TUGAS AKHIR

EVALUASI KEKUATAN STRUKTUR BETON BERTULANG PASCA KEBAKARAN

(STUDI KASUS PADA BOGOR INTERNUSA PLAZA, BOGOR)

Disusun Oleh:

MOH. MUJIB ULINNUHA

No. Mhs : 92 310 112

NIRM : 920051013114120 112

WINARNO BAYU IRIANTO

No. Mhs : 92 310 154

NIRM : 920051013114120154

JURUSAN TEKNIK SIPIL
FAKULTAS TEKNIK SIPIL DAN PERENCANAAN
UNIVERSITAS ISLAM INDONESIA
YOGYAKARTA
1998

TUGAS AKHIR

EVALUASI KEKUATAN STRUKTUR BETON BERTULANG PASCA KEBAKARAN

(STUDI KASUS PADA BOGOR INTERNUSA PLAZA, BOGOR)

Diajukan kepada Universitas Islam Indonesia untuk memenuhi sebagian persyaratan memperoleh Derajat Sarjana Teknik Sipil

Disusun oleh:

Nama

: MOH. MUJIB ULINNUHA

No. Mhs : 92 310 112 '

NTRM

: 920051013114120 112

Nama

: WINARNO BAYU IRIANTO

No. Mhs

: 92 310 154

NIRM

: 920051013114120154

JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK SIPIL DAN PERENCANAAN UNIVERSITAS ISLAM INDONESIA YOGYAKARTA 1998

LEMBAR PENGESAHAN

TUGAS AKHIR

EVALUASI KEKUATAN STRUKTUR BETON BERTULANG PASCA KEBAKARAN

(STUDI KASUS PADA BOGOR INTERNUSA PLAZA, BOGOR)

Disusun oleh:

MOH. MUJIB ULINNUHA

No. Mhs : 92 310 112

NIRM : 920051013114120112

WINARNO BAYU IRIANTO

No. Mhs : 92 310 154

NIRM : 920051013114120154

Telah diperiksa dan disetujui oleh:

Ir. H. Moch. Teguh, MSCE

Dosen Pembimbing I

Ir. Faisal AM, MS

Dosen Pembimbing II

Tanoval: 6-8 - 104

Tanggal: 5-0-1996

PRAKATA

Assalaamu alaikum Wr.Wb.

Syukur alhamdulillah dipanjatkan kepada Allah S.W.T. atas segala berkah, rabmat dan hidayah-Nya yang telah diberikan kepada penulis sehingga laporan Tugas Akhir ini dapat diselesaikan.

Penyusunan taporan Tugas Akhir ini merupakan kewajiban bagi setiap mahasiswa, khususnya pada Jurusan Teknik Sipil Universitas Islam Indonesia Yogyakarta, guna melengkapi salah satu syarat untuk memperoleh gelar kesarjanaan. Laporan ini disusun berdasarkan data hasil penelitian tapangan, kemudian dilakukan evahussi. Sesuai dengan obyek studi dan masalah khusus, maka taporan ini diberi judul Evaluasi Kekuatan Struktur Beton Bertulang Pasca Kebakaran (Studi Kasus Pada Bogor luternusa Plaza, Bogor).

Laporan Tugas Akhir ini disusun dengan usaha yang maksimal, akan tetapi sebagaimana manusia yang tidak pernah luput dari kesalahan tentulah masih banyak dijumpai kekurangan. Untuk segala saran dan kritik yang membangun sangat diharapkan untuk penyempurnaan laporan ini.

Dalam kesempatan yang baik ini dengan seluruh kerendahan hati diucapkan rasa terima kasih yang sedalam-dalamnya kepada :

1.8 Rumusan Masalah	4
BAB II KAJIAN PUSTAKA	5
2.1 Pengaruh Temperatur Terhadap Kuat Tekan dan Modulus	
Elastisitas Beton	5
2.2 Kategori Warna Beton Setelah Terbakar	6
2.3 Pengaruh Temperatur Terhadap Kedalaman Penetrasi Panas	8
2.4 Tegangan Lekat	11
2.5 Pengaruh Temperatur Tinggi Terhadap Komponen Struktur Beton	
Bertulang	12
2.6 Kekuatan Baja Tulangan	14
BAB III LANDASAN TEORI	15
3.1 Kekuatan Beton Normal	15
3.2 Kekuatan Beton Bertulang Pasca Kebakaran	17
3.2.1 Penelusuran Data Bangunan	17
3.2.2 Pengamatan Visual	18
3.2.3 Pengujian Non Destruktif	20
3.2.4 Pengujian Destruktif	24
3.2.5 Pengujian Baja Tulangan	32
3.3 Beban Api (Fire Load)	33
BAB IV DATA BANGUNAN DAN HASIL PENGUJIAN	37
4.1 Data Bangman Bogor Internusa Plaza	37

4.2 Hasil Pemeriksaan dan Pengujian	38
4.2.1 Pengamatan Visual	38
4.2.2 Pengujian Penetrasi Phenolpthaline	40
4.2.3 Pengujian Palu Beton	42
4.2.4 Pengujian Ultrasonic Pulse Velocity (UPV)	47
4.2.5 Pengujian Beton Inti	52
4.2.6 Pengujian Pembebanan	54
BAB V PENGOLAHAN DATA	56
5.1 Pengamatan Visual	56
5.2 Pengujian Penetrasi Phenolpthaline	57
5.3 Pengujian Palu Beton	59
5.4 Pengujian Ultrasonic Pulse Velocity (UPV)	68
5.5 Pengujian Beton Inti	74
5.6 Pengujian Pembebanan	79
BAB VI PEMBAHASAN	83
6.1 Pengamatan Visual	83
6.2 Pengujian Penetrasi Phenolpthaline	85
6.3 Pengujian Palu Beton	88
6.4 Pengujian Ultrasonic Pulse Velocity (UPV)	90
6.5 Pengujian Beton Inti	92
6.6 Pengujian Pembebanan	94

6.7 Rekapitulasi Hasil Pengujian	95
BAB VII KESIMPULAN DAN SARAN	100
7.1 Kesimpulan	100
7.2 Saran-saran	102
DAFTAR PUSTAKA	103
LAMPIRAN	

DAFTAR TABEL

	and the second s	6
1.	Tabel 2.1 Reduksi kekuatan beton setelah mengalami kebakaran	U
2.	Tabel 2.2 Hasil uji penetrasi thermal kedalaman 1 cm sampai 10 cm	
	pada panel beton K-225	10
3.	Tabel 3.1 Indikasi kualitas beton berdasarkan kecepatan rambat	
	gelombang ultrasonic	24
4.	Tabel 3.2 Faktor pengali C ₀	26
5.	Tabel 3.3 Faktor pengali C ₁	27
6.	Tabel 3.4 Kerusakan beton berdasarkan pengujian larutan phenolpthaline	27
7.	Tabel 3.5 Nilai kalori beberapa bahan	34
8.	Tabel 3.6 Hubungan beban api dengan lama kebakaran	35
9.	Tabel 3.7 Beban api pada bangunan di Jepang	35
10	. Tabel 4.1 Data pengamatan visual	39
	. Tabel 4.2 Data pengujian penetrasi phenolpthaline pada komponen struktur	
	kolom	40
12	. Tabel 4.3 Data pengujian penetrasi phenolpthaline pada komponen struktur	
	Balok	41
13	. Tabel 4.4 Data pengujian beton dengan palu beton (concrete hammer) pada	
	kolom	42
14	. Tabel 4.5 Data pengujian beton dengan palu beton (concrete hammer) pada	
	kolom	43
1.5	5. Tabel 4.6 Data pengujian beton dengan palu beton (concrete hammer) pada	
	kolom	43
16	5. Tabel 4.7 Data pengujian beton dengan palu beton (concrete hammer) pada	
	balok	4
17	7. Tabel 4.8 Data pengujian beton dengan palu beton (concrete hammer) pada	
	balok	4

18. Tabel 4.9 Data pengujian beton dengan palu beton (concrete hammer) pada
balok
19. Tabel 4.10 Data pengujian beton dengan palu beton (concrete hammer) pada
pelat
20. Tabel 4.11 Data pengujian beton dengan palu beton (concrete hammer) pada
pelat
21. Tabel 4.12 Data pengujian beton dengan palu beton (concrete hammer) pada
pelat
22. Tabel 4.13 Data pengujian beton dengan UPV pada kolom lantai dasar
23. Tabel 4.14 Data pengujian beton dengan UPV pada kolom lantai satu
24. Tabel 4.15 Data pengujian beton dengan UPV pada kolom lantai dua
25. Tabel 4.16 Data pengujian beton dengan UPV pada balok lantai satu
26. Tabel 4.17 Data pengujian beton dengan UPV pada balok lantai dua
2.7. Tabel 4.18 Data pengujian beton dengan UPV pada balok lantai tiga
28. Tabel 4.19 Data pengujian beton dengan UPV pada pelat lantai satu
29. Tabel 4.20 Data pengujian beton dengan UPV pada pelat lantai dua
30. Tabel 4.21 Data pengujian beton dengan UPV pada pelat lantai tiga
31. Tabel 4.22 Data pengujian beton dengan core drill
32. Tabel 4.23 Data pengujian pembebanan
33. Tabel 5.1 Hasil analisis data pengamatan visual
34. Tabel 5.2 Hasil analisis data pengujian penetrasi phenolpthaline pada
komponen struktur kolom
35. Tabel 5.3 Hasil analisis data pengujian penetrasi phenolpthaline pada
komponen struktur balok
36. Tabel 5.4 Nilai rata-rata pengujian palu beton pada kolom 9-D
37. Tabel 5.5 Data perhitungan standar deviasi pada kolom lantai dasar
38. Tabel 5.6 Hasil analisis data pengujian dengan palu beton (concrete hammer)
pada kolom
39. Tabel 5.7 Hasil analisis data pengujian dengan palu beton (concrete hammer)
pada kolom

10. Tabel 5.8 Hasil analisis data pengujian dengan palu beton (concrete hammer)	
pada kolom	64
11. Tabel 5.9 Hasil analisis data pengujian dengan palu beton (concrete hammer)	
	65
12. Tabel 5.10 Hasil analisis data pengujian dengan palu beton (concrete hammer)	
pada balok	65
43. Tabel 5.11 Hasil analisis data pengujian dengan palu beton (concrete hammer)	
pada balok	66
44. Tabel 5.12 Hasil analisis data pengujian dengan palu beton (concrete hammer)	
pada pelat	66
45. Tabel 5.13 Hasil analisis data pengujian dengan palu beton (concrete hammer)	
pada pelat	67
46. Tabel 5.14 Hasil analisis data pengujian dengan palu beton (concrete hammer)	
pada pelat	67
47. Tabel 5.15 Perhitungan standar deviasi dari data kolom 11-B pada lantai	
dasar	68
48. Tabel 5.16 Hasil analisis data pengujian dengan UPV pada kolom lantai dasar	.70
49. Tabel 5.17 Hasil analisis data pengujian dengan UPV pada kolom lantai satu	
50. Tabel 5.18 Hasil analisis data pengujian dengan UPV pada kolom lantai dua	
51. Tabel 5.19 Hasil analisis data pengujian dengan UPV pada balok lantai satu	
52. Tabel 5.20 Hasil analisis data pengujian dengan UPV pada balok lantai dua	
53. Tabel 5.21 Hasil analisis data pengujian dengan UPV pada balok lantai tiga	
54. Tabel 5.22 Hasil analisis data pengujian dengan UPV pada pelat lantai satu	
55. Tabel 5.23 Hasil analisis data pengujian dengan UPV pada pelat lantai dua	
56. Tabel 5.24 Hasil analisis data pengujian dengan UPV pada pelat lantai tiga	
57. Tabel 5.25 Perhitungan standar deviasi hasil pengujian beton inti	
58. Tabel 5.26 Hasil analisis pengujian dengan core drill	
59. Tabel 5.27 Hasil analisis uji pembebanan	
60 Tabel 6 1 Hasil nengamatan visual	
The Control II to I be a second in the second I will be a second in the	

61. Tabel 6.2 Hasil pengujian penetrasi phenolpthaline pada komponen struktur	
kolom	85
62. Tabel 6.3 Hasil pengujian penetrasi phenolpthaline pada komponen struktur	
balok	87
63. Tabel 6.4 Hasil kuat tekan beton berdasarkan uji palu beton	88
64. Tabel 6.5 Hasil perkiraan kualitas beton pada pengujian UPV	90
65. Tabel 6.6 Hasil kuat tekan beton pada pengujian beton inti	92
66. Tabel 6.7 Hasil analisis data pengujian pembebanan	94
67. Tabel 6.8 Rekapitulasi hasil pengujian pada kolom	95
68. Tabel 6.9 Rekapitulasi hasil pengujian pada balok	96
69 Tabel 6 10 Rekapitulasi hasil pengujian pada pelat	97

DARTAR GAMBAR

1.	Gambar 2.1 Kategori warna beton setelah terbakar	7
2.	Gambar 2.2 Distribusi temperatur pada pelat lantai mutu beton K-175	
	hasil pengujian dengan standar ISO	8
3.	Gambar 2.3 Distribusi temperatur untuk kolom 38 x 38 cm mutu beton K-175	
	hasil pengujian dengan standar ISO	9
4.	Gambar 2.4 Distribusi temperatur untuk balok mutu beton K-175	
	hasil pengujian dengan standar ISO	9
4.	Gambar 2.5 Baja tulangan polos dan yang diprofilkan setelah terbakar	12
5.	Gambar 3.1 Tegangan tekan benda uji beton	16
6.	Gambar 3.2 Grafik hubungan lentingan dengan kuat tekan silinder beton	21
7.	Gambar 3.3 Siklus pembebanan terhadap lendutan	29
8.	Gambar 4.1 Lokasi uji beban di DE – 3 4 / Lantai-2	54
9.	Gambar 5.1 Grafik hubungan lentingan dengan kuat tekan silinder beton	62

DAFTAR LAMPIRAN

- 1. Lampiran (1) Denah lantai dasar
- 2. Lampiran (2) Denah lantai satu
- 3. Lampiran (3) Denah lantai dua
- 4. Lampiran (4) Denah lantai tiga

ABSTRAK

Kebakaran yang terjadi pada suatu bangunan, sering membuat unsur-unsur utama dalam bangunan menjadi rusak. Kerusakan akibat kebakaran tergantung atas banyak hal, antara lain panas yang timbul, kepekaan material yang terbakar dan lama kebakaran berlangsung. Dalam hal struktur, pengaruh kebakaran tersebut secara langsung mempengaruhi kekuatan material dan kekakuannya yang dapat mengakibatkan unsurunsur utama dalam bangunan menjadi tidak berfungsi. Agar berfungsi kembali diperlukan suatu pemeriksaan dan evaluasi teknis, guna mengetahui sejauh mana sisa kekuatan struktur pada bangunan tersebut. Informasi tentang kekuatan struktur bangunan pasca kebakaran diperlukan guna menentukan tindakan rehabilitasi yang harus dilakukan agar bangunan dapat dioperasikan kembali. Untuk menentukan sisa kekuatan beton tersebut diperlukan suatu data hasil pemeriksaan manpun pengujian. Data tersebut antara lain berasal dari hasil pemeriksaan visual, pengujian phenolphtaline, pengujian UPV, pengujian palu beton, pengujian beton inti dan pengujian pembebanan. Kemudian dari masing-masing data tersebut dilakukan analisis untuk menentukan sisa kekuatan komponen struktur beton pasca kebakaran, dengan mengacu pada hasil analisis pengujian beton inti dan pengujian pembebanan, karena analisis kedua pengujian tersebut memberikan hasil yang paling akurat. Dari hasil evaluasi terhadap bangunan Bogor Internusa Plaza dapat diketahui bahwa kuat tekan rata-rata untuk komponen struktur kolom lantai dasar sebesar 24,16 Mpa, lantai satu sebesar 16,53 Mpa, lantai dua sebesar 12,16 Mpa. Untuk komponen struktur balok lantai satu sebesar 18,60 Mpa, lantai dua sebesar 13,14 Mpa dan lantai tiga sebesar 9,48 Mpa. Sedangkan untuk komponen struktur pelat lantai satu sebesar 22,97 Mpa, lantai dua sebesar 13,16 Mpa dan lantai tiga sebesar 14,24 Mpa. Untuk menentukan nilai kuat tekan beton sebelum terbakar diasumsikan berdasarkan hasil uji core drill, sebab pada uji ini didapatkan nilai kuat tekan beton paling akurat, karena sampel yang di uji dimungkinkan diambil pada beton yang belum terbakar. Oleh sebab itu, berdasarkan hasil uji core drill dapat diasumsikan nilai kuat tekan beton sebelum terbakar sebesar 22,5 Mpa, sehingga nilai kuat tekan beton minimal yang disyaratkan sebesar 70% x 22,5 = 15,75 Mpa. Dari hasil tersebut di atas dapat disimpulkan bahwa untuk lantai dasar dan lantai satu masih dapat digunakan seperti fungsi semula sedangkan untuk lantai dua dan lantai tiga tidak dapat digunakan seperti fungsi semula.

BAB I

PENDAHULUAN

1.1 Latar Belakang

Di Indonesia banyak sekali terdapat gedung-gedung bertingkat tinggi. Pada umumnya gedung-gedung tersebut selalu dilengkapi fasilitas untuk mengantisipasi terjadinya kebakaran, namun demikian seringkali kebakaran tak dapat dihindarkan.

Kebakaran yang terjadi pada suatu bangunan, sering membuat unsur-unsur utama dalam bangunan menjadi rusak. Kerusakan akibat kebakaran tergantung atas banyak hal antara lain panas yang timbul, kepekaan material yang terbakar dan lamanya kebakaran berlangsung. Dalam hal struktur, pengaruh kebakaran tersebut secara langsung mempengaruhi kekuatan material dan kekakuannya yang dapat mengakibatkan unsur-unsur utama dalam bangunan menjadi tidak berfingsi.

Untuk memfungsikan kembali diperlukan suatu pemeriksaan dan evaluasi teknis, guna mengetahui sejauh mana sisa kekuatan struktur pada bangunan tersebut. Informasi tentang kekuatan struktur bangunan pasca kebakaran diperlukan guna menentukan tindakan rehabilitasi yang harus dilakukan agar bangunan dapat dioperasikan kembali.

Bogor Internusa Plaza adalah pusat perbelanjaan yang terletak di Jalan Raya Pajajaran No.27 Bogor, struktur bangunan ini adalah struktur beton bertulang dengan sistem struktur portal terbuka. Bangunan Bogor Internusa Plaza ini telah mengalami kebakaran pada tanggal 29 februari 1996 yang mengakibatkan kerusakan pada bangunan gedung utama, sedangkan pada gedung parkir masih dapat diselamatkan dari kebakaran. Kebakaran diperkirakan terjadi mulai pukul 1.30 dini hari dan dapat dipadamkan setelah kurang lebih berlangsung kebakaran selama 14 jam. Bagian yang terbakar adalah sebagian besar lantai dasar (ground floor), keseluruhan lantai -1 dan lantai -2 di gedung utama. Setelah mengalami kebakaran, bangunan utama dari gedung tersebut belum bisa difungsikan kembali seperti semula karena diragukan kekuatan strukturnya. Untuk memfungsikan kembali gedung tersebut telah dilakukan pemeriksaan dan pengujian sisa kekuatan strukturnya oleh Tim Puslitbangkim PU Bandung.

1.2 Pokok Masalah

Pokok masalah yang timbul disini adalah bagaimana mendapatkan informasi akurat mengenai sisa kekuatan struktur beton bertulang pasca kebakaran pada gedung Bogor Internusa Plaza.

1.3 Maksud dan Tujuan

Maksud dari studi ini adalah untuk mengevaluasi komponen struktur beton bertulang pada bangunan gedung Bogor Internusa Plaza setelah mengalami kebakaran dengan menggunakan metoda atau cara yang sudah ada.

Sedangkan tujuan dari studi ini adalah untuk mengetahui sisa kekuatan struktur beton bertulang pada bangunan gedung Bogor Internusa Plaza setelah mengalami kebakaran.

1.4 Batasan Masalah

Dalam penulisan ini dibatasi oleh ketentuan-ketentuan sebagai berikut :

- 1. Studi dilakukan pada gedung Bogor Internusa Plaza.
- 2. Jenis struktur yang dibahas adalah masalah struktur beton bertulang konvensional.
- 3. Elemen struktur yang dibahas adalah pelat, balok dan kolom.
- 4. Perencanaan beton berdasarkan peraturan SK-SNI T-15 Tahun 1991
- 5. Perencanaan pembebahan mengacu pada PBBI 1971.

1.5 Metode

Untuk mendapatkan informasi mengenai sisa kekuatan struktur bangunan pasca kebakaran diperlukan suatu urutan pemeriksaan dan pengujian sebagai berikut:

- 1. Pengumpulan data teoritis.
- 2. Pengumpulan data bangunan pasca kebakaran menyangkut:
 - a kualifikasi bangunan.
 - b. data pemeriksaan kekuatan elemen-elemen struktur dengan menggunakan alat :
 - 1). hammer test,
 - 2). ultrasonic pulse velocity,
 - 3). core drill test,
 - 4).phenolphtaline,
 - 5).loading test,

BAB II

KAJIAN PUSTAKA

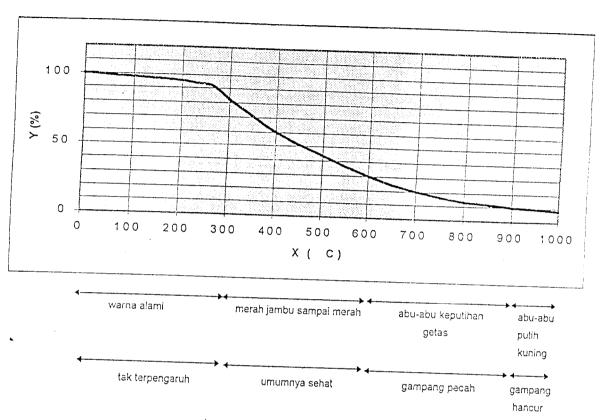
2.1 Pengaruh Temperatur Terhadap Kuat Tekan dan Modulus Elastis Beton

Pada dasarnya beton adalah suatu bahan yang tidak dapat terbakar, akan tetapi beton sebagai suatu unsur konstruksi, tetap dipengaruhi oleh suhu seperti juga baja dan kayu. Namun berdasarkan sifatnya, beton akan jauh lebih tahan terhadap suhu tinggi dibandingkan dengan komponen struktur lainnya.

Sebagai komponen struktur utama kekuatan beton terletak pada kuat tekannya dan bahan beton sebagai komponen struktur dinamakan beton struktur. Kekuatan beton yang tinggal setelah mengalami kebakaran, tergantung dari tinggi suhu yang pernah dicapai, lama kebakaran, campuran beton (mixed design) dan kondisi pembebanan selama terjadi kebakaran. Hal-hal tersebut di atas memberikan dasar penentuan kuat rencana dari beton struktur untuk perhitungan kekuatan struktur.

Sebagai gambaran mengenai reduksi kekuatan beton yang terbuat dari campuran semen dengan pasir dan kerikil yang mengandung sedikit kwarsa setelah mengalami kebakaran, dapat dilihat pada Tabel 2.1 (Tim Puslitbangkim PU, 1988).

Tabel 2.1


Reduksi kekuatan beton setelah mengalami kebakaran

	Perbandingan kekuatan	Perbandingan modulus
Suhu (°C)	setelah terhadap sebelum	elastisitas setelah terhadap
	'terbakar (%)	sebelum terbakar (%)
200	80	60
300	70	50
400	60	40
500	40	30
600	20	10
800	10	5
1000	0	0

Walaupun demikian, penurunan kekuatan struktur beton pada suhu tinggi terjadi pada ketebalan 3 cm sampai 5 cm, hal ini disebabkan bagian luar beton merupakan pelindung yang sangat baik terhadap bagian didalamnya, dan biasannya lapisan ini akan hancur dengan sendirinya.

2.2 Kategori Warna Beton Setelah Terbakar

Untuk dapat memperkirakan kondisi kekuatan beton setelah terbakar dan suhu yang pernah dicapai digunakan referensi yang berdasarkan warna beton setelah terbakar. Pada umumnya, beton yang telah mengalami kebakaran dapat dibagi menjadi 4 (empat) kategori. Keempat kategori ini dapat dilihat pada Gambar 2.1 (Tim Puslitbangkim PU, 1988).

Keterangan:

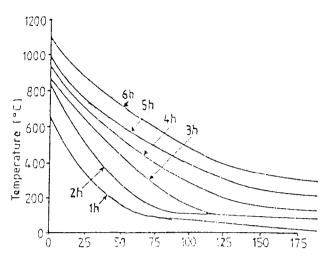
Axis x : menyatakan kenaikan temperatur ($^{\circ}$ C)

Axis y : menyatakan perbandingan antara sisa kekuatan tekan setelah dingin dengan

kekuatan semula/sebelum terbakar (%)

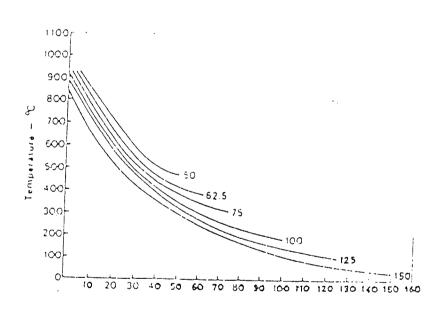
Gambar 2.1 Kategori warna beton setelah terbakar

Lama kebakaran mempengaruhi kekuatan beton, dengan demikian akan mempengaruhi kekuatan strukturnya. Lama kebakaran ditentukan oleh fire load (kg/cm²) dari bahan-bahan yang dapat terbakar yang terdapat di daerah tersebut atau banyaknya bahan yang terbakar di sekitar komponen struktur. Banyaknya bahan, akan mempengaruhi lama kebakaran, akan tetapi kebakaran jarang sampai suhu 900°C.


(Tim Puslitbangkim PU, 1988).

2.3 Pengaruh Temperatur Terhadap Kedalaman Penetrasi Panas

Pengaruh penetrasi panas terhadap struktur dalam dari penampang beton akan cukup jauh berbeda. Hal ini disebabkan oleh beberapa faktor antara lain tinggi suhu yang dicapai, lama pemanasan dan ketahanan material terhadap temperatur. Sebagai gambaran dari penjelasan tersebut dapat dilihat hasil percobaan berikut, lihat Gambar 2.2.(Tim Puslitbangkim PU, 1993)



Gambar 2.2 Distribusi temperatur pada pelat lantai mutu beton K175 hasil pengujian dengan standar ISO

Jarak dari permukaan kolom (mm)

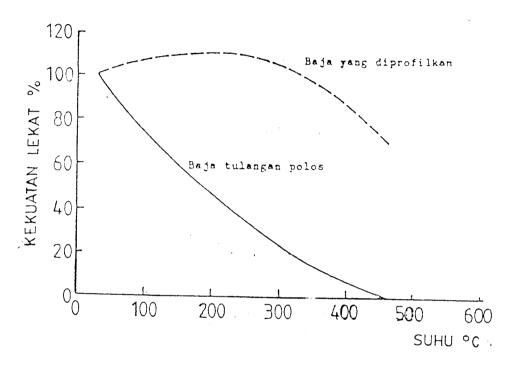
Gambar 2.3 Distribusi temperatur untuk kolom 38 x 38 cm mutu beton K175, hasil pengujian dengan standar ISO

Jarak dari permukaan balok (mm)

Gambar 2.4 Distribusi temperatur untuk balok mutu beton K175, hasil pengujian dengan standar ISO

Berikut adalah tabel hasil Uji Penetrasi Thermal dengan kedalaman 1 cm sampai dengan 10 cm pada panel beton K225 yang memberikan gambaran mengenai pengaruh panas terhadap setiap lapisan kedalaman beton.

Tabel 2.2 Hasil uji penetrasi thermal kedalaman 1 cm sampai 10 cm pada panel beton K 225


		kë da la ma n									
Waktu pembakaran	Temp. pada ruangan Tungku	1cm	2 cm	3 cm	4 cm	5	6	7	110000000000000000000000000000000000000	9	10 cm
		(°.C)	(°C)	(°C)	(°C)	(°C)	cin (°C)	cm (°C)	cm (°C)	cm (°C)	(°C)
0	35	28,1	27,0	26,5	26,1	25,0	24,9	24,4	24,1	24,0	23,7
5	460	77,4	46,0	31,1	27,1	24,9	24,0	23,8	23,6	23,0	22,7
10	540	129,7	81.8	43.8	35.9	26.6	26.1	24.6	24.4	24.3	23.8
15	650	181,4	124.5	78.3	55.0	32.3	30.8	26.4	25.4	25.2	24.2
20	690	239,5	160.4	113.4	83.9	54.2	43.2	36.2	27.6	27.4	24.6
25	710	264,0	179.6	151.8	104.2	80.8	64.2	61.7	53.3	42.3	25.7
30	730	343,3	219.0	168.7	118.8	94.7	94.1	93.8	49.1	49.0	23.9
35	750	334,8	259.7	187.4	131.5	104.7	102.7	102.4	66.9	66.6	34.1
40	760	421,4	297.3	225.8	138.6	111.1	111.0	110.4	79.0	78.5	40.1
45	780	453,2	330.9	259.4	152.3	114.8	114.0	110.2	87.3	87.0	48.4
50	780	481,1	360.2	289.2	174.7	117.7	117.3	109.9	93.7	93.5	56.0
55	800	505,6	386.2	316.9	198.6	121.9	117.6	109.6	98.8	97.2	63.1
60	800	524,9	408.0	342.0	221.1	126.8	120.7	109.3	103.1	102.8	69.7
65	805	539,3	427.3	363.1	241.7	132.6	129.2	109.1	107.6	106.8	75.5
70	815	554,3	444.4	382.0	260.7	139.0	131.3	108.9	107.1	105.8	80.5
75	820	568,8	460.7	399.3	278.5	157.4	154.3	118.6	115.8	109.8	84.8
80	830	582,8	575.9	415.1	295.0	169.1	167.0	128.1	117.6	109.6	88.4
85	845	595,9	490.2	430.3	310.9	174.7	173.4	119.7	118.5	111.3	91.9
9 0	860	610,7	504.6	445.1	325.7	190.1	170.5	118.4	116.7	114.9	95.2
95	870	624,4	518.6	459.7	340.0	204.3	203.0	126.9	119.8	119.6	98.3
100	875	637,3	531.7	473.7	353.9	217.9	214.3	136.2	128.4	125.9	100.2
105	880	648,9	544.4	487.1	367.3	230.7	225.6	145.6	125.4	134.0	201.5
110	885	658,9	555.6	499.3	379.9	242.7	236.8	154.7	140.9	139.5	102.3
115	890	668,0	566.2	510.7	392.1	254.3	247.8	163.8	158.0	151.0	104.2
120	895	676,6	576.6	521.4	403.5	265.4	258.6	172.6	156.3	149.3	106.3
125	900	684,5	586.4	531.3	414.5	276.1	269.0	181.3	169.7	167.5	108.0
130	910	692,4	596.6	540.6	425.0	286.5	279.2	190.0	189.1	175.8	109.5
135	915	699,5	604.5	549.4	435.1	296.5	289.1	198.6	171.7	184.1	111.1
140	920	706,2	612.7	557.9	444.7	305.9	298.4	206.9	180.0	192.3	112.9
145	925	713,3	620.8	566.4	454.1	315.4	307.8	215.3	209.5	200.6	115.1
150	930	720,0	628.5	574.8	463.1	324.3	316.7	223.4	216.5	208.5	117.5
155	940	726,5	635.8	583.0	471.7	333.0	325.3	241.1	224.4	216.3	119.9
160	940	733,2	642.9	590.6	479.8	341.7	334.5	239.9	212.6	210.0	122.5
165	955	740,7	651.0	599.4	488.4	349.6	341.9	246.4	219.5	221.4	126.7
170	960	746,0	657.7	607.0	496.3	357.7	350.1	254.0	247.0	238.9	130.6
175	960	750,9	664.1	614.4	503.9	365.4	357.9	261.4	254.1	245.8	134.8
180	960	756,2	670.0	621.3	511.3	373.1	365.4	268.5	261.1	252.9	139.5

2.4 Tegangan Lekat

Pada beton bertulang yang telah mengalami kebakaran yang parah, keadaan elemen-elemen jelas rusak, bila beton bertulang mengalami kebakaran yang tidak terlalu parah, maka beton biasanya cukup kuat untuk memikul beban. Tetapi kerja sama antara beton dan baja tulangan perlu dikaji lebih lanjut, sebab kerja sama hanya bisa terjadi bila ikatan/lekatan antara keduanya masih cukup baik.

Sisa kekuatan lekat antara beton dengan tulangan tidak hanya tergantung pada tinggi suhu yang pernah dialami, akan tetapi juga pada lama pemanasan. Pada baja tulangan yang pernah mengalami panas sampai suhu 300° C, sisa kekuatan lekat yang masih ada diperkirakan tidak lebih 85% dan pada suhu pemanasan sampai suhu 500° C, sisa kekuatan lekat tidak akan lebih 50% dari kekuatan semula. (Tim Puslitbangkim PU, 1988).

Penelitian yang telah dilakukan menunjukkan, bahwa cara pengujian dan bentuk tulangan juga menentukan besar lekatan antara beton dengan tulangan. Baja tulangan polos menunjukkan perilaku yang buruk pada pemanasan dengan suhu tinggi, bila dibandingkan dengan baja tulangan yang diprofilkan, lihat Gambar 2.4 (Tim Puslitbangkim PU, 1988).

Gambar 2.5 Baja tulangan polos dan yang diprofilkan setelah terbakar

2.5 Pengaruh Temperatur Tinggi Terhadap Komponen Struktur Beton Bertulang

Temperatur yang terjadi akibat proses kebakaran bisa mencapai suhu yang sangat tinggi. Perkiraan temperatur yang terjadi diperoleh dari hasil pengujian penetrasi phenolphtaline dan pengamatan terhadap benda-benda yang terbakar serta pengujian di laboratorium terhadap benda yang sejenis.

Jenis-jenis kerusakan pada komponen struktur beton yang sering terjadi adalah:

1. Beton Melepuh (Spalling)

Kerusakan ini sering terjadi karena terlampau tipis selimut beton sehingga mengakibatkan terjadi mekanisme korosi thermal, yaitu memuainya komponen tulangan baja yang mengakibatkan selimut beton menjadi terdesak dan melepuh. Hal lain bisa disebabkan juga oleh penggunaan agregat yang mudah mengembang, sehingga saat mengalami temperatur tinggi, agregat tersebut mengembang dan mendesak beton di luarnya.

2. Retak-retak Pada Komponen Struktur Balok dan Pelat

Bentuk retakan yang terjadi dapat diklasifikasikan sebagai retakan geser dan retakan lentur. Hal ini disebabkan berkurangnya mutu beton akibat pengaruh temperatur tinggi sehingga kapasitas penampang menjadi berkurang dan timbul lendutan yang berakhir dengan retakan. Retakan balok dan pelat dapat juga diakibatkan tertimpa reruntuhan material di atasnya.

3. Retak-retak Akibat Pelaksanaan Pengecoran

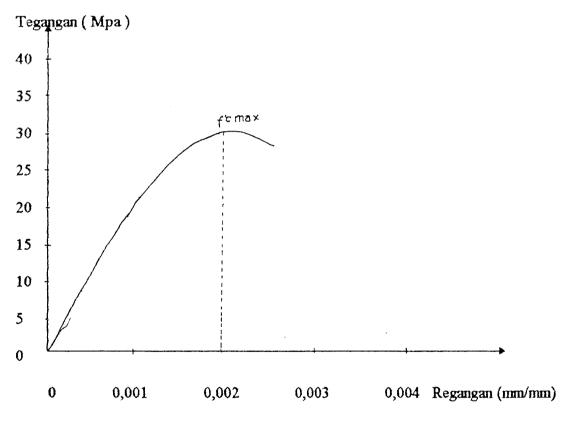
Walaupun kerusakan ini bukan diakibatkan secara langsung oleh temperatur yang tinggi dari peristiwa kebakaran tetapi memerlukan perhatian yang serius bila nantinya akan di renovasi kembali. Retakan dapat terjadi akibat penghentian selama proses pengecoran.

2.6 Kekuatan Baja Tulangan

Apabila baja tulangan dipanaskan sampai pada suhu 250° C tidak terjadi penurunan kekuatan, bahkan pada baja tulangan yang dikerjakan secara gulungan panas (hot rolled steel), pada suhu 100° C sampai 200° C terjadi peningkatan kekuatan (Tim Puslitbangkim PU, 1988). Pada baja tulangan, hal ini tentu saja sedikit berbeda, sebab baja tulangan terletak dalam beton. Selimut beton akan melindungi dan suhu tinggi umumnya hanya terjadi pada permukaan beton. Baja tulangan akan mengalami penurunan kekuatan jika panas yang dialami mencapai suhu diatas 450° C dan akan mendapatkan kembali seluruh kekuatan leleh setelah dingin, jika suhu yang pernah dialami tidak melampaui suhu 450° C. (Tim Puslitbangkim PU, 1988).

Dalam beberapa peristiwa kebakaran yang terjadi jarang dicapai suhu 450° C pada baja tulangan, dengan demikian pengujian terhadap baja tulangan kadang tidak dilakukan

BAB III


LANDASAN TEORI

3.1 Kekuatan Beton Normal

Beton didapat dari pencampuran bahan-bahan agregat halus dan kasar yaitu pasir, batu, batu pecah, atau bahan semacam lainnya, dengan menambahkan secukupnya bahan perekat semen, dan air sebagai bahan pembantu guna keperluan reaksi kimia selama proses pengerasan dan perawatan beton berlangsung. Agregat halus dan kasar, disebut sebagai bahan susun kasar campuran, merupakan komponen utama beton. Nilai kekuatan serta daya tahan (durability) beton merupakan fingsi dari banyak faktor, di antaranya ialah nilai banding campuran dan mutu bahan susun, metode pelaksanaan pengecoran, pelaksanaan finishing, temperatur dan kondisi perawatan pengerasannya.

Kuat tekan beton diwakili oleh tegangan tekan maksimum fc' dengan satuan N/mm² atau Mpa (Mega Pascal). Nilai kuat tekan beton didapatkan melalui tata-cara pengujian standar, menggunakan mesin uji dengan cara memberikan beban tekan bertingkat dengan kecepatan peningkatan beban tertentu atas benda uji silinder beton (diameter 150 mm, tinggi 300 mm) sampai hancur. Kuat tekan benda uji ditentukan oleh tegangan tekan tertinggi (fc') yang dicapai benda uji umur 28 hari akibat beban tekan selama percobaan. Dengan demikian, seperti tampak pada gambar 3.1, harap dicatat bahwa tegangan fc' bukanlah tegangan yang timbul pada saat benda uji hancur

melainkan tegangan maksimum pada saat regangan beton (ϵ_b) mencapai nilai \pm 0,002. Dengan mengingat berbagai pertimbangan teknis dan ekonomis, masih memperbolehkan menggunakan benda uji berbentuk kubus, umumnya bersisi 150 mm, sebagai alternatif dari bentuk silinder. Dengan demikian, penting untuk disadari adanya perbedaan hasil pengujian dari kedua bentuk benda uji sehubungan dengan gambaran kekuatan beton yang ingin diketahui.

Gambar 3.1 Tegangan tekan benda uji beton

3.2 Kekuatan Beton Bertulang Pasca Kebakaran

Kekuatan beton setelah terbakar cenderung menunjukkan penurunan kekuatan, besar penurunan kekuatan tergantung atas banyak faktor, antara lain lama beton terbakar dan suhu yang dicapai saat terjadi kebakaran. Terdapat perbedaan antara beton yang dipanaskan secara perlahan dengan beton yang dipanaskan secara cepat. Pada pemanasan secara perlahan, suhu didalam beton dapat disebarkan dengan lebih merata, sehingga beton mengalami relaksasi, sehimga tegangan yang terjadi tidak terlalu tinggi. Akan tetapi pada pemanasan yang cepat, yang pada umumnya terjadi pada peristiwa kebakaran, maka didalam beton dapat terjadi perbedaan suhu yang cukup tinggi, sehingga timbul tegangan yang cukup besar. Hal ini dengan sendirinya akan mempengaruhi kekuatan beton bertulang tersebut. Berapa sisa kekuatan beton bertulang setelah mengalami kebakaran dapat dilihat pada perbandingan kekuatan pada tabel 2.1. Untuk mengetahui secara lebih teliti mengenai sisa kekuatan beton bertulang setelah mengalami kebakaran dapat dilakukan tahap-tahap pemeriksaan dan pengujian sebagai berikut. (Tim Puslitbangkim PU, 1988).

3.2.1 Penelusuran Data Bangunan

Penelusuran data bangunan adalah suatu kegiatan yang bertujuan untuk mencari dan mengumpulkan data yang berkaitan dengan bangunan itu sendiri serta kejadian-kejadian selama kebakaran berlangsung. Data yang diperlukan tersebut antara lain mengenai spesifikasi struktur bangunan yang mencakup mutu beton, mutu baja, material

yang digunakan serta pelaksanaan pekerjaan. Disamping itu diperlukan juga data mengenai lama kebakaran berlangsung serta penyebabnya.

3.2.2 Pengamatan Visual

Pengamatan visual dilakukan untuk mengetahui kerusakan bangunan yang terjadi akibat kebakaran secara umum. Berdasarkan parameter-parameter pengamatan yang telah ditentukan sebelumnya, maka dapat dievaluasi kondisi setiap komponen struktur pada semua lantai gedung. Dari hasil penilaian tersebut, maka dapat diklasifikasikan kerusakan yang terjadi.

Pada pengamatan visual dilakukan pengambilan benda sisa terbakar, pencatatan kondisi dan dimensi ruang serta data lain yang dapat membantu memberikan informasi mengenai perkiraan temperatur dan lama kebakaran. Perkiraan temperatur ruang dan lama kebakaran dapat digunakan untuk menentukan perkiraan penurunan kekuatan komponen struktur.

Setelah mengetahui kondisi bangunan secara keseluruhan bedasarkan pengamatan visual ini, maka dapat ditentukan jenis-jenis pengujian yang diperlukan sebagai langkah penelitian selanjutnya. Pengamatan-pengamatan yang dilakukan pada komponen struktur bangunan pasca kebakaran antara lain diuraikan berikut ini:

1. Pengamatan perubahan warna beton

Pengamatan dilakukan terhadap perubahan warna yang terjadi pada masingmasing komponen struktur dengan membandingkan kondisi setelah kebakaran dengan kondisi awal sebelum terbakar, maka dapat diperkirakan temperatur yang terjadi pada setiap permukaan komponen struktur.

2. Pengamatan retakan

Pengamatan dilakukan terhadap retakan yang terjadi pada struktur bangunan. Pemeriksaan ini perlu dilakukan untuk menentukan retakan struktural yang dianggap berbahaya. Hasil pengamatan retakan ini diperlukan untuk memperoleh indikasi mengenai klasifikasi kerusakan yang terjadi.

3. Pengamatan pengembangan agregat beton (Spalling)

Pengamatan dilakukan pada komponen struktur beton yang mungkin mengalami pengembangan akibat pengaruh suhu tinggi. Pengembangan dan pemuaian yang terjadi pada agregat beton menjadi pecah/meledak (spalling). Apabila hal ini terjadi, tulangan beton akan berhubungan langsung dengan udara. Hal tersebut berarti besi tulangan dari komponen struktur mengadakan kontak secara langsung dengan api atau panas kebakaran. Panas yang tinggi pada tulangan dan proses pendinginan mendadak akibat siraman air pemadam dapat menimbulkan korosi termal (thermal corrosion). Dari hasil pengamatan ini dapat diketahui bagian mana yang perlu diperbaiki.

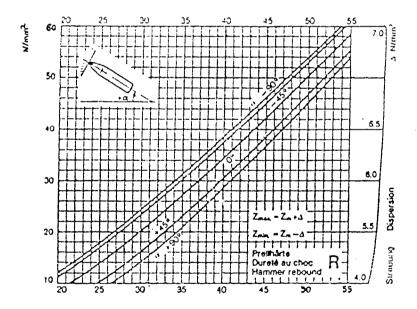
4. Pengamatan Lendutan

Pengamatan dilakukan terhadap lendutan yang terjadi pada komponen struktur yaitu kolom, balok dan plat lantai. Pengamatan ini dilakukan untuk memperoleh indikasi kerusakan struktural yang terjadi.

Akibat terjadi kebakaran pada bangunan, maka kerusakan struktur dapat diklasifikasikan menjadi 3 (tiga) kelas yaitu :

- Kelas A: Kerusakan permukaan, tidak ada perubahan warna, retak-retak kecil

 pada plesteran dan jelaga dipermukaan bahan
- Kelas B: Kerusakan teknis dan struktural di permukaan yang ditandai dengan adanya spalling kecil, retak kecil serta terjadi lendutan kecil.
- Kelas C: Kerusakan struktur cukup besar, banyak spalling besar dan adanya tulangan baja yang nampak, serta terjadi lendutan yang cukup besar.


Kelas A berarti mengalami kerusakan struktur yang ringan dan hanya perlu perbaikan kecil. Kelas B berarti mengalami kerusakan struktur yang cukup besar, sehingga terjadi pemurunan kekuatan pada komponen struktur dan diperlukan penelitian serta pengujian lebih lanjut. Kelas C berarti mengalami kerusakan struktur yang cukup parah sehingga komponen struktur harus dibongkar.

3.2.3 Pengujian Non Destruktif

Pengujian non destruktif adalah pengujian yang tidak merusakkan benda uji. Pengujian yang dilakukan antara lain dijelaskan berikut ini

1. Pengujian Hammer Test

Pengujian palu beton (Hammer Test) bertujuan untuk memperkirakan nilai kuat tekan beton pada komponen struktur terpasang berdasarkan nilai lentingan yang diperoleh, dengan menggunakan tabel atau kurva korelasi pada petunjuk penggunaan alat palu beton yang dipakai . Pengujian dilakukan pada permukaan struktur kolom, balok dan lantai. Uji palu beton ini berdasarkan ASTM C 805-85/BS 1881 merupakan uji yang bersifat non-destruktif. Berikut adalah grafik hubungan lentingan dengan kuat tekan silinder beton.

Gambar 3.2 Grafik hubungan lentingan dengan kuat tekan silider beton

Dari grafik diatas dapat diperoleh perkiraan kuat tekan karakteristik beton berdasarkan nilai lentingan yang terjadi. Kemudian nilai target kuat tekan karakteristik (fcr) pada masing-masing komponen struktur setiap lantai harus dikonversikan menjadi perkiraan nilai kuat tekan beton (fc') yang dihitung dengan persamaan 3.1 di bawah ini.

dengan:

fc' = nilai kuat tekan beton (Mpa)

fcr = nilai kuat tekan silinder beton (Mpa)

S = standar deviasi dari benda uji palu beton

Perkiraan nilai kuat tekan beton dari pengujian palu beton didapat dari perhitungan rata-rata dari sejumlah data fe' yang diberikan pada persamaan 3.2 di bawah ini

$$fc' \text{ rata-rata} = \frac{fc'}{n} \qquad (3.2)$$

dengan:

fc' = kuat tekan beton rata-rata (Mpa)

n = jumlah benda uji

2. Pengujian Ultrasonic Pulse Velocity

Pengujian ini dilakukan dengan menggunakan alat *Ultrasonic Pulse Velocity* (UPV) yang mengacu pada ASTM C597-91. Maksud dari pengujian ini adalah untuk memperkirakan keseragaman mutu beton sehingga dapat diketahui kualitas beton pada komponen struktur terpasang berdasarkan kecepatan rambat gelombang ultrasonik. Kecepatan rambat gelombang dihitung dengan rumus 3.3 (*Proseq SA, Operating Instructions*, 1977) sebagai berikut.

$$V = \frac{L}{t} \times 10 \qquad (3.3)$$

dengan: V = cepat rambat gelombang (km/det)

t = waktu rambat gelombang (micro det) 10 = konstanta

Dari kecepatan rambat gelombang ultrasonic yang diperoleh maka dapat diperkirakan kualitas beton berdasarkan tabel 3.1 (Proseq SA, Operating Instruktions, 1977) di bawah ini:

Tabel 3.1

Indikasi kualitas beton berdasarkan kecepatan rambat gelombang ultrasonic

Kecepatan rambat gelombang UPV	
(km/det)	Kualitas beton
< 2.13	Kurang
2.13 - 3.05	Cukup
3.05 - 3.66	Cukup baik
3.66 - 4.57	Baik
> 4.57	Sangat baik

Apabila pada suatu bagian struktur banguanan mempunyai kecepatan rambat gelombang UPV lebih kecil 2.13 km/det maka bagian struktur tersebut harus diganti.

3.2.4 Pengujian Destruktif

Pengujian destruktif adalah pengujian yang merusakkan benda uji. Pengujian yang dilakukan antara lain:

1. Pengujian Kuat Tekan Beton Inti (Core Drill Test)

Contoh beton dari komponen struktur terpasang diambil dengan cara melakukan pengeboran pada komponen yang akan diuji. Contoh beton berbentuk silinder tersebut dimaksudkan untuk mendapatkan benda uji beton inti yang dapat digunakan untuk keperluan uji beton inti di laboratorium. Pengambilan benda uji beton inti dilakukan pada kolom, balok dan lantai dengan menggunakan alat Core Drill. Pengujian ini

berdasarkan pada Metode Pengambilan Benda Uji Beton Inti (SK SNI M-61-1990-03) dan Metode Pengujian Kuat Tekan Beton Inti Pemboran (SK SNI M-15-1991-03).

Pengujian kuat tekan beton inti dilakukan di laboratorium, yang dimaksudkan untuk mendapatkan estimasi nilai kuat tekan beton pada struktur terpasang dengan cara menekan beton inti tersebut sampai batas kekuatannya. Untuk mengetahui kuat tekan beton inti digunakan persamaan 3.4 (Tim Puslitbangkim PU, 1996) di bawah ini.

fcr =
$$\frac{P}{\Pi/4 \cdot \phi^2}$$
 (3.4)

dengan:

fcr = kuat tekan beton inti (Mpa)

P = beban uji maksimum (N)

φ = diameter rata-rata benda uji beton inti (mm)

 $\Pi = 3.14$

C₀ = faktor pengali arah pengambilan benda uji (lihat tabel 3.2)

 C_1 = faktor pengali yang berhubungan dengan ratio panjang sesudah diberi lapisan kapping dengan diameter benda uji (lihat tabel 3.3)

C₂ = faktor pengali karena adanya kandungan tulangan besi dalam benda uji beton inti yang letaknya tegak lurus terhadap sumbu tulangan benda uji

$$C_2 = 1,0 + 7,5$$
. $\Sigma (d+h)$ (3.6)

dengan:

d = diameter batang tulangan (mm)

h = jarak terpendek antara sumbu batang tulangan dengan ujung benda uji (mm)

I = panjang benda uji (mm)

l' = panjang benda uji setelah diberi lapisan kapping (mm)

 ϕ = diameter benda uji (mm)

Tabel 3.2 Faktor pengali C₀

Arah pengambilan benda uji beton inti Horisontal (tegak lurus pada arah tinggi	C_0
₩ 1	
dari struktur beton)	1
Vertikal (sejajar dengan arah tinggi dari struktur beton)	0.92

Tabel 3.3 Faktor pengali C₁

l'/ ∳	C_1
2,35	1,02
2,00	1,00
1,75	0,98
1,30	0,96
1,00	0,92
0,85	0,90

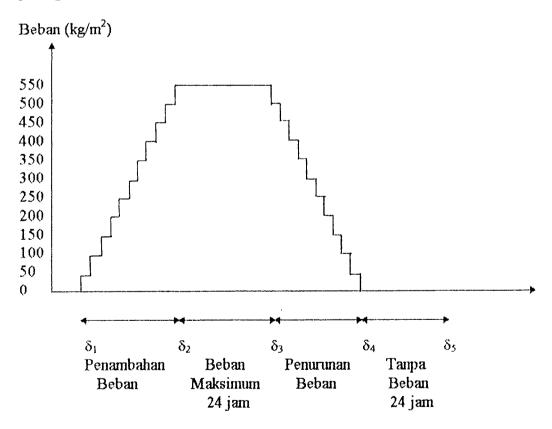
2. Pengujian Penetrasi Temperatur Komponen Struktur Terpasang

Uji penetrasi temperatur ini dilakukan dengan mengupas komponen struktur beton dan melabur dengan larutan *Phenolphtaline* hingga kedalaman tertentu. Kedalaman penetrasi ditentukan oleh reksi kimia yang ditunjukkan oleh warna tertentu pada kedalaman struktur tertentu, lihat tabel 3.4 (Tim Puslitbangkim PU, 1988). Bila komponen tidak memberikan reaksi, maka berarti bahwa temperatur api tidak mempengaruhi komponen tersebut.

Tabel 3.4 Kerusakan beton berdasarkan uji larutan phenolpthaline

Warna Beton Setelah Diberi Larutan Phenolpthaline	Perkiraan Suhu
Warna alami - Pink muda	< 550 ° C
Pink muda - Pink	550 ° C - 800 ° C
Pink - Pink Tua	> 800 ° C

3. Pengujian Kapasitas Nyata Komponen Struktur Bangunan (Loading Test)


Kapasitas nyata komponen pelat dan balok bangunan ditentukan dengan melakukan pengujian pembebanan dengan menggunakan beban air sebagai simulasi beban kerja. Pengujian pembebanan ini berdasarkan SK SNI T-15-1991-03 mengenai evaluasi kekuatan struktur yang telah berdiri.

Pengujian dilakukan dengan memberikan beban uji secara berangsur-angsur dan bertahap dengan pertambahan kenaikan beban sebesar 50 kg/m² atau ekivalen dengan ketinggian air sebesar 5 cm. Pada setiap penambahan beban dilakukan pencatatan nilai lendutan yang dicapai. Adapun langkah-langakah pengujian tersebut adalah sebagai berikut:

- a. pembacaan awal, dibuat sesaat sebelum pembebanan dilakukan,
- b. penambahan beban dilakukan dalam 11 (sebelas) tahap, dengan setiap penambahan beban sebesar $50~{\rm kg/m^2}$,
- c. pembacaan lendutan dilakukan sesaat setelah pemberian tahapan pembebanan selesai dilakukan,
- d. pembacaan dilakukan setelah beban maksimum tercapai,
- e.pembacaan akhir tahapan dilakukan setelah beban maksimum didiamkan selama 24 jam,

- f. setelah pembacaan akhir tahapan pembebanan ,beban dikurangi secara bertahap sesuai dengan jumlah tahapan pembebanan, dan dilakukan pembacaan lendutan sesaat setelah pengurangan yang direncanakan selesai,
- h. pembacaan akhir pengujian pembebanan dilakukan setelah beban nol,
- i. pembacaan lendutan terakhir dilakukan setelah 24 jam tanpa beban,
- j. dari data yang terjadi dilakukan perhitungan prosentase pemulihan lendutan yang terjadi.

Tahapan pembebanan diperlihatkan pada grafik beban uji yang ditunjukkan pada gambar 3.3

Gambar 3.3 Siklus pembebanan terhadap lendutan

Keterangan:

 δ_1 = Pembacaan lendutan pada permulaan uji

 δ_2 = Pembacaan lendutan pada beban uji maksimum

δ₃ = Pembacaan lendutan pada beban uji maksimum setelah beban uji dipertahankan selama 24 jam

δ₄= Pembacaan lendutan setelah beban uji dihilangkan

δ₅ = Pembacaan lendutan setelah 24 jam tanpa beban uji

Beban yang digunakan dalam pengujian adalah sebesar:

DL = beban mati

LL = beban hidup

beban hidup yang digunakan adalah yang sesuai dengan fungsi dari ruang tersebut.

Kapasitas nyata dari komponen beton non-pratekan diperkirakan dari nilai pemulihan (recovery) yang ditentukan dari rumus 3.7 (Tim Puslitbangkim PU, 1996) di bawah ini:

$$Dp = \frac{\delta_3 - \delta_5}{\delta_3} \times 100 \% > 75 \% \qquad (3.7)$$

dengan:

Dp = Nilai pemulihan (recovery)

 δ_3 = pembacaan saat lendutan maksimum (mm)

 δ_5 = pembacaan lendutan setelah 24 jam tanpa beban uji

Untuk komponen pelat yang terjepit pada empat sisi dan balok yang terjepit pada 2 ujung digunakan rumus lendutan 3.8 (Tim Puslitbangkim PU, 1996) sebagai berikut:

$$\delta = \frac{L^2}{20.000 \text{ x h}} \tag{3.8}$$

dengan:

 δ = lendutan yang diijinkan (mm)

L = bentang bersih (cm)

h = tebal dan tinggi komponen struktur (cm)

Perlu dijelaskan disini bahwa dalam pembacaan hasil pengujian, dapat terjadi adanya penyimpangan yang disebabkan karena:

- a. bergeraknya alat ukur/baca,
- b. adanya pembebanan yang menyimpang,
- c. kapasitas alat uji melampaui,

d. pembacaan alt uji/perekam data terganggu oleh hal-hal yang tidak terduga (misalkan alat uji kemasukan air, dudukan alat uji bergerak dan sebagainya).

Adanya gangguan pada alat baca akan menimbulkan adanya data yang tidak akurat, dan grafik yang dihasilkan tidak baik. Kesemuanya ini dapat diketahui dari tabel data yang direkam. Semua data yang menyimpang ini umumnya dapat dianggap tidak ada atau dapat dieliminir.

3.2.5 Pengujian Baja Tulangan

Baja tulangan yang diuji diambil dari komponen struktur. Pengujian dilakukan untuk mengetahui indikasi pengaruh temperatur kebakaran terhadap tulangan. Dengan pertimbangan bahwa kekuatan struktur belum diketahui setelah terjadi kebakaran, maka pengambilan contoh uji hanya dilakukan secara terbatas.

Kekuatan tarik baja tulangan dihitung dengan membagikan beban tarik pada batas leleh terhadap luas penampang tulangan yang diuji, dengan rumus 3.9.

$$\sigma_{y} = \frac{P \max}{A} \tag{3.9}$$

dengan:

 σ = tegangan leleh baja tulangan (kg/cm²),

P max = beban maksimum yang bekerja (kg),

A = luas penampang tulangan (cm^2) .

Sedangkan tegangan ijin dihitung dengan persamaan 3.10.

$$\overline{\sigma} = \frac{\sigma_{\gamma}}{1.5} \tag{3.10}$$

dengan:

$$\bar{\sigma}$$
 = tegangan ijin (kg/cm²),

$$\sigma_2$$
 = tegangan leleh (kg/cm²),

1.5 = faktor keamanan.

3.3 Behan Api (Fire Load)

Beban api adalah suatu besaran yang berkaitan dengan banyaknya benda-benda atau bahan yang mudah terbakar yang terdapat dalam ruangan. Beban api merupakan kadar ukuran panas yang terkandung pada benda yang mudah terbakar.

Faktor utama yang mempengaruhi lamanya kebakaran adalah volume dari bahan-bahan atau benda-benda yang mudah terbakar yang terkandung dalam bangunan. Bahan bangunan ini terdiri antara lain lantai, dinding, dinding partisi, plafon, kusen, pintu, jendela, rangka plafon, rangka atap dan lain-lain. Bahan-bahan tersebut terdiri dari bemacam-macam nilai kalor, maka jumlah bahan-bahan tersebut perlu diekivalensikan terhadap berat kayu yang menghasilkan nilai kalor yang sama (Tabel 3.5).

Tabel 3.5 Nilai kalori beberapa bahan

Bahan	Nilai Kalori (KCal/Kg)	
Papan asbes	9500	
Kayu	5000	
Kertas	5000	
Karet	4500	
Aspal	9500	
Kain Wool	5000	
Linoleum	5000	
Plywood (b.j 0,85)	4500	
Particle Board	4000	
Hard Fibreboard (b.j 0,85)	4800	
Soft Fibreboard (b.j. 0,40)	3500	
Pulp Cement Board (pulp 8%)	350	
Pulp Cement Board (pulp 15 %)	500	
Rock Wool Board (kanji 7%)	200	Ì
Rock Wool Board (kanji 12%)	500	
Plaster Board (tanpa kertas)	100	
Plaster board (dengan kertas)	1500	
Polyvinyl Chlorida (vc.10 %)	3600	
Polyvinyl Chlorida (vc.30%)	4000	
Gasoline	10000	
Petroleum	10500	

Sumber: Teori Dasar Api dan Penyebarannya (Pencegahan Kebakaran dan Strategi Evakuasi), hal. 29.

Perhitungan besarnya beban api digunakan rumus 3.11 di bawah ini.

dengan:

q = Beban api, (Kg/m^2) ,

 G_1 = Berat benda yang mudah terbakar, (Kg),

 H_1 = Satuan kalori benda, (Kgcal/ Kg),

H₀ = Nilai kalori kayu = 4500 kg cal/kg.

A = Luas lantai ruangan, (m²),

Q₁ = Nilai kalori total benda, (Kcal).

Berdasarkan jumlah beban api dapat diketahui perkiraan lama kebakaran berdasarkan tabel 3.6 di bawah ini

Tabel 3.6 Hubungan beban api dengan lamanya kebakaran

Jumlah Beban Api	Durasi Api
(Kg/m²)	(Jam)
49 73 98 146	1 1,5 2

Sumber: Drydale D, Introduction to Fire Dinamic, Wiley, 1985

Tabel 3.7 Beban api pada bangunan di Jepang

Jenis Bangunan	Beban Api (Kg/m²)
Kamar tidur	7 - 11
Ruang pertemuan	2 - 6
Perkantoran	30 - 80
Rumah sakit	3 - 5
Rumah perpustakaan	62 - 93

Lanjutan Tabel 3.7.

Rumah tinggal	25
Apartemen	35 - 60
Ruang kelas	30 - 45
Gudang	640 - 1020
Pertokoan	100 - 200

Sumber: Teori Dasar Api dan Penyebarannya (Pencegahan Kebakaran dan Strategi Evakuasi) hal. 30.

BAB IV

DATA BANGUNAN DAN HASIL PENGUJIAN

4.1 Data Bangunan Bogor Internusa Plaza

Bogor Internusa Plaza adalah pusat perbelanjaan yang terletak di Jalan Raya Pajajaran No.27 Bogor, struktur bangunan ini adalah struktur beton bertulang dengan sistem struktur portal terbuka. Dengan melihat hasil uji beton inti, maka kuat tekan beton riil sebelum terbakar pada bangunan ini diasumsikan fc = 22,5 Mpa. Bangunan ini mempunyai luas dasar 152 x 38 m² dan merupakan bangunan bertingkat 5 (lima), yaitu terdiri dari lantai basement, lantai dasar, lantai -1, lantai -2 dan lantai -3. Lantai -2 bagian sebelah depan (arah jalan Pajajaran) menggunakan penutup atap dari pelat beton bertulang, sedangkan bagian lain dari atap ini menggunakan penutup atap fiberglass sebagai skylight yang ditopang oleh kolom dan struktur atap konstruksi baja. Lantai -2 bagian gedung utama ini, yang merupakan playground menggunakan penutup atap seng.

Bangunan Bogor Internusa Plaza ini telah mengalami kebakaran pada tanggal 29 februari 1996 yang mengakibatkan kerusakan pada bangunan gedung utama, sedangkan pada gedung parkir masih dapat diselamatkan dari kebakaran. Kebakaran diperkirakan terjadi mulai pukul 1.30 dini hari dan dapat dipadamkan setelah kurang lebih berlangsung kebakaran selama 14 jam. Bagian yang terbakar adalah sebagian

besar lantai dasar (ground floor), keseluruhan lantai -1 dan lantai -2 di gedung utama.

4.2 Hasil Pemeriksaan dan Pengujian

Data hasil pemeriksaan dan pengujian dalam kasus kebakaran ini diambil dari Puslitbangkim PU di Bandung, yang merupakan hasil kerja Tim Puslitbangkim PU saat melakukan penelitian terhadap bangunan Bogor Internusa Plaza. Berikut ini adalah metode yang dilakukan dalam pemeriksaan maupun pengujian yang dilakukan oleh Tim Puslitbangkim PU.

4.2.1 Pengamatan Visual

Pemeriksaan awal yang telah dilakukan dengan melakukan pengamatan langsung di lapangan menunjukkan bahwa pada bangunan ini yang telah terbakar mengalami beberapa kerusakan pada komponen strukturnya. Kerusakan ini berupa terjadinya perubahan warna, pengelupasan selimut beton dan retakan yang sebagian besar terjadi pada komponen balok dan pelat lantai di lantai -1 sampai dengan lantai -3. Sedangkan pada kolom hanya terjadi pengelupasan plesteran, hasil pengamatan Visual ini dapat di lihat pada Tabel 4.1.

Khususnya pada balok dan pelat lantai, kerusakan yang terjadi dapat mengakibatkan menurunnya kekuatan apabila kerusakan dibiarkan dalam jangka waktu yang lama. Tulangan yang nampak terlihat sebagai akibat mengelupasnya selimut beton pada pelat lantai akan mengalami korosi dan semakin lama

berhubungan dengan udara luar semakin mengurangi besaran diameter tulangan, sehingga kekuatan akan menurun. Demikian pula halnya dengan retakan yang terjadi pada balok dan pelat lantai, retakan akan menghasilkan kontak antara baja tulangan dengan udara, sehingga korosi akan terjadi. Berikut ini adalah Tabel hasil pengamatan secara visual.

Tabel 4.1 Data pengamatan visual

Lantai/Komponen	Kode Bidang	Letak	Warna Beton
	Uji	Pengamatan	
Lantai 1	10', 11-B'	0 cm	Abu-abu putih
Balok	9 - B, B'	0 cm	Abu-abu keputih-putihan
	9 - B', C	0 cm	Abu-abu keputih-putihan
	9, 9' - B'	0 cm	Abu-abu keputih-putihan
	8' - B', C	0 cm	Abu-abu keputih-putihan
Lantai 1	9', 10 - D', E	3 cm	Kemerahan
Pelat	9,9' - D,D'	0 cm	Abu-abu keputih-putihan
	9,9' - B, B'	0 cm	Kemerahan
	9',10 - B', C	3 cm	Kemerahan
	8',9 - B',C	0 cm	Abu-abu keputih-putihan
Lantai 2	3 - D,D'	0 cm	Abu-abu putih
Balok	3 - D',E	0 cm	Abu-abu putih
	3,3' - E	0 cm	Abu-abu putih
	3',4 - E	0 cm	Abu-abu putih
	7 - A', B	0 cm	Abu-abu putih
Lantai 2	3,3' - D',E	0 cm	Abu-abu putih
Pelat	3,3' - E,E'	3 cm	Abu-abu putih
	6',7 - A',B	0 cm	Abu-abu keputih-putihan
	7,7' - A',B	0 cm	Abu-abu keputih-putihan
	7',8 - A',B	0 cm	Abu-abu keputih-putihan
Lantai 3	10 - B,B'	0 cm	Abu-abu putih
Balok	10 - B',C	0 cm	Abu-abu putih
	7 - D,D'	0 cm	Abu-abu putih
	7 - D',E	0 cm	Abu-abu putih
	7,7' - E	0 cm	Abu-abu putih

Lanjutan Tabel 4.1.

Lantai 3	3',4 - A',B	0 cm	Abu-abu putih
Pelat	5',6 - A',B	0 cm	Abu-abu putih
	11,11' - E,E'	1 cm	Abu-abu putih
	21,21' - A',B	1 cm	Abu-abu putih
	3,3' - B,B'	0 cm	Abu-abu putih

4.2.2 Pengujian Penetrasi Phenolpthaline

Pengujian ini menggunakan larutan indikator phenolphaline 5 % dengan cara melaburkan pada permukaan komponen beton dengan terlebih dahulu mengupas sampai kedalaman tertentu. Apabila beton telah mengalami pemanasan diatas 450 °C akan muncul warna tertentu akibat bereaksi dengan larutan phenolphaline. Berikut adalah Tabel hasil uji penetrasi phenolphaline.

Tabel 4.2

Data pengujian penetrasi phenolpthaline pada komponen struktur kolom

	1	J	T	~~~~~~	,
Lantai	Nomor Kolom	Warna Awal	Reaksi	Warna Akhir	Kedalaman Uji
Dasar	9D	Pink Muda	Lambat	Pudar	1
Dasar	18C	Pink Muda	Lambat	Hilang	2
Dasar	10C	Pink Muda	Lambat	Pudar	1
Dasar	11B	Pink Muda	Lambat	Pudar	1
Dasar	12D	Pink Muda	Lambat	Hilang	2
Satu	14B	Pink Tua	Cepat	Pink	1
Satu	15E	Pink Tua	C e pat	Pink	1
Satu	8B	Pink Tue	Cepat	Pink	1
Satu	16B	Pink Tua	Cepat	Pink	1
Setu	13F	Pink Tua	Cepat	Pink	1

Lanjutan Tabel 4.2.

Dua	4B	Pink Tua	Cepat	Pink	1
Dua	9B	Pink Tua	Cepat	Pink	1
Dua	11E	Pink Tua	Cepat	Pink	1
Dua	12E	Pink Tua	Cepat	Pink	1
Dua	11D	Pink Tua	Cepat	Pink	1

Tabel 4.3

Data pengujian penetrasi phenolpthaline pada komponen struktur balok

Lantai	Nomor Balok	Warna Awal	Reaksi	Warna Akhir	Kedalaman Uji
Satu	10',11-B'	Pink Muda	Cepat	Hilang	2
Satu	9-B,B'	Pink Muda	Cepat	Pudar	1
Satu	9-B',C	Pink Muda	Cepat	Pudar	1
Satu	9,9'-B'	Pink Muda	Cepat	Hilang	2
Satu	8'-B',C	Pink Muda	Cepat	Pudar	1
Dua	3-D,D'	Pink Tua	Cepat	Pink	1
Dua	3-D',E	Pink Tua	Cepat	Pink	1
Dua	3,3'-E	Pink Tua	Cepat	Pink	1
Dua	3',4-E	Pink Tua	Cepat	Pink	1
Dua	7-A',B	Pink Tua	Cepat	Pink	1
Tiga	10-B,B'	Pink Tua	Cepat	Pink	1
Tiga	10-B',C	Pink Tua	Cepat	Pink	1
Tiga	7-D,D'	Pink Tua	Cepat	Pink	1
Tiga	7-D',E	Pink Tua	Cepat	Pink	1
Tiga	7,7'-E	Pink Tua	Cepat	Pink	1

4.2.3 Pengujian Palu Beton

Pengujian dilakukan terhadap komponen struktur balok, kolom dan pelat, dengan menggunakan alat *Hammer Test*. Dari pengujian ini dapat diketahui nilai lentingan yang dapat dibaca pada alat uji saat melakukan pengujian. Berikut adalah data hasil uji palu beton.

Tabel 4.4

Data pengujian beton dengan palu beton (Concrete Hammer) pada kolom

Kode bidang uj	i	9	- D		18 - C	1	0 - C	11	- B	12	- D
Lantai/ sudut pr	ukulan	Das	ar/O	I	asar/0	Da	sar/0	Das	ar / 0	Das	ar/0
Pukulan	1	38	42	42	40	39	43	40	45	38	38
	2	38	41	42	38	40	42	42	46	37	39
	3	36	42	41	44	45	41	46	46	38	39
	4	38	36	43	39	42	46	42	44	39	42
	5	37	41	44	46	41	44	46	40	34	39
	6	36	36	44	40	40	44	46	44	40	39
	7	38	36	41	40	41	42	41	42	38	34
	8	40	38	45	40	40	44	45	46	34	39
	9	38	36	43	38	38	42	45	42	38	37
	10	38	36	43	39					35	38
Jumlah pukulan		2)		20	1	8	13	3	20	0

Tabel 4.5

Data pengujian beton dengan palu beton (Concrete Hammer) pada kolom

Kode bidang uji	1.	4 - B	T	15 - E	T	8 - B	,	16-B	1	3 - F
Lantai/ sudut pukulan	1	/0		1/0		1/0	<u> </u>	1/0	1	10
Pukulan 1	44	45	36	36	38	36	28	33	34	39
2	44	46	36	34	36	39	30	28	38	40
3	48	46	38	36	34	3 7	30	26	35	36
4	48	46	38	34	35	39	32	26	38	34
5	46	46	39	33	34	38	32	28	38	39
كليفيان بعضيها	44	42	40	34_	38	38	32	~ 26	38	37
7	44	42	34	34	35	38	32	31	40	40
8	42	41	36	34	36	36	28	34	39	40
9	40	44			39	38			38	39
10	1				35	35				
Jumlah pukulan	1	8		16		20		16	1	8

 ${\it Tabel 4.6} \\ {\it Data pengujian beton dengan palu beton (\it Concrete Hammer) pada kolom}$

Kode bidang uj	ji	4	- B	5) - B	1	1 - E	1	12 - E	1	1 - D
Lantai/ sudut p	ukulan	2	/0	1	2/0	2	2/0		2/0	:	2/0
Pukulan	1	33	30	28	30	28	30	25	26	30	26
	2	36	28	30	30	24	26	25	27	26	26
	3	36	32	30	28	28	26	26	28	26	24
	4	36	30	35	30	26	26	26	28	27	30
	5	32	31	34	32	30	28	27	29	24	26
	6	30	30	30	28	28	28	25	28	25	24
	7	31	28	30	30	30	28	25	29	28	24
	8	31	34	34	28	30	28	27	29	26	23
	9	34	32	32	39	30	27	27	28	24	22
	10	31	30	30	26	29	26	26	29		
Jumlah pukulan		2	0	2	20	2	:0		20		18

Tabel 4.7
Data pengujian beton dengan palu beton (Concrete Hammer) pada balok

Kode bidang uji		10',	11 - B'	9	- B, B'	9 -	B', C	9,5)' - B'	8' -	B', C
Lantai/ sudut pui	kulan	1	10		1/0	1	/0	1	10	 	/0
Pukulan	1	42	37	38	45	48	47	46	41	44	42
	2	35	43	40	47	48	45	40	44	40	44
	3	40	43	42	41	47	48	40	38	42	42
	4	40	39	39	45	44	42	40	41	47	38
	5	40	34	38	45	47	44	44	39	47	42
	6	43	40	42	42	47	44	40	39	46	38
	7	34	40	40	44	41	42	44	41	47	40
	8	38	37	40	44	43	40	44	43	44	38
	9	40	38	42	44	40	40	40	43	43	38
	10			45	40	45	42	40	42	40	38
Jumlah pukulan		1	8		20	2	0	20	0	2	

Tabel 4.8

Data pengujian beton dengan palu beton (Concrete Hammer) pada balok

Kode bidang uji		3 - 3	D, D'	3 -	D',E	3,	3' - E	3',	4 - E	7 -	A', B
Lantai/ sudut pu	kulan	2	/0	2	/0	2	2/0	2	/0		/0
Pukulan	1	30	32	39	36	32	38	32	36	31	30
	2	30	34	38	34	34	34	36	32	31	29
	3	36	32	37	36	32	34	34	32	28	31
	4	36	30	36	32	29	30	36	30	26	32
	5	36	36	38	36	38	32	36	30	31	35
	6	32	29	32	34	32	36	34	31	32	30
	7	32	26	32	32	38	36	36	34	30	30
	8	30	36	30	34	32	36	32	32	30	28
	9	36	36	36	35	32	36	34	34	31	30
	10			36	36	30	33			30	32
Jumlah pukulan		18	3	2	0	2	0	18	3	2	0

Tabel 4.9

Data pengujian beton dengan palu beton (Concrete Hammer) pada balok

Vadabidan		1 10) <u>F</u>		
Kode bidang uji		10 -	B, B'	10-	B', C	7 -	D, D'	7 -	D', E	7,	7' - E
Lantai/ sudut pu	kulan	3.	0	3	10		3/0	3	/0	1-3	/0
Pukulan	1	26	26	28	28	20	23	20	20	24	
	2	30	24	26	24	24	24	24	23	28	24
	3	28	24	28	27	24	22	24	20	25	24 24
	4	26	24	28	29	26	26	20	26	24	22
	5	26	26	29	25	22	22	21	20	26	23
	6	28	24	26	28	21	28	20	22	24	23
	7	28	26	29	28	26	26	20	21	26	22
	8	28	26	28	28	2 6	25	20	21	26	22
	9	26	24	24	31	23	26	21	26	24	24
	10			32	26	27	26	23	24	24	22
Jumlah pukulan		18		20	5	2	0	20	5	20)

Tabel 4.10
Data pengujian beton dengan palu beton (Concrete Hammer) pada pelat

TZ - 3 - 1 ' 1		T							, •	~ p 010	
Kode bidang uji		9,10)-D',E	9,9	'-D,D'	9,9	'-B , B'	9'10)-B',C	8',9)-B',C
Lantai/ sudut pu	kulan	1/4	-90	17	+90	1-7/	/+90 - ²²	1/-	+90		+90
Pukulan	1	30	35	33	39	42					
	2			1		1	42	36	32	38	36
		32	34	39	36	45	42	34	32	36	38
	3	38	34	36	42	46	40	34	30	32	36
	4	36	33	40	39	46	44	42	36	34	40
	5	30	37	38	37	46	42	35	32	37	38
	6	36	37	36	40	46	42	32	32	32	36
	7	32	37	36	38	44	47	34	36	38	34
	8	36	37	36	39	44	42	32	32	34	34
	9			36	40	42	42	36	32	31	34
	10			36	35	43	42			38	35
Jumlah pukulan		16		2	0	2	0	18	3	20	

Tabel 4.11

Data pengujian beton dengan palu beton (Concrete Hammer) pada pelat

Kode bidang uji	. , ,,,,,	3,3'	-D',E	3,3'	-E,E'	6',7	-A',B	7,7'	-A',B	7',8	-A',B	
Lantai/ sudut pul	culan	2/+90		2/-	2/ +90		2/+90		2/+90		2/+90	
Pukulan	1	34	36	35	36	40	40	44	44	45	41	
	2	41	36	36	36	42	44	39	40	41	42	
	3	32	36	35	34	38	42	44	42	38	42	
	4	40	36	35	30	42	36	43	38	42	41	
	5	36	38	30	30	42	40	39	3 7	40	38	
	6	38	34	32	32	42	40	44	41	40	38	
	7	36	35	28	30	40	36	45	42	38	42	
	8	35	35	32	30	42	38	41	44	41	38	
	9	38	35	34	28	44	41	42	42	41	38	
	10	35	36	34	35	40	40	42	40	36	42	
Jumlah pukulan		2	0	2	.0	2	0	2	0	2	.0	

Tabel 4.12
Data pengujian beton dengan palu beton (Concrete Hammer) pada pelat

Kode bidang uji		3',4	·A',B	5',6	5-A',B	11,1	1'-E,E'	21,2	l'-A',B	3,3	'-B,B'
Lantai/ sudut pul	kulan	3/	+90	3 /	/+90	3 /	+90	3 /	+90	3/	+90
Pukulan	1	34	36	40	34	34	30	30	27	34	36
	2	36	36	39	38	32	28	30	30	35	37
	3	33	35	38	34	30	30	28	32	30	33
	4	36	34	34	35	28	30	34	36	36	36
	5	34	32	40	32	26	30	30	28	32	36
	6	32	32	38	39	28	30	35	30	34	32
	7	36	30	34	36	28	34	34	28	35	32
	8	36	36	39	35	34	34	36	28	36	36
	9	36	32	36	35	34	30	35	28	34	36
	10	36	32			30	34			36	30
Jumlah pukulan		2	0		18	2	20	1	8	2	20

4.2.4 Pengujian Ultrasonic Pulse Velocity

Data diambil dari hasil pengujian yang telah dilakukan oleh Tim Puslitbangkim PU Bandung. Pengujian dilakukan pada komponen struktur balok, kolom dan pelat. Pengujian ini hanya memperkirakan kualitas beton berdasarkan keseragaman mutu beton berdasarkan kecepatan rambat gelombang ultrasonic. Data hasil pengujian dapat di lihat pada Tabel berikut.

Tabel 4.13

Data pengujian beton dengan UPV pada kolom lantai dasar

Kode bidang uji		11-B	10 - C	18 - C	9 - D	12 - D
Jarak lintasan (cm))	30	50	50	50	50
Waktu rambat	1	80.3	100.9	92.9	131.1	90.4
gelombang UPV	2	77.4	97.3	91.6	157.6	90.6
(micro detik)	3	67.1	94.2	93.1	151.3	90.9
	4	68.9	95.4	93.0	163.6	91.2
	5	99.8	98.2	95.1	168.9	90.7
	6	96.6	101.5	96.9	155.6	90.7
	7	93.6	91.4	98.3	152.5	89.9
	8	95.7	89.6	98.9	150.9	92.2
	9	95.8	91.6	99.2	157.4	93.1
	10	94.5	95.7	98.0	161.3	93.3
Jumlah pengujian		10	10	10	10	10

Tabel 4.14 Data pengujian beton dengan UPV pada kolom lantai satu

Kode bidang uji		8-B	14 - B	16-B	15 - E	13 - F
Jarak lintasan (cm)	50	30	50	50	50
Waktu rambat	1	99.4	61.6	194.7	122.6	368.2
gelombang UPV	2	89.4	60.7	195.5	179.6	355.3
(micro detik)	3	109.2	98.7	195.1	149.8	330.7
	4	87.9	87.7	176.0	151.2	315.2
	5	86.2	84.4	190.1	139.5	266.9
	6	86.6	66.5	184.6	121.6	258.3
	7	88.3	84.3	149.5	141.4	253.0
	8	89.5	69.6	147.9	127.9	265.7
	9	132.7	64.3	147.5	121.7	255.4
	10	98.4	66.8	152.2	130.1	256.7
Jumlah pengujian		10	10	10	10	10

Tabel 4.15
Data pengujian beton dengan UPV pada kolom lantai dua

Kode bidang uji		4 - B	9 - B	11 - D	11 - E	12 - E
Jarak lintasan (cm)		50	50	50	50	50
Waktu rambat	1	110.7	128.2	98.8	111.2	103.3
gelombang UPV	2	150.5	130.2	102.6	121.3	120.1
(micro detik)	3	151.4	159.9	121.2	140.8	126.5
	4	154.7	174.0	122.0	186.7	131.0
	5	144.7	144.5	127.3	152.6	108.3
	6	159.6	120.7	115.2	178.6	91.5
	7	171.0	131.8	109.6	182.2	109.6
	8	182.2	162.1	113.7	138.7	113.7
	9	134.0	182.2	129.1	183.6	129.1
·	10	175.4	171.5	110.7	157.7	110.7
Jumlah pengujian		10	10	10	10	10

Tabel 4.16
Data pengujian beton dengan UPV pada balok lantai satu

Kode bidang uji		10',11 - B'	9 - B, B'	9 - B', C	9, 9' - B'	8' - B', C
Jarak lintasan (cm))	35	45	45	45	50
Waktu rambat	1	110.9	179.4	185.1	171.8	174.2
gelombang UPV	2	133.6	193.1	165.9	158.5	198.3
(micro detik)	3	128.5	187.0	186.6	162.5	181.5
	4	151.2	179.5	159.8	164.0	178.7
	5	156.5	177.5	181.5	161.1	208.3
	6	149.3	179.7	182.6	185.5	183.9
	7	119.8	209.9	159.3	182.8	184.1
	8	158.2	236.4	189.3	155.6	185.7
	9	157.9	182.0	139.2	170.0	217.3
	10	142.6	192.4	137.5	166.5	189.3
Jumlah pengujian		10	10	10	10	10

Tabel 4.17 Data pengujian beton dengan UPV pada balok lantai dua

Kode bidang uji		3 - D, D'	3 - D',E	3, 3' - E	3', 4 - E	7 - A', B
Jarak lintasan (cm))	35	35	35	25	35
Waktu rambat	1	72.2	79.5	77.9	62.4	62.2
gelombang UPV	2	76.5	99.7	80.2	84.1	67.6
(micro detik)	3	86.9	96.2	85.1	80.3	66.4
	4	83.3	68.2	79.6	77.6	69.7
	5	80.9	69.6	88.2	82.4	69.5
	6	76.6	79.7	90.3	83.3	78.7
	7	84.6	71.2	79.6	89.8	75.4
	8	86.1	68.3	117.2	76.2	68.6
	9	85.5	72.9	115.0	85.9	75.3
	10	84.2	84.0	87.3	89.1	76.2
Jumlah pengujian		10	10	10	10	10

Tabel 4.18 Data pengujian beton dengan UPV pada balok lantai tiga

Kode bidang uji	10 - B, B'	10-B', C	7 - D, D'	7 - D', E	7 71 7
Jarak lintasan (cm)	35	35			7, 7' - E
Waktu rambat			35	35	35
	1 281.6	261.5	80.5	78.1	197.2
gelombang UPV	2 305.0	263.5	121.0	82.3	180.0
(micro detik)	3 258.9	270.1	102.1	93.1	198.3
	4 342.0	341.8	123,4	92.2	202.3
:	5 285.1	291.3	125.8	111.5	222.5
•	378.6	336.2	110.7	98.4	207.8
7	321.5	357.7	122.4	106.4	215.4
8	330.7	304.6	141.1	126.8	207.4
9	280.3	302.5	133.5	87.5	199.7
10	356.1	229.7	124.4	87.7	
ımlah pengujian	10	10	10		221.3
			10	10	10

Tabel 4.19 Data pengujian beton dengan UPV pada pelat lantai satu

Kode bidang uji		9',10-D',E	9,9'-D,D'	9,9'-B,B'	9'10-B',C	8',9-B',C
Jarak lintasan (cm))	30	45	25		
Waktu rambat		1		23	30	30
	1	114.3	116.3	99.4	71.4	120.6
gelombang UPV	2	111.9	128.6	128.3	64.4	124.4
(micro detik)	3	112.4	120.3	127.6	66.9	124.6
	4	112.5	136,7	137.4	72.4	130.3
	5	110.8	137.9	120.6	68.8	122.4
	6	99.3	124.1	122.7	66.1	128.8
	7	112.9	132.2	124.2	64.2	119.8
	8	109.1	140.0	86.9	63.6	123.4
	9	106.4	134.4	129.7	77.4	124.3
	0	111.3	135.6	129,4	65.6	125.6
umlah pengujian	T	10	10	10	10	10

Tabel 4.20 Data pengujian beton dengan UPV pada pelat lantai dua

Kode bidang uji		3,3'-D',E	3,3'-E,E'	6',7-A',B	7,7'-A',B	7',8-A',B
Jarak lintasan (cm)		35	30	30	25	25
Waktu rambat	1	113.6	78.2	84.6	53.6	142.5
gelombang UPV	2	156.7	95.3	77.1	99.9	156.8
(micro detik)	3	121.7	83.3	132.6	79.1	132.6
	4	169.3	77.6	95.1	58.5	122.7
	5	169.4	102.1	136.5	84.3	159.0
	6	138.7	81.2	98.4	89.7	149.2
	7	138.9	97.7	73.3	57.6	119.1
	8	178.0	75.5	77.7	59.2	13 2 .7
	9	163.2	77.3	75.9	103.2	146.6
	10	123.3	101.0	74.7	82.4	158.2
Jumlah pengujian		10	10	10	10	10

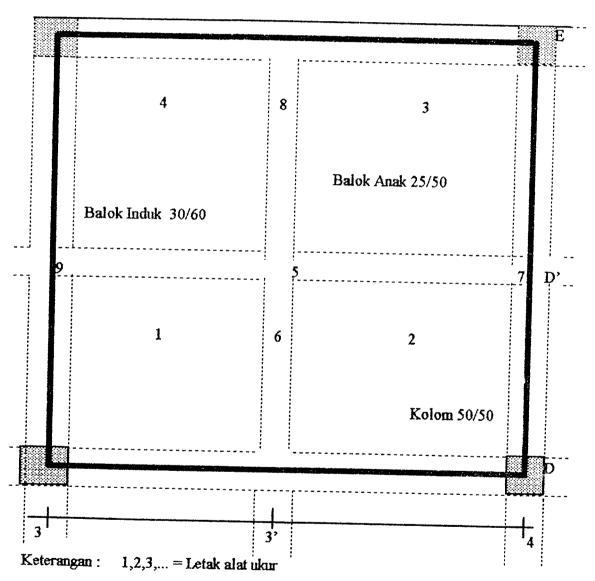
Tabel 4.21 Data pengujian beton dengan UPV pada pelat lantai tiga

Kode bidang uji		11,11'-E,E'	21,21'-A',B	3,3'-B,B'
Jarak lintasan (cm))	30	30	30
Waktu rambat	1	272.3	111.9	240.8
gelombang UPV	2	295.6	90.7	226.7
(micro detik)	3	283.3	85.2	230.9
	4	271.9	84.7	136.2
	5	276.5	86.1	205.1
	6	260.7	86.4	132.4
	7	280.4	73.5	161.2
	8	296.9	86.9	189.9
	9	242.8	84.0	189.0
	10	297.8	86.6	160.1
Jumlah pengujian		10	10	10

4.2.5 Pengujian Beton Inti

Data diambil dari hasil pengujian yang telah dilakukan oleh Tim Puslitbangkim PU Bandung. Pengujian dilakukan pada komponen struktur balok, kolom dan pelat. Pengujian beton inti menghasilkan nilai kuat tekan yang lebih akurat karena pengujian ini dilakukan dengan uji kuat tekan hancur pada benda uji yang diambil dari setiap komponen struktur di lapangan. Hasil pengujian dapat di lihat pada Tabel berikut.

Tabel 4.22
Data pengujian beton dengan core drill


No	Komponen					
	Struktur	Kode	Berat (gr)	τ	Jkuran (mi	n)
				Dia	lo	l'
1	Kolom Lt. Dasar	18 - C	360.4	44.8	101.0	104.0
2	Kolom Lt. Dasar	10 - C	368.1	44.4	88.5	93.0
3	Kolom Lt.1	7 - B	360.5	44.7	100.3	103.0
4	Kolom Lt.1	8 - B	360.4	44.7	100.5	104.5
5	Kolom Lt.1	14 - B	376.3	45.0	100.9	104.0
6	Kolom Lt.1	15 - E	316.8	44.8	86.5	89.5
7	Kolom Lt.1	16 - B	372.2	44.5	100.6	105.0
8	Kolom Lt.1	20 - E	355.8	45.0	100.8	104.0
9	Kolom Lt.1	3 - E	366.2	45.0	99.9	102.9
10	Kolom Lt.2	4 - B	363.3	44.5	99.0	101.4
11	Kolom Lt.2	8 - E	374.5	45.0	101.0	104.4

Lanjutan Tabel 4.22

11	Kolom Lt.2	8 - E	374.5	45.0	101.0	104.4
12	Kolom Lt.2	9 - B	372.3	45.0	101.0	104.5
13	Balok Lt.1	8' - B, B'	349.6	44.5	101.2	104.4
14	Balok Lt.2	7 - A', B	356.2	45.0	100.5	104.6
15	Balok Lt.2	3 - D, D'	319.2	45.0	83.0	86.8
16	Pelat Lt. 1	8', 9 - B', C	1416.7	99.9	77.5	86.0
17	Pelat Lt.2	7, 7' - A', B	1716.4	99.0	95.3	100.2
18	Pelat Lt.2	3, 3' - D', E	1598.3	99.0	86.0	92.8

4.2.6 Pengujian Pembebanan (Loading Test)

Pengujian beban bangunan Bogor Internusa Plaza menghasilkan data pengujian beban uji vs lendutan yang lokasi uji, letak alat ukur dan data uji tersebut dapat di lihat pada gambar dan tabel sebagai berikut.

Gambar 4.1 Lokasi uji beban di D,E-3,4 / Lantai 2

Tabel 4.23 Data uji pembebanan

Beb viji (ka	/m²)			Le	ndutan	(mm)							
	Trau	ns -! Tran	s-2 Trau	ns -3 T	rans-4	Trans -							
0	0	0	0	0	1 1110 7	0			rans -7	Trans	8 Tr.	uns-9 Tr	x ns -10
50	0.2	0.23	0.25		24		0	0		0	0	0	
100	0.4	0.42	0.46		44	0.29	0.19		27	0.26	0.00	5 0.0	7
150	0.65	0.68	0.72	0.1		0.53	0.38	0.		0.47	0.13		
200	0.9	0.93	0.97	0.9		0.85	0.62	0.	78	0.75	0.27		
250	1.14	1.17	1.22	1.2		1.16	0.87	1.0	05	1.01	0.39		
300	1.4	1.43	1.48	1.5		1.48	1.12	13		1.28	0.52		
350	1.68	1.71	1.77	1.8		1.81	1.37	1.6		1.55	0.66		
400	1.96	1.98	2.06	2.1		2.17	1.64	19	5	1.87	0.80	0.58	
450	2.26	2.27	2.36	2.4		2.52	1.91	22		2.17	0.95	0.66	
500	2.57	2.57	2.67	2.79		<u> 291</u>	2.2	2.5	9	2.49	1.12	0.76	
550	2.91	2.91	3.02	3.10		33	2.49	29	4	2.82	1.29	0.87	
550	3.19	3.17	33	3.46		3.74	2.82	33.	2	3. 2 3	1.48	0.98	
550	3.22	321	336	3.51		4.1	3.07	3.63	3	3.53	1.61	1.05	
550	3.2	3.19	3.41	3.51		4.16	3.12	3.7		3.58	1.64	1.04	
550	3.34	3.26	3.49	3.61		12	3.13	3.71		3.60	1.60	1.01	
550	3.41	3.3	3.53	3.69		1.3	3.19	3.78		3.67	1.72	1.1	
550 /	3.45	334	3.54			1.37	3.25	3.82		3.73	1.80	1.16	
550 /	3.47	3.36	3.54	3.73		.41	3.27	3.84	3	.75	1.84	1.17	
550	3.48	3.36	354			.41	3.27	3.84		.76	1.84	1.18	
550 %	3.49	3.37	3.55	3.74		.42	3.28	3.84	3	.76	1.84	1.18	
550	3.5	3.39	3.55	3.75		.43	3.28	3.84		.77	1.84	1.18	
550	3.5	3.41	3.55	3.76		44	3.3	3.86	3.	78	1.84	1.18	
550	3.39	3.38	3.54			45	332	3.87		78	1.82	1.15	
550 →	3.3	3.32	3.55	3.71	4.		3.31	3.88	3.		1.71	1.05	
500	3.08	3.13	337	3.65	4.		3.29	3.86	3.	72	1.62	0.97	
450	2.83	2.88	3.11	3.43	4.1		3.08	3.67	3.	53	1.51	0.90	
400	2.58	2.64	2.87		3.8		3.83	3.38	3.2		137	0.81	\rightarrow
350	23	2.36	2.59	2.89	3.5		2.6	3.12	25	15	1.24	0.73	
300	2.03	2.1	2.32	2.6	3.1		2.32	2.80	2.6		1.1	0.65	-
250	1.78	1.85	2.06	2.32	28		2.06	2.50	2.3	6	0.99	0.56	\dashv
200	1.53	1.61	1.81	2.04	25	1	1.82	2.21	2.0		0.87	0.47	
150	1.21	13	1.47	1.78	2.2		.58	1.94	1.8		0.74	0.47	
100	0.93	1.03	1.19	1.43	1.79		27	1.58	1.4		0.58	0.28	
50	0.57	0.66	0.82	1.13	1.4	5 1	.01	1.28	1.16		0.43	0.19	\dashv
0	0.38	0.42	0.62	0.74	1		.68	0.89	0.78		0.22		
0	0.32	0.35	0.57	0.52	0.77		5	0.68	0.58		0.11	0.05	
0	0.34	0.33		0.46	0.7	0	.44	0.61	0.51		0.11	-0.01	
0	0.36	034	0.54	0.47	0.7		44	0.57	0.51		0.15	-0.01	
0	0.37	0.35	0.53	0.48	0.72	0.	45	0.56	0.52	-	0.20	0.03	
0	0.38	0.35	0.49	0.48	0.72	0.	44	0.54	0.52		0.21	0.03	_
0	0.38	035	0.48	0.48	0.72	0.	44	0.53	0.52		0.22	0.04	4
0	0.39	036	0.47	0.49	0.73	0.4	14	0.53	0.53			0.04	4
0	0.4	0.36	0.47	0.49	0.73	0.4	14	0.53	0.53	1	0.25 0.25	0.05	_
0	0.37	034	0.45	0.5	0.73	0.4	4	0.52	0.53			0.05	4
	023		0.44	0.5	0.7	0.4		0.52	0.52		25	0.07	_
0	0.03		0.36	0.37	0.56	0.2		0.41	0.38		126	0.05	4
		0.02	0.27	0.17	0.34	0.1		0.27	0.19		0.13	0.05	_
									1 0.13		0.02	-0.16	1

BAB V

PENGOLAHAN DATA

5.1 Data Pengamatan Visual

Dari hasil pengamatan secara visual dapat diambil suatu kesimpulan tentang perkiraan prosentase kekuatan sesudah dibanding sebelum terbakar, disamping itu dapat diperkirakan tinggi suhu yang pernah terjadi pada komponen struktur bangunan. Dari warna beton yang terjadi seperti tercantum dalam Tabel 4.1, dapat diketahui prosentase kekuatan beton setelah terbakar (pembacaan arah vertikal) dan tinggi suhu yang dicapai (pembacaan arah mendatar) berdasarkan Gambar 2.2.

Berikut adalah tabel yang menggambarkan perkiraan prosentase kekuatan sesudah dibanding sebelum terbakar dari analisis data pengamatan visual.

Tabel 5.1
Hasil analisis data pengamatan visual

Lantai/ Komponen	Kode Bidang Uji	Letak Penga- matan	Warna Beton	kekuatan beton setelah terbakar (%)	Perkir san Suhu ° C
Lantai 1	10', 11-B'	0 cm	Abu-abu putih	10	950
Balok	9 - B, B'	0 cm	Abu-abu keputih-putihan	12.5	850
	9 - B', C	0 cm	Abu-abu keputih-putihan	12.5	850
	9.9' - B'	0 cm	Abu-abu keputih-putihan	12.5	850
	8' - B', C	0 cm	Abu-abu keputih-putihan	12.5	850
Lantai 1	9',10 - D',E	3 cm	Kemerahan	30	600
Pelat	9,9' - D.D'	0 cm	Abu-abu keputih-putihan	12.5	850
2 0140	9,9' - B, B'	0 cm	Kemerahan	30	600
	9',10 - B', C	3 cm	Kernerahan	30	600
	8',9 - B',C	0 cm	Abu-abu keputih-putihan	12.5	850

Lanjutan Tabel 5.1.

Lantai 2	3 - D,D'	0 cm	Abu-abu putih	10	950
Balok	3 - D'E	0 cm	Abu-abu putih	10	950
	3,3' - E	0 cm	Abu-abu putih	10	950
	3',4 - E	0 cm	Abu-abu putih	10	950
	7 - A', B	0 cm	Abu-abu putih	10	950
Lantai 2	3,3' - D',E	0 cm	Abu-abu putih	10	950
Pelat	3,3' - E,E'	3 cm	Abu-abu putih	10	950
	6',7 - A',B	0 cm	Abu-abu keputih-putihan	12.5	850
	7,7' - A',B	0 cm	Abu-abu keputih-putihan	12.5	850
Į	7',8 - A',B	0 cm	Abu-abu keputih-putihan	12.5	850
Lantai 3	10 - B,B'	0 cm	Abu-abu putih	10	950
Balok	10 - B',C	0 cm	Abu-abu putih	10	950
	7 - D,D'	0 cm	Abu-abu putih	10	950
	7 - D',E	0 cm	Abu-abu putih	10	950
	7,7' - E	0 cm	Abu-abu putih	10	950
Lantai 3	3',4 - A',B	0 cm	Abu-abu putih	10	950
Pelat	5',6 - A',B	0 cm	Abu-abu putih	10	950
	11,11' - E,E'	1 cm	Abu-abu putih	10	950
	21,21' -	1 cm	Abu-abu putih	10	950
	A',B	0 cm	Abu-abu putih	10	950
	3,3' - B,B'				

5.2 Pengujian Penetrasi Phenolpthaline

Dari hasil pengujian penetrasi phenolpthaline dapat diketahui perkiraan penetrasi panas yang didasarkan pada perubahan warna beton yang terjadi akibat perubahan semen yang terikat sebagai CaOH menjadi CaO akibat pemanasan melampaui 450°C, yang bereaksi dengan larutan phenolpthaline. Dari perubahan warna yang terjadi akibat reaksi phenolpthaline seperti tercantum dalam Tabel 4.2 dan Tabel 4.3, dapat diperkirakan tinggii suhu yang terjadi berdasar Tabel 3.4. Berikut adalah tabel hasil analisis dari data pengujian yang dilakukan pada komponen struktur kolom dan balok pada bangaman Bogor Internusa Plaza akibat kebakaran.

Tabel 5.2

Hasil analisis data uji penetrasi *phenolpthaline* pada komponen struktur kolom

Lantai	Nomor Kolom	Warna Awal	Reaksi	Warna Akhir	Kedalaman Uji (crn)	Perkiraan Suhu (° C)
Dasar	9D	Pink Muda	Lambat	Pudar	1	500
Dasar	18C	Pink Muda	Lambat	Hilang	2	475
Dasar	10C	Pink Muda	Lambat	Pudar	1	500
Dasar	11B	Pink Muda	Lambat	Pudar	1	500
Dasar	12D	Pink Muda	Lambat	Hilang	2	475
Satu	14B	Pink Tua	Cepat	Pink	1	850
Satu	15E	Pink Tua	Cepat	Pink	1	850
Satu	8B	Pink Tua	Cepat	Pink	1	850
Satu	16B	Pink Tua	Cepat	Pink	1	850
Satu	13F	Pink Tua	Cepat	Pink	1	850
Dua	4B	Pink Tua	Cepat	Pink	1	850
Dua	9B	Pink Tua	Cepat	Pink	1	850
Dua	11E	Pink Tua	Cepat	Pink	1	850
Dua	12E	Pink Tua	Cepat	Pink	1	850
Dua	11D	Pink Tua	Cepat	Pink	1	850

Tabel 5.3
Hasil analisis data uji penetrasi *phenolpthaline* pada komponen struktur balok

Lantai	Nomor Balok	Warna Awal	Reaksi	Warna Akhir	Kedalaman Uji (cm)	Perkiraan Suhu (° C)
Satu	10',11-B'	Pink Muda	Cepat	Hilang	2	475
Satu	9-B,B'	Pink Muda	Cepat	Pudar	1	500
Satu	9-B',C	Pink Muda	Cepat	Pudar	1	500
Satu	9,9'-B'	Pink Muda	Cepat	Hilang	2	475
Satu	8'-B',C	Pink M uda	Cepat	Pudar	1	500

Lanjutan Tabel 5.3.

Dua	3-D,D'	Pink Tua	Cepat	Pink	1	850
Dua	3-D',E	Pink Tua	Cepat	Pink	1	850
Dua	3,3'-E	Pink Tua	Cepat	Pink	1	850
Dua	3',4-E	Pink Tua	Cepat	Pink	1	850
Dua	7-A',B	Pink Tua	Cepat	Pink	1	850
Tiga	10-B,B'	Pink Tua	Cepat	Pink	1	850
Tiga	10-B',C	Pink Tua	Cepat	Pink	1	850
Tiga	7-D,D'	Pink Tua	Cepat	Pink	1	850
Tiga	7-D',E	Pink Tua	Cepat	Pink	1	850
Tiga	7,7'-E	Pink Tua	Cepat	Pink	1 .	850

5.3 Pengujian Palu Beton

Analisis pengujian palu beton dilakukan dengan menghitung nilai lentingan rata-rata hasil pengujian kemudian dengan melihat Gambar 5.1 dapat diketahui hubungan nilai lentingan (sumbu mendatar) dengan kuat tekan karakteristik silinder beton (pada pembacaan sumbu tegak). Untuk mendapatkan perkiraan kuat tekan beton terlebih dahulu dihitung nilai standar deviasi (berdasarkan persamaan 5.1) dari beberapa nilai kuat tekan silinder beton. Nilai kuat tekan beton dihitung berdasarkan persamaan 3.1.

Untuk mengetahui keseragaman hasil pengujian dapat di ketahui dari hasil simpangan baku / deviasi standard dan koefisien varian. Semakin kecil nilai koefisien varian berarti hasil pengujian semakin seragam.

Besarnya deviasi standard dan koefisien varien dihitung berdasarkan rumus berikut.

$$S = \sqrt{\frac{\sum |xi - \bar{x}|^2}{N-1}}. fi \qquad (5.1)$$

dengan:

S = Standard deviasi

xi = Data pengujian

x = Nilai rata-rata

fi = Frekuensi pengujian

N = Jumlah pengujian

Sedangkan koefisien varian dihitung dengan rumus berikut.

$$KV = \frac{S}{\overline{X}} \times 100 \%$$
 (5.2)

dengan:

KV = Koefisien varian

S = Standard deviasi

 \overline{X} = Nilai rata-rata

Berikut adalah contoh perhitungan dalam suatu kasus pengujian palu beton pada kolom 9 - D. Dari data (Xi) dan frekwensi (fi) yang diambil dari Tabel 4.4 kemudian dihitung nilai rata-rata sebagai berikut.

Tabel 5.4
Nilai rata-rata pengujian palu beton pada kolom 9-D

Data (X _i)	Frekuensi (f _i)	$(X_i \cdot f_i)$	Rata-rata (X)	$ X_i - \overline{X} $	$ X_i - \overline{X} ^2$. f_i
36	. 7	252		2,05	29,42

Lanjutan Tabel 5.4

36	7	252		2,05	29,42
37	1	37		1,05	1,10
38	7	266		0,05	0,02
40	1	40	38,05	1,95	3,80
41	2	82		2,95	17,41
42	2	84		3,95	31,20
Jumlah	20	761			82,95

Jumlah pengujian = 20 pukulan

Nilai rata-rata = 38,05

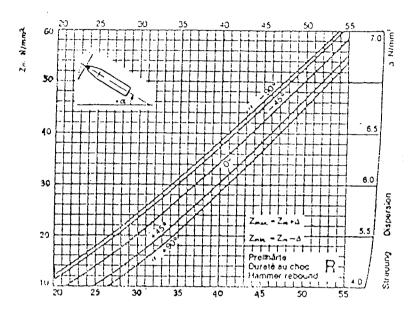
$$\sum |xi - \overline{x}|^{2} \cdot fi = 82,95$$

$$S = \sqrt{\sum |xi - \overline{x}|^{2} \cdot fi}$$

$$N - 1$$

$$= \sqrt{82,95/19} = 2,09$$

$$KV = \frac{S}{\overline{X}} \times 100\%$$


$$= 2,09 / 38,05 \times 100\%$$

$$= 5,50\%$$

Dari besar nilai koefisien varian sebesar 5,5 % berarti data pengujian cukup seragam.

Besar perkiraan kuat tekan silinder beton diperoleh berdasarkan Gambar 5.1 yaitu dengan membaca nilai lentingan pada sumbu mendatar dan nilai kuat tekan

silinder (N/mm²). Berikut adalah grafik hubungan lentingan dengan kuat tekan silinder beton.

Gambar 5.1 Grafik hubungan nilai lentingan dengan kuat tekan silinder beton

Nilai rata-rata lentingan = 38,05, dengan melihat gambar 5.1 diperoleh perkiraan kuat tekan silinder beton, fcr = 31,50 Mpa.

Untuk mendapatkan nilai kuat tekan beton rata-rata, maka dicari nilai standar deviasi dari data perkiraan kuat tekan silinder beton pada beberapa pengujian. Berikut adalah contoh hitungan yang diambil dari data kuat tekan silinder beton (XI) untuk komponen struktur kolom pada lantai dasar.

Tabel 5.5

Data perhitungan standar deviasi pada kolom lantai dasar

	Frekuensi		Rata-rata		
Data (X _i)	(f _i)	$(X_i \cdot f_i)$	(X)	$ X_i - \overline{X} $	$ X_i - \overline{X} ^2$. f_i
31.5	1	31.5		3.80	14.44

Lanjutan Tabel 5.5.

36.80	1	36.80		1.50	2.25
37.00	1	37.00		1.70	2.89
40.00	1	40.00	35.30	4.70	22.09
31.00	1	31.00		4.30	18.49
Jumlah	5	176.50			61.22

$$S = \frac{\sqrt{\sum |xi - \bar{x}|^2} \cdot fi}{N-1} = \sqrt{61,22/4} = 3,912$$

Kuat tekan beton rata-rata

$$f'c = \sum f'c/n = (25,00+30,40+30,70+33,70+24,60)/5 = 28,90 \text{ N/mm}^2$$

Untuk hasil analisis data keseluruhan di susun dalam bentuk tabel berikut.

Tabel 5.6
Hasil analisis data pengujian dengan palu beton (Concrete Hammer) pada kolom

Kode bidang uji	9-D	18-C	10 - C	11-B	12 - D
Lantai/sudut pukulan	Dasar/0	Dasar/0	Dasar / 0	Dasar/0	Dasar/0
Jurniah pukulan	20	20	18	18	20
Minimum	36	38	38	40	34
Maksimum	42	46	46	46	42
Rata-rata	38.05	41.60	41.89	43.78	37.75
Standard deviasi (S)	2.09	2.34	2.14	2.21	2.10
Koefisien variansi (V)	5.50	5.64	5.11	5.05	5.57
Perkiraan kuat tekan silinder betom					
for(N/mm²)	31.50	36.80	37.00	40.00	31.00
Standar deviasi fcr (S)			3.912		
Kuat tekan beton (f'c)(N/mm²)	25.00	30.40	30.70	33.70	24.60

Tabel 5.7
Hasil analisis data pengujian dengan palu beton (Concrete Hammer) pada kolom

Kode bidang uji	14 - B	15 - E	8 - B	16-B	13 - F
Lantai/ sudut pukulan	1/0	1/0	1/0	1/0	1/0
Jumlah pukulan	18	16	20	16	18
Minimurn	40	33	34	26	34
Maksimum	48	40	39	34	40
Rata-rata	44.33	35.75	36.70	29.75	37.89
Standard deviasi (S)	2.27	2.08	1.69	2.64	1.96
Koefisien variansi (V)	5.12	5.83	4.61	8.88	5.18
Perkiraan kuat tekan silinder beton					
fcr(N/mrn ²)	40.90	28.00	29.50	19.90	31.30
Standar deviasi for (S)		<u> </u>	7.525		L
Kuat tekan beton (f c) (N/mm²)	28.578	15.713	17.124	7.579	18.939

Tabel 5.8
Hasil analisis data pengujian dengan palu beton (Concrete Hammer) pada kolom

Kode bidang uji	4 - B	9-B	11 - E	12 - E	11 - D
Lantai/ sudut pukulan	2/0	2/0	2/0	2/0	2/0
Jumlah pukulan	20	20	20	20	18
Minimum	28	26	24	25	22
Maksimurn	36	35	30	29	30
Rata-rata	31.75	30.20	27.80	27.00	25.61
Standard deviasi (S)	2.42	2.25	1.73	1.79	2.17
Koefisien variansi (V)	7.62	7.47	6.23	8.37	8.47
Perkiraan kuat tekan silinder beton					
fcr(N/mm²)	22.50	20.50	17.20	16.60	14.50
Standar deviasi for (S)	3.30				
Kuat tekan beton (f'c) (N/mm²)	17.21	15.22	11.90	11.32	9.16

Tabel 5.9
Hasil analisis data pengujian dengan palu beton (Concrete Hammer) pada balok

Kode bidang uji	10',11 - B'	9 - B, B'	9 - B', C	9, 9' - B'	8' - B', C
Lantai/ sudut pukulan	1/0	1/0	1/0	1/0	1/0
Jumlah pukulan	18	20	20	20	20
Minimum	34	38	40	38	38
Maksimum	43	47	48	46	47
Rata-rata	39.06	42.15	44.30	41.44	42.00
Standard deviasi (S)	2.86	2.61	2.88	2.16	3.21
Koefisien variansi (V)	7.32	6.20	6.50	5.22	7.64
Perkiraan kuat tekan silinder					
beton, fcr(N/mm²)	32 .80	37.60	40.90	36.50	37.40
Standar deviasi for (S)			2.90		
Kuat tekan beton (f'c) (N/mm²)	28.00	32.80	36.20	31.75	32.64

Tabel 5.10

Hasil analisis data pengujian dengan palu beton (Concrete Hammer) pada balok

Kode bidang uji	3 - D, D'	3 - D',E	3, 3' - E	3',4-E	7 - A', B
Lantai/ sudut pukulan	2/0	2/0	2/0	2/0	2/0
Jumlah pukulan	18	20	20	18	20
Minimum	29	30	29	30	26
Maksimum	36	39	38	36	35
Rata-rata	33.28	34.95	33.70	33.39	30.35
Standard deviasi (S)	2.73	2.39	2.76	2.08	1.84
Koefisien variansi (V)	8.22	6.84	8.19	6.25	6.08
Perkiraan kuat tekan silinder beton					
fcr(N/mm²)	24.65	2 6.90	25.15	24.70	20.75
Standar deviasi fcr (S)			2.27		
Kuat tekan beton (f'c) (N/mm²)	20.90	23.25	21.45	21.00	17.00

 ${\it Tabel 5.11}\\ {\it Hasil analisis data pengujian dengan palu beton (\it Concrete Hammer}) pada balok}$

Kode bidang uji	10 - B, B'	10 - B', C	7 - D, D'	7 - D', E	7,7'-E
Lantai/sudut pukulan	3/0	3/0	3/0	3/0	3/0
Jumlah pukulan	18	20	20	20	20
Minimum	24	24	20	20	22
Maksimum	30	32	28	26	28
Rata-rata	26.11	27.60	24.35	21.80	24.05
Standard deviasi (S)	1.74	2.03	2.18	2.06	1.56
Koefisien variansi (V)	6.69	7.36	8.97	9.46	6.52
Perkiraan kuat tekan silinder					
beton , fcr(N/mm²)	15.10	16.90	13.20	10.20	12.90
Standar deviasi for (S)			2.55		
Kuat tekan beton (f'c) (N/mm²)	10.90	12.70	9.00	5.90	8.70

Tabel 5.12
Hasil analisis data pengujian dengan palu beton (Concrete Hammer) pada pelat

Kode bidang uji	9',10-D',E	9,9'-D,D'	9,9'-B,B'	9'10-B',C	8',9-B',C
Lantai/ sudut pukulan	1/+90	1/+90	1/+90	1/+90	1/+90
Jumlah pukulan	16	20	20	18	20
Minimum	30	33	40	30	31
Maksimum	38	42	47	42	40
Rata-rata	34.63	37.55	43.45	33.83	35.55
Standard deviasi (S)	2.63	2.24	2.01	2.81	2.48
Koefisien variansi (V)	7.59	5.96	4.63	8.30	6.97
Perkiraan kuat tekan silinder					
beton, fcr (N/mm²)	20.50	24.80	33.90	20.80	2 1.90
Standar deviasi fcr (S)			5.59	L	
Kuat tekan beton (f°c) (N/mm²)	11.30	15.60	24.80	11.70	12.80

Tabel 5.13
Hasil analisis data pengujian dengan palu beton (Concrete Hammer) pada pelat

Kode bidang uji	3,3'-D',E	3,3'-E,E'	6',7-A',B	7,7'-A',B	7',8-A',B
Lantai/ sudut pukulan	2/ +90	2/+90	2/+90	2/+90	2/+90
Jumlah pukulan	20	20	20	20	20
Minimum	32	28	36	37	36
Maksimum	41	36	44	45	45
Rata-rata	36.10	32.60	40.45	41.65	40.20
Standard deviasi (S)	2.13	2.79	2.27	2.32	2.22
Koefisien variansi (V)	5.90	8.56	5.61	5.57	5.52
Perkiraan kuat tekan silinder					
beton, fcr (N/mm²)	22.80	17.70	29.30	31.00	28.90
Standar deviasi for (3)			5.49		
Kuat tekan beton (f'c) (N/mrn²)	13.80	8.76	20.30	22.00	19.96

Tabel 5.14 Hasil analisis data pengujian dengan palu beton (Concrete Hammer) pada pelat

Kode bidang uji	3',4-A',B	5',6-A',B	11,11'-E,E'	21,21'-A',B	3,3'-B,B'
Lantai/ sudut pukulan	3/+90	3/+90	3/+90	3/+90	3/+90
Jumlah pukulan	20	18	20	18	20
Minimum	30	32	26	27	30
Maksimum	36	40	34	36	37
Rata-rata	34.20	36.44	30.70	33.05	34.30
Standard deviasi (S)	2.01	2.52	2.60	3.74	2.19
Koefisien variansi (V)	5.87	6.91	8.47	11.33	6.38
Perkiraan kuat tekan silinder					
beton, fcr(N/mm²)	19.80	23.20	15.00	18.00	19.50
Standar deviasi fcr (S)		<u>_</u>	2.98		
Kuat tekan beton (f'c)	14.90	18.30	10.10	13.10	14.60
(N/mm²)					

5.4 Pengujian Ultrasonic Pulse Velocity

Analisis dilakukan terhadap komponen struktur kolom, balok dan pelat yang contoh perhitungannya sebagai berikut.

Dari data pengujian yang dilakukan Tim Puslitbangkim seperti yang tercantum dalam Tabel 4.13 dicari waktu tempuh rata-rata dan besar nilai koevisien variansi pada setiap komponen struktur yang diuji. Untuk mendapatkan kecepatan rambat gelombang (v) digunakan persamaan 3.3. Dari cepat rambat gelombang yang diperoleh dapat diketahui perkiraan kualitas beton berdsarkan Tabel 3.1.

Berikut adalah contoh perhitungan yang diambil pada kolom lantai dasar yang terletak pada daerah 11 - B.

Tabel 5.15
Perhitungan standar deviasi dari data kolom 11-B pada lantai dasar

	Frekuensi		Rata-rata	Ι	
Data (X _i)	$(\mathbf{f_i})$	$(X_i \cdot f_i)$	(X)	$ X_i - \overline{X} $	$ X_i - \overline{X} ^2$. f_i
80.3	1	80.3		6.67	44.49
77.4	1	77.4		9.67	93.51
67.1	1	67.1		19.87	394.81
68.9	1	68.9		18.07	326.52
99.8	1	99.8		12.83	164.60
96.6	1	96.6	86.97	9.63	92.73
93.6	1	93.6		6.63	43.95
95.7	1	95.7		8.73	76.21
95.8	1	95.8		8.83	77.97
94.5	1	94.5		7.53	56.70
Jumlah	10	869.70			1371.49

Jumlah pengujian = 10 kali

Nilai rata-rata = 86,97

$$\sum |xi - \bar{x}|^2$$
, fi = 1371.49

Standard deviasi =
$$\sqrt{\sum |x_i - \bar{x}|^2}$$
. fi = $\sqrt{1371.49/9} = 12.3$
N - 1

Koefisien variansi =
$$\frac{S}{\overline{X}}$$
 x 100 % = 12,33 / 86,97 x 100 % = 14.18 %

Dari nilai varian sebesar 14,18 % berarti data pengujian cukup seragam.

Kecepatan rambat gelombang UPV (v)

Dari data diperoleh:

Jarak lintasan (L) = 30 cm

Waktu tempuh rata-rata (t) = 86,97 micro detik

Maka:

$$v = \frac{L}{t} \times 10 = 30 / 86,97 \times 10 = 3,45 \text{ Km/det}$$

Berdasarkan tabel 3.1 untuk v antara 3,05 - 3,66 km/det diperoleh perkiraan kualitas beton adalah cukup baik.

Nilai rata-rata pada pengujian kolom lantai dasar (v_{rata-rata})

$$V_{\text{rata-rata}} = \sum V/n = (3,45 + 5,23 + 5,22 + 3,23 + 5,48)/5$$

= 4,52 km/det

Berdasarkan tabel 3.1 untuk v antara 3,66 - 4,57 diperoleh perkiraan kualitas beton adalah baik.

Tabel 5.16 Hasil analisis data pengujian dengan UPV pada kolom lantai dasar

Kode bidang uji	11 - B	10 - C	18 - C	9 - D	12 - D
Jarak lintasan (cm)	30	50	50	50	50
Jumlah pengujian	10	10	10	10	10
Minimum	67,1	89.6	91.6	131.1	89.9
Maksimum	99.8	101.5	99.2	168.9	93.3
Rata-rata	86.97	95.58	95.7	155.02	91.3
Standar deviasi (S)	12.33	4.01	2.89	10.15	1.16
Coefisien variansi (V)	14.18	4.19	3.02	6.55	1.27
Kecepatan rambat UPV (Km/det)	3.45	5.23	5.22	3.23	5.48
Perkiraan kualitas beton	cukup	baik	baik	cukup	baik
	baik	sekali	sekali	baik .	sekali
V Rata-rata (km/det)		<u> </u>	4.52		
Perkiraan kualitas beton rata-rata			baik		

Tabel 5.17 Hasil analisis data pengujian dengan UPV pada kolom lantai satu

Kode bidang uji	8 - B	14 - B	16-B	15-E	13 - F
Jarak lintasan (cm)	50	30	50	50	50
Jumlah pengujian	10	10	10	10	10
Minimum	86.20	60.70	147.50	121.60	253.0
Maksimum	132.70	98.70	195.50	179.60	368.20
Rata-rata	96.76	74046	173.31	139.54	292.54
Standar deviasi (S)	14.63	13.17	21.51	18.67	45.23
Coefisien variansi (V)	15.11	17.68	12.41	13.38	15.46
Kecepatan rambat UPV (Km/det)	5.17	4.03	2.89	3.57	1.71
Perkiraan kualitas beton	baik	baik	cukup	cukup	jelek
Sign of reduction	sekali			baik	
V Rata-rata (km/det)	<u> </u>	l	3.47		
Perkiraan kualitas beton rata-rata			cukup baik		

Tabel 5.18 Hasil analisis data pengujian dengan UPV pada kolom lantai dua

Kode bidang uji	4-B	9-B	11 - D	11 - E	12 - E
Jarak lintasan (cm)	50	50	50	50	50
Jumlah pengujian	10	10	10	10	10
Minimum	110.70	120.70	98.80	111.20	91.50
Maksimum	182.20	182.2	129.10	186.70	131.0
Rata-rata	153.42	150.51	115.02	155.34	114.38
Standar deviasi (S)	20.95	22.13	10.01	27.18	12.43
Coefisien variansi (V)	13.65	14.70	8.70	17.49	10.86
Kecepatan rambat UPV (Km/det)	3.26	3.32	4.35	3.22	4.37
Perkiraan kualitas beton	cukup	cukup	baik	сикир	baik
	baik	baik		baik	
V Rata-rata (km/det)			3.70		
Perkiraan kualitas beton rata-rata			baik		

Tabel 5.19 Hasil analisis data pengujian dengan UPV pada balok lantai satu

Kode bidang uji	10',11 - B'	9 - B, B'	9-B', C	9,9'-B'	8' - B', C
Jarak lintasan (cm)	35	45	45	45	50
Jumlah pengujian	10	10	10	10	10
Minimum	110.59	177.50	137.50	155.60	174.20
Maksimum	158.20	236.40	189.30	185.50	217.30
Rata-rata	140.85	191.69	168.68	167.84	190.13
Standar deviasi (S)	16.87	18.54	19.40	9.91	13.70
Coefisien variansi (V)	11.97	9.67	11.50	5.90	7.20
Kecepatan rambat UPV (Km/det)	2.48	2.35	2.67	2.68	2.63
Perkiraan kualitas beton	cukup	cukup	cukup	cukup	cukup
V Rata-rata (km/det)			2.56		
Perkiraan kualitas beton rata-rata			cukup		·····

Tabel 5.20 Hasil analisis data pengujian dengan UPV pada balok lantai dua

Kode bidang uji	3 - D, D'	3 - D',E	3, 3' - E	3', 4 - E	7 - A', B
Jarak lintasan (cm)	35	35	35	25	35
Jumlah pengujian	10	10	10	10	10
Minimum	72.20	68.20	77.90	62.40	62.20
Maksimum	86.90	99.70	117.20	89.80	78.70
Rata-rata	81.68	78.93	90.04	81.11	70.96
Standar deviasi (S)	4.96	11.39	14.36	7.92	5.20
Coefisien variansi (V)	6.07	14.43	15.95	9.77	7.33
Kecepatan rambat UPV (Km/det)	4.29	4.43	3.89	3.08	4.93
Perkiraan kualitas beton	baik	baik	baik	cukup	baik
				baik	sekali
V Rata-rata (km/det)			4.12		
Perkiraan kualitas beton rata-rata			baik		

Tabel 5.21 Hasil analisis data pengujian dengan UPV pada balok lantai tiga

Kode bidang uji	10 - B, B'	10 - B', C	7 - D, D'	7 - D', E	7, 7' - E
Jarak lintasan (cm)	35	35	35	35	35
Jumlah pengujian	10	10	10	10	10
Minimum	39.20	261.50	80.50	78.10	25 8.90
Maksimum	88.20	357.70	141.10	126.80	3 7 8.60
Rata-rata	51.53	302.89	118.49	96.40	313.98
Standar deviasi (S)	15.14	33.58	17.14	14.81	38.30
Coefisien variansi (V)	29.39	11.08	14.46	15.36	12.20
Kecepatan rambat UPV (Km/det)	4.85	1.16	2.95	3.63	1.11
Perkiraan kualitas beton	baik	jelek	cukup	cukup	jelek
	sekali			baik	
V Rata-rata (km/det)			2.74		
Perkiraan kualitas beton rata-rata		······································	cukup		

Tabel 5.22 Hasil analisis data pengujian dengan UPV pada pelat lantai satu

Kode bidang uji	9',10-D',E	9,9'-D,D'	9,9'-B,B'	9'10-B',C	8',9-B',C
Jarak lintasan (cm)	30	45	25	30	30
Jumlah pengujian	10	10	10	10	10
Minimum	99.30	116.30	86.90	63.60	119.80
Maksimum	114.30	140.00	137.40	77.40	130.30
Rata-rata	110.09	130.61	120.42	68.08	124,42
Standar deviasi (S)	4.38	8.01	15.35	4.43	3.26
Coefisien variansi (V)	3.98	6.13	12.75	6.52	2.62
Kecepatan rambat UPV (Km/det)	2.73	3.45	2.08	4.41	2.41
Perkiraan kualitas beton	cukup	cukup	jelek	baik	cukup
		baik	_		
V Rata-rata (km/det)		l.	3.01		
Perkiraan kualitas beton rata-rata			cukup		

Tabel 5.23 Hasil analisis data pengujian dengan UPV pada pelat lantai dua

Kode bidang uji	3,3'-D',E	3,3'-E,E'	6',7-A',B	7,7'-A',B	7',8-A',B
Jarak lintasan (cm)	3.5				7,0-A,B
	35	30	30	25	25
Jumlah pengujian	10	10	10	10	10
Minimum	113.60	75.50	73.30	53.60	112.70
Maksimum	178.00	102.10	136.50	103.20	159.00
Rata-rata	148.18	86.92	92.59	76.75	140.95
Standar deviasi (S)	22.13	10.78	23.72	18.38	16.30
Coefisien variansi (V)	14.94	12.40	25.62	23.95	11.56
Kecepatan rambat UPV (Km/det)	2.36	3.45	3.24	3.26	1.77
Perkiraan kualitas beton	cukup	cukup	cukup	cukup	jelek
	j		baik	baik	
V Rata-rata (km/det)	L		2.81		
Perkiraan kualitas beton rata-rata			cukup		

Tabel 5.24 Hasil analisis data pengujian dengan UPV pada pelat lantai tiga

Kode bidang uji	11,11'-E,E'	21,21'-A',B	3,3'-B,B'
Jarak lintasan (cm)	30	30	30
Jumlah pengujian	10	10	10
Minimum	149.90	73.50	132.40
Maksirnum	238.50	111.90	240.80
Rata-rata	202.00	87.60	187.23
Standar deviasi (S)	30.24	9.61	39.00
Coefisien variansi (V)	14.97	10.97	20.83
Kecepatan rambat UPV (Km/det)	1.49	3.42	1.60
Perkiraan kualitas beton	jelek	cukup baik	jelek
V Rata-rata (km/det)		2.17	
Perkiraan kualitas beton rata-rata		cukup	

5.5 Pengujian Beton Inti

Analisis data pengujian beton inti menghasilkan nilai kuat tekan yang lebih akurat karena pengujian ini dilakukan dengan uji kuat tekan hancur pada benda uji yang diambil dari setiap komponen struktur di lapangan. Berikut ini adalah contoh perhitungan yang diambil pada komponen struktur lantai dasar dengan kode bidang uji 18 - C.

Dari data diperoleh:

Diameter benda uji $(\phi) = 44.8 \text{ mm}$

Panjang benda uji (lo) = 101,00 mm

Panjang benda uji setelah diberi lapisan kapping (l') = 104.00 mm

Diameter batang tulangan $(d_{1,2})$ = tidak ada

Jarak terpendek sumbu tulangan terhadap benda uji $(h_{1,2})$ = tidak ada

Berat benda uji = 360,40 gram

Beban maksimum (P) = 4200 Kg

Luas bidang tekan = 15,68 cm²

Besarnya faktor koreksi:

Arah pengambilan benda uji horisontal (C₀) berdasarkan tabel 3.2 = 1,00

Faktor pengali yang dihubungkan dengan rasio panjang sesudah diberi lapisan kapping dengan diameter benda uji $(C_1)=1'/\phi=2,32$ berdasarkan tabel 3.3 diperoleh $C_1=1,02$

Faktor pengali karena adanya tulangan besi dalam benda uji yang letaknya tegak lurus terhadap sumbu tulangan benda uji (C_2) dihitung berdasarkan rumus 3.6. Berhubung tidak ada tulangan dalam benda uji maka harga faktor pengali C_2 tidak ada.

Besarnya kuat tekan beton inti (fcr) dihitung berdasarkan persamaan 3.4 sebagai berikut.

for =
$$\frac{P}{\prod/4 \cdot \phi^2}$$
 . $C_0 \cdot C_1 \cdot C_2$

$$= \frac{4200}{3,14/4.4,48^2} \times 1,00 \times 1,02$$

$$= 271,91 \text{ Kg/cm}^2 = 27,19 \text{ N/mm}^2$$

Untuk mendapatkan kuat tekan beton f c ,maka data pengujian beton inti dicari nilai rata-rata dan standar deviasi. Berikut ini adalah Tabel perhitungan untuk mencari nilai rata-rata dan standar deviasi.

Tabel 5.25
Perhitungan standar deviasi hasil pengujian beton inti.

	Frekuensi		Rata-rata		
Data (X _i)	(f _i)	$(X_i \cdot f_i)$	(X)	$ X_i - \overline{X} $	$ X_i - \overline{X} ^2$. f_i
27.19	1	27.19	24.76	2.43	5.89
37.70	1	37.70	24.76	12.94	167.39
25.16	1	25.16	24.76	0.40	0.16
27.31	1	27.31	24.76	2.55	6.50
29.87	1	29.87	24.76	5.11	26.08
20.39	1	20.39	24.76	4.37	19.09
21.06	1	21.06	24.76	3.70	13.69
20.46	1	20.46	24.76	4.29	18.46
29.58	1	29.58	24.76	4.82	23.30
19.69	1	19.69	24.76	5.07	25.68
20.85	1	20.85	24.76	3.91	15.28
20.89	1	20.89	24.76	3.97	15.79
26.89	1	26.89	24.76	2.12	4.52
21.33	1	21.33	24.76	3.44	11.81
22.22	1	22.22	24.76	2.54	6.45
31.26	1	31.26	24.76	6.49	42.19
19.03	1	19.03	24.76	5.73	32.84
24.93	1	24.93	24.76	0.16	0.13
Jumlah					435.08

Standard deviasi =
$$\sqrt{\frac{\sum |x_i - \bar{x}|^2 \cdot f_i}{N - 1}}$$

= $\sqrt{435.08/(18-1)} = 5.05$

Kuat tekan beton rata-rata (f'c)untuk kolom lantai dasar,

$$f'c = \overline{X} - 1,64 \cdot S$$

= 32,446 - 1,64 \cdot 5,05
= 24,16 Mpa

Kuat tekan beton rata-rata (f'c)untuk kolom lantai satu,

$$f'c = \overline{X} - 1,64 \cdot S$$

= 24,82 - 1,64 \cdot 5,05
= 16,53 Mpa

Kuat tekan beton rata-rata (f'c)untuk kolom lantai dua,

$$f'c = \overline{X} - 1,64 \cdot S$$

= 20,446 - 1,64 \cdot 5,05
= 16,12 Mpa

Berikut adalah hasil analisis data yang lain yang disajikan dalam tabel 5.26 sebagai berikut.

Tabel 5.26 Hasil analisis data pengujian dengan core drill

Kuat tekan silinder (Mpa) (fcr)		27.19	37.70	25.16	27.31	29.78	20.39	21.06	20.46	29.58	19.69	20.85	20.78	26.88	21.32	25.12	31.25	19.03	24.92
eksi	S	t	,	•	1		1			,		1		1	1	112	1 03		1.03
Faktor koreksi	రె	1.02	1.02	1.02	1.02	1.02	1.00	1.02	1.02	1.02	1.02	1.02	1.02	1.00	1.00	0.99	0.91	0.92	0.92
	೮	1.00	1.00	1.00	1.00	1.00	1.00	1.90	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.92	0.92	0.92
Luas bidang tekan (cm²)		15.68	15.76	15.68	15.68	15.90	15.76	15.54	15.90	15.90	15.54	15.90	15.90	15.54	15.90	15.90	78.34	76.94	76.94
Behan (kg)		4200	5720	3870	4200	4700	3150	3210	3190	4610	3000	3250	3240	4180	3390	3050	28400	17300	22000
Berat (gr)		360.4	368.1	360.5	360.4	376.3	316.8	372.2	355.8	366.2	363.3	374.5	372.3	349.6	356.2	319.2	1416.7	1716.4	1598.3
Jrk terpendek (mm)	द्य	,	1	1	ı	ı		ı	1	,	(,	ı	ı	4.0	1	ı	ı
terp (m	-Ę	,			1	,	,	,	ı	1	,)	,	1	,	33.8	23.0	1	23.5
Dia. tal.(mm)	ન્દું.	1	•	1					ı		1	ı	t	ı	ſ	11.0	1		ţ
tal.	ਚੰ	,		1	,	,	,	1	ı	ı	1	1	ı	,		11.0	7.7	ı	8.0
		104.0	93.0	103.0	104.5	104.0	89.5	105.0	104.0	102.9	101.4	104.4	104.5	104.4	104.6	86.8	86.0	100.2	92.8
Ukuran (mm)	<u>o</u>	101.0	88.5	100.3	100.5	100.9	86.5	100.6	100.8	6.99	0.66	101.0	101.0	101.2	100.5	83.0	77.5	95.3	86.0
-	Dia	4. 8.	4. 4.	4.7	4.7	45.0	44.8	44.5	45.0	45.0	44.5	45.0	45.0	44.5	45.0	45.0	6.66	0.66	0.66
Kode		18 -C	10 - C	7-B	8 B	14 - B	15-E	16 - B	20 - E	3-E	4-B	3-8	9-B	8'-B,B'	7-A',B	3-D _, D'	8,9-B,C	7,7'-A'B	3,3'-D'E
Komponen struktur		Kolom Lt.Dsar	Kolom Lt.Dsr	Kolom Lt.1	Kolom Lt.1	Kolom Lt.1	Kolom Lt.1	Kolom Lt. 1	Kolom Lt. 1	Kolom Lt.1	Kolom Lt.2	Kolom Lt.2	Kolom Lt.2	Balok Lt.1	Balok Lt.2	Balok Lt.2	Pelat Lt 1	Pelat Lt.2	Pelat Lt.2
ž			۲3	m	4	<i>ا</i> در	9	~	∞	σ,	2	=	173	13	14	15	16	17	138
		-																	

5.6 Pengujian Pembebanan

Analisis pengujian pembebanan dilakukan dengan membandingkan lendutan maksimum yang terjadi pada saat pengujian pembebanan dengan besarnya nilai lendutan maksimum yang diijinkan berdasarkan SK-SNI-T-15-1991-03.

Beban uji total dihitung sebagai berikut:

1) Beban mati:

Berat pelat = 0,12 m x 2400 kg/m³ = 288 kg/m²

Berat finishing =
$$= 100 \text{ kg/m}^2$$
= 388 kg/m²

2) Beban hidup = 250 kg/m^2

Beban uji total = 0,85 (1,4. Beban mati + 1,7. Beban hidup) = 822.97 kg/m^2

Beban uji = 822,97 - 288= $534,97 \text{ kg/m}^2 \approx 550 \text{ kg/m}^2$

Beban uji ini merupakan beban yang dikerjakan pada uji pembebanan dan sebagai beban dipakai air dengan tinggi ekuivalen sebesar 55 cm (10 cm sama dengan 100 kg/m²). Contoh kasus analisis dari alat ukur yang terletak pada Trans No.1 untuk pelat lantai yang mempunyai data sebagai berikut:

Lendutan maksimum $(\delta_{maks}) = 3,39 \text{ mm}$

Lendutan akhir $(\delta_{skh}) = 0.03 \text{ mm}$

Bentang terpendek komponen struktur pelat yang diuji (L) = 3,6 m

Tinggi komponen struktur (h) = 120 mm

Besarnya lendutan ijin (δ_{ijin}) dihitung dengan rumus :

$$\delta_{ijin} = \frac{L^2}{20.000. \text{ h}}$$
= 3600²/(20.000. 120)
= 5,40 mm

Contoh kasus analisis dari alat ukur yang terletak pada Trans No.10 untuk balok induk yang mempunyai data sebagai berikut:

Lendutan maksimum (δ_{maks}) = 1,18 mm

Lendutan akhir $(\delta_{akh}) = 0.16 \text{ mm}$

Bentang terpendek komponen struktur balok induk yang diuji (L) = 7,2 m

Tinggi komponen struktur (h) = 60 cm (dimensi 30 / 60 cm)

Besarnya lendutan ijin (δ_{ijin}) dihitung dengan rumus :

$$\delta_{ijin} = \frac{L^2}{20.000. \text{ h}}$$
= 7200²/ (20.000. 600)
= 4,32 mm

Contoh kasus analisis dari alat ukur yang terletak pada Trans No.5 untuk balok anak yang mempunyai data sebagai berikut :

Lendutan maksimum (δ_{maks}) = 4,45 mm

Lendutan akhir $(\delta_{akh}) = 0.34 \text{ mm}$

Bentang terpendek komponen struktur balok anak yang diuji (L) = 7,2 m

Tinggi komponen struktur (h) = 50 cm (dimensi 25/50 cm)

Besarnya lendutan ijin (δ_{ijin}) dihitung dengan rumus :

$$\delta_{ijin} = \frac{L^2}{20.000. \text{ h}}$$
= 7200²/ (20.000. 500)
= 5,18 mm

Jika ditinjau terhadap pemulihan lendutan (recovery) maka pemulihan lendutan yang terjadi dihitung dengan rumus sebagai berikut:

$$Rec = \frac{\delta_{maks} - \delta_{akh}}{\delta_{maks}} \quad x \quad 100 \%$$

Dari data pada Trans No.1 untuk pelat diperoleh pemulihan lendutan (rec):

$$Rec = \frac{3,39 - 0,03}{3,39}$$

$$= 99,12 \%$$

Dari data pada Trans No.10 untuk balok induk diperoleh pemulihan lendutan (rec):

$$Rec = \frac{1,18 - 0,16}{1,18} \times 100 \%$$
$$= 86,44 \%$$

Dari data pada Trans No.5 untuk balok anak diperoleh pemulihan lendutan (rec) :

$$Rec = \frac{4,45 - 0,34}{4,45}$$

$$= 92,36\%$$

Untuk hasil perhitungan data pembebanan yang lain selengkapnya disajikan dalam tabel berikut.

Tabel 5.27 Hasil analisis data uji pembebanan

No	Letak Alat	Lendutan Maksimum	Lendutan Akhir	Pemulihan Lendutan Rec
	Ukur	δ _{maks} (mm)	δ_{akk} (mm)	(%)
1	Trans. No.1	3,39 340	0,03	99,12
2	Trans. No.2	3,41	0,02	99,41
3	Trans. No.3	3,55	0,27	92,39
4	Trans. No.4	3,76	0,17	95,48
5	Trans. No.5	4,45	0,34	92,36
6	Trans. No.6	3,32	0,10	96,99
7	Trans. No.7	3,38 3,30	0,27	93,04
8	Trans. No.8	3,78	0,19	94,97
9	Trans. No.9	1,84	0,02	98,91
10	Trans. No.10	1,18	0,16	86,44

BAB VI

PEMBAHASAN

6.1 Pengamatan Visual

Pengamatan secara visual dilakukan secara langsung terhadap komponen struktur bangunan gedung Bogor Internusa Plaza. Dari hasil analisis yang telah dilakukan seperti tercantum dalam tabel 5.1, dapat diketahui bahwa bangunan gedung Bogor Inter Nusa Plaza telah terbakar hingga mencapai suhu 950 °C dan diperkirakan kekuatan pada bagian permukaan beton tinggal 10 % sampai 30%. Berikut adalah Tabel hasil analisis berdasarkan pengamatan visual.

Tabel 6.1
Hasil pengamatan visual

Lantai/ Komponen	Kode Bidang Uji	Letak Penga- matan	Perkiraan Suhu C	Kekuatan beton setelah terbakar (%)
Lantai 1	10', 11-B'	0 cm	950	10
Balok	9 - B, B'	0 cm	850	12.5
	9 - B', C	0 cm	850	12.5
	9, 9' - B'	0 cm	850	12.5
	8' - B', C	0 cm	850	12.5
Lantai 2	3 - D,D'	0 cm	950	10
Balok	3 - D',E	0 cm	950	10
	3,3' - E	0 cm	950	10
	3',4 - E	0 cm	950	10
	7 - A', B	0 cm	950	10
Lantai 3	10 - B,B'	0 cm	950	10
Balok	10 - B',C	0 cm	950	10
	7 - D,D'	0 cm	950	10
	7 - D',E	0 cm	950	10
	7,7' - E	0 cm	950	10
Lantai 1	9',10 - D', E	3 cm	600	30
Pelat	9,9' - D,D'	0 cm	850	12.5
	9,9' - B, B'	0 cm	600	30
}	9',10 - B', C	3 cm	600	30
	8',9 - B',C	0 cm	850	12.5

Lanjutan Tabel 6.1.

Lantai 2	3,3' - D',E	0 cm	950	10
Pelat	3,3' - E,E'	3 cm	950	10
	6',7 - A',B	0 cm	850	12.5
	7,7' - A',B	0 cm	850	12.5
	7',8 - A',B	0 cm	850	12.5
Lantai 3	3',4 - A',B	0 cm	950	10
Pelat	5',6 - A',B	0 cm	950	10
	11,11' - E,E'	1 cm	950	10
	21,21' - A',B	1 cm	950	10
	3,3' - B,B'	0 cm	950	10

Dari hasil pengamatan ini dapat diketahui bahwa beberapa komponen struktur mengalami pengelupasan sampai ketebalan 3 cm yaitu pada pelat lantai, selain itu juga terjadi perubahan warna pada beton. Perubahan tersebut antara lain menjadi warna kemerahan yang menunjukkan perkiraan suhu yang terjadi sekitar 600 ° C dan prosentase kekuatan beton setelah terbakar sebesar 30 % yang terjadi pada kedalaman 3 cm, warna abu-abu keputih-putihan yang menunjukkan perkiraan suhu yang terjadi sekitar 850 ° C dan prosentase kekuatan beton setelah terbakar sebesar 12,5 % yang terjadi pada permukaan beton (kedalaman 0 cm), warna abu-abu putih yang menunjukkan perkiraan suhu yang terjadi sekitar 950 ° C dan prosentase kekuatan beton setelah terbakar sebesar 10 % yang terjadi pada permukaan beton (kedalaman 0 cm).

Dari tabel di atas dapat diambil suatu kesimpulan bahwa kekuatan komponen struktur pada bagian permukaan untuk lantai -1, lantai -2 dan lantai -3 sudah tidak memenuhi syarat kekuatan yaitu sebesar 80 % dari kekuatan semula dan komponen harus diganti.

Perlu diketahui bahwa perkiraan kekuatan tersebut hanya pada bagian permukaan beton, jadi bukan merupakan kekuatan komponen struktur secara keseluruhan, untuk itu masih diperlukan pengujian-pengujian lebih lanjut untuk dapat menentukan sisa kekuatan struktur yang lebih akurat, antara lain dengan menggunakan pengujian beton inti. Hasil ini akan memberikan nilai kuat tekan yang akurat karena pengujian dilakukan dengan mengambil sampel dari komponen struktur terpasang dan kemudian melakukan uji kuat tekan beton.

6.2 Pengujian Penetrasi Phenolpthaline

Penetrasi *phenolpthaline* dilakukan dengan mengupas komponen dari kedalaman 1 cm sampai 2 cm. Dari hasil uji ini dapat diketahui perkiraan suhu yang terjadi pada komponen struktur. Dari tinggi suhu yang dicapai tersebut dapat diketahui prosentase kekuatan beton setelah terbakar berdasarkan tabel 2.1.Berikut adalah Tabel hasil penetrasi *phenolpthaline*.

Tabel 6.2
Hasil uji penetrasi *phenolpthaline* pada komponen struktur kolom

Lantai	Nomor Kolom	Kedalaman Uji (cm)	Perkiraan Suhu (° C)	Kekuatan beton setelah terbakar (%)
Dasar	9D	1	500	40
Dasar	18C	2	475	45
Dasar	10C	1	500	40
Dasar	11B	1	500	40
Dasar	12D	2	475	45

Lanjutan Tabel 6.2.

			·	
Satu	14B	1	850	10
Satu	15E	1	850	10
Jatu	8B	1	850	10
Satu	16B	1	850	10
Satu	13F	1	850	10
Dua	4B	1	850	10
Dua	9B	1	850	10
Dua	11E	1	850	10
Dua	12E	1	850	10
Dua	11D	1	850	10
		*		

Dari tinggi suhu yang terjadi pada kolom lantai dasar sebesar 475 ° C, maka dapat diperkirakan prosentase kekuatan beton setelah terbakar sebesar 45 % yang terjadi pada kedalaman uji 2 cm. Pada kolom lantai dasar suhu yang terjadi sebesar 500 °C, maka dapat diperkirakan prosentase kekuatan beton setelah terbakar sebesar 40 % yang terjadi pada kedalaman uji 1 cm. Pada kolom lantai satu dan dua, suhu yang terjadi sebesar 850 ° C, maka dapat diperkirakan prosentase kekuatan beton setelah terbakar sebesar 10 % yang terjadi pada kedalaman uji 1 cm. Ini berarti bahwa komponen struktur tersebut sudah tidak memenuhi syarat kekuatan dan bearati komponen harus diganti. Hasil uji ini tidak memberikan data yang akurat karena yang diuji hanya pada bagian kedalaman uji 1 - 2 cm saja, jadi masih diperlukan pengujian lebih lanjut untuk dapat menentukan sisa kekuatan secara keseluruhan. Untuk komponen struktur balok hasilnya dapat di lihat pada tabel berikut.

Tabel 6.3
Hasil uji penetrasi *phenolpthaline* pada komponen struktur balok

Lantai	Nomor Balok	Kedalaman Uji (cm)	Perkiraan Suhu (° C)	Kekuatan beton setelah terbakar (%)
Satu	10',11-B'	2	475	45
Satu	9-B,B'	1	500	40
Satu	9-B',C	1	500	40
Satu	9,9'-B'	2	475	45
Satu	8'-B',C	1	500	40
Dua	3-D,D'	1	850	10
Dua	3-D',E	1	850	10
Dua	3,3'-E	1	850	10
Dua	3',4-E	1	850	10
Dua	7-A',B	1	850	10
Tiga	10-B,B'	1	850	10
Tiga	10-B',C	1	850	10
Tiga	7-D,D'	1	850	10
Tiga	7-D',E	1	850	10
Tiga	7,7'-E	1	850	10

Dari tinggi suhu yang terjadi pada balok lantai satu sebesar 475 ° C maka dapat diperkirakan prosentase kekuatan beton setelah terbakar sebesar 45 % yang terjadi pada kedalaman uji 2 cm. Pada balok lantai satu, suhu yang terjadi sebesar 500 ° C, maka dapat diperkirakan prosentase kekuatan beton setelah terbakar sebesar 40 % yang terjadi pada kedalaman uji 1 cm. Pada balok lantai dua dan tiga, suhu yang terjadi sebesar 850 ° C, maka dapat diperkirakan prosentase kekuatan beton

setelah terbakar sebesar 10 % yang terjadi pada kedalaman uji 1 cm. Ini berarti bahwa komponen struktur tersebut sudah tidak memenuhi syarat kekuatan minimal sebesar 80 % kekuatan semula dan berarti komponen harus diganti. Hasil uji ini tidak memberikan data yang akurat karena yang diamati hanya pada bagian kedalaman uji 1 sampai 2 cm saja, jadi masih diperlukan pengujian lebih lanjut untuk dapat menentukan sisa kekuatan yang lebih akurat, antara lain dengan pengujian beton inti. Hasil ini akan memberikan nilai kuat tekan yang akurat karena pengujian dilakukan dengan mengambil sampel dari komponen struktur terpasang dan kemudian melakukan uji kuat tekan beton.

6.3 Pengujian Palu Beton

Dari hasil analisis data yang telah dilakukan pada komponen struktur, maka diperoleh hasil yang terdapat pada tabel berikut.

Tabel 6.4 Hasil kuat tekan beton berdasarkan uji palu beton

Lantai	Elemen	Kuat Tekan Ekuivalen Rata-rata (N/mm²)	Standar Deviasi	Kuat Tekan Beton (f'c) (N/mm²)
Dasar	Kolom	35.29	3.912	28.80
Satu	Kolom	29.93	7.525	17.58
	Balok	37.03	2.908	32.26
	Pelat	24.41	5.590	15.25
Dua	Kolom	18.24	3.218	12.96
	Balok	24.45	2.270	20.73
	Pelat	25.96	5.490	16.96

Lanjutan Tabel 6.4

Tiga	Balok	13.66	2.549	9.48
	Pelat	19.13	2.984	14.28

Kuat tekan beton minimum yang diijinkan pada komponen struktur terpasang sebesar $f'c = 0.8 \times 22.5 = 18 \text{ N/mm}^2$. Disamping itu, keseragaman mutu yang diuji masih cukup baik, dimana nilai koefisien variasi lebih kecil dari 10%.

Dari Tabel 6.4 di atas dapat diketahui bahwa untuk kolom lantai dasar, balok lantai -1 dan balok lantai -2 masih memenuhi syarat kekuatan, sedangkan pada kolom lantai -1, kolom lantai -2, pelat lantai -1, pelat lantai -2, pelat lantai -3 dan balok lantai -3 sudah tidak memenuhi syarat kekuatan. Dari tabel tersebut ada beberapa nilai kuat tekan beton yang lebih tinggi dari nilai kuat beton riil asumsi yaitu sebesar f c = 22,5 Mpa, ini bisa dimungkinkan oleh beberapa hal antara lain, nilai kuat tekan beton riil sebelum terbakar lebih besar dari nilai kuat tekan beton asumsi, beton yang diuji belum terbakar atau waktu melakukan pengujian pada titik tersebut alat uji mengenai agregat yang kasar sehingga nilai yang diperoleh tidak wajar.

Dari Tabel di atas dapat diketahui bahwa terdapat nilai kuat tekan yang lebih kecil dari nilai kuat tekan minimum yang ditentukan yaitu sebesar 18 Mpa, untuk itu masih diperlukan pengujian lebih lanjut yaitu uji pembebanan. Uji pembebanan ini dilakukan untuk menentukan syarat kekuatan minimum yang diijinkan yaitu sebesar 70% dari kekuatan semula apabila berdasarkan uji pembebanan memenuhi ketentuan.

Apabila tidak memenuhi ketentuan maka dilakukan penggantian, perubahan dalam pembebanan atau dilakukan perkuatan pada komponen struktur.

Perlu diketahui bahwa pengujian palu beton ini hanya dapat memperkirakan kekuatan sampai ketebalan 3 cm, jadi hasil yang didapatkan masih kurang akurat. Untuk mendapatkan kekuatan yang lebih akurat diperlukan pengujian-pengujian yang lain, misalnya pengujian beton inti.

6.4 Pengujian Ultrasonic Pulse Velocity (UPV)

Dari hasil analisis data pengujian UPV pada komponen struktur, maka diperoleh hasil perkiraan kualitas beton sebagai berikut.

Tabel 6.5
Hasil perkiraan kualitas beton pada uji UPV

		Kecepatan Rambat	Perkiraan Kualitas
Lantai	Elemen	Rata-rata (km/det)	Beton
Dasar	Kolom	4.52	Baik
Satu	Kolom	3.47	Cukup baik
	Balok	2.56	Cukup
	Pelat	3.01	Cukup
Dua	Kolom	3.70	Baik
	Balok	4.12	Baik
	Pelat	2.81	Cukup
Tiga	Balok	2.74	Cukup
	Pelat	2.17	Cukup

Hasil baik sekali menunjukkan bahwa material penyusun komponen struktur masih 100 % seragam, ini berarti komponen struktur belum terpengaruh temperatur.

Hasil baik berarti material komponen struktur yang seragam diperkirakan tinggal tersisa 90 % - 100 %, ini berarti komponen struktur sedikit terpengaruh temperatur, diperlukan perbaikan ringan pada komponen struktur. Hasil cukup baik berarti material komponen struktur yang seragam diperkirakan tinggal tersisa 80 % - 90 %, ini berarti komponen struktur sudah terpengaruh temperatur, perbaikan dapat dilakukan dengan mengupas komponen struktur kemudian melakukan pengecoran beton baru. Hasil cukup berarti material komponen struktur yang seragam diperkirakan tinggal tersisa 70 % - 80 %, ini berarti komponen struktur dapat diperkuat atau diganti dengan pengecoran beton baru. Hasil kurang berarti material komponen struktur yang seragam diperkirakan tinggal tersisa kurang dari 70 %, ini berarti komponen struktur yang seragam diperkirakan tinggal tersisa kurang dari 70 %, ini berarti komponen struktur sudah terpengaruh cukup besar oleh temperatur dan komponen ini harus diganti. Nilai kecepatan rambat gelombang ultrasonic rata-rata adalah 3.23 km/detik, dimana ini menunjukkan bahwa homogenitas dan kepadatan beton terpasang masih cukup baik. Jadi, perbaikan dapat dilakukan dengan men.gupas komponen struktur kemudian dilakukan pengecoran beton baru

Perlu diketahui bahwa pengujian berdasarkan UPV ini hanya berupa perkiraan kualitas yang ditentukan berdasarkan keseragaman beton pada komponen struktur dan bukan berupa nilai kuat tekan beton yang sesungguhnya, jadi masih diperlukan pengujian lain yanag lebih akurat yang dapat menentukan sisa kekuatan komponen struktur, misalnya pengujian beton inti.

6.5 Pengujian Beton Inti

Dari hasil analisis data pada pengujian beton inti yang dilakukan pada komponen struktur, maka hasilnya dapat dilihal pada tabel berikut.

Tabel 6.6 Hasil kuat tekan beton pada uji beton inti

Lantai	Elemen	Kuat Tekan Rata-rata (N/mm²)	Standar Deviasi	Koefisien Variasi (%)	Kuat Tekan Beton (N/mm²)
Dasar	Kolom	32.44			24.16
Satu	Kolom	26.40	•		16.53
	Balok	26.88	5.05	20.30	18.60
	Pelat	31.25			22.97
Dua	Kolom	20.44			12.16
	Balok	21.77			13.49
	Pelat	21.98			13.69

Pengujian beton inti menghasilkan nilai kuat tekan yang lebih akurat karena pengujian dilakukan dengan uji kuat tekan hancur pada benda uji yang diambil dari setiap komponen struktur terpasang di lapangan. Pada tabel di atas terlihat bahwa perkiraan mutu beton secara umum cukup baik dengan kekuatan tekan karakteristik yang terpasang lebih besar dari kuat tekan minimum komponen struktur terpasang sebesar $f c = 0.8 \times 22.5 = 18 \text{ N/mm}^2$, kecuali pada komponen struktur lantai -2.

Dari Tabel 6.6 di atas dapat diketahui bahwa untuk kolom lantai dasar masih memenuhi syarat kekuatan untuk tetap digunakan, sedangkan pada kolom lantai -1 dan kolom lantai -2 tidak memenuhi syarat kekuatan. Pada Tabel 6.6 dapat diketahui

bahwa untuk balok lantai -1 masih memenuhi syarat kekuatan, sedangkan pada balok lantai -2 tidak memenuhi syarat kekuatan, demikian juga untuk pelat lantai -1 masih memenuhi syarat kekuatan, sedangkan pada pelat lantai -2 tidak memenuhi syarat kekuatan.

Dari tabel tersebut ada beberapa nilai kuat tekan beton yang lebih tinggi dari nilai kuat beton asumsi yaitu sebesar f'c = 22,5 Mpa, khususnya pada elemen kolom lantai dasar dan elemen pelat lantai satu, ini bisa dimungkinkan bahwa nilai kuat tekan beton riil sebelum terbakar lebih besar dari nilai kuat tekan beton asumsi atau beton yang dinji belum terbakar.

Dari Tabel 6.6 di atas dapat diketahui bahwa terdapat nilai kuat tekan yang lebih kecil dari nilai kuat tekan minimum yang ditentukan yaitu sebesar 18 Mpa, untuk itu masih diperlukan pengujian lebih lanjut yaitu uji pembebanan. Uji pembebanan ini dilakukan untuk menentukan syarat kekuatan minimum yang diijinkan yaitu sebesar 70% kekuatan semula apabila berdasarkan uji pembebanan memenuhi ketentuan. Apabila tidak memenuhi ketentuan pada uji pembebanan maka dilakukan penggantian, perubahan dalam pembebanan atau dilakukan perkuatan pada komponen struktur. Dari hasil uji beton inti dapat disimpulkan bahwa untuk komponen lantai dasar dan lantai -1 masih dapat digunakan sedangkan untuk komponen lantai -2 sudah tidak dapat digunakan.

Apabila nilai kuat tekan beton lebih besar dari 18 Mpa dan berdasarkan uji pembebanan memenuhi ketentuan maka komponen struktur dapat tetap digunakan

dengan terlebih dahulu melakukan perbaikan dengan mengupas komponen yang rusak dan kemudian dilakukan pengecoran beton baru dengan fc' min 22,5 Mpa.

6.6 Pengujian Pembebanan (Loading Test)

Uji pembebanan adalah pengujian yang dilakukan dengan cara memberikan beban ekwivalen yaitu beban air secara langsung terhadap komponen struktur terpasang. Pengujian dilakukan terhadap komponen balok dan pelat lantai. Berikut adalah Tabel hasil analisis uji pembebanan.

Tabel 6.7 Hasil analisis data uji pembebanan

No	Letak Alat Ukur	Lendutan Maksimum δ _{maks} (mm)	Lendutan Akhir δ _{akh} (mm)	Pemulihan Lendutan Rec (%)					
					1	Trans. No.1	3,39	0,03	99,12
					2	Trans. No.2	3,41	0,02	99,41
3	Trans. No.3	3,55	0,27	92,39					
4	Trans. No.4	3,76	0,17	95,48					
5	Trans. No.5	4,45	0,34	92,36					
6	Trans. No.6	3,32	0,10	96,99					
7	Trans. No.7	3,38	0,27	93,04					
8	Trans. No.8	3,78	0,19	94,97					
9	Trans. No.9	1,84	0,02	98,91					
10	Trans. No.10	1,18	0,16	86,44					

Dari tabel diatas, jika ditinjau lendutan maksimum berdasarkan SK SNI T 15-1991-03 nilai lendutan ijin untuk pelat lantai sebesar 5,40 mm, untuk balok anak sebesar 5,12 mm dan untuk balok induk sebesar 4,32 mm maka lendutan maksimum yang terjadi saat pengujian masih lebih kecil dari lendutan ijin yaitu sebesar 3,76 mm untuk pelat 4,45 mm untuk balok anak dan 1,84 mm untuk balok induk.

Jika ditinjau terhadap pemulihan lendutan (Rec), maka pemulihan lendutan minimum yang terjadi pada pelat sebesar 92,39 %, untuk balok anak sebesar 92,36 % dan untuk balok induk sebesar 86,44 %. Nilai ini menunjukkan masih lebih besar dari nilai pemulihan ijin sebesar 75 % untuk komponen struktur beton bertulang non-pratekan.

Berdasarkan uji pembebanan ini maka nilai kuat tekan beton minimum yang disyaratkan menjadi 70% dari nilai kuat tekan beton semula. Hal ini berlaku apabiala besarnya lendutan maksimum masih lebih kecil dari lendutan ijin dan besarnya pemulihan lendutan masih lebih besar dari 75%.

Dari data di atas dapat disimpulkan bahwa lendutan maksimum yang terjadi pada semua komponen struktur masih lebih kecil dari lendutan ijin. Demikian halnya dengan besarnya pemulihan lendutan masih lebih besar dari syarat pemulihan lendutan sebesar 75 %. Hal ini berarti bahwa bangunan dapat digunakan dengan ketentuan beban kerja sebesar 100 kg/m² untuk beban mati (finishing lantai) dan beban hidup sebesar 250 kg/m².

6.7 Rekapitulasi Hasil Pengujian

Dari beberapa analisis pengujian, hasilnya dapat direkapitulasi sebagai berikut.

Tabel 6.8 Rekapitulasi hasil pengujian pada kolom

Lantai	P. Visual (0 cm) Kekuatan beton setelah terbakar (%)	phe noiphtaline (1 cm) Kekuatan beton setelah terbakar (%)	Palu Beton Fc (Mpa)	Beton Inti f'c (Mpa)	UPV
Dasar	•	40	28,80	24,16	Baik
Satu	-	10	17,58	16,53	Cukup baik
Dua	-	10	12,96	12,16	Baik
Tiga	-	-	-	-	-

Berdasarkan Tabel 6.7 diatas maka hasil uji penetrasi *phenolpthaline* untuk komponen struktur kolom sudah tidak memenuhi syarat kekuatan minimal sebesar 80% kekuatan semula yang terjadi pada kedalaman pengujian 1 cm.

Berdasarkan uji palu beton maka dapat diketahui bahwa kuat tekan beton untuk kolom lantai dasar sebesar 28,80 Mpa dan lantai -1 sebesar 17,58 Mpa, Nilai ini masih memenuhi persyaratan kuat tekan ijin minimal sebesar 18 Mpa dan nilai kuat tekan ijin minimal pembebanan sebesar 0,7 x 22,5 = 15,75 Mpa. Sedangkan pada lantai -3 sebesar 12,96 Mpa tidak memenuhi persyaratan.

Berdasarkan uji beton inti maka dapat diketahui bahwa kuat tekan beton untuk kolom lantai dasar sebesar 24,16 Mpa dan lantai -1 sebesar 16,53 Mpa, Nilai ini masih memenuhi persyaratan kuat tekan ijin minimal sebesar 18 Mpa dan nilai kuat tekan ijin minimal pembebanan sebesar 0,7 x 22,5 = 15,75 Mpa. Sedangkan pada lantai -3 sebesar 12,16 Mpa tidak memenuhi persyaratan.

Berdasarkan uji UPV maka komponen struktur kolom mempunyai kualitas beton yang masih baik. Berikut adalah Tabel rekapitulasi hasil pengujian pada balok.

Tabel 6.9 Rekapitulasi hasil pengujian pada balok

Lantai	P. Visual (0 cm)	phenolphialine (1 cm)	Palu	Beton	
	Kekuatan beton setelah terbakar (%)	Kekuatan beton setelah	Beton f'c	Inti f'c	UPV
		terbakar (%)	(Mpa)	(Mpa)	
Dasar	-	-	-	_	-
Satu	10	40	32.26	18.60	Cukup
Dua	5	10	20.73	13.49	Baik
Tiga	5	10	9.48	-	Cukup

Dari Tabel 6.8 untuk komponen struktur balok maka berdasarkan hasil pengamatan visual dan uji penetrasi *phenolpthaline* maka komponen struktur sudah tidak memenuhi syarat kekuatan minimal sebesar 80 % kekuatan semula yang terjadi pada kedalaman I cm sampai 2 cm.

Berdasarkan uji palu beton maka dapat diketahui bahwa kuat tekan beton untuk balok lantai -1 sebesar 32,26 Mpa dan lantai -2 sebesar 20,73 Mpa, nilai ini masih memenuhi persyaratan kuat tekan ijin minimal sebesar 18 Mpa. dan nilai kuat tekan ijin minimal pembebahan sebesar 0,7 x 22,5 = 15,75 Mpa. Sedangkan pada lantai -3 sebesar 9,48 Mpa tidak memenuhi persyaratan.

Berdasarkan uji beton inti maka dapat diketahui bahwa kuat tekan beton untuk balok lantai -1 sebesar 18,60 Mpa, Nilai ini masih memenuhi persyaratan kuat tekan ijin minimum sebesar 18 Mpa dan nilai kuat tekan ijin minimal pembebanan sebesar minim: nenuhi j

Ber on cuk

Dar

kukan

gertian

ena pei

pel ko

at men perkir

iolpthe

nukaan

0,7 x 22,5 = 15,75 Mpa. Sedangkan pada lantai -2 sebesar 13,49 Mpa tidak memenuhi persyaratan.

Berdasarkan uji UPV maka komponen struktur kolom mempunyai kualitas beton yang masih Cukup baik

Tabel 6.10 Rekapitulasi hasil pengujian pada pelat

	P. Visual (0 cm)	p he noip htaline	Palu	Beton Inti	
Lantai	Kekuatan beton setelah terbakar	(1 cm) Kekuatan beton setelah terbakar	Beton f'c (Mpa)	f'c (Mpa)	UPV
	(%)	(%)			
Dasar	-	•	-	-	-
Satu	10	-	15.25	22.97	Cukup baik
Dua	5	•	16.95	13.69	Cukup
Tiga	5	-	14.24	-	Cukup

Dari tabel 6.9 untuk komponen struktur pelat maka berdasarkan hasil pengamatan visual maka komponen struktur sudah tidak memenuhi syarat kekuatan minimal 80 % kekuatan semula.

Berdasarkan uji palu beton maka dapat diketahui bahwa kuat tekan beton untuk pelat lantai -2 sebesar 16,95 Mpa, nilai ini masih memenuhi persyaratan kuat tekan ijin minimum pembebanan sebesar 15,75 Mpa. Sedangkan kuat tekan beton untuk pelat lantai -1 sebesar 15, 25 Mpa dan pelat lantai -3 sebesar 14,24 Mpa tidak memenuhi persyaratan.

Berdasarkan uji beton inti maka dapat diketahui bahwa kuat tekan beton untuk pelat lantai -1 sebesar 22,97 Mpa, nilai ini masih memenuhi persyaratan kuat tekan

BAB VII

KESIMPULAN DAN SARAN

7.1 Kesimpulan

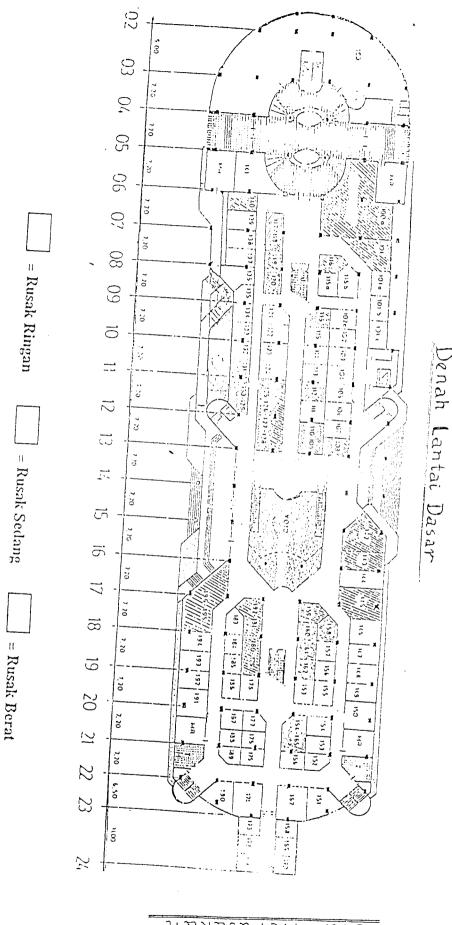
Berdasarkan hasil evaluasi terhadap beberapa pengamatan dan pengujian, maka dapat diambil kesimpulan sebagai berikut :

- 1. Dari hasil pengamatan secara visual pada komponen struktur, secara keseluruhan komponen struktur yang diamati sudah tidak memenuhi syarat kekuatan, akan tetapi hasil pengujian ini kurang menunjukkan hasil yang akurat karena kekuatan yang diketahui hanya bagian permukaan yang diamati, untuk dapat menentukan kekuatan yang akurat diperlukan pengujian lebih lanjut.
- 2. Dari hasil pengujian phenolpthaline pada komponen struktur, secara keseluruhan komponen struktur sudah tidak memenuhi syarat kekuatan, akan tetapi hasil pengujian ini kurang menunjukkan hasil yang akurat karena kekuatan yang diketahui hanya pada kedalaman 1 cm sampai 2 cm, untuk dapat menentukan kekuatan yang akurat diperlukan pengujian lebih lanjut.
- 3. Berdasarkan uji UPV dapat diambil kesimpulan bahwa seluruh komponen struktur masih dapat digunakan, akan tetapi pengujian ini hanya menunjukkan keseragaman mutu beton dan bukan kuat tekan beton. Jadi pengujian ini belum menunjukkan hasil yang akurat dan perlu didukung oleh pengujian yang lain.

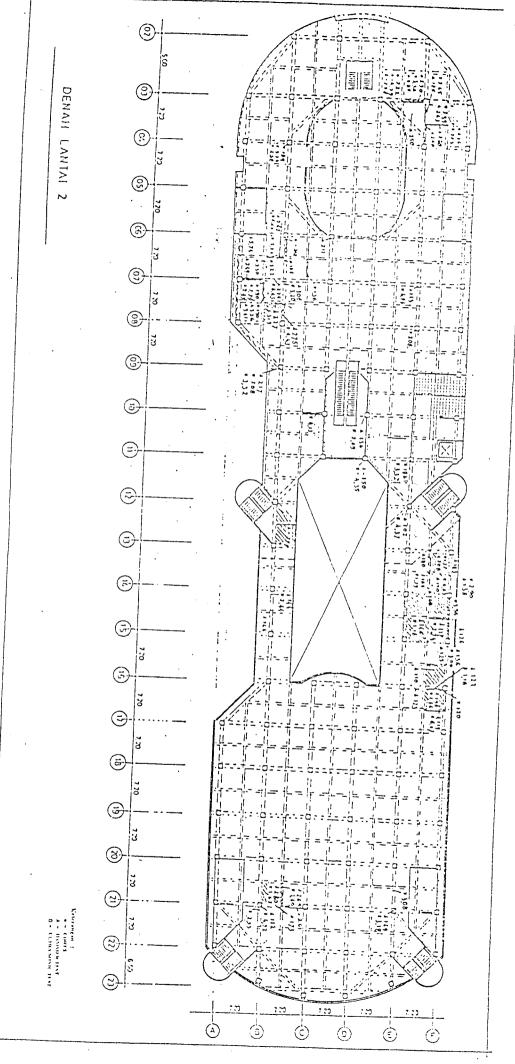
- 4. Berdasarkan uji palu beton dapat disimpulkan bahwa untuk kolom lantai dasar dan lantai 1 masih dapat digunakan, sedangkan kolom lantai -2 berdasarkan uji pembebanan tidak dapat dipakai atau harus diperkuat / diganti. Untuk balok lantai -1 dan lantai -2 masih dapat digunakan, sedangkan balok lantai -3 perlu diganti atau diperkuat. Untuk komponen struktur pelat lantai 2 masih dapat digunakan, sedangkan untuk pelat lantai -1 dan lantai -3 perlu diganti atau diperkuat. Pengujian ini juga belum menunjukkan hasil yang akurat karena dimungkinkan saat pengujian mengenai batu atau baja pada beton yang mengakibatkan hasil pengujian tidak akurat. Untuk itu diperlukan pengujian-pengujian lebih lanjut yang lebih akurat.
- 4. Berdasarkan uji beton inti pada seluruh komponen struktur, untuk lantai dasar dan lantai satu masih dapat digunakan dengan terlebih dahulu dilakukan perbaikan pada permukaan komponen struktur sesuai kerusakan, sedangkan pada komponen struktur lantai -2 dan lantai -3 tidak dapat digunakan.
- Berdasarkan uji pembebanan, maka komponen struktur terpasang masih dapat digunakan dan kuat tekan beton minimal pada komponen struktur terpasang yang disyaratkan sebesar 15,75 Mpa.
- 6. Secara umum dapat disimpulkan bahwa pengamatan secara visual dan pengujian phenolpthaline hanya dapat memperkirakan kuat tekan pada bagian permukaan, pengujian UPV hanya dapat memperkirakan kualitas beton berdasarkan keseragaman beton, pengujian palu beton hanya dapat memperkirakan kuat tekan sampai kedalaman 3 cm, jadi pengujian pengujian tersebut belum memberikan hasil

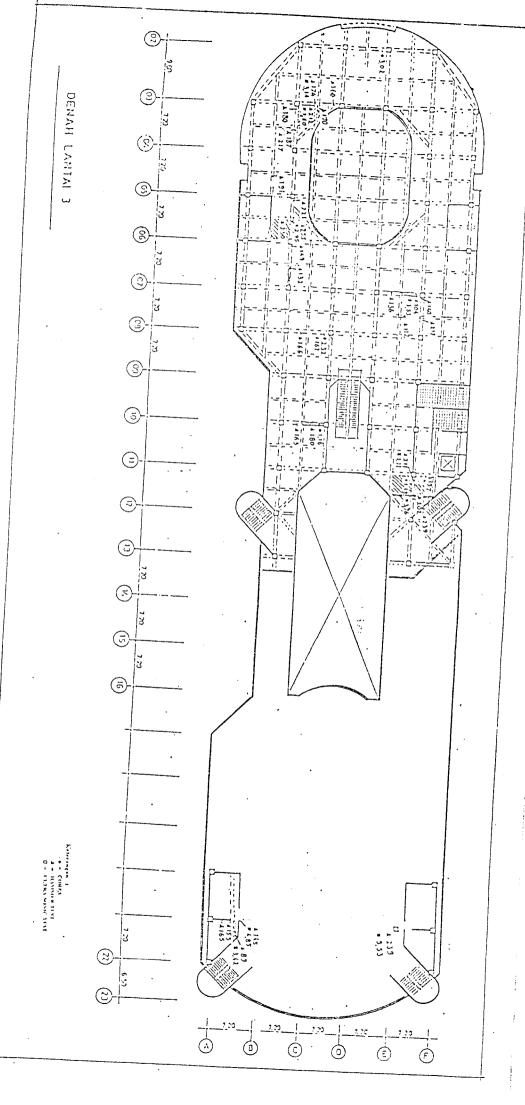
kuat tekan yang paling akurat, sedangkan pengujian beton inti merupakan pengujian yang paling akurat karena pengujian ini dilakukan dengan melakukan pengujian desak secara langsung terhadap sampel-sampel komponen struktur terpasang.

7.2 Saran-saran


Setelah melakukan studi evaluasi kekuatan struktur paska kebakaran pada bangunan gedung Bogor Internusa Plaza, maka saran yang diberikan adalah sebagai berikut ini.

- Untuk mendapatkan nilai deviasi standar yang kecil, maka sebaiknya dilakukan pengujian pada komponen struktur minimal 20 kali pengujian dalam setiap komponen agar diperoleh keseragaman hasil pengujian yang lebih baik.
- 2. Pada pengujian penetrasi larutan phenolpthaline dianjurkan dilakukan pengupasan struktur sampai ketebalan selimut beton, hal ini dilakukan untuk mengetahui perkiraan suhu yang terjadi dan perlu tidaknya dilakukan pengujian baja tulangan.
- 3. Hasil uji beton inti dapat dijadikan pedoman untuk memperkirakan kuat tekan beton pada komponen struktur.
- 4. Sebaiknya untuk lantai -2 dan lantai -3 setelah diperbaiki dialihkan fingsinya ke pembebanan yang lebih ringan.


DAFTAR PUSTAKA


- 1. Istimawan D, 1994, STRUKTUR BETON BERTULANG, Gramedia Jakarta.
- Charles G. Salmon dan John E Johnson, 1990, STRUKTUR BAJA, Erlangga Jakarta.
- 3. Murdiati Munandar, 1995, PENELITIAN STRUKTUR KING'S SHOPING CENTER AKIBAT KEBAKARAN, Puslitbangkim PU, Bandung.
- 4. Tim Puslitbangkim, November 1988, STUDI SFAT FISIS STRUKTUR BALOK DAN KOLOM BETON BERTULANG SERTA DINDING PASANGAN BATA MERAH TERHADAP API, Puslitbangkim PU, Bandung.
- 5. Tim puslitbangkim, Juli 1996, PENELITIAN KEANDALAN BANGUNAN GEDUNG PASAR KEBON KEMBANG, Puslitbangkim PU, Bandung.
- 6. Tim puslitbangkim, Maret 1996, PENELITIAN BEBAN API PADA BANGUNAN PERKANTORAN DI INDONESIA, Puslitbangkim PU, Bandung.
- 7. Direktorat Jendral Cipta Karya DPU dan T.L, 1971, PERATURAN BETON BERTULANG INDONESIA N.I. 2.
- 8. DPU, 1991, TATA CARA PERHITUNGAN STRUKTUR BETON UNTUK BANGUNAN GEDUNG SK SNI T 15 1991 03.
- Tim puslitbangkim, Februari 1993, PENELITIAN KELAIKAN TEKNIS BANGUNAN GEDUNG BALI BEACH HOTEL AKIBAT KEBAKARAN, Puslitbangkim PU, Bandung.
- 10. Tim Puslitbangkim, Februari 1996, PENELITAN KEANDALAN BANGUNAN BOGOR INTERNUSA PLAZA AKIBAT KEBAKARAN, Puslitbangkim PU, Bandung.

LAMPIRAN

Peta Kerusakan

UNIVERSIT & ISLAM INDONESIA FAKULTAS * EKNIK SIPIL DAN PERENCANAAN

Jl. Kaliurang Km 14,4, Telp. 895042, 895707, Fax. 895330, Yogyakarta 55584

Harmon you

: 017. D.II A.02. JTS/XII/97

Yogyakarta, 1" lesamber 1 ...

Lenife. 11 5 1

: BIHBINGAR TUGAS ARHIP.

Reporte Fills Barak IR. FALSOL AM., MS dt

YORYARARTA

Merchanic Statem Ur. W.

Pendan ini kawi mehon dengan hormat kepada Batuk - jin seso menserate - Junuasi Taknik Zipii, Pakairaa - apair Sivil & Ferencenson tersebut dibawsh int :

1 11 4 11 5

WINARNO BAYU TRIANTO

Her. 1112

: 92 310 154

11. 1 1 .11.

: 92 0051013114120 154

Elleng Studt : Struktur Garai

Weinerter Tahun akademi :

1997-1998

... 11 S 41 5

: MOH. MUDTE ULTINIONA

160. 111.9.

: 92 310 112

* 11. 1 F. H.

=: 92 0051013114120 112

Manig Studi : Struktur

ichektel

Gassi

Tabun Akademi : 1997-1998

lought miteriesh petunium - petunion permit permit bimbingan Jalam melaksanakan Tugas akhir. Reduce instructions termetait meropopen some in a con-Manager Dozen Found Indiana slobe t

is evo franklinding for the H. Moch. Tegub, MICE la sen Lembimbing II : Ir. Faisol AM. . NS

length mengembas topak;

STUDI EEANDALAN STRUKTUR BANGUNAN GEDUNG PASKA KENAKAKAN

leminish etas bantuan serva kerdastronma da agrea terims kasih.

Wassalamu alaikum Wr. Wh.

Webnik Strett

Illume: Minte

Temburgan Repada Yth. : Abdison Louis of S. mare to

UNIVERSITAS ISLAM INDONESIA FAKULTAS TEKNIK SIPIL DAN PERENCANAAN JURUSAN TEKNIK SIPIL

Jl. Kaliurang Km. 14,4 Telp. 95330 Yogyakarta

KARTU PESERTA TUGAS AKHIR

No.	Nama	No. Mhs.	N.I.R.M.	Bidang Studi
1	VIUMEND BAYN FRIANTO	92 310 154		STRUKTUR
2.	TEM CONTROLLER MANAGEMENT	92 310 110		STRUKTUR
		·		·

Dosen Pembimbing | [

: LE. H. MOCH. TEGUH. MECE

* Dosen Pembimbing II

IR. FAIBOL AM., MS

Yogyakarta, 17 Desember 1997 An. Dekan, 17 Desember 1997 Ketua Jurusan Teknik Sipil.

IR. BAMBANG SULISTIONO, MECE