BAB V

HASIL PENELITIAN DAN PEMBAHASAN

5.1. Umum

Pada bab ini akan dijelaskan hasil penilitaian yang sudah dilakukan di Laboratorium Bahan Kontruksi Teknik (BKT) Universitas Islam Indonesia. Hasil yang diperoleh dari penelitian ini yaitu berupa data material yang meliputi berat jenis dan penyerapan air agregat halus, modulus halus butiran agregat halus, kandungan lumpur dalam pasir, berat isi gembur dan padat agregat halus, serta hasil pengujian kuat tekan dan kuat tarik beton ringan. Bahan tambah yang digunakan silica fume tidak dilakukan pengujian, karena silica fume yang digunakan sudah melalui quality control dari pabrik. Sedangkan untuk bahan tambah serat bambu yang digunakan sudah berupa serat serat tipis.

Selain itu, pada bab ini juga akan diuraikan pembahasan tentang hasil pengujian yang didapat. Pengujian kuat tekan dilakukan menggunakan mesin uji tekan (*Compressive Testing Machine*) tipe ADR dengan kapasitas 3000 KN.

5.2. Pengujian Agregat Halus

Agregat halus berupa pasir merupakan salah satu material yang memilikan pernan penting dalam penyusunan beton dan dapat mempengaruhi kekuatan beton yang dihasilkan. Agregat halus yang digunakan pada penelitian ini merupakan pasir alami yang berasal dari merapi. Sebelum melakukan *Mix design*, maka perlu dilakukan pemeriksaan material agregat halus agar dapat diketahui karakteristiknya.

5.2.1. Pemeriksaan Berat Jenis Agregat

Setelah dilakukan penelitian, didapat data berat jenis agregat halus seperti pada Tabel 5.1 berikut ini.

Tabel 5.1 Berat Jenis Dan Penyerapan Air Agregat Halus

	Hasil Pengamatan			
Uraian	Sampel	Sampel	Rata-	
	1	2	rata	
Berat pasir kering mutlak, gram (Bk)	465,8	482,7	474,25	
Berat pasir kondisi jenuh kering muka (SSD),				
gram	500	500	500	
Berat piknometer berisi pasir dan air, gram (Bt)	1041	1051,5	1046,25	
Berat piknometer berisi air, gram (B)	750	750	750	
Berat jenis curah (Bk/(B+500-Bt))	2,229	2,432	2,330	
Berat jenis kering muka (500/(B +500- Bt))	2,392	2,519	2,456	
Berat jenis semu, Bk/(B +Bk- Bt)	2,665	2,664	2,664	
Penyerapan air, (500 - Bk)/Bk x 100%)	0,073	0,036	0,055	

Dari hasil pengujian agregat halus di atas didapat nilai berat jenis kering muka sebesar 2,456. Jadi agregat halus yang digunakan diklasifikasikan sebagai agregat normal berat jenis sekitar 2,5 – 2,7. Sehingga dari hasil penelitian agregat yang digunakan sudah memenuhi kriteria dan dapat digunakan dalam pembuatan beton. Dalam Tabel 5.1 dapat dilihat bahwa benda uji agregat halus mempunyai penyerapan air rata-rata sebesar 5,5%.

5.2.2. Uji Kandungan Lumpur Agregat Halus

Hasil yang didapat dari pengujian kandungan lumpur pada agregat halus yang dilakukan dengan memeriksa butiran yang lolos saringan No.200, dapat dilihat pada Tabel 5.2.

Tabel 5.2 Kandungan Lumpur Agregat Halus

Urajan	Hasil Pengamatan		
Glaiair	Sampel 1	Sampel 2	
Berat agregat kering oven (W1), gram	500	500	
Berat agregat kering oven setelah dicuci (W2),			
gram	478,4	479,4	
Persentase yang lolos ayakan no 200, [(W1-W2)/W1]x100%	4,32 %	4,12 %	
Kadar lumpur rata-rata %	4,22 %		

Dari Tabel 5.2 diatas hasil pengujian kadar lumpur diperoleh presentase kandungan lumpur rata-rata sebesar 4,22%. Menurut persyaratan umum bahan bangunan di indonesia1982 (PUBI 1982) pasir yang bisa digunakan untuk bahan bangunan jika kandungan lumpur tidak lebih dari 5% sehingga pasir yang digunakan bisa langsung di pakai dan tidak perlu dicuci sebelum pengadukan.

5.2.3. Modulus Halus Butiran Agregat Halus

Pengujian modulus halus butir sebagai pegangan dalam pengujian untuk menentukan pembagian butir (gradasi) agregat halus dengan menggunakan saringan.hasil pengujian modulus halus butir dapat dilihat pada Tabel 5.3.

				7.4
Lubang Ayakan (mm)	Berat Tertinggal (gram)	Berat Tertinggal (%)	Berat Tertinggal Kumulatif (%)	Persen Lolos Kumulatif (%)
4,80	13,6	0,68	0,68	99,32
2,40	133,8	6,71	7,39	92,61
1,20	257,5	12,91	20,30	79,70
0,60	428,8	21,50	41,80	58,20
0,30	568	28,48	70,29	29,71
0,15	424	21,26	91,55	8,45
Sisa	168,6	8,45	100	0
Jumlah	1994,3	100	232,01	-

Tabel 5.3 Modulus Halus Butir Agregat Halus

Berdasarkan Tabel 5.3, maka hasil perhitungan modulus halus butir (MHB) dapat diliat sebagai berikut.

MHB =
$$\frac{\Sigma \text{ persen berat tertinggal kumulatif}}{100}$$

$$= \frac{232,01}{100}$$

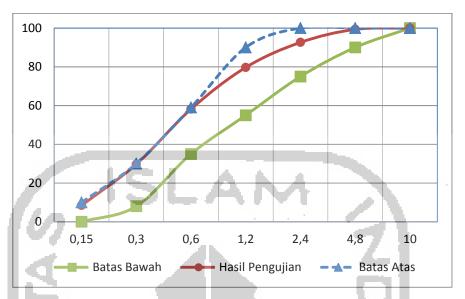
$$= 2,32$$

Dari hasil pengujian MHB didapat nilai sebesar 2,32 %. Angka tersebut masih dalam batas yang diizinkan yaitu 1,5% - 3,8% (SK SNI S-04-1989-F). Pasir yang digunakan cukup baik dan memenuhi persyaratan yang telah di tentukan SNI.

Hasil pengujian yang dilakukan bertujuan untuk menentukan daerah gradasi pada agregat halus. Penentuan gradasi agregat halus berdasarkan pada persentase agregat yang lolos ayakan dapat dilihat pada Tabel 5.4.

Tabel 5.4 Gradasi Pasir

No	Lubang	persen bahan butiran yang lewat ayakan					
Ayakan	Ayakan (mm)	Daerah I	Daerah II	Daerah III	Daerah IV		
4	4,8	90 – 100	90 - 100	90 -100	95 -100		
8	2,4	60 – 95	75 - 100	85 - 100	95 -100		
16	1,2	30 - 70	55 -90	75 -100	90 -100		
30	0,6	15 – 34	35 - 59	60 -79	80 -100		
50	0,3	05 - 20	08 - 30	12 - 40	15 -50		
100	0,15	0 – 10	0 -10	0 - 10	0 - 15		


Sumber: Badan Standarisasi Nasional (2000)

Berdasarkan Tabel 5.4, gradasi yang dihasilkan dari pengujian MHB agregat halus berada dalam persyaratan yang telah ditentukan, gradasi tersebut berada pada daerah II dengan jenis gradasi pasir agak kasar. Spesifikasi dan grafik gradasi agregat halus disajikan pada Tabel 5.5 dan Gambar 5.1.

Tabel 5.5 Spesifikasi Gradasi Pasir Daerah II

Lubang		Persen Lolos Kumulatif					
	Ayakan	Batas	Hasil	Batas			
Ġ	(mm)	Atas	Pengujian	Bawah			
i	0,15	10	8,454	0			
	0,3	30	29,715	8			
	0,6	59	58,196	35			
	1,2	.90	79,697	55			
	2,4	100_	92,609	75			
1	4,8_	100	99,318	90			
	10	100	100,000	100			

Berdasarkan Tabel 5.5 gradasi pasir yang dihasilkan dari pengujian MHB agregat halus berada dalam batas yang disyaratkan, gradasi tersebut berada pada gradasi daerah II dengan jenis gradasi pasir agak kasar, dan grafik hubungan antara persentase lolos kumulatif dengan nomer lubang ayakan dan dapat dilihat pada Gambar 5.1.

Gambar 5.1 Grafik Gradasi Agregat Halus

5.3. Perencanaan Campuran Beton

Dari data material yang diperoleh kemudian dilakukan perencanaan campuran beton (*mix design*) menggunakan SNI 03-2834-2000 ditambah dengan metode Taguchi. Berikut adalah langkah – langkah perhitungannya.

- 1. Kuat tekan (f'c) yang disyaratkan 15 Mpa
- 2. Nilai deviasi standar (sd)

Dikarenakan belum mempunyai pengalaman sebelumnya makan nilai deviasi standar yang digunakan adalah sebesar 7 Mpa.

3. Nilai tambah (M)

Nilai tambah dihitung menggunakan rumus:

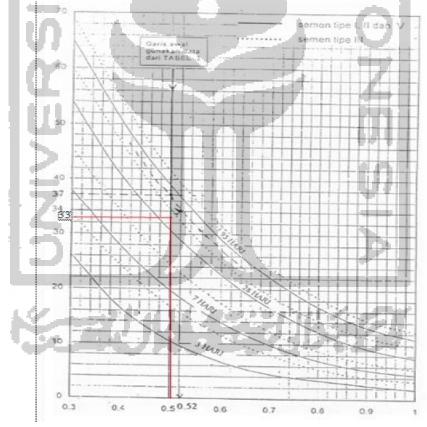
$$M = 1,64 \times Sd$$

Dimana:

M = nilai tambah

1,64 = tetapan statistik yang nilainya tergantung pada presentase kegagalan sebesar maksimum 5%.

Sd = standar deviasi rencana


 $M = 1,64 \times 7 = 11,48$ Mpa dibulatkan menjadi 12 Mpa

4. Kuat beton rata – rata yang ditargetkan.

Kuat beton rata – rata dapat dihitung menggunakan rumus:

$$f'cr = f'c + M$$

- = 15 + 12
- = 27 MPa
- 5. Jenis semen yang digunakan adalah semen portlan merk 3 roda
- Jenis agregat yang digunakan adalah agregat halus berupa pasir alami dari Merapi.
- 7. Menentukan Faktor Air Semen (FAS)
 - a. Jenis semen tipe 1, jenis agregat batu tak dipecahkan benda uji silinder kuat tekan padda umur 28 hari adalah 33 MPa.
 - b. Tarik garis pada kuat tekan 33 MPa sampai menyentuh garis tepat tegak lurus pada fas 0,5. Tarik garis perpotongan berbentuk melengkung menyentuh garis tekan 33 MPa dan nilai fas 0,5, lihat Gambar 5.2

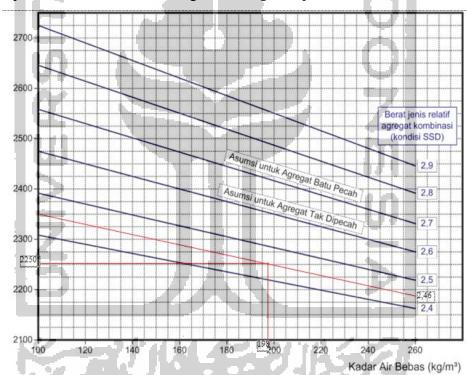
Gambar 5.2 Penentuan Faktor Air Semen

8. Kebutuhan Air

Kebutuhan air yang diperlukan dalam adukan beton berdasarkan nilai *slump* yang ditentukan adalah 75 – 100 mm dan ukuran agregat maksimum yang

digunakan adalah 20 mm dalam kondisi beton bergelembung udara. Maka dari Tabel 3.7 nilai kebutuhan air adala 198 liter per-m³.

9. Kadar Semen


Jumlah semen per-m³ beton ringan =
$$\frac{\text{Kadar air bebas}}{\text{fas}}$$

$$= \frac{198}{0.5}$$

$$= 396 \text{ kg/m}^3$$

10. Berat Isi Beton Ringan

Dengan kadar air bebas 198 kg/m³ dan berat jenis agregat 2,46 maka perkiraan berat isi beton ringan sesuai grafik pada Gambar 5.3.

Dari Gambar 5.3 diperoleh nilai berat isi beton ringan basah sebesar 2250 kg/m³.

11. Berat agregat

Berat agregat = berat isi beton ringan – kadar semen – kadar air bebas =
$$2250 - 396 - 198$$
 = 1656 kg/m^3

12. Volume Silinder

Volume silinder =
$$\frac{1}{4} \times \pi \times D^2 \times t$$

= $\frac{1}{4} \times \pi \times 150^2 \times 300$
= 5301437,603 mm³
= 0,0053015 m³

Selanjutnya rekapitulasi perencanaan campuran beton dapat dilihat pada Tabel 5.6 berikut ini.

Tabel 5.6 Rekapitulasi Perencanaan Campuran Beton

No	Uraian	Nilai	Satuan
1	kuat tekan rencana (f'c)	15	MPa
2	Deviasi Standar	7	7.1
3	Nilai Tambah	12	,
4	Kuat Tekan Rata - rata (f'cr)	27	MPa
5	Jenis Semen	Tipe 1	
6	Jenis Agregat Halus	Alami	
7	Faktor Air Semen	0,5	
8	Slump	75-100	mm
9	Ukuran Agregat Maksimum	20	mm
10	Kadar Air	198	kg
11	Kadar Semen	396	kg
12	Susunan Besar Butir Agregat Halus	Gradasi II	
13	Berat Jenis Agregat Halus	2,46	
14	Berat isi Beton	2225	kg/m ³
15	Berat Agregat	1631	kg/m ³
16	Volume Silinder	0,0053	m^3

Kemudian untuk rekapan kebutuhan material setiap benda uji serta kebutuhan material untuk 1 kali adukan dengan menggunakan metode Taguchi dapat dilihat pada Tabel 5.7, dimana hasil tersebut di dapat dari pengkombinasian antara Tabel 4.3 Rincian Data *Matriks Ortogonal* dengan hasil *Mix Design*. Pada Tabel 5.8 adalah tabel untuk kebutuhan 6 benda uji.

Tabel 5.7 Kebutuhan Material Untuk 1 Benda Uji

Kode	Material							
Benda Uji	Air (kg)	Pasir (kg)	Foam (kg)	Serat Bambu (kg)	Silica fume (kg)	Semen (kg)		
BRS 1	0,76	6,32	2,54	0,025	0,25	2,27		
BRS 2	0,76	6,32	2,54	0,050	0,38	2,14		
BRS 3	0,76	7,90	3,82	0,025	0,25	2,27		
BRS 4	0,76	7,90	3,82	0,050	0,38	2,14		
BRS 5	0,94	6,32	3,82	0,050	0,38	2,14		
BRS 6	0,94	6,32	3,82	0,025	0,25	2,27		
BRS 7	0,94	7,90	2,54	0,050	0,38	2,14		
BRS 8	0,94	7,90	2,54	0,025	0,25	2,27		

Tabel 5.8 Kebutuhan Material Untuk 6 Benda Uji

7 1 6			aterial	\wedge		
Kode Jumlah Benda Benda Uji Uji	Air (kg)	Pasir (kg)	Foam (kg)	Serat Bambu (kg)	Silica fume (kg)	Semen (kg)
BRS 1 6	4,53	37,93	15,27	0,1512	1,51	13,60
BRS 2 6	4,53	37,93	15,27	0,3023	2,27	12,85
BRS 3 6	4,53	47,41	22,90	0,1512	1,51	13,60
BRS 4 6	4,53	47,41	22,90	0,3023	2,27	12,85
BRS 5 6	5,67	37,93	22,90	0,3023	2,27	12,85
BRS 6 6	5,67	37,93	22,90	0,1512	1,51	13,60
BRS 7 6	5,67	47,41	15,27	0,3023	2,27	12,85
BRS 8 6	5,67	47,41	15,27	0,1512	1,51	13,60

5.4. Pengujian Beton Ringan

5.4.1. Pengujian Slump

Pengujian *slump* merupakan parameter yang digunakan untuk mengukur tingkan kelecakan adukan beton yaitu kecairan atau kepaatan adukan dalam pengerjaan beton. Hal ini berkaitan dengan tingkat kemudahan dalam pengerjaan beton (*workability*). Workability pada beton berhubungan dengan kerapatan campuran beton, kelekatan adukan pasta semen, kemampuan air beton segar, serta kemampuan beton dalam mempertahankan kerataan. Semakin tinggi nilai *slump*

maka semakin cair adukan beton tersebut sehingga adukan beton akan semakin mudah dikerjakan.

Hasil pengujian *slump* pada adukan beton dapat dilihat pada Tabel 5.9 dan Gambar 5.9 Berikut.

Tabel 5.9 Nilai Slump

Kode Benda Uji	Nilai Slump Rata - rata (mm)
BRS 1	102
BRS 2	104
BRS 3	95
BRS 4	97
BRS 5	68
BRS 6	76
BRS 7	97
BRS 8	83

5.4.2. Pemeriksaan Berat Volume Beton Ringan

Hasil Pemeriksaan berat isi beton ringan dapat dilihat pada Tabel dibawah ini.

Tabel 5.10 Hasil Pemeriksaan Berat Volume Beton Ringan (Mix design 1)

	Kode Benda Uji	Berat Beton (kg)	Diameter (mm)	Tinggi (mm)	Volume (m³)	Berat Volume (kg/m³)
	BRS 1 - 1	8,4	150,7	295,7	0,0053	1592,618
	BRS 1 - 2	9,4	150,3	304,6	0,0054	1739,363
ı	BRS 1 - 3	8,8	149,5	299,2	0,0053	1675,517
Į	BRS 1 - 4	9,6	150,8	304,5	0,0054	1765,190
	BRS 1 - 5	8,6	150,9	304	0,0054	1581,818
	BRS 1 - 6	9,2	150,1	298,6	0,0053	1741,192

Tabel 5.11 Hasil Pemeriksaan Berat Volume Beton Ringan (Mix design 2)

Kode Benda Uji	Berat Beton (kg)	Diameter (mm)	Tinggi (mm)	Volume (m³)	Berat Volume (kg/m ³)
BRS 2 - 1	9,8	150	302,3	0,0053	1834,491
BRS 2 - 2	9,7	148,5	307,6	0,0053	1820,718
BRS 2 - 3	8,2	149,6	304,1	0,0053	1534,067
BRS 2 - 4	9,4	150,9	299,4	0,0054	1755,528
BRS 2 - 5	8,8	151	302,7	0,0054	1623,403
BRS 2 - 6	9	150,7	304,3	0,0054	1658,151

Tabel 5.12 Hasil Pemeriksaan Berat Volume Beton Ringan (Mix design 3)

Kode Benda Uji	Berat Beton (kg)	Diameter (mm)	Tinggi (mm)	Volume (m³)	Berat Volume (kg/m ³)
BRS 3 - 1	10,8	150,7	296,7	0,0053	2040,75
BRS 3 - 2	9,4	150	302,3	0,0053	1759,61
BRS 3 - 3	10	149,7	307,6	0,0054	1847,06
BRS 3 - 4	10,2	148,8	302,7	0,0053	1937,72
BRS 3 - 5	9,8	148,4	304,6	0,0053	1860,11
BRS 3 - 6	10,2	150,4	299,2	0,0053	1918,90

Tabel 5.13 Hasil Pemeriksaan Berat Volume Beton Ringan (Mix design 4)

Kode Benda Uji	Berat Beton (kg)	Diameter (mm)	Tinggi (mm)	Volume (m ³)	Berat Volume (kg/m³)
BRS 4 - 1	10,6	150	298,7	0,00528	2008,160
BRS 4 - 2	10	149,8	298,6	0,00526	1900,189
BRS 4 - 3	10,4	149,3	298,7	0,00523	1988,789
BRS 4 - 4	9,8	149,5	299,1	0,00525	1866,540
BRS 4 - 5	10,2	147,8	303,3	0,00520	1960,149
BRS 4 - 6	10	150,8	299,3	0,00535	1870,685

Tabel 5.14 Hasil Pemeriksaan Berat Volume Beton Ringan (Mix design 5)

Kode Benda Uji	Berat Beton (kg)	Diameter (mm)	Tinggi (mm)	Volume (m³)	Berat Volume (kg/m ³)
BRS 5 - 1	9,6	149,8	304,1	0,0054	1791,189
BRS 5 - 2	8,4	149,2	307,4	0,0054	1562,960
BRS 5 - 3	8,3	150,6	302,8	0,0054	1538,801
BRS 5 - 4	8,9	149,7	299,2	0,0053	1690,032

Lanjutan Tabel 5.14 Hasil Pemeriksaan Berat Volume Beton Ringan (*Mix design* 5)

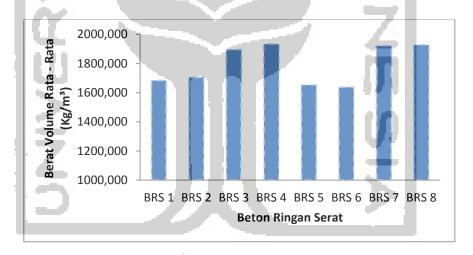
Kode Benda Uji	Berat Beton (kg)	Diameter (mm)	Tinggi (mm)	Volume (m³)	Berat Volume (kg/m ³)
BRS 5 - 5	9,3	150,1	307,4	0,0054	1709,731
BRS 5 - 6	8,7	150,5	301,8	0,0054	1620,456

Tabel 5.15 Hasil Pemeriksaan Berat Volume Beton Ringan (Mix design 6)

Kode Benda Uji	Berat Beton (kg)	Beton Diameter (mm)		Volume (m³)	Berat Volume (kg/m³)
BRS 6 - 1	8,6	150,2	304,3	0,0054	1595,022
BRS 6 - 2	8,8	149	298,2	0,0052	1692,437
BRS 6 - 3	9,2	150,8	306,3	0,0055	1681,699
BRS 6 - 4	8,6	150,7	298,3	0,0053	1616,325
BRS 6 - 5	9	151	303,4	0,0054	1656,468
BRS 6 - 6	8,4	149,8	301,4	0,0053	1581,330

Tabel 5.16 Hasil Pemeriksaan Berat Volume Beton Ringan (Mix design 7)

Kode Benda Uji	Berat Beton (kg)	Diameter (mm)	Tinggi (mm)	Volume (m³)	Berat Volume (kg/m ³)
BRS 7 - 1	10,8	150,5	302,3	0,0054	2008,273
BRS 7 - 2	9,4	149,8	304,1	0,0054	1753,872
BRS 7 - 3	10,2	149,4	299,4	0,0052	1943,378
BRS 7 - 4	10,6	148,8	297,8	0,0052	2046,847
BRS 7 - 5	9,6	150,5	306,2	0,0054	1762,395
BRS 7 - 6	10,8	150,7	301,8	0,0054	2006,264


Tabel 5.17 Hasil Pemeriksaan Berat Volume Beton Ringan (Mix design 8)

Kode Benda Uji	Berat Beton (kg)	Diameter (mm)	Tinggi (mm)	Volume (m³)	Berat Volume (kg/m ³)
BRS 8 - 1	10,2	148,9	302,7	0,0053	1935,123
BRS 8 - 2	10,4	150,2	303,3	0,0054	1935,224
BRS 8 - 3	9,8	149,7	297,3	0,0052	1872,827
BRS 8 - 4	10	150,6	299,2	0,0053	1876,284
BRS 8 - 5	10,6	149,8	307,6	0,0054	1955,267
BRS 8 - 6	10,8	150,4	306,2	0,0054	1985,331

Setelah mendapat seluruh nilai berat jenis setiap *mix design*, maka ajkan didapatkan nilai rata – rata berat jenis seperti ditumjukkan pada Tabel 5.18.

Tabel 5.18 Rata – Rata Berat Volume Beton Ringan

	Perhitungan Rata-Rata Berat Volume								
		Fakto	or Terkon	trol		Berat Volume Rata- Rata			
Design	Water	Water Sand Foam serat silica bambu fume							
BRS 1	1	1	1	1	1	1682,616			
BRS 2	1	1	1	2	2	1704,393			
BRS 3	1	2	2	1	1	1894,026			
BRS 4	1	2	2	2	2	1932,419			
BRS 5	2	1	2	1	2	1652,195			
BRS 6	2	1	. 2	2	1	1637,214			
BRS 7	2	2	1	1	2	1920,172			
BRS 8	2	-2	1	2	1	1926,676			

Gambar 5.4 Grafik Berat Volume Rata – rata Beton Ringan

Pada Tabel 5.18 dilihat hasil perhitungan berat volume rata – rata setiap campuran beton ringan. Pada sampel BRS 4 mempunyai berat volume rata – rata sebesar 1932,419 kg/m³ yang merupakan berat volume rata –rata maksimum. Sedangkan pada sampel BRS 6 mempunyai nilai berat volume rata – rata sebesar 1637,214 kg/m³ yang merupakan berat volume rata – rata minimum. Dilihat dari hasil tersebut menunjukkan bahwa penilitian beton ringan sudah masuk. Hal itu dapat dilihat pada sampel BRS 1, BRS 2, BRS 5 dan BRS 6 dimana nilai yang dihasilkan berkisar antara 1400 kg/m³ – 1850 kg/m³.

Setelah hasil rata –rata setiap berat volume sampel didapatkan maka selanjudnya dilakukan perhitungan berupa matriks perhitungan respon berat volume rata – rata yang isinya berupa kombinasi setiap berat rata – rata volume sampel yang dapat dilihat pada Tabel 5.19 berikut.

$$Water_{level 1} = \frac{mix 1+mix 2+mix 3+mix 4}{4}$$

$$= \frac{1682,616+1704,393+1894,026+1932,419}{4}$$

$$= 1803,363 \text{ kg/m}^3$$

$$Water_{level 2} = \frac{mix 5+mix 6+mix 7+mix 8}{4}$$

$$= \frac{1652,195+1637,214+1920,172+1926,676}{4}$$

$$= 1784,064 \text{ kg/m}^3$$

$$Sand_{level 1} = \frac{1682,616+1704,393+1652,195+1637,214}{4}$$

$$= 1669,104 \text{ kg/m}^3$$

$$Sand_{level 2} = \frac{mix 3+mix 4+mix 7+mix 8}{4}$$

$$= \frac{1894,026+1932,419+1920,172+1926,676}{4}$$

$$= 1918,323 \text{ kg/m}^3$$

$$Foam_{level 1} = \frac{mix 1+mix 2+mix 7+mix 8}{4}$$

$$= \frac{1682,616+1704,393+1920,172+1926,676}{4}$$

$$= 1808,464 \text{ kg/m}^3$$

$$Foam_{level 2} = \frac{mix 3+mix 4+mix 5+mix 6}{4}$$

$$= \frac{1894,026+1932,419+1652,195+1637,214}{4}$$

$$= 1778,963 \text{ kg/m}^3$$
Serat bambu $_{\text{level }1}$

$$= \frac{mix 1+mix 3+mix 5+mix 7}{4}$$

$$= \frac{1682,616+1894,026+1652,195+1920,172}{4}$$

$$= 1787,252 \text{ kg/m}^3$$

$$= \frac{mix 2+mix 4+mix 6+mix 8}{4}$$

$$= \frac{1704,393+1932,419+1637,214+1926,676}{4}$$

$$= 1800,175 \text{ kg/m}^3$$
Silica fume $_{\text{level }2}$

$$= \frac{mix 1+mix 3+mix 6+mix 8}{4}$$

$$= \frac{1682,616+1894,026+1637,214+1926,676}{4}$$

$$= 1785,133 \text{ kg/m}^3$$
Silica fume $_{\text{level }2}$

$$= \frac{mix 2+mix 4+mix 5+mix 7}{4}$$

$$= \frac{1704,393+1932,419+1652,195+1920,172}{4}$$

$$= 1802,294 \text{ kg/m}^3$$

Dari hasil perhitungan diatas maka didapatkan nilai Respon rata – rata volume beton ringan. Berikut ini adalah Tabel 5.19 Respon rata –rata volume beton ringan.

Tabel 5.19 Respon Rata – Rata Berat Volume Beton Ringan

Tabel Respon Rata-Rata Berat Volume								
			Faktor					
Level	Water Sand Foam serat bambu							
Level 1	1803,363	1669,104	1808,464	1787,252	1785,133			
Level 2	1784,064	1784,064 1918,323 1778,963 1800,175 1802,294						

Tabel 5.19. Lanjutan

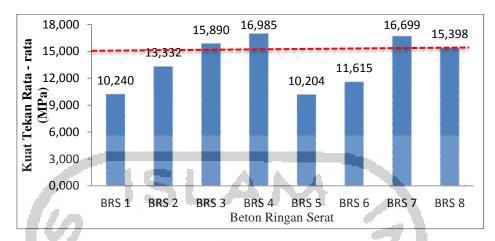
Tabel Respon Rata- Rata Berat Volume									
	Faktor								
Level	Water Sand Foam serat silicate bambu fume								
Max	1803,363	1918,323	1808,464	1800,175	1802,294				
Min	1784,064	1784,064 1669,104 1778,963 1787,252 1785,133							

Pada Tabel 5.19 Dicari nilai maksimal dan minimum dari setiap lavel dengan parameter. Hasilnya nilai minimum dari faktor *water*, *sand*, *foam*, serat bambu dan *silica fume* secara berturut – turut adalah 1784,064 kg/m³, 1669,104 kg/m³, 1778,963 kg/m³, 1787,252 kg/m³, dan 1785,133 kg/m³.

Dari hasil tabel respon rata – rata nilai berat volume beton ringan diatas kemudian di kembangkan dengan metode Taguchi unruk mendapatkan campuran baru. Berikut adalah Tebel 5.20 *mix design* baru.

Tabel 5.20 Kebutuhan Berat Volume Mix Design Baru

111	Mix Design Baru									
Water	Sand	Semen								
0,75	0,60	0,6	0,01	0,10	semen-					
	Keb	outuhan	Bahan Untuk 1	benda Uji	//					
Water (kg) Sand (kg) Foam serat bambu (kg) silica fume (kg) (kg)										
0,94	6,32	3,82	0,025	0,25	2,27					


Hasil dari Tabel 5.20 disesuaikan dengan paramater yang telah ditentukan akan medapatkan hasil campuran design material yang optimum yang terdiri dari 0,75 air, 0,60 pasir, 0,6 *foam*, 0,01 serat bambu, dan 0,10 *silica fume*. Dan setelah dihitung kebutuhan bahan untuk 1 benda uji adalah 0,94 kg air, 6,32 kg pasir, 3,82 kg *foam*, 0,025 kg serat bambu, 0,25 kg *silica fume*, 2,27 kg semen.

5.4.3. Pengujian Kuat Tekan Beton Ringan

Pengujian kuat tekan beton ringan dilakukan pada benda uji ketika berumur 28 hari. Hasil pengujian kuat tekan beton ringan dapat dilihat pada Tabel 5.21 Dan Gambar 5.5.

Tabel 5.21 Hasil Pemeriksaan Uji Kuat Tekan

Kode	Umur	Diameter (mm)	Luas (mm²)	Beban Maksimum (KN)	Kuat Tekan (MPa)	Kuat Tekan Rata - rata (MPa)
BRS 1 – 1	28	150,7	17836,777	176	9,867	
BRS 1 – 2	28	150,3	17742,215	186	10,483	10,240
BRS 1 – 3	28	149,5	17553,845	182	10,368	0
BRS 2 – 1	28	150	17671,459	249	14,091	
BRS 2 – 2	28	148,5	17319,797	224	12,933	13,332
BRS 2 – 3	28	149,6	17577,337	228	12,971	
BRS 3 – 1	28	150,7	17836,777	288	16,146	
BRS 3 – 2	28	150	17671,459	284	16,071	15,890
BRS 3 – 3	28	149,7	17600,844	272	15,454	
BRS 4 – 1	28	150	17671,459	317	17,939	
BRS 4 – 2	28	149,8	17624,366	298	16,908	16,985
BRS 4 – 3	28	149,3	17506,910	282	16,108	
BRS 5 – 1	28	149,8	17624,366	185	10,497	
BRS 5 – 2	28	149,2	17483,466	176	10,067	10,204
BRS 5 – 3	28	150,6	17813,113	179	10,049	
BRS 6 – 1	28	150,2	17718,614	206	11,626	
BRS 6 – 2	28	149	17436,625	193	11,069	11,615
BRS 6 – 3	28	150,8	17860,457	217	12,150	
BRS 7 – 1	28	150,5	17789,465	293	16,470	
BRS 7 – 2	28	149,8	17624,366	287	16,284	16,699
BRS 7 – 3	28	149,4	17530,370	304	17,341	
BRS 8 – 1	28	148,9	17413,228	269	15,448	
BRS 8 – 2	28	150,2	17718,614	275	15,520	15,398
BRS 8 – 3	28	149,7	17600,844	268	15,227	

Gambar 5.5 Grafik Kuat Tekan Rata – Rata

Pada Tabel 5.21 dan Gambar 5.5 dapat dilihat hasil perhitungan Kuat tekan rata – rata setiap campuran beton ringan. Pada sampel BRS 4 mempunyai Kuat tekan rata – rata sebesar 16,985 MPa yang merupakan kuat tekan rata –rata maksimum hasil tersebut sesuai dengan kuat tekan rencana. Sedangkan pada sampel BRS 5 mempunyai nilai kuat tekan rata – rata sebesar 10,204 MPa yang merupakan kuat tekan rata – rata minimum. Hasil data tersebut juga dipengaruhi oleh perhitrungan setiap material setelah digabungkan *matrik ortogonal aray*. Pada Tabel 5.22 berikut ini adalah hasil rekapitulasi antara tabel matriks ortogonal dan rata – rata kuat tekan.

Tabel 5.22 Rata – Rata Kuat Tekan Beton Ringan

	Perhitungan Rata-Rata Kuat Tekan								
		Fak	tor Terkor	ntrol		Kuat Tekan			
Design	Water	Sand	Foam	serat bambu	silica fume	Rata-rata (MPa)			
BRS 1	1	1	1	1	1	10,240			
BRS 2	1	1	1	2	2	13,332			
BRS 3	1	2	- 2	1	1	15,890			
BRS 4	1	2	2	2	2	16,985			
BRS 5	2	1	2	1	2	10,204			
BRS 6	2	1	2	2	1	11,615			
BRS 7	2	2	1	1	2	16,699			
BRS 8	2	2	1	2	1	15,398			

Setelah hasil rata –rata setiap kuat tekan sampel didapatkan maka selanjutnya dilakukan perhitungan berupa matriks perhitungan respon kuat tekan

rata – rata yang isinya berupa kombinasi setiap kuat tekan rata – rata sampel dimana setiap perhitungan nantinya akan menghasilkan nilai setiap level material untuk menentukan hasil material beton ringan yang baru yang dapat dilihat pada Tabel 5.23 berikut. adapun perhitungannya respon rata – rata kuat tekan adalah sebagai berikut. Adapun perhitungannya respon rata – rata kuat tekan adalah sebagai berikut.

$$Water_{level 1} = \frac{mix 1 + mix 2 + mix 3 + mix 4}{4}$$

$$= \frac{10,240 + 13,332 + 16,925 + 15,925}{4}$$

$$= 14,111 \text{ MPa}$$

$$= \frac{mix 5 + mix 6 + mix 7 + mix 8}{4}$$

$$= \frac{10,204 + 11,615 + 16,699 + 15,398}{4}$$

$$= 13,479 \text{ MPa}$$

$$= \frac{mix 1 + mix 2 + mix 5 + mix 6}{4}$$

$$= \frac{10,240 + 13,332 + 10,204 + 11,615}{4}$$

$$= 11,348 \text{ MPa}$$

$$= \frac{mix 3 + mix 4 + mix 7 + mix 8}{4}$$

$$= \frac{16,925 + 15,946 + 16,699 + 15,398}{4}$$

$$= 16,242 \text{ MPa}$$

$$= \frac{mix 1 + mix 2 + mix 7 + mix 8}{4}$$

$$= \frac{10,240 + 13,332 + 16,699 + 15,398}{4}$$

$$= 13,917 \text{ MPa}$$

$$= \frac{mix 3 + mix 4 + mix 5 + mix 6}{4}$$

$$= \frac{16,925 + 15,946 + 10,204 + 11,615}{4}$$

$$= \frac{16,925 + 15,946 + 10,204 + 11,615}{4}$$

$$= \frac{16,925 + 15,946 + 10,204 + 11,615}{4}$$

$$= \frac{13,672 \text{ MPa}$$

Serat bambu level 1
$$= \frac{mix 1 + mix 3 + mix 5 + mix 7}{4}$$

$$= \frac{10,240 + 16,925 + 10,204 + 16,699}{4}$$

$$= 13,517 \text{ MPa}$$

$$= \frac{mix 2 + mix 4 + mix 6 + mix 8}{4}$$

$$= \frac{13,332 + 15,946 + 11,615 + 15,398}{4}$$

$$= \frac{14,073 \text{ MPa}}{4}$$

$$= \frac{mix 1 + mix 3 + mix 6 + mix 8}{4}$$

$$= \frac{10,240 + 16,925 + 11,615 + 15,398}{4}$$

$$= \frac{10,240 + 16,925 + 11,615 + 15,398}{4}$$

$$= 13,544 \text{ MPa}$$

$$= \frac{mix 2 + mix 4 + mix 5 + mix 7}{4}$$

$$= \frac{13,332 + 15,946 + 10,204 + 16,699}{4}$$

$$= 14,045 \text{ Mpa}$$

Dari hasil perhitungan diatas maka didaptkan nilai Respon rata – rata kuat tekan beton ringan. Berikut ini adalah Tabel 5.23. Respon rata –rata kuat tekan beton ringan

Tabel 5.23 Respon Rata – Rata Kuat Tekan Beton Ringan

Tabel Respon Rata-Rata Kuat Tekan							
\$33	FAKTOR						
Level	Water Sand Foam serat silica bambu fume						
Level 1	14,112	11,348	13,917	13,258	13,286		
Level 2	13,479	16,243	13,674	14,332	14,305		
Max	14,112	16,243	13,917	14,332	14,305		
Min	13,479	11,348	13,674	13,258	13,286		

Dari hasil Tabel 5.23 didapatkan nilai maksimal kuat tekan dari setiap level dengan paramater atau faktor *Water* berada pada level 1, *Sand* berada pada level 2, *foam* berada pada level 1, serat bambu berada pada level 2 dan *silica fume* berada pada level 2 secara berturut – turut adalah 14,112 Mpa, 16,243 MPa,

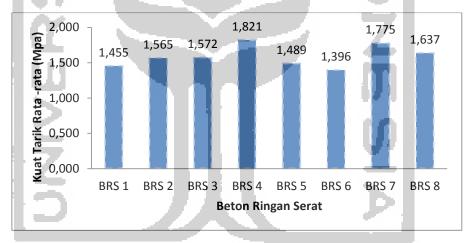
13,917 MPa, 14,332 MPa, dan 14,305 MPa. karena setiap material sudah dintentukan persetasenya maka pada material *water* yang berada pada level 1 yaitu sebesar 0,6 ,*Sand* berada pada level 2 yaitu sebesar 0,75 , *foam* berada pada level 1 yaitu sebesar 0,4 ,serat bambu berada pada level 2 yaitu sebesar 0,02,dan silica fume berada pada level 2 yaitu sebesar 0,15 . Setelah didapat nilai respon rata – rata kuat tekan diatas kemudian dikembangkan dengan metode Taguchi untuk mendapatkan campuran baru yang kemudian disebut dengan *mix design* baru. Berikut adalah Tabel 5.24 *mix design* baru.

Mix Design Baru Water Sand Foam Serat Bambu Silica Fume Semen 0,15 0,6 0,75 0,4 0.02 semen- Sf Kebutuhan Bahan Untuk 1 benda Uji Water Sand Serat Bambu Silica Fume Semen Foam (kg) (kg) (kg) (kg) (kg) 0,76 7,90 2,54 0,05 0,38 2,14

Tabel 5.24 Kebutuhan Mix Design Baru

5.4.4. Pengujian Kuat Tarik Beton Ringan

Hasil Pengujian Kuat tarik beton ringan pada benda uji ketika berumur 28 hari dapat dilihat pada Tabel 5.25 Dan Gambar 5.6.


Tabel 5.25 Hasil Pemeriksaan Uji Kuat Tarik

Behan Kuat

No	Kode	Diameter (mm)	Tinggi (mm)	Beban Maksimum (KN)	Kuat Tarik (MPa)	Kuat Tarik Rata - rata (MPa)
1	BRS 1 - 1	150,8	304,5	97	1,345	4
2	BRS 1 - 2	150,9	304	107	1,485	1,455
3	BRS 1 - 3	150,1	298,6	108	1,534	
4	BRS 2 - 1	149,7	299,2	114	1,620	
5	BRS 2 - 2	150,1	307,4	104	1,435	1,565
6	BRS 2 - 3	150,5	301,8	117	1,640	
7	BRS 3 - 1	148,8	302,7	119	1,682	
8	BRS 3 - 2	148,4	304,6	104	1,465	1,572
9	BRS 3 - 3	150,4	299,2	111	1,570	
10	BRS 4 - 1	149,5	299,1	138	1,965	
11	BRS 4 - 2	147,8	303,3	134	1,903	1,821
12	BRS 4 - 3	150,8	299,3	113	1,594	

Tabel 5.25. Lanjutan.

No	Kode	Diameter (mm)	Tinggi (mm)	Beban Maksimum (KN)	Kuat Tarik (MPa)	Kuat Tarik Rata - rata (MPa)
13	BRS 5 - 1	150,6	299,2	103	1,455	
14	BRS 5 - 2	149,8	307,6	106	1,464	1,489
15	BRS 5 - 3	150,4	306,2	112	1,548	
16	BRS 6 - 1	150,7	298,3	96	1,360	West .
17	BRS 6 - 2	151	303,4	104	1,445	1,396
18	BRS 6 - 3	149,8	301,4	98	1,382	
19	BRS 7 - 1	150,9	299,4	148	2,085	
20	BRS 7 - 2	151	302,7	106	1,476	1,775
21	BRS 7 - 3	150,7	304,3	127	1,763	
22	BRS 8 - 1	148,8	297,8	127	1,825	
23	BRS 8 - 2	150,5	306,2	114	1,575	1,637
24	BRS 8 - 3	150,7	301,8	108	1,512	

Grafik 5.6 Grafik Kuat Tarik Rata – Rata Beton Ringan

Pada Tabel 5.25 dan Gambar 5.6 dapat dilihat hasil perhitungan kuat tarik rata – rata setiap campuran beton ringan. Pada sampel BRS 4 mempunyai Kuat tarik rata – rata sebesar 1,821 MPa yang merupakan kuat tarik rata –rata maksimum. Sedangkan pada sampel BRS 6 mempunyai nilai kuat tarik rata – rata sebesar 1,396 MPa yang merupakan kuat tarik rata – rata minimum. Hasil data tersebut juga dipengaruhi oleh variasi kombinasi perhitrungan setiap material disetiap sampelnya yang digabungkan dengan matrik ortogonal aray. Kemudian data penelitian disetiap pengujian adalah dicari proporsi optimum diantara desain

campuran tersebut dengan merekap rata – rata kuat tarik di setiap desainnya sepetti pada Tabel 5.26.

Tabel 5.26 Kuat Tarik Rata – Rata Beton Ringan

Perhitungan Rata-Rata Kuat Tarik							
Design		Kuat Tarik Rata-rata					
	A	В	С	D	E	(MPa)	
BRS 1	1	1	1	11	1	1,455	
BRS 2	1	1	1	2	2	1,565	
BRS 3	1	2	2	1	1	1,572	
BRS 4	1	2	2	2	2	1,821	
BRS 5	2	1	2	1	2	1,489	
BRS 6	2	1	2	2	1	1,396	
BRS 7	2	2	1	1	2	1,775	
BRS 8	2	2	1	2	1	1,637	

Dari hasil tabel kuat tarik rata — rata di atas maka untuk mencari proporsi optimum campuran beton dengan cara dipilih level yang mempunyai kekuatan terbesar dari tabel respon rata rata kuat tarik seseuai Tabel 5.27. adapun perhitungannya respon rata — rata kuat tekan adalah sebagai berikut.

Water level 1 =
$$\frac{mix \ 1+mix \ 2+mix \ 3+mix \ 4}{4}$$

= $\frac{1,455+1,565+1,572+1,821}{4}$
= $1,603 \text{ MPa}$
Water level 2 = $\frac{mix \ 5+mix \ 6+mix \ 7+mix \ 8}{4}$
= $\frac{1,489+1,396+1,775+1,637}{4}$
= $1,574 \text{ MPa}$
= $\frac{mix \ 1+mix \ 2+mix \ 5+mix \ 6}{4}$
= $\frac{1,455+1,565+1,489+1,396}{4}$
= $1,476 \text{ MPa}$
Sand level 2 = $\frac{mix \ 3+mix \ 4+mix \ 7+mix \ 8}{4}$

$$= \frac{1,572+1,821+1,775+1,637}{4}$$

$$= 1,701 \text{ MPa}$$

$$= \frac{mix 1+mix 2+mix 7+mix 8}{4}$$

$$= \frac{1,455+1,565+1,775+1,637}{4}$$

$$= 1,608 \text{ MPa}$$

$$= \frac{mix 3+mix 4+mix 5+mix 6}{4}$$

$$= \frac{1,572+1,821+1,489+1,396}{4}$$

$$= 1,569 \text{ MPa}$$

$$= \frac{mix 1+mix 3+mix 5+mix 7}{4}$$

$$= \frac{1,455+1,572+1,489+1,775}{4}$$

$$= 1,573 \text{ MPa}$$
Serat bambu $_{\text{level } 2}$

$$= \frac{mix 2+mix 4+mix 6+mix 8}{4}$$

$$= \frac{1,565+1,821+1,396+1,637}{4}$$

$$= \frac{1,455+1,572+1,396+1,637}{4}$$

$$= \frac{1,455+1,572+1,396+1,637}{4}$$

$$= \frac{1,515 \text{ MPa}}{4}$$

$$= \frac{mix 2+mix 4+mix 5+mix 7}{4}$$

$$= \frac{1,515 \text{ MPa}}{4}$$

$$= \frac{mix 2+mix 4+mix 5+mix 7}{4}$$

$$= \frac{1,515 \text{ MPa}}{4}$$

$$= \frac{1,565+1,821+1,489+1,775}{4}$$

$$= \frac{1,565+1,821+1,489+1,775}{4}$$

$$= \frac{1,662 \text{ MPa}}{4}$$

Dari hasil perhitungan diatas maka didaptkan nilai Respon rata – rata kuat tarik beton ringan. Selanjutnya ditunjukkan pada Tabel 5.27.

Tabel 5.27 Respon Rata – Rata Kuat Tarik Beton Ringan

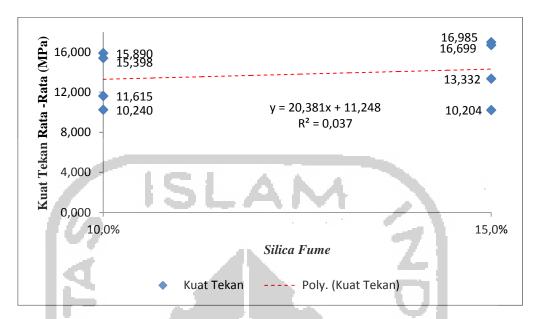
Tabel Respon Rata-Rata Kuat Tarik						
Lovel	Faktor					
Level	A	В	C	D	E	
Level 1	1,603	1,476	1,608	1,573	1,515	
Level 2	1,574	1,701	1,569	1,605	1,662	
Max	1,603	1,701	1,608	1,605	1,662	
Min	1,574	1,476	1,569	1,573	1,515	

Pada hasil Tabel 5.27 diatas kemudian dikembangkan dengan Metode Taguchi. dimana dari hasil tersebut adalah nilai maksimum dari level dengan parameter atau faktor *water* berada pada level 1, faktor pasir berada pada level 2, faktor *foam* berada pada level 1, faktor serat Bambu berada pada level 2, dan faktor *silica fume* berada pada level 2.Dari hasil tersebut didapatkan nilai respon kuat tarik secara berturut – turut adalah 1,603 MPa, 1,701 MPa, 1,608 MPa, 1,605 MPa, dan 1,662 MPa. karena setiap material sudah dintentukan persetasenya maka pada material *water* yang berada pada level 1 yaitu sebesar 0,6 ,*Sand* berada pada level 2 yaitu sebesar 0,75 , *foam* berada pada level 1 yaitu sebesar 0,4 ,serat bambu berada pada level 2 yaitu sebesar 0,02,dan silica fume berada pada level 2 yaitu sebesar 0,15. Dari tabel respon rata – rata nilai kuat tarik diatas kemudian di kembangkan dan mendapatkan campuran baru yang kemudian disebut dengan *mix design* baru . Berikut adalah Tabrl 5.28 *mix design* baru.

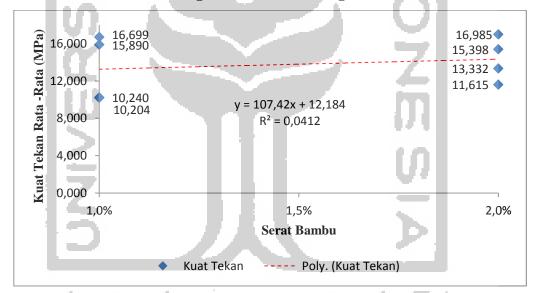
Tabel 5.28 Kebutuhan Mix Design Baru

Mix Design Baru								
Water	Sand	Foam	serat bambu	silica fume	Semen			
0,6	0,75	0,4	0,02	0,15	semen- Sf			
	Kebutuhan Bahan Untuk 1 benda Uji							
Water (kg)	Sand (kg)	Foam	serat bambu (kg)	silica fume (kg)	semen (kg)			
0,76	7,78	2,54	0,05	0,38	2,14			

5.5. Pembahasan Hasil Pengujian Beton Ringan


Setelah dididapatkan hasil perhitungan dari pengujian beton ringan, maka selanjutnya dilakukan pembahasan. Adapun pembahasan dilakukan untuk mengetahui manfaat dari penelitian tersebut.

5.5.1. Pembahasan Kuat Tekan Beton Ringan


Dalam penelitian ini didapatkan nilai kuat tekan beton ringan dengan penambahan *silica fume* dan serat bambu mengalami peningkatan dan penurunan di setriap *mix design* dan variasi campurannya. Pada hasil Tabel 5.21 dan Gambar 5.4 dapat dilihat bahwa penambahan variasi *silica fume* antara 10% dan 15% dengan Serat bambu antara 1% dan 2% ditadak selalu mengalami peningkatan maupun penurunan. Dapat dilihat pada sampel BRS 4 yang mempunyai kuat tekan rata – rata sebesar 16,985 MPa dengan penambahan *silica fume* 15% dan serat bambu 2% yang merupakan kuat tekan rata – rata tertinggi. Sedangkan pada sampel BRS 5 dengan komposisi bahan tambah silica fume 15% dan serat Bambu 1% mempunyai kuat tekan rata – rata sebesar 10,204 MPa yang merupakan kuat tekan rata rata terendah.

Pada benda uji dengan penambahan komposisi *silica fume* sebesar 10% terdapat pada *mix design* BRS 1, BRS 3, BRS 6 dan BRS 8 memiliki kuat tekan rata – rata berturut turut sebesar 10,240 MPa, 15,890 MPa, 11,615 MPa, dan 15, 398 MPa. Pada benda uji dengan penambahan komposisi silica fume sebesar 15% terdapat pada mix design BRS 2, BRS 4, BRS 5 dan BRS 7 memiliki kuat tekan rata – rata berturut – turut sebesar 13,332 MPa, 16,985 MPa, 10,204 MPa, dan 16,669 MPa.

Sedangkan pada benda uji dengan penambahan komposisi serat bambu sebesar 1% terdapat pada mix design BRS 1, BRS 3, BRS 5 dan BRS 7 memiliki kuat tekan rata – rata berturut – turut sebesar 10,240 MPa, 15,890 MPa, 10,204 MPa, dan 16,699 MPa. Pada benda uji dengan komposisi serat bambu 2 % terdapat pada mix design BRS 2, BRS 4, BRS 6 dan BRS 8 memiliki kuat tekan rata – rata sebesar 13,332 MPa, 16,985 MPa, 11,615 MPa, dan 15, 398 MPa.

Gambar 5.7 Grafik Hubungan Silica Fume dengan Kuat Tekan Rata – rata

Gambar 5.8 Grafik Hubungan Serat Bambu dengan Kuat tekan Rata – rata

Gambar 5.7 dan Gambar 5.8 adalah grafik hubungan kuat tekan rata – rata terhadap *silica fume* dan serat bambu, yang merupakan hasil pengujian dari Tabel 5.21. Dapat diketahui berdasarkan Gambar 5.7 dan Gambar 5.8 bahwa penambahan *silica fume* dan serat bambu memberikan nilai kuat yang lebih baik, walaupun peningkatan disetiap *mix design* berbeda beda. Pada penambahan *silica fume* 15% dan serat bambu 2% memberikan hasil kuat tekan yang lebih besar walaupun sebagian nilai masih rendah.

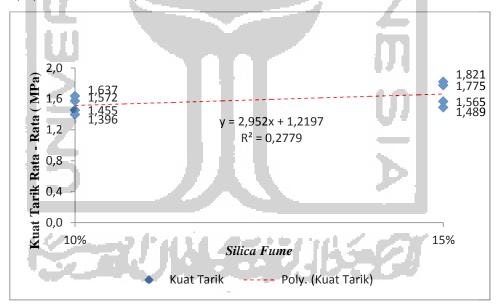
Dari hasil ini menunjukkan bahwa penambahan kuat tekan tidak hanya dipengaruhi oleh bahan tambah saja, akan tetapi juga di pengaruhi oleh besar dari material lain. Hasil yang bervariasi ini dipengaruhi karena penggunaan metode Taguchi dimana penggunaan matrik ortogonal aray di setiap material benda uji yang digunakan.

Akan tetapi dapat dilihat pada Gambar 5.7 dan Gambar 5.8 grafik yang dihasilkan masih belum sempurna atau belum akurat. Hal ini dikarenakan pada bahan tambah *silica fume* dan serat bambu hanya menggunakan 2 level yang dikunci yaitu 10% ,15 % untuk *silica fume* dan 1% dan 2 % untuk serat bambu, sehingga grafik yang dihasilkan hanya berupa garis linier lurus saja. Agar mendapatkan hasil garis pada grafik yang lebih baik harus memberikan tambahan level pada setiap para meternya baik lebih tinggi dan dengan penambahan benda uji 0 % bahan tambah.

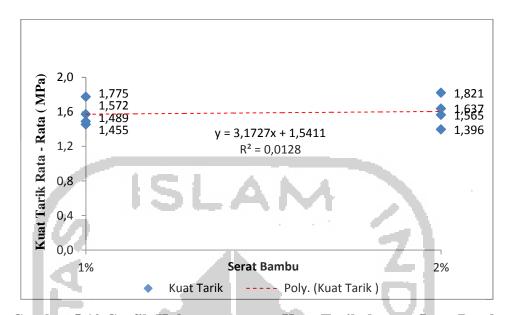
Pada penelitian ini tidak menggunakan bahan tambah 0 %. Dikarenakan meninjau dari penelitian sebelumnya yaitu penelitian Fajar Purwanto (2015), Giselda (2016), telah dilakukan penilitian dengan penambahan silica fume untuk menentukan suatu takaran *mix design*, sehingga menghasilkan suatu prodak yang optimum dari setiap *mix design* yang sudah di perhitungkan. Sehingga penelitian ini lebih menitik beratkan kepada hasil produk yang optimum.

Pada penelitian Fajar purwanto (2015) hasil produk yang di dapat pada kuat tekan beton ringan yaitu *silica fume* 15% sedangkan material lainnya adalah *water* 45%, *sand* 75%, dan *Foam* 40%.

Pada penelitian Giselda (2016) hasil produk yang didapat pada kuat tekan beton ringan yaitu *silica fume* 15%,dan material lainnya yaitu *water* 40%, *sand* 75%,dan *foam* 40%, *mill* 3%.


5.5.2. Pembahasan Kuat Tarik Beton ringan

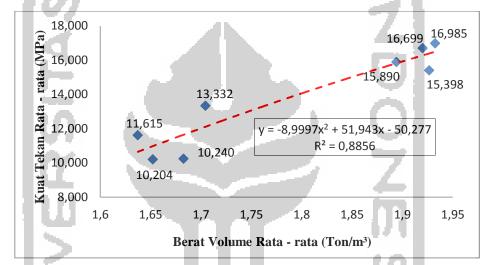
Pada penelitian ini didapatkan nilai kuat tarik beton ringan yang bervariasi disetiap campuran mix designnya. Hal ini dapat dilihat pada Tabel 5.25 dan Gambar 5.6 dengan penambahan *silica fume* antara 10%, dan 15% dengan serat bambu antara 1% dan 2%. Pada sampel BRS 4 dengan penambahan *silica fume* 15% dan serat bambu 2% menghasilkan nilai kuat tarik sebesar 1,821 MPa


dimana hasil ini termasuk kuat tarik tertinggi. Sedangkan kuat tarik terendah terdapat pada sampel BRS 6 dengan penambahan *silica fume* 10% dan serat bambu 2% sebesar 1,396 MPa.

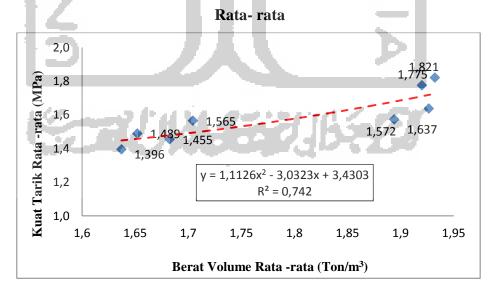
Benda uji dengan penambahan silica fume 10% terdapat pada benda uji BRS 1, BRS 3, BRS 6, dan BRS 8 secara berturut – turut sebesar 1,445 MPa, 1,572 MPa, 1, 396 MPa, dan 1,489 MPa. Pada benda uji penambahan silica fume 15% terdapa pada benda uji BRS 2, BRs 4, BRS 5 dan BRS 7 secara berturut – turut sebesar 1,775 MPa, 1,821 MPa, 1,565 MPa, dan 1,637 MPa.

Benda uji dengan penambahan serat bambu sebesar 1% terdapat pada campuran benda uji BRS 1, BRS 3, BRS 5, dan BRS 7 dengan nilai kuat tarik secara ber turut – turut sebesar 1,455 MPa, 1,572 MPa, 1,565 MPa, dan 1,637 MPa. Dan pada penambahan serat bambu 2% terdapat pada campuran benda uji BRS 2, BRS 4, BRS 6 dan BRS 8 memiliki kuat tarik sebesar 1,775 MPa, 1,821 MPa, 1,396 MPa dan 1,489 MPa.

Gambar 5.9 Grafik Hubungan Kuat Tarik dengan silica fume


Gambar 5.10 Grafik Hubungan antara Kuat Tarik dengan Serat Bambu

Gambar 5.7 dan Gambar 5.8 adalah grafik hubungan kuat tarik rata - rata terhadap *silica fume* dan serat bambu, yang merupakan hasil pengujian dari Tabel 5.25. Berdasarkan Gambar 5.9 dan Gambar 5.10 diatas diketahui bahwa dengan penambahan *silica fume* dan serat bambu memberikan hasil kuat tarik yang baik. Dari hasil yang didapat meninjukkan bahwa dengan penambahan *silica fume* 15% dan serat bambu 2 % memberikan kekuatan tarik yang baik. Walaupun sebagian kuat tarik pada serat bambu 2 % terdapat nilai yang rendah, akan tetapi juga memberikan nilai kuat tarik yang tinggi. Hasil yang berbeda ini juga di pengaruhi karena adanya penentuan dari material lain yang sudah ditentukan lewat metode Taguchi.


Akan tetapi dapat dilihat dari Gambar 5.9 dan Gambar 5.10 masih belum terlalu akurat. Karena perbandingan kuat tarik terhaddap *silica fume* dan kuatrarik terhadap serat bambu hanya menggunakan 2 level yang dikunci yaitu 10%, 15% untuk silica fume dan 1%, 2 % untuk serat bambu. Hal ini menyebabkan garis linear pada grafik masih kurang memperlihatkan hasil yang baik. Masih harus menambahkan lagi level serat bambu maupun silica fume yang lebih besar dan juga penambahan sampel 0% agar hasil yang di dapatkan lebih akurat.

5.5.3. Perbandingan Berat Volume dengan Kuat Tekan dan Kuat Tarik

Dari hasil pengujian yang telah dilakukan didapatkan nilai rata – rata berat volume, kuat tekan dan kuat tarik di setiap campuran mix designnya. Dengan memperhatikan pengujian hasil pada Tabel 5.18 dan Tabel 5.21, maka didapat garafik hubungan berat volume rata – rata dengan kuat tekan rata – rata (Gambar 5.11). kemudian dengan melihat hasil Tabel 5.18 dan Tabel 5.25, maka didapat grafik hubungan antara berat volume rata – rata dengan kuat tarik rata – rata Gambar 5.12.

Gambar 5.11 Hubungan Berat Volume Rata – rata dengan Kuat Tekan

Gambar 5.12 Hubungan Berat Volume Rata – rata dengan Kuat Tarik Rata

Dari gambar diatas dapat dilihat hubungan antara berat volume, kuat tekan dan kuat tarik beton ringan. Gambar 5.11 menunjukkan bahwa hubungan antara berat volume dengan kuat tekan saling terikat yang ditunjukkan dengan grafik yang linier dan didapatkan rumus empirisnya $y = -8,9997x^2 + 51,943x - 50,277$ maka $R^2 = 0,8856$. Pada hubungan antara kuat tarik dengan berat volume menunjukkan bahwa besar kecilnya nilai berat volume terhadap kuat tarik terjadi secara linier hal ini dapat dilihat pada Gambar 5.12 yang menunjukkan grafik mendekati linier. Hubungan tersebut terjadi dikarenakan setiap sampel dan material penyusunnya yang berbeda — beda karena adanya pengaruh dari pemakaian penyusun berupa matrik orthogonal array pada saat pembuatannya dan dari hasil tersebut didapatkan rumus empirisnya $y = 1,1126x^2 - 3,0323x + 3,4303$ maka $R^2 = 0.742$.

5.5.4. Pembahasan Hasil Beton Ringan

Hasil pengujian beton ringan dengan menggunakan penambahan metode Taguchi dapat menghasilkan hasil yang bervariasi, seperti dari pengujian ini dimana kuat tekan, kuat tarik, dan berat volume beton ringan mendapatkan hasil yang bervariasi di setiap campuran dari *mix design* 1 sampai 8. Variasi dari setiap campuran semuanya dipengaruhi dari hasil perhitungan material setelah di kombinasikan dengan matrix ortogonal.

Pada kuat tekan beton hasil maksimum di dapat pada BRS 3 dikarenakan pengaruh dari hasil matrik ortogonal yang menghasilkan campuran level yang optimal, seperti halnya pada kuat tarik beton ringan yang berada pada campuran BRS 4 dengan nilai level disetiap parameternya optimum terutama pada serat bambu untuk menambah kuat tarik didapat campuran dengan level 2 atau persentase campuran yang tertinggi. Dan pada berat volume yang dihasilkan pada setiap sampel sudah menghasilkan berat volume yang ringan.sehingga penelitian ini sudah memenuhi beton ringan yang disyaratkan.