	10.021	1650	1542 671	97.1	1500	1565.798	98.591	
<u>K1</u>	12.831	1050	1507 504	94.9	1600	1498.015	94.323	
K2	19.247	1550	1507.504	02.9	1400	1433 167	90.240	
K3	25.663	1400	1473.139	92.8	1400	1271 126	86 333	
K4	32.079	1450	1439.557	90.6	1550	13/1.120	00.555	
	28 101	1400	1406.741	88.6	1450	1311.771	82.390	
<u>K</u> 5	20.474	1100	1374 673	86.6	1100	1254.985	79.021	
<u>K6</u>	44.910	1100	1242.226	84.6	1200	1200.657	75.600	
K7	51.326	1400	1343.330	04.0	1200	11/0 601	72 327	
K8	57.742	1500	1312.713	82.7	1050	1140.001	12.521	

Dari Tabel 5.15 di atas dapat digambarkan perbandingan beban kritis hasil pengujian dengan beban kritis hasil regresi. Gambar perbandingan beban kritis hasil pengujian dengan beban kritis hasil regresi ditampilkan dalam bentuk grafik di bawah ini,

Gambar 5.12. Grafik perbandingan beban krtiis (P_{er}) hasil pengujian dan hasil regresi pada profil dengan plat dasar

Gambar 5.13. Grafik perbandingan tegangan kritis (f_{cr}) hasil pengujian dan hasil regresi pada profil dengan plat dasar

Data dari Tabel 5.15 di atas dapat digambarkan perbandingan tegangan kritis hasil pengujian dengan tegangan kritis hasil regresi. Gambar perbandingan tegangan kritis hasil pengujian dengan tegangan kritis hasil regresi ditampilkan dalam bentuk grafik di bawah ini,

Gambar 5.14. Grafik perbandingan tegangan kritis (F_{er}) profil tanpa plat dasar dengan profil dengan plat dasar

5.2.2 Pembahasan kolom tersusun

5.2.2.1 Beban kritis (P_{cr})

Beban krtis (P_{er}) yang terjadi pada masing-masing kolom ditentukan berdasarkan hasil pengujian pada (Tabel 5.5 sampai dengan Tabel 5.2), karena beban kritis yang terjadi pada kolom K1, K2, K3, K4, K5, K6, K7, dan K8 masih sangat kasar dan mendekati bentuk lengkung, maka dilakukan regresi data hasil pengujian. dengan regresi fungsi eksponensial. Persamaan regresi eksponensial yang digunakan dapat dilihat pada Persamaan 5.3.

$$p = 4104.457675 * e^{(-0.007929167*(L/r))}$$
 5.3

Benda Uji	L ₁ /r	P _{cr} (kg)	P _{cr} Reg (kg)
K1	12.831	3675	3707.414
К2	19.247	3850	3523.522
К3	25.663	2975	3348.751
K4	32.494	3150	3172.193
K5	38.494	3150	3024.810
K6	44.910	2975	2874.776
K7	51.326	2625	2732.184
K8	57.742	2625	2596.664

Tabel 5.16. Regresi beban kritis (Pcr) kolom tersusun

Gambar 5.15. Grafik perbandingan beban kritis (P_{cr}) hasil pengujian dan beban kritis hasil (P_{cr}) hasil regresi pada kolom tersusun

Berdasarkan Gambar 5.15, tampak bahwa nilai P_{cr} berubah tidak sebanding dengan pertambahan $L_{l'}/r$. Perubahan beban kritis (P_{cr}) tesebut terjadi secara acak pada $L_{l'}/r$ kecil kemudian terjadi perubahan besar dan kemudian kembali terjadi perubahan yang relatif kecil untuk $L_{l'}/r$ besar. Bentuk grafik hubungan kelangsingan $(L_T r)$ dengan beban kritis (P_{cr}) hampir tidak sama dengan bentuk grafik penelitianpenelitian terdahulu yang telah dilakukan di beberapa negara.

Pada Gambar 5.16 tampak bahwa beban kritis yang merupakan data teregresi ditunjukkan oleh garis lengkung beraturan sedangkan beban kritis yang merupakan data hasil pengujian laboratorium ditunjukkan oleh garis lengkung tak beraturan. Persamaan 5.3. dapat digunakan untuk menentukan beban kritis (P_{cr}) untuk setiap angka kelangsingan $L_{T}r$. Gambar 5.16 menampilkan beban kritis untuk angka kelangsingan $L_{T}r$ lebih dari 0 sampai dengan 300.

Gambar 5.16. Grafik beban kritis (P_{cr}) fungsi kelangsingan (L1/r) untuk nilai L1/rlebih dari 0 sampai dengan 300

Pada Gambar 5.16 tampak bahwa grafik beban kritis (P_{cr}) fungsi kelangsingan $(L_{l'}r)$ untuk nilai L_{1}/r lebih dari 0 sampai dengan 300 tidak sama dengan hasil penelitian yang dilakukan oleh beberapa negara (lihat Gambar 3.10). Hal ini disebabkan oleh tipisnya plat dasar profil *light lipped channal* yang digunakan sehingga menyebabkan terjadinya lengkungan awal pada kolom sebelum dibebani, yang menyebabkan terjadinya tekuk lokal sebagaimana diungkapkan oleh Lambert Tall (1974) dan Gaylord dan Gaylord (1972).

Pada saat terjadi beban kritis (P_{cr}) bentuk deformasi kolom dapat ditentukan dengan cara memilih defleksi yang terbaca pada masing-masing dial pada saat terjadi beban kritis, kemudian ditampilkan dalam bentuk grafik sehingga dapat dilihat bentuk deformasi kolom. Bentuk deformasi kolom dapat dilihat pada Gambar 5.17 sampai dengan Gambar 5.24.

Gambar 5.17. Deformasi kolom K1 pada saat kritis.

Gambar 5.18 Deformasi kolom K2 pada saat kritis.

Gambar 5.19 Deformasi kolom K3 pada saat kritis.

Gambar 5.20 Deformasi kolom K4 pada saat kritis.

Gambar 5.21 Deformasi kolom K5 pada saat kritis.

Gambar 5.22 Deformasi kolom K6 pada saat kritis.

Gambar 5.23 Deformasi kolom K7 pada saat kritis.

Gambar 5.24 Deformasi kolom K8 pada saat kritis.

Bedasarkan grafik deformasi kolom pada Gambar 5.17 sampai dengan Gambar 5.24 dapat dilihat bahwa tidak ada bentuk deformasi kolom yang tetap untuk semua benda uji. Kolom K1, K2, K3, K5, K6, K7, dan K8 bentuk deformasi merupakan kelengkungan tunggal sedangkan pada kolom K4 bentuk deformasinya merupakan kelengkungan ganda. Ketidaksamaan bentuk deformasi terjadi karena kondisi tumpuan tidak sama dengan asumsi sendi-sendi. Berdasarkan Gambar 5.18 dapat dilihat adanya pengekangan pada salah satu tumpuan sehingga memiliki sifat jepit. Berdasarkan hal tersebut di atas, maka dapat diambil kesimpulan bahwa asumsi kondisi sendi-sendi tidak memenuhi persyaratan yang disebabkan oleh keterbatasan alat yang digunakan dalam pengujian. Ketidaksamaan bentuk deformasi tersebut disebabkan faktor panjang efektif K setiap benda uji tidak sama. Karena

ketidaksamaan faktor panjang efektif K maka untuk pembahasan selanjutnya kelangsingan hanya ditujukan dengan rasio $L_F r$.

5.2.2.2. Hubungan momen-kelengkungan

Data hasil pengujian diperoleh grafik hubungan beban-lendutan $(P-\Delta)$ sehingga dapat dicari momen (M) dan kelengkungan (Φ). Hubungan momen dan kelengkungan (M- Φ) pada masing masing benda uji tampak pada Tabel 5.17.

	Momen dan Kelengkungan														
K	K1 K2		2	K3		K4		K5		K 6		K7		K8	
$\lambda_{I=I}$	2,831	$\lambda_{I=I}$	9,247	$\lambda_{I=2}$	5,663	$\lambda_{I=3}$	2,079	$\lambda_{I=j}$	8,494	$\lambda_{I=4}$	44,910	$\lambda_{I=5}$	51,326	λ_{I}	57,742
Momen	Φ	Momen	Φ	Momen	Φ	Momen	Φ	Momen	Φ	Mome n	Φ	Momen	Φ	Momen	Φ
KN.m	1/m	KN.m	1/m	KN.m	1/m	KN.m	1/m	KN.m	1/m	KN.m	1/m	KN.m	1/m	KN.m	1/m
0.000	0	0.000	0	0.000	0	0.000	0	0.000	0	0.000	0	0.000	0	0.000	0
0.035	1.6E-10	0.035	4E-11	0.004	2.1E-09	0.063	4E-11	0.011	4.6E-09	0.032	2.8E-09	0.049	4.4E-10	0.070	2.3E-09
0.098	2E-10	0.245	1.9E-09	0.070	5.4E-09	0.042	2.6E-09	0.203	5E-09	0.112	3.2E-09	0.154	1.4E-09	0.847	4.8E-10
0.074	2.8E-09	0.116	3.6E-10	0.179	1.4E-08	0.126	4.3E-09	1.113	4E-09	1.134	5.6E-10	0.315	2.5E-09	1.491	4.6E-09
0.350	9.2E-10	0.182	8.8E-10	3.080	5E-09	0.196	7.2E-09	2.884	1.8E-09	2.926	4.4E-10	0.924	2.2E-09	3.276	3.4E-09
0.998	4E-11	1.470	4.6E-09	7.298	2.2E-09	0.438	8.6E-09	5.355	9.2E-10	8.488	1.3E-08	2.153	3.6E-10	5.985	3.8E-09
1.554	2E-10	1.785	4.6E-09	12.831	6.4E-10	2.583	4.4E-09	8.589	8.8E-10	12.789	1.5E-08	4.305	3E-09	11.109	1.7E-09
3.696	3.8E-09	2.083	4.4E-09	20.066	1.8E-09	3.038	7E-09	14.921	3.9E-09	29.400	1.8E-08	7.889	6E-09	20.213	1.6E-09
3.696	6.1E-09	2.184	2.6E-09	33.880	6.3E-09	3.500	8.3E-09	23.044	2.7E-09	56.175	3.5E-08	16.538	7.2E-09	45.334	2.3E-08
10.175	1E-09	2.457	1.6E-09	90.738	5.6E-08	4.725	4.2E-09	57.173	2.8E-08	55.503	3.9E-08	26.019	3.8E-09	37.240	3.1E-08
40.355	1.7E-08	2.485	1.7E-09	74.865	6.5E-08	4.844	1.1E-08	65.800	4E-08	56.438	4.9E-08	25.130	1.9E-08	35.686	4.3E-08
70.413	2.6E-08	4.235	5.2E-09	72.870	7.7E-08	4.655	1.7E-08	71.540	5.8E-08						
72.790	4.4E-08	3.080	5.2E-09												
63.298	5.7E-08	2.888	1.1E-08												

Tabel 5.17	Hubungan	momen o	dan k	eleng	kungan

Gambar 5.25 Grafik hubungan momen-kelengkungan

Dari data hubungan momen-kelengkungan (M- Φ) pada Tabel 5.17 dapat dicari faktor kekakuan kolom tersusun profil *light lipped channal* pada masing masing benda uji seperti pada Tabel 5.18 di bawah ini,

Benda	I /m	Momen	Kelengkungan	EI
Uji	L ₁ /r	KN.m	1/m	KN.m2
K1	12.831	70.413	2.60E-08	2.71E+09
K2	19.247	4.235	5.16E-09	8.21E+08
K3	25.663	90.738	5.60E-08	1.62E+09
K4	32.494	4.725	4.20E-09	1.13E+09
K5	38.494	57.173	2.78E-08	2.05E+09
K6	44.910	56.175	3.87E-08	1.45E+09
K7	51.326	16.538	3.80E-09	4.35E+09
K8	57.742	45.334	3.14E-08	1.44E+09

Tabel 5.18 Analisa kekakuan dari hubungan Momen-Kelengkungan

5.2.2.3 Tegangan kritis (F_{cr})

Tegangan yang terjadi pada masing-masing kolom dapat diketahui dengan membagi beban yang terjadi dengan luas penampang kolom $(F = P \land A)$. Salah satu contoh perhitungan tegangan kritis adalah sebagai berikut,

Kolom $\lambda_1 = 12,381$ cm pada pengujian profil tanpa plat dasar.

$$F_{cr} = \frac{P}{A}$$

dimana $P_{cr} = 3707.414$ kg, Luas tampang $A = 311.6 \text{ mm}^2$, maka,

$$F_{cr} = \frac{3707.414x9,81}{311,6}$$

$$F_{cr} = 116.719 Mpa$$

Hasil perhitungan tegangan kritis (Fcr) untuk kolom K1, K2, K3, K4, K5, K6, K7, dan K8, ditampilkan pada Tabel 5.19.

Benda	L./r	Pcr	P _{cr} Reg	F _{cr}
Uji	1.1/1	(kg)	(kg)	(MPa)
K1	12.831	3675	3707.414	116.719
K2	19.247	3850	3523.522	110.930
K3	25.663	2975	3348.751	105.428
K4	32.494	3150	3172.193	99.869
K5	38.494	3150	3024.810	95.229
K6	44.910	2975	2874.776	90.506
K7	51.326	2625	2732.184	86.016
K8	57.742	2625	2596.664	81.750

Tabel 5.19. Perhitungan tegangan kritis (F_{cr}) hasil pengujian kolom tersusun

Tabel 5.19 dapat ditampilkan dalam bentuk grafik hubungan kelangsingan (L/r) dengan tegangan kritis (F_{cr}) seperti pada Gambar 5.26.

Gambar 5.26 Grafik F_{cr} fungsi $L_F r$ pada kolom tersusun

Data dari Tabel 5.19 dapat dibandingkan dengan Tabel 5.15 (tabel perbandingan tegangan kritis F_{cr} pengujian kuat tekan profil *light lipped channal*) seperti pada tabel 5.20.

Benda Uji		Profil Ta Das	npa Plat sar	Profil Den Das	gan Plat ar	Kolom Tersusun		
	L ₁ /r	P _{cr} Reg (kg)	F _{cr} (Mpa)	P _{cr} Reg (kg)	F _{cr} (Mpa)	P _{cr} Reg (kg)	F _{cr} (Mpa)	
K1	12.831	1542.673	97.135	1565.803	98.591	3707.414	116.719	
K2	19.247	1507.505	94.921	1498.018	94.323	3523.522	110.930	
K3	25.663	1473.139	92.757	1433.167	90.240	3348.751	105.428	
K4	32.494	1437.41	90.507	1367.204	86.086	3172.193	99.869	
K5	38.494	1406.743	88.576	1311.775	82.596	3024.81	95.229	
K6	44.910	1374.674	86.557	1254.986	79.021	2874.776	90.506	
K7	51.326	1343.336	84.584	1200.656	75.600	2732.184	86.016	
K8	57.742	1312.712	82.655	1148.679	72.327	2596.664	81.750	

Tabel 5.20 Perbandingan Hasil perhitungan Tegangan Kritis (F_{cr})

Data dari Tabel 5.20 dapat ditampilkan dalam bentuk grafik perbandingan tegangan kritis (F_{cr}) antara pengujian kuat tekan profil dengan tegangan kritis kolom tersusun seperti pada Gambar 5.27.

Gambar 5.27 Grafik perbandingan nilai tegangan kritis (F_{cr})

5.2.2.3 Perhitungan koefisien tekuk plat

Besar nilai koefisien tekuk plat dapat ditentukan dengan menggunakan Persamaan 3.1, dan telah diketahui besar tegangan kritis (F_{cr}) dan rasio *b t*. Pada penelitian ini hitungan koefisien tekuk plat dilakukan pada tiga macam sampel benda uji, yaitu: a) pengujian koefisien tekuk plat pada pengujian kuat tekan profil *light lipped channal* tanpa plat dasar, b) pengujian koefisien tekuk plat pada pengujian kuat tekan profil *light lipped channal* dengan plat dasar, dan c) pengujian koefisien tekuk plat pada pengujian kuat tekan kolom tersusun perangkai diagonal dan horizontal. Kolom $\lambda_1 = 12,831$ pada pengujian kuat tekan kolom tersusun perangkai diagonal dan horizontal memiliki *Fcr* = 116.719 MPa, lebar *b* = 60mm dan tebal *t* = 1,2mm sehingga rasio *b*:*t* = 50, maka,

$$k = \frac{12F_{cr}(1-\mu^2)(b/t)^2}{\pi^2 E}$$

$$k = \frac{12.116.719(1-\mu^2)(50)^2}{\pi^2 E}$$

$$k = 1.614$$
5.4

Nilai k = 1.614 dimasukkan ke dalam persamaan tegangan kritis plat (Persamaan 3.1). Persamaan 3.1 menjadi,

$$F_{cr} = 1.614 \frac{\pi^{2} E}{12(1-0,3^{2})(b/t)^{2}}$$

$$F_{cr} = 1,459 \frac{E}{(b/t)^{2}}$$

$$(b/t)^{2} = 1,459 \frac{E}{Fcr}$$
5.5

Diasumsikan bahwa nilai F_{cr} sama dengan nilai Fy, Persamaan 5.3 menjadi

$$(b/t)^2 = 1,459\frac{E}{Fy}$$
 5.6

nilai (b/t) dapat diketahui dengan Persamaan 5.7

$$b/t = \sqrt{1,459\frac{E}{Fy}}$$

atau

$$b/t = 1,208\sqrt{\frac{E}{Fy}}$$
5.7

Dengan cara yang sama didapat koefisien tekuk plat dan rasio b/t pada masimg-masing sampel benda uji, seperti tampak pada Tabel 5.21 berikut ini:

	L ₁ /r	Profil Tanpa Plat Dasar			Profi	il Den Dasa	gan Plat ar	Kolom Tersusun			
Benda		F _{cr} (Mpa)	k	(b/t) $x\sqrt{E/Fy}$	F _{cr} (Mpa)	k	(b/t) $x\sqrt{E/Fy}$	F _{cr} (Mpa)	k	(b/t) $x\sqrt{E/Fy}$	
K1	12.831	97.135	1.343	1.102	98.591	1.364	1.110	116.719	1.614	1.208	
K2	19.247	94.921	1.313	1.089	94.323	1.305	1.086	110.930	1.534	1.178	
K3	25.663	92.757	1.283	1.077	90.240	1.248	1.062	105.428	1.458	1.148	
K4	32.494	90.507	1.252	1.064	86.086	1.191	1.037	99.869	1.381	1.117	
K5	38.494	88.576	1.225	1.052	82.596	1.142	1.016	95.229	1.317	1.091	
K6	44.910	86.557	1.197	1.040	79.021	1.093	0.994	90.506	1.252	1.064	
K7	51.326	84.584	1.170	1.028	75.600	1.046	0.972	86.016	1.190	1.037	
K8	57.742	82.655	1.143	1.016	72.327	1.000	0.951	81.750	1.131	1.011	

Tabel 5.21 Perhitungan koefisien tekuk (k) dan rasio b/t

Data dari Tabel 5.21 dapat ditampilkan dalam bentuk Perbandingan koefisien tekuk (k) dan rasio b/t antara pengujian kuat tekan profil dengan tegangan kritis kolom tersusun seperti pada Gambar 5.28. dan Gambar 5.29.

Gambar 5.28 Grafik perbandingan nilai k

Gambar 5.29 Grafik perbandingan nilai rasio b/t

Persyaratan rasio b/t berdasarkan penelitian yang dikemukakan oleh Barker dan Puckett (1997) terdapat pada Gambar 5.30.

Gambar 5.30 Rasio tebal terhadap tebal berbagai penampang profil (Barker dan Pucket, 1997)

Dari data yang yang diperoleh di atas dapat ditarik kesimpulan bahwa profil *light lipped cannal* mempunyai nilai koefisien tekuk k dan rasio b/t yang lebih besar daripada profil channal, sedangkan nilai koefisien tekuk k dan rasio b/t pada kolom tersusun profil *light lipped channal* masih mendekati nilai koefisien tekuk k dan rasio b/t profil I, hal ini sesuai dengan hasil pengujian yang dilakukan *Barker* dan *Puckett* (1997) seperti pada Gambar 5.30.

5.2.2.4 Perhitungan modulus tangen dan modulus tereduksi

Beban kritis untuk tekuk elastis hanya berlaku untuk kolom yang relatif panjang, sedangkan pada kolom dengan panjang menengah kita membutuhkan teori tekuk inelastis untuk mendapatkan modulus tangen dan modulus tereduksi. Adapun perhitungan modulus tangen dan modulus tereduksi didapatkan dari persamaan 3.12.

$$F_{cr} = \frac{\pi^2 . E_t}{\left(K . L/r\right)^2}$$

maka,

$$E_r = \frac{Fcr.(KL/r)^2}{\pi^2}$$

Untuk mendapatkan nilai Modulus Tangen nilai Fcr diasumsikan sama dengan Fy, maka persamaan di atas menjadi:

$$E_r = \frac{Fy.(KL/r)^2}{\pi^2}$$

Pada pengujian kuat tekan kolom tersusun perangkai diagonal dan horizontal, tegangan leleh benda uji Fy = 144.625 MPa, profil yang digunakan memiliki lebar b = 60 mm dan tebal t = 1,2 mm sehingga rasio b/t = 50 dan tumpuan dianggap sendi-sendi (K=1), maka,

$$E_{t} = \frac{Fy.(KL/r)^{2}}{\pi^{2}}$$
$$E_{t} = \frac{144.625 * (3000/50.765)^{2}}{\pi^{2}}$$

Et = 51161.673 Mpa

sedangkan nilai Et adalah:

$$E_r = \frac{2E.E_t}{E + E_r}$$

$$E_r = \frac{2*2.10^5 * 51161.673}{2.10^5 + 51161.673}$$

$$E_r = 81480.064 \text{ Mpa}$$

Dari hasil di atas tampak bahwa modulus tereduksi lebih besar dari modulus tangen, hal ini disebabkan karena modulus tereduksi merupakan pembaharuan dari modulus tangen yang menganggap bahwa terjadinya pembalikan regangan pada saat batang berubah bentuk dari posisi lurus ke posisi lengkung. Hal ini selaras dengan perubahan yang dilakukuan oleh *Engesser* terhadap perhitungan modulus tangen. *(Salmon dan Johnson, 1990).*

5.3. Perhitungan Teoritis

5.3.1. Perhitungan teoritis dengan metode Bleich

Tegangan kritis (F_{cr}) secara teori dapat ditentukan berdasarkan kekuatan kolom menahan tekuk keseluruhan dengan menggunakan persamaan tekuk *Bleich*. Persamaan yang digunakan untuk mengetahui tegangan kritis (F_{cr}) pada metode *Bleich* adalah Persamaan 3.33

$$Pcr = \frac{\pi^2 E_l I}{\left(kl\right)^2}$$

Kolom K1 (λ_{1} =12,381) memggunakan Profil 2C60x30x10X1.2mm dengan perangkai pelat 15x2.0 mm, A = 155.8 mm², E = 2.10⁵ Mpa, Et = 51161.673 Mpa, L= 3000 mm, A_d = 30 mm², L₁ = 150 mm, L_d= 192.094 mm, C_y = 10.60 mm, a = 120 mm, Iy= 21300 mm⁴, I_x = 93140 mm⁴, dan r_{min}= 11.69 mm, maka:

h =
$$a - 2. c_y$$

= 120 - 2.10,60
= 98,8 cm

$$I_0 = \frac{A \cdot h^2}{2}$$

= 155,8 . 98,8²/2
= 760416,176 mm⁴

$$I = I_0 + 2.I_1$$

= 760416,176 + 2. 21300
= 803016,176 mm⁴

$$k = \sqrt{1 + \frac{\pi^2 \cdot E_t \cdot I_0}{l^2} \frac{d^3}{E \cdot L_1 \cdot h^2 \cdot A_d}}$$

$$k = \sqrt{1 + \frac{\pi^2 \cdot 51161.673.760416.176}{3000^2} \frac{192.09^3}{2.10^5 \cdot 150.98.8^2 \cdot 30}}$$

$$k = \sqrt{1 + (0,02779044)}$$

$$= 1.0171$$

$$P_{cr} = \frac{\pi^2 E_r l}{(kl)^2}$$

$$P_{cr} = \frac{\pi^2 .51161.673.803016.176}{(1.0138.3000)^2}$$

$$= 440.873 \text{ kg}$$

$$F_{cr} = \frac{Pcrx9.81}{A_{gab}}$$

$$F_{m} = \frac{440.873x9.81}{F_{m}}$$

Dengan cara yang sama didapat:

Tabel 5.23. Hitungan tegangan kritis dengan metode *Bleich* dengan menggunakan modulus tangen (E_t) dan modulus tereduksi (E_r)

Benda Uji		deng	Metode an Mod) Bleich Iulus Tanç	gen	Metode Bleich dengan Modulus Tereduksi					
	L ₁ /r	E _t Mpa	k	P _{cr} Kg	F _{cr} Mpa	E _r Mpa	k	P _{cr} Kg	F _{cr} Mpa		
K 1	12.831	51161.673	1.0171	4440.873	139.811	81480.064	1.0271	6935.728	218.355		
K2	19.247	51161.673	1.0265	4359.681	137.254	81480.064	1.0419	6739.698	212.184		
K3	25.663	51161.673	1.0402	4245.919	133.673	81480.064	1.0632	6471.641	203.745		
K4	32.494	51161.673	1.0576	4106.732	129.291	81480.064	1.0904	6153.747	193.736		
K5	38.494	51161.673	1.0787	3948.035	124.295	81480.064	1.1227	5804.148	182.730		
K 6	44.910	51161.673	1.1031	3775.393	118.859	81480.064	1.1598	5438.534	171.220		
K7	51.326	51161.673	1.1306	3593.949	113.147	81480.064	1.2013	5069.824	159.612		
K8	57.742	51161.673	1.1610	3408.253	107.301	81480.064	1.2466	4707.976	148.220		

Tegangan kritis *Bleich* berdasarkan Tabel 5.23 dan Tabel 5.24 ditampilkan dalam grafik pada Gambar 5.31.

Gambar 5.31 Grafik tegangan kritis (F_{cr}) dengan metode Bleich

Dari grafik di atas tampak bahwa perhitungan tegangan kritis Bleich dengan menggunakan teori modulus tangen lebih kecil dari tegangan kritis dengan menggunakan modulus tereduksi.

5.3.2. Perhitungan teoritis dengan metode AISC

Sebagai bahan perbandingan perhitungan perencanaan pada penelitian ini, perencanaan hitungan tegangan juga menggunakan perencanaan metode AISC. Pada perencanaan AISC hitungan tegangan ijin sangat mempertimbangkan pengaruh tekuk lokal, terbukti dengan tingginya faktor keamanan yang yang dianjurkan. Pengaruh tekuk setempat yang terjadi sebelum kekuatan kolom keseluruhan tercapai diperhitungkan dengan mengalikan tegangan maksimum yang dapat dicapai dengan faktor bentuk Q. Faktor bentuk Q dipengaruhi oleh bentuk penampang, dimana:

$$Q = Qa \cdot Qs$$

Faktor bentuk untuk elemen penampang yang tidak diperkuat adalah Qs. Faktor bentuk Qs diperhitungkan apabila,

$$\left(\frac{b}{t}\right) > \left(\frac{76}{\sqrt{Fy}}\right)$$
$$\left(\frac{b}{t}\right) > \left(\frac{76}{\sqrt{20.965}}\right)$$

50>16,598

Besar Qs menurut AISC adalah,

$$Qs = 1,340 - 0,00447 \left(\frac{b}{t}\right) \sqrt{Fy}$$

Apabila semua elemen penampang diperkuat maka nilai Qs = 1,0. Penelitian ini menggunakan profil *light lipped channel* ganda yang disatukan secara *front to front* dengan batang perangkai diagonal dan horizontal. Dianggap bahwa semua elemen diperkuat, sehingga memiliki nilai Qs = 1.

Faktor bentuk untuk elemen penampang yang diperkuat adalah Qa. Faktor bentuk Qa diperhitungkan apabila,

$$\left(\frac{b}{t}\right) > \left(\frac{238}{\sqrt{Fy}}\right)$$

Profil yang digunakan memiliki tegangan leleh Fy = 20,965 Ksi dan rasio b/t sebesar 50 (lebar profil 60mm dan tebal 1,2mm),

$$\left(\frac{60}{1,2}\right) > \left(\frac{238}{\sqrt{20.965}}\right)$$
$$b/t = 50 < 51.9792$$

Berdasarkan hitungan di atas dapat diambil kesimpulan bahwa tekuk setempat tidak mengurangi efisiensi penampang, sehingga Qa = 1.

Besar tegangan kritis menurut AISC dapat ditentukan dengan menggunakan persamaan tegangan kritis kolomseperti pada persamaan dibawah ini.

$$F_{cr} = QFy \left[1 - \frac{QFy}{4\pi^2 E} \left(\frac{KL}{r} \right)^2 \right]$$

Apabila

$$Cc = \sqrt{\frac{2\pi^2 E}{QFy}}$$

maka

$$F_{cr} = QFy \left[1 - \frac{KL/r^2}{2Cc^2} \right]$$

Apabila KL/r lebih dari Cc maka tegangan kritis yang terjadi adalah,

$$F_{cr} = \frac{\pi^2 E}{\left(KL/r\right)^2}$$

Tegangan ijin Fa menurut AISC dapat ditentukan dengan mereduksi tegangan kritis dengan faktor keamanan FS.

$$FS = \frac{5}{3} + \frac{3}{8} \left(\frac{KL/r}{Cc}\right) - \frac{1}{8} \left(\frac{KL/r}{Cc}\right)^3$$

Apabila *KL/r* lebih dari *Cc*, AISC menetapkan faktor keamanan *FS* sebesar 23/12 (FS = 23/12 atau 1,92). Tegangan ijin menurut AISC adalah

$$Fa = Fcr \ FS$$

Hitungan selanjutnya dapat dilakukan untuk semua nilai Lr. Besar tegangan kritis F_{cr} dan tegangan ijin Fa ditampilkan dalam tabel di bawah ini.

L ₁	L ₁ /r	Fy	Q	Cc	Fcr	Fs	Fa
(Inc)		(ksi)			(ksi)		(ksi)
0.000	0.000	20.965	1.00	165.1567	20.965	1.6667	12.579
2.953	6.416	20.965	1.00	165.1567	20.949	1.6672	12.565
5.906	12.831	20.965	1.00	165.1567	6.618	1.6673	3.970
8.859	19.247	20.965	1.00	165.1567	6.593	1.6676	3.954
11.812	25.663	20.965	1.00	165.1567	6.558	1.6680	3.932
14.765	32.079	20.965	1.00	165.1567	6.513	1.6683	3.904
17.718	38.494	20.965	1.00	165.1567	6.458	1.6686	3.870
20.671	44.910	20.965	1.00	165.1567	6.393	1.6689	3.831
23.624	51.326	20.965	1.00	165.1567	6.318	1.6692	3.785
26.577	57.742	20.965	1.00	165.1567	6.233	1.6696	3.733
29.530	64.157	20.965	1.00	165.1567	6.138	1.6699	3.675
32.483	70.573	20.965	1.00	165.1567	6.032	1.6702	3.612
35.436	76.989	20.965	1.00	165.1567	5.917	1.6705	3.542
38.389	83.405	20.965	1.00	165.1567	5.792	1.6709	3.466
41.342	89.820	20.965	1.00	165.1567	5.657	1.6712	3.385
44.295	96.236	20.965	1.00	165.1567	5.511	1.6715	3.297
47.248	102.652	20.965	1.00	165.1567	5.356	1.6718	3.204
50.201	109.068	20.965	1.00	165.1567	5.191	1.6722	3.104
53.154	115.483	20.965	1.00	165.1567	5.015	1.6725	2.999
56.107	121.899	20.965	1.00	165.1567	4.830	1.6728	2.887
59.060	128.315	20.965	1.00	165.1567	4.635	1.6731	2.770

Tabel 5.25 Perhitungan tegangan kritis dengan metode AISC

Data dari Tabel 5.25 dapat ditampilkan dalam bentuk grafik perbandingan antara tegangan kritis (F_{cr}) dengan tegangan kritis yang diijinkan, seperti pada Gambar 5.32.

Gambar 5.32 Grafik tegangan berdasarkan metode AISC

Grafik A pada Gambar 5.32 adalah tegangan kritis F_{cr} berdasarkan AISC yang tidak menyertakan faktor reduksi tegangan (faktor keamanan FS). Grafik B pada Gambar 5.32 adalah tegangan ijin Fa berdasarkan AISC yang telah direduksi oleh faktor keamanan FS sehinggan nilainya lebih kecil dari Grafik A.

5.4. Perbandingan Hasil Pengujian dengan Perhitungan Teoritis

5.4.1. Perbandingan hasil pengujian dengan perhitungan metode Bleich

Perbandingan tegangan kritis hasil pengujian dengan tegangan kritis teoritis metode Bleich ditampilkan dalam bentuk tabel dan grafik berikut ini,

	L	L _l /r	HASIL UJI		TEORI BL	EICH (Et)	TEORI BLEICH (Er)	
BENDA			Pcr	Fcr	Pcr	Fcr	Pcr	Fcr
UJI			Kg	Мра	kg	Мра	kg	Мра
K1	0	0.000	4104.458	129.219	4593.777	144.624	7316.047	230.329
K2	75	6.416	3900.872	122.810	4470.701	140.750	7008.759	220.654
K 3	150	12.831	3707.414	116.719	4440.873	139.811	6935.728	218.355
K4	225	19.247	3523.522	110.930	4359.681	137.254	6739.698	212.184
K5	300	25.663	3348.751	105.428	4245.919	133.673	6471.641	203.745
K 6	375	32.079	3182.649	100.198	4106.732	129.291	6153.747	193.736
K7	450	38.494	3024.810	95.229	3948.035	124.295	5804.148	182.730
K8	525	44.910	2874.776	90.506	3775.393	118.859	5438.534	171.220
К9	600	51.326	2732.184	86.016	3593.949	113.147	5069.824	159.612
K 10	675	57.742	2596.664	81.750	3408.253	107.301	4707.976	148.220
K 11	750	64.157	2467.886	77.696	3222.150	101.442	4360.113	137.268
K12	825	70.573	2345.476	73.842	3038.739	95.668	4030.895	126.903
K13	900	76.989	2229.138	70.179	2860.402	90.053	3722.992	117.210
K14	975	83.405	2118.570	66.698	2688.870	84.653	3437.566	108.224
K15	1050	89.820	2013.503	63.390	2525.312	79.504	3174.697	99.948
K 16	1125	96.236	1913.631	60.246	2370.441	74.628	2933.734	92.362
K17	1200	102.652	1818.712	57.258	2224.600	70.036	2713.565	85.430
K18	1275	109.068	1728.502	54.418	2087.857	65.731	2512.815	79.110
K19	1350	115.483	1642.780	51.719	1960.071	61.708	2329.995	73.354
K20	1425	121.899	1561.296	49.154	1840.958	57.958	2163.586	68.115
K21	1500	128.315	1483.854	46.716	1730.134	54.469	2012.113	63.347

Tabel 5.26. Perbandingan tegangan kritis (F_{cr}) pengujian dengan teori Bleich

Data dari Tabel 5.25 dapat ditampilkan dalam bentuk grafik perbandingan tegangan kritis (F_{cr}) antara tegangan kritis kolom tersusun hasil perhitungan teoritis metode Bleich dengan tegangan kritis hasil pengujian, seperti pada Gambar 5.33.

Gambar 5.33 Perbandingan tegangan kritis hasil pengujian dengan tegangan kritis metode Bleich

Dari Gambar 5.33 tampak bahwa tegangan kritis yang terjadi berada di bawah tegangan teoritis *Bleich* dengan menggunakan modulus tangen, demikian juga dengan tegangan kritis hasil perhitungan teoris *Bleich* yang menggunakan modulus tereduksi berada di atas tegangan kritis yang terjadi. Dengan demikian dapat disimpulkan bahwa pada seluruh sampel uji terjadi tekuk lokal karena tegangan kritis yang terjadi berada di bawah tegangan kritis hasil hitungan dengan menggunakan modulus tangen, hal ini disebabkan karena tipisnya bahan yang digunakan sehingga menyebabkan terjadinya lengkungan awal sebelum dilakukan pembebanan dan pengaruh proses pengelasan pada penyambungan batang perangkai yang menyebabkan terjadinya tegangan residu.

5.4.2 Perbandingan hasil pengujian dengan perhitungan metode AISC

Perbandingan tegangan kritis dan tegangan ijin metode AISC dengan hasil pengujian ditampilkan dalam bentuk tabel dan grafik seperti di bawah ini:

	L ₁	L ₁ /r	PENGL	JIAN	AISC	
Benda			P _{cr}	F _{cr}	F _{cr}	Fa
Uji	mm		(kg)	(Mpa)	(Mpa)	(Mpa)
K1	0	0.00	4104.458	129.219	144.425	86.655
K2	75	6.42	3900.880	122.810	144.316	86.560
K3	150	12.83	3707.399	116.719	143.989	86.334
K4	225	19.25	3523.515	110.930	143.444	85.978
K5	300	25.66	3348.752	105.428	142.682	85.491
K6	375	32.08	3182.657	100.199	141.701	84.874
K7	450	38.49	3024.799	95.229	140.502	84.127
K8	525	44.91	2874.772	90.505	139.085	83.250
K9	600	51.33	2732.185	86.016	137.45	82.244
K10	675	57.74	2596.671	81.750	135.597	81.107
K11	750	64.16	2467.879	77.695	133.526	79.841
K12	825	70.57	2345.474	73.842	131.238	78.446
K13	900	76.99	2229.140	70.179	128.731	76.921
K14	975	83.40	2118.577	66.698	126.006	75.267
K15	1050	89.82	2013.497	63.390	123.063	73.484
K16	1125	96.24	1913.629	60.246	119.903	71.572
K17	1200	102.65	1818.715	57.258	116.524	69.532
K18	1275	109.07	1728.508	54.418	112.927	67.362
K19	1350	115.48	1642.775	51.719	109.112	65.065
K20	1425	121.90	1561.295	49.154	105.08	62.638
K21	1500	128.31	1483.856	46.716	100.829	60.084

Tabel 5.27. Perbandingan tegangan kritis (Fer) pengujian dengan AISC

Data dari Tabel 5.27 dapat ditampilkan dalam bentuk grafik perbandingan tegangan kritis (F_{cr}) antara tegangan kritis kolom tersusun hasil perhitungan teoritis AISC dengan tegangan kritis hasil pengujian, seperti pada Gambar 5.34.

Gambar 5.34 Perbandingan tegangan kritis hasil pengujian dengan tegangan ijin metode AISC

Grafik A (F_{er} pengujian) pada Gambar 5.34 menunjukkan tegangan kritis F_{cr} berdasarkan pengujian dan grafik B adalah grafik tegangan kritis berdasarkan perhitungan AISC, sedangkan Grafik C adalah tegangan ijin berdasarkan hasil perhitungan AISC. Gambar 5.34 menunjukkan bahwa tegangan sebenarnya (berdasarkan hasil pengujian) pada angka kelangsingan (L₁/r) di bawah 50 masih berada di atas tegangan ijin AISC. Akan tetapi pada angka kelangsingan lebih dari 50 tegangan yang terjadi berada di bawah tegangan ijin AISC. Hal ini selaras dengan persyaratan stabilitas elemen batang tersusun bahwa $L_1/r \leq 50$, untuk tetap menjamin kestabilan elemen batang tersusun.
BAB VI KESIMPULAN DAN SARAN

6.1 Kesimpulan

Penelitian ini menghasilkan kesimpulan berdasarkan hasil pengujian laboratorium dan pengolahan data hasil pengujian. Kesimpulan yang dapat diambil dari penelitian ini adalah:

- 1. Kuat tekan kolom tersusun dari dua profil *light lipped channel* yang disatukan secara *front to front* perangkai diagonal dan horizontal dipengaruhi oleh kelangsingan $L_{I'}r$, semakin besar nilai kelangsingan semakin kecil kapasitas kolom, dan kapasitas (tegangan kritis *Fcr*) terbesar berada di bawah tegangan leleh *Fy*. Hal ini disebabkan karena semua benda uji mengalami tekuk lokal.
- Tidak ada keseragaman bentuk deformasi kolom yang disebabkan oleh kondisi dukungan pada saat pengujian tidak sesuai dengan asumsi sendi-sendi karena keterbatasan alat pendukung pengujian.
- Koefisien tekuk plat k kolom tersusun profil *light lipped channel* yang disatukan secara *front to front* bervariasi antara 1.131 sampai dengan 1,614.
 Sedangkan nilai rasio b/t berkisar antara 1,011√E/Fy sampai dengan.
 1,208√E/Fy.
- Tegangan kritis yang terjadi berdasarkan hasil pengujian laboratorium berada di bawah hitungan teoritis *Bleich* menggunakan modulus tangen dan modulus

tereduksi. Hal ini disebabkan karena perhitungan teoritis *Bleich* tidak memperhitungkan faktor tekuk lokal.

5. Tegangan kritis yang terjadi berdasarkan hasil pengujian laboratorium pada $L_1/r < 50$ masih lebih besar bila dibandingkan tegangan ijin perencanaan berdasarkan metode AISC, akan tetapi pada $L_1/r > 50$ tegangan kritis hasil pengujian berada di bawah tegangan ijin metode AISC.

6.2 Saran

Penelitian ini masih banyak kekurangan, banyak hal yang masih bisa diteliti lebih lanjut. Kekurangan yang perlu diperhatikan pada penelitian selanjutnya adalah:

- Benda uji yang digunakan masih kurang, sehingga data yang diperoleh dari hasil pengujian masih kurang.
- 2. Perlu diadakan penelitian untuk kolom yang tersusun dari dua profil *light lipped channal* yang disatukan secara *back to back*.
- Perlu diadakan penelitian untuk bentuk penampang yang sama tetapi memiliki dimensi penampang berbeda.
- Perlunya penggunaan alat bantu pengujian yang lebih baik yang sesuai dengan asumsi kondisi tumpuan sendi-sendi.

DAFTAR PUSTAKA

- AISC, MANUAL OF STEEL CONSTRUCTION, Seventh Edition, American Institute of Stell Construction Inc, New York, 1973.
- Bogdan O. Kuzmanovic and Nicholas Willem, STEEL DESIGN STRUCTURAL ENGINEER, Prentice-Hall, New Jersey, 1977.
- Chales G. Salmon, John E. Johnson, STRUKTUR BAJA DESAIN DAN PERILAKU, Jilid 1 - Edisi Kedua, PT. Gramedia Pustaka Utama, Jakarta, 1990.
- Daniel L. Schodek, STRUKTUR, Cetakan Pertama, PT. Eresco, Bandung, 1991.
- Edwin H. Gaylord, Jr. and Charles N. Gaylord, *DESIGN OF STEEL STRUCTURES*, 2nd Edition, McGraw-Hill Kogakusha, Tokyo, 1972.
- Friedich Bleich, BUCKLING STRENGTH OF METAL STRUCTURES, Mc Graw-Hill Books Company Inc, New York, 1952.
- Gere dan Timoshenko, **MEKANIKA BAHAN**, Jilid I dan II Edisi keempat, Airlangga, Jakarta, 2000.
- Gideon Hadi Kusuma, **PERENCANAAN BANGUNAN BAJA**, Universitas Kristen Petra, Surabaya, 1983.
- Joseph E. Bowles, DISAIN BAJA KONSTRUKSI, Erlangga, Jakarta, 1985.
- J. Rhodes and A.C. Walker, THIN-WALLED STRUCTURES, Granada, London, 1980.
- Lambert Tall, **STRUCTURAL STELL DESIGN**, 2nd Edition, The Ronald Press Company, New York, 1972.
- Lembaga Penyelidikan Masalah Bangunan, **PERATURAN PERENCANAAN BANGUNAN BAJA INDONRSIA (PPBBI),** Cet. II, Bandung, 1984.
- NS. Trahair and M.A. Bradford, THE BEHAVIOUR AND DESIGN OF STEEL STRUCTURES, 2nd Edition, Chapman and Hall, New York, 1977.

- PADOSBAJAYO, PENGETAHUAN DASAR STRUKTUR BAJA, Edisi ke-2, Yogyakarta, 1992.
- TATA CARA PERENCANAAN STRUKTUR BAJA UNTUK BANGUNAN GEDUNG, Bandung, 2000.
- V.N Vazirani and M.M Ratwani, STEEL STRUCTURES, Khanna Publishers, Dehli, 1997.

HITUNGAN PROPERTI DIMENSI BENDA UJI

Properti propil Light Lipped Channal

Luas penampang (A)	: 155,8 mm ²
Ix	: 93140 mm ⁴
Iy	: 21300 mm ⁴
r _{min}	: 11,69 mm

Properti profil Lihgt Lipped Channal ganda Front to Front

• Luas gabungan

Agab = 311,6 mm2

Inersia gabungan

Ix = 2.Ix.

 $= 186280 \text{ mm}^4$

$$Iy = 2.Iy+2.A.(3 0+ r_{min})^{2})$$
$$= 2.21300+2.155,8 (30-11,69)^{2}$$

=159873.776 mm⁴

• Radius girasi

rx = 24,450 mm

PERHITUNGAN REGRESI PEMBEBANAN

A. Perhitungan Regresi Hasil Pengujian Kuat Tekan Profil Light Lipped Channal Tanpa Plat Dasar

Karena nilai beban kritis (Pcr) dan tegangan kritis (Fcr) hasil pengujian masih sangat kasar maka nilai-nilia yang didapatkan diregresi terlebih dahulu. Perhitungan regresi beban kritis dan tegangan kritis menggunakan regresi lengkung (eksponensial) menggunakan data dari hasil pengujian Sampel K1, K2, K3, K4 ,K5, K6, K7, dan K8 karena semua data tersebut mendekati bentuk lengkung. Persamaan regresi adalah:

$$y=k_1.e^{-k2.x}$$

Benda Uji	x=L	y=P	x2	x2 ln y	
K1	12.831	1650	164.635	7.409	95.0589
K2	19.247	1550	370.447	7.346	141.3887
K3	25.663	1400	658.590	7.244	185.9086
K4	32.494	1450	1055.860	7.279	236.5342
K5	38.494	1400	1481.788	7.244	278.8593
K6	44.910	1100	2016.908	7.003	314.5077
K7	51.326	1400	2634.358	7.244	371.8172
K8	57.742	1500	3334.139	7.313	422.2800
jumlah	282.707	11450	11716.724	58.083	2046.354

Tabel perhitungan regresi hasil pengujian profil tanpa plat dasar

Dari tabel di atas dimasukkan kepersamaan:

$$\begin{bmatrix} \sum n & \sum x \\ \sum x & \sum x^2 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} \sum \ln y \\ \sum x^{*} \ln y \end{bmatrix}$$
$$\begin{bmatrix} 8 & 282.707 \\ 282.707 & 11450 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 58.083 \\ 2266.384 \end{bmatrix}$$
$$\begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 7.38739 \\ -0.0035942596 \end{bmatrix}$$

karena

$$a = \ln k_1$$

maka:

$$K_1 = e^a$$

= $e^{7.38739}$
= 1615.48419

karena

$$k_2 = -b$$

maka:

 $k_2 = 0.0035942596$

sehingga persamaan regresi lengkung menjadi:

 $\mathbf{P} = 1615.48419 * e^{(-0.0035942596*L/r)}$

Tabel perhitungan regresi beban kritis (Pcr) dan tegangan kritis(Fcr) hasil

Benda Uji	L/r	Pcr (kg)	Pcr Reg (kg)	Fcr Mpa
KI	12.831	1650	1542.673	97.135
K2	19.247	1550	1507.505	94.921
К3	25,663	1400	1473.139	92.757
K4	32.494	1450	1437.410	90.507
K5	38.494	1400	1406.743	88.576
K6	44.910	1100	1374.674	86.557
K7	51.326	1400	1343.336	84.584
K8	57.742	1500	1312.712	82.655

pengujian propil tanpa plat dasar

B. Perhitungan Regresi Hasil Pengujian Kuat Tekan Profil Light Lipped Channal Dengan Plat Dasar

Karena nilai beban kritis (Pcr) dan tegangan kritis (Fcr) hasil pengujian masih sangat kasar maka nilai-nilia yang didapatkan diregresi terlebih dahulu. Perhitungan regresi beban kritis dan tegangan kritis menggunakan regresi lengkung (eksponensial) menggunakan data dari hasil pengujian Sampel K1, K2, K3, K4 ,K5, K6, K7, dan K8 karena semua data tersebut mendekati bentuk lengkung. Persamaan regresi adalah:

$$y=k_1.e^{-k2.x}$$

Tabel Perhitungan regresi hasil pengujian profil dengan plat dasar

Benda Uji	X=l	p=y	x2	ln y	x*ln y
K1	12.831	1500	164.635	7.313	93.8359
K2	19.247	1600	370.447	7.378	141.9997
K3	25.663	1400	658.590	7.244	185.9086
K4	32.494	1550	1055.860	7.346	238.7013
K5	38.494	1450	1481.788	7.279	280.2101
K6	44.910	1100	2016.908	7.003	314.5077
K7	51.326	1200	2634.358	7.090	363.9053
K8	57,742	1050	3334.139	6.957	401.6848
Jumlah	282.707	10850	11716.724	57.610	2020.753

Dari tabel di atas dimasukkan kepersamaan:

$$\begin{bmatrix} \sum n & \sum x \\ \sum x & \sum x^2 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} \sum \ln y \\ \sum x^{*\ln y} \end{bmatrix}$$
$$\begin{bmatrix} 8 & 282.707 \\ 282.707 & 11450 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 57.610 \\ 2020.753 \end{bmatrix}$$
$$\begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 7.444659816 \\ -0068977924642596 \end{bmatrix}$$

karena

 $a = \ln k_1$

maka:

$$K_1 = e^a$$

= $e^{7.444659816}$
= 1710.70324

karena

$$\mathbf{k}_2 = -\mathbf{b}$$

maka:

 $k_2 = 0.00689779246$

sehingga persamaan regresi lengkung menjadi:

 $P=1710.70324*e^{(-0.00689779246*L/r)}$

Tabel perhitungan regresi beban kritis (Pcr) dan tegangan kritis(Fcr) hasil pengujian propil dengan plat dasar

Benda	I. (Pcr	Pcr Reg	Fcr
Uji	L/r	(kg)	(kg)	Mpa
K1	12.831	1500	1565.803	98.591
К2	19.247	1600	1498.018	94.323
К3	25.663	1400	1433.167	90.240
K4	32.494	1550	1367.204	86.086
K5	38.494	1450	1311.775	82.596
K6	44.910	1100	1254.986	79.021
K7	51.326	1200	1200.656	75.600
K8	57.742	1050	1148.679	72.327

C. Perhitungan Regresi Hasil Pengujian Kolom Tersusun

Karena nilai beban kritis (Pcr) dan tegangan kritis (Fcr) hasil pengujian masih sangat kasar maka nilai-nilia yang didapatkan diregresi terlebih dahulu. Perhitungan regresi beban kritis dan tegangan kritis menggunakan regresi lengkung (eksponensial) menggunakan data dari hasil pengujian Sampel K1, K2, K3, K4, K5, K6, K7, dan K8 karena semua data tersebut mendekati bentuk lengkung. Persamaan regresi adalah:

$$y=k_1.e^{-k^2.x}$$

Tabel perhitungan	regresi	hasil	pengujian	kolom	tersusun
-					

Benda Uii	x=L	y=P	x2	ln y	x*ln y
<u> </u>	12.831	3675	164.635	8.209	105.3336
K2	19.247	3850	370.447	8.256	158.8999
K3	25,663	2975	658.590	7.998	205.2527
K4	32,494	3150	1055.860	8.055	261.7443
K5	38,494	3150	1481.788	8.055	310.0752
K6	44,910	2975	2016.908	7.998	359.1901
K7	51.326	2625	2634.358	7.873	404.0812
K8	57.742	2625	3334.139	7.873	454.5933
iumlah	282.707	25025	11716.724	64.317	2259.170

Dari tabel di atas dimasukkan kepersamaan:

$$\begin{bmatrix} \sum n & \sum x \\ \sum x & \sum x^2 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} \sum \ln y \\ \sum x^* \ln y \end{bmatrix}$$
$$\begin{bmatrix} 8 & 282.707 \\ 282.707 & 11716.72 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 64.317 \\ 2259.170 \end{bmatrix}$$
$$\begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 8.8319826 \\ -0.007929167 \end{bmatrix}$$

Gambar Detail Sambungan Las

FOTO - FOTO PENGUJIAN

Benda uji kuat tarik baja

Benda uji kuat sambungan las

Benda uji kuat tekan profil C dengan plat dasar

Benda uji kuat tekan profil C tanpa plat dasar

Hasil pengujian kuat tekan profil C tanpa plat dasar

Persiapan pengujian kuat tekan kolom tersusun

Penyetelan dial untuk pengujian kuat tekan kolom tersusun

Jenis kerusakan pada pengujian kuat tekan kolom tersusun

KARTU PESERTA TUGAS AKHIR

FM-UII-AA-FPU-09

INAL				
1.	NAMA			
	L. Kholid Karvadi	NO. MHS.	BID.STUDI	-
2	Yousef Alazhar	97511229	Teknik Sipil	-
JUDH	TUCASAU	- Sarans	Teknik Sipil	-

JUDUL TUGAS AKHIR :

.Kuat tekan kolom tersusun dari profil C bentukan dingin dengan batang perangakai

PERIODE III : MARET - AGUSTUS TAHIM

Anun :	2002 / 2003
--------	-------------

No.	Kegiatan	T	20027200				
1. 2. 3.	Pendaftaran Penentuan Dosen Pembimbing Pembuatan Proposal	Mar.	Apr.	Bula Mei.	n Ke: Jun.	Jul.	Aug.
4. 5. 6. 7.	Seminar Proposal Konsultasi Penyusunan TA. Sidang-Sidang Pendadaran.						

DOSEN PEMBIMBING I DOSEN PEMBIMBING II

: ...Ir. HM. Samsudin, MT.

.....

Yogyakarta, ... 19. Marril 2003 a.n. Dekan, Úli I. Munadhir, MS (.....

<u>Catatan.</u>

Seminar Sidang Pendadaran