Dinding Pot A'-B'	84
Tabel 5.14 Berat bangunan pada Pot A'-B'	84
Tabel 5.15 Tekanan Tanah Aktif Horisontal pada Dinding Pot A"-B"	86
Tabel 5.16 Tekanan Tanah Pasif Horisontal pada Dinding Pot A"-B"	86
Tabel 5.17 Tekanan Tanah Aktif Vertikal pada Dinding Pot A"-B"	87
Tabel 5.18 Tekanan Tanah Pasif Vertikal pada Dinding Pot A"-B"	87
Tabel 5.19 Berat Bangunan pada Dinding Pot A"-B"	87
Tabel 5.20 Tinjauan Gaya Horisontal untuk Tanah Aktif	90
Tabel 5.21 Tinjauan Gaya Horisontal untuk Tanah Pasif	90
Tabel 5.22 Tinjauan Gaya Vertikal untuk Tanah Aktif	90
Tabel 5.23 Tinjauan Gaya Vertikal untuk Tanah Pasif	91
Tabel 5.24 Berat Bangunan pada Dinding	91
Tabel 5.25 Tekanan Tanah Aktif Horisontal Pot A'-B'	96
Tabel 5.26 Tekanan Tanah Aktif Vertikal Pot A'-B'	96
Tabel 5.27 Berat Bangunan Pot A'-B'	96
Tabel 5.28 Tekanan Tanah Aktif Horisontal Pot A"-B"	97
Tabel 5.29 Tekanan Tanah Pasif Horisontal Pot A"-B"	97
Tabel 5.30 Tekanan Tanah Aktif Vertikal Pot A"-B"	98
Tabel 5.31 Berat Bangunan pada Pot A"-B"	98
Tabel 7.1 Persamaan dan Perbedaan Teori Rankine, Coulomb,	
dan Mononobe-Okabe	10 8

DAFTAR NOTASI

2 is in the second

σ	Ξ	tekanan efektif	(t/m^2)
σ_v	=	tekanan arah vertikal	(t/m^2)
σ_h	Η	tekanan arah horisontal	(t/m^2)
σ'_v	=	tekanan efektif vertikal	(t/m^2)
$\sigma'h$	-	tekanan efektif horisontal	(t/m^2)
P_{AV}	=	tekanan aktif yang bekerja pada bidang vertikal	(t/m^2)
P_{AH}	==	tekanan aktif yang bekerja pada bidang horisontal	(t/m^2)
P_{PV}	=	tekanan pasif yang bekerja pada bidang vertikal	(t/m^2)
P_{PEH}	- =	tekanan pasif yang bekerja pada bidang horisontal	(t/m^2)
P_{AEV}	-	tekanan aktif yang bekerja pada bidang vertikal (gempa)	(t/m^2)
P_{AEH}	- =	tekanan aktif yang bekerja pada bidang horisontal (gempa)	(t/m^2)
P_{PEV}	=	tekanan pasif yang bekerja pada bidang vertikal (gempa)	(t/m^2)
PPEH	=	tekanan pasif yang bekerja pada bidang horisontal (gempa)	(t/m^2)
$ au_{f}$	=	tegangan geser	(t/m^2)
P_o	=	tekanan tanah dalam keadaan diam	(t/m^2)
P_w	=	tekanan hidrodinamik	(t/m^2)
и	=	tekanan horisontal akibat air	(t/m^2)
γ	=	berat volume tanah	(t/m^3)
Y sat	=	berat volume tanah jenuh	(t/m^3)
γ_k	~	berat volume tanah kering	(t/m^3)
γ'	=	berat volume tanah terendam	(t/m^3)
$\gamma_{\rm w}$	=	berat volume air	(t/m^3)
Yey	¥	berat volume air ekuifalen = $\gamma_u + r_u \gamma_b$	(t/m^3)
С	=	kohesi tanah	(t/m^2)
ϕ	==	sudut geser tanah pada keadaan general shear	(°)
ϕ	÷	sudut geser tanah pada keadaan lokal shear	(°)
ϕ_{dv}	==	sudut geser tanah ketika terkena beban dinamik = ϕ_{dv} -2°	(°)
α	=	sudut kemiringan kelongsoran	(°)
δ	=	sudut geser tanah-dinding	$(^\circ)$
ß	=	sudut lereng pada dinding belakang dengan sumbu vertikal	(\circ)
i i	=	sudut lereng pada urugan belakang dengan sumbu horisontal	(\circ)
•			
θ	=	koefisien Mononobe-Okabe = $\tan^{-1}\left(\frac{\kappa_h}{1-k_v}\right)$	(°)
е	=	angka pori = $\left(\frac{n}{1-n}\right)$	(%)

.

 e = eksentisitas	(m)
$n = \text{porositas} = \left(\frac{e}{1+e}\right)$	-(%)
$Dr = \text{Kepadatan Relatif} = \left(\frac{e_{maks} - e}{e_{maks} - e_{\min}}\right)$	(%)
w = kadar air	(%)
r_{u} = rasio tekanan air pori = u / (γ .h)	
g = percepatan gravitasi	(m/det^2)
a = percepatan tanah	(m/det^2)
V = kecepatan tanah	(m/det)
$a_{maks} =$ percepatan tanah maksimum	(m/det^2)
$v_{maks} =$ kecepatan tanah puncak	(m/det)
H = tinggi dinding penahan tanah	(m)
z = kedalaman tanah	(m)
$Z_w = \text{tinggi air}$	(m)
W = berat baji tanah	(t)
W_w = berat dinding	(t)
F = resultan gaya geser dan gaya normal sepanjang bidang kerusakar K_o = koefisien tekanan tanah dalam keadaan diam	n (t/m ²)
K_{4} = koefisien tekanan tanah aktif	
K_p = koefisien tekanan tanah pasif	
$K_{AE} =$ koefisien tekanan tanah aktif sewaktu gempa	
K_{PE} = koefisien tekanan tanah pasif sewaktu gempa	,
k_h = komponen horisontal akselerasi gempa tiap satuan percepatan gr	avitasi
$k_v =$ komponen vertikal akselerasi gempa tiap satuan percepatan gravi	tasi
OCR = rasio terkonsolidasi lebih	
PI = indek plastisitas	
SF = Safety factor, angka keamanan	
Nc, Nq, $N\gamma$ = Faktor daya dukung pada keadaan general shear	
Nc', Na' , $Nr' =$ Faktor daya dukung pada keadaan local shear	

INTISARI

Struktur Penahan Tanah adalah suatu bangunan yang digunakan untuk mencegah material tanah agar tidak longsor akibat beban-beban yang bekerja menurut kemiringan lerengnya. Jenis struktur penahan tanah ini bermacammacam, diantaranya adalah struktur penahan tanah dengan bentuk dinding penahan tanah(retaining wall). Dinding penahan tanah adalah dinding yang memberikan tahanan lateral untuk lereng tanah yang vertikal maupun mendekati vertikal.

Diantara tipe dinding penahan tanah dapat diklasifikasikan menjadi empat, yaitu : Gravitasi, Semi Gravitasi, Cantilever, dan Counterfort. Pada penulisan Tugas Akhir ini dikhususkan pada pembahasan dinding penahan tanah jenis gravitasi. Dinding gravitasi adalah yang tertua dan paling sederhana dari tipetipe dinding penahan tanah.

Tugas akhir ini akan memberikan suatu pengetahuan perancangan dinding penahan tanah yang dianalisis terhadap stabilitas eksternal meliputi ketahanan terhadap geser, guling, dan kapasitas daya dukung tanah, serta stahilitas internal, yang meliputi kuat tarik dan kuat geser.

Analisis dilakukan dengan menggunakan tiga metode, yaitu metode Rankine, metode Coulomb dan metode Mononobe – Okabe. Metode Rankine dan metode Coulomb adalah metode analisis yang dipergunakan untuk perencanaan dinding penahan tanah dengan beban statik, sedangkan metode Mononobe – Okabe adalah metode analisis yang dipergunakan untuk perencanaan dinding penahan tanah dengan beban dinamik (gempa).

Metode Mononobe - Okabe menggunakan analisa perhitungan yang disederhanakan yaitu menjadikan beban gempa seperti beban statik, analisa ini biasa disehut analisa pseudostatis.

Hasil perhitungan menunjukkan bahwa angka keamanan terbesar adalah terdapat pada Rankine. Rasio perbandingan angka keamanan antara Rankine : Coulomb dan Mononobe - Okabe untuk geser(sliding) adalah 1,3 : 1,1 : 1. Untuk guling(Overturning) adalah 1,2 : 1 : 1 dan untuk daya dukung (Bearing Capacity) adalah 2,1 : 1,1 : 1.

Terjadi ketidak-amanan pada stabilitas geser (sliding) untuk analisis Mononobe – Okabe. Hal ini sesuai dengan kejadian yang sering terjadi dibeberapa kasus yaitu keruntuhan geser.

BAB I

PENDAHULUAN

1.1 LATAR BELAKANG

Gempa bumi adalah salah satu bencana alam yang sering membuat kerusakan baik kerusakan struktur tanah maupun bangunan yang berada diatasnya. Korban yang ditimbulkan tidak saja harta benda tapi juga jiwa manusia mulai dari luka-luka sampai jiwa korban yang tidak tertolong lagi. Bagi para ilmuwan dan perencana kejadian gempa-gempa tersebut merupakan pelajaran sekaligus tantangan. Dikatakan sebagai pelajaran karena dengan menyelidiki sebab-sebab, tempat kejadian, karakteristik gempa dan akibat yang ditimbulkan maka dapat diketahui dan dievaluasi kekurangan-kekurangan yang terjadi mulai dari antisipasi tempat-tempat kejadian gempa, ukuran gempa dan sejenisnya. Selain daripada itu dapat juga dievaluasi tentang perilaku struktur akibat gempa tersebut. Sebagai tantangan, karena di masa yang akan datang para ilmuwan dan perencana diharapkan dapat memberikan suatu keterangan yang lebih baik tentang prediksi kejadian gempa dan desain bangunan gempa yang relatif baik terhadap beban gempa.

Mengingat besarnya kerugian yang dapat ditimbulkan oleh bencana alam gempa bumi, maka pembangunan sarana dan prasarana harus memperhitungkan aspek kegempaan mengingat daerah-daerah di Indonesia khususnya ada beberapa yang merupakan daerah rawan gempa. Peristiwa gempa Kerinci, Liwa, Bengkulu, Biak, Flores, Banggai, Yogyakarta, dan lain-lain menunjukkan bahwa Indonesia

merupakan daerah yang rawan gempa. Hal ini disebabkan karena Indonesia yang terletak pada plat Eurasian, sebelah timur yaitu di utara Irian Jaya dan daerah Halmahera berbatasan dengan plat tektonik Pasifik dan plat tektonik Philippines, sedangkan bagian selatan yaitu mulai dari Nusa Tenggara, selatan pulau Jawa dan barat kepulauan Sumatera berbatasan dengan plat tektonik Australia. Daerah tengah seperi pantai timur Sumatera dan Kalimantan merupakan daerah yang aktifitas gempanya relatif kecil bahkan kadang-kadang diabaikan.Wilayah-wilayah lain merupakan daerah gempa bumi yang berbahaya dan perlu diwaspadai.

Bila gempa bumi terjadi, maka tanah akan bergetar dan bangunan diatas tanah tersebut akan bergoyang. Setelah mengalami sejarah yang panjang, goyangan massa bangunan kemudian dianalogikan sebagai akaibat dari adanya beban horizontal dinamik yang bekerja pada bangunan yang bersangkutan. Setiap struktur yang dikenai beban dinamik akan mengalami goyangan.(Widodo,1997)

Kerusakan yang diakibatkan gempa banyak menimpa bangunan struktur atas. Hal ini dapat dimungkinkan terjadi pula pada struktur yang langsung bersinggungan dengan tanah misalnya pondasi, dinding penahan tanah, dam dsb. Kebanyakan kasus kerusakan yang dilaporkan diberbagai literatur, sampai sekarang banyak terjadi pada struktur yang berhadapan langsung dengan air, seperti pangkalan dan abutmen jembatan (Das,1993). Beberapa contoh kerusakan dan gerakan yang terjadi pada dinding pangkalan sewaktu terjadi gempa bumi, dapat dilihat dalam tabel 1.1 berikut ini.

Tabel 1.1. Kerusakan dan Gerakan Dari Dinding Pangkalan^a.

Gempa Bumi	Tanggal	Magnitude	Pangkalan	Jarak dari	Kerusakan	Rata-rata
				Episentrum		Gerakan
Kitaizu	25/12/1930	7.1	Shimizu	30 mil(48km)	Kerusakan dinding gravitasi ^b	26ft (7.93m)
Shizuoka	11/7/1935		Shimizu	-	Keruntuhan dinding penahan ^b	16ft (4.88m)
Tonankai	7/12/1944	8.2	Shimizu	110 mil(175km)	Pergeseran dinding penahan ^b	-
			Nagoya	80 mil(128km)	Gerakan dinding keluar ^b	10-13ft
						(3.05-3.96m)
			Yokkaichi	90mil(144km)	Gerakan dinding keluar ^b	12ft(3.66m)
Nankai	21/12/1946	8.1	Nagoya	125 –190mil	Gerakan dinding keluar ^b	13ft(3.96m)
				(200-304km)		
			Osaka	Idem	Kerusakan dinding ^b	14ft(4.27m)
			Yokkaichi	Idem	Gerakan dinding keluar ^b	12ft(3.66m)
			Uno	Idem	Gerakan dinding keluar ^b	2ft(0.61m)
Tokachioki	4/3/1952	7.8	Kushiro	90mil(144km)	Gerakan dinding keluar ^b	18ft(5.49m)
Chili	22/5/1960	8.4	Puerto Mont	70mil(112km)	Guling penuh dinding ^c	>15ft(4.57m)
					Gerakan dinding keluar ^c	2-3ft
					-	(0.61-0.915m)
Niigata	16/6/1964	7.5	Niigata	32mil(51.2km)	Kemiringan dinding ^d	10ft(3.05m)
					Gerakan dinding keluar ^d	1-7ft
					-	(0.305-2.13m)

t ia

a Sesuai dengan Seed dan Whitman (1970)

b Dilaporkan oleh Amano, Azuma, dan Ishii (1950) c Dilaporkan oleh Duke dan Leeds (1963)

d Dilaporkan oleh Hayashi, Kubo dan Nakase (1966)

1.2. RUMUSAN MASALAH

Dari penjelasan latar belakang diatas dapat diambil rumusan masalah sebagai berikut : Pengaruh gempa terhadap tekanan tanah, adalah gempa dapat menimbulkan getaran yang melewati tanah, yang juga akan mempengaruhi terhadap stabilitas struktur bangunan diatasnya.

1.3. TUJUAN PENELITIAN

Adapun tujuan yang ingin dicapai dalam penelitian ini adalah:

- 1. Mengetahui dan memahami dasar-dasar teori yang berkaitan dengan permasalahan tekanan tanah lateral akibat pembebanan dinamik (gempa),
- 2. Mengetahui dasar-dasar perhitungan tekanan tanah lateral akibat pembebanan dinamik (gempa),
- Mengetahui kestabilan dinding penahan tanah dengan memperhitungkan pembebanan dinamik (gempa).

1.4 MANFAAT PENELITIAN

Dari hasil yang diperoleh nantinya diharapkan dapat memberikan manfaat sebagai berikut:

 Menambah pemahaman yang lebih komprehensif tentang teori yang berhubungan dengan dinding penahan tanah yang telah diberikan pada waktu perkuliahan,

 Merangsang penelitian berikutnya, terutama yang berhubungan dengan dinding penahan tanah kepada mahasiswa teknik sipil di Indonesia khususnya bidang Geoteknik.

1.5 BATASAN PENELITIAN

Mengingat luasnya permasalahan dan keterbatasan waktu yang diberikan, maka dalam tugas akhir ini dibatasi hanya pada permasalahan sebagai berikut:

- 1. Jenis dinding adalah dinding jenis gravitasi dengan pasangan batu kali,
- 2. Beban gempa disederhanakan seperti beban statik,
- 3. Likuifaksi yang terjadi diabaikan,
- 4. Penyelesaian menggunakan teori plastis penuh,
- 5. Jenis tanah urugan (backfill) adalah tanah pasir tak berkohesi dan isotropis,
- 6. Tidak diperhitungkan jenis mekanisme terjadinya gempa,
- 7. Lapisan tanah ditinjau dalam tinjauan dua dimensi,
- 8. Dinding diasumsikan kedap air (impermeable).

BAB II

TINJAUAN PUSTAKA

Dinding penahan tanah adalah dinding yang memberi tahanan lateral untuk lereng tanah yang vertikal maupun mendekati vertikal. Struktur dinding penahan tanah adalah jenis struktur yang sering digunakan dalam beberapa proyek. Diantara tipe dinding penahan tanah dapat diklasifikasikan menjadi empat, yaitu

(Das,1990):

- 1. Gravitasi,
- 2. Semi Gravitasi,
- 3. Cantilever,
- 4. Counterfort,

Pada penulisan Tugas Akhir ini dikhususkan pada pembahasan dinding penahan tanah jenis gravitasi. Dinding gravitasi adalah yang tertua dan paling sederhana dari tipe-tipe dinding penahan tanah. Dinding gravitasi dibuat cukup tebal dan kaku agar dinding tidak mengalami lentur sehingga gerakan mereka yang biasanya terjadi adalah *sliding* dan atau guling. *Sliding* dapat terjadi ketika kesetimbangan gaya horizontal tidak dapat dipertahankan seperti ketika tekanan lateral pada belakang dinding menghasilkan dorongan yang melampaui daya tahan terhadap *sliding* pada dasar dinding. Kerusakan guling terjadi ketika kesetimbangan momen tidak memuaskan, kerusakan pada pondasi dinding juga sering terjadi. Dinding gravitasi mungkin dapat rusak juga diakibatkan karena ketidakstabilan tanah dibelakang dan dibawah dinding. (Kramer, 1996)

Kerusakan pada dinding penahan tanah akibat gempa banyak terjadi, Sheed dan Whitman (1970) menduga bahwa kerusakan dimungkinkan terjadi karena :

- 1. Bertambahnya gaya lateral tanah dibelakang dinding,
- 2. Berkurangnya tekanan air didepan dinding,
- 3. Terjadinya likuifaksi pada material pengisi urugan dibelakang dinding.

Pada penulisan Tugas Akhir ini hanya akan dibahas pada point 1 dan 2 saja, yaitu bertambahnya gaya lateral dan tekanan air. Penelitian ini menggunakan tiga teori yaitu teori Coulomb dan Rankine untuk analisis beban statik serta teori Mononobe-Okabe untuk analisis beban gempa.

Konsep keadaan Rankine pada kesetimbangan plastis dapat digunakan untuk memperkirakan besarnya tekanan lateral yang bekerja pada berbagai struktur penahan. Metode Rankine menganggap bahwa tidak ada gesekan atau adhesi antara tanah (tanah belakang) dan struktur penahan. Anggapan ini, tentu saja, tidak benar dan menjurus pada ketidaktelitian metode ini. Hal ini biasanya kecil untuk keadaan aktif dan kebanyakan dari segi konservatif, walaupun tidak semuanya, bagi kondisi-kondisi praktis. Kesalahan dari mengabaikan gesekan antara dinding dan tanah bagi keadaan pasif bisa sangat besar dan tidak selalu konservatif. Sebelum menggunakan metode Rankine, pengaruh pengabaian gesekan dinding perlu diselidiki (Bowles,1991).

Coulomb (1776) mengembangkan suatu teori mengenai tekanan tanah aktif dan pasif yang bekerja pada tembok penahan. Dalam teorinya, Coulomb menganggap bahwa bidang longsor adalah rata. Geseran antara tembok dengan tanah dibelakang tembok ikut diperhitungkan. Prinsip umum dari penurunan teori

tekanan tanah menurut Coulomb untuk tanah kering tak berkohesi (kekuatan gesernya dinyatakan dengan persamaan $\tau_f = \sigma \tan \psi$).

Pada umumnya penggunaan metode tekanan tanah Rankine tidak menggunakan gesekan dinding yang cenderung lebih konservatif (tekanan dinding lebih besar) daripada pemecahan harga-harga Coulomb, akan tetapi untuk dinding tinggi atau dinding lentur dengan metode deformasi Coulomb yang baik mungkin lebih realistis dan diperlukan suatu perkiraan untuk δ (sudut gesek dinding). Baik metode Rankine maupun metode Coulomb telah dipakai secara luas. Pemecahan Rankine sering dipakai karena persamaannya sederhana dan agak lebih konservatif daripada persamaan Coulomb (Bowles,1991).

Persamaan Tekanan Tanah Aktif Coulomb dapat dimodifikasi dengan memperhitungkan perubahan koefisien vertikal dan horisontal akibat gempa yang pada umumnya berdasarkan analisis dari Mononobe-Okabe. Okabe (1926) serta Mononobe-Matsuo (1929) telah mengembangkan dasar analisis pseudostatik pada tekanan tanah saat gempa pada struktur dinding penahan tanah dimana telah menjadi populer dikenal sebagai metode Mononobe-Okabe. Metode Mononobe-Okabe adalah pengembangan langsung dari teori statik Coulomb pada kondisi pseudostatik. Dalam analisis Mononobe-Okabe, percepatan semi statik diterapkan untuk baji aktif/pasif Coulomb.

Studi pustaka yang dilakukan dengan membahas ketiga teori ini diharapkan bermanfaat menambah pemahaman yang lebih menyeluruh dan mendalam tentang teori dinding penahan tanah yang telah diberikan sewaktu perkuliahan, sedangkan

pendekatan umum dalam desain gempa pada dinding penahan tanah meliputi dua

- 1. Perkiraan beban yang menimpa dinding sewaktu goncangan gempa,
- 2. Menjamin bahwa dinding tahan terhadap beban tersebut,

Karena pembebanan gempa pada dinding penahan tanah sewaktu gempa sangat komplek pada kenyataannya (arahnya tidak bisa diduga) maka tekanan gempa pada dinding penahan tanah adalah selalu diperkirakan menggunakan metode yang disederhanakan (Kramer, 1996).

Dinding dapat bergerak karena pergeseran dan/atau rotasi. Kebanyakan rotasi dan translasi tergantung pada desain dinding, salah satu mungkin lebih domiman untuk beberapa dinding (Nadim dan Whitman, 1984) dan dimungkinkan keduanya terjadi secara bersamaan (Sidhartan, 1992). Dinding penahan dapat rusak diakibatkan beberapa sebab. Dinding grafitasi rusak oleh sliding / gelincir, guling atau ketidakstabilan kasar.(Kramer, 1996)

Bentuk distribusi tekanan tanah pada belakang dinding berubah ketika bergerak. Titik aplikasi dari kekuatan tanah bisa bertambah dan berkurang sepanjang dinding bagian belakang. Posisi dari kekuatan tanah yang tertinggi ketika dinding telah bergerak ke arah tanah dan terendah ketika bergerak ke arah luar (Kramer, 1996).

BAB III

LANDASAN TEORI

3.1 Uraian Umum

Konstruksi penahan tanah seperti dinding penahan, dinding bangunan bawah tanah (*basement*), dan turap baja, pada umumnya digunakan dalam teknik pondasi; konstruksi penahan tanah tersebut biasanya digunakan untuk menahan massa tanah dengan talud vertikal. Agar dapat merencanakan konstruksi penahan tanah dengan benar, maka perlu diketahui gaya horisontal yang bekerja antara konstruksi penahan tanah arah horisontal.

Pembahasan dalam bab ini, perhatian akan difokuskan untuk mempelajari berbagai teori tentang tekanan tanah. Tekanan tanah timbul selama pergeseran tanah *(soil displacement)* atau selama peregangan tetapi tanah tersebut mengalami keruntuhan *(on the vege of failure)*, seperti yang didefinisikan oleh selubung keruntuhan Mohr, maka tegangan-tegangan *(stresses)* tersebut tidak mempunyai harga tertentu *(indeterminate)*. Tegangan-tegangan tersebut belum tentu terdapat bagian yang runtuh *(rupture)* karena sangat sukar untuk mendapatkan keadaan kesetimbangan plastis secara serempak di mana-mana di dalam massa tanah – hal ini biasanya merupakan peristiwa yang progresif. Walaupun demikian, hal ini pada prakteknya sudah bisa dianalisis sebagai suatu kejadian keadaan yang ideal, baik untuk mempermudah persoalannya maupun dari segi pembatasan parameter tanah yang diperlukan dengan tingkat kepercayaan *(reliability)* yang tinggi.

3.2 Tekanan Tanah Dalam Keadaan Diam (At Rest)

Dilakukan tinjauan massa tanah seperti yang ditunjukan dalam gambar 3.1 Massa tanah tersebut dibatasi oleh dinding dengan permukaan yang licin (*frictionless wall*) AB yang dipasang sampai kedalaman yang tak terhingga. Suatu elemen tanah yang terletak pada kedalaman z akan terkena tekanan arah vertikal σ_v dan tekanan arah horisontal σ_h . Di sini akan dibahas permasalahan σ_v dan σ_h yang masing-masing merupakan tekanan yang berupa tekanan efektif dan tekanan total, sedangkan tegangan geser pada bidang tegak dan bidang datar diabaikan.

Bila dinding *AB* dalam keadaan diam, yaitu bila dinding tidak bergerak ke salah satu arah baik ke kanan maupun ke kiri dari posisi awal, maka massa tanah akan berada dalam keadaan keseimbangan elastis *(elastic equilibrium)*.

Rasio tekanan arah horisontal dan tekanan arah vertikal dinamakan "koefisien tekanan tanah dalam keadaan diam" (coefficient of earth pressure at rest), K_o atau

$$K_o = \frac{\sigma_h}{\sigma_v} \tag{3.1}.$$

Karena $\sigma_v = \gamma z$, maka

$$\sigma_h = Ko(\gamma z) \qquad (3.2)$$

Untuk tanah berbutir, koefisien tekanan tanah dalam keadaan diam dapat diwakili oleh hubungan empiris yang ditawarkan oleh Jaky (1944)

 $K_o = 1 - \sin \phi$

Brooker dan Jreland (1965) menyarankan agar menggunakan persamaan berikut ini untuk menghitung harga K_o dari tanah lempung yang terkonsolidasi normal (normally consolidated):

Gambar 3.1 Tekanan tanah dalam keadaan diam (at rest)

 $Ko = 0.95 - \sin \phi \qquad (3.4)$

Sudut ϕ dalam persamaan 3.3 dan 3.4 adalah sudut geser tanah dalam keadaan air teralirkan (*drained*). Untuk tanah lempung yang terkonsolidasi lebih (*overconsolidated*), koefisien tekanan tanah dalam keadaan diam (*at rest*) dapat diperkirakan sebagai berikut :

 K_o (overconsolidated) = K_o (normally consolidated) \sqrt{OCR} (3.5)

Dengan

Rasio terkonsolidasi lebih ini di definisikan sebagai :

 $OCR = \frac{\text{tekanan pra konsolidasi}}{\text{tekanan efektif akibat lapisan tan ah diatasnya}}$ (3.6)

Untuk tanah lempung yang terkonsolidasi normal, persamaan empiris yang lain untuk K_o telah di perkenalkan oleh Alpan (1967):

$$K_o = 0,19 + 0,233 \log (PI)$$
 (3.7)

Dengan PI = indeks plastisitas

Gambar 3.2 menunjukkan distribusi tekanan tanah dalam keadaan diam yang bekerja pada dinding setinggi H. Gaya total per satuan lebar dinding, P_o , adalah sama dengan luas dari diagram tekanan tanah yang bersangkutan. Jadi,

$$P_{\rm o} = \frac{1}{2} K_o \gamma H^2 \qquad (3.8)$$

Tekanan tanah dalam keadaan diam (*at rest*) untuk tanah yang terendam air sebagian Gambar 3.3 menunjukkan tembok setinggi *H* dengan permukaan air tanah (ground water table) terletak pada kedalaman *H*, dari permukaan tanah.

Untuk $z \leq H_1$, tekanan tanah dalam keadaan diam arah horisontal adalah sebesar $\sigma_h = K_0 \gamma z$ Variasi dengan kedalaman tertentu ditunjukkan oleh segi-tiga ACE dalam gambar 3.3a. tetapi untuk $z \geq H_1$ (yaitu di bawah permukaan air tanah), tekanan tanah pada tembok merupakan komponen dari tekanan efektif dan tekanan air pori.

Tekanan efektif arah vertikal = $\sigma_v = \gamma H_I + \gamma' (Z-H) \dots (3.9)$

Dengan : $\gamma' = \gamma_{sat} - \gamma_w =$ berat volume efektif dari tanah

jadi, tekanan tanah efektif dalam keadaan arah horisontal adalah :

$$\sigma_h = K_o \, \sigma_v = K_o \left[\gamma H_I + \gamma (z - H_I) \right] \qquad (3.10)$$

Variasi σ_h 'dengan kedalaman oleh CEGB dalam gambar 3.3a.

Tekanan arah horisontal yang disebabkan oleh air adalah:

$$\boldsymbol{u} = \boldsymbol{\gamma}_{\boldsymbol{w}} \left(\boldsymbol{z} - \boldsymbol{H}_{l} \right) \tag{3.11}$$

Variasi u dengan kedalaman ditunjukkan dalam gambar 3.3b

Oleh karena itu, tekanan tanah total arah horisontal pada kedalaman $z \ge H_I$

Gambar 3.2 Distribusi tekanan tanah lateral dalam keadaan diam (at rest).

Gambar 3.3. Distribusi tekanan tanah lateral dalam keadan diam (at rest) untuk tanah terendam sebagian

Gaya persatuan lebar tembok merupakan penjumlahan dari luas diagram tekanan yang diberikan dalam gambar 3.3 a dan b, yaitu : $P_o = \frac{1}{2} K_o \gamma H_1^2 + Ko \gamma H_1 H_2 + \frac{1}{2} (K_o \gamma' + \gamma_w) H_2^2 \qquad \dots \dots \dots \dots (3.13)$ $\frac{1}{2} K_o \gamma H_1^2 = luas ACE$ $Ko \gamma H_1 H_2 = luas CEFB$ $\frac{1}{2} (K_o \gamma' + \gamma_w) H_2^2 = luas EFG dan IJK$

3.3 Tekanan Tanah Menurut Rankine

Yang dimaksud dengan keseimbangan plastis (*plastic equilibirium*) di dalam tanah adalah suatu keadaan yang menyebabkan tiap-tiap titik di dalam massa tanah menuju suatu proses ke suatu keadaan runtuh. Rankine (1857) menyelidiki keadaan tegangan di dalam tanah yang berbeda pada keadaan keseimbangan plastis, sub-sub berikut ini akan menjelaskan mengenai teori tekanan tanah menurut Rankine.

3.3.1. Kondisi aktif menurut Rankine

Gambar 3.4a menunjukan suatu massa tanah seperti yang di tunjukan dalam gambar 3.1. Tanah tersebut dibatasi oleh tembok dengan permukaan yang licin, AB, yang dipasang sampai kedalaman yang tak terhingga. Tegangan-tegangan utama arah vertikal dan horisontal (total dan efektif) pada elemen tanah di suatu kedalaman z adalah berturut-turut σ_v dan σ_h . Seperti terlihat pada gambar 3.1, apabila dinding AB tidak diijinkan bergerak sama sekali, maka $\sigma_h = k_o$. σ_v . Kondisi tegangan dalam elemen tanah tadi dapat diwakili oleh lingkaran Mohr *a* dalam gambar 3.4b. Akan tetapi, bila dinding AB diijinkan bergerak menjauhi massa tanah secara perlahanlahan, maka tegangan utama arah horisontal akan berkurang secara terus menerus. Pada akhirnya suatu kondisi, yaitu keseimbangan plastis, akan dicapai bila kondisi tegangan di dalam elemen tanah dapat di wakili oleh lingkaran Mohr *b*, dan kclonggaran di dalam tanah terjadi. Keadaan tersebut diatas dinamakan sebagai"kondisi aktif menurut Rankine" (*Rankine's Active State*). Tekanan σ_a yang bekerja pada bidang vertikal (yang merupakan bidang utama) adalah tekanan tanah aktif menurut Rankine (*Rankine's Active earth pressure*). Berikut ini adalah penurunan dari σ_a sebagai fungsi γ , *z*, *c* dan ϕ . Dari gambar 3.4b didapat

$$\sin \phi = \frac{CD}{AC} = \frac{CD}{AO + OC}$$

Dengan CD = jari-jari lingkaran keruntuhan = $\frac{\sigma_v - \sigma_a}{2}$

$$AO = c \cot \phi$$

Dan

$$OC = \frac{\sigma_v + \sigma_a}{2}$$

Sehingga

$$\sin \phi = \frac{\frac{\sigma_v - \sigma_a}{2}}{c \cdot \cot \phi + \frac{\sigma_v + \sigma_a}{2}}$$

atau
$$c\cos\phi + \frac{\sigma_v + \sigma_a}{2}\sin\phi = \frac{\sigma_v - \sigma_a}{2}$$

atau
$$\sigma_a = \sigma_v \frac{1 - \sin \phi}{1 + \sin \phi} - 2c \frac{\cos \phi}{1 + \sin \phi}$$
 (3.14)

Dalam kasus ini, σ_v = tekanan efektif akibat lapisan tanah di atasnya = γz

$$\frac{1-\sin\phi}{1+\sin\phi} = \tan^2\left(45-\frac{\phi}{2}\right)$$

dan
$$\frac{\cos\phi}{1+\sin\phi} = \tan\left(45-\frac{\phi}{2}\right)$$

Dengan memasukkan persamaan-persamaan di atas ke dalam persamaan 3.14, di

dapatkan:
$$\sigma_a = \gamma z \tan^2 \left(45 - \frac{\phi}{2} \right) - 2c \tan \left(45 - \frac{\phi}{2} \right)$$
 (3.15)

Variasi dengan kedalaman diberikan dalam gambar 3.4d. Untuk tanah yang tidak berkohesi (*cohesionless soil*), c = 0 maka :

$$\sigma_a = \sigma_v \tan^2 \left(45 - \frac{\phi}{2} \right) \qquad (3.16)$$

Rasio dan dinamakan koefisien tekanan tanah aktif, K_a Atau:

$$K_a = \frac{\sigma_a}{\sigma_v} = \tan^2 \left(45 - \frac{\phi}{2} \right) \qquad (3.17)$$

Dari gambar 3.4b akan dapat dilihat bahwa bidang runtuh dalam tanah membentuk sudut $\pm (45 + \frac{\phi}{2})$ dengan arah dari bidang utama besar *(major principal plane)*, yaitu bidang horisontal. Bidang runtuh ini dinamakan bidang geser *(slip plane)*. Bidang geser tersebut dapat di lihat dalam gambar 3.4c

Ì

 $45 + \frac{\phi}{2}$

(c)

(d

Ŧ

3.3.2. Kondisi pasif menurut Rankine

Kondisi pasif menurut Rankine dapat di jelaskan dengan Gambar 3.5. AB adalah tembok licin tak terhingga. Keadaan tegangan awal pada suatu elemen tanah di wakili oleh lingkaran Mohr a dalam Gambar 3.5b. Apabila tembok di dorong perlahan-lahan ke arah masuk kedalam massa tanah, maka tegangan utama σ_h akan berubah secara terus menerus. Akhirnya akan didapatkan suatu keadaan yang menyebabkan kondisi tegangan elemen tanah dapat diwakili oleh lingkaran Mohr b. Pada keadaan ini, keruntuhan tanah akan terjadi yang saat ini dikenal sebagai kondisi pasif menurut Rankine (*Rankine's Passive State*).

Di samping itu tekanan tanah ke samping σ_p , yang merupakan tegangan utama besar *(Major Principal Stress)*, dinamakan Tekanan Tanah Pasif menurut Rankine *(Rankine's Passive Earth Pressure)*.Dari gambar 3.5b terlihat bahwa:

penurunannya serupa dengan penurunan untuk kondisi aktif menurut Rankine (Rankine's active state). Gambar 3.5b menunjukkan variasi tekanan tanah aktif dengan kedalaman. Untuk tanah tidak berkohesi (c = 0),

$$\sigma_p = \sigma_v \tan^2 \left(45 + \frac{\phi}{2} \right)$$

atau $\frac{\sigma_p}{\sigma_1} = k_p = \tan^2$	$\left(45+\frac{\phi}{2}\right)$	
σv	\ 21	

 K_p dari persamaan diatas di namakan sebagai koefisien tekanan tanah pasif menurut Rankine.

Titik-titik D dan D' pada lingkaran runtuhan (gambar 3.5b) bersesuaian dengan bidang geser di dalam tanah. Untuk kondisi pasif (menurut Rankine) bidang geser membuat sudut $\pm (45 - \frac{\phi}{2})$ dengan arah dari bidang utama kecil (*minor principal plane*), yaitu arah horisontal. Gambar 3.5c menunjukan distribusi bidang-bidang geser di dalam massa tanah.

. 22

3.4. TEORI TEKANAN TANAH MENURUT COULOMB

Coulomb (1776) memperkenalkan suatu teori mengenai tekanan tanah aktif dan pasif yang bekerja pada tembok penahan. Dalam teorinya, Coulomb menganggap bahwa bidang longsor adalah rata. Geseran antara tembok dengan tanah dibelakang tembok ikut diperhitungkan. Prinsip umum dari penurunan teori tekanan tanah menurut Coulomb untuk tanah kering tak berkohesi (kekuatan gesernya dinyatakan dengan persamaan $\tau_f = \sigma \tan \phi$) diberikan dibawah ini.

3.4.1. Kondisi Aktif menurut Coulomb

Tekanan tanah aktif menurut Coulomb (a) blok keruntuhan yang dicoba (b) poligon gaya

Anggaplah bahwa AB (Gambar 3.6 a) adalah muka sebelah belakang dari sebuah tembok penahan yang dipergunakan untuk menahan urugan tanah tak berkohesi, yang permukaannya mempunyai kemiringan tetap dengan horisontal yaitu sebesar *i*. BC adalah sebuah bidang keruntuhan yang dicoba. Dalam memperhitungkan kestabilan dari kemungkinan keruntuhan blok tanah (failure wedge) ABC, gaya-gaya yang diperhitungkan (per satuan lebar tembok) adalah:

- 1. W, berat dari blok tanah
- F, resultante dari gaya geser dan gaya normal pada permukaan bidang longsor,
 BC. Gaya resultan tersebut membuat kemiringan sebesar φ dengan normal dari bidang BC
- 3. P_a , gaya aktif per satuan lebar tembok. Arah P_a ini akan membuat sudut sebesar δ dengan normal dari permukaan tembok yang menahan tanah. Dimana δ adalah sudut geser antara tanah dengan tembok. Segitiga gaya untuk blok tanah adalah seperti yang ditunjukkan dalam Gambar 3.6b. Dari rumus sinus didapatkan:

atau:

Dari Gambar 3.6 a, berat dari blok tanah adalah:

$$W = \frac{1}{2} (\overline{AD}) (\overline{BC}) \cdot \gamma \qquad \dots \dots \dots (3.22)$$

tapi

$$\overline{AD} = AB \sin(90 + \beta - \alpha)$$
$$= \frac{H}{\cos \beta} \cdot \sin(90 + \beta - \alpha) \qquad \dots \dots \dots (3.23)$$

Lagi, dari rumus sinus

Dengan memasukan persamaan (3.23) dan (3.25) ke dalam persamaan (3.22), akan didapatkan

$$W = \frac{1}{2} \gamma H^2 \frac{\cos{(\beta - \alpha)} \cdot \cos{(\beta - i)}}{\cos^2{\beta} \sin{(\alpha - i)}} \qquad (3.26)$$

Selanjutnya, harga W dimasukan dalam persamaan (3.21)

$$P_{a} = \frac{1}{2} \gamma H^{2} \left[\frac{\cos\left(\beta - \alpha\right) \cdot \cos\left(\beta - i\right) \cdot \sin\left(\alpha - i\right)}{\cos^{2} \beta \cdot \sin(\alpha - i) \cdot \sin\left(90 + \beta + \delta - \alpha + \phi\right)} \right] (3.27)$$

Parameter-parameter yang ada dalam persaman (3.27) yaitu: γ , II, β , *i*, ϕ , dan δ adalah tetap, sedangkan α adalah satu-satunya variabel dalam menentukan harga kritis dari α untuk mendapatkan P_{α} yang maksimum, sementara :

$$\frac{dP_a}{d\alpha} = 0 \qquad \dots \dots \dots (3.28)$$

Setelah menyelesaikan persamaan 3.28 harga α yang didapatkannya dimasukkan dalam persaman 3.27 tekanan tanah aktif $P_{a'}$ menurut Coulomb yang di dapat adalah :

$$P_a = \frac{1}{2} K_a \gamma H^2 \qquad \dots \dots (3.29)$$

dengan K_a adalah koefisien teknan tanah aktif menurut Coulomb dan harganya adalah

$$K_{a} = \frac{\cos^{2}(\phi - \beta)}{\cos^{2}\beta \cdot \cos(\delta + \beta) \left[1 + \sqrt{\frac{\sin(\delta + \phi) \cdot \sin(\phi - i)}{\cos(\delta + \beta) \cdot \cos(\beta - i)}}\right]^{2}} \dots (3.30)$$

Perlu di ketahui bahwa bila $i = 0^0$, $\beta = 0^0$, dan $\delta = 0^0$ maka koefisien tekanan tanah aktif menurut Coulomb menjadi sama dengan $\frac{(1-\sin\phi)}{(1+\sin\phi)}$, disini harga tersebut sama dengan koefisien tekanan tanah aktif menurut Rankine seperti yang di bicarakan pada awal dari bab ini.

Variasi dari harga K_a untuk tembok penahan dengan muka sebelah belakang tegak ($\beta = 0$) dan permukaan tanah urugan di belakang tembok datar (i = 0) diberikan dalam Tabel 3.1. Dari Tabel tersebut dapat dilihat bahwa untuk harga ϕ tertentu, geseran tembok menyebabkan berkurangnya harga koefisien tekanan tanah aktif.

3.4.2. Kondisi Pasif menurut Coulomb

Gambar 3.7 a menunjukkan suatu tembok penahan dengan urugan tanah non kohesi yang kemiringannya serupa dengan yang diberikan dalam gambar 3.6 a. keseimbangan polygon gaya dari blok tanah (*wedge*) ABC untuk kondisi pasif ditunjukan dalam gambar 3.7b. P_p adalah notasi untuk gaya pasif. Notasi lain yang digunakan dalam kondisi pasif adalah sama seperti yang digunakan dalam kondisi pasif adalah sama seperti yang digunakan dalam gambar yang akan dilakukan adalah sama seperti yang kita lakukan pada kondisi aktif yaitu:

dengan: K_p = koefisien tekanan tanah pasif menurut Coulomb

$$K_{p} = \frac{\cos^{2}(\phi + \beta)}{\cos^{2}\beta\cos(\delta - \beta)\left[1 - \sqrt{\frac{\sin(\phi - \delta)\sin(\phi + i)}{\cos(\delta - \beta)\cos(i - \beta)}}\right]^{2}} \dots (3.32)$$

Untuk tembok dengan permukaan licin dan muka belakang tegak, serta permukaan tanah urugan yang datar (yaitu $\beta = 90^{\circ}$, $i = 0^{\circ}$, $\delta = 0^{\circ}$). Persamaan 3.32 dengan: $K_p = \frac{1 + \sin \phi}{1 - \sin \phi} = \tan^2 \left(45 + \frac{\phi}{2}\right)$

Variasi K_p dengan ϕ dan δ (untuk $\beta = 0$ dan i = 0) diberikan dalam tabel 3.2. dari Tabel tersebut dapat dilihat bahwa untuk harga-harga i dan ϕ tertentu harga K_p bertambah besar dengan bertambahnya sudut geser tembok.

			δ (derajat))	_	
¢ (derajat)	0	5	10	15	20	25
28	0.3610	0.3448	0.3330	0.3251	0.3203	0.3186
30	0.3333	0.3189	0.3085	0.3014	0.2973	0.2956
32	0.3073	0.2945	0.2853	0.2791	0.2755	0.2745
34	0.2596	0.2714	0.2633	0.2579	0.2549	0.2542
36	0.2596	0.2497	0.2426	0.2379	0.2354	0.2350
38	0.2379	0.2292	0.2230	0.2190	0.2169	0.2167
42	0.1982	0.1916	0.1870	0.1841	0.1828	0.1831

Tabel 3.1. Nilai Ka dengan ϕ dan δ (untuk $\beta = 0$ dan i = 0)

Tabel 3.2 Nilai	Kp dengan ϕ dan	δ (untuk $\beta = 0$ d	an $i=0$)		
 		δ.(de	rajat)		
φ.	0	5	10	15	
(derajat)					

-

15	1.698	1.900	2.130	2.405	2.735
20	2.040	2.313	2.636	3.030	3.525
25	2.464	2.830	3.286	3.855	4.597
30	3.000	3.506	4.143	4.977	6.105
35	3.690	4.390	5.310	6.854	8.324
40	4.600	5.590	6.946	8.870	11.772

w

(b)

Perlu diketahui bahwa dengan membuat asumsi bahwa bidang longsor adalah bidang rata (dalam teori Coulomb), maka tekanan tanah pasif yang dihasilkan sangat besar (*over estimate*), terutama untuk $\delta > \frac{\phi}{2}$ keadaan ini tidak aman dalam perencanaan.

3.5. Teori Tekanan Tanah Menurut Mononobe-Okabe

3.5.1. Tekanan Tanah Aktif Mononobe - Okabe

Gambar 3.8 Asal Persamaan Mononobe - Okabe

Persamaan Tekanan Tanah Aktif Coulomb dapat dimodifikasi dengan memperhitungkan perubahan koefisien vertikal dan horisontal akibat gempa yang pada umumnya berdasarkan analisis dari Mononobe–Okabe. Penyelesaian Mononobe - Okabe berdasarkan asumsi sebagai berikut :

- 1. Kerusakan tanah terletak sepanjang bidang BC (Gambar 3.8),
- 2. Gerakan dinding cukup untuk menghasilkan tekanan aktif,
- 3. Kuat geser dari tanah tanpa kohesi kering dapat diberikan dengan persamaan

- Ketika kerusakan terjadi, maka kuat geser penuh sepanjang dinding kerusakan (Bidang BC, Gambar 3,8) menjadi berubah.
- 5. Tanah dibelakang dinding penahan tanah berperilaku sebagai struktur kaku.

Garis A-B adalah sisi belakang dinding penahan tanah dan ABC adalah baji (wedge) tanah yang akan rusak Gaya-gaya yang bekerja pada baji yang rusak tiap unit panjang dari dinding adalah :

- a) berat baji (weight of wedge W),
- b) gaya aktif P_{AE} ,
- c) Resultan dari gaya geser dan gaya normal sepanjang bidang kerusakan disebut *F*,
- d) $k_h W \operatorname{dan} k_v W$ adalah gaya inersia di arah vertikal dan horisontal dan g adalah akselerasi / percepatan gravitasi.

$$k_{h} = \frac{komponen horisontal dari akselerasi gempa}{g}$$

$$k_{h} = \frac{komponen vertikal dari akselerasi gempa}{g}$$

g

dan g adalah akselerasi /percepatan gravitasi.

Gaya aktif ditentukan dengan analisis baji yang diuraikan disini.

$$P_{AE} = \frac{1}{2} \gamma H^2 (1 - k_{\nu}) K_{AE} \qquad (3.34)$$

Dengan K_{AE} adalah koefisien tekanan tanah aktif dengan efek gempa.

.....(3.33)

Persamaan (3.34) disebut sebagai "Persamaan tekanan tanah aktif Mononobe-Okabe". Untuk kondisi gaya aktif (P_{AE}) ,yang berbentuk gaya horisontal., sudut *i* adalah baji tanah ABC yang terletak dibelakang dinding penahan tanah (Gambar 3.8) yang berbentuk gaya horisontal (untuk $k_{\nu} = 0^{\circ}$, $\beta =$ 0° , $i = 0^{\circ}$, $\phi = 30^{\circ}$ dan $\delta = 0^{\circ}$ dan 20°), seperti ditunjukkan dalam gambar 3.9. Tabel 3.3 memberikan nilai dari K_{AE} [persamaan (3.35a)] untuk variasi nilai ϕ , δ , *i* dan k_{μ} , dengan k_{ν} dan $\beta = 0^{\circ}$.

Gambar 3.9 Sudut inklinasi antara bidang keruntuhan dengan Horisontal (sesuai dengan Davies, Richards, dan Chen, 1986)

					ϕ (deg)		
	ہ (deg)	i (deg)	28.	30	35	40	45
			0.427	0 307	· 0328	0.268	0.217
0.1	0	0	0.927	0.177	0.020	0.200	0.270
0.2			0.508	0.475	0.370	0.302	0.334
0.3			0.011	0.007	0.476	0.400	0.304
0.4			0.755	0.097	0.381	0.400	0.407
0.5			1.005	0.890	0.710	0.396	0.500
0.1	0	5	0.457	0.423	0.347	0.282	0.227
0.2			0.554	0.514	0.424	0.349	0.285
0.3			0.690	0.635	0.522	0.431	0.356
0.4			0.942	0.825	0.653	0.535	0.442
0.5			—		0.855	0.673	0.551
0.1	0	10	0.497	0.457	0.371	0.299	0.238
0.2	Ū		0.623	0.570	0.461	0.375	0.303
0.2			0.856	0.748	0.585	0.472	0.383
0.5					0.780	0.604	0.486
0.4			_			0.809	0.624
0.5							
0.1	φ 2	0	0.396	0.368	0.306	0.253	0.207
0.2	-		0.485	0.452	0.380	0.319	0.267
0.2			0.604	0.563	0 474	0.402	0 340
0.3			0.004	0.505	0.500	0.508	0.433
0.4			1.115	0.713	0.373	0.500	0.552
0.5				0.972			0.332
0.1	ø	5	0.428	0 396	0.326	0.268	0.218
0.1	2	5	0.120	0.070	0.010		
0.2			0.537	0.497	0.412	0.342	0.283
0.3			0.699	0.640	0.526	0.438	0.367
0.4		•	1.025	0.881	0.690	0.568	0.475
0.5					0.962	0.752	0.620
<u> </u>	φ				0.262		0.220
0.1	$\frac{1}{2}$	10	0.472	0.433	0.352	0.285	0.230
0.2			0.616	0.562	0.454	0.371	0.303
0.3			0.908	0.780	0.602	0.487	0.400
0.4			_		0.857	0.656	0.531
0.5			_			0.944	0.722
0.5							
0.1	$\frac{2}{3}\phi$	0	0.393	0.366	0.306	0.256	• 0.212
0.2			0.486	0.454	0.384	0.326	0.276
0.3			0.612	0.572	0.486	0.416	0.357
0.4			0.801	0.740	0.622	0.533	0.462
0.5			1.177	1.023	0.819	0.693	0.600
	2	 {	0.427	0 305	0 327	0 271	0 224
0.1	$\overline{3}^{\varphi}$	2	0.427	0.393	0.327	0.271	0.224
0.2			0.541	0.501	0.418	0.350	0.294
0.3			0.714	0.655	0.541	0.455	0.386
0.4			1.073	0.921	0.722	0.600	0.509
0.5				<u> </u>	1.034	0.812	0.679
	2	10	0 472	0.47.1	0 354	0 200	0.237
0.1	$\overline{3}^{\varphi}$	10	0.472	0.424	0.334	0.200	0.217
0.2			0.625	0.570	0.463	0.381	0.517
0.3			0.942	0.807	0.624	0.509	0.423
0.4					0.909	0.699	0.373
0.5						1 () 7 7	11 8181

Gambar 3.10 Gaya pasif, P_{PE} dari sebuah dinding penahan tanah

Gambar 3.10 menunjukkan dinding penahan tanah menggunakan tanah butiran untuk urugan belakang tembok. Jika dinding didorong kedepan oleh massa tanah, pada kerusakan pangkalan tertentu dalam tanah akan terjadi sepanjang bidang BC. Saat kerusakan, gaya P_{PE} , tiap unit panjang dari dinding penahan tanah dinamakan gaya pasif dinamik. Gaya tiap unit panjang yang dibutuhkan untuk pertimbangan keseimbangan baji tanah seperti ditunjukkan dalam gambar 3.10 Notasi W, $\phi, \delta, \gamma, k_h$, dan k_v mempunyai makna yang sama seperti digambarkan dalam gambar 3.11. Menggunakan anggapan dasar untuk tanah yang diberikan, gaya pasif (P_{PE}) mungkin juga diturunkan sebagai (Kapila, 1962)

$$P_{PE} = \frac{1}{2} \gamma H^2 (1 - k_v) K_{PE} \qquad (3.37)$$

dimana

$$K_{PE} = \frac{\cos^2 (\phi + \beta - \theta)}{\cos \theta \cos^2 \beta \cos (\delta - \beta + \theta) \left[1 - \left\{ \frac{\sin (\phi + \delta) \sin (\phi + i - \theta)}{\cos (i - \beta) \cos (\delta - \beta + \theta)} \right\}^{1/2} \right]^2}$$

the production of the second

1

Gambar 3.11. Derivasi persamaan Mononobe-Okabe

34

.

Variasi K_{PE} dengan sudut geser tanah dan k_h (sesuai dengan Davies, Richards dan Chen, 1986)

Pengaruh kemiringan urugan pada K_{pe} (sesuai dengan Davies, Richards dan Chen, 1986)

Dengan catatan bahwa persamaan (3.37) telah diturunkan untuk tanah urugan yang kering dan tidak berkohesi. Kapilla juga telah mengembangkan prosedur grafis untuk menentukan P_{PE} . Gambar 3.12 menunjukkan variasi nilai dari $\phi \ dan \ k_h$ (dengan $k_v = i = \beta = \delta = 0$). Dari gambar ini dapat dilihat bahwa parameter lain adalah sama, nilai K_{PE} bertambah dengan bertambahnya kuat geser tanah, ϕ . Gambar 3.13 menunjukkan pengaruh sudut lereng urugan terhadap K_{PE} . Faktor yang lain cenderung konstan, besarnya K_{PE} bertambah dengan bertambah dengan besarnya *i*.

BAB IV

PENGARUH PARAMETER TANAH

TERHADAP KESTABILAN DINDING SEWAKTU GEMPA

4.1. Uraian Umum

Variasi beberapa parameter seperti percepatan gempa, sudut geser dinding, sudut geser tanah, dan sudut lereng dari tanah urugan mempengaruhi kestabilan dinding dan nilai dari koefisien tekanan tanah aktif K_{AE} dan K_{PE} , serta pengaruh keberadaan air. Pada bab ini akan dibahas dampak perubahan parameterparameter tersebut terhadap kestabilan sewaktu gempa.

4.2. Pengaruh dari Percepatan Tanah (a)

Percepatan tanah adalah parameter yang mempengaruhi kestabilan dinding sewaktu gempa. Hal ini dapat dilihat pada persamaan Mononobe - Okabe dengan mempengaruhi komponen horizontal dan komponen vertikal gempa seperti pada persamaan 3.34 sampai persamaan 3.38.

Riwayat percepatan tanah (ground acceleration time history) menurut Widodo(1997) adalah representasi terbaik gerakan tanah akibat gempa. Pengertian umum gerakan tanah akibat gempa lebih banyak ditujukan pada percepatan tanah walaupun akibat gempa juga terdapat kecepatan dan perpindahan permukaan tanah. Gerakan tanah dengan makna seperti itu dimaksudkan sebagai terjemahan atas istilah ground motions, yaitu suatu istilah yang populer dalam

.

teknik gempa. Istilah tersebut kadang kadang juga disebut strong motion untuk lebih menekankan pada percepatan tanah akibat gempa daripada respon-responyang lain (Widodo, 1997).

4.3. Pengaruh dari Variasi Sudut Geser

4.3.1. Pengaruh dari Sudut Geser Dinding-Tanah (δ)

Material yang digunakan akan berpengaruh pada besar kecilnya nilai sudut gesek antara dinding dan tanah (δ). Adanya pergerakan segitiga keruntuhan menimbulkan gaya gesekan yang mengakibatkan tekanan tanah aktif dan pasif bekerja dengan sudut δ terhadap dinding. Hal ini yang mendasari perbedaan teori Coulomb dan Rankine. Rankine beranggapan bahwa resultan gaya bekerja tegak lurus dinding, sedangkan Coulomb membentuk sudut sebesar δ .

Untuk teori Coulomb semakin besar nilai sudut δ maka nilai tekanan tanah aktif semakin kecil sebaliiknya untuk nilai tekanan tanah pasif. Dalam teori Rankine sudut δ tidak berpengaruh terhadap nilai tekanan tanah lateralnya, sedangkan teori Mononobe Okabe pada dasarnya sama dengan teori Coulomb. Teori Mononobe - Okabe juga memperhitungkan sudut geser antara dinding dengan tanah (δ).

4.3.2. Pengaruh dari Sudut Geser Intern / Dalam (ϕ)

Tanah tidak mampu untuk menahan gaya tarik atau desak, yang menahannya adalah gaya geser antara butir-butir tanah. Sudut geser yang terbentuk antara butir-butir dalam tanah disebut sudut geser dalam (ϕ). Nilai sudut geser dalam dapat dicari dengan percobaan di laboratorium. Untuk tanah kohesif (lempungbasah atau murni) tidak mempunyai sudut geser dalam ($\phi = 0^{\circ}$). Pengaruh nilai ϕ pada ketiga teori yang dibahas adalah bahwa semakin besar nilai ϕ maka nilai tekanan tanah aktif semakin kecil, sedangkan untuk tekanan tanah pasif semakin bertambah. Ini berarti besar butir tanah berpengaruh pada nilai tekanan tanah.

4.4. Pengaruh dari variasi Geometri Tanah (kemiringan lereng, i)

Pada kenyataannya permukaan tanah urugan tidak selalu datar tetapi juga mempunyai kemiringan (i). Nilai sudut *i* maksimum tergantung dari jenis tanah yang ada. Sudut *i* berpengaruh pada nilai distribusi tekanan tanah lateral pada dinding, bahkan pada teori Rankine sudut *i* mempengaruhi arah kerja tekanan tanah lateral. Semakin besar sudut *i* semakin besar nilai tekanan tanah lateral yang didistribusikan. Tekanan tanah aktif antara teori Rankine dan Coulomb besarnya tidak jauh berbeda untuk sudut *i* yang kecil, tetapi untuk sudut yang besar perbedaan akan menjadi lebih jelas, nilai tekanan aktif Rankine lebih besar daripada Coulomb. Untuk tekanan tanah pasif nilai tekanan menurut Coulomb jauh lebih besar daripada Rankine.

4.5. Pengaruh Keberadaan Air

Prosedur untuk memperkirakan beban gempa pada dinding penahan tanah yang telah digambarkan dalam pembahasan sebelumnya dibatasi hanya untuk kasus urugan yang kering. Kebanyakan dinding penahan tanah yang direncanakan menggunakan drainasi yang mencegah kemunculan air didalam urugan. Ini tidak

mungkin diterapkan untuk dinding penahan tanah dalam area yang berhadapan dengan air secara langsung(waterfront structure). Sedangkan kebanyakan kerusakan dinding yang telah diteliti ternyata bahwa kehadiran air memainkan peranan penting dalam menentukan beban pada dinding penahan tanah yang berhadapan dengan air, baik ketika terjadi gempa maupun sesudah terjadi gempa.

Air luar lambung pada dinding penahan tanah dapat menjadi tekanan dinamik pada permukaan dinding. Air didalam urugan dapat juga mempengaruhi tekanan dinamik yang bekerja pada belakang dinding. Pertimbangan dari pengaruh air sangat penting untuk perencanaan gempa pada struktur penahan, terutama pada area yang berhadapan dengan air (*waterfront*).

Sebelum struktur penahan yang berhadapan dengan air dipastikan secara sempurna tidak tembus air *(impermeable)*, muka air dalam urugan selalu berkisar pada tingkat yang sama tingginya dengan air bebas di luar lambung dinding. Tinggi air pada urugan secara umum berubah setelah perubahan muka air luar lambung dinding juga berubah sedangkan perbedaan muka air tergantung permeabilitas dinding dan urugan, serta kisaran *(rate)* perubahan muka air pada <u>luar lambung. Tekanan total air yang bekerja pada dinding dengan meniadakan</u> rembesan *(seepage)* dapat dibagi menjadi 2 komponen :

- Tekanan Hidrostatik, yang besarnya bertambah secara linier dengan kedalaman dan bekerja pada dinding pada waktu sebelumnya, saat dan sesudah goncangan gempa.
- Tekanan Hidrodinamik, yang dihasilkan dari respon dinamik dari air itu sendiri.

4.5.1. Air yang Berada di Luar Dinding

Tekanan air hidrodinamik adalah hasil dari respon dinamik dari air. Untuk dinding penahan tanah, tekanan hidrodinamik selalu diperhitungkan dari solusi Westergaard (Westergaard,1931) untuk kasus vertikal, bendung kaku, bak pengumpul air *(reservoir)* semi tak hingga. Westergaard telah menghitung amplitudo tekanan hidrodinamik sebagai berikut:

$$P_{w} = \frac{7}{8} \frac{a_{h}}{g} \gamma_{w} \sqrt{z_{w} H} \qquad (4.1)$$

Resultan tekanan hidrodinamik diberikan

$$P_{w} = \frac{7}{12} \frac{a_{h}}{g} \gamma_{w} H^{2} \qquad (4.2)$$

Total tekanan air pada muka dinding adalah jumlah tekanan air hidrostatik dan hidrodinamik. Artinya, total tekanan tanah kesamping pada air adalah sama dengan jumlah dari tekanan kesamping hidrostatik dan hidrodinamik.

Perhitungan lain yang penting dalam desain dinding penahan tanah yang berhadapan dengan air adalah kemungkinan terjadinya regangan secara cepat pada air diluar lambung dinding. Gempa yang terjadi didekat badan yang besar pada air sering mengakibatkan periode yang panjang gerakan air seperti pada tsunami yang dapat menyebabkan permukaan air bergerak ke atas dan kebawah. Tsunami adalah gerakan air secara vertikal berbentuk aliran deras diakibatkan keruntuhan patahan sewaktu gempa yang mampu menghasilkan gelombang laut yang mempunyai periode yang panjang (Steinbrugge dan Cloud,1962). Ketika gerakan ke arah atas dari air pada luar dinding secara umum akan akan cenderung menstabilkan

dinding (dengan asumsi bahwa air tidak naik ke batas atas dinding), gerakan kebawah membuat kondisi aliran tidak stabil.

Ketika tanah yang dapat berlikuifaksi berada dibawah tegangan geser yang relatif tinggi, kerusakan dapat dipicu oleh perubahan air yang sangat kecil. Beberapa kerusakan lebih sering terjadi pada tanah yang berdekatan atau dibawah struktur penahan dibandingkan pada urugan.

4.5.2. Air dalam Tanah Urugan

Kehadiran air dalam urugan di belakang dinding penahan tanah dapat mempengaruhi beban gempa yang bekerja pada dinding dalam tiga langkah :

- 1. Dengan mengubah gaya inersia dalam urugan
- 2. Dengan menambah tekanan hidrodinamik dalam urugan
- 3. Dengan adanya kenaikan tekanan air pori yang luar biasa, karena regangan siklik (*cyclic strain*) pada tanah urugan.

Gaya inersia pada tanah jenuh tergantung pada gerakan relatif antar partikel tanah urugan dan air pori yang mengelilingi partikel tersebut. Jika seperti pada kasus biasanya, permeabilitas tanah cukup kecil (seperti halnya $k \le 10^{-3}$ cm ³/det, 33 x 10⁻⁵ ft/det) atau sejenisnya, maka air pori bergerak bersama tanah ketika terjadi goncangan gempa (tidak ada gerakan relatif dari air dan tanah atau kondisi peregangan air pori), gaya inersia akan proporsional terhadap total berat jenis tanah. Jika permeabilitas tanah urugan sangat tinggi, air tanah yang tertinggal sebenarnya tetap, ketika tanah bergerak ke depan dan ke belakang (partikel tanah bergerak menembus air pori dalam kondisi air pori bebas). Di beberapa kasus gaya inersia akan sebanding dengan berat jenis tanah yang bisa mengapung (buoyant) atau berat jenis tanah terendam (submerged).

Tekanan hidrodinamik dapat juga berkembang dibawah kondisi air pori bebas dan dapat juga ditambahkan untuk tekanan hidrostatik dan tekanan tanah dihitung untuk menentukan total beban pada dinding.

Untuk kondisi air pori yang mengalami regangan metode Mononobe-Okabe dapat dimodifikasi untuk menghitung kehadiran air pori dalam urugan (Matzuzawa et.al 1985). Dengan menghadirkan kembali dampak tekanan air pori dalam urugan dengan rasio tekanan air pori, r_u , tekanan kesamping yang bekerja pada dinding runtuh (yielding wall) dapat dihitung dari persamaan Mononobe -Okabe menggunakan

$$\gamma = \gamma_b \left(1 - r_u \right)$$

$$\theta = \frac{\tan^{-1} \left[\gamma_{sat} k_h \right]}{\gamma_b \left(1 - r_u \right) \left(1 - k_v \right)}$$

dan (4.4)

.....(4.3)

Tekanan hidrostatik ke samping ekuifalen berdasar atas aliran dari berat unit $\gamma_{eq} = \gamma_w + r_u \gamma_b$ harus ditambahkan kepada tekanan tanah kesamping. Catatan bahwa r_u mendekati 1 (sebagaimana bisa terjadi sewaktu liquifaksi) tekanan ke samping dinding mendekati seperti yang dikenai oleh cairan pada berat jenis ekuifalen, $\gamma_{eq} = \gamma_{sat.}$ Sewaktu tanah dalam keadaan gerakan tidak terarah, tekanan air dimungkinkan dapat berkembang hingga mencapai tekanan air pori yang sangat tinggi dan tergantung pada kekuatan sisa (*residual strength*) seperti waktu keadaan stabil, menyebabkan pembesaran (*dilation*) dengan disertai berkurangnya tekanan air pori dan kekuatan sisa (*residual strength*). Tekanan tanah kesamping pada urugan tanah dapat dihitung menggunakan berat jenis rata-rata berdasar volume relatif dalam baji aktif baik diatas maupun dibawah muka air tanah (gambar 4.1)

$$\overline{\gamma} = \lambda^2 \gamma_{sat} + (1 - \lambda^2) \gamma_d \qquad (4.5)$$

juga tekanan kesamping hidrostatik dan hidrodinamik jika ada harus ditambahkan kepada tekanan tanah kesamping.

Gambar 4.1. Geometri dan notasi untuk urugan yang terendam sebagian

Gambar 4.2. Dinding Gravitasi yang terendam air

4.6. Hasil Model Tes Laboratorium untuk Koefisien Tekanan Tanah Aktif

Pada awal tahap perkembangan dari penyelesaian Mononobe-Okabe (persamaan 3.34) sebagian kecil percobaan model dilaboratorium menunjukkan hubungan dari besarnya nilai gaya lateral terhadap dinding yang kaku dengan

tanah urugan berupa butiran yang kering, dan K_{AE} , telah dilaporkan dalam literatur (Mononobe dan Matsuo 1929, Jacobsen 1939). Yang lebih baru, Sherif, Ishibashi dan Lee (1982), Sherif dan Fang (1984) dan Ishibashi dan Fang (1987) telah dipublikasikan menghasilkan nilai tekanan tanah lateral dibelakang alat berat dari dinding penahan tanah yang kaku. Untuk semua tes yang terdahulu, tinggi dinding penahan tanah adalah 1m. Dinding penahan tanah diletakkan diatas meja getar (Shaking Table) dengan diisi tanah butiran untuk urugan belakang. Grafik sinusoidal sebagai masukan dengan frekwensi $3\frac{1}{2}$ Hz dan akselerasi maksimum mencapai 0.5 g dikenakan pada meja getar sewaktu percobaan. Hasilnya sangat banyak mengandung pelajaran dan akan diuraikan disini. Distribusi alami dari tekanan tanah aktif dan nilai dari gaya aktif dari dinding penahan tanah adalah sangat bergantung pada kekakuan dari dinding tersebut.

Gambar 4.3. Model dari perputaran dinding untuk tekanan aktif

Penjelasan percobaan - percobaan tersebut adalah :

A. Rotasi pada Dasar

Ishibashi dan Fang (1987) telah menghitung distribusi tekanan tanah aktif dibelakang model dinding penahan tanah setinggi 1m ($\beta = 0$) seperti digambarkan pada gambar 4.3. Pada tes ini, pasir kering digunakan sebagai material urugan. Permukaan urugan dijaga horisontal (artinya i = 0; gambar 3.11). Data propertis pasir urugan yang dipakai adalah :

γ kering untuk pemadatan urugan	= 15.94 - 16.11 KN/m ³
DR (Relatif Density) tanah urugan	= 49.5-57.6 %
Sudut geser tanah	= 38.5-40.1°

Pada beberapa tes ini, model dinding penahan tanah berputar pada dasar. Besarnya k_{μ} bervariasi dari 0-0.6, dan $k_{\nu} = 0.$ Dari persamaan (3.34) dengan $k_{\nu} = 0$ didapat :

$$K_{AE} = \frac{P_{AE}}{\frac{1}{2}\gamma H^2}$$
(4.6)

Gambar 4.4 menunjukkan variasi dari nilai percobaan dari $K_{AE} \cos \delta$ ditentukan dari tes-tes yang telah dilakukan oleh Ishibashi dan Fang (1987). Dalam gambar 4.4 ini juga telah diplot variasi teori dari $K_{AE} \cos \delta$ yang ditentukan dari persamaan 3.35 dengan $k_v = 0$, $\beta = 0^\circ$, dan $i = 0^\circ$.

Gambar 4.4 Rotasi dinding pada dasar untuk tekanan aktif-perbandingan antara teori dengan hasil percobaan model

Dalam pengeplotan variasi teori ini telah diasumsikan bahwa $\phi = -39.2^{\circ}$, dan $\delta = \phi/2$. Perbandingan antara kurva teori Mononobe-Okabe dengan kurva percobaan menunjukkan bahwa: P_{AE} (percobaan) $\approx 1.23-1.43 P_{AE}$ (teori).

B. Pergeseran Dinding

Nilai tekanan tanah aktif dinamik dibelakang model kaku dinding penahan tanah yang vertikal pada perlakuan geser telah dilaporkan oleh Sherif, Ishibashi, dan Lee (1982). Detail dari kondisi percobaan ini adalah sebagai berikut :

Gambar 4.5

Pergeseran dinding untuk tekanan aktif-perbandingan teori dengan hasil percobaan teori

Gambar 4.5 menunjukkan variasi hasil percobaan $K_{AE} \cos \delta$ yang ditentukan dari tes terhadap model ini. Pada gambar ini juga ditunjukkan variasi $K_{AE} \cos \delta$ yang dientukan dari teori Mononobe-Okabe [persamaan (3.35)]. Bedasarkan plot ini memperlihatkan bahwa nilai P_{AE} adalah 30 % lebih besar daripada hasil yang ditentukan dari persamaan (3.34) dan (3.35).

Sherif, Ishibashi, dan Lee (1982) juga telah mengembangkan hubungan empirik untuk besarnya geseran dinding untuk pengembangan keadaan aktif, yang dapat diberikan sebagai:

sedangkan Δ = gaya geser lateral dinding, H = tinggi dinding dan nilai ϕ dalam derajat.

C. Rotasi dinding sekitar puncak

Sherif dan Fang (1984) melaporkan bahwa distribusi tekanan tanah dinamik sejauh ini dibelakang dinding vertikal dari dinding penahan tanah yang kaku ($\beta = 0^{\circ}$) berlaku rotasi seputar puncak. Pasir dengan γ rata-rata adalah 15.99KN/m³ digunakan sebagai urugan (*backfill*). Permukaan urugan (*backfill*) adalah horisontal ($i = 0^{\circ}$).

Variasi alami dari distribusi tekanan tanah aktif horisontal maksimum $(P_{AE} \cos \delta, \text{sedangkan P} = \text{tekanan tanah aktif akibat kedalaman})$ yang ditentukan dari tes-tes ini seperti ditunjukkan dalam gambar 4.6. Dalam gambar ini juga telah diplot variasi teoritik dari $P_{AE} \cos \delta$ yang ditentukan dari solusi Mononobe-Okabe (dengan $\beta = 0^\circ$, i = 0, dan $k_v = 0$), untuk variasi nilai k_h . Dari perbandingan plot antara teori dan percobaan, kesimpulan umum berikut dapat digambarkan.

- 1. Variasi alami tekanan tanah dinamik untuk rotasi dinding pada puncak sangat berbeda dengan yang telah diprediksi oleh teori Mononobe-Okabe.
- 2. Untuk nilai kh yang telah diberikan,

 $P_{AE}\cos\delta = \int (P_{AE}\cos\delta) \, dy \dots (4.8.)$

3. Sedangkan y adalah kedalaman yang ditentukan dari dinding puncak.

4. Untuk nilai k_h yang telah diberikan, komponen horisontal dari gaya lateral, $P_{AE} \cos \delta$, dihitung dari kurva eksperimen dengan menggunakan persamaan (4.8), adalah lebih besar antara 15 %-20 % daripada yang telah diprediksi oleh teori Mononobe-Okabe.

Gambar 4.6 Perbandingan antara teori dan hasil model tes untuk rotasi dinding pada puncak $(i = 0^\circ, \beta = 0^\circ, k_v = 0)$

4.7. Titik Aplikasi dari Resultan Gaya Aktif, P_{AE}

A. Rotasi pada Dasar Dinding

Solusi Mononobe-Okabe yang sebenarnya untuk gaya aktif pada struktur penahan tercantum bahwa resultan gaya akan bekerja pada jarak 1/3 H diukur dari dasar dinding (H = tinggi dinding) sama pada kasus beban statik ($k_h = k_v = 0$).

Bagaimanapun semua tes laboratorium sudah dituntun terlalu jauh, menunjukkan bahwa resultan tekanan P_{AE} bekerja pada jarak \overline{H} , yang agak lebih besar dari 1/3 H yang terukur dari dasar dinding. Ini ditunjukkan dalam gambar 4.7. Prakash dan Basavanna (1969) telah membuat evaluasi teoritis untuk menentukan \overline{H} . Berdasarkan analisa kesetimbangan gaya, penelitian mereka menunjukkan bahwa \overline{H} bertambah dari 1/3 H untuk $k_h = 0$ sampai sekitar $\frac{1}{2}$ H untuk $k_h = 0.3$ (untuk ϕ = 30, δ = 7.5°, $k_v = 0$, $i = \beta = 0$). Untuk kondisi yang sama, analisa kesetimbangan momen memberi nilai $\overline{H} = \frac{1}{3}$ H dan $k_h = 0$, yang bertambah untuk nilai $\overline{H} \approx \frac{H}{1.9}$ pada $k_h = 0.3$.

Gambar 4.7 Titik aplikasi untuk resultan tekanan tanah aktif

Untuk pertimbangan desain yang praktis, Seed dan Whitman (1969) telah mengusulkan prosedur berikut untuk menentukan garis aksi dari P_{AE} .

- 1. Menghitung P_A [Persamaan (3.29)].
- 2. Menghitung P_{AE} [Persamaan (3.34)].

- 3. Menghitung $\Delta P_{AE} = P_{AE} P_A$. Bagian ΔP_{AE} adalah tambahan gaya sewaktu kondisi gempa.
- 4. Diasumsikan bahwa P_A bekerja pada jarak 1/3 H dari dasar dinding (Gambar 4.8)
- 5. Diasumsikan bahwa ΔP_{AE} bekerja pada jarak 0.6 H dari dasar dinding (Gambar 4.8)

B. Pergeseran Dinding

Sherif, Ishibashi, dan Lee (1982) menyarankan bahwa untuk pergeseran dinding, prosedur berikut dapat digunakan untuk memperkirakan lokasi garis gaya dari gaya aktif, P_{AE} .

- 1. Menghitung P_A [Persamaan (3.29)]
- 2. Menghitung P_{AE} [Persamaan (3.34)]

3. Menghitung $\Delta P_{AE} = P_{AE} - P_A$

4. Berdasar gambar 4.9, kemudian menghitung :

C. Rotasi pada Puncak Dinding

Untuk rotasi pada puncak dinding (Gambar 4.10), \overline{H} sekitar 0.55 H (Sherif dan Fang, 1984).

4.8. Stabilitas Dinding Penahan Tanah

Stabilitas dinding yang akan di tinjau adalah stabilitas dinding penahan tanah jenis "gravity wall".Gaya-gaya yang bekerja pada dinding adalah gaya tekanan tanah aktif dan pasif, berat dinding dan gesekan tanah. Dinding harus menyediakan stabilitas yang cukup untuk menahan gaya – gaya yang bekerja. Dinding gravitasi mengutamakan beratnya untuk stabilitas. Tanah didepan dinding dapat membantu untuk melawan tekanan tanah aktif tetapi jika tergerus maka dinding harus menyediakan stabilitas yang cukup untuk menahan dorongan.

Dalam perencanaan biasanya disediakan angka keamanan. Angka keamanan untuk melawan dorongan harus paling sedikit 1,5 untuk urugan tanah non kohesif dan 2 untuk tanah kohesif.

 $FS = \frac{jumlah \ gaya \ penahan}{jumlah \ gaya - gaya \ pendorong} \dots (4.10)$

Dengan jumlah gaya penahan :

sedangkan k_1 dan k_2 diantara $\frac{1}{2}$ sampai 2/3 dengan alasan bahwa untuk keamanan nilai ϕ dan nilai c bisa berkurang (Das, 1990), jumlah gaya pendorong adalah \sum Paktif, dan

V : Gaya total vertikal ke bawah (t)

Pp : Tekanan tanah pasif (t)

c' : kohesi pada dasar dinding (t/m^2)

B : Lebar dasar dinding (m)

Angka keamanan biasa melawan guling terhadap dasar adalah 1,5 untuk tanah non kohesif dan 2 untuk tanah kohesif. $FS = \frac{jumlah \ momen \ yang \ menahan}{jumlah \ momen \ -momen \ guling} \qquad(4.12)$

Dengan jumlah momen yang menahan :

$$\sum M_{penahan} = \sum M_{bangunan} + \sum M_{gaya}$$
 vertikal kebawah(4.13)

dan jumlah momen guling : $\sum M_{aktif}$

Setelah dinding aman untuk stabilitasnya, maka dinding harus diperiksa tahanan geser pada badan dinding pada daerah kritis, kuat desak serta daya dukung ijin tanah. Tahanan geser diperiksa pada bagian bawah dasar dinding, dimana pada bagian ini yang paling rawan mengalami patah atau tarik. Tahanan geser pada bagian ini harus mampu menahan tekanan horisontal.

$$FS = \frac{V \cdot tg\phi}{P_{ah}} \ge 1,5 \tag{4.14}$$

dimana,

P_{ah}: Gaya horisontal total yang beraksi pada bagian bawah dinding

V : Berat dinding pada bagian atas dari bawah dinding

Tegangan tekan dan tarik juga ditinjau pada bagian bawah dinding, dan dapat

 $\sigma_{\max}, \sigma_{\min}$: Tekanan yang terjadi pada daerah bawah dari dinding(t/m²)

V : Gaya tekan total (t).

dihitung dengan persamaan berikut :

B' : Lebar dasar dinding diatas daerah pada bagian bawah dinding per satuan panjang (m).

e : Eksentrisitas (m).

Nilai σ_{\max} harus lebih kecil dari teganagn desak ijin dan σ_{\min} diusahakan tidak lebih kecil dari nol karena tidak diijinkan terjadinya tarik, karena menggunakan pasangan batu kali, bukan beton.

Tekanan yang terjadi pada dasar dinding penahan tanah harus lebih kecil dari daya dukung ijin tanah, tekanan yang terjadi pada dasar dinding penahan adalah:

$$\sigma_{\max}, \sigma_{\min} = \frac{V}{B} \left[1 \pm \frac{6.e}{B} \right]$$
(4.16)

dimana,

 $\sigma_{\text{max}}, \sigma_{\text{min}}$: Tekanan yang terjadi pada daerah bawah dari dinding(t/m²)

- *V* : Gaya tekan total (t).
- e : Eksentrisitas (m).

B : Lebar dasar dinding diatas daerah pada bagian bawah dinding
 Persatuan panjang (m).

Daya dukung tanah dihitung dengan rumus :

 $\sigma_{ult} = c.N_c + \gamma.D.N_q + 0.5.\gamma.B.N\gamma$ (4.17)

dimana,

 σ_{ult} : Daya dukung tanah didasar bangunan (t/m²)

D : Kedalaman tanah (m)

c : Kohesitas tanah (t/m²)

 γ : Berat volume tanah (t/m³).

Untuk kasus gempa maka nilai ϕ semula berubah menjadi $\phi_{dy} = \phi - 2^{\circ}$. (Vesic,1973)

Nc, Nq, N_{γ} : Koefisien daya dukung tanah menurut Terzaghi.

BAB V

DESAIN ƊAN ANALISIS STABILITAS DINDING PENAHAN TANAH AKIBAT BEBAN GEMPA

5.1.Uraian Umum

Desain dinding penahan tanah untuk kondisi gempa (dinamik) pada prinsipnya adalah sama, seperti ketika kita mendesain dinding penahan tanah untuk kondisi statis. Dalam kedua kasus itu, kemungkinan kerusakan telah diidentifikasi, dan dinding telah didesain dengan menjauhi kemungkinan kerusakan itu. Meskipun respon pada dinding penahan tanah dibawah kondisi pembebanan gempa adalah lebih komplek daripada pembebanan statis, prosedur desain konvensional menggunakan asumsi yang sederhana, sebenarnya telah bisa mengatasi permasalahan gempa ini.

Dinding gravitasi merupakan tipe yang paling sederhana, dan perhatian yang besar telah dicurahkan untuk desain ini dibandingkan untuk mendesain tipe dinding yang lain. Meskipun prosedur dinding gravitasi diorientasikan untuk mencegah kerusakan gelincir, kemungkinan guling yang terjadi dikarenakan kerusakan daya dukung dibawah pondasi dinding juga harus dipertimbangkan dalam desain.

5.2. Pendimensian Dinding Penahan Tanah

Sewaktu mendisain dinding penahan tanah, hal yang harus didilakukan terlebih dahulu adalah mengasumsikan dimensi dinding. Pendimensian harus

proporsional dan dilakukan secara berulang untuk mengecek kestabilan. Jika hasil pengecekan kestabilan tidak seperti yang diinginkan, maka dimensi dapat dirubah dan dicek ulang.

Gambar 5.1. menunjukkan perbandingan yang umum terhadap variasi komponen dinding penahan tanah yang dapat digunakan untuk awal pengecekan.

Gambar 5.1. Perkiraan Dimensi dinding gravitasi untuk mengawali pengecekan kestabilan

(sesuai dengan Das, 1990).

5.3. Data Tanah

Dalam setiap perencanaan, data yang lengkap mutlak diperlukan agar didapatkan ketepatan dan kesesuaian dengan kenyataan. Sehingga perlu dilakukan penyelidikan tanah, baik di lapangan maupun di laboratorium. Data sifat tanah yang dibutuhkan adalah seperti sudut geser tanah, kadar air, berat jenis tanah, kohesitas tanah, porositas tanah, *specific gravity (Gs)* dan lain sebagainya (Hardiyatmo,1996).

Kekuatan geser dinamik pada tanah dideskripsikan dengan parameter kohesi (c) dan sudut geser dalam (ϕ) seperti yang digunakan pada analisis statik. Secara umum, nilai-nilai parameter yang diasumsikan adalah sama antara kondisi statik dan dinamik. Asumsi lain adalah bahwa angka pori tanah tidak berubah ketika gempa dan tekanan air pori berubah sebagai hasil dari efek inersia. Catatan bahwa asumsi ini mengabaikan terjadinya likuifaksi pada massa tanah. Potensi likuifaksi harus dipertimbangkan secara terpisah (Ellis et.al, 1993).

Data tanah diambil dari hasil test laboratorium UGM pada tanah di Taman Tirto, Yogyakarta pada proyek pembuatan gedung ruang kuliah dan kantor administrasi fakultas pada Universitas Muhammadiyah Yogyakarta pada tititk sondir BH(SND 21) pada kedalaman 0,6 – 1,5 m. Berikut ini nilai propertis tanah hasil uji laboratorium pada Laboratorium Mekanika Tanah Universitas Gajah Mada Yogyakarta adalah sebagai berikut : $\delta = 20^\circ$; $\phi = 38.31^\circ$; $c = 0^\circ$; $\gamma = 18.90$ KN/m³; $\gamma_k = 16.3$ KN/m³; w = 15.61%; Gs = 2,75; e = 0.71 S= 61.63% k_h = 0,15 k_v = 0,075 ; a = 0,168 g. Muka air tanah asli mempunyai kedalaman 0,4 m diasumsikan mempunyai kedalaman 3m, dikarenakan akan digunakan untuk dinding penahan tanah, sedangkan jenis tanah adalah tanah pasir.

5.4. Data Perencanaan

Dinding penahan tanah dengan ketinggian 8,5 m direncanakan untuk menahan beban merata sebesar 2 t/m2 menggunakan dinding tipe gravitasi dari

Gbr.5.2. Perencanaan Dimensi Dinding Penahan Tanah

Dipakai γ pasangan batu = 2,5 T/m³ dan dipakai beton dengan ketentuan K₁₂₅

5.5 Analisis Kestabilan Struktur

5.5.1.Kestabilan Internal

Dinding penahan tanah akan ditinjau kerusakannyanya dari dua tempat

- a. Kerusakan pada puncak dinding
- b. Kerusakan pada badan dinding

5.5.2. Kestabilan Eksternal

Dinding penahan tanah akan ditinjau kerusakannyanya dari tiga keruntuhan

- a. Kestabilan geser
- b. Kestabilan guling
- c. Kestabilan daya dukung

5.6. Desain Dinding Penahan Tanah Akibat Beban Statik

5.6.1 Metode Rankine

- 1. Menghitung Koefisien Tekanan Tanah
 - a. Tekanan Tanah Aktif (Ka)

Koefisien tekanan tanah aktif dapat di hitung dengan menggunakan rumus:

Ka =
$$\cos \alpha \frac{\cos i - \sqrt{\cos^2 i - \cos^2 \phi}}{\cos i + \sqrt{\cos^2 i - \cos^2 \phi}}$$

Ka = $\cos 5^{\circ} \frac{\cos 5^{\circ} - \sqrt{\cos^2 5^{\circ} - \cos^2 38,31^{\circ}}}{\cos 5^{\circ} + \sqrt{\cos^2 5^{\circ} - \cos^2 38,31^{\circ}}}$

Ka = 0,237

b. Tekanan Tanah Pasif (Kp)

Kp = 1/Ka = 1/0,237 = 4,22

Cara lain untuk mendapatkan harga Ka yaitu dengan menggunakan

tabel 5.1 berikut ini

Tabel 5.1 Koefisien Tekanan Tanah Aktif, (Ka)

				φ (dcg) -→			
$\downarrow i$ (deg)	28	30	32	34	36	38	40
0	0.361	0.333	0.307	0.283	0.260	0.238	0.217
· 5	0.366	0.337	0.311	0.286	0,262	0.240	0.219
10	0.380	0.350	0.321	0.294	0.270	0.246	0.225
15	0,409	0.373	0.341	0.311	0.283	0.258	0.235
20	0.461	0.414	0.374	0.338	0.306	0.277	0.250
25	0.573	0.494	0.434	0.385	0.343	0.307	0.275
Note: W	ith ℓ = φ, F	(_a ⊨ cos ε , \$	So, $\vec{l} = \phi =$ $\vec{i} = \phi =$	28°, K, = (30°, K, = (32°, K, = (34°, K, = (36°, K, = (38°, K, = (40°, K, = (0.883 0.866 0.848 0.829 0.809 0.809 0.788 0.866		

Sedangkan untuk mendapatkan harga Kp yaitu dengan menggunakan

tabel 5.2

Tabel 5.2 Koefisien Tekanan Tanah Pasif, (Kp)

		φ (deg) →						
↓ į (deg)	28	3 0 ·	32	34	36	38	40	
0	2.770	3.000	3.255	3.537	3.852	4.204	4.599	
5	2.715	2.943	3.196	3.476	3.788	4.136	4.527	
10	2.551	2.775	3.022	3,295	3.598	3.937	4.316	
15	2.284	2.502	2.740	3.003	3.293	3.615	3.977	
20	1.918	2.132	2.362	2.612	2.886	3.189	3.526	
25	1.434	1.664	1.894	2.135	2.394	2.676	2.987	
Note: W	ith ί= φ, k	$\zeta_p = \cos L S$	So, $L = \phi =$ $i = \phi =$	28°, K, = (30°, K, = (32°, K, = (34°, K, = (36°, K, = (38°, K, = (0.883 0.866 0.848 0.829 0.809 0.809 0.788 0.766	- -		

2. Menghitung gaya aktif per unit panjang dari dinding (Pa)

$\mathbf{Pa} = \frac{1}{2} \cdot \mathbf{Ka} \cdot \boldsymbol{\gamma} \cdot \mathbf{H}^2$	
$H' = H_1 + (H_2 + H_3)$	$Pa = \frac{1}{2} \times 1,63 \times (H')^2 \times 0,237$
= H ₁ + 8,5	$= \frac{1}{2} \times 1,63 \times 8,6312^2 \times 0,237$
= 1,5 tan 5° + (8,5)	= 14,39 T/m
H' = 8,6312 m	
$Pv = Pa \sin 5^{\circ}$	$Ph = Pa \cos 5^{\circ}$
= 1,254 T/m	= 14.335 T/m

3. Karakteristik Tanah

$$e = 0,71 \qquad n = \frac{e}{1+e} = \frac{0,71}{1+0,71} = 0,415$$

$$\gamma_k = 1.63 \text{ T/m}^3 \qquad \gamma_b = \gamma_k \ (1+w) = 1,63 \ (1+0,1561) = 1,884 \text{ T/m}^3$$

$$\gamma_{sat} = \gamma_k + n = 1,63 + 0,415 = 2,045 \text{ T/m}^3$$

$$\gamma' = \gamma_{sat} - \gamma_w = 2,045 \text{ -1} = 1,045 \text{ T/m}^3$$

• Diagram Distribusi Tekanan Tanah Lateral Pada Dinding Penahan Tanah.

4. Tinjauan Gaya Horisontal

Tabel 5.3 Tinjauan Gaya horisontal Untuk Tanah Aktif dan Pasif

Lapisan	Diagram	σ	Pa	Lengan (jarak ke ttk A)	Momen
tnh	No	(T/m^2)	(T)	m	Tm
Aktif	1	Q. Ka = $2 \times 0,237 = 0,474$	$0,474 \ge 8,5 = 4,029$	4,25	17,2325
	2	$\gamma_{\rm b}$ Ka. h ₁ = 1,884 x 0,237 x3 = 1,339	$\frac{1}{2} \ge 1,339 \ge 3 = 2,0085$	6,5	13,055
	3	$\gamma_{\rm h}$ Ka. h ₁ = 1,884 x 0,237 x3 = 1,339	1,339 x 5,5 = 7,3645	2,75	20,25
	4	γ . Ka, $h_2 = 1.045 \times 0.237 \times 5.5 = 1.362$	$\frac{1}{2} \ge 1,362 \ge 5,5 = 3,7455$	1,833	6,866
	5	$\gamma_{\rm w}$. $h_2 = 1 \times 5,5 = 5,5$	1/2 x 5,5 x 5,5 = 15,125	1,833	27,724
			$\Sigma Pa = 32,2725$		Σ MPa = 85,02
Pasif	1	$\gamma_{w_1}(h_{3+}h_{4}) = 1 \times 5,5 = 5,5$	$\frac{1}{2}$ x 5,5 x 5,5 = 15,125	1,833	27,724
	2	γ Kp. h ₄ = 1,045 x 4,22 x 2,5 = 11,02475	1/2 x 11,02745 x 2,5=13,781	0,833	11,48
			$\Sigma Pp = 28.906$		Σ MPp = 39,204

g

Keterangan Diagram Tekanan Tanah Aktif

Diagram 1 berbentuk segi empat adalah akibat beban merata.

Diagram 2 berbentuk segi tiga adalah akibat beban tanah di atas muka air tanah.

Diagram 3 berbentuk segi empat adalah akibat beban di atasnya.

Diagram 4 berbentuk segi tiga adalah akibat tanah di bawah muka air tanah.

Diagram 5 berbentuk segi tiga adalah akibat air.

Keterangan Diagram Tekanan Tanah Pasif

Diagram 1 berbentuk segi tiga adalah akibat air.

Diagram 2 berbentuk segi tiga adalah akibat tanah di bawah muka air tanah.

5. Tinjauan Gaya Berat/ Gaya Vertikal

2 m

2 m

3 m

Gaya Berat Akibat Air (Wa) W (9) 5,5 x 6 = 33 T Akibat Muatan Terebagi Rata q = 2 T/m² (q) $q = 2 x 2,5/\cos 5^{\circ}$ = 5,02 T

Diketahui γ pasangan batu =2,5 T/m²

Gaya berat sendiri (Wbs)

W (3) 2 x 7 x 2,5

W (1) $6,5 \times 1,5 \times 2,5 = 22,5 \text{ T}$

W (2) $\frac{1}{2}$ x 1 x 7 x 2,5 = 8,75 T

Wbs

= 35 T

= 66,25 T

 $W(total) = W_{bs} + W_{tnh} - W_{air}$

$$= 66,25 \text{ T} + 28,453 \text{ T} - 33 \text{ T} = 61,703 \text{ T}$$

6. Tinjauan Terhadap Stabilitas Eksternal

Wbt = 28,453 T

a. Tinjauan Terhadap Stabilitas Geser

• Gaya Pendorong = ΣPa_{tnh}

• Gava Penahan =
$$Vx 2/3 \tan \phi + Pp + 2/3 x c^2 B$$

$= 61,703 \times 2/3 \tan 38,31^{\circ} + 28,906 + 2/3 \times 0 \times 6$ $= 61,703 \times 0,527 + 28,906 + 0$ = 61,404 TGaya Penahan = 61,404 = 1002 > 1.5 (Amore) U

$$FS(_{sliding}) = \frac{1}{Gaya \ Pendorong} = \frac{1}{32,2725} = 1,902 \ge 1,5 \quad (Aman) !!$$

Jadi FS hasil hitungan > FS patokan, maka konstruksi cukup stabil.

b. Tinjauan Terhadap Stabilitas Guling

Momen Penahan

Terdiri dari : • Momen Akibat Berat Sendiri

- Momen Akibat Berat Tanah
- Momen Akibat Tekanan Tanah Pasif

Gbr 5.5 Stabilitas Dinding yang Bekerja Sebagai Momen Penahan

No	Gava (T)	Jarak ke titik A (m)	Momen (Tm)
1	$W_1 = 22.5$	3	67,5
2	W2 = 8,75	4,25	37,1875
3	W3 = 35	3	105
4	Pp1 = 15,125	1,833	27,724
5	Pp2 = 13,781	0,833	11,48
6	Wtnh $4 = 11,304$	5	56,25
7	Wtnh $5 = 8,36$	5	41,8
8	Wtnh $6 = 8,36$	0,75	6,27
9	Wtnh $7 = 0,2145$	1,677	0,35
10	Wtnh 8 = 0,2145	1,6	0,34
	Σ Wb = 94,703		$\Sigma Mp = 353,9015$

Tabel 5.4 Stabilitas dinding yang bekerja sebagai momen penahan berdasarkan gambar 5.5 diatas

Jumlah momen gaya berat akibat beban sendiri dinding penahan tanah dan berat tanah disimbolkan dengan ∑Mwb.

 $\sum MWb = \sum Mp - \sum Mpp$

= 353,9015 - 39,204 = 314,6975

Momen Guling

Terdiri dari : • Momen Akibat Air

• Momen Akibat Tekanan Tanah Aktif

Gbr. 5.6 Stabilitas Dinding yang Bekerja Sebagai Momen Guling
H1 =
$$\gamma_w \cdot (h_2)$$

= 1 x 5,5 = 5,5 T/m²
H2 = $\gamma_w \cdot (h_3 + h_4)$
= $\gamma_w \cdot (3 + 2,5) = 5,5$ T/m
Tabel 5.5 Stabilitas Dinding yang Bekerja Sebagai Momen Guling berdasarkan gambar 5.6
No Gava (T) Iarak ke titik A (m) Momen (Tm)

No	Gaya (T)	Jarak ke titik A (m)	Momen (Tm)	
1	Pa1 = 4,029	4,25	17,12325	
2	Pa2 = 2,0085	6,5	13,055	
3	Pa3 = 7,3645	2,75	20,25	
4	Pa4 = 3,7455	1,833	6,866	
5	Pa5 = 15,125	1,833	27,724	
6	$W_{A} = 33$	3	99	
			$\Sigma Mg = 184,02$	

FS (overturning) = $\frac{Momen Penahan(\Sigma Mp)}{Momen guling(\Sigma Mg)} \ge 1,5$ (Syarat)

FS (overturning)
$$=\frac{353,9015}{184,02} = 1,923 \ge 1,5$$
 (Aman !!!)

Jadi FS hasil hitungan > FS patokan, maka konstruksi cukup stabil !

c.Tinjauan Terhadap Daya Dukung/ Kekuatan Tanah

Tinjauan terhadap daya dukung tanah ini dapat di tinjau dari dua kondisi, yaitu :

•General Shear

Daya Dukung Ijin menurut Persamaan Terzaqhi = $\sigma_{ult} = c \cdot Nc + \gamma' \cdot d \cdot Nq + 0.5 \cdot \gamma' \cdot B \cdot N_{\gamma}$

Nilai-nilai dari Nc, Nq, N_{γ}, dapat diperoleh dengan persamaan-persamaan yang telah dikemukakan oleh Terzaghi berikut ini :

$$Nc = \cot \phi \left[\frac{e^{2} (3\pi/4 - \phi/2) \tan \phi}{2 \cos^{2} \left(\frac{\pi}{4} + \frac{\phi}{2}\right)} - 1 \right] = \cot 38,31 \left[\frac{e^{2} (3\pi/4 - \phi/2) \tan 38,31}{2 \cos^{2} \left(\frac{\pi}{4} + \frac{38,31}{2}\right)} - 1 \right] - 80$$

$$Nq = \left[\frac{e^{2} (3\pi/4 - \phi/2) \tan \phi}{2 \cos^{2} \left(45 + \frac{\phi}{2}\right)} \right] = \left[\frac{e^{2} (3\pi/4 - 38,31/2) \tan 38,31}{2 \cos^{2} \left(45 + \frac{38,31}{2}\right)} \right] = 70$$

 $N_{\gamma} = 1/2(\frac{K_{p\gamma}}{\cos^2 \phi} - 1) \tan \phi$ $K_{p\gamma} =$ koefisien tekanan tanah pasif

$$N_{\gamma} = 1/2(\frac{K_{p\gamma}}{\cos^2 38,31} - 1) \tan 38,31 = 60$$

Maka $\sigma_{ult} = 0 \ge 80 + 1,045 \ge 2,5 \ge 70 + 0.5 \ge 1,045 \ge 6 \ge 60$ = 370,975 T/m²

·

• Local Shear $\sigma_{ult} = c' Nc' + \gamma' \cdot d \cdot Nq' + 0.5 \cdot \gamma' \cdot B \cdot N_{\gamma}'$ Nilai dari c' = 2/3 · c = 2/3 x 0 = 0 Nilai dari $\phi' = \tan^{-1} (2/3 \text{ tg } \phi)$ = $\tan^{-1} (2/3 \text{ tg } 38.31^\circ) = 27.775^\circ$

$$Nc = \cot \phi \left[\frac{e^{2} (3\pi/4 - \phi/2) \tan \phi}{2 \cos^{2} \left(\frac{\pi}{4} + \frac{\phi}{2}\right)} - 1 \right]$$
$$= \cot 27,775 \left[\frac{e^{2(3\pi/4 - \phi/2) \tan 27,775}}{2 \cos^{2} \left(\frac{\pi}{4} + \frac{27,775}{2}\right)} - 1 \right] = 30$$

$$Nq = \left[\frac{e^{2(3\pi/4 - \phi/2)\tan\phi}}{2\cos^{2}\left(45 + \frac{\phi}{2}\right)}\right] = \left[\frac{e^{2(3\pi/4 - 27,775/2)\tan 27,775}}{2\cos^{2}\left(45 + \frac{27,775}{2}\right)}\right]$$

$$N_{\gamma} = 1/2(\frac{K_{p\gamma}}{\cos^2 \phi} - 1) \tan \phi$$
 $K_{p\gamma} =$ koefisien tekanan tanah pasif

$$N_{\gamma} = 1/2(\frac{K_{p\gamma}}{\cos^2 27,775} - 1) \tan 27,775 = 15$$

Maka $\sigma_{ult} = 0 \ge 30 + 1,045 \ge 2,5 \ge 16 + 0.5 \ge 1,045 \ge 6 \ge 15$

$$= 88,825 \text{ T/m}^2$$

Selanjutnya di pakai hasil yang terkecil dari kedua daya dukung ijin hasil perhitungan di atas. Dengan demikian yang di pakai adalah daya dukung ijin pada keadaan *Local Shear*, dengan $\sigma_{ult} = 88,825 \text{ T/m}^2$.

Tinjauan Terhadap Eksentrisitas (e)

$$\sum M = \sum MPa - \sum MPp - \sum MGb - \sum MGbq - \sum Mga$$

= 85,02 - 39,204 - 314,6975 - 25,1 + 99
= - 194,9815 Tm (-)
$$\sum V = \sum Gb - \sum Gba + \sum Gbq$$

= 94,703 - 33 + 5,02
= 66,723 T
$$e = \frac{B}{2} - \frac{\sum M}{\sum V}$$

= $\frac{6}{2} - \frac{194,9815}{66,723} = 0,0778 \le \frac{1}{6}B = 1$
$$\sigma_{ext} = \frac{\sum V}{B} \left(1 \pm \frac{6.e}{B}\right)$$

$$\sigma_{max} = \frac{66,723}{6} \left(1 + \frac{6.0,0778}{6}\right) = 11,9056 < \overline{\sigma}_{th} = 19,079 \text{ T/m}^2$$

 $\sigma_{max} = \sigma_{toe} = 11,9056 \text{ T/m}^2$

łó

$$\sigma_{\min} = \frac{66,723}{6} \left(1 - \frac{6 \cdot 0,0778}{6} \right) = 10,255 \ge 0 \text{ OK } !$$

$$\sigma_{\min} = \sigma_{heel} = 10,255 \text{ T/m}^2$$

SF = $\frac{\sigma_{ult}}{\sigma_{\max}}$
= $\frac{88,825}{11,9056}$
= 7,461 \ge 3 (aman)

Jadi konstruksi dapat dikatakan cukup aman !!

Tinjauan Terhadap Gaya Internal

Gbr. 5.7 Tinjauan Terhadap Gaya Internal Pot A' - B'

 $Gaya: Pa_1 = Q . Ka . h_1$

$$Pa_2 = \frac{1}{2} \cdot \gamma_b \cdot Ka \cdot h_1 2$$

= 2 x 0,237 x 3 = 1,422 T

 $= \frac{1}{2} \times 1,884 \times 0,237 \times 3^2 = 2,099 \text{ T}$

 $\Sigma V =$ Luas trapesium x $\gamma_{(ps bt)}$

Luas trapesium $-\frac{(2+2,253)}{2}x$ 3

 $= 6,7845 \text{ x} \gamma_{\text{(ps bt)}} = 6,7845 \text{ x} 2,5 = 16,96125 \text{ T}$

ΣV = 16,96125 T

Momen yang terjadi pada ttk A'

Ma $_1 = Pa_1 \cdot 1,5 = 1,422 \text{ x} 1,5 = 2,133 \text{ Tm}$

Ma $_2 = Pa_1 \cdot 1 = 3,3879 \times 1 = 2,009 \text{ Tm}$

 Σ Ma = 4,142 Tm

 $\Sigma Mp = V \cdot 1,2615$

= 16,96125 x 1,2615 = 21,3966 Tm

$$\frac{\sum M(total)}{\sum V} = \frac{\sum (Mp - Ma)}{\sum V} = \frac{(21,3966 - 4,142)}{16,96125} = 1,017 = x$$

$$e = \frac{b}{2} - x = \frac{(2,523)}{2} - 1,017 = 0,2445 m$$

 $e = 0,2445 m < b/6 = 0,4205 \implies Mengalami desak !!!!$

<u>Tinjauan Desak</u>

$$\sigma_{dsk} = \frac{\sum V}{b \cdot h} + \frac{\sum M(total)}{W} \le \overline{\sigma}_{dsk}$$
$$= \frac{16,9605}{2,523 \times 1} + \frac{17,2546}{\frac{1}{6} \times 2,523 \times 1} = 6,8 \text{ T/m}^2 \le \sigma_{dsk} = 35 \text{ T/m}^2$$

Tinjauan Geser

$$D = Pa_1 + Pa_2 = 1,422 + 2,133 = 3,555 T$$

$$\tau = \frac{3}{2} x \frac{D}{b \ b} = \frac{3}{2} x \frac{3,555}{2 \ 523 \ r1} = 2.114 < \overline{\tau} = 15 \text{ T/m}^2 \text{ (Aman!!!)}$$

• Potongan A" – B"

Gbr. 5.8 Tinjauan Terhadap Gaya Internal Pot A'' - B''

Tabel 5.6 Tekanan Tanah Aktif yang bekerja pada dinding Pot A'' - B''

No	σ (Τ/m²)	Pa (T)
1	Q. $Ka = 2 \ge 0.237 = 0.474$	O,474 x 7 = 3,318
2	γ_{b} . Ka. $h_{1} = 1,884 \ge 0,237 \ge 3$ = 1,339	$\frac{1}{2} \times 1,339 \times 3 = 2,0085$
3	γ_{b} . Ka. $h_{1} = 1,884 \ge 0,237 \ge 3 = 1,339$	$1,339 \ge 4 = 5,356$
4	γ . Ka. h ₂ = 1,045 x 0,237 x 5,5 = 1,362	$\frac{1}{2} \ge 1,362 \le 4 = 2,724$
5	$\gamma_{\rm w} \cdot {\rm h}_2 = 1 \ge 5,5$ = 5,5	$\frac{1}{2} \times 5,5 \times 4 = 11$
		$\Sigma Pa = 24,4065 T$

Tabel 5.7 Momen yang terjadi terhadap ttk A"

Gaya (T)	Lengan (m)	Momen (Tm)
Pa1 = 3,318	3,5	11,613
Pa2 = 2,0085	5	10.0425
Pa3 = 5,356	2	10,712
Pa4 = 2,724	1,333	3,6311
Pa5 = 11	1,333	14,663
	<u> </u>	$\Sigma Ma = 50,6616$

 $\sum V = Luas$ Trapesium

$$=\frac{(a+b)h}{2}\cdot\gamma_{psbt}$$

$$=\frac{(2+3)x7}{2}x2,5=43,75T$$

Momen terhadap A"

 $Mp = V \times 3$ = 43,75 x 3 = 131,25 Tm

$$-x - \frac{\sum M \ total}{\sum V} = \frac{(Mp - Ma)}{43,75} = \frac{(131,25 - 50,6616)}{43,75} = 1,842 \ m$$

e = b/2 - x

$$= 3/2 - 1,842 = -0,342 < b/6 = 0,5 \implies$$
 Mengalami desak !!!

<u>Tinjauan Desak</u>

$$\sigma_{dsk} = \frac{\sum V}{b \cdot h} + \frac{\sum M(total)}{W} < \overline{\sigma}_{dsk}$$
$$= \frac{43,75}{3x1} + \frac{131,25}{\frac{1}{6}x3x1} = 2,848 < \sigma_{dsk} = 35 \text{ T/m}^2$$

Tinjauan Geser

$$D = \Sigma Pa = 24,4065 Tm$$

$$\tau = \frac{3}{2} x \frac{D}{b h} = \frac{3}{2} x \frac{24,4065}{3 x 1} = 12.203 \text{ T/m}2 < \overline{\tau} = 15 \text{ T/m}^2 \text{ (Aman!!!)}$$

5.6.2 Metode Coulomb

I. Menghitung Koefisien Tekanan Tanah

a. Koefisien Tekanan Tanah Aktif (Ka)

$$Ka = \frac{\cos^2(\phi - \beta)}{\cos^2 \beta . \cos(\delta + \beta) \left[1 + \sqrt{\frac{\sin(\delta + \phi)\sin(\phi - i)}{\cos(\delta + \beta)\cos(i - \beta)}} \right]^2}$$

= $\frac{\cos^2(38.31^\circ - 5^\circ)}{\cos^2(5^\circ) . \cos(20^\circ + 5^\circ) . \left[1 + \sqrt{\frac{\sin(20^\circ + 38.31^\circ) . \sin(38.31^\circ - 5^\circ)}{\cos(20^\circ + 5^\circ) . \cos(5^\circ - 5^\circ)}} \right]^2}$
= $\frac{0,6984}{0,992 . 0,9063 \left[1 + \sqrt{\frac{0,8509 . 0,5492}{0,906 . 1}} \right]^2}$

 $K_a = 0.263$

. . . .

Karena sudut geser tanah adalah sama maka Ka juga sama untuk semua lapisan.

2

b. Koefisien Tekanan Tanah Pasif (Kp)

$$K_{P} = \frac{\cos^{2} (\phi + \beta)}{\cos^{2} \beta . \cos (\delta - \beta) . \left[1 - \sqrt{\frac{\sin (\phi - \delta) . \sin (\phi + i)}{\cos (\delta - \beta) . \cos (i - \beta)}}\right]^{2}}$$

$$= \frac{\cos^{2} (38.31^{\circ} + 5^{\circ})}{\cos^{2} 5^{\circ} . \cos (20^{\circ} - 5^{\circ}) \left[1 - \sqrt{\frac{\sin (38.31^{\circ} - 20^{\circ}) . \sin (38.31^{\circ} + 5^{\circ})}{\cos (20^{\circ} - 5^{\circ}) . \cos (5^{\circ} - 5^{\circ})}}\right]^{2}}$$

$$= \frac{0,52947}{0,992 . 0,9659 . \left[1 - \sqrt{\frac{0,31416 . 0,6859}{0,965 . 1}}\right]^{2}}$$

$$= 1.983792$$

e tradicione en este al.

Gbr. 5.9 Diagram Tekanan Tanah Coulomb Keterangan Diagram Tekanan Tanah Aktif

Diagram 1 berbentuk segi empat adalah akibat beban merata.

Diagram 2 berbentuk segi empat adalah akibat beban merata.

Diagram 3 berbentuk segi tiga adalah akibat beban tanah di atas muka air tanah.

Diagram 4 berbentuk segi empat adalah akibat tanah di atasnya sbg merata

Diagram 5 berbentuk segi tiga adalah akibat tanah

Diagram 6 berbentuk segi tiga adalah akibat air.

Keterangan Diagram Tekanan Tanah Pasif

Diagram 7 berbentuk segi tiga adalah akibat air (statis)

Diagram 8 berbentuk segi empat adalah akibat air sebagai beban merata

Diagram 9 berbentuk segi tiga adalah akibat tanah dibawah muka air tanah

Diagram 10 berbentuk segi tiga adalah akibat air (statis)

Diagram 11 berbentuk segi empat adalah akibat air dari bawah

2. Karakteristik Tanah

$$e = 0,71$$

$$n = \frac{e}{1+e} = \frac{0,71}{1+0,71} = 0,415$$

$$\gamma_k = 1.63 \text{ T/m}^3$$

$$\gamma_b = \gamma_k \ (1+w) = 1,63 \ (1+0,1561) = 1,884 \text{ T/m}^3$$

$$\gamma_{sat} = \gamma_k + n = 1,63 + 0,415 = 2,045 \text{ T/m}^3$$

$$\gamma' = \gamma_{sat} - \gamma_w = 2,045 \text{ -1} = 1,045 \text{ T/m}^3$$

3. Tinjauan Gaya Horisontal

Taber 5.8 Tilljauan Gaya Honsoniai Unituk Tahan Akin	Tabel 5.8 T	injauan Gaya Horisontal	Untuk Tanah Aktif
--	-------------	-------------------------	-------------------

No	Tekanan Aktif Horisontal	PA	PA	Lengan	Momen PA
		(kN)	cos 25 (kN)	(m)	(kN/m)
1	$Q \times Ka \times h_1 = 20 \times 0,263 \times 3$	15,786	14,3096	7	100,1488
2.	$Q \times Ka \times h_2 = 18,84 \times 0,263 \times 5,5$	28,941	26,2294	2,75	72,1309
3.	$\frac{1}{2} \times \gamma_b \times h_1^2 \times Ka =$				
	$\frac{1}{2} \times 18,84 \times 3^2 \times 0,263$	22,306	20,2158	6,5	131,4042
4.	$\gamma_b \ge h_1 \ge h_2 \ge Ka =$				
	18,84 x 3 x 5,5 x 0,263	81,787	74,1244	2,75	203,8422
5.	$\frac{1}{2} \times \gamma \times h_2^2 \times Ka =$	"			
	¹ / ₂ x 10,45 x 5,5 ² x 0,263	41,698	37,7909	1,833	69,2833
6.	$\frac{1}{2} \times \gamma_{w} \times h_{2}^{2} =$				
	$\frac{1}{2} \times 10 \times 5.5^2$	151,25	137,079	1,833	251,3116
			204,589		828,12

Tabel 5.9 Tinjauan Gaya Horisontal Untuk Tanah Pasif

No	Tekanan Pasif Vertikal	PP	PP	Lengan	Momen
		(kN)	Cos 25(kN)	(m)	PP(kNm)
7.	$\frac{1}{2} \times \gamma_{w} \times h_{2}^{2} = \frac{1}{2} \times 10 \times 3^{2}$	45	40,784	3,5	142,745
8.	$\gamma_{\rm w} \ge h_1 \ge h_2 = 10 \ge 2,5 \ge 3$	75	67,973	1,25	84,966
9.	$\frac{1}{2} \times h_2^2 \times K_p \times \gamma$				
	¹ / ₂ x 2,5 x 2,5 x 1,984 x 10,45	64,957	58,873	0,833	49,061
10.	$\frac{1}{2} \times \gamma_{\rm w} \times {\rm h_2}^2 = \frac{1}{2} \times 10 \times 2.5^2$	31,25	28,322	0,833	23,602
		216,21	195,952		300,373

79 $\frac{1}{2}$

4. Tinjauan Gaya Vertikal

I abei :	5.10 Tinjauan Gaya Vertikai Untuk Tana	n AKUI			
No	Tekanan Aktif Horisontal	PA	PA	Lengan	Momen
		(kN)	Sin 25 (kN)	(m)	PA(kNm)
1	$Q \ge Ka \ge h_1 = 20 \ge 0,263 \ge 3$	15,786	6,671	4,019	26,813
2.	$Q \times Ka \times h_2 = 18,84 \cdot 0,263 \times 5,5$	28,941	12,231	4,391	53,706
3.	$\frac{1}{2} \times \gamma_b \times h_1^2 \times Ka$				
	$= \frac{1}{2} \times 18,84 \times 3^2 \times 0,263$	22,306	9,4268	4,063	38,3009
4.	$\gamma_b \ge h_1 \ge h_2 \ge Ka$				
	18,84 x 3 x 5,5 x 0,263	81,787	34,5648	4,391	151,7739
5.	$\frac{1}{2} \times \gamma \times h_2^2 \times Ka$				
·	$= \frac{1}{2} \times 10,45 \times 5,5^2 \times 0,263$	41,698	17,622	4,471	78,789
6.	$\frac{1}{2} \times \gamma_{w} \times h_{2}^{2} =$				
	$\frac{1}{2} \times 10 \times 5.5^2$	151,25	63,921	4,471	285,791
			147,146		646,88

Tabel 5.11 Tinjauan Gaya Vertikal Untuk Tanah Pasif

No	Tekanan Pasif Vertikal	PP	PP Sin 25	Lengan	Momen
		(kN)	(kN)	(m)	PP (kNm)
7.	$\frac{1}{2} \times \gamma_{\rm w} \times {\rm h_2}^2 = \frac{1}{2} \times 10 \times 3^2$	45	19,018	1,675	31,854
8.	$\gamma_{\rm w} \ge h_1 \ge h_2 = 10 \ge 2,5 \ge 3$	75	31,696	1,478	46,851
9 .	$\frac{1}{2} \times h_2^2 \times K_p \times \gamma$			1,442	
	½ x 2,5 x 2,5 x 1,984 . 10,45	64,957	27,452	:	39,577
10.	$\frac{1}{2} \times \gamma_{\rm w} \times {\rm h_2}^2 = \frac{1}{2} \times 10 \times 2.5^2$	31,25	13,207	1,422	19,309
		216,21	91,373		137,32

5. Tinjauan Terhadap Stabilitas Eksternal

a. Tinjauan Geser

$$SF = \frac{(P_a \sin 25 + P_P \sin 25 + W_{pas} - V_{air \ statis}) \tan 2/3\phi + P_P \cos 25}{P_a \cos 25}$$
$$= \frac{(144,437 + 91,373 + 662,5 - 330) \tan 25,54 + 195,952}{309,747}$$

 $= 1,5093 \ge 1,5$ (Aman)

b.Terhadap Guling

$$SF = M_{pas}$$

(- MPa sin 25 + MPa cos 25-MP_p cos 25+ M_{air} +MP_P sin 25)

.

$$=\frac{1987,5}{(-635,173+828,119-195,952+990+137,322)}$$

= 1,5846 ≥ 1,5 (aman)

c. Terhadap Daya Dukung

Daya Dukung Ijin menurut Persamaan Terzaqhi =

 $Qu = c.Nc+q.Nq+0.5.\gamma.B.N\gamma$ sedang c=0 maka persamaan menjadi

 $Qu = q.Nq+0,5. \gamma. B.N\gamma$

sedangkan q yang digunakan adalah pada bagian tanah pasif (Das, 1990)

$$\gamma_{3} = \gamma' = \gamma_{sat} - \gamma_{w} \qquad q = Hw.\gamma w + H3.\gamma 3$$
$$= 20,45 - 10 \qquad = 3.10 + 2,5.10,45$$
$$= 10,45 \text{ T/m}^{2} \qquad = 56,125 \text{ kN/m}^{2}$$
$$\sigma_{ult} = c. Nc + \gamma'. d. Nq + 0,5.\gamma'. B. N_{\gamma}$$

Nilai-nilai dari Nc, Nq, N $_{\gamma}$, dapat diperoleh dengan persamaan-persamaan yang telah dikemukakan oleh Terzaghi dan telah dilakukan perhitungan sebelumnya didapatkan :

$$Nc = \cot \phi \left[\frac{e^{2} (3\pi/4 - \phi/2) \tan \phi}{2 \cos^{2} \left(\frac{\pi}{4} + \frac{\phi}{2}\right)} - 1 \right]$$

= $\cot 38,31 \left[\frac{e^{2} (3\pi/4 - \phi/2) \tan 38,31}{2 \cos^{2} \left(\frac{\pi}{4} + \frac{38,31}{2}\right)} - 1 \right] = 80$
$$Nq = \left[\frac{e^{2} (3\pi/4 - \phi/2) \tan \phi}{2 \cos^{2} \left(45 + \frac{\phi}{2}\right)} \right] = \left[\frac{e^{2} (3\pi/4 - 38,31/2) \tan 38,31}{2 \cos^{2} \left(45 + \frac{38,31}{2}\right)} \right] = 70$$

$$N_{\gamma} = 1/2 \left(\frac{K_{p\gamma}}{\cos^2 \phi} - 1\right) \tan \phi \qquad K_{p\gamma} = \text{koefisien tekanan tanah pasif}$$

$$N_{\gamma} = 1/2 \left(\frac{K_{p\gamma}}{\cos^2 38, 31} - 1\right) \tan 38, 31 = 60$$
Maka $\sigma_{ult} = 0 \times 80 + 1,045 \times 2,5 \times 70 + 0.5 \times 1,045 \times 6 \times 60$

$$= 370,975 \text{ T/m}^2$$
• Local Shear
$$\sigma_{ult} = c' Nc' + \gamma' \cdot d \cdot Nq' + 0,5 \cdot \gamma' \cdot B \cdot N\gamma'$$
Nilai dari c' = 2/3 · c
$$= 2/3 \times 0 = 0$$
Nilai dari $\phi' = \tan^{-1} (2/3 \text{ tg } \phi)$

$$- \tan^{-1} (2/3 \text{ tg } 38, 31^\circ) - 27,775^\circ$$

$$Nc = \cot \phi \left[\frac{e^2 (3\pi/4 - \phi/2) \tan \phi}{2 \cos^2 \left(\frac{\pi}{4} + \frac{\phi}{2}\right)} - 1 \right]$$

$$= \cot 27,775 \left[\frac{e^{2(3\pi/4 - \phi/2) \tan \phi}}{2 \cos^2 \left(\frac{\pi}{4} + \frac{27,775}{2}\right)} - 1 \right] = 30$$

$$Nq = \left[\frac{e^2 (3\pi/4 - \phi/2) \tan \phi}{2 \cos^2 \left(45 + \frac{\phi}{2}\right)} \right] = \left[\frac{e^{2(3\pi/4 - 27,775/2) \tan 27,775}}{2 \cos^2 \left(45 + \frac{\phi}{2}\right)} \right] = 16$$

 $N_{\gamma} = 1/2(\frac{K_{p\gamma}}{\cos^2 \phi} - 1) \tan \phi$ $K_{p\gamma} =$ koefisien tekanan tanah pasif

$$N_{\gamma} = 1/2(\frac{K_{p\gamma}}{\cos^2 27,775} - 1) \tan 27,775 = 15$$

Maka $\sigma_{ult} = 0 \ge 30 + 1,045 \ge 2,5 \ge 16 + 0.5 \ge 1,045 \ge 6 \ge 15$ = 88,825 T/m²

Selanjutnya di pakai hasil yang terkecil dari kedua daya dukung ijin hasil

perhitungan di atas. Dengan demikian yang di pakai adalah daya dukung ijin pada keadaan *Local Shear*, dengan $\sigma_{ult} = 88,825 \text{ T/m}^2$.

$$Nq = \left\{ \tan^{2} (45^{\circ} + \frac{\phi}{2}) \right\} e^{\pi \cdot \tan \phi}$$

$$Nq = \left\{ \tan^{2} (45^{\circ} + \frac{38,31^{\circ}}{2}) \right\} e^{\pi \cdot \tan \phi} = 50,995$$

$$e = B/2 \cdot \Sigma M/\Sigma V$$

$$= 6/2 \cdot (MPa \sin 25 + MPp \cos 25 - MPa \cos 25 - MP_p \sin 25 - M_{air} - M_{pas}) / (P_a \sin 25 + P_p \sin 25 + V_{pas} - V_{air \cdot statis})$$

$$= 3 - (635,173 + 300,373 - 828,119 - 137,322 - 990 + 1987,5)/(144,437 + 91,373 + 662,5 - 330)$$

$$= 1,2974$$

$$\sigma_{max} = 4\Sigma V / 3(B - 2e)$$

$$= \frac{4 x (Pa \sin 25 + Pp \sin 25 + W - V_{air \cdot statis})}{3(B - 2e)}$$

$$= \frac{4 x (144,437 + 91,373 + 662,5 - 330)}{3 x (6 - 2 x 1,2974)}$$

$$= 222,5266 \text{ KN/m}^{2}$$

$$= 222,5266 \text{ KN/m}^{2}$$

$$= 222,527 \text{ T/m}^{2}$$
SF
$$= \frac{\sigma_{ulr}}{\sigma_{max}}$$

$$= \frac{88,825}{22,527}$$

$$= 3,992 \ge 3 \text{ (aman)}$$

j.

6. Tinjauan Terhadap Stabilitas Internal •Pot A' – B'

Gbr. 5.10 Tinjauan terhadap Gaya Internal Potongan A' - B'

	Tekanan Aktif Horizontal	PA	P _A Cos 25	Jarak	Momen
No		(kN)	(kN)	(m)	(kN-m)
1	$q.k_a.h1 = 20x0,263x3$	15,789	14,309	1,5	10,732
	$\frac{1}{2.\gamma b.h1^2.k_a} =$				
3	¹ ⁄ ₂ x18,84x3 ² x0,263	22,309	20,219	1	10,109
			34,529		20,842

Tabel 5.12 Tekanan Tanah Aktif Horisontal yang bekerja pada dinding potongan A' - B'

Tabel 5.13 Tekanan Tanah Aktif Vertikaly	ang bekeria pada dinding potongan A' - B'
--	---

	Tekanan Aktif Vertikal	PA	PA Sin 25	Jarak	Momen
No		(kN)	(kN)	(m)	(kN-m)
1	$q.k_a.h1 = 20x0,263x3$	15,789	6,6727	2,169	14,473
	$\frac{1}{2}.\gamma b.h1^{2}.k_{a} =$				
3	¹ ⁄ ₂ x18,84x3 ² x0,263	22,309	9,429	2,213	20,866
			16,101		35,339

Tabel 5.14 Berat bangunan pada potongan A' - B'

No	Berat Bangunan	Jarak Thd A'	Momen				
	(kN)	(m)	(kN-m)				
1	150	1,262	189,370				
2	19,685	1,262	24,852				
	169,685		214,221				

Х	= M total / V total
;	$= (MPa \cos 25 - MPa \sin 25 - M_{pas}) / (Pa \sin 25 + W_{pas})$
	= (20,842-35,339-214,221)/(16,101+169,685)
· · · · · · · · · · · · · · · · · · ·	= -228,718/185,786
	= -1,231 m
e	= b/2-x
	=2,525/2+1,231
	= 2,493 m e > b/6
Tinia	uan desak
	= V tot/(b.h) + M tot/w
	= 185.786 / (1x 2.525) - 228.718 / (1/6x 1x 2.525)
	$= -7.4379 \text{ T/m}^2 < 35 \text{ T/m}^2 (\text{aman }!)$
Tinja	auan Geser
5	= 3/2 . D/ b.h
	$= 3/2 \times 34,529/(1 \times 2.525)$
	$= 20.5122 \text{ kN/m}^2$

 $= 2,05122 \text{ T/m}^2 < \tau = 15 \text{ T/m}^2 \text{ (aman !)}$

C	idr. 5.11	Injauan	lerhadap	Gaya	Internal	Pot A	′ – I	3
---	-----------	---------	----------	------	----------	-------	-------	---

Tabel 5.	15	ekanan	1 an	an F	YKUI	Honso	ntai pada	ainaing	g Pot	A	– B.	
	_			a = =			_		_	-		

			0		
	Tekanan Aktif Horizontal	P _A	P _A Cos 25	Lengan	Momen P _A
No		(kN)	(kN)	(m)	(kN-m)
1	$q_k k_a h_1 = 20x0,263x3$	15,789	14,3096	5,5	39,352
2	$q.k_a.h_2 = 20x0,263x5.5$	21,052	19,0795	2	19,079
	$\frac{1}{2}.\gamma_{b}.h^{2}.ka$		20,2196		
3	$= 1/2x18,84x3^2x0,263$	22,3098		5	50,5489
	$\gamma_{b}.h_{1}^{2}.k_{a}$				
4	$= 18,84x3^2x0.263$	59,493	53,9189	2	53,9189
	$\frac{1}{2}.\gamma^{2}.h_{2}^{2}.k_{a}=$			1,333	
5	0.5x10.45x5,5 ² x0,263	22,059	19,992		_ 13,323
6	$\frac{1}{2} \cdot \gamma_{\rm w} \cdot h_2^2 = 0.5 \times 10 \times 5.5^2$	80	72.505	1,333	48,336
			200,025		224,564

Tabel 5.16	Tekanan	Tanah	Pasif I	Horisontal	pada	dinding	Pot /	A" -	- B"
THOMAN					P		~ ~ ~ .		_

			Ų		
	Tekanan Pasif Horizontal	PP	P _P Cos 25	Lengan	Momen
No		(kN)	(<u>kN</u>)	(m)	$P_{\rm P}(kN)$
7	$\frac{1}{2} \cdot \gamma_{w} \cdot h_{1}^{2} = \frac{1}{2} \times 10 \times 3^{2}$	45	40.784	2.5	101.959
8	$\gamma_{\rm w}.h1.h2 = 10x1\overline{x3}$	30	27,189	0.5	13,595
9	$\frac{1}{2.h2^2.K_{\rm p}.\gamma^2} =$	10,393	9,419	0.5	4,7097
	$\frac{1}{2}$ x1 ² x1,984x10,45				
10	$\frac{1}{2} \cdot \gamma_{w} \cdot h2^{2} = \frac{1}{2} \times 10 \times 1^{2}$	5	4,5316	0.5	2,2658
		90 393	81 924		122 530

	Tekanan Aktif Vertikal	— <u>PA</u> —	PA Sin	Lengan-	Momen PA	
No		(kN)	25 (kN)	(m)	(kN-m)	
1	$Q.k_{g}.h_{1} = 20x0,263x3$	15,789	6_673	2.519	16.809	
2	$Q.k_a.h_2 = 20.0,263x5,5$	21,0 52	8,897	2.891	25,271	
3	$\frac{1}{2} \cdot \gamma_{b} \cdot h_{1}^{2} \cdot k_{a} = 0.5 \times 18.84 \times 3^{2} \times 0.263$	22,309	9,4286	2.563	24,1654	
4	$\gamma_{\rm b}.{\rm h}_1.{\rm h}_2.{\rm k}_{\rm a} = 18,84{\rm x}3{\rm x}3{\rm x}0,263$	59,493	25,1428	2.891	72,6878	
	$\frac{1}{2}.\gamma^{2}.h_{2}^{2}.k_{a}=$				27,697	
5	0,5x10,45x5,5 ² x0,263	22,059	9,322	2.971		
6	$\frac{1}{2} \cdot \gamma_{\rm w} \cdot {\rm h_2}^2 = 0,5 \times 10 \times 5,5^2$	80	33.809	2.971	100.448	
	Jumlah		93,2731		267,528	

Tabel 5.17 Tekanan Tanah Aktif Vertikal pada dinding potongan A" - B"

Tabel 5.18 Tekanan Tanah Pasif Vertikal pada dinding potongan A" - B"

	Tekanan Pasif Vertikal	PP	PP Sin 25	Lengan	Momen PP
No		(kN)	(kN)	(m)	(<u>kN-</u> m)
7	$\frac{1}{2.\gamma_{\rm w}} \cdot {{{\bf{h}}_{\rm{l}}}^2} = \frac{1}{2} \times 10 \times 3^2$	45	19,018	0,175	3,.328
8	$\gamma_{\rm w}.h1.h2 = 10x1x3$	30	12,678	-0,022	-0,2773
	$\frac{1}{2.h2^2}$.K _p . $\gamma'=$	10,393			
9	¹ / ₂ x1 ² x1,984x10,45		4,3923	-0,058	-0,2562
10	$\frac{1}{2}.\gamma_{w}.h2^{2} = \frac{1}{2}x10x1^{2}$	5	2,1131	-0,058	-0,1232
	Jumlah	90,393	38,202		2,6709

Tabel 5.19 Berat Bangunan pada dinding potongan A" - B"

Nomer	Berat Bangunan	Jarak Thd A	Momen
1	437.5	1.612	705.434

$$X = M \text{ total } / V \text{ total}$$

$$= ((Mpa \cos 25 - MPa \sin 25 - MPp \cos 25 + MPp \sin 25 - M_{pas}) / (Pa \sin 25 + Pp \sin 25 + W_{pus}))$$

$$= (224,5638 - 267,528 - 122,5297 + 2,6079) / (93,2731 + 38,2018 + 437,5))$$

$$= -162,823 / 568,975$$

$$= -0,286 \text{ m}$$

$$e = b/2 - x$$

$$= 3/2 + 0,286$$

$$= 1,786 \text{ c>b/6}$$
Tinjauan desak
$$= V \text{ tot/(b.h) + M \text{ tot/w}}$$

$$= 568,975 / (1x 3,225) - 162,823 / (1/6x1x3.225))$$

$$= 176,426 - 302,9265$$

$$= -126.5 \text{ KN/m}^2 = -12,65 \text{ T/m}2 < 35 \text{ T/m}^2 \text{ (aman !)}$$
Tinjauan Geser
$$= 3/2 \cdot D / b h$$

= 3/2 . D/ b.h = $3/2 \times (200,025 - 81,924)/(1 \times 3.225)$ = $101,268 \text{ kN/m}^2 = 10,127 \text{ T/m}^2 < \tau = 15 \text{ T/m}^2 \text{ (aman !)}$

1. Menghitung Koefisien Tekanan Tanah
Pada metode Mononobe-Okabe, untuk tanah kering,
$$K_{AE}$$
 mempunyai
variabel tambahan yaitu yang berbeda dikarenakan ada
variabel $\theta = \tan^{-1} \left(\frac{k_h}{1 - k_v} \right)$.
 $K_{AE \, l} = \frac{\cos^2(\phi - \beta - \theta)}{\cos \theta \cdot \cos^2 \beta \cdot \cos (\delta + \beta + \theta) \left[1 + \sqrt{\frac{\sin (\delta + \phi) \sin (\phi - i - \theta)}{\cos (\delta + \beta + \theta) \cos (i - \beta)}} \right]^2}$
 $= \frac{\cos^2 (38, 31^\circ - 5^\circ - 92^\circ)}{\cos 92^\circ \cdot \cos^2 5^\circ \cdot \cos (20^\circ + 5^\circ + 92^\circ) \left[1 + \sqrt{\frac{\sin (20^\circ + 383 \, \text{P}) \cdot \sin (30^\circ - 5^\circ - 3831^\circ)}{\cos (20^\circ + 5^\circ + 92^\circ) \cdot \cos (5^\circ - 5^\circ)}} \right]^2}$
 $= \frac{0,9744}{0,987 \cdot 0,9924 \cdot 0,82708 \left[1 + \sqrt{\frac{0,8509 \cdot 0,4085}{0,8271 \cdot 1}} \right]^2}$
 $= 0,596284$

Untuk tanah terendam variabel θ menjadi = $\tan^{-1}\left(\frac{\gamma_{sat} \cdot k_h}{\gamma_b (1 - r_u) \cdot (1 - k_v)}\right)$. Sedangkan r_u = rasio tekanan air pori.

 $\gamma_{sat} = 20.4784$ (sama pada perhitungan sebelumnya Rankine dan Coulomb)

$$\theta = \tan^{-1} \left[\frac{20,4784.0,15}{10,4784.(1-0,25)(1-0,075)} \right] = 22,907$$

$$K_{AE2} = \frac{\cos^2(\phi - \beta - \theta)}{\cos\theta \cdot \cos^2\beta \cdot \cos(\delta + \beta + \theta) \left[1 + \sqrt{\frac{\sin(\delta + \phi)\sin(\phi - i - \theta)}{\cos(\delta + \beta + \theta)\cos(i - \beta)}} \right]^2}$$

$$\frac{\cos^{2}(3831^{\circ}-5^{\circ}-22907)}{\cos(22907)\cos^{2}5^{\circ}.\cos(20^{\circ}+5^{\circ}+22907).\left[1+\sqrt{\frac{\sin(20^{\circ}+3831^{\circ}).\sin(3831^{\circ}-5^{\circ}-22907)}{\cos(20^{\circ}+5^{\circ}+22907)\cos(5^{\circ}-5^{\circ})}\right]^{2}}$$

$$=\frac{0.9674}{0.9211.0.992.0.6703.\left[1+\sqrt{\frac{0.8509.0.6859}{0.6703.1}}\right]^{2}}$$

$$=0.422456$$

$$K_{PE} =\frac{\cos^{2}(\phi+\beta-\theta)}{\cos\theta.\cos^{2}\beta.\cos(\delta-\beta+\theta).\left[1-\sqrt{\frac{\sin(\delta+\phi).\sin(\phi+i-\theta)}{\cos(\delta-\beta+\theta).\cos(i-\beta)}}\right]^{2}}$$

$$=\frac{\cos^{2}(38.31^{\circ}+5^{\circ}-22907)}{\cos(2907)\cos^{2}5^{\circ}.\cos(20^{\circ}-5^{\circ}+22907)}\left[1-\sqrt{\frac{\sin(20^{\circ}+3831^{\circ}).\sin(3831^{\circ}+5^{\circ}-22907)}{\cos(20^{\circ}-5^{\circ}+22907).\cos(5^{\circ}-5^{\circ})}}\right]^{2}}$$

$$=\frac{0.8785}{0.9211.0.992.0.789.\left[1-\sqrt{\frac{0.851.0.346}{0.789.1}}\right]^{2}}$$

$$=8.139$$

2. Karakteristik Tanah

e = 0,71

$$n = \frac{e}{1+e} - \frac{0,71}{1+0,71} - 0,415$$

 $\gamma_k = 1.63 \text{ T/m}^3$
 $\gamma_b = \gamma_k (1+w) = 1,63 (1+0,1561) = 1,884 \text{ T/m}^3$

$$\gamma_{sat} = \gamma_k + n = 1,63 + 0,415 = 2,045 \text{ T/m}^3$$

$$\gamma' = \gamma_{sat} - \gamma_w = 2,045 - 1 = 1,045 \text{ T/m}^3$$

3. Tinjauan Gaya Horisontal

No	Tekanan Aktif Horisontal	PAE	PAE	Lengan	Momen PAE
		(kN)	cos 25 (kN)	(m)	(kN-m)
1	$Q \cdot Kae \cdot h_{1.}(1-k_V) =$		29,993	7	132,522
	20 x 0,596 . 3 x (1-0,075)	33,094			
2.	$\overline{\mathbf{Q}}$. Kae . h ₂ (1-k _v)=		38,957	2,75	108,019
	18,84 x 0,422 x 5,5(1-0,075)	42,984			
3.	$\frac{1}{2} \cdot \frac{\gamma_{b} \cdot h_{1}^{2}}{\gamma_{b} \cdot h_{1}^{2}} \cdot \text{Kae}(1-k_{V}) = 0$		33,400		187,253
	¹ / ₂ x18,84x3 ² x0,596(1-0,075)	46,762		6,5	
4.	γ_{b} . h ₁ . h ₂ . Kae (1-k _V)=	-	122,467		239,874
	18,84x3x5,5x0,596(1-0,075)	121,475		2,75	
5.	$\frac{1}{2} \cdot \gamma \cdot h_2^2$. Kae (1-k _V)=		56,129		155,632
	¹ / ₂ x10,45x5,5 ² x0,422(1-0,075)	61,932	-	1,833	
6.	$\frac{1}{2}$, $\gamma_{\rm w}$, h_2^2 (1-k _V)=		190,197		424,699
	¹ ⁄ ₂ x15x5,5x5,5(1-0,075)	209,859		1,833	
			467.752		1247.99

abel 5.20. Tinjauan Gaya Horisontal Untuk Tanah Aktif

Tabel 5.21. Tinjauan Gaya Horisontal Untuk Tanah Pasif

No	Tekanan Pasif Horizontal	PPE	PPE	Lengan	Momen
	_	(kN)	Cos 25(kN)	(m)	PPE(kN-m)
7.	$\frac{1}{2} \cdot \gamma_{w} \cdot h_{2}^{2} = \frac{1}{2} \times 10 \times 3^{2}$	45	40,784	3,5	142,745
8.	$\gamma_{\rm w} \cdot {\rm h_1} \cdot {\rm h_2} = 10 \ {\rm x} \ 2,5 \ {\rm x} \ 3$	75	67,971	1,25	84,966
9.	$\frac{1}{2}$, h_2^2 , K_{PE} , γ . (1- k_V)		223,423		868,909
	¹ / ₂ x2,5 ² x8,1391x10,45(1-0,075)	246,525		0,833	i
10.	$\frac{1}{2}$, γeq . $h_2^2 =$		42,484	0,833	44,843
	$\frac{1}{2} \times 15 \times 2,5^2$	46,875			
12	$7/12.0,15.\gamma_{w}.h3.h3 =$		7,137	0	30,689
	7/12x 0,15 x 15 x 3 x 2,5	7,875			
13	$7/8.0,15.\gamma eq.h3.h4=$		8,921	0	13,382
	7/8 x0,15x 15 x 3 x 2,5	9,844			
			390,726		1185,533

4. Tinjauan Gaya Vertikal

Tabel 5.22. Tinjauan Gaya Vertikal Untuk Tanah Aktif

No	Tekanan Aktif Vertikal	PAE	PAE	Lengan	Momen
		(kN)	Sin 25 (kN)	(m)	PAE(kNm)
1	$Q \cdot Kae \cdot h_1(1-k_V) =$		13,986	4,134	57,812
	20 x 0,596 x 3 x (1-0,075)	33,094			
2.	$Q \cdot Kae \cdot h_2 (1-k_V) =$		18,166	4,257	77,341
	18,84 x 0,422 x 5,5(1-0,075)	42,984			
3.	$\frac{1}{2} \cdot \gamma_{\rm b} \cdot {\rm h_{\rm l}}^2$. Kae (1-k _V)=		19,762		81,689
	¹ / ₂ x18,84x3 ² x0,596(1-0,075)	46,762		4,134	
4.	$\gamma_b \cdot h_1 \cdot h_2 \cdot Kae (1-k_V)=$		53,795		231,819
	18,84x3x5,5x0,596(1-0,075)	121,475		4,309	

5.	$\frac{1}{2} \cdot \gamma \cdot h_2^2$. Kae (1-k _V)=		26,174		111,431	
	¹ / ₂ x10,45x5,5 ² x0,422(1-0,075)	61,932		4,257		
(1/ $1/2/(11)$		99 (04		201 777	
0.	$72. \gamma_{\rm W} \cdot \Pi_2 (1-K_{\rm V})$		00,094		381,777	
	¹ / ₂ x15x5,5x5,5(1-0,075)	209,859		4,305		
			220,574		941,868	

Tabel 5.23. Tinjauan Gaya Vertikal Untuk Tanah Pasif

No	Tekanan Pasif Vertikal	PPE	PP Sin 25	Lengan	Momen
		(kN)	(kN)	(m)	PP (kNm)
7.	$\frac{1}{2} \cdot \gamma_{\rm w} \cdot {\rm h_2}^2 = \frac{1}{2} \times 10 \times 3^2$	45	19,018	1,675	31,854
8.	$\gamma_{\rm w}$. h ₁ . h ₂ = 10 . 2,5 x 3	75	31,696	1,478	46,851
9.	$\frac{1}{2}$. h_2^2 . K_{PE} . γ . (1- k_V)			1,5	156,279
	¹ / ₂ x2,5 ² x8,1391x10,45(1-0,075)	246,525	104,185		
10.	$\frac{1}{2}$. γeq . $h_2^2 =$		19,8102	1,5	29,715
	$\frac{1}{2} \times 15 \times 2,5^2$	46,875			
12	$7/12.0,15.$ $\gamma_{w}.h3.h3=$		3,281	1,745	5,807
	7/12x0,15 x 15 x 3 x 2,5	7,875			
13	$7/8.0,15. \gamma eq . h3 . h4=$		4,160	1,5	6.24
	7/8x0,15x15 x 3 x 2,5	9,844			
			182,198		276.748

Tabel 5.24. Berat Bangunan pada dinding

No	Berat Bangunan (kN)	Lengan (m)	Momen (kN-(m))
1	437,5	1,61242	705,43403

• Diagram Distribusi Tekanan Tanah Lateral Pada Dinding Penahan

Tanah Dengan Metode Mononobe-Okabe

Gambar 5.12 Diagram Tek Mononobe - Okabe

Keterangan Diagram Tekanan Tanah Aktif

Diagram 1 berbentuk segi empat adalah akibat beban merata.

Diagram 2 berbentuk segi empat adalah akibat beban merata.

Diagram 3 berbentuk segi tiga adalah akibat beban tanah di atas muka air tanah.

Diagram 4 berbentuk segi empat adalah akibat tanah di atasnya sbg merata

Diagram 5 berbentuk segi tiga adalah akibat tanah

Diagram 6 berbentuk segi tiga adalah akibat air.

Keterangan Diagram Tekanan Tanah Pasif

Diagram 7 berbentuk segi tiga adalah akibat air (statis)

Diagram 8 berbentuk segi empat adalah akibat air sebagai beban merata

Diagram 9 berbentuk segi tiga adalah akibat tanah dibawah muka air tanah

Diagram 10 berbentuk segi tiga adalah akibat air (statis)

Diagram 11 berbentuk segi empat adalah akibat air dari bawah

Diagram 12 berbentuk kurva adalah akibat air (statis)

Diagram 13 berbentuk segi empat adalah akibat air sbg beban merata (dinamis)

SF =	M_pas
	$(M_{PAE} \cos 25 \text{-} M_{PAE} \sin 25 \text{-} M_{PPE} \cos 25 \text{+} M_{air\text{-}gempa} \text{+} M_{PPE} \sin 25)$
-	1987,5
	1247,999-941,868-1185,534+1485+276,748
-	$1,6058 \ge 1,5$ (aman !)
o.Tinjauar	Geser
SF	=
$(P_{ae} \sin 2)$	$5 + P_{PE} \sin 25 + W_{pas} - V_{air gempa} \tan 2/3\phi + P_{PE} \cos 25$
	$P_{qe} \cos 25$

 $= 1,4179 \ge 1,5$ (Tidak Aman)

c. Daya Dukung

 $\phi_{dy} = 38,31 - 2^0$ (Vesic,1973)

Tinjauan terhadap daya dukung tanah ini dapat di tinjau dari dua kondisi, yaitu :

•General Shear

Daya Dukung Ijin menurut Persamaan Terzaqhi -

 $\sigma_{ult} = c \cdot Nc + \gamma' \cdot d \cdot Nq + 0.5 \cdot \gamma' \cdot B \cdot N_{\gamma}$

Nilai-nilai dari Nc, Nq, N $_{\gamma}$, dapat diperoleh dengan persamaan-persamaan yang telah dikemukakan oleh Terzaghi berikut ini :

$$Nc = \cot \phi \left[\frac{e^{2(3\pi/4 - \phi/2)\tan \phi}}{2\cos^{2}\left(\frac{\pi}{4} + \frac{\phi}{2}\right)} - 1 \right]$$

$$= \cot 36,31 \left[\frac{e^{2} (3\pi/4 - \phi/2) \tan 36,31}{2 \cos^{2} \left(\frac{\pi}{4} + \frac{36,31}{2}\right)} - 1 \right] -70$$

$$Nq = \left[\frac{e^{2} (3\pi/4 - \phi/2) \tan \phi}{2 \cos^{2} \left(45 + \frac{\phi}{2}\right)} \right] = \left[\frac{e^{2} (3\pi/4 - 36,31/2) \tan 36,31}{2 \cos^{2} \left(45 + \frac{36,31}{2}\right)} \right] = 50$$

 $N_{\gamma} = 1/2(\frac{K_{p\gamma}}{\cos^2 \phi} - 1) \tan \phi$ $K_{p\gamma} =$ koefisien tekanan tanah pasif

$$N_{\gamma} = 1/2(\frac{K_{p\gamma}}{\cos^2 36,31} - 1) \tan 36,31 = 60$$

Γ

Maka $\sigma_{ult} = 0 \ge 70 + 1,045 \ge 2,5 \ge 50 + 0.5 \ge 1,045 \ge 6 \ge 60$ =318,725 T/m²

• Local Shear $\sigma_{ult} = c' Nc' + \gamma' \cdot d \cdot Nq' + 0.5 \cdot \gamma' \cdot B \cdot N_{\gamma}'$ Nilai dari c' = 2/3 . c = 2/3 x 0 = 0 Nilai dari \phi' = tg^{-1} (tg 2/3 \phi) = tg^{-1} (tg 2/3 36,31^{\circ}) = 26,099 $Nc = \cot \phi \left[\frac{e^{2} (3\pi/4 - \phi/2) \tan \phi}{2 \cos^{2} \left(\frac{\pi}{4} + \frac{\phi}{2}\right)} - 1 \right]$ $= \cot 26,099 \left[\frac{e^{2} (3\pi/4 - \phi/2) \tan 26,099}{2 \cos^{2} \left(\frac{\pi}{4} + \frac{26,099}{2}\right)} - 1 \right] = 19$

$$\frac{e^{2}(3\pi/4 - \phi/2)\tan\phi}{2\cos^{2}\left(45 + \frac{\phi}{2}\right)} = \frac{e^{2}(3\pi/4 - 25,54/2)\tan 25,54}{2\cos^{2}\left(45 + \frac{25,54}{2}\right)}$$

रीय

e

 $N_{\gamma} = 1/2(\frac{K_{p\gamma}}{\cos^2 \phi} - 1) \tan \phi$ $K_{p\gamma} =$ koefisien tekanan tanah pasif

$$N_{\gamma} = 1/2(\frac{K_{P\gamma}}{\cos^2 38,31} - 1) \tan 38,31 = 11$$

Maka $\sigma_{ult} = 0 \ge 19 + 1,045 \ge 2,5 \ge 13 + 0.5 \ge 1,045 \ge 6 \ge 11$

$$= 68.4475 \text{ T/m}^2$$

Selanjutnya di pakai hasil yang terkecil dari kedua daya dukung ijin hasil perhitungan di atas. Dengan demikian yang di pakai adalah daya dukung ijin pada keadaan *Local Shear*, dengan $\sigma_{ult} = 68,4475 \text{ T/m}^2$.

$$= B/2-\Sigma M/\Sigma V$$

$$= 6/2 \cdot (M_{PAE} \sin 25 + M_{PPE} \cos 25 - M_{PAE} \cos 25 - M_{PPE} \sin 25 - M_{air-gempa}) / (P_{AE} \sin 25 + P_{PE} \sin 25 + V_{pas} - V_{air-gempa})$$

$$= 3 \cdot ((941,868+1185,5339-1247,999-276,7475+1987,5-1485) / (220,5734+182,1985+662,5-495))$$

$$= 1,062016$$

 $\sigma_{\text{max}} = 4\Sigma V/3(B-2e)$ $= \frac{4 x (Pae \sin 25 + Ppe \sin 25 + W - V_{air gempa})}{3 (B-2e)}$ $= \frac{4 x (220,573 + 182,198 + 662,5 - 495)}{3 x (6 - 2 x 1,06206)}$ $= 195,5027 \text{ KN/m}^2$ $= 19,55027 \text{ T/m}^2$ SF $= \frac{\sigma_{ull}}{\sigma_{\text{max}}}$ (2.4475)

$$=\frac{68,4475}{19,55027} = 3,5011 \ge 3 \text{ (aman)}$$

6. Tinjauan Terhadap Stabilitas Internal

a. Potongan A'-B'

Tabel 5	Tabel 5.25. Tekanan Tanah Aktif Horizontal Potongan A'-B'							
No	Tekanan Aktif Horizontal	P _{AE}	PAE Cos 25	Jarak	Momen			
		(kN)	(kN)	(m)	(kN-m)			
	$Q.k_{ae1}h1.(1-kv) =$		29,9931	1.188				
1	20x0,596x3x(1-0,075)	33,0938			35,645			
	$\frac{1}{2}$. γ_{b} .h1 . h1 . k _{ae1} . (1-kv) =	46,7615	42,3803	1.188				
3	¹ / ₂ x18,84x3x3x0,596x(1-0,075)				50,3664			
	Jumlah		72,3734		86,0115			
Tabel 5	.26. Tekanan Tanah Aktif Vertikal Potonga	<u>an A'-B'</u>		_				
	Tekanan Aktif Vertikal	P_{AE}	P _{AE} Sin 25	Jarak	Momen			
No		(kN)	(kN)	(m)	(kN-m)			
	$Q \cdot k_{ael} \cdot hl \cdot (1-kv) =$		6,674	2.284				
1	20x0,596x3x(1-0,075)	33,0938			31,939			
	$\frac{1}{2} \cdot \gamma_{\rm b} \cdot h1 \cdot h1 \cdot k_{\rm ael} \cdot (1-kv) =$	46,7621	42,383	2.284	47,908			
3	¹ / ₂ x18,84x3x3x0,596x(1-0,075)		1		-			
	Jumlah		72,373		79,846			

Tabel 5.27.Berat Bangunan Potongan A'-B'

Nomer	Berat Bangunan	Jarak Thd A	Momen
1	150	1.262465991	189.370
2	19.68494929	1.262465991	24.852
	169.6849493		214.221

$$X = M \text{ total } / V \text{ total}$$

= ((86.011-79.846-214.221)/(169.685+34.965)

- = -208.056/ 204.38
- = -1.0166

-b/2-x

$$= 2.523/2 + 1.0166$$

= 2.2781

e>b/6

e

Tinjauan desak

- = V tot/(b.h) + M tot/w
- $= 186.367/(1 \times 2.523) 208,056/(1/6 \times 1 \times 2.523)$
- = 73.809-494.390
- = -420,5813 kN/m2
- $= -42,0581 \text{ T/m}^2 \text{ (aman !)}$

Tinjauan Geser

= 3/2 . D/ b.h $= 3/2 \times 72,373/(1 \times 2,523)$ $= 43,0279 \text{ kN/m}^2$ = 4,3028 T/m2 < τ = 15 T/m² (aman !)

b.Potongan A''-B''

Tabel :	5.28. Tekanan Tanah Aktif Horizontal P	otongan A" i	<u>B"</u>			
	Tekanan Aktif Horizontal	P _{AE}	$P_{AE} \cos 25$	Lengan	Momen	
No		(kN)	(kN)	(m)	PAE (kN-m)	
	$q.k_{ae}.h_{1}.(1-k_{v}) =$	33.094		4.188		
1	20x0,596x3x(1-0,075)		29.993		132.519	
	$q.k_{ae}.h_{2}.(1-k_{v}) =$			2.017		
2	20x0,422x4x(1-0,075)	31.262	28.333		57.134	
	$\frac{1}{2} \gamma_{b} h_{1} h_{1} h_{c} k_{ae} (1-k_{v}) =$			4.188		
3	0,5x18,84x3x3x0,596x(1-0,075)	49.641	44.9897		199.775	
	$\gamma_{b.}h_{1.}h_{2.}k_{ae}(1-k_{v}) =$			1.585		
4	18,84x3x4x0,422x(1-0,075)	93.785	84.998		134.687	
	$\frac{1}{2}.\gamma'.h_2.h_2.k_{ae}.(1-k_v) =$			2.017		
5	0.5x10,45x 4x4x0.422x(1-0,075)	<u>32</u> .757	29.688		59.867	
	$\frac{1}{2} \cdot \gamma_{eq} \cdot h_2 \cdot h_2 \cdot (1 - k_v) =$			1.631		
6	0.5x15x4x4x(1-0,075)	111	100.600		164.102	
			318.602		748.085	
Tabel :	5.29. <u>Tekanan Tanah Pasif Horizontal Po</u>	otongan A"-l	<u>B"</u>			
	Tekanan Pasif Horizontal	PPE	$P_{\rm PE} \cos 25$	Lengan	Momen P	Pe
No		<u>(kN)</u>	<u>(kN)</u>	(m)	<u>(kN-m)</u>	
7	$\frac{1}{2} \gamma_{w} h_{1} h_{1} = \frac{1}{2} x 10 x 3 x 3$	45	40.7838	3.5	142.7434	7
8	$\gamma_{\rm w}.{\bf h}_1.{\bf h}_2 = 10{\bf x}1{\bf x}3$	30	27.1892	1.25	33.98654	1
	$\frac{1}{2}h_2h_2K_{\rm PF}\gamma^2 =$					
9	$\frac{1}{2} \times 1.5 \times 1.5 \times 8.139 \times 10.45$	39,444	35.7483	3.889	139.025	
10	$\frac{1}{2} \gamma_{\rm w} h_2 h_2 = \frac{1}{2} \times 15 \times 1.5 \times 1.5$	7.5	6 7973	0.633	4 30496	
	7/12 0.15 y h ₂ h ₂ =		0.1070	33		
12	7/12x0 15x10x3x3	7 875	7 13717	5.5	23 55267	2
12	7/9 0 15 m h h -	1.015		0.75	23.33207	J
12	$7/8.0, 15.7_{W} \cdot 113.114 - 7/8.0, 15.7_{W} \cdot 113.114$	0.0075	0 50050	0.75	0.070440	4
15	//8X0,15X15X5X1	3.9375	3.56858		2.676440	1
Tabal	5.20 Takanan Tanah Aktif Martikal Data	133./5/	121.225		346.289	
	Tokonon Aktif Vertikal	D.	D	Longon	Momon	
No		(L-NI)	$r_{AE} \sin 2.5$	(m)	D (1-N m	
INO				<u>(m)</u>	PAE (KIN-III	<u>ı)</u>
1	$q.k_{ae}.h_{1}.(1-k_{v}) =$	33.094	10.000	2624		
	20x0,596x3x(1-0,075)		13.986	2.034		
2	$q_{K_{ae}} n_{2} (1 - K_{v}) =$	24.060	10.040	2757	20,420	ĺ
<u> </u>	20x0,422x4x(1-0,073)		13.212	2.131	30.430	
2	$\frac{1}{2} \frac{\gamma_{b} n_{1} n_{1} K_{ae}}{1 - K_{v}} = 0.5 \text{ sol} 5.06 \text{ sol} (1.0.075)$	40.044	00.070	2621		
	0,3x18,84x3x3x0,390x(1-0,073)	49.041	20.979	2.034	55.250	
1	$\gamma_{b.n_{1.n_{2.K_{ae.}}(1-K_{v})} =$	00 795	20.625	2 800	444.040	
4	$\frac{10,04X3X4X0,422X(1-0,073)}{17,022}$	93.700	39.030	2.009	111.348	
5	$72.\gamma$. Π_2 . Π_2 . Π_2 . K_{ac} .(1- K_v) = 0.3X10,43X	20 757	12 944	2757	20 470	
<u> </u>	4x4x0.422x(1-0,073)	32.131	13.044	4.131	30.173	_
6	$\frac{72}{10} \cdot \frac{y_{eq}}{10} \cdot \frac{112}{112} \cdot \frac{11-K_V}{1-0} = 0$	111	16 011	2 805	131 565	
0			18 566	2.005	100 500	
	•		40,000		407,377	

	Tekanan Pasif Vertikal	P _{PE}	P _{PE} Sin 25	Lengan	Momen PPE-
No		<u>(kN)</u>	(kN)	<u>(m)</u>	<u>(kN-m)</u>
7	$\frac{1}{2.\gamma_{\rm w}.h_1.h_1} = \frac{1}{2} \times 10 \times 3 \times 3$	45		0.175	3.327687
8	$\gamma_{\rm w}.h_1.h_2 = 10x1x3$	30	12.679	-0.022	-0.277307
	$\frac{1}{2}.h_2.h_2.K_{\rm PE}.\gamma^{2}=$				
9	¹ / ₂ x1.5x1.5x8.139x10.45	39.444	16.6697	0	0
10	$\frac{1}{2}$, γ_w , h_2 , $h_2 = \frac{1}{2}x15x1.5x1.5$	7.5	3.1696	0	0
12	$7/12.0,15.\gamma_{w} h_{3}h_{3} = 7/12x0,15x10x3x3$	7. 8 75	3.328	0.245	0.815
13	$7/8.0,15.\gamma_{w}.h_{3}.h_{4} = 7/8x0,15x15x3x1$	3.9375	1.664	Ó	0
	Jumlah		56.528		3.866

Tabel 5.30. Tekanan Tanah Aktif Vertikal Potongan A"-B"

Tabel 5.31.Berat Bangunan pada Potongan A"-B"

No	Berat Bangunan	Jarak Thd A	Momen
1	437.5	1.612420645	705.434032
	225		705.434032

X = M total / V total

- $= M_{AE} \cos 25 M_{PE} \cos 25 M_{AE} \sin 25 + M_{PE} \sin 25 + M_{pas})/$ (Vpas+P_{PE} sin25+P_{AE} Sin25)
- =(748.08521-346.289-1409.599+3.866+705.434)/(225+56,52+148.567)
- = -298.50279/430.087

= -0.694

= b/2s-x

= 3/2 + 0.694

=2,194

e>b/6

e

Tinjauan desak

- = V tot/(b.h) + M tot/w
- $= 430.087/(1 \times 3.225) 298.503/(1/6 \times 1 \times 3.225)$
- = 133.360-555.354 kN/m2
- = -421.994 kN/m2
- = -42,199T/m2 < 35 T/m² (aman !)

Tinjauan Geser

- $= 3/2 \ge D/b.h$
- $= 3/2 \text{ x} (318.602 121.225) / (1 \times 3.225)$
- = 91,80225 kN/m2
- = 9,180 T/m2 < τ = 15 T/m² (aman !)

BAB VI

PEMBAHASAN

6.1. Stabilitas Dinding Penahan Tanah

6.1.1. Stabilitas Eksternal

Analisa dinding penahan tanah dengan metode Rankine, Coulomb dan Mononobe-Okabe untuk menyelidiki stabilitas eksternal menggunakan angka keamanan 1,5 untuk stabilitas terhadap geser (*sliding*) dan guling (*overturning*). Sedangkan angka keamanan terhadap stabilitas daya dukung (*bearing capacity failure*) adalah 3. Dari hasil perhitungan pada bab V didapat hasil sebagai berikut :

No	Stabilitas	Rankine	Coulomb	Mononobe – Okabe
1.	Sliding	SF = 1,903	SF = 1,509	SF = 1,418
2.	Overturning	SF = 1,923	SF = 1,585	$SF = \overline{1,606}$
3.	Bearing Capacity	SF = 7,461	SF = 3,992	SF = 3,501

6.1.2. Stabilitas Internal

Analisa dinding penahan tanah dengan metode Rankine, Coulomb dan Mononobe-Okabe untuk menyelidiki stabilitas internal dengan besarnya tegangan desak ijin diambil $\sigma_{dsk} - 35$ T/m² dan tegangan geser ijin diambil $\tau = 15$ T/m². Dari hasil perhitungan bab V didapat hasil sebagai berikut ;

No	Parameter	Rankine (t/m ²)	Coulomb (t/m ²)	Mononobe – Okabe(t/m ²)
1.	Pot A'-A'	Desak = 6,8 Geser = 2,114	Desak = $-7,439$ Geser = 2,051	Desak = -42,06 Geser = 4,303
2.	Pot A" – B"	Desak = 2,848 Geser = 12,203	Desak = -12,65 Geser = 10,127	Desak = -42,199 Geser = 9,180

6.2. Pembahasan Metode – metode

6.2.1. Metode Rankine

Rankine (1857) telah menyelidiki keadaan tegangan di dalam tanah yang berbeda pada keadaan keseimbangan plastis. Yang dimaksud dengan keseimbangan plastis *(plastic equilibirium)* di dalam tanah adalah suatu keadaan yang menyebabkan tiap-tiap titik di dalam massa tanah menuju suatu proses ke suatu keadaan runtuh.

Kelebihan atau keunggulan metode Rankine

Konsep keadaan Rankine pada kesetimbangan plastis dapat digunakan untuk memperkirakan besarnya tekanan lateral yang bekerja pada berbagai struktur penahan.Teori Rankine dapat dimodifikasi untuk menghitung kohesi, dan untuk menghitung kemiringan permukaan tanah. Ini berlaku juga untuk pengambilan air yang seragam (*uniform surcharge*) di atas permukaan tanah dan permukaan air bebas sejajar dengan permukaan tanah urugan. Teori ini dapat diterapkan langsung pada dinding penahan tanah biasa. Pemecahan Rankine sering dipakai karena persamaannya sederhana dan agak lebih konservatif daripada persamaan Coulomb.

Kelemahan metode Rankine

Metode Rankine menganggap bahwa tidak ada gesekan atau adhesi antara tanah (tanah belakang) dan struktur penahan. Anggapan ini, tentu saja, tidak benar dan menjurus pada ketidaktelitian metode ini. Ketidaktelitian itu biasanya kecil untuk keadaan aktif dan kebanyakan dari segi konservatif, walaupun tidak semuanya, bagi kondisi-kondisi praktis. Sebelum menggunakan metode Rankine, pengaruh pengabaian gesekan dinding perlu diselidiki.

6.2.2. Metode Coulomb

Dalam teorinya, Coulomb (1776) menganggap bahwa bidang longsor adalah rata dan berbentuk miring. Geseran antara tembok dengan tanah dibelakang tembok ikut diperhitungkan. Prinsip umum dari penurunan teori tekanan tanah menurut Coulomb untuk tanah kering tak berkohesi (kekuatan gesernya dinyatakan dengan persamaan $\tau_f = \sigma \tan \phi$).

Kelebihan atau keunggulan metode Coulomb

Pada umumnya penggunaan metode tekanan tanah Rankine tidak menggunakan gesekan dinding yang cenderung lebih konservatif (tekanan dinding besar) daripada pemecahan harga-harga Coulomb; akan tetapi untuk dinding tinggi atau dinding lentur dengan metode deformasi Coulomb yang baik mungkin lebih realistis dan diperlukan untuk suatu perkiraan δ (sudut gesek dinding).

Kelemahan metode Coulomb

Perlu diketahui bahwa dengan membuat asumsi bahwa bidang longsor adalah bidang rata (dalam teori Coulomb), maka tekanan tanah pasif yang dihasilkan sangat besar (*over estimate*), terutama untuk $\delta > \frac{\phi}{2}$ keadaan ini tidak aman dalam perencanaan. Dikarenakan memperhitungkan gesekan tanah maka otomatis perhitungan dengan menggunakan metode Coulomb lebih rumit dan membutuhkan ketelitian yang lebih tinggi dibanding metode Rankine.

6.2.3. Metode Mononobe-Okabe

Persamaan Tekanan Tanah Aktif dan Pasif Coulomb dapat dimodifikasi dengan memperhitungkan perubahan koefisien vertikal dan horisontal akibat gempa. Okabe (1926) serta Mononobe-Matsuo (1929) telah mengembangkan dasar analisis pseudostatik pada tekanan tanah saat gempa pada struktur dinding penahan tanah dimana telah menjadi populer dikenal sebagi metode Mononobe-Okabe. Teori Mononobe - Okabe merupakan modifikasi dari rumus Coulomb.Beban gempa yang digunakan adalah dalam bentuk percepatan gempa.

Persamaan Mononobe - Okabe adalah sebagai berikut :

 $P_{AE} = \frac{1}{2} \gamma H^2 (1 - k_v) K_{AE}$

Dengan K_{AE} adalah koefisien tekanan tanah aktif dengan efek gempa.

$$K_{AE} = \frac{\cos^2(\phi - \theta - \beta)}{\cos\theta \cos^2\beta \cos(\delta + \beta + \theta) \left[1 + \sqrt{\frac{\sin(\phi + \delta)\sin(\phi - \theta - i)}{\cos(\delta + \beta + \theta)\cos(i - \beta)}}\right]^2}$$

 $\theta = \tan^{-1}\left(\frac{k_h}{1-k_\nu}\right)$

 $k_h W$ dan $k_v W$ adalah gaya inersia di arah vertikal dan horisontal dan g adalah akselerasi / percepatan gravitasi .

$$k_{h} = \frac{komponen horisontal dari akselerasi gempa}{g}$$

$$k_{v} = \frac{komponen vertikal dari akselerasi gempa}{g}$$

dan g adalah akselerasi /percepatan gravitasi.

Sedangkan untuk tekanan pasif

$$P_{PE} = \frac{1}{2} \gamma H^2 (1 - k_v) K_{PE}$$

dim

nana
$$K_{PE} = \frac{\cos^2(\phi + \beta - \theta)}{\cos \theta \cos^2 \beta \cos (\delta - \beta + \theta) \left[1 - \left\{\frac{\sin(\phi + \delta)\sin(\phi + i - \theta)}{\cos(i - \beta)\cos(\delta - \beta + \theta)}\right\}^{1/2}\right]^2}$$

2 (1 . 0

Kelebihan atau keunggulan metode Mononobe-Okabe

Metode Mononobe-Okabe lebih teliti daripada metode Rankine, hal ini dikarenakan metode ini mendasarkan teorinya pada teori Coulomb. Selain itu metode Mononobe -Okabe mempertimbangkan pula faktor gempa yang dimasukkan dalam bentuk

variabel
$$\theta$$
 yaitu $\theta = \tan^{-1}\left(\frac{k_h}{1-k_v}\right)$.

Kelemahan metode Mononobe-Okabe

Metode ini lebih rumit dibandingkan dengan metode yang lain dikarenakan melibatkan faktor gempa. Hal ini dikarenakan harus mengetahui variabel gempa terlebih dahulu, yang akan mempengaruhi perhitungan terhadap tekanan tanah maupun tekanan air sebelum terjadi gempa.

Mononobe - Okabe mengasumsikan bahwa tanah dalam keadaan kering, sementara pada kasus yang sering terjadi, keruntuhan dinding penahan tanah terjadi pada daerah yang berhadapan dengan air, sehingga tidak bisa diterapkan untuk keadaan basah secara langsung.

Teori Mononobe-Okabe kemudian disempurnakan oleh Westergaard dan Matzuzawa yaitu dengan melibatkan keberadaan air. Ketika gempa terjadi, air mengalami tambahan tekanan. Tekanan tambahan ini dinamakan tekanan hidrodinamik, sehingga tekanan air adalah menjadi tekanan total yaitu resultan dari tekanan hidrostatik dan tekanan hidrodinamik.

Pengaruh keterlibatan air di luar dinding di sampaikan oleh Westergaard dengan teori $P_w = \frac{7}{12} \frac{a_h}{g} \gamma_w H^2$ sebagai tekanan hidrodinamik yang harus ditambahkan pada tekanan hidrostatik.

Sedangkan untuk teori Matzuzawa adalah sebagai berikut ; terjadi tambahan tekanan pada air didalam urugan, sehingga γ_w berubah menjadi $\gamma_{eq} = \gamma_w + r_u \gamma_b$. Catatan bahwa r_u mendekati 1 (sebagaimana bisa terjadi sewaktu liquifaksi) tekanan ke samping dinding mendekati seperti yang dikenai oleh cairan pada berat jenis ekuifalen, $\gamma_{eq} = \gamma_{sat.}$ Matzuzawa juga menyempurnakan bahwa ada beberapa perubahan ketika kasus tanah dalam keadaan terendam.

$$\gamma = \gamma_b \left(1 - r_u \right)$$

$$\theta = \frac{\tan^{-1} \left[\gamma_{sat} k_h \right]}{\gamma_b \left(1 - r_u \right) \left(1 - k_v \right)}$$

Kelemahan yang lain adalah metode ini hanya berlaku untuk tanah yang tidak berkohesi c = 0 (cohesionless soil) selain itu, metode Mononobe - Okabe tidak bisa digunakan untuk kasus liquifaksi walaupun mempertimbangkan faktor gempa.
6.3. Pembahasan Pengaruh Geometri Tanah dan Dinding

- Nilai kemiringan tanah dibelakang dinding (i) dapat memperbesar tekanan aktif. Untuk sudut yang kecil selisih tekanan yang terjadi antara ketiga teori baik Rankine, Coulomb dan teori Mononobe-Okabe sangat kecil, tetapi untuk sudut yang besar perbedaannya semakin jelas.
- Sudut kemiringan dinding sebelah dalam (β) tidak mempengaruhi nilai tekanan aktif Rankine tetapi mempengaruhi nilai tekanan aktif Coulomb dan Mononobe-Okabe. Semakin besar sudut ini maka tekanan aktif semakin kecil dan tekanan pasif semakin besar.
- 3. Sudut geser antara dinding dengan tanah (δ) berpengaruh terhadap teori Coulomb dan Mononobe-Okabe, sedang untuk teori Rankine tidak diperhitungkan. Sudut geser antara dinding dengan tanah menyebabkan nilai tekanan aktif semakin kecil dan memperbesar nilai tekanan pasif.
- 4. Semakin besar nilai sudut geser dalam (φ), nilai tekanan tanah aktif semakin kecil, sedangkan untuk tekanan pasifnya semakin bertambah.
 Hal ini berlaku untuk ketiga teori.
- 5. Nilai kohesi (c) dapat memperkecil nilai tekanan aktif dan memperbesar nilai tekanan pasif.

BAB VII

KESIMPULAN DAN SARAN

7.1. Kesimpulan

7.1.1. Dasar – dasar Teori

- Teori Mononobe Okabe dapat digunakan untuk menganalisa permasalahan tekanan tanah lateral akibat pembebanan dinamik (gempa) pada kasus dinding penahan tanah.
- Pada teori Mononobe Okabe tanah diasumsikan dalam keadaan kering, kemudian oleh Westergaard dan Matzuzawa disempurnakan dengan melibatkan keberadaan air.

7.1.2. Dasar – dasar Perhitungan

- Perhitungan tekanan tanah lateral akibat pembebanan dinamik (gempa), menggunakan analisa pseudostatis atau semi statis, yaitu analisa yang menggunakan perhitungan yang menjadikan beban gempa diperlakukan seperti beban statik.
- 2. Pekerjaan dinding penahan tanah untuk gempa tergantung tekanan tanah lateral total (yaitu tekanan tanah lateral statik dan tekanan tanah lateral dinamik). Hal ini juga berlaku pada air, sehingga tekanan lateral air menjadi tekanan lateral air total, yaitu resultan dari tekanan lateral hidrostatik dan tekanan lateral hidrodinamik.

7.1.3. Kestabilan Dinding Penahan Tanah

- 1. Kestabilan dinding penahan tanah ditinjau dari dua tinjauan yaitu kestabilan ekternal dan kestabilan internal, baik untuk beban statik maupun beban dinamik (gempa).
- Stabilitas dinding aman menurut Rankine belum tentu aman menurut Coulomb, begitupula halnya dengan teori Mononobe-Okabe. Hal ini karena adanya pengaruh sudut kemiringan dinding dan sudut gesek antara dinding dengan tanah, serta beban gempa.
- 3. Kehadiran air pada kedua sisi dinding penahan tanah sangat mempengaruhi perilaku dinding ketika gempa. Air pada sisi luar lambung dapat memakai tekanan dinamik untuk menambah tekanan hidrostatik, menekan pada permukaan dinding. Air dalam urugan dapat mempengaruhi gaya inersi yang bekerja pada dinding dan dapat menambah tekanan hidrodinamik atau pertambahan luar biasa tekanan air pori.
- 4. Kebanyakan kerusakan yang telah diteliti pada dinding penahan tanah akibat gempa, terjadi pada daerah yang berhadapan dengan air

No	Parameter	Rankine	Coulomb	Mononobe – Okabe
1.	Sudut i	Semakin besar sudut i maka	Semakin besar sudut i maka	Semakin besar sudut i maka
	(Kemiringan tanah belakang)	semakin besar tekanan aktif	semakin besar tekanan aktif	semakin besar tekanan aktif
2.	Sudut β	Semakin besar sudut β maka	Semakin besar sudut β maka	Semakin besar sudut ß maka
	(Kemiringan dinding belakang)	semakin kecil tekanan aktif	semakin kecil tekanan aktif	semakin kecil tekanan aktif
3.	Sudut δ	Tidak berpengaruh (Karena	Semakin besar sudut δ maka	Semakin besar sudut 8 maka
	(Sudut geser tanah- dinding)	Rankine mengasumsikan	semakin kecil tekanan aktif	semakin kecil tekanan aktif
		bahwa dinding adalah licin)		
4.	Sudut ø	Semakin besar sudut ϕ maka	Semakin besar sudut ϕ maka	Semakin besar sudut ϕ maka
	(sudut geser tanah – tanah)	semakin kecil tekanan aktif	semakin kecil tekanan aktif	semakin kecil tekanan aktif
5.	Kohesi Tanah (c)	Memperkecil nilai tekanan	Memperkecil nilai tekanan	Pada teori ini belum ada
		tanah aktif dan memperbesar	tanah aktif dan memperbesar	pembahasan tentang masalah
		nilai tekanan tanah pasif	nilai tekanan tanah pasif	kohesi ini.
6.	Permukaan Runtuh di belakang	Rata	Rata	Rata
	dinding			
7.	Keberadaan Air	Air pada zona aktif akan	Air pada zona aktif akan	Air pada zona aktif akan
		memperbesar tekanan aktif,	memperbesar tekanan aktif,	memperbesar tekanan aktif,
		sedang pada zona pasif akan	sedang pada zona pasif akan	sedang pada zona pasif akan
		memperbesar tekanan pasif.	memperbesar tekanan pasif.	memperbesar tekanan pasif.
8.	Percepatan Gempa	Tidak berpengaruh	Tidak berpengaruh	Gempa akan menambah
				tekanan baik pada zona aktif
				dan zona pasif
9.	Keseimbangan Tanah	Plastis Penuh	Plastis Penuh	Plastis Penuh
		Tanah dianggap dalam	Tanah dianggap dalam	Tanah dianggap dalam
		keadaan akan runtuh	keadaan akan runtuh	keadaan akan runtuh
10.	Metode Perhitungan	Statis	Statis	Pseudostatik (statis semu)
				yaitu perhitungan yang
				menyederhanakan gaya
				dinamik untuk diserupakan
				dengan gaya statik

	Tabel	7.1.	.Persamaan	dan	Perbedaan	Teori	Rankine.	Coulomb.	. dan	Mononobe - Okabe	:
--	-------	------	------------	-----	-----------	-------	----------	----------	-------	------------------	---

7.2. Saran

- Dalam perencanaan dinding penahan tanah disarankan menggunakan teori Coulomb untuk mencari tekanan tanah lateral aktif agar didapatkan dimensi yang relatif lebih ekonomis. Tapi untuk daerah yang termasuk daerah rawan gempa sebaiknya menggunakan teori Mononobe-Okabe untuk perencanaan, hal ini berkaitan dengan keamanan.
- 2. Dalam perencanaan dinding penahan tanah khususnya *gravity wall*, gaya-gaya penahan yang diperhitungkan harus benar-benar dipertimbangkan, penggunaannya disesuaikan dengan kondisi yang ada hal ini untuk menjaga agar tidak terjadi hal yang tidak diinginkan, seperti terjadinya penggerusan tanah, yang dapat mengurangi nilai tekanan tanah pasif.
- Sudut kemiringan dinding sebelah dalam dapat dibuat lebih besar dari 90° untuk mengurangi besar tekanan tanah aktif.
- Penggunaan teori Mononobe Okabe agar lebih disosialisasikan di Indonesia, termasuk di jurusan Teknik Sipil FTSP-UII karena Indonesia adalah daerah rawan gempa.

DAFTAR PUSTAKA

- Alpan, I. (1967). "The Emperical Evaluation of the Coefficients K_o and K_{or}," Soils and Foundations, Vol.7, No.1, 31.
- Amano, R. Azuma, H., and Ishii, Y. (1956). " A Seismic Design of Quay Walls in Japan," Proceedings, 1st World Conference on Earthquake Engineering, Berkeley, California.
- Brooker, E.W., and Ireland., H.O.(1965),"Earth Pressure at Rest Related to History," Canadian Geotechnical Journal, Vol.2, No.1, 1-15.
- Bowles, JE. (1991), "Analisis dan Desain Pondasi jilid 2," Penerbit Erlangga, Jakarta.
- Coulomb, C. A. (1776). "Essai sur une Application des Regles de Maximis et Minimis a quelques Problemes de Statique, relatifs a l' Architecture," Mem. Roy. Des Sciences, Paris, Vol 3, pp. 38.
- Das, BM., (1993), "Principles of Soil Dynamics," Southern Illionis University at Carbondale.
- 7. Das, B.M. (1994), "Mekanika Tanah jilid 2," Penerbit Erlangga, Jakarta.
- Davies, T. G., Richards, R., and Chen, K. H. (1986). "Passive Pressure During Seismic Loading," Journal of Geotechnical Engineering, ASCE, Vol. 112, No. GT4, pp. 479-484.

- Duke, C. M., and Leeds, D. J. (1963). "Response of Soils, Foundations, and Earth Structures," Bulletin of the Seismological Society of America, Vol. 53, No. 2, pp. 309-357.
- Dunn, LS., Anderson, LR., Kiefer, FW., (1980), "Fundamentals of Geotechnical Analysis", John Wiley & Sons.
- Ellis L. Krinitzsky, James P. Gould, Peter H. Edinger, (1993),
 "Fundamentals of Earthquake Resistant Construction," Wiley Series of Practical Constructions Guides AS.
- Hayashi, S., KUBO, k., AND Nakase, A. (1966). "Damage to Harbour Structures in the Nigata Earthquake," Soil and Foundations, Vol. 6, No.1, pp. 26-32.
- Ishibashi, I., and Fang, Y. S. (1987). "Dynamic Earth Pressures with Different Wall Movement Modes," Soil and Foundations, Vol. 27, No. 4, pp. 11-22.
- Jacobsen, L. S. (1939). Described in Appendikx D of "The Kentucky Project," Technical Report No. 13, Tennessee Valley Authority, 1951.
- 15. Jaky, J.(1944). "The Coefficient of Earth Pressure at Rest," Journal of the Society of Hungarian Architects and Engineers, Vol.7, 355-358.
- 16. Kapila, J.P. (1962). "Earthquake Resistant Design of Retaining Walls,"
 Proceedings, 2nd Earthquake Symposium, University of Roorkee, Roorkee,
 India.

- Matsuo, H., and O'Hara, S. (1960). "Lateral Earth Pressures and Stability of Quay Walls During Earthquakes," Proceedings, 2nd World Conference on Earthquake Engineering, Japan, Vol. 1.
- Mononobe, N. (1929). "Earthquake-Proof Construction of Masonry Dams," Proceedings, World Engineering Conference, Vol. 9, pp. 274-280.
- Mononobe, N., and Matsuo, H. (1929). "On the Determination of Earth Pressures During Earthquakes," Proceedings, World Engineering Conference, Vol. 9, pp. 176-182.
- Nazarian, H. N., and Hadjan, A. H. (1979). "Earthquake-Induced Lateral Soil Pressure on Strustures," Journal of Geotechnical Engineering Division, ASCE, Vol. 105, No. GT9, pp. 1049-1066.
- 21. Nadim, F .(1980) "Tilting and sliding of gravity retaining walls," S.M. Thesis.
 Departement of civil engineering, Massachusets Institute of Technology,
 Cambridge, Massachusets
- 22. Nadim, F .(1982) "A numerical model for evaluation of seismic behavior of gravity retaining walls." Sc.D.thesis, Research Report R82-33, Departement of civil engineering, Massachusets Institute of Technology, Cambridge, Massachusets.
- 23. Nadim,F. and Whitman, R.V.(1984). "Coupled sliding and tilting of gravity retaining walls during earthquakes", Proceedings, 8th World Conference on Earthquake Engineering, San Fransisco, Vol.3, pp.477-484

- 24. Okabe, S. (1926). "General Theory of Earth pressure," Journal of the Japanase Society of Civil Engineers, Vol. 12, No.1.
- 25. Prakash, S., and Basavanna, B. M. (1969). "Earth Pressure Distribution Behind Retaining Wall During Earthquake," Proceedings, 4th World Conference on Earthquake Engineering, Santiago, Chile.
- 26. Richards, R., and Elms, D. G. (1979). "Seismic Behavior of Gravity Retaining Walls," Journal of the Geotechnical Engineering Division, ASCE, Vol. 105, No. GT4, pp.449-464.
- 27. Seed, H. B., and Whitman, R. V. (1970). "Design of Earth Retaining Structures for Dynamic Loads," Proceedings, Specialty Conference on Lateral Stresses in the Ground and Design of Earth Retaining Structures, ASCE, pp. 103-147.
- 28. Sherif, M. A., and Fang, Y. S. (1984a). "Dynamic Earth Pressures on Walls Rotating About the Top," Soils and Foundations, Vol. 24, No. 4, pp. 109-117.
- 29. Sherif, M. A., and Fang, Y. S. (1984b). "Dynamic Earth Pressures on Walls Rotating About the Bottom,"San Fransisco, Vol.6. pp993-1000.
- 30. Sherif, M. A., Ishibashi, I., and Lee, C. D. (1982). "Earth Pressure Against rigid Retaining Walls," Journal of the Geotechnical Engineering Division, ASCE, Vol. 108, No. GT5, pp. 679-696.
- 31. Siddhartan, R., Ara, S., dan Norris, G.M. (1992) "Simple rigid plastic model for seismic tilting of rigid walls," Journal of Sructural Engineering, ASCE, Vol. 118. No.2, pp.469-487

- 32. Steven L. Kramer, 1996, "*Geotechnical Earthquake Engineering*," Prentice Hall, Upper Saddle River, New Jersey.
- 33. Steinbrugge, K.V. And Cloud, W. (1962)."Epicentral intensites and damage in the Hebgen Lake, Montana Earthquake of August 17,1959," Bulletin of the Seismological Society of America, Vol.52. No.2, pp.181-234
- 34. Steedman,R.S. and Zeng, X.(1990)."The seismic response of waterfront retaining walls", Proceeding, ASCE Specialty Conference on Design and Performance of Earth Retaining Structures, Special Technical Publication 25, Cornell University, Ithaca, New York, pp 872-886.
- 35. Vesic, A.S., Banks, D.C., and Woodard, J.M.(1965)."An Experimental Study of Dynamic Bearing Capacity of Footings on Sand," Proceedings, 6th International Conference on Soil Mechanics and Foundation Engineeering, Montreal, Canada, Vol II, pp.209-213.
- Wetergaard, H. M. (1933). "Water Pressures on Dams During Eartquakes," Transections, ASCE, Vol. 98, pp. 418-433.
- 37. Whitman, R.V.(1990) "Seismic design behaviour of gravity retaining walls",Geotechnical Specialty Publication 25, ASCE, New York, pp. 817-842.
- 38. Widodo(1997) "Teknik Gempa", Diktat Kuliah Jurusan Teknik Sipil, Fakultas Teknik Sipil dan Perencanaan, Universitas Islam Indonesia, Yogyakarta.
- 39. Zarrabi-Kashani,K.(1979). "Sliding of gravity retaining wall during earthquakes considering vertical accelerations and changing inclination of

÷ GRAIN SIZE ANALYSIS ect : U.M.Y Depth : 0.60 - 1.50 m tion : Taman Tirto, Yogyakarta Date <u>:</u> . : BH-8 (SND-21) Made by : Ris 2.79 cific Gravity cription of soil Sand Fines Gravel Coarse to medium Fine U.S. standard sieve sizes Na.200 -No.100 = Mechanical analysis -- No.40 4 20 Ξ. -No.10 - No. -314 2 = Hydrometer analysis C 100 90 80 70 Percent Finer, % 60 50 40 30 20 10 0 10 ۱ 0.1 0.01 0.001 Grain Diameter, mm Finer # 200 ' .= 5.45 % Gravel = 1.15 % Sand 93.40 % Ξ Silt/Clay = 5.45 % D_{10} D₃₀ D_{60} $C_0 = D_{60}/D_{10} - C_c = (D_{30})^2 / (D_{10} \times D_{10})$ 0.09 0.19 0.48 5.33 0.84 SOIL MECHANICS LABORATORY - CIVIL ENGINEERING DEPT - GADJAH MADA UNIVERSITY

2:5

SOIL MECHANICS LABORATORY - CIVIL ENGINEERING DEPARTMENT - GADJAH MADA UNIVERSITY - YOGYAKARTA

•

. gig

:ada

Mada by

Checked by

SUMMARY OF LABORATORY TEST RESULTS

Project UMY

Location : Taman Tirto, Yogyakarta

	Death	Pulk deo	Doy den	Moisture	Specific	Liquid	Plastic	Plastici	 Liquidi	Shrinkage	Void	Degree of	Finer	Coe	f. of Gr	adation		Strer	gth F	Parameters"
Test Point	Depth		sity" o	content	Gravity:	Limit	Limit	ty Index	ty Index	Limit	Ratio	Saturation	≵ 200	Ce	Cu	Symb	ol	ų	-	с
na l	m	gicm ³	g/cm ³	\¥;,. %	G,	LL, %	PL, %	21, %	LI	SL, %	е	S,, %	%,					q 		kg/cm ⁴
					0.70			Don class	1 1		n 71	61.63	5.45	0.84	5.33	SW/S	M	33.	31	0.00
8H-8 (SND-21)	0.60 - 1.50	1.89	1.63	15,61	2.79			1.011 pias												0.00
BH-8 (SND-21)	1.50 - 3.60	1.97	1.70	16.21	2.80	ł		non plas	tic		Ũ.65	69.64	8.41	0.82	5.50	SW/S	M	37	60	
8H-9 (SND-23)	2.20 - 4.00	1.93	1.71	12.81	2.83		· • · · ·	non plas	lic		0.65	55.42	4,17	1.12	4.16	SF		37	23	0.00
RH Q (SND-23)	4 00 - 4.80	1.97	1.66	18.67	2.80	· ·		non plas	tia		0.69	76.13	1.16	0.85	3,47	SF		38	66	0.00
01 10 (SND-26)	1 00 - 2 00	1.94	1,63	19.82	2.88			non plas	tic		0.76	70.95	3.37	0.99	5.71	SP		38	.31	0.00
		1.80	1.42	27.04	2.78			non plas	tic		0.95	78.14	48.55	-	-	SN		38	.31	0.00
BH-10 (SND-20)	3,00 - 4,00	1.00	1 59	10.67	275				tic		0.73	73.89	18.14 -		-	SN		37	.95	0.00
(18H-11 (SND-27)	0,50 - 1.00	1.80	1.42	10.07	202			oco elas	tic .		0.73	75.92	5.08	1.02	2.47	SW/	 SM	-37	.95	0.00
BH-11 (SND-27)	1.00 - 3.00	1.95	1.53	19.57	2.62		•		·								~ - ·		 25	0.00
BH-12 (SND-31)	1.50 - 2.60	2.02	1.77	14,35	2.85			non plas	tic		0.61	65.71	4.58	0.96	2.30	:		- 41		0.00
BH-12 (SND-31)	3.20 - 4.00	1.81	1.60	12.86	2.81			nen plas	tio 	,	0.75	48.05	64,53	-	-	ML		41	.99	0.00

NOTE: * = direct shear test

 $\overline{\infty}$

ā