
Travel Itinerary Planning using Traveling

Salesman Problem, K-Means Clustering, and

Multithreading Approach

Muhammad Yasin, Sheila Nurul Huda, Septia Rani
Department of Informatics, Universitas Islam Indonesia

Yogyakarta, Indonesia

16523089@students.uii.ac.id, sheila@uii.ac.id, septia.rani@uii.ac.id

Abstract

This paper we proposed an algorithm for arranging travel

itinerary using various approaches such as, traveling salesman

problem with genetic algorithm, k-means clustering, and

multithreading. The algorithm will be applied to develop a web based

application which capable of making itinerary planning

recommendation. This paper mainly focusing on how the proposed

algorithm able to optimize the application in terms of computational

proccessing time for the sake of efficiency. To make the itinerary

recommendation, travelers must fill the input requirements such as

number of days for vacation and list of destionations which they

whish to visit. The destinations will first be clustered. Then find the

TSP solution for the best route for each cluster. This TSP solution

will be the itinerary recommendation.

Keywords— traveling salesman problem; Travel itinerary; k-

means clustering; multithreading; genetic algorithm

I. INTRODUCTION

Travel itinerary can be determined as travel plans of tourists
activity, which includes a detailed description of the attractions
and activities of the destination visited, as well as the duration
and specification of time and services provided [8]. The
proccess of making travel plans becomes the next challengeing
problem to be solved [1].

In real world situation some constrainsts of travel itinerary
planning problem are unable to completely predifined [6].
However, we found that there are some constraints which can
be defined such as, distance and time. By using these
constraints we can provide optimal itinerary recommendation,
assuming that the travelers have specified all the travel
destinations they want to visit and how many days they will stay
in the region.

The application needs to solve two sub-problems. These
problems include grouping the travel destinations which
travelers whish to visit for each day and create the travel route
by arranging the destinations in a specific order so that it will
have the least cost of travel distance.

Traveling Salesman Problem can be stated as if a salesman
wishes to visit list of cities once for each city and then return to
the home city, what is the route which has the least cost?[2]. In
this study, a salesman can be interpreted as travelers and the
visited list of cities are travel destinations.

In this study, we also apply paralel programing technique to
maximize the application performance. The technique is simply
running the application in multiple threads so that the minimum
application proccessing time can be acquired. This technique is
called multithreading.

II. PRELIMINARIES

A. Travelling Salesman Problem (TSP)

TSP is a well known problem in graph theory and
combinatorics[1]. Mathematical problems related to TSP were
discussed by the British mathematician Thomas Penyngton
Kirkman and by the Irish mathematician Sir William Rowan
Hamilton and in the 1800s [3]. In popular languages, traveling
salesman problem can be described as a problem to find the
least cost of travel distance in n cities, starting and ending in the
same city and travel each city exactly once [4]. Many
approaches and algorithms has been proposed to solve TSP
such as Heuristic Algorithms, Mateheuristic Algorithms,
Approximate Algorithms, and Exact Algorithms. The issue of
TSP that processes no more than 20 cities can be solved
optimally using the Exact method. The method which can
provide reasonably high quality TSP solutions by processing
large numbers of cities is the heuristic method [5].

B. Genetic Algorithm

Genetic algorithm as part of heuristic methode is an

algorithm based on genetic proccess from within organism, that

is the proccess of generation development within population,

follows natural selection principle. This refer to evolution

theory where the strongest one will survive. By imitating this

evolution theory, genetic algorithm can be used to solve real

world problems. This algorithm works with populations

containing set of individuals or chromosomes. Each individual

represents posible solution from existing problem. Also each

individual has fitness value which will be used to find the best

solution. For TSP, individual or chromosome can be interpreted

as the route or set of cities. Each chromosome has fitness

function where the shorter the distance the greater the fitness

value. Based on the fitness value, chromosome will be selected

then do crossover and mutation to create the next generation.

This proccess will be repeated until the solution is found.

In this study, we use genetic algorithm as a heuristic

approach to solve traveling salesman problem in order to

mailto:m.yasin449@gmail.com
mailto:sheila@uii.ac.id

maximize the program efficiency. The proccess of genetic
algorithm includes:

1. Create the population.

In this case, the population can be defined as a
collection of posible route. A single route is
interpreted as the chromosome which contains list
of travel destinations, and each destination is
called genes. Each chromosome will have fitness
value

2. Determine Fitness.

After creating the population, we will determine
the fitness for each chromosome. In traveling
salesman problem fitness value can be interpreted
as distance where the shorter the distance the
greater the fitness value.

3. Select the parents that will be used to create next
generations

Parent is selected based on their fitness value.
There are several method for how to select the
parents. The most common are roulette wheel
selection and tournament selection. For this study
we use roullete wheel selection.

4. Crosover

For TSP we use ordered crossover. In ordered
crossover we select a subset of the first parent by
random, then fill the rest of the route with the genes
from the second parent.

5. Mutation

Mutation can be defined as random changes to
maintain the genetic diversity from within
population, which usually applied in specified low
probability. For TSP we use swap mutation. It
means that the destinations or the genes within the
chromosome will be swaped.

6. Repeat the proccess for the specified number of
generations

C. K-Means

K-means is a simple clusterring method to cluster data set

into k groups based on their smilarity. K-means assign each

member of cluster by calculating the Euclidean distance. The

goal of k-means is to minimize sum of square of distance

between all data points with the center of each cluster. The

proccess of k-means includes:
1. Specify the number of cluster k.

2. Initialize centroids by randomly selecting k data
points from the dataset

3. Calculate the euclidean distance between all data
points and all centroids, then assign each data
point to the nearest cluster

4. Update centroids by calculating the means of all
data points that belong to each cluster

5. Iterate until there are no more changes to the
centroids

The advantage of using k-means is that it provides a simple,
easy to use, and fast algorithm. For this study to avoid empty
cluster or clusters having very few data points we use
constrained k-means[7]. The algorithm is done by adding
constraint to the clustering optimization problem requiring each
cluster contains specified number of data points[7].

 Constrained K-Means is an algorithm which basically
consists of regular k-means that allows to execute k-means with
defined minimum number of points belonging to given cluster.
However, instead to just using clusters with smallest distance
between data points to centers, the cluster assignment is done
by solving Minimum Cost Flow problem. The data point are
nodes with unitary supplies of flow, the centers are nodes with
defined flow demands, one additional node contains demand
balancing the global sum of supply and demands to zero. The
data nodes are connected to center nodes with edge costs
corresponding to Euclidean distances from data points to cluster
centers. The center nodes are connected to the balance node
with zero cost.

D. Multithreading

Multithreading is the ability of computer or central

proccessing unit (CPU) to run application in multiple threads

concurrently. In this study, we utilize multithreading to reduce

the application proccessing time so that it can be more efficient.

This technique is implemented in the developed application by

simply create multiple threads with the same number of cluster,

then run the program in each thread. More detailed explanation

about how multithreading is implemented discused in section 3

of the paper.

III. METHODOLOGY

For this study we choose Yogyakarta Province as an
example to demonstrate how the developed application with the
proposed algorithm make travel itinerary recommendation.

There are some input requirements in the application which
are number of days for vacation and the destinations the
travelers want to visit. The destination can be filled with the
address where the travelers want to visit.

The application consist of two main modules, which are
clustering module using k-means and finding TSP solution
using genetic algorithm. Some proccesses that need to be done
by the application are accessing the travel destinations that the
travelers want to visit, making travel itinerary recomendaton,
and displaying the itinerary result. The system model is
presented in Figure 1.

Figure 1. System Flowchart

Figure 1 explain the work flow of the application. The
proccess begins by inputing the number of days and travel
destinations. Then the system will make itinerary
recommendation based on the inputed data. After that it will
display the result. To be more specific figure 2 will explain the
proccess of making the itinerary recommendation.

Figure 2. Detail proccess of making itinerary

Figure 2 explain the detail proccess of making itinerary.
Start by clustering the travel destinations using k-means, where
the number of days is used as k number of cluster. Next is
creating threads where the number of threads is equal to the
number of clusters. Each thread will run the genetic algorithm
containing list of destinations from each cluster. After that,
finding the TSP solution for the best route using genetic
algorithm. Then select the fittest chromosome which has the
least travel distance. The distance is calculated by using Google
Maps Distance Matrix API. This chromosome can be ilustrated
as the travel route which contains travel destinations. The fittest
chromosome or route considered as the itinerary
recommendation.

The proccess of making itinerary recommendation will also
be executed with multithreading technique. The application will
run in multiple threads. To implement this technique first we
need to create the threads, to create threads we need to
determine the number of threads. In this scenario, the number
of threads is equal to the number of cluster. Then we execute
the genetic algorithm function which will solve the TSP
solution in each thread. For example if the number of cluster is
2 then we create two threads and execute the genetic algorithm
in thread 1 and thread 2. Thread 1 run the algorithm which
consists travel destinations from cluster 1 and thread 2 run the
algorithm which consists travel destinations from cluster 2. The

example of the multithreading implementation can be seen in
Figure 3.

Figure 3. Multithreading Implementation

IV. RESULTS

The developed application consists two pages, first page is

used to get the input from user and the second page is used for

displaying the itinerary result. In the first page user can specify

the number of days of vacation and desired tavel destinations.

Since the application is on development phase it still performs

in very simple interface. Figure 4 shows the example of

implementation in the first page.

Figure 4. First Page

As we can see from figure 4, user inputs 2 days as the number

of vacation days, and inputs hotel ambarukmo as the origin

location, also istana ratu boko, kraton yogyakarta, gembira loka

zoo, malioboro yogyakarta, jogja bay waterpark, candi

prambanan, alun alun kidul yogyakarta, sindu kusuma edupark,

and benteng vredeburg as travel destinations by filling the form

field. After user submit the form the application will proccess

the data using the proposed algorithm as described in section 3

of this paper. The itinerary result can be seen in Figure 5 and

Figure 6.

Figure 5. Route of day-1

Figure 6. Route of day-2

On the first day user gets recommendation of 4 travel

destinations to visit, from hotel ambarukmo we go to gembira

loka zoo then to jogja bay waterpark, then we go to candi

prambanan. while on the second day user gets 5 travel

destinations, from hotel ambarukmo we go to alun alun kidul

yogyakarta, then to kraton yogyakarta, then to benteng

vredeburg, then to malioboro yogyakarta, last go to sindu

kusuma edupark. By using constrained k-means with k number

of cluster is 2 which it equal to the number of days, we get the

silhouette score 0.49425. However, if we use regular k-means,

the silhouette score is 0.63952. The total route distance in day-

1 is 33 KM, and in day-2 is 14 KM. Since in this study, we use

heuristic approach instead of exact calculation, the result may

not be exactly the best route. However, it still provide the

reasonable result.

Since we use genetic algorithm to solve TSP or in this case,

finding the best route for itinerary recommendation, we run the

algorithm with 50 population size and 50 generations. For small

batch of TSP, using graph theory or brute force method may be

more efficient. However, for large batch of TSP, this method is

no longer considered as efficient, since the number of

permutation will be very large. The implementation of genetic

algorithm can be the reasonable method.

For experiment, we will analyze the application proccessing

time. There are two type of experiments, first we run the

program without multithreading and second we use

multithreading. The multithreading is implemented by creating

threads with the same number of cluster then run the specific

function that solve TSP by finding the best route or in this case,

the genetic algorithm function in each thread. For each scenario

we run the program 5 times then calculate the mean value of the

proccessing time. Even though the input data is the same, the

proccessing time may vary due to the some factors such as,

internet connection since we use Google Maps API, computer

memory, and also proccessor speed. The result is presented in

Table 1.

Table 1. Result without multithreading

No. Days Destinations Mean of Proccessing

Time (seconds)

1. 2 5 2.3736

2. 2 6 2.4424

3 2 7 2.6907

4. 2 8 2.7698

5. 2 10 3.1313

6. 2 12 3.3960

7. 2 15 3.6029

8. 2 20 4.0027

9. 3 6 2.4245

10. 3 7 2.5872

11. 3 8 2.8919

12. 3 10 3.3385

13. 3 12 3.5142

14. 3 15 3.6633

15 3 20 4.5537

Table 2. Result with multithreading

No. Days Destinations Mean of Proccessing

Time (seconds)

1. 2 5 2.0238

2. 2 6 2.1779

3 2 7 2.2835

4. 2 8 2.4687

5. 2 10 2.8557

6 2 12 2.8358

7. 2 15 3.1969

8. 2 20 3.9768

9. 3 6 2.5183

10. 3 7 2.5811

11. 3 8 2.6498

12. 3 10 3.0491

13. 3 12 3.3950

14. 3 15 3.6448

15. 3 20 4.2451

From this result we can see that with large number of

destinations the program can run with reasonable amount of

processing time. If we compare the result from table 1 to[1], our

algorithm can be considered more efficient in terms of

proccessing time. Although, for small number of destinations

the proccessing time from[1] is slightly shorter, the diffrence is

not very big. However, for the large number of destinations, at

12 destinations with 3 number of days for example, our

algorithm is almost 53% faster. While in table 2, by

implementing multithreading the processing time is sligthly

increases. If we see from the result of table 2, multithreading

implementation help minimize the program proccessing time.

However, when the number of days and destinations increases,

interestingly there are no much difference between table 1 and

table 2. Even once it gets longer at 6 destinations with 3 number

of days.

V. CONCLUSION AND FUTURE WORK

In this paper, we use k-means, traveling salesman problem,

and multithreading approach to develop travel itinerary

planning application. The application can help travellers to plan

their vacation automatically. The use of genetic algorithm can

singnificantly reduce the applications proccessing time.

However, the algorithm can only be efficient with large batch

of TSP, while in real world situation travellers usually don’t

visit many locations. On the other hand the implementation of

multithreading slightly helps minimize the program processing

time. As we can see from the result the difference is not very

significant. For future work perhaps we should expand the

multithreading approach to even paralel clustering.

VI. REFERENCES

[1] S. Rani, K. Kholidah and S. N. Huda, "A development of

travel itinerary planning application using traveling

salesman problem and k-means clustering approach,"

Proceedings of the 2018 7th International Conference on

Software and Computer Applications, pp. 327-331, 2018.

[2] K. L. Hoffman, M. Padberg and G. Rinaldi, "Traveling

Salesman Problem," Encyclopedia of operations research

and management science.

[3] W. Cook, "History of the TSP," January 2007. [Online].

Available:

http://www.math.uwaterloo.ca/tsp/history/index.html.

[Accessed 11 November 2019].

[4] C. Rego, D. Gamboa, F. Glover and C. Osterman,

"Traveling salesman problem heuristics: Leading methods,

implementations and latest advances," European Journal of

Operational Research, 211(3), pp. 427-441, 2011.

[5] U. Nuriyev, O. Ugurlu and F. Nuriyeva, "Self-Organizing

Iterative Algorithm for Travelling Salesman Problem,"

IFAC-PapersOnLine, 51(30), pp. 268-270, 2018.

[6] J.-S. Chen and F.-C. Hsu, "Interactive Genetic algorithms

for a Travel Itenerary," TSP 1, p. 13, 2000.

[7] P. S. Bradley, K. P. Bennet and A. Demiriz, "Constrained

K-means Clustering," Microsoft Reasearch, Redmond, vol.

20, 2000.

[8] A. A. da Silva, R. Morabito and V. Pureza, "Optimization

approaches to support the planning and analysis of travel

itineraries," Expert Systems with Applications, 112, pp.

321-320, 2018.

