
•

TUGAS AKHIR PEMANFAATAN BATU LINTANG GUNUNG KIDUL SEBAGAI FILLER PADA BETON MUTU TINGGI

Disusun oleh

Nama

: ROMI MARINGKA

No. Mahasiswa

: 96 310 030

NIRM

: 960051013114120028

Nama

: MAMAN SUPRATMAN

No. Mahasiswa

: 96 310 303

NIRM

: 960051013114120245

JURUSAN TEKNIK SIPIL
FAKULTAS TEKNIK SIPIL DAN PERENCANAAN
UNIVERSITAS ISLAM INDONESIA
YOGYAKARTA
2002

TUGAS AKHIR PEMANFAATAN BATU LINTANG GUNUNG KIDUL SEBAGAI FILLER PADA BETON MUTU TINGGI

Disusun oleh

ROMI MARINGKA

No. Mhs.: 96 310 030

NIRM: 960051013114120028

MAMAN SUPRATMAN

No. Mhs: 96 310 303

NIRM: 960051013114120245

Telah diperiksa dan disetujui oleh:

Ir. H. Susastrawan, MS.

Dosen pembimbing I

Ir. H. Ilman Noor, MSCE

Dosen pembimbing II

Tanggal: 30-07-02

Tanggal: $\sqrt{20/2} - 2$

HALAMAN MOTTO

Katakan Muhammad: "Sekiranya samudra menjadi tinta untuk mencatat kalimat Tuhanku, pasti samudra akan kering sebelum habis kalimat Tuhanku dicatat sekalipun kita datangkan sebanyak itu lagi" (QS Al Kahfi: 109).

Bila seluruh pohon yang ada di bumi dijadikan pena dan air samudra dijadikan tinta ditambah tujuh samudra yang lain, ilmu Allah tidak akan habis.

Allah Mahaperkasa dan Mahabijaksana (QS Al Luqmaan: 27).

Sungguh Allah yang menciptakan tujuh langit dan bumi yang sepadan dengannya. Antara keduanya turunlah perintah-perintah-Nya supaya kamu tahu bahwa Allah berkuasa atas segala hai. Dan ilmu Allah merangkum segala yang ada

(QS At Thalaag: 12).

Sungguh bersama kesukaran pasti ada kemudahan. Dan bersama kesukaran pasti ada kemudahan. Karena itu, bila selesai suatu tugas, mulailah dengan yang lain dengan sungguh-sungguh. Hanya kepada Tuhanmu hendaknya kau berharap (QS Alam Nasyrah: 5-8).

KATA PENGANTAR

Bismillahirrahmaanirrahiim

Assalamu'alaikum wr. wb.

Puji syukur kehadirat Allah SWT yang telah memberikan rahmat dan hidayah-Nya, sehingga penulis dapat menyelesaikan penelitian tentang PEMANFAATAN BATU LINTANG GUNUNG KIDUL SEBAGAI FILLER PADA BETON MUTU TINGGI ini dengan baik.

Penelitian yang merupakan salah satu syarat untuk mencapai derajat Sarjana S-1 ini dilakukan di Laboratorium Bahan Konstruksi Teknik Jurusan Teknik Sipil, Fakultas Teknik Sipil dan Perencanaan, Universitas Islam Indonesia, Jogjakarta.

Dengan selesainya laporan penelitian ini, penulis mengucapkan terima kasih kepada:

- Ir.H. Susastrawan, MS, selaku Dosen Pembimbing I yang dengan penuh kesabaran dan ketekunan telah membimbing penulis.
- 2. Ir.H. Ilman Noor MSCE, selaku Dosen Pembimbing II yang telah memberikan ide-ide dasar dan bimbingannya hingga selesainya penelitian ini.
- 3. lr. H. Widodo, MSCE, Ph.D., selaku Dekan Fakultas Teknik Sipil dan Perencanaan Universitas Islam Indonesia.
- 4. lr. H. Munadhir, MS., selaku Ketua Jurusan Teknik Sipil, Fakultas Teknik Sipil dan Perencanaan Universitas Islam Indonesia.

- 5. Ayah dan Ibu tercinta, kakak dan adik beserta seluruh sanak famili yang telah memberi dorongan baik moral maupun material selama pelaksanaan pendidikan, penelitian dan penulisan tugas akhir ini.
- 6. Rekan-rekan: Bambang, Erwin, Kuswoyo, Firman, Yuli, Payak, , Wiwin, Kiki, Ella, Reni, puput, Ani, Rafita, Dian, Rosiah, Anggi, Stella, Winda, serta semua pihak yang telah membantu penelitian ini.

Penulis menyadari bahwa hasil karya penelitian ini masih jauh dari sempurna, namun penulis berharap agar hasil yang diperoleh ini bermanfaat bagi penelitian-penelitian selanjutnya.

Wabillahittaufik walhidayah, wassalamu'alaikum wr. wb.

Yogyakarta, Pebruari 2002

Penulis:

Maman supratman

Romi Maringka

DAFTAR ISI

HALAMAN JUDUL	
HALAMAN PENGESAHAN	
KATA PENGANTAR	i
DAFTAR ISI	iii
DAFTAR SIMBOL	vii
DAFTAR GAMBAR	vii
DAFTAR TABEL	X
DAFTAR LAMPIRAN	Xi
ABSTRAKSI	Χì
•	
BAB I PENDAHULUAN	1
1.1 Latar Belakang	1
1.2 Rumusan Masalah	2
1.3 Tujuan Penelitian	2
1.4 Manfaat Penelitian	3
1.5 Batasan Masalah	3
BAB II TINJAUAN PUSTAKA	5
2.1 Penelitian Batu Lintang (Kalsit)	5
2.2 Hasil Penelitian Yang Pernah Dilakukan	6

 $\lambda_{k}^{2}(z)$

2.3 Beberapa Literatur Yang Menunjang Penelitian	7
BAB III LANDASAN TEORI	9
3.1 Umum	9
3.2 Semen Portland	11
3.3 Agrerat	12
3.4 Air	14
3.5 Filler	14
3.6 Perhitungan Campuran Beton	16
3.7 Tahap Perawatan Beton	34
3.8 Kadar Air	34
3.9 Kuat Desak Beton	35
3.10 Kuat Tarik Beton	38
BAB IV METODE PENELITIAN	41
4.1 Material Campuran Beton	41
4.2 Alat-alat Yang Digunakan	42
4.3 Pemeriksaan Bahan Campuran	42
4.3.1 Pemeriksan Agrerat Kasar (kerikil)	43
4.3.2 Pemeriksaan Agrerat Halus	45
4.3.3 Pemeriksaan Batu Lintang	48
4.4 Perencanaan Campuran Beton	49
4.5. Percianan Cetakan	56

4	4.6 Pembuatan Adukan Beton	56
,	4.7 Pengujiaan Kekentalan Adukan (Slump Test)	57
	4.8 Pengecoran Adukan Beton	58
	4.9 Tahap Perawatan Beton	59
	4.10 Tahap Uji Kadar Air	59
	4.11 Tahap Uji Kuat Desak Beton	61
	4.12 Tahap Uji Kuat Tarik Beton	62
. atalahalan		
BAB	V HASIL DAN PEMBAHASAN	65
	5.1 Hasil Penelitian	65
	5.1.1 Hasil Uji Kadar Air	65
	5.1.2 Hasil Uji Kuat Desak Beton	69
	5.1.3 Hasil Uji Kuat Tarik Beton	83
	5.2 Pembahasan	86
	5.2.1 Kadar Air	86
	5.2.2 Kuat Desak Beton	86
	5.2.3 Kuat Tarik Beton	87
	5.2.4 Hubungan Kuat Desak Dengan Kuat Tarik Beton	88
BAB	VI KESIMPULAN DAN SARAN	90
	6.1 Kesimpulan	90
	6.2 Saran	91

	LAMPIRAN
76	 DAFTAR PUSTAKA

DAFTAR SIMBOL

A = Luas

D = Diameter silinder

fc = Kuat desak beton

f'cr = Kuat desak beton rata-rata

fct = Kuat tarik beton

k = Konstanta (1,64)

L = Panjang silinder

m = Nilai tambah (margin)

P = Beban

Sd = Standart deviasi

W = Kadar air

Wb = Berat dalam keadaan basah

Wk = Berat dalam keadaan kering

 π = Konstanta (3,14159)

DAFTAR GAMBAR

Gambar 3.1	Hubungan Faktor Air Semen dan Kuat Tekn Rata-rata Silinder	
	Beton	20
Gambar 3.2	Grafik Mencari Faktor Air Semen	21
Gambar 3.3	Grafik Presentasi Agrerat Halus Terhadap Agrerat Keseluruhan	
	Untuk Ukuran Butir Maksimum 20 mm	31
Gambar 3.4	Grafik Hubungan Kandungan Air, Berat Jenis Agrerat	
	Campuran, dan Berat Beton	32
Gambar 3.5	Hubungan Faktor Air Semen dan Kust Sillnder Beton	37
Gambar 3.6	Uji Tarik Pada Pembelahan Silinder	39
Gambar 4.1	Diagram Alur Metode Penelitian	64
Gambar 5.1	Grafik Kadar Air Untuk Berbagai Variasi Batu Lintang Pada	
	Umur 14 Hari	68
Gambar 5.2	Grafik Hubungan Antara Variasi Batu Lintang Dengan Kuat	
	Desak Karakteristik (f ^l c) Pada Umur Beton 28 Hari	80
Gambar 5.3	Grafik Hubungan Antara Variasi Batu Lintang Dengan	
	Persentasi Kuat Desak Karakteristik (f ^l c) Pada Umur Beton 28	
•	Hari	80
Gambar 5.4	Grafik Hubungan Antara Variasi Batu Lintang Dengan Kuat	
	Desak Beton Rata-rata (fcr) Pada Umur Peton 28 Hari	81
Gambar 5.5	Grafik Hubungan Antara Variasi Batu Lintang Dengan	

	Persentasi Kuat Desak Beton Rata-rata Pada Umur Beton 28	
	Hari	83
Gambar 5.6	Grafik Hubungan Antara Variasi Batu Lintang Dengan Berat	
	Jenis Beton Pada Umur Beton 28 Hari	82
Gambar 5.7	Grafik Hubungan Antara Variasi Batu - Lintang Dengan	
	Persentasi Berat Jenis Beton Pada Umur Beton 28 Hari	83
Gambar 5.8	Grafik Hubungan Antara Variasi Batu Lintang Dengan Kuat	
	Tarik Karakteristik Beton Rata-rata Pada Umur Beton 28 Hari	85

DAFTAR TABEL

Tabel 3.1	Susunan Unsur Kimia Semen Biasa	12
Tabel 3.2	Komposisi Unsur Kimia Batu Lintang (Kalsit)	15
Tabel 3.3	Tingkat Pengendalian Mutu Pekerjaan	17
Tabel 3.4	Faktor Pengali Deviasi Standar	17
Tabel 3.5	Perkiraan Kuat Tekan Beton (Mpa) Dengan Faktor Air Semen 0,5	21
Tabel 3.6	Persyaratan Faktor Air Semen Maksimum Untuk Berbagai	
•	Pembetonan Dalam Lingkungan Khusus	23
Tabel 3.7	Faktor Air Semen Untuk Beton Bertulang Dalam Air	23
Tabel 3.8	Faktor Air Semen Maksimum Untuk Beton Yang Berhubungan	
	Dengan Air Tanah Yang Mengandung Sulfat	24
Tabel 3.9	Penetapan Nilai Slump	25
Tabel 3.10	Perkiraan Kebutuhan Air Permeter Kubik Beton (Liter)	26
Tabel, 3.11	Untuk Menentukan Nilai Ah dan Ak	26
Tabel 3.12	Kandungan Semen Minimum Untuk Beton Bertulang Dengan Air	27
Tabel 3.13	Kandungan Semen Minimum Untuk Beton Yang Berhubungan	
	Dengan Air Tanah Yang Mengandung Sulfat	28
Tabel 3.14	Kandungan Semen Minimum Untuk Berbagai Pembetonan dan	
	Lingkungan Khusus	29
Tabal 3 15	Gradasi Pasir	30

Tabel 3.16	Perbandingan Kuat Desak Beton Pada Berbagai Umur Benda Uji	
	Silinder Yang Dirawat di Laboratorium (DPU, 1989)	36
Tabel 4.1	Alat-alat Yang Digunakan	42
Tabel 4.2	Hasil Pemeriksaan Berat Jenis Kerikil "SSD" Asal Sungai Krasak	43
Tabel 4.3	Hasil Berat Volume Kering Tusuk "SSD" Asal Sungi Krasak	44
Tabel 4.4	Hasil Berat Jenis Pasir "SSD" Asal Kaliurang	45
Tabel 4.5	Hasil Berat Volume Agrerat Halus "SSD" Asal Kaliurang	46
Tabel 4.6	Hasil Gradasi Pasir Asal Kaliurang	48
Tabel 4.7	Komposisi Unsur Kimia Batu Lintang (Kaslit)	49
Tabel 4.8	Hasil Perhitungan Gradasi Agrerat Halus	53
Tabel 4.9	Kebutuhan Batu Lintang Tiap Variasi Campuran	56
Tabel 5.1	Hasil Uji Kadar Air Dengan Jenis Beton Tanpa Batu Lintang (Kalsit)	
	Umur 14 Hari	65
Tabel 5.2	Hasil Uji Kadar Air Dengan Jenis Beton Variasi Batu Lintang	
	(Kalsit) 5% Umur 14 Hari	66
Tabel 5.3	Hasil Uji Kadar Air Dengan Jenis Beton Variasi Batu Lintang	. •
	(Kalsit) 10% Umur 14 Hari	66
Tabel 5.4	Hasil Uji Kadar Air Dengan Jenis Beton Variasi Batu Lintang	
·	(Kalsit) 15% Umur 14 Hari	67
Tabel 5.5	Hasil Uji Kadar Air Dengan Jenis Beton Variasi Batu Lintang	
	(Kalsit) 20% Umur 14 Hari	67
Tabel 5.6	Data Kadar Air Rata-rata Silinder Beton	68
Tabel 5.7	Hasil Kuat Deasak Beton Dengan Jenis Beton Tanpa Batu Lintang	

	(Kalsit) 0% Umur 28 Hari	70
Tabel 5.8	Perhitungan Berat Jenis Beton Untuk Beton Tanpa Batu Lintang 0%	
	Umur 28 Hari	71
Tabel 5.9	Hasil Kuat Deasak Beton Dengan Jenis Beton Batu Lintang (Kalsit)	
	5% Umur 28 Hari	72
Tabel 5.10	Perhitungan Berat Jenis Beton Untuk Beton Batu Lintang 5% Umur	
	28 Hari	73
Tabel 5.11	Hasil Kuat Deasak Beton Dengan Jenis Beton Batu Lintang (Kalsit)	
	10% Umur 28 Hari	74
Tabel 5.12	Perhitungan Berat Jenis Beton Untuk Beton Batu Lintang 10% Umur	
	28 Hari	75
Tabel 5.13	Hasil Kuat Deasak Beton Dengan Jenis Beton Batu Lintang (Kalsit)	
	15% Umur 28 Hari	76
Tabel 5.14	Perhitungan Berat Jenis Beton Untuk Beton Batu Lintang 15% Umur	
	28 Hari	77
Tabel 5.15	Hasil Kuat Deasak Beton Dengan Jenis Beton Batu Lintang (Kalsit)	
	20% Umur 28 Hari	78
Tabel 5.16	Perhitungan Berat Jenis Beton Untuk Beton Batu Lintang 20% Umur	
	28 Hari	79
Tabel 5.17	Data Kuat Desak Karakteristik (f ^l c) Variasi Batu Lintang	80
Tabel 5.18	Data Kuat Desak Karakteristik Rata-rata (fcr) Variasi Batu Lintang	81
Tabel 5.19	Berat Jenis Beton Terhadap Variasi Batu Lintang	82
Tabel 5.20	Hacil Kuat Tarik Reton Dengan Jenis Reton Tanna Ratu	

	Lintang(Kalsit) 0%	84
Tabel 5.21	Hasil Kuat Tarik Beton Dengan Jenis Beton Dengan Batu Lintang	
	(Kalsit) 5%	84
Tabel 5.22	Hasil Kuat Tarik Beton Dengan Jenis Beton Dengan Batu Lintang	
	(Kalsit) 10%	84
Tabel 5.23	Hasil Kuat Tarik Beton Dengan Jenis Beton Dengan Batu Lintang	
	(Kalsit) 15%	84
Tabel 5.24	Hasil Kuat Tarik Beton Dengan Jenis Beton Dengan Batu Lintang	
	(Kalsit) 20%	85
Tabel 5.25	Kuat Tarik Karakteristik Rata-rata (f ¹ ct) Variasi Batu Lintang	85
Tabel 5.26	Nilai Koefisien Hubungan Antara Kuat Tarik Dengan Kuat Desak	
	Beton	88

DAFTAR LAMPIRAN

Lembar Konsultasi Lampiran 1 Lampiran 2 Data Pemeriksaan Berat Volume Agregat Halus "SSD" Lampiran 3 Data pemeriksaan Berat Jenis Agregat Halus Lampiran 4 Data Pemeriksaan Modulus Halus Butir Pasir Lampiran 5 Data Pemeriksaan Berat Jenis Agregat kasar Data Pemeriksaan Berat Volume Agregat Kasar "SSD" Lampiran 6 Lampiran 7 Hasil Pengujian kadar air beton Lampiran 8 Hasil Pengujian Kuat desak silinder beton Lampiran 9 Hasil Pengujian Kuat Tarik silinder beton Lampiran 10 Foto-foto penelitian

Abstraksi

Beton merupakan bahan bangunan yang banyak digunakan dalam dunia konstruksi. Hal ini disebabkan karena beton selain harganya relatif murah juga tidak memerlukan biaya perawatan seperti baja (baja harus selalu di cat pada setiap jangka waktu tertentu untuk mencegah karat), serta tahan lama karena tidak busuk atau berkarat. Bahan beton diperoleh dengan cara mencampurkan semen Portland, air dan agregat (dan kadang-kadang bahan tambah, yang sangat bervariasi mulai dari bahan kimia tambahan, serat, sampai bahan buangan non-kimia) pada perbandingan tertentu.

Beton yang baik adalah beton yang mempunyai kuat desak yang tinggi kuat tarik tinggi, kuat lekat tinggi, rapat air, tahan ausan, tahan cuaca (panasdingin, sinar matahari, hujan), tahan terhadap zat-zat kimia (terutama sulfat), susutan pengerasannya kecil, elastisitasnya (modulus elastis) tinggi, sifat paling penting dari beton pada umumnya adalah kuat desak. Kuat desak beton biasanya berhubungan dengan sifat-sifat lain, maksudnya bila kuat desaknya tinggi, sifatsifat yang lainnya juga baik. Berbagai Penelitian yang telah dilakukan untuk menghasilkan beton dengan kuat desak dan kuat tarik beton yang tinggi. Penelitian vang telah dilakukan diantaranya vaitu penelitian tentang pengaruh penambahan batu lintang (kalsit) kedalam campuran adukan beton. Batu lintang (kalsit) dijadikan sebagai bahan tambah yang berfungsi sebagai pengisi pori. Selain itu batu lintang (kalsit) dapat meningkatkan kuat desak beton. penelitian vang telah dilakukan diperoleh kuat desak paling maksimum pada variasi batu lintang 5% yaitu sebesar 10,101% (50,871 Mpa), walaupun demikian terjadi penurunan kuat desak beton dengan menggunakan batu lintang > 5%. Pada kuat desak beton dengan variasi batu lintang 5% diperoleh hasil bahwa penggunaan batu lintang dapat mengurangi kebutuhan semen sebesar 35,2 kg dari berat total semen sebesar 704 kg untuk setiap-1 m³ adukan beton.

BABI

PENDAHULUAN

1.1. Latar belakang

Hampir di setiap bangunan teknik sipil, konstruksi beton selalu digunakan, baik itu untuk bangunan gedung jembatan, jalan raya, dan lain sebagainya. Banyaknya penggunaan konstruksi dalam dunia teknik sipil tentunya karena pertimbangan-pertimbangan bahwa konstruksi beton adalah kuat, awet, dan mudah dibentuk sesuai dengan keinginan sipemakai dibandingkan dengan konstruksi lain misalnya konstruksi baja.

Untuk masa-masa yang akan datang kebutuhan beton mutu'tinggi sangat diperlukan. Pada waktu sekarang ini saja, banyak bangunan gedung yang bertingkat tinggi dan tentu saja ini memerlukan perencanaan struktur yang kuat.

Melihat kenyataan untuk waktu yang akan datang dimana lahan-lahan pembangunan semakin sempit dan pembangunan gedung kearah vertical merupakan satu-satunya dan ini membutuhkan beton yang bermutu tinggi.

Pembuatan beton berasal dari bahan susun yang terdiri dari agregat halus, kasar, dan semen sebagai bahan pengikat. Kekuatan dari beton tidak terlepas dari jenis dan gradasi bahan susunnya

Untuk menggalakan pemanfaatan sumber daya alam yang ada maka diupayakan batu lintang (kalsit) yang berasal dari gunung kidul dapat

dimanfaatkan sebagai bahan tambah yang berguna. Pemanfaatan batu lintang salah satunya sebagai bahan pembuatan campuran beton. Penggunaan batu lintang (kalsit) sebagai bahan tambahan yang dicampurkan didalam adukan beton bertujuan untuk mengurangi jumlah kadar semen dalam campuran beton sehingga di dapatkan beton yang kedap air dengan mutu yang tinggi.

Batu lintang mempunyai sifat fisik antara lain warnanya segar putih transparan, sebagian dijumpai dalam warna coklat, kilap kaca, belokan tiga arah, agak keras, agak kompak, dan ukuran kristal bervariasi 2 – 5 cm.

1.2 Keaslian Penelitian

Penelitian pemanfaatan batu lintang gunung kidul sebagai filler belum pernah dilakukan, jadi penelitian ini bisa dipertanggung jawabkan keasliannya.

1.3 Rumusan masalah

Permasalahannya adalah pengaruh persentase pemakaian hatu lintang (kalsit) terhadap berat semen terhadap kuat desak, kuat tarik beton dan beton kedap air yang dihasilkan.

1.4 Tujuan penelitian

 Mengetahui perbedaan kuat desak dan kuat tarik beton dengan menggunakan batu lintang gunung kidul dan tanpa menggunakan batu lintang.

- 2. mengetahui persentase batu lintang pada campuran beton yang menghasilkan kuat desak dan kuat tarik beton paling maksimum.
- 3. Mengetahui persentase kandungan air dan porositas beton normal dengan beton campuran batu lintang.

1.5 Manfaat penelitian

- Sebagai acuan pembuatan beton mutu tinggi dengan kondisi material yang ada di Yogyakarta,
- Dapat diketahui optimasi penggunaan bahan tambah dalam pembuatan beton mutu tinggi sehingga diperlukan efisiensi terhadap penggunaan volume bahan yang di pakai,
- 3. Dari penelitian akan di dapat proporsi campuran beton mutu tinggi yang lebih sensitif terhadap perubahan sifat bahan campurannya,

1.6 Batasan masalah

Agar penelitian ini terarah sesuai dengan tujuan penelitian sehingga perlu diberi batasan-batasan sebagai berikut :

- 1. Mutu beton rencana yang digunakan f'c = 45 Mpa,
- Agregat kasar yang digunakan asal Krasak, dengan diameter maksimum
 mm,
- Agregat halus yang digunakan asal Kaliurang, dengan diameter maksimum
 mm,

- 4. Air yang digunakan berasal dari laboratorium bahan konstruksi teknik FTSP UII,
- 5. Semen (PC) digunakan tipe I merk Nusantara dengan kemasan 50 kg/sak,
- Pemeriksaan Beton hanya sebatas pada nilai slump, kuat desak beton dan kuat tarik beton umur 28 hari,
- 7. Metode pencampuran beton menggunakan metode DOE,
- 8. jumlah benda uji untuk uji desak 75 buah dengan 5 variasi filler (0%; 5%; 10%; 15%; 20%) dari berat semennya, masing-masing variasi 15 buah,
- 9. jumlah benda uji untuk uji tarik 15 buah dengan 5 variasi filler (0%; 5%; 10%; 15%; 20%) dari berat semennya, masing-masing variasi 3 buah,
- 10. Jumlah benda uji untuk uji kandungan air 10 buah dengan 5 variasi filler (0%; 5%; 10%; 15%; 20%) dari berat semennya, masing-masing variasi 2 buah,
- 11. bahan tambah (filler) dari gunung kidul, lolos saringan nomor 200.

BAB II

TINJAUAN PUSTAKA

2.1 Penelitian Batu lintang (Kalsit)

Dinas Pertambangan Jogjakarta (1996)

Kalsit merupakan bahan galian yang sangat lunak, sehingga mudah untuk ditambang secara tradisional. Kalsit mempunyai kandungan CaCo₃ nya relatif tinggi sedangkan kadar SiO₂ nya rendah, sehingga cocok sebagai bahan untuk industri seperti semen, agen pemutih, kaca dan lain-lain.

Batu lintang (kalsit) dapat dimanfaatkan untuk industri – industri antara lain :

- Industri bahan gelas dengan syarat kandungan kimia CaO sekitar 55,20% dan kandungan kimia Fe₂O₃ sekitar 0,03,
- Industri semen dengan syarat kandungan kimia CaO sekitar 55% dan kandungan kimia MgO sekitar 2%,
- 3. Industri soda abu dengan syarat kandungan $CaCO_3$ sekitar 90,9% dan kandungan kimia $Fe_2O_3 + Al_2O_3 + SiO_2 = 0,30\%$,
- 4. Sebagai pemutih untuk industri kertas dan karet dengan kandungan kimia CaCO₃ = 98%,
- 5. Industri keramik dengan kandungan kimia $CaCO_3 = 96\%$ dan kandungan kimia $SiO_2 = 1\%$,

6. Industri cat dengan syarat kandungan kimia CaCO3 sekitar 95%.

2.2 Hasil penelitian yang pernah dilakukan

SRI ASMORO SIGIT & NUGROHO IMAN S (1995)

Penelitian yang dilakukan oleh Sri Asmoro Sigit dan Nugroho Iman bertujuan untuk mengetahui perbedaan kuat desak mortar yang menggunakan fly ash dengan mortar tanpa fly ash. Tujuan lainnya untuk mengetahui kuat desak pada variasi perbandingan fly ash terhaap mortr semen.

Pembuatan sampel mortar sebanyak 6 buah untuk setiap adukan, dengan ukuran 70 mm x 70 mm x 70 mm. Tiga buah sampel di rawat pada suhu kamar dan tiga buah sampel dirawat pada suhu oven (60°C). pengujian dilakukan pada benda uji berumur 28 hari. Adukan pertama menggunakan perbandingan volume 1 semen, 3 pasir, dan volume fly ash dari 0 sampai 0,5 dengan' interval 0,1. Adukan lainnya dilakukan sampai adukan kelima dengan perubahan volume pasir berinterval satu pada setiap adukan, sedangkan volume semen dan fly ash sama seperti adukan pertama. Hasil dari penelitian ini menunjukan bahwa pada perbandingan (1; 4:0,2) akan mengalami kenaikan kuat desak maksimum sebesar 71,9645% pada suhu kamar dan 81,38315 pada perlakuan suhu oven.

A.HERU & R. WIJANARKO, (2000)

Penelitian yang dilakukan oleh A. Heru dan R.Wijanarko menggunakan 4 buah benda uji berbentuk silinder masing-masing 2 buah silinder beton tanpa limbah keramik dan 2 buah lainnya dengan variasi 10% limbah keramik kasongan

dari berat semennya (90% + 10% limbah keramik kasongan). Pengujian dilakukan pada umur beton 9 hari, diperoleh kuat desak beton dengan variasi 10% limbah keramik kasongan sebesar 11,317 Mpa, sedangkan beton tanpa limbah keramik kasongan diperoleh kuat desak 10,854 Mpa. Dari data diatas, didapatkan persentase kenaikan kuat desak beton dengan penggunaaan bahan pengganti semen berupa limbah keramik kasongan sebesar 12,212%.

2.3 Beberapa literatur yang menunjang penelitian.

Wang. C.K.dan C.G. Salmon, (1985) mengemukakan kekuatan tekan beton ditentukan oleh pengaturan dari perbandingan semen, agregat kasar. dan halus, air dan berbagai jenis campuran semakin rendah perbandingan air semen, semakin tinggi kuat tekannya.

Dipohusodo, (1994), menyatakan bahwa nilai kuat tekan beton didapatkan melalui tata cara pengujian standar, menggunakan mesin uji dengan cara memberikan beban tekan bertingkat dengan kecepatan peningkatan beban tertentu atas benda uji silinder beton (diameter 150 mm, tinggi 300 mm) sampai hancur.

E.G.Nawy, (1985), mengemukakan bahan-bahan seperti kapur hidrolis, semen slag, fly ash, dan pozollan dapat dipakai sebagai bahan tambahan penghalus gradasi karena bahan ini mampu memperhalus perbedaan-perbedaan pada campuran beton dengan memberikan ukuran butir yang tidak ada atau kurang pada agregat.

Popovic, (1998), menyatakan bahwa kuat desak beton dipengaruhi oleh porositas yang terdiri dari pori gel, pori kapiler, dan pori udara, semakin besar porositas maka semakin kecil kuat desak beton yang terjadi.

 λ_{i}^{-q}

BAB III

LANDASAN TEORI

3.1 Umum

Klasifikasi beton berdasarkan kuat desak karakteristik benda uji silinder umur 28 hari adalah sebagai berikut:

- 1. Normal strength fc < 40 Mpa. (mutu normal)
- 2. High strength fc = 40 100 Mpa. (mutu tinggi).
- 3. Very high strength = 100 150 Mpa. (mutu sangat tinggi).
- 4. Ultra high strength > 150 Mpa. (mutu paling tinggi).

Jenis material dasar yang digunakan untuk menghasilkan beton mutu tinggi ini secara prinsip tidak banyak berbeda dengan jenis material dasar yang digunakan untuk memproduksi beton mutu normal. Beton merupakan material komposit yang bersifat sangat heterogen yang terdiri atas unsurunsur seperti pasta semen, agregat, zona kontak antar agregat – pasta dan rongga-rongga kosong atau voids. Oleh karena itu perilaku beton akan dipengaruhi oleh karakteristik unsur-unsur penyusunnya tersebut. (Suhud, 1999).

Beton mutu tinggi mempunyai sifat-sifat seperti kandungan semen tinggi, rasio air semen rendah, penggunaan agregat yang mutunya lebih kuat,

dan penggunaan bahan tambah mineral atau bahan tambah kimia. (Wahyudi dan Rahim, 1997).

beton merupakan campuran semen portland, pasir, kerikil, dan air. Semen Portland dan air setelah bertemu akan bereaksi, butir-butir semen bereaksi dengan air menjadi gel yang dalam beberapa hari menjadi keras dan saling merekat.

Agregat Yaitu pasir dan kerikil tidak mengalami proses kimia, melainkan hanya sebagai bahan pengisi saja yaitu sebagai bahan yang dilekatkan. Air, semen Portland, dan pasir akan menghasilkan suatu campuran yang plastis (antara cair dan padat) dan dapat dituang kedalam cetakan untuk membentuknya menjadi bentuk yang diinginkan.

Pasir dan kerikil merupakan agregat sebagai komponen yang dilekat, sementara pasta adalah komponen perekat. Jika agregat direkat menjadi satu maka dinamakan beton. Adukan semen Portland dan air membentuk pasta. Pasta ini berfungsi untuk mengisi pori-pori diantara pasir dan kerikil dan berfungsi sebagai pengikat dalam proses pengerasan akibat ikatan ini antar agregat menjadi saling terikat kompak, kuat dan padat.

Untuk mendapatkan mutu beton yang baik, maka harus dipilih unsurunsur pembentuk beton yang sesuai dengan persyaratan yang berlaku serta dalam tahap pelaksanaan pembuatan dan perawatannya harus mendapat perhatian yang baik pula.

Teknologi beton bukanlah teknologi yang statis namun terus berkembang sejalan dengan perkembangan pembangunan khususnya di bidang konstruksi. Penelitian untuk mendapatkan suatu alternatif baru dalam teknologi beton perlu sekali dilaksanakan. Tujuannya untuk mendapatkan suatu beton dengan kuat desak yang tinggi dengan menggunakan semen yang seefisien mungkin. Penambahan bahan pozzolan merupakan salah satu alternatif untuk mendapatkan kuat desak beton yang baik pada kurun waktu yang lama. Bahan tambah ini dapat membuat beton lebih tahan terhadap garam, sulfat dan air asam. Laju kenaikan kekuatannya lebih lambat daripada beton normal. Pada umur 28 hari kuat tekannya lebih rendah daripada beton normal, namun setelah 90 hari kuat tekannya dapat sedikit lebih tinggi. (Ir. Kardivono Tjokrodimulyo, M.E.)

Sisa reaksi antara semen dan air menghasilkan senyawa baru yaitu kalsium hidroksida. Air bersih mengalir mengenai beton, lama-kelamaan akan melarutkan kalsium hidroksida {Ca(OH)₂}. Air yang mengandung CO₂ bereaksi dengan {Ca(OH)₂} menghasilkan senyawa Ca(HCO₃)₂ yang merupakan salah satu senyawa yang mudah larut dan proses reaksinya akan berulang pada lapisan lebih dalam. Senyawa ini sedikit demi sedikit akan menyerang dan merusak senyawa-senyawa lain dari semen dalam betonnya atau sering disebut korosi beton. Pelarutan dari kalsium hidroksida dapat dicegah dengan diusahakan betonnya rapat dan kalsium hidroksida di ubah menjadi senyawa yang tidak larut (Subakti, 1995).

3.2 Semen Portland

Semen Portland adalah semen hidrolis yang dihasilkan dengan cara menghaluskan klinker yang terutama terdiri dari silikat-silikat kalsium yang bersifat hidrolis dengan gips sebagai bahan tambah (PUBI-1982). Semen merupakan bahan ikat yang apabila dicampur dengan air akan menimbulkan reaksi kimia antara unsur-unsur penyusun semen. Reaksi-reaksi ini akan menghasilkan bermacam-macam senyawa kimia yang menyebabkan ikatan dan pengerasan. (Kardiyono Tjokrodimuljo).

Reaksi kimia antara semen Portland dengan air menghasilkan senyawa yang disertai dengan pelepasan panas. Kondisi ini mengandung resiko besar terhadap penyusutan kering beton dan kecendrungan retak pada beton. Reaksi semen dengan air dibedakan menjadi dua periode, yaitu periode pengikatan dan periode pengerasan. Pengikatan merupakan peralihan dari keadaan plastis ke keadaan keras, sedangkan pengerasan adalah penambahan kekuatan setelah proses pengikatan selesai, susunan unsur kimia semen biasa dapat dilihat pada 3.1.

Tabel 3.1. susunan unsur semen tipe I

Oksida	Persen
Kapur, CaO	69 – 65
Silika, SiO ₂	17 – 25
Alumina, Al ₂ O ₃	3 – 8
Besi, Fe ₂ O ₃	0.5 - 6
Magnesium, MgO	0,5-4
Sulfur. SO₃	1-2
Soda/potash Na ₂ O + K ₂ O	0,5 - 1

3.3 Agregat

Agregat adalah butiran mineral alami yang berfungsi sebagai bahan pengisi dalam campuran beton. Komposisi agregat kurang lebih 70% dari volume beton. sehingga sifat-sifat beton sangat dipengaruhi oleh sifat agregatnya. Sifat yang penting dari suatu agregat adalah kekuatan hancur dan ketahanan terhadap benturan.

Agregat harus mempunyai kestabilan kimiawi, tahan terhadap keausan, dan tahan terhadap pengaruh cuaca. Agregat yang akan digunakan pada adukan beton ada dua seperti berikut ini:

1. Agregat kasar (kerikil)

Agregat kasar mempunyai ukuran butiran antara 5 – 40 mm. Sifat agregat kasar berpengaruh terhadap kekuatan beton sehingga harus mempunyai bentuk yang baik, bersih, kuat dan bergradasi baik. Agregat kasar dapat diperoleh dari batu pecah, kerikil alami, serta agregat buatan.

2. Agregat halus (pasir)

Agregat halus merupakan butiran mineral alami yang berfungsi sebagai bahan pengisi dalam campuran beton. Agregat halus memiliki ukuran butiran antara 0,15 – 5 mm, agregat sangat berperan dalam menentukan kemudahan pengerjaan ("workability"), kekuatan ("strength"), dan tingkat keawetan ("durability"). Agregat halus yang baik adalah yang terbebas dari beberapa bahan organik, lempung dan bahan-bahan lain yang dapat merusak beton. Agregat halus

seharusnya mempunyai butir-butir yang tajam, keras dan butirannya tidak mudah pecah karena cuaca.

3.4 Air

Air merupakan bahan dasar pembuat beton yang penting. Dalam campuran beton, air mempunyai dua buah fungsi, yang pertama untuk memungkinkan reaksi kimia yang menyebabkan pengikatan dan berlangsungnya pengerasan, dan kedua sebagai pelincir campuran kerikil, pasir, dan semen agar mudah di kerjakan dan dipadatkan. (Murdock dan Brook, 1991).

Untuk bereaksi dengan semen, air yang diperlukan hanya sekitar 25% dari berat semen. Tetapi dengan nilai faktor air semen yang kecil, adukan beton akan sulit dikerjakan, maka diberi kelebihan jumlah air yang dipakai sebagai pelumas. Tambahan air untuk pelumas ini tidak boleh terlalu banyak karena kekuatan beton menjadi rendah. (Kardiyono Tjokrodimuljo, 1992).

Persyaratan air yang digunakan dalam adukan beton adalah sebagai berikut :

- 1. Tidak mengandung Lumpur dan benda melayang lainnya.
- Tidak mengandung garam-garam yang dapat merusak beton (asam, zat organik dan sebagainya) lebih dari 15 gram/liter.
- 3. Tidak mengandung khlorida (Cl) lebih dari 0,5 gram/liter.
- 4. tidak mengandung senyawa sulfat lebih dari 1 gram/liter.

3.5 Filler

Filler adalah bahan berbutir halus yang dipakai sebagai pengisi pada pembuatan campuran beton. Bahan filler dapat berupa debu batu kapur, semen portlandatau bahan lain.

Filler merupakan bagian agregat yang digunakan dalam campuran beton. Pengertian filler itu sendiri yaitu fraksi agregat halus yang berfungsi sebagai butir pengisi dalam pembuatan beton yang lolos saringan no. 200 (0.074 mm).

Pemberian filler pada campuran beton mengakibatkan beton mengalami berkurangnya kadar pori. Partikel filler menempati rongga diantara partikel-partikel yang lebih besar, sehingga ruang diantara partikel-partikel besar menjadi berkurang. Secara umumnya penambahan filler ini dimaksudkan untuk menambah stabilitas serta kerapatan dari campuran beton.

Filler yang akan digunakan pada penelitian ini adalah batu lintang (Kalsit) dari gunung kidul dengan komposisi kandungan kimia dapat dilihat pada tabel 3.2.

Tabel 3.2 komposisi unsur kimia batu lintang (kalsit)

Oksida	Persen
CaCO ₃	99,12 - 99,45
CaO	55,45 – 55,69
HD	3,76 – 4,67
Fe ₂ O ₃	0 - 0.24
TiO ₂	0.19 - 0.23
MgO .	0.06 - 0.17
SiO ₂	0 - 0.01

- 3. Kilap kaca,
- 4. Agak keras,
- 5. Ukuran kristal maksimum 2 5 cm.

3.6 Perhitungan campuran beton

Pada penelitian ini menggunakan metode DOE (Department of Environment) sebagai metode perancangan beton. Metode ini digunakan karena menyarankan suatu cara perancangan campuran yang memperlihatkan nilai ekonomi, bahan yang tersedia, kemudahan pekerjaan, keawetan serta kekuatan yang diinginkan. Cara DOE ini melihat kenyataan bahwa pada ukuran maksimum agregat tertentu, jumlah air permeter kubik adukan beton menentukan tingkat konsistensi/kekentalan adukan beton.

Tahapan-tahapan perhitungan perancangan campuran beton berdasarkan metode DOE (Triono Budi Astanto, 2001) sebagai berikut :

- Menetapkan kuat tekan beton yang disyaratkan pada umur 28 hari (f'c).
 Kuat tekan beton ditetapkan sesuai dengan persyaratan perencanaan strukturnya dan kondisi setempat di lapangan.
- 2. Menetapkannilaideviasi standar (sd)

Standar deviasi ditetapkan berdasarkan tingkat mutu pengendalian pelaksanaan pencampuran betonnya, makin baik mutu pelaksanaan makin kecil nilai deviasi standar.

a. jika pelaksana tidak mempunyai data pengalaman ataumempunyai pengalaman kurang dari 15 buah benda uji, maka nilai deviasi standar diambil dari tingkat pengendalian mutu pekerjaan pada tabel 3.3.

Tabel 3.3 tingkat pengendalian mutu pekerjaan.

Tingkat pengendalianmutu pekerjaan	SD (Mpa)
Memuaskan	2,8
Sangat baik	3,5
Baik	4,2
Cukup	5,6
Jelek	7,0
Tanpa kendali	8,4

b. Jika pelaksana mempunyai data pengalaman pembuatan beton serupa minimum 30 buah silinder yang diuji kuat tekan rata-ratanya pada umur 28 hari, maka jumlah data dikoreksi terhadap nilai deviasi standar dengan suatu faktor pengali, dapat dilihat pada tabel 3.4.

Tabel 3.4 Faktor Pengali Deviasi Standar

Jumlah data	30,0	25,00	20,00	15,00	< 15
Faktor pengali	1,0	1,03	1,08	1,16	Tidak boleh

3. Menghitung nilai tambah margin (M)

$$M = K \cdot Sd. \tag{3.1}$$

Keterangan:

M = nilai margin

K = 1,64

Sd = standar deviasi

Rumus diatas berlaku jika pelaksana mempunyai data pengalaman pembuatan beton yang diuji kuat tekannya pada umur 28 hari. Jika tidak

mempunyai data pengalaman pembuatan beton atau mempunyai pengalaman kurang dari 15 benda uji, nilai M langsung diambil 12 Mpa.

4. Menetapkan kuat tekan rata – rata yang direncanakan

$$f^{i}cr = f^{i}c + M \tag{3.2}$$

keterangan:

f'cr = kuat tekan rata-rata

 $f^{i}c = kuat tekan yang disyaratkan$

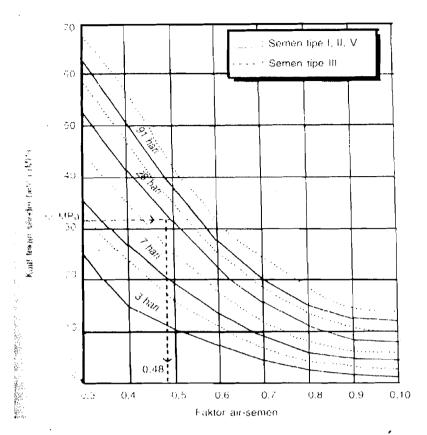
M = nilai tambah

5. Menetapkan jenis semen

Sesuai dengan tujuan pemakaiannya, semen portland di Indonesia (SII 0013-81) di bagi menjadi 5 jenis .

- a. jenis I, yaitu jenis semen biasa yang cepat mengeras.
- b. jenis II, yaitu jenis semen yang tahan terhadap sulfat dan panas hidrasi sedang.
- c. Jenis III, yaitu jenis semen untuk struktur yang menuntut kekuatan yang tinggi atau cepat mengeras.
- d. Jenis IV, yaitu jenis semen yang menunutut panas hidrasi yang rendah.
- e. Jenis V, yaitu jenis semen yang sangat tahan terhadap sulfat.

6. Menetapkan jenis agregat (pasir dan kerikil)


Menurut peraturan SK-SNI- T-15-1990-03 kekasaran pasir dapat dibagi menjadi empat kelompok menurut gradasinya yaitu pasir halus, agak

halus, agak kasar dan kasar. Adapun jenis agregat kasar (kerikil) dibedakan menjadi dua, yaitu kerikil alami dan kerikil batu pecah.

Agregat yang baik butirannya tajam, kuat, bersudut dan tidak mengandung tanah atau kotoran lain yang lewat ayakan 0,075 mm yaitu \leq 5% bagi pembuatan beton sampai 10 Mpa, dan untuk diatas 10 Mpa atau mutu yang lebih tinggi yaitu tidak mengandung zat organik, kotoran yang lewat ayakan \leq 2,5%, terjadi variasi butir atau gradasi tidak bersifat kekal, tidak hancur dan tingkat reaktif yang negatif terhadap alkali. Agregat kasar butir yang pipih dan panjang harus kurang dari 20% berat.

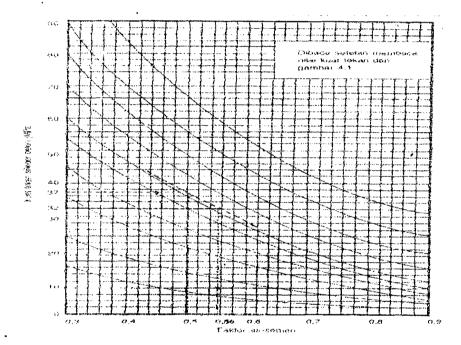
7. Menetapkan faktor air semen

Cara menetapkan faktor air semen diperoleh dari nilai terendah ketiga cara.

Gambar 3.1. hubungan faktor air semen dan kuat tekan rata-rata silinder beton (Triono Budi Astanto, 2001).

Cara pertama

Misal, kuat tekan silinder (f'c' = 32 Mpa) dan pada saat umur beton 28 hari. Jenis semen tipe 1 atau garis utuh. Caranya tarik garis lurus dan memotong 28 hari di dapatkan faktor air semen, yaitu 0,48. jadi FAS pertama -0,48 dapat dilihat pada gambar 3.1.


Cara kedua;

Di ketahui jenis semen I, jenis agregat kasar batu pecah. Kuat tekan rataratanya pada umur 28 hari, maka digunakan tabel 3.5.

Tabel 3.5 Perkiraan Kuat Tekan Beton (Mpa) dengan faktor air semen 0,5

Jenis	Jenis agregat	Umur beton (hari)			
semen	4 /4 44 44		7	28	91
1, 11,	Alami	17	23	33	40
HI	Batu pecah	19	27	37	45
!	Alami	21	28	38	44
III	Batu pecah	25	33	44	48

Dari tabel di atas diperoleh nilai kuat tekan = 37 Mpa, yaitu jenis semen I, kerikil batu pecah dan umur beton 28 hari. Kemudian, dengan faktor air semen 0,5 dan fⁱcr = 37 Mpa, dengan menggunakan grafik pada gambar 3.2

Gambar 3.2 Grafik mencari faktor air semen. (Triono Budi Astanto, 2001)

Caranya, tarik garis ke kanan mendatar 37, tarik garis ke atas 0,5 dan berpotongan pada titik Λ . buat garis putus-putus dimulai dari titik Λ ke atas dan ke bawah melengkung seperti garis yang di atas dan di bawahnya. Sekarang dengan fⁱcr = 32 tarik ke kanan memotong garis

putus yang dibuat tadi di B dan tarik ke bawah maka diperoleh faktor air semen yang baru yaitu = 0,56. Jadi FAS kedua = 0,56.

Cara ketiga:

Dengan melihat persyaratan untuk berbagai pembetonan dan lengkungan khusus, beton yang berhubungan dengan air tanah mengandung sulfat dan untuk beton bertulang terendam air . Dapat dilihat pada tabel 3.6, 3.7, dan 3.8.

Dengan cara ini diperoleh:

- a. Untuk pembetonan di dalam ruang bangunan dan keadaan keliling non korosif = 0,60.
- b. Untuk beton yang berhubungan dengan air tanah, dengan jenis semen tipe I tanpa pozolan untuk tanah yang mengandung SO_3 antara 0.3 1.2 maka FAS yang diperoleh = 0.50.
- c. Untuk beton bertulang dalam air tawar dan tipe semen I, yaitu faktor air semennya = 0,50.

Dari ketiga cara di atas diperoleh masing-masing 0.6; 0.5; dan 0.5 diambil harga yang terendah yaitu = 0.5; maka diperoleh faktor air semennya -0.5.

Tabel 3.6 Persyaratan faktor air semen maksimum untuk berbagai pembetonan dan lingkungan khusus

Jenis pembetonan	FAS maksimum
Beton di dalam ruang bangunan:	
a. keadaan keliling non korosif	0,60
b. keadaan keliling non korosif, disebabkan	
oleh kondensasi atau uap korosi	0,52
Beton diluar ruang bangunan:	
a. Tidak terlindung dari hujan dan terik	
matahari langsung	0,55
b. Terlindung dari hujan dan terik matahari	
langsung	0,60
Beton yang masuk ke dalam tanah:	
a. Mengalami keadaan basah dan kering	
berganti-ganti	0,55
b. Mendapat pengaruh sulfat dan alkali dari	
tanah	lihat tabel
Beton yang selalu berhubungan dengan air	
tawar/payau/laut	lihat tabel

Tabel 3.7 Faktor Air Semen untuk Beton Bertulang dalam Air

Berhubungan dengan	Tipe semen	Faktór air semen
Air tawar	Semua tipe I- V	0,5
Air payau	Tipe I + pozzolan (15-40%)	0,45
	atau S.P. pozolan	
	tipe II atau V	0,5
Air íaut	Tipe II atau V	0,45

Tabel 3.8 faktor Air Semen Maksimum Untuk Beton yang Berhubungan dengan Air Tanah yang Mengandung Sulfat.

K	Consentrasi sulfat (SO	3)		
Dalam tanah			jenis semen	FAS maksimal
Total SO ₃ %	SO ₃ dalam campuran Air: tanah -2:1	SO ₃ dalam air tanah (g/l)		
< 0,2	< 1,0	< 0,3	Tipe I, dengan atau tanpa pozolan (15-40%)	0,50
0,2 - 0,5	1,0 - 1,9	0,3 - 1,2	Tipe I tanpa → pozolan Tipe I dengan pozolan (15-40%) atau S.P pozolan	0,50 0,55
0,5 - 1,0	1,9 - 3,1	1,2 - 2,5	tipe II atau V Tipe I dengan pozolan (15-40%) atau semen Portland pozolan	0,55
1,0 - 2,0 > 2,0	3,1 - 5,6 > 5,6	2,5 - 5,0 > 5,0	tipe II atau V Tipe II atau V Tipe II atau V dan lapisan pelindung	0,45 0,45 0,45

8... Menetapkan faktor air semen maksimum

Dengan cara pertama diperoleh faktor air semen = 0,48

Dengan cara kedua diperoleh faktor air semen = 0.56

Dengan cara ketiga diperoleh faktor air semen = 0,50

Dalam perhitungan, digunakan faktor air semen yang terendah, yaitu 0,48

Tabel 3.9 Penetapan nilai slump (cm)

Pemakaian beton	Maksimum	Minimum
Dinding, pelat fondasi, dan fondasi telapak bertulang	12,5	5,0
Fondasi telapak tidak bertulang	,	
Kaison, dan struktur di bawah tanah	9,0	2,5
Pelat, balok, kolom dan dinding	15,0	7,5
Pengerasan jalan	7,5	5,0
Pembetonan masal	7,5	2,5

9. Menetapkan nilai slump

Dari tabel 3.9 untuk balok dan kolom nilai slumpnya antara 7,5 – 15,0.

Penerapan angka di atas memperhatikan pelaksanaan pembuatan, pengangkutan, penuangan, pemadatan, jenis strukturnya, dialirkan dengan pipa terpompa dan dipadatkan dengan alat getar.

10. Menetapkan ukuran besar butir agregat maksimum (kerikil).

Penetapan butir maksimum diperoleh melalui pengayakan dan memperhatikan nilai terkecil dari ketentuan-ketentuan di bawah ini, yaitu:

- a. ¾ kali jarak bersih minimum antar tulangan atau berkas baja tulangan atau tandon prategang atau selongsong.
- b. 1/3 kali tebal pelat
- c. 1/5 jarak terkecil antara bidang samping cetakan.

Untuk penetapan butir maksimum dapat menggunakan diameter maksimum 40 mm, 30 mm, 20 mm, dan 10 mm.

11. Menetapkan kebutuhan air

Untuk menetapkan kebutuhan air per meter kubik beton digunakan tabel 3.10 dan dilanjutkan dengan perhitungan:

Tabel 3.10 Perkiraan kebutuhan air per meter kubik beton (liter)

Besar ukuran		Slump (mm)				
maksimum kerikil (mm)	Jenis batuan	0-10	10-30 30-60		60-180	
10	Alami	150	180	205	225	
	Batu pecah	180	205	230	250	
20	Alami	135	160	180	195	
	Batu pecah	170	190	210	225	
40	Alami	115	140	160	175	
	Batu pecah	155	175	190	205	

Dalam tabel diatas, bila agregat halus dan agregat kasar yang dipakai memiliki jenis yang berbeda (alami dan pecahan), maka jumlah air yang diperkirakan diperbaiki dengan rumus:

$$A = 0.67 A_h + 0.33 A_k \tag{3.3}$$

 A_h dan A_k dapat ditentukan dengan melihat tabel 3.11

Dengan: A= jumlah air yang dibutuhkan, liter/m³

 A_h = jumlah air yang dibutuhkan menurut jenis agregat halusnya A_k = jumlah air yang dibutuhkan menurut jenis agregat kasarnya

Tabel 3.11 adalah untuk menentukan nilai $A_h \, dan \, A_k$

Besar ukuran		Slump (mm)				
maksimum kerikil (mm)	Jenis batuan	0-10	10-30	30-60	60-180	
Pasir						
10	Alami	150	180	205	225	
	Batu pecah	180	205	230	250	
20	Alami	135	160	180	195	
	Batu pecah	170	190	210	225	
40 kerikil	Alami	115	140	160	175	
	Batu pecah	155	17 5	19 0	205	
	•					

12. Menetapkan kebutuhan semen

Berat semen per meter kubik beton dihitung dengan cara =

Jumlah air yang dibutruhkan (langkah 11)

Factor air semen maksimum (langkah 8)

13. Menetapkan kebutuhan semen minimum

kebutuhan minimum semen ditetapkan lewat tabel 3.12 dan tabel 3.13 antara lain untuk menghindari beton dari kerusakan akibat lingkungan khusus misalnya lingkungan korotif, air payau, dan air laut.

Tabel 3.12 Kandungan semen minimum untuk beton bertulang dengan air

Berhubungan dengan	Tipe semen	Kandungan semen minimum ukuran maksimum agregat		
dengan		40	20	
Air tawar	Semua tipe I-V	380	300	
Air payau	tipel + pozolan (15-40%)	340	380	
	atau S.P. pozolan	•		
	tipe II atau V	290	330	
Air laut	tipe II atau V	330	370	

Tabel 3.13 Kandungan semen minimum untuk beton yang berhubungan dengan air tanah yang mengandung sulfat

K	Konsentrasi sulfat (SO ₃)			Kand.	semen	
Da	alam tanah		jenis semen	minimum (kg))
				Ukura	n maksi	imum
Total	SO ₃ dalam	SO ₃ dalam		agrega	ıt (mm)	
SO₃%	campuran	air tanah		-		
	Air : tanah =2:1	(g/l)		40	20	10
< 0,2	< 1,0	< 0,3	Tipe I, dengan atau tanpa	200	300	350
*1			pozolan (15-40%)			
0,2 - 0,5	1,0 - 1,9	0,3 - 1,2	Tipe I tanpa → pozolan	290		
			Tipe I dengan pozolan (15-	l	330	380
			40%) atau S.P pozolan			
			tipe II atau V	250		
0,5 - 1,0	1,9 - 3,1	1,2 - 2,5	Tipe I dengan pozolan (15-	340		430
			40%) atau semen Portland		290	430
			pozolan		380	
			tipe II atau V	290	330	380
1,0 - 2,0	3,1 - 5,6	2,5 - 5,0	Tipe II atau V	330	370	420
> 2,0	> 5,6	> 5,0	Tipe II atau V dan lapisan	330	370	420
			pelindung	_		

Tabel 3.14 Kandungan semen minimum untuk berbagai pembetonan dan lingkungan khusus

Jenis Pembetonan	
Beton di dalam ruang bangunan:	
a. Keadaan keliling nonkorosif	275
b. Keadaan keliling korosif, disebabkan oleh kondensasi	
atau uap korosif	
Beton di luar ruang bangunan:	
a. Tidak terlindung dari hujan dan terik matahari langsung	325
b. Terlindung dari hujan dan terik matahari langsung	275
Beton yang masuk kedalam tanah (mengalami keadaan	
basah dan kering berganti-ganti:	325

14. Menetapkan kebutuhan semen yang sesuai

Untuk menetapkan kebutuhan semen lihat langkah 12 (kebutuhan semen dan kebutuhan semen minimumnya; maka harga yang dipakai yang terbesar diantara keduanya).

15. Penyesuaian jumlah air atau faktor air semen

Jika jumlah semen pada langkah 13 dan 14 berubah, maka faktor air semen berubah yang ditetapkan dengan:

- a. Jika akan menurunkan faktor air semen, maka faktor air semen dihitung lagi dengan cara jumlah air dibagi jumlah semen minimum.
- b. Jika akan menaikan jumlah air lakukan dengan cara jumlah semen minimum dikalikan faktor air semen.

16. Menentukan golongan pasir

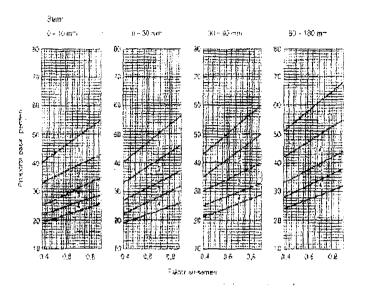
Golongan pasir ditentukan dengan cara menghitung hasil ayakan hingga dapat ditemukan golongannya. Dapat dilihat pada tabel 3.15.

Dalam SK-SNI-T-I5-1990-03 kekasaran pasir dibagi menjadi 4 daerah, yaitu:

Daerah I = pasir kasar

Daerah II = pasir agak kasar

Daerah III = pasir agak halus


Daerah IV = pasir halus

Tabel 3.15 Gradasi pasir

Lubang	Persen berat butir yang lewat ayakan							
ayakan (mm)	Daerah I	Daerah II	Daerah III	Daerah IV				
10,00	100	100	100	100				
48,00	90 – 100	90 – 100	90 – 100	95 – 100				
2,40	60 – 95	75 – 100	85 – 100	95 - 100				
1,20	30 – 70	55 – 90	75 – 100	90 – 100				
.0,50	15 – 34	35 – 59	60 – 79	80 - 100				
0,30	5 – 20	8 - 30	12 – 40	15 - 50				
0,15	0 – 10	0 – 10	0 – 10	0 - 15				

17. Menentukan perbandingan pasir dan kerikil

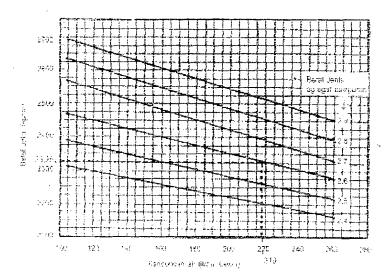
Untuk menentukan perbandingan pasir dan kerikil dicari dengan bantuan grafik dengan melihat nilai slump yang diinginkan, ukuran butir maksimum, zone pasir, faktor air semen Dapat dilihat pada grafik gambar 3.3. (Triono Budi Astanto, 2001).

Gambar 3.3 grafik persentase agregat halus terhadap agregat keseluruhan untuk ukuran butir maksimum 20 mm.

- 18. Menetukan berat jenis campuran pasir dan kerikil
 - a. Jika tidak ada data, maka agregat alami atau pasir diambil 2,7 dan kerikil atau pecahan diambil 2,7.
 - b. Jika mempunyai data, dihitung dengan rumus:

$$P K$$
Bj campuran = X Bj pasir + X Bj kerikil (3.4)
$$100 100$$

Keterangan:


Bj Campuran = Berat jenis campuran

P = Pesentasi pasir terhadap agregat campuran

K = Presentasi kerikil terhadap agregat campuran

19. Menentukan berat beton

Untuk menentukan berat beton digunakan data berat jenis campuran dan kebutuhan air tiap meter kubik, setelah ada data, kemudian dimasukan dalam grafik beton pada gambar 3.4.

Gambar 3.4 Grafik hubungan kandungan air, berat jenis agregat campuran, dan berat beton. (Triono Budi Astanto, 2001).

20. Menentukan kebutuhan pasir dan kerikil

Berat pasir
$$+$$
 berat kerikil $-$ berat beton $-$ air $-$ semen (3.5)

21. Menentukan kebutuhan pasir

Kebutuhan pasir = pasir dan kerikil
$$x$$
 persentasi berat pasir (3.6)

Menentukan kebutuhan kerikil

Kebutuhan kerikil = pasir dan kerikil
$$-$$
 pasir (3.7)

Koreksi dilakukan minimal sekali sehari, karena pasir dan kerikil dianggap dalam keadaan jenuh kering, padahal biasanya dilapangan tidak jenuh kering, maka hitungan koreksinya adalah:

Air =
$$A - (\frac{A_h - A_1}{100}) \times B - (\frac{A_k - A_2}{100}) \times C$$
 (3.8)

Pasir = B +
$$\frac{A_h - A_2}{100}$$
 X B (3.9)

Kerikil =
$$C + (\frac{A_k - A_2}{100}) \times C$$
 (3.10)

Keterangan:

A = Jumlah kebutuhan air (liter/m³)

B = Jumlah kebutuhan pasir (kg/m^3)

C = Jumlah kebutuhan kerikil (kg/m³)

 $A_h = Kadar air sesungguhnya dalam pasir (%)$

 A_k = Kadar air sesungguhnya dalam kerikil (%)

A₁ = Kadar air pada pasir jenuh kering muka (%)

A₂ = Kadar air pada kerikil jenuh kering muka (%)

Setelah semua perhitungan diatas selesai, dibuat kesimpulannya adalah sebagai berikut:

Untuk 1 m³ beton (dengan berat beton kg) dibutuhkan =

Air
$$= \dots$$
 liter

Semen = ...
$$kg (I sak = 50 kg)$$

Pasir = ... kg

Kerikil =... kg

Untuk 1 adukan (digunakan I kantong semen = 50 kg) dibutuhkan =

Air $= \dots$ liter

Semen = I sak = 50 kg)

Pasir $= \dots kg$

Kerikil =... kg

Berat 1 kali adukan = ... kg

3.7 Tahap perawatan beton

Perawatan beton merupakan perawatan untuk menjamin terjadinya proses terjadinya hidrasi semen berlangsung dengan sempurna dengan menjaga kelembaban permukaan beton. Untuk mempertahankan beton supaya berada dalam keadaan basah selama beberapa hari, maka sampel beton diletakan didalam bak perendaman dan direndam dengan air bersih. Lama perendaman dalam penelitian ini adalah sampai beton berumur 27 hari dan sehari dikeringkan.

3.8 Kadar air

kadar air adalah perbandingan antara berat air dengan berat beton.

Dihitung dengan menggunakan rumus dibawah ini:

$$wb - Wk$$

$$kadar air (W) = \frac{100\%}{Wk}$$
(3.11)

Dimana: Wb = berat beton dalam keadaan basah (kg)

Wk = berat beton dalam keadaan kering (kg)

W = kadar air (%)

3.9 kuat desak beton

Kuat desak beton adalah beban persatuan luas, yang menyebabkan benda uji beton hancur bila dibebani dengan gaya desak tertentu. Sifat beton lebih baik jika kuat desaknya lebih tinggi, karena mutu beton hanya ditinjau dari kuat desak saja.

Kuat desak beton dipengaruhi oleh sejumlah faktor selain oleh perbandingan air semen dan tingkat pemadatannya, faktor-faktor tersebut dapat dapat disimak dalam uraian berikut ini (Kardiyono Tjokrodimulyo, 1992).

1. Jenis semen dan kualitasnya.

Jenis dan kualitas semen dapat mempengaruhi kekuatan rata-rata dan kuat batas semen.

2. Jenis dan bentuk bidang permukaan agregat.

Pada kenyataannya menunjukan bahwa penggunaan agregat dengan permukaan kasar akan menghasilkan beton dengan kuat desak yang lebih besar daripada penggunaan agregat kasar dengan permukaan halus.

3. Efisiensi peralatan

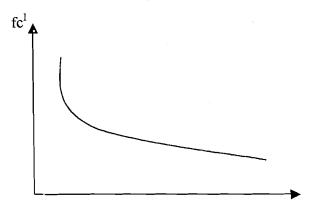
Kehilangan kekuatan sampai 40% dapat terjadi bila pengeringan dilakukan sebelumnya.

4. Faktor umur.

Pada keadaan yang normal kekuatan beton bertambah sesuai dengan umurnya. Pengerasan berlangsung secara terus secara lambat sampai beberapa tahun. Perbandingan kuat desak beton pada berbagai umur dapat dilihat pada tabel 3.16.

Tabel 3.16 Perbandingan kuat desak beton pada berbagai umur untuk benda uji silinder yang dirawat dilaboratorium (DPU, 1989)

Umur beton (hari)	3	7	14	21	28
Semen portland tipe I	0,46	0,7	0,88	0,96	1,00


Sesuai dengan bertambahnya umur beton, kecepatan bertambahnya kekuatan beton juga dipengaruhi oleh antara lain faktor air semen dan suhu perawatan. Semakin tinggi faktor air semen semakin lambat kenaikan kekuatan betonnya dan semakin tinggi suhu perawatan semakin cepat kenaikan kekuatan betonnya (kardiyono Tjokrodimulyo, 1992).

5. Mutu agregat.

Pada kenyataanya kekuatan dan ketahanan aus (abrasi) agregat kasar, besar pengaruhnya terhadap kuat desak beton.

Kekuatan desak beton ditentukan dengan pengaturan dari perbandingan semen, agregat kasar, agregat halus, air, dan berbagai jenis campuran. Perbandingan air terhadap semen merupakan faktor utama di dalam penentuan kekuatan beton. Semakin rendah perbandingan air terhadap semen, semakin tinggi kekuatan desak beton. Hubungan antara fas dan kuat

desak beton fc^I dapat dilihat pada gambar 3.5 berikut ini (Kardiyono Tjokrodimulyo, 1992)

Faktor air semen

Gambar 3.5 Hubungan fas dan kuat desak silinder beton

Kekuatan desak beton yang menyebabkan benda uji beton hancur apabila dibebani dengan gaya tertentu, dihitung dengan menggunakan rumus dibawah ini :

$$fc^{I} = \frac{P}{A} \quad (Mpa) \tag{3.12}$$

Keterangan:

P = Gaya tekan maksimal, dalam N.

A - Luas bidang tekan benda uji, dalam mm²

fic = Kuat tekan dari masing-masing benda uji, dalam Mpa.

Beton dari hasil pengujian perlu diperiksa dengan perkiraan variasi kuat desak beton dari keseluruhan sampel beton yang telah diuji.

3.10 Kuat tarik beton

Nilai kuat desak dan kuat tarik beton tidak berbanding lurus, setiap usaha perbaikan mutu kekuatan desak hanya disertai peningkatan kecil kuat tariknya, yaitu 7-10% dari kuat desaknya.

Kekuatan tarik beton adalah suatu sifat yang penting mempengaruhi rambatan dan ukuran dari retak didalam struktur. Pendekatan yang baik untuk menghitung kuat tarik beton fc^I adalah dengan rumus 0,10 $fc^I < fc^I < 0,2$ fc^I (Nawy, 1985).

Menurut ASTM C496, pada percobaan pembebanan silinder ("the split cylinder"), silinder yang ukurannya sama dengan benda uji dalam percobaan desak diletakan pada sisinya diatas mesin uji dan beban desak P dikerjakan secara merata dalam arah diameter sepanjang benda uji. Benda uji silinder akan terbelah dua saat dicapainya kekuatan tarik. Tegangan tarik yang timbul sewaktu benda uji terbelah disebut sebagai "split cylinder strength" dihitung dengan rumus dibawah ini:

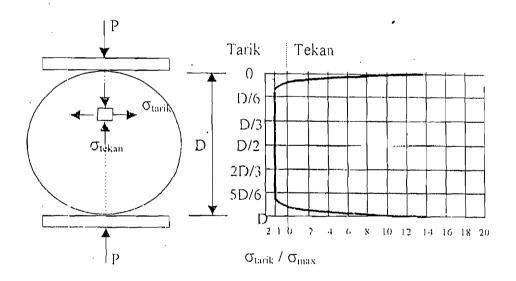
$$fct = \frac{2P}{\pi LD}$$
 (3.13)

keterangan:

fct = kuat tarik silinder (Mpa)

P = beban (Kn)

L = panjang silinder (m)


Rumus tersebut berdasarkan teori elastisitas untuk bahan yang homogen dalam pengaruh keadaan tegangan biaksial. Metode pembelahan ini biasa disebut tes basil.

Kekuatan tarik fct dari percobaan pembelahan silinder telah ditemukan sebanding dengan v fc¹ sedemikian sehingga diperoleh (wang dan Salmon, 1993):

fct = $0.5 \text{ } \sqrt{\text{ fc}^{\text{I}}}$ sampai $0.6 \text{ } \sqrt{\text{ fc}^{\text{I}}}$ (Mpa) untuk beton berbobot biasa,

fet = $0.4 \text{ V} \text{ fe}^{1}$ sampai $0.5 \text{ V} \text{ fe}^{1}$ (Mpa) untuk beton berbobot ringan.

Kekuatan arik adalah suatu sifat yang lebih bervariasi disbanding dengan kuat desak dan besarnya untuk beton normal berkisar antara 9 sampai 15% dari kekuatan desak (Istimawan Dipohusodo, 1994).

Gambar 3.6 Uji tarik pada pembelahan silinder

Tegangan tarik terdistribusi sepanjang diameter arah vertical dari benda uji. Maka tegangan tertekan sangat besar mendekati akhir dari diameter arah vertical. Tegangan tarik mendekati merata terjadi kurang lebih 2/3 dari benda uji. Setelah itu tegangan beton menurun dibandingkan tekanannya (popovic, 1998).

BAB IV

METODE PENELITIAN

Urutan kerja dalam melakukan penelitian sangat penting. Penelitian ini dilakukan di laboratorium bahan konstruksi teknik UII, dengan bahan uji agregat halus batu lintang berasal dari gunung kidul. Di harapkan pelaksanaan penelitian dapat berjalan lancar, dengan tata kerja yang teratur, sehingga akan diperoleh hasil yang sesuai dengan tujuan dari penelitian tersebut. Urutan kerja dalam penelitian atau metode kerja dilakukan secara rinci yang dapat diuraikan sebagai berikut:

4.1 Material untuk campuran beton

- a. Semen Portland tipe I merk nusantara,
- b. Agregat kasar berupa batu belah asal Krasak, dengan diameter maksimum
 20 mm,
- c. Agregat halus yang digunakan asal kaliurang, dengan diameter maksimum
 5 mm
- d. Air bersih dari laboratorium bahan konstruksi teknik UII.
- e. Bahan tambah (filler) asal Gunung kidul.

4.2 Alat – alat yang digunakan

Peralatan yang digunakan dalam penelitian ini dapat di lihat pada tabel 4.1

Tabel 4.1 Alat-alat yang digunakan

No	ALAT	KEGUNAAN			
1	Timbangan	Menimbang bahan-bahan			
2	Cetok	Memasukan adukan beton			
3	Ember	Menampung agregat			
4	Cetakan silinder	Mencetak benda uji silinder			
5	Kaliper	Mengukur benda ujiyang sudah jadi			
6	Gelas ukur	Menguji berat jenis material			
7	Open	Pengeringan agregat			
8	Kerucut abram	Pengujian slump			
9	Tongkat penumbuk	Memadatkan benda uji			
10	Molen	Mencampur adukan beton			
11	Kompresor meter	Mengetahui tegangan dan regangan			
		benda uji (beton)			
12	Mesin desak	Mendesak benda uji.			

4.3 Pemeriksaan Bahan Campuran

Pemeriksaan bahan untuk beton pada umumnya dilakukan pada agregatnya. Agregat yang ada di alam ini tidak serba sama, data-data agregat

tentunya berlainan. Pemeriksaan yang dilakukan pada penelitian ini adalah sebagai berikut:

4.3.1 Pemeriksaan Agregat Kasar (kerikil)

Pemeriksaan yang dilakukan pada agregat kasar dari Krasak ini meliputi pemeriksaan terhadap berat jenis kerikil dan berat volume agregat kasar "SSD". Adapun penjelasannya sebagai berikut :

I. Pemeriksaan Berat jenis Kerikil "SSD"

Berat jenis adalah perbandingan antara massa padat agregat dan massa air dengan volume yang sama dan suhu yang sama. Pada pemeriksaan ini alat-alat yang digunakan adalah sebagai berikut :

- 1. Gelas ukar kap. 1000 ml,
- 2. Timbangan ketelitian 0,01 gram,
- 3. Piring, sendok, lap, dan lain-lain.

Hasil pemeriksaaan berat jenis agregat kasar (kerikil) dapat dilihat pada tabel 4.2.

Tabel 4.2 Hasil pemeriksaan berat jenis kerikil "SSD" asal sungai krasak

	BENDA UJI I	BENDA UJI II
Berat Agregat (W)	. 400 gram	400 gram
Volume Air (V1)	500 cc	500 cc
Volume air + agregat (V2)	659 cc	651 cc
Berat jenis (Bj)	400	400
W	659 – 500	651 – 500
V2 – V1	= 2,51572	= 2,64901
Berat jenis rata-rata	2,58237	

II. Pemeriksaan Berat Volume Kerikil Kering Tusuk "SSD"

Pemeriksaan ini bertujuan untuk mengetahui berat volume kerikil pada keadaan kering tusuk. Pada pemeriksaan berat volume kerikil kering tusuk ini digunakan alat-alat sebagai berikut.

- 1. Timbangan kap. 20 kg,
- 2. Tongkat penumbuk Ø 16 mm Tabung silinder (Ø 15 x 30) cm,
- 3. dan panjang 60 cm,
- 4. Serok atau sekop, lap, dan lain-lain.

Hasil pemeriksaan berat volume kerkil kering tusuk 'SSD" dapat dilihat pada tabei 4.3.

Tabel 4.3 Hasil berat volume kering tusuk "SSD" asal Sungai Krasak

	BENDA UJI I	BENDA UJI II		
Berat tabung (W ₁)	7,352	7,348		
Berat tabung + agregat (W ₂)	15,288	15,459		
Volume tabung ¹ / ₄ .л.d ² .t	5,29875.10 ⁻³	5,29875.10 ⁻³		
Berat volume =	15,288 - 7,352	15,459 – 7,348		
$W_2 - W_1$	5,29875.10-3	5,29875.10 ⁻³		
V	$= 1497,712 \text{ kg/m}^3$	$=1503,74 \text{ kg/m}^3$		
	$=1,49771 \text{ t/m}^3$	$= 1,53074 \text{ t/m}^3$		
		·		
Berat volume rata-rata	1,514	1,51423 t/m ³		

4.3.2 Pemeriksaan Agregat Halus (Pasir)

Pemeriksaan agregat halus (pasir) yang berasal dari Kaliurang meliputi pemerksaan terhadap berat jenis pasir, berat volume agregat halus "SSD", Analisa saringan dan modulus halus butir (mhb), dan pemeriksaan kandungan Lumpur. Adapun penjelasan adalah sebagai berikut.

I. Pemeriksaan Berat Jenis Pasir 'SSD"

Pemeriksaan berat jenis pasir perlu dilaksanakan untuk mengetahui perbandingan antar berat dan volume pasir tersebut. Pada pemeriksaan berat jenis digunakan alat-alat sebagai berikut.

- 1. Gelas ukur kap. 1000 ml,
- 2. Timbangan ketelitian 0,01 gram, piring, sendok, lap, dan lain-lain.

 Hasil pemerikaan berat jenis agregat halus (pasir) dapat dilihat pada tabel 4.4.

Tabel 4.4 hasil berat jenis pasir "SSD" asal Kaliurang

	BENDA UJI I	BENDA UJI II	
Berat Agregat (W)	. 400 gram	400 gram	
Volume Air (V1)	500 cc	500 cc	
Volume air agregat (V2)	660 cc	655 cc	
Berat jenis (Bj)	400	400	
<u>W</u>	660 - 500 655 - 500		
V2 – V1	= 2,51572	= 2,64901	
Berat jenis rata-rata	2,5	4032	

II. Pemeriksaan Berat Volume Agregat Halus "SSD"

Pemeriksaan ini bertujuan untuk mengetahui perbandingan berat dan volume pasir dalam keadaan kering tusuk "SSD". Alat-alat yang digunakan adalah:

- 1. Tabumg silinder (Ø 15 X 30) cm,
- 2. Timbangan kap. 20 kg,
- 3. Tongkat penumbuk Ø 16 mm dan panjang 60 cm,
- 4. Serok/sekop, lap, dan lain-lain.

Hasil pemeriksaan berat volume agregat halus "SSD" dapat dilihat pada tabel 4.5.

Tabel 4.5 Hasil berat volume agregat halus "SSD" asal Kaliurang

	BENDA UJI I	BENDA UJI II		
Berat tabung (W ₁)	5,413 kg	5,413 kg		
Berat tabung + agregat (W ₂)	13,696 kg	13,66 8 kg		
Volume tabung ¹ / ₄ .π.d ² .t	529875.10 ⁻³ m ³	5,29875.10 ⁻³ m ³		
Berat volume =	13,696 – 5,413	13,668 – 5,413		
$W_2 - W_1$	5,29875.10 ⁻³	5,29875.10 ⁻³		
V	$= 1563,19 \text{ kg/m}^3$	$=1557,92 \text{ kg/m}^3$		
	$=1,56319 \text{ t/m}^3$	$= 1,55792 \text{ t/m}^3$		
		<u> </u>		
Berat volume rata-rata	1,560	1,56056 t/m ³		

III. Analisis Saringan dan Modulus Halus Butir Pasir

Analisis saringan ini bertujuan untuk mengetahui gradasi agregat halus dan menentukan modulus halus butir dengan menggunakan saringan.

Adapun cara pelaksanaannya sebagai berikut.

- Susunan ayakan dipasang sesuai dengan aturan diameter butiran dari atas ke bawah, yaitu: 4.75 mm, 2.36 mm, 1.18 mm, 0.600 mm, 0.300 mm, 015 mm dan pan.
- Agregat halus pasir ditimbang esuai dengan kebutuhan lalu dimasukan ke dalam ayakan yang paling atas dan kemudian ditutup rapat,
- 3. Susunan ayakan digetarkan dengan mesin Siever selama ± 15 menit,
- 4. Pasir yang tertinggal dari masing-masing ayakan dipindahkan ke dalam piring, kemudian ditimbang,
- 5. Perhitungan modulus halus butir (mhb) pasir dengan menggunakan rumus di bawah ini :

Hasil pemeriksaan modulus halus butir pasir dapat dilihat pada tabel 4.6.

Tabel 4.6 Hasil gradasi pasir asal Kaliurang

Saringan		Berat te	Serat tertinggal		Berat tertinggal		Berat kumulatif	
		(gram)		(%)				
No	Ø lubang mm	1	II	I	II	I	11	
1	4,75	10,3	29,4	0.687	1,96	0,687	1,96	
2	2,36	83,4	123,3	5,56	8,22	6.247	10.18	
3	1,18	332	273,3	22,133	18,22	28,38	28.4	
4	0,600	453,1	398,5	30,207	26,567	58,587	54,967	
5	0,300	297,1	314,4	19,807	20,96	77,894	75,927	
5	0,150	200.7	221,3	13,38	14,753	91,274	90,68	
7	Pan	91,1	125.1	6,073	8,34	97,347	99,02	
	<u> </u>		·	<u> </u>	 Jumlah	263,069	263,014	

Jumlah rata-rata = 263,0415

$$263,0415$$
Modulus halus butir \Rightarrow X 100% = 2,63

4.3.3 Pemeriksaan Batu Lintang

Pemeriksaan batu lintang yang berasal dari Gunung Kidul, Jogjakarta meliputi pemeriksaan terhadap unsur-unsur kimia yang ada dan besar butiran lolos saringan nomor 200.

[. Pemeriksaan unsur-unsur kimia

Pemeriksaan unsur-unsur kimia perlu dilaksanakan untuk mengetahui seberapa besar kandungan unsure-unsur yang berpengaruh terhadap kualitas dari beton. Pemeriksaan unsur kimia batu lintang yang berasal dari Gunung Kidul ini telah diperiksa oleh Dinas Pertambangan Jogjakarta dengan kandungan unsur-unsurnya seperti terlihat pada tabel 4.7.

Tabel 4.7 komposisi unsur kimia batu lintang (kalsit)

Oksida	Persen		
CaCO ₃	99,12 – 99,45		
CaO	55,45 – 55,69		
HD	3,76 – 4,67		
Fe ₂ O ₃	0 – 0,24		
TiO ₂	0,19 – 0,23		
MgO	0,06 - 0,17		
SiO ₂	0 - 0,01		

4.4 Perencanaan campuran beton

Berikut ini adalah uraian perencanaan campuran beton berdasarkan cara DOE dengan mempergunakan data-data perhitungan seperti di bawah ini :

1. Kuat desak rencana (silinder) = 45 Mpa

2. Diameter maksimum agregat kasar = 20 mm

3. Nilai slump = 10 cm

4. Modulus halus butir pasir

=2,63

5. Berat jenis pasir

 $= 2,54032 \text{ gr/cm}^3$

6. Berat jenis kerikil

 $= 2,58257 \text{ gr/cm}^3$

7. Berat jenis semen

 $= 3.15 \text{ t/m}^3$

- 8. Jenis semen biasa
- 9. Jenis Kerikil batu pecah
- 10. Jenis pasir agak kasar

Perhitungan rencana campuran beton terdiri atas hitungan kuat desak ratarata, menetapkan factor air semen, menentukan nilai slump, menetapkan kebutuhan air menetapkan kebutuhan semen, menetapkan volume agregat kasar permeter kubik beton, menghitung volume pasir, dan hasil kebutuhan material dalam satu meter kubik beton. Perhitungannya sebagai berikut:

- 1. Kuat desak rencana (silinder) = 45 MPa
- 2. Menetapkan nilai deviasi standar (sd)

Mutu pekerjaan baik, data pengalaman lebih dari 30 silinder, maka nilai deviasi standarnya adalah

Mutu pekerjaan baik (berdasarkan tabel 3.3) = 4,2

Faktor pengali (berdasarkan tabel 3.4) = 1

$$Sd = 4.2 \times 1 = 4.2$$

3. Menghitung nilai margin (M)

$$M = k \cdot sd$$

$$M = 1,64 \times 4,2 = 6,888 \text{ MPa}$$

4. Menetapkan kuat tekan rata-rata yang direncanakan

$$f'cr = f'c + M$$

= $45 + 6,888 = 51,888 \text{ MPa}$

5. Menetapkan jenis semen

Digunakan jenis semen biasa tipe I yaitu jenis semen yang cepat mengeras.

6. Menetapkan jenis agregat (pasir + kerikil)

Digunakan jenis kerikil batu pecah

Digunakan jenis pasir alami

- 7. Menetapkan Faktor air semen
 - a. Dari gambar 3.1 dengan f'cr = 51,888 MPa didapat fas = 0,32
 - b. Dari tabel 3.5 dan gambar 3.2, dengan jenis biasa tipe I batu pecah pada umur 28 hari didapat fas = 0,56
 - c. Dari tabel 3.6 didapat fas = 0.6
 - Dari tabel 3.7 didapat fas = 0.5
 - Dari tabel 3.8 didapat fas = 0,5
 Diambil fas terendah dari ketiga cara diatas = 0,5.
- 8. Menetapkan factor air semen maksimum
 - a. Dengan cara pertama diperoleh fas = 0,32
 - b. Dengan cara kedua diperoleh fas = 0,56
 - c. Dengan cara ketiga diperoleh fas = 0,50

Dalam perhitungan digunakan fas terendah yaitu 0,32 (cara petama).

9. Menetapkan nilai slump

Dari tabel 3.9 ditetapkan nilai slump untuk balok dan kolom 7,5 – 15,0 cm

10. Menetapkan ukuran besar butir agregat maksimum

- a. Agregat pasir Ø maksimum 5 mm,
- b. Agregat kasar (kerikil) C maksimum 20 mm
- 11. Menetapkan kebutuhan air

Dan tabel 3.10 didapat $A_h = 225$ dan $A_k = 225$

Jumlah air yang diperkirakan diperbaiki dengan persamaan

$$A = 0.67 A_{ii} + 0.33 A_{k}$$

$$= 0.67 \cdot 225 + 0.33 \cdot 225$$

$$= 225 \text{ lt/m}^{3}$$

12. Menetapkan kebutuhan semen

Berat semen =
$$\frac{\text{jumlah air yang dibutuhkan}}{\text{Faktor air semen maksimum}}$$
$$= \frac{225}{0.32}$$
$$= 703.125 \text{ kg}$$

- 13. Menetapkan kebutuhan semen minimum
 - I. Tabel 3.12 didapat 300 kg (air tawar, semen tipe I)
 - II. Tabel 3.14 didapat 300 kg.
 - III. Tabel 3.15 didapat 275 kg.
- 14. Menetapkan kebutuhan semen yang sesuai

Kebutuhan semen minimum = 275 kg

Dari langkah 12 hasil hitungan semen diperoleh = 703,125 kg

Yang dipakai adalah yang maksimum = 703,125 kg

15. Penyesuaian jumlah air atau faktor air semen (fas) tidak berubah.

16. Menentukan daerah gradasi agregat halus dapat dilihat pada tabel 3.15, dan kemudian hasil perhitungan gradasi agrerat halus dapat dilihat pada tael 4.8

Tabel 4.8 Hasil Perhitungan Gradasi Agrerat Halus

Lubang	Berat	% berat tertinggal	BT	% tembus kumulatif
ayakan	tertinggal BT	$(BT/\Sigma BT) \times 100\%$	%BT+BT	(100 – BT kumulatif)
_	(gram)		kumulatif	
40	0	0	0,0	100
20	0	0	0,0	100
10	0	0	0,0	100
4,75	19,85	1,344	1,344	98,656
2,36	103,35	6,999	8,343	91,657
1,18	302,65	20,498	28,841	71,159
0,60	425,8	28,834	57,675	42,325
0,30	305,75	20,707	78,382	21,618
0,15	211	14,291	92,673	7,327
pan	108,1	7,321	<u>-</u>	0,00
Jumlah	1476,5	-	267,256	-

Dari data persen tembus kumulatif maka pasir masuk daerah II yaitu pasir agak kasar.

17. Menentukan perbandingan pasir dan kerikil dapat dilihat pada gambar 3.4.

factor air semen

=0,32

nilai slump

= 10 cm = 100 mm

agregat maksimum

= 20 mm

didapat 42 % pasir.

18. Menentukan berat jenis pasir dan kerikil

Bj pasir = 2,54032

Bj kerikil = 2,58237

Bj campuran =
$$\frac{P}{100}$$
 x Bj pasir + $\frac{K}{100}$ x Bj kerikil
= $\frac{42\%}{100}$ x 2,54032 + $\frac{58\%}{100}$ x 2,58237

$$= 2,565$$

- 19. Menentukan berat jenis beton dapat dilahat pada gambar 3.5.
 Jika berat jenis campuran 2,565 dan kebutuhan air 225 liter
 Maka dari gambar 3.5 didapat berat beton 2287,5 kg/m³
- 20. Menentukan kebutuhan pasir dan kerikil

Berat pasir + kerikil = berat beton - kebutuhan air - kebutuhan semen

Berat beton = 2287.5 kg/m^3

Kebutuhan air = 225 lt/m^3

Kebutuhan semen = 704 kg

Maka berat pasir + kerikil = 2287,5 - 225 - 704= 1358,5 kg.

21. Menentukan kebutuhan pasir

kebutuhan pasir = (berat pasir + kerikil) X persen berat pasir = $1358,5 \times 42\%$ = 570,57 = 571 kg

22. Menentukan kebutuhan kerikil

Kebutuhan kerikil = (berat pasir + kerikil) – kebutuhan pasir
=
$$1358,5 - 571$$

= $787,5 \text{ kg}$

Kesimpulan:

Untuk 1 m² beton (dengan berat beton dalam kg) dibutuhkan material :

- 1. Air = 225 lt
- 2. Semen = 704 kg
- 3. pasir = 571 kg
- 4. Kerikil = 788 kg

Perbandingan berat S: P: K: A 1: 0,811:1,119:0,32

Benda uji 100 silinder dengan diameter 15 cm dan h = 30 cm.

Volume untuk I silinder $= \frac{1}{4} \times \pi \times D^2 \times h$

 $= \frac{1}{4} \times \pi \times 0.15^2 \times 0.3$

 $= 0.0053 \text{ m}^3/\text{ silinder}$

Di butuhkan 100 silinder maka = 0.0053×100

 $= 0.53 \text{ m}^3$

Volume ditambah 0.05 maka volume sesungguhnya adalah = $0.53 \pm 0.05 = 0.58$ m³.

Jadi berat beton untuk 100 silinder = 0.58×2285 , 7 = 1325, 706 kg.

Kebutuhan batu lintang (kalsit) tiap variasi campuran (20 silinder) dapat dilihat pada tabel 4.9.

Tabel 4.9 kebutuhan batu lintang tiap variasi campuran

Sample	Semen	Batu	Pasir	Kerikil	Air
silinder	(kg)	lintang (kg)	(kg)	(kg)	(Lt)
0%	74,624	0,000	60,526	83,528	23,85
5%	70,893	3,731	60,526	83,528	23,85
10%	67,161	7,462	60.526	83,528	23,85
15%	63,430	11,194	60,526	83,528	23,85
20%	59,699	14,925	60,526	83,528	23,85

Jumlah berat batu lintang didapat dari hasil perkalian antara jumlah berat semen tanpa batu lintang dengan masing-masing variasi (persen) campuran batu lintang.

4.5 Persiapan cetakan

Sebelum digunakan cetakan harus dipersiapkan dengan baik agar benda uji yang dihasilkan bersisi halus (sedikit pori), rusuk tajam dan simetris. Dalam penelitian ini cetakan yang digunakan adalah cetakan silinder yang terbuat dari besi dengan diameter (Ø) = 15 cm dan tinggi (t) = 30 cm. Sebelum digunakan untuk mengecor adukan beton, cetakan harus dibersihkan dulu dari sisa-sisa adukan yang mengeras kemudian bagian dalam cetakan diolesi dengan minyak, pelumas (oli) supaya adukan beton tidak melekat pada cetakan dan mudah dilepas setelah adukan beton mengeras.

4.6 Pembuatan adukan beton

Langkah – langkah pengecoran adukan beton adalah sebagai berikut : Tahap I

- a. Menyiapkan bahan-bahan campuran beton,
- b. Menimbang berat masing masing bahan sesuai dengan rencana,
- c. Menyiapkan pengaduk (mixer/mollen), cetakan silinder, dan alat uji slump, bak pengaduk yang terbuat dari bahan kedap air dibersihkan.

Tahap II

- a. Masukan semen, batu lintang (yang menggunakan variasi batu lintang) dan air (± 70%) terlebih dahulu hingga membentuk pasta,
- Tambahkan pasir kemudian diaduk sampai distribusi pasir terlihat rata dengan semen. Ukuran pasir yang digunakan maksimum 5 mm,
- c. Tambahkan kerikil dan diaduk sampai distribusi kerikil terlihat rata.
 Ukuran agregat kasar yang digunakan maksimum 20 mm.
- d. Sisa air dituangkan kembali dan diaduk sampai didapatkan adukan beton yang homogen dan kekentalan yang sesuai dengan adukan yang diinginkan

4.7 Pengujian Kekentalan Adukan (slump test)

Slump test merupakan cara untuk mendapatkan nilai kekentalan (konsistensi dari beton segar. Slump test dilakukan dengan menggunakan kerucut Abrams, yaitu cetakan berbentuk kerucut dengan diameter bagian bawah 20 cm, diameter bagian atas 10 cm dan tinggi 30 cm. Tongkat penumbuk yang digunakan mempunyai diameter 16 mm dan panjang 60 cm.

Pengujian dilaksanakan dengan berdasarkan standar cara pengujian slump SK SNI M-02-1989-F (DPU, 1991a). langkah-langkahnya adalah sebagai berikut:

a. Kerucut Abrams dibersihkan dan dibasahi sebelum digunakan.

- b. Kerucut diletakan diatas permukaan plat baja dengan posisi yang rata.
- c. Beton segar dtuang kedalam kerucut setinggi kira-kira 1/3 tinggi lalu ditusuk-tusuk sebanyak 25 kali, kemudian dituang lagi sampai 2/3 tinggi dan ditusuk-tusuk lagi sebanyak 25 kali. Kemudian permukaan beton diratakan bila perlu ditambah beton lagi bila kurang. Beton dalam kerucut didiamkan selama ½ menit.
- d. Setelah ½ menit kerucut diangkat dan penurunan beton diukur dengan mistar. Besamya penurunan beton merupakan hasil dari nilai slump yang didapatkan.

4.8 Pengecoran Adukan Beton

Laingkah-langkah pengecoran adukan beton yang sesuai dengan SK SNI M-62-1990-03 (DPU, 1991) adalah sebagai berikut:

a. Penempatan cetakan.

Tempatkan cetakan dekat dengan penyimpanan awal dimana benda uji akan disimpan selama 24 jam. Apabila pencetakan benda uji tidak dapat dikerjakan dekat dengan penyimpanan awal, benda uji tersebut harus dipindahkan segera setelah dibentuk. Cetakan ditempatkan pada tempat yang permukaanya rata, keras, bebas dari getaran dan gangguan lainnya. Permukaan contoh benda uji harus dihindari dari benturan, jungkitan dan goresan pada saat pemindahan ketempat penyimpanan /perawatan.

b. Masukan adukan beton kedalam cetakan dengan menggunakan sendok aduk, sendok aduk bahan (sekop). Setiap pengambilan adukan dari bak pengaduk harus dapat mewakili dari campuran tersebut. Apabila diperlukan campuran beton diaduk kembali agar tidak terjadi segregasi (pemisahan butir) selama pencetakan benda uji. Adukan beton diisikan kedalam cetakan dalam 3 lapisan yang masing-masing lapisan kira-kira sama tebal dan setiap lapisan dipadatkan dengan tongkat baja sebanyak 25 kali tusukan secara merata. Setelah cetakan terisi penuh, permukaan diratakan dan bagian sisanya dibuang. Kemudian setelah beberapa saat permukaan diberi sedikit acian semen untuk lebih meratakan. Setelah 24 jam cetakan dibuka dan diberi tanda.

4.9 Tähäp perawatan beton

Perawatan beton merupakan perawatan untuk menjamin terjadinya proses hidrasi semen berlangsung dengan sempurna dengan menjaga kelembaban permukaan beton. Untuk mempertahankan beton supaya berada dalam keadaan basah selama beberapa hari, maka sampel beton diletakan didalam bak perendaman dan direndam dengan ali bersih. Lama perendaman dalam penelitian ini adalah sampai beton berumur 27 hari dan 1 hari dikeringkan.

4.10 Tahap uji kadar air

Alat – alat yang digunakan

1. Kaliper (jangka sorong),

- 2. Timbangan dengan kapasitas 100 kg.
- 3. Oven dengan 110°C

Pelaksanaan Pengujian

- 1. Setelah benda uji direndam selama 14 hari, benda uji diambil,
- Timbang masing-masing benda uji dan ukur dimensi (diameter dan tinggi) dengan kaliper untuk mengetahui data dari beton terebut,
- 3. Kemudian benda uji dimasukan kedalam oven selama 3 x 24 jam,
- 4. Setelah proses oven selesai, benda uji dikeluarkan, lalu lakukan penimbangan dan pengukuran dimensi dari benda uji (diameter dan tinggi).
- 5. Kemudian lakukan perendaman selama 24 jam di bak perendam,
- 6. Setelah 24 jam direndam, benda uji diambil dan ditimbang serta dicatat sebagai berat basah,
- Selanjutnya dicari persentase daya serap air pada masing masing sampel, yang kemudian dari hasil hitungan dan pencatatan selama penelitian tadi ditabelkan dan di buat grafik,

Yang dicatat pada pengujian ini adalah berat silinder dalam keadaan basah (Wb) dan berat kering tungku (Wk), maka untuk mendapatkan kadar air. Di gunakan rumus 4.2:

Kadar air (W) =
$$\frac{\text{Wb - Wk}}{\text{Wk}}$$
 X 100% (4.2)

4.11 Tahap uji kuat desak beton

Alat – alat yang digunakan

- 1. Mesin desak merk "CONTROLS"
- 2. Kaliper
- 3. "Stop Watch"
- 4. Timbangan dengan kapasitas 100 kg.

Pelaksanaan Pengujian

- 1. Benda uji yang akan diuji sesuai dengan umurnya diambil,
- Silinder beton diukur panjang, lebar, tinggi, dan diameter rata-rata serta ditimbang beratnya,
- Letakan benda uji pada mesin tekan dengan sisi atas dan sisi bawah harus rata dan berada pada kedudukan sentries pada piston tekannya,
- 4. Mesin tekan dijalankan secara elektrik dengan penambahan beban yang konstan,
- Pembebanan dilakukan sampai benda uji menjadi hancur dan dicatat besarnya beban maksimal yang langsung dapat dilihat pada jarum yang ditunjukan dari mesin tekan,
- 6. setclah mencapai beban hancur, kekuatan tekan dikurangi dan penutup tekanan dibuka sehingga piston tekan menjadi naik.

Yang dicatat pada pengujian ini adalah Gaya tekan (F) pada saat beban maksimal, maka untuk mendapatkan besarnya tegangan maksimal dari beton tersebut dilakukan perhitungan sebagai berikut:

$$fc^{I} = \frac{P}{A}$$
 (4.3)

Keterangan:

P = Gaya tekan maksimal, dalam N.

A = Luas bidang tekan benda uji, dalam mm²

f'c = Kuat tekan dari masing-masing benda uji, dalam Mpa.

4.12 Tahap uji kuat tarik beton

Alat – alat yang digunakan

- 1. Mesin desak merk "CONTROLS"
- 2. Kaliper
- 3. "Stop Watch"
- 4. Timbangan dengan kapasitas 100 kg.

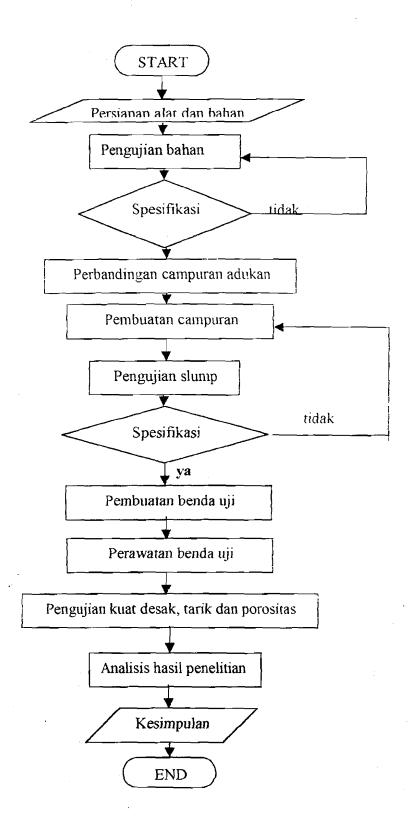
Pelaksanaan Pengujian

- 1. Benda uji yang akan diuji sesuai dengan umurnya diambil,
- Silinder beton diukur tinggi, dan diameter rata-rata serta ditimbang beratnya,
- Letakan benda uji dengan posisi benda uji tertidur atau rebah pada mesin tekan dan berada pada kedudukan sentries pada piston tekannya,
- 4. Mesin tekan dijalankan secara elektrik dengan penambahan beban yang konstan,

- Pembebanan dilakukan sampai benda uji menjadi hancur dan dicatat besarnya beban maksimal yang langsung dapat dilihat pada jarum yang ditunjukan dari mesin tekan,
- 6. setelah mencapai beban hancur, kekuatan tekan dikurangi dan penutup tekanan dibuka sehingga piston tekan menjadi naik.
- 7. Mencatat beban meaksimum yang terjadi, pada saat benda uji mulai mengalami kehancuran.

Yang dicatat pada pengujian ini adalah kuat tarik silinder (fct) pada saat beban maksimal, maka untuk mendapatkan besarnya kuat tarik silinder maksimal dari beton tersebut dilakukan perhitungan sebagai berikut:

$$fct = \frac{2P}{\pi LD}$$
 (4.4)


Keterangan:

Fct = Kuat tarik silinder (Mpa)

P = beban (kN)

L = panjang silinder (m).

D = diameter

Gambar 4.1 Diagram Alur Metode Penelitian

BAB V

HASIL DAN PEMBAHASAN

5.1 Hasil Penelitian

5.1.1 Hasil Uji Kadar Air

Dari sampel silinder beton yang telah berumur 14 hari dan di oven selama 3 hari setelah itu direndam selama 24 jam, maka didapat kadar air seperti ditunjukan pada tabel 5.1, 5.2, 5.3, 5.4, 5,5. Selanjutnya dihitung kadar air dengan menggunakan rumus 5.1.

$$\text{Kadar air } = \frac{\text{Wb - Wk}}{\text{Wk}} \times 100\%$$
 (5.1)

Tabel 5.1 Hasil Uji Kadar Air dengan Jenis Beton tanpa Batu Lintang (Kalsit)
Umur 14 Hari

Kode	Berat kering (Wk)	Berat basah (Wb)
	(kg)	(kg)
BN 01	11,980	12,575
BN 02	11,837	12,435
Rata-rata	11,909	12,505

Kadar air =
$$\frac{12,505 - 11,909}{11,909} \times 100\% = 5\%$$

Tabel 5.2 Hasil Uji Kadar Air dengan Jenis Beton Variasi Batu Lintang (Kalsit)
5% Umur 14 Hari

Kode	Berat kering (Wk)	Berat basah (Wb)
	(kg)	(kg)
BL 01	11,979	12.621
BL 02	12,067	12.677
Rata-rata	12,023	12.649

Kadar air =
$$\frac{\text{Wb - Wk}}{\text{Wk}}$$
 x 100%
Kadar air = $\frac{12,649 - 12,023}{12,023}$ x 100%
= 5,2%

Tabel 5.3 Hasil Uji Kadar Air dengan Jeris Beton Variasi Batu Lintang (Kalsit)

10% Umur 14 Hari

Kode	Berat kering (Wk)	Berat basah (Wb)
	(kg)	(kg)
BL 01	11;867	12,530
BL 02	11,807	12,439
Rata-rata	11,837	12,485

Kadar air =
$$\frac{\text{Wb - Wk}}{\text{Wk}} \times 100\%$$

Kadar air =
$$\frac{12,485 - 11,837}{11,837} \times 100\%$$
$$= 5,5\%$$

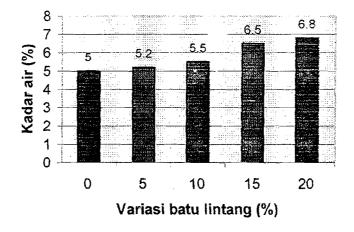
Tabel 5.4 Hasil Uji Kadar Air dengan Jenis Beton Variasi Batu Lintang (Kalsit) 15% Umur 14 Hari

Kode	Berat kering (Wk)	Berat basah (Wb)
	(kg)	(kg)
BL 01	11.747	12,517
BL 02	11.691	12,434
Rata-rata	11.719	12,476

Kadar air =
$$\frac{\text{Wb - Wk}}{\text{Wk}} \times 100\%$$

Kadar air = $\frac{12,476 - 11,719}{11,719} \times 100\%$
= 6,5%

Tabel 5.5 Hasil Uji Kadar Air dengan Jenis Beton Variasi Batu Lintang (Kalsit)
20% Umur 14 Hari


Kode	Berat kering (Wk)	Berat basah (Wb)
	(kg)	(kg)
BL 01	11,832	12,825
BL 02	12,112	12,756
Rata-rata	11,972	12,791

Kadar air =
$$\frac{\text{Wb - Wk}}{\text{Wk}}$$
 x 100%
Kadar air = $\frac{12,791 - 11,972}{11,972}$ x 100%
= 5,8%

Data- data dari hasil pengujian kadar air rata-rata silinder beton dapat dilihat pada tabel 5.6 dan bila dibuat suatu grafik batang yang menghubungkan antara variasi campuran batu lintang terhadap kadar air ditunjukan pada gambar 5.1.

Tabel 5.6 Data Kadar Air Rata-rata Silinder Beton

No	Variasi Batu Lintang	Kadar Air (%)
1	0%	5
2	5%	5.2
3	10%	5,5
4	15%	6,5
5	20%	6,8

Gambar 5.1 Grafik Kadar Air Untuk Berbagai Variasi Batu Lintang pada Umur Beton 14 Hari.

5.1.2 Hasil Uji Kuat Desak Beton

Dari hasil pengujian desak beton terhadap benda uji yang telah berumur 28 hari, maka diperoleh hasil kuat desak dan berat jenis beton yang ditunjukan pada tabel 5.7, 5.8, 5.9, 5.11 ,5.12, 5.13, 5.14, 5.15, 5.16 Selanjutnya dianalisis terhadap kuat desak karakteristiknya, dengan rumus sebagai berikut :

$$f^{I}c = f^{I}cr - k.sd (5.2)$$

Dimana: fc = kuat desak karakteristik beton (Mpa)

f^lcr = kuat desak rata-rata benda uji (Mpa)

k = tetapan deviasi, dengan defektif (kegagalan) 5%, diambil1.64

sd = standar deviasi (Mpa) yang dihitung dengan rumus :

$$sd = \sqrt{\frac{\sum (f^i ci - f^i cr)^2}{n-1}} \tag{5.3}$$

Dimana: n = banyaknya sampel benda uji.

 f^{i} ci = kekuatan beton yang diperoleh dari masing-masing benda uji .

$$f'cr = \sum_{i=1}^{n} f^{1}ci/n$$
 (5.4.)

Tabel 5.7 Hasil Kuat Desak Beton dengan Jenis Beton tanpa Batu Lintang (Kalsit) 0% Umur 28 Hari

Kode	Berat	Luas	Beban maks	fci	(fci – fcr)	$(f^{ci} - f^{cr})^2$
	(kg)	(cm ²)	(KN)	(Mpa)	(Mpa)	(Mpa)
BN 01	12,453	175,538	870	50,538	-1,718	2,950
BN 02	12,320	174,000	840	49,058	-3,198	10,228
BN 03	12,250	172,499	760	44,926	-7,329	53,725
BN 04	12,481	175,069	900	52,421	0,165	0,027
BN 05	12,495	176,008	860	49,823	-2,432	5,914
ΒΝ υό	12,609	175,538	930	54,024	1,768	3,125
BN 07	12,599	177,895	950	54,454	2,198	4,833
BN 08	12,483	176,715	950	54,818	2,562	6,564
BN 09	12,550	177,186	850	48,917	-3,339	11,147
BN 10	12,573	176,479	950	54,891	2,635	6,945
BN 11	12,684	175,773	940	54,531	2,276	5,179
BN 12	12,810	179,150	945	53,788	1,532	2,348
BN 13	12,890	178,842	935	53,311	1,055	1,113
BN 14	12,605	177,422	945	54,312	2,056	4,228
BN 15	12,672	176,479	935	54,025	1,769	3,127
·				783,839		121,454

$$f'cr = \sum_{i=1}^{n} f^{1}ci/n = 783,839/15 = 52,256 \text{ Mpa}$$

$$sd = \sqrt{\frac{\sum (f'ci - f'cr)^2}{n-1}} = \sqrt{(121,454/14)} = 3,181 \text{ Mpa}$$

$$f^{T}c = f^{T}cr - k.sd$$

= 52,256 - 1,64 x (1,16 x 3,181)
= 46,204 Mpa

Tabel 5.8 Perhitungan Berat Jenis Beton untuk Beton Tanpa Batu Lintang 0 % Umur 28 Hari

Kode	Berat	Volume (cm ³)	Bi =Berat/Volume		
	(kg)		(gr/cm^3)		
BN 01	12,453	5246,831	2,373		
BN 02	12,320	5236,254	2,353		
BN 03	12,250	5168,070	2,370		
BN 04	12,481	5260,823	2,372		
BN 05	12,495	5287,280	2,363		
BN 06	12,609	5273,162	2,391		
BN 07	12,599	5326,176	2,365		
BN 08	12,483	5283,779	2,362		
BN 09	12,550	5340,386	2,350		
BN 10	12,573	5297,899	2,373		
BN 11	12,684	5313,618	2,387		
BN 12	12,810	5387,041	2,378		
BN 13	12,890	5397,452	2,388		
BN 14	12,605	5303,144	2,377		
BN 15	12,672	5310,253	2,386		
	ΣBj → 35,591				

$$Bj campuran = \frac{\sum Bj}{n}$$

 $= 2,372 \text{ gr/cm}^3$

Umur 28 Hari

	·			28 Hari	Y Y	J J 3
Kode	Berat	Luas	Beban	fci	$(f^{l}ci - f^{l}cr)$	$(f^i ci - f^i cr)^2$
1		i.	maks		·	
The second of th	(kg)	(cm ²)	(KN)	(Mpa)	(Mpa)	(Mpa)
BBL 01	12,672	176,008	945	54,748	0,935	0,874
BBL 02	12.533	177,422	935	53,737	-0,076	0,006
BBL 03	12.872	178,842	935	53,310	-0,503	0,253
BBL 04	12.413	176,008	900	52,141	-1,672	2,797
BBI, 05	12.481	176,244	935	54,097	0,283	0,079
BBL 06	12.508	176,244	890	51,493	-2,321	5,386
BBL 07	12.525	177,186	980	56,3986	2,585	6,682
BBL 08	12.554	175,538	920	53,443	-0,371	0,137
DBL 09	12,788	180,267	910	51,475	-2,334	5,469
BBL 10	12.558	177,186	935	53,808	-0,005	2,291
BBL 11	12.535	179,316	960	54,591	0,778	0,605
BBL 12	12.702	177,683	970	55,667	1,853	3,435
BBL 13	12.841	177,683	915	52,511	-1,303	1,698
BBL 14	12,769	178,131	935	53,523	-0,290	0,084
BBL 15	12.737	176,715	975	56,261	2,447	5,987
				807,206		33,492

$$f'cr = \sum_{i=1}^{n} f^{1}ci/n = 807,206/15 = 53,814 \text{ Mpa}$$

$$sd = \sqrt{\frac{\sum (f^i ci - f^i cr)^2}{n-1}} - \sqrt{(33,492/14)} = 1,547 \text{ Mpa}$$

$$f^{I}c = f^{I}cr - k.sd$$

= 53,814 - 1,64 x (1,16 x 1,547)
= 50,871 Mpa

Tabel 5.10 Perhitungan Berat Jenis Beton untuk Beton Batu Lintang 5%

Umur 28 Hari

Kode	Berat (kg)	Volume	Bi =Berat/Volume
		(cm^3)	(gr/cm^3)
BN 02	12,533	5335,079	2,349
BN 03	12,872	5411,759	2,379
BN 04	12,413	5285,546	2,348
BN 05	12,481	5296,081	2,357
BN 06	12,508	5320,806	2,351
BN 07	12,525	5370,508	2,332
BN 08	12,554	5299,492	2,369
BN 09	12,788	5465,659	2,339
BN 10	12,558	5347,473	2,348
BN 11	12,535	5383,066	2,329
BN 12	12,702	5414,001	2,346
BN 13	12,841	5378,464	2,387
BN 14	12,769	5404,495	2,362
BN 15	12,737	5319,122	2,394
		Σ Bj —>	35,371

Bj campuran =
$$\frac{\sum Bj}{n}$$
=
$$\frac{35,371}{15}$$
= 2,358 gr/cm³

Tabel 5.11 Hasil Kuat Desak Beton dengan Jenis Beton Batu Lintang (Kalsit) 10% Umur 28 Hari

Kode	Berat	Luas	Beban maks	f ^l ci	(f ^l ci – f ^l cr)	$(f^{l}ci - f^{l}cr)^{2}$
	(kg)	(cm ²)	(KN)	(Mpa)	(Mpa)	(Mpa)
BBL 01	12,379	174,764	820	47,845	-1,692	2,864
BBL 02	12,341	175,069	820	47,761	-1,776	3,153
BBL 03	12,468	177,186	815	46,903	-2,634	6,938
BBL 04	12,470	177,422	890	51,151	1,614	2,605
BBL 05	12,645	177,186	850	48,917	-0,619	0,384
BBL 06	12,559	180,505	840	47,453	-2,084	4,343
BBL 07	12,593	177,658	720	41,325	-8,211	67,425
BBL 08	12,637	180,743	880	49,647	0,110	0,012
BBL 09	12,468	176,479	850	49,113	-0,424	0,179
BBL 10	12,588	176,008	890	51,562	2,025	4,101
BBL 11	12,647	177,422	740	42,530	-7,007	49,096
BBL 12	12,935	178,842	910	51,886	2,348	5,515
BBL 13	12,741	178,605	950	54,238	4,701	22,098
BBL 14	12,656	177,422	970	55,749	6,213	38,588
BBL 15	12,729	177,186	990	56,974	7,437	55,312
				743,055		262,614

$$f'cr = \sum_{i=1}^{n} f^{1}ci/n = 743,055/15 = 49,537 \text{ Mpa}$$

 $sd = \sqrt{\frac{\sum (f^{i}ci - f^{i}cr)^{2}}{n-1}} = \sqrt{(262,614/14)} = 4,331 \text{ Mpa}$

$$\int_{0}^{1} c = \int_{0}^{1} cr - k.sd$$
= 49,537 - 1,64 x (1,16 x 4,331)
= 41,298 Mpa

Tabel 5.12 Perhitungan Berat Jenis Beton untuk Beton Batu Lintang 10% Umur 28 Hari

Kode	Berat (kg)	Volume	Bj =Berat/Volume
		(cm^3)	(gr/cm^3)
3N 01	12,379	5256,901	2,3548
BN 02	12,341	5267.826	2,343
BN 03	12,468	5375.823	2,319
BN 04	12,470	5319,112	2,344
BN 05	12,645	5375.823	2,352
BN 06	12,559	5395,294	2,328
BN 07	12,593	5351,059	2,353
BN 08	12,637	5438,557	2,324
BN 09	12,468	5322,607	2,342
BN 10	12,588	5296.081	2,377
BN 11	12,647	5354,596	2,362
BN 12	12,935	5451,104	2,373
BN 13	12,741	5399,229	2,359
BN 14	12,656	5377,661	2,353
BN 15	12,729	5398,857	2,358
	ΣBj —	- →	35,243

Bj campuran
$$= \frac{\sum Bj}{n}$$

$$= \frac{35,243}{15}$$

$$= 2,350 \text{ gr/cm}^3$$

Tabel 5.13 Hasil Kuat Desak Beton dengan Jenis Beton Batu Lintang (Kalsit) 15%

Umur 28 Hari

Kode	Berat	Luas	Beban	fci	(fci – fcr)	(fci – fcr)2
			maks		•	· ·
	(kg)	(cm ²)	(KN)	(Mpa)	(Mpa)	(Mpa)
BBL 01	12,665	176,479	770	44,491	-2,511	6,305
BBL 02	12,579	176,244	820	47,443	0,441	0,195
BBL 03	12,715	179,079	850	48,400	1,398	1,955
BBL 04	12,725	178,131	830	47,513	0,511	0,261
BBL 05	12,616	177,186	815	46,903	-0,099	0,010
BBL 06	12.627	176,244	840	48,600	1,598	2,554
BBL 07	12,64	176,479	820	47,380	0,378	0,1423
BBL 08	12,602	175,773	850	49,310	2,309	5,330
BBL 09	12,686	176,479	870	50,269	3,267	10,673
BBL 10	12,724	178,842	680	38,771	-8,230	67,740
BBL I I	12,714	179,791	880	49,910	2,908	8,457
BBL 12	12,289	177,658	820	47,065	0,064	0,004
BBL 13	12,53	176,95	760	43,796	-3,206	10,277
BBL 14	12,494	177,186	825	47,478	0,477	0,227
BBL 15	12,603	175,304	820	47,697	0,696	0,484
				705,028	Ţ	114,615

$$f'cr = \sum_{i=1}^{n} f^{1}ci/n = 705,028/15 = 47,002 \text{ Mpa}$$

 $sd = \sqrt{\frac{\sum (f'ci - f'cr)^{2}}{n-1}} = \sqrt{(114,615/14)} = 2,861 \text{ Mpa}$

$$f^{T}c = f^{T}cr - k.sd$$

= 47,002 - 1,64 x (1,16 x 2,861)
= 41,579 Mpa

Tabel 5.14 Perhitungan Berat Jenis Beton untuk Beton Batu Lintang 15%
Umur 28 Hari

Kode	Berat (kg)	Volume	Bj =Berat/Volume
		(cm^3)	(gr/cm³)
BN 01	12,665	5384,370°	2,.352
BN 02	12,579	5338,430	2,356
BN 03	12,715	5402,810	2,353
BN 04	12,725	5359,960	2,374
BN 05	12,616	5393,540	2,339
BN 06	12,627	5320,810	2,373
BN 07	12,640	5359,670	2,358
BN 08	12,602	5315,380	2,371
BN 09	12,686	5366,730	2,364
BN 10	12,724	5451,100	2,334
BN 11	12,714	5411,710	2,349
BN 12	12,289	5317,300	2,311
BN 13	12,530	5303,190	2,363
BN 14	12,494	5349,250	2,336
BN 15	12,603	5316,970	2,370
	ΣBj	-	35,305

Bj campuran
$$= \frac{\sum Bj}{n}$$

$$= \frac{35,305}{15}$$

$$= 2,356 \text{ gr/cm}^3$$

Tabel 5.15 Hasil Kuat Desak Beton dengan Jenis Beton Batu Lintang (Kalsit) 20% Umur 28 Hari

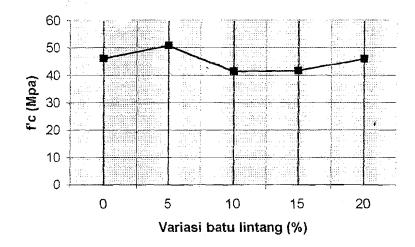
Kode	Berat	Luas	Beban maks	fci	(fci – fcr)	$(f^{c}i - f^{c}cr)^2$
!	(kg)	(cm ²)	(KN)	(Mpa)	(Mpa)	(Mpa)
BBL 01	12,477	177,186	910	52,370	2,878	8,283
BBL 02	12,337	175,069	890	51,839	2,346	5,506
BBL 03	12,624	176,244	880	50,914	1,422	2,023
BBL 04	12,459	176,715	800	46,162	-3,330	11,087
BBL 05	12,668	176,479	840	48,535	-0,957	0,915
BBL 06	12,809	178,842	845	48,179	-1,313	1,724
BBL 07	12,434	176,479	860	49,691	0,199	0,040
BBL 08	12,835	177,895	830	47,576	-1,916	3,672
BBL 09	12,547	176,244	890	51,492	2,001	4,003
BBL 10	12,659	176,95	895	51,577	2.084	4,341
BBL 11	12,494	176,95	8 60	49,559	0,067	0,004
BBL 12	12,668	176,95	855	49,271	-0,222	0,049
BBL 13	12,562	176,479	780	45,069	-4,424	19,568
BBL 14	12,735	176,95	850	48,982	-0,510	0,260
BBL 15	12,598	178,368	895	51,166	1,674	2,801
	ļ			742,382		64,276

$$f'cr = \sum_{i=1}^{n} f^{1}ci/n = 742,382/15 = 49,492 \text{ Mpa}$$

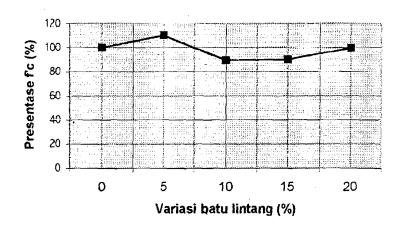
 $sd = \sqrt{\frac{\sum (f'ci - f'cr)^{2}}{n-1}} = \sqrt{(64,276/14)} = 1,818 \text{ Mpa}$

$$f^{T}c = f^{T}cr - k.sd$$

= 49,492 - 1,64 x (1,16 x 1,818)
= 46,033 Mpa

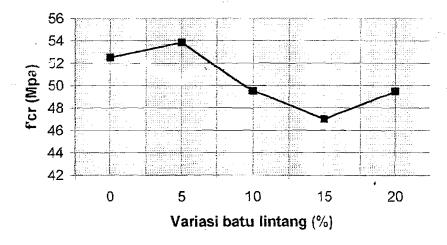

Tabel 5.16 Perhitungan Berat Jenis Beton untuk Beton Batu Lintang 20% Umur 28 Hari

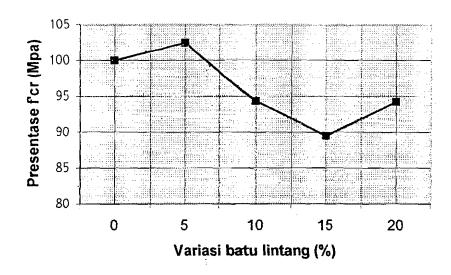
Kode	Berat (kg)	Volume (cm ³)	Bj =Berat/Volume
			(gr/cm^3)
BN 01	12,477	5356,332	2,329
BN 02	12,337	5280,081	2,337
BN 03	12,624	5341,956	2,363
BN 04	12,459	5331,491	2,337
BN 05	12,668	5357,902	2,364
BN 06	12,809	5411,759	2,367
BN 07	12,434	5334,960	2,331
BN 08	12,835	5415,123	2,370
BN 09	12,547	5350,768	2,345
BN 10	12,659	5331,503	2,374
BN 11	12,494	5342,121	2,339
BN 12	12,668	5358,046	2,364
BN 13	12,562	5372,021	2,338
BN 14	12,735	5400,514	2,358
BN 15	12,598	5388,497	2,338
			35,255


Bj campuran =
$$\frac{\sum Bj}{N}$$
=
$$\frac{35,255}{15}$$
= 2.350 gr/cm³

Tabel 5.17 Data Kuat Desak Karakteristik (fc) Variasi Batu Lintang

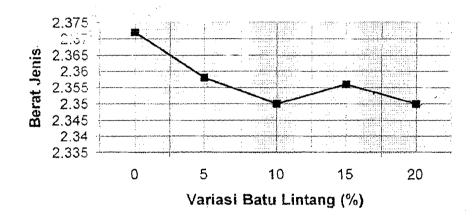
Variasi (%)	Kuat Desak Karakteristik (f c)				
	Mpa	Persentase (%)			
0	46,204	100			
5	50,871	110,101			
10	41,298	89,382			
15	41,579	89,990			
20	46,033	99,629			

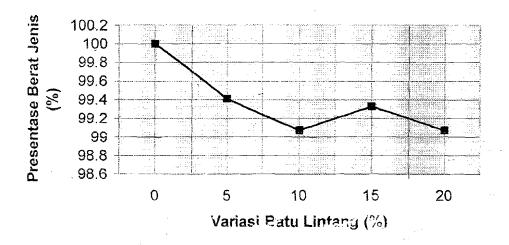

Gambar 5.2 Grafik Hubungan Antara Variasi Batu Lintang dengan Kuat Desak Karakteristik (f'c) pada umur beton 28 hari


Gambar 5.3 Grafik Hubungan Antara Variasi Batu Lintang dengan Presentase Kuat Desak Karakteristik (f'c) pada Umur Beton 28 hari

Tabel 5.18 Data Kuat Desak Karakteristik Rata-rata (fcr) Variasi Batu Lintang

Variasi (%)	Kuat Desak Karakteristik (f cr)				
	Mpa	Persentase (%)			
0	52,526	100			
5	53,814	102,452			
10	49,537	94,309			
15	47,002	89,483			
20	49,192	94,224			


Gambar 5.4 Grafik Hubungan Antara Variasi Batu Lintang Dengan Kuat Desak
Beton Rata-rata (f'cr) pada Umur Beton 28 Hari


Gambar 5.5 Grafik Hubungan Antara Variasi Batu Lintang Dengan Presentase Kuat Desak Beton Rata-rata (f'cr) pada Umur Beton 28 Hari

Tabel 5.19 Berat Jenis Beton Terhadap Variasi Batu Lintang

Variasi (%)	Berat Jenis				
-	(gr/cm³)	Persentase (%)			
0	2,372	100			
5	2,358	99,410			
10	2,350	99,073			
15	2,356	99,325			
20	2,350	99,075			

Gambar 5.6 Grafik Hubungan Antara Variasi Batu Lintang dengan Berat Jenis Beton pada Umur 28 Hari

Gambar 5.7 Grafik Hubungan Antara Variasi Batu Lintang dengan Persentase Berat Jenis Beton pada Umur 28 Hari

4.1.3 Hasil Uji Kuat Tarik Beton

Hasil uji kuat tarik rata-rata beton untuk masing-masing persentase batu lintang dapat dilihat pada tabel 5.16 sampai 5.25 dan gambar 5.8 sampai 5.11 dan kuat tarik beton (fct) dihitung dengan rumus :

$$fct = 2P/\pi LD \tag{5.5}$$

dimana: fct = kuat tarik silinder beton (Mpa)

P = beban(KN)

L = panjang silinder (cm)

D = diameter (cm)

Tabel 5.20 Hasil Kuat Tarik Beton dengan Jenis Beton tanpa Batu Lintang (kalsit) 0%

Kode	Diameter	Tinggi	Berat	Volume	Berat jenis	Beban	fct	fct rata-
	(cm)	(cm)	(kg)	(cm^3)	(kg/cm ³)	Maks		rata
BNT 1	15,08	30,27	12,836	5406,373	0,002374	230	3,271	
BNT 2	15,02	30,32	12,824	5372,279	0,002387	240	3,421	3,202
BNT 3	14,92	29,86	12,326	5220,573	0,002361	200	2,914	

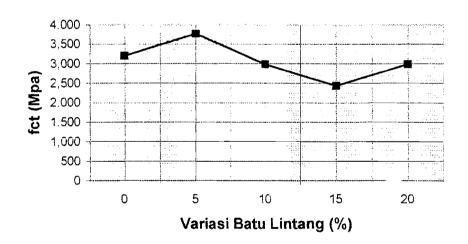
Tabel 5.21 Hasil Kuat Tarik Beton dengan Jenis Beton dengan Batu Lintang (kalsit) 5%

Kode	Diameter	Tinggi	Berat	Volume	Berat jenis	Beban	fct	fct rata-
	(cm)	(cm)	(kg)	(cm ³)	(kg/cm ³)	Maks		rata
BLT 1	15,02	30,26	12,643	5361,648	0,002358	290	4,144	
BLT 2	14,98	30,21	12,449	5324,361	0,002338	290	4,162	3,767
BLT 3	15,10	28,72	12,621	5143,149	0,002454	200	2,995	

Tabel 5.22 Hasil Kuat Tarik Beton dengan Jenis Beton dengan Batu Lintang (kalsit) 10%

Kode	Diameter	Tinggi	Berat	Volume	Berat jenis	Beban	fct	fct rata-
	(cm)	(cm)	(kg)	(cm ³)	(kg/cm ³)	Maks		rata
BLT 1	15,09	30,13	12,625	5388,509	0,002342	205	2,928	
BLT 2	15,00	29,94	12,659	5290,847	0,002393	220	3,182	2,984
BLT 3	15,07	30,32	12,633	5408,118	0,002336	200	2,843	

Tabel 5.23 Hasil Kuat Tarik Beton dengan Jenis Beton dengan Batu Lintang (kalsit) 15%


Kode	Diameter	Tinggi	Berat	Volume	Berat jenis	Beban	fct	fct rata-
	(cm)	(cm)	(kg)	(cm ³)	(kg/cm ³)	Maks		rata
BLT 1	15,09	30,45	12,873	5445,739	0,002364	195	2,756	
BLT 2	15,06	30,04	12,571	5351,035	0,002349	140	2,010	2,434
BLT 3	14,97	30,10	12,394	5297,841	0,002339	176	2,537	

Tabel 5.24 Hasil Kuat Tarik Beton dengan Jenis Beton dengan Batu Lintang (kalsit) 20%

Kode	Diameter	Tinggi	Berat	Volume	Berat jenis	Beban	fct	fct rata-
1	(cm)	(cm)	(kg)	(cm ³)	(kg/cm ³)	Maks		rata
BLT 1	15,34	29,81	12,594	5509,378	0,002286	142	2,017	
BLT 2	15,02	30.37	12,673	5381,143	0,002355	207	2,947	2,994
BLT 3	14,96	30,25	12,566	5317,144	0.002363	280	4,019	

Tabel 5.25 Kuat Tarik Karekteristik Rata-rata (fct) Variasi Batu Lintang

Variasi	Kuat Tarik Karekteristik (fct)			
(%)	(Mpa)	Persentase (%)		
0	3,202	100		
5	3,767	117,645		
10	2,984	93,192		
15	2,434	76,015		
20	2,994	93,504		

Gambar 5.8 Grafik Hubungan Antara Variasi Batu Lintang dengan Kuat Tarik Karekteristik Beton Rata-rata pada Umur 28 Hari

5.2 Pembahasan

5.2.1 Kadar Air

Dari hasil pengujian kadar air terhadap silinder beton yang telah berumur 14 hari dengan variasi batu lintang 0%. 5%, 10%. 15%, 20% kemudian dimasukan kedalam oven selama 3 hari dengan suhu ruang 110° C. Dari hasil pengujian ini didapat kadar air seperti terlihat pada tabel 5.6 dan gambar 5.1 menunjukan bahwa, semakin besar kandungan persentase batu lintang terhadap beton maka kadar air akan semakin meningkat.

Penurunan berat jenis beton pada penambahan batu lintang disebabkan oleh karena silt atau debu , jika terdapat dalam jumlah yang berlebihan akan menambah permukaan agregat sehingga jumlah air yang diperlukan untuk membasahi semua butiran dalam campuran beton juga meningkat. Hal ini terbukti dengan besarnya kadar penyerapan air dengan variasi batu lintang 20% sebesar 36% terhadap beton tanpa batu lintang (beton normal).

5.2.2 Kuat Desak Beton

Pengujian kuat desak beton dengan benda uji silinder (15 cm x 30 cm), dilaksanakan pada umur beton 28 hari untuk pemakaian batu lintang 0%, 5%, 10%, 15%, 20%. Kuat desak yang paling maksimum diperoleh dengan variasi batu lintang sebesar 5 % walaupun demikian terjadi penurunan kuat desak beton dengan menggunakan batu lintang pada variasi 10%, 15%, 20%.

Beton tanpa batu lintang (beton normal) pada umur 28 hari memiliki kuat desak sebesar (fc) 46,204 Mpa, sedangkan kuat desak untuk beton yang

menggunakan variasi batu lintang 5% dari berat semen memiliki kuat desak sebesar (f¹c) sebesar 50,871 Mpa atau mengalami kenaikan sebesar 10,101% dibandingkan dengan beton tanpa menggunakan batu lintang. Penggunaan batu lintang sebesar 5% dapat mengurangi kebutuhan semen sebesar 35,2 kg dari berat total semen sebesar 704 kg untuk setiap 1m³ adukan beton.

Kandungan silika dalam batu lintang (kalsit) sebesar 0,01% akan menyebabkan peningkatan kekuatan pada beton. Hal ini disebabkan oleh adanya kemampuan dari silika untuk bereaksi dengan kalsium hidroksida pada saat berlangsungnya hidrasi semen yang akan membentuk kalsium silikat hidrat, sehingga dapat mengurangi pembentukan kalsium hidroksida yang merupakan zat sisa hasil reaksi yang dapat menyebabkan menurunnya kekuatan beton.

Walaupun beton yang memakai variasi batu lintang mengalami peningkatan kekuatan pada variasi 5% namun akan menurun pada variasi > 5%, hal ini disebabkan oleh bertambahnya faktor air semen. Peningkatan faktor air semen ini terjadi karena pada hasil uji kadar air menunjukan bahwa semakin tinggi variasi batu lintang semakin tinggi pula kadar airnya, sehingga mengakibatkan menurunnya kekuatan dan dava tahan beton.

Mekanisme terjadinya pengaruh batu lintang sebagai filler terhadap kuat desak beton adalah terisinya pori-pori, yang sebelumnya terisi air yang terperangkap, oleh gel yang dihasilkan dari reaksi kapur bebas + batu lintang. Pada beton tanpa batu lintang, daerah transisi (transition zone) berisi air yang terjebak oleh partikel – partikel semen dan selanjutnya menguap meninggalkan

daerah yang porous. Keadaan porous ini menyebabkan kekuatan beton relatif rendah.

Bila dilihat dari hasil hitungan berat jenis beton pada tabel 5.19, maka semakin tinggi kadar batu lintang semakin menurun berat jenisnya. Hal ini terjadi karena kepadatan dari betonnya semakin kecil sehingga porositas yang terjadi semakin besar yang mengakibatkan turunnya kuat desak beton.

5.2.3 Kuat Tarik Beton

Pengujian kuat tarik beton dengan benda uji silinder (15 cm x 30 cm) dilaksanakan pada umur beton 28 hari untuk pemakaian batu lintang 0%, 5%, 10%, 15%, 20%. Kuat tarik yang paling maksimum diperoleh dengan variasi batu lintang sebesar 5 % walaupun demikian terjadi penurunan kuat tarik beton dengan menggunakan batu lintang pada variasi 10%, 15%, 20%.

Beton tanpa batu lintang (beton normal) pada umur 28 hari memiliki kuat tarik sebesar (f¹c) 3,.202 Mpa, sedangkan kuat tarik untuk beton yang menggunakan variasi batu lintang 5% dari berat semen memiliki kuat tarik sebesar (f¹c) sebesar 3,767 Mpa atau mengalami kenaikan sebesar 17,645% dibandingkan dengan beton tanpa menggunakan batu lintang Penggunaan batu lintang sebesar 5% dapat mengurangi kebutuhan semen sebesar 35,2 kg dari berat total semen sebesar 704 kg untuk seriap 1m³ adukan beton.

5.2.4 Hubungan Kuat Desak dengan Kuat Tarik Beton

Kekuatan tarik fct dari percobaan pebelahan silinder telah ditemukan sebanding dengan Afc ssedemikian sehingga diperoleh (Wang dan Salmon, 1993):

fct = 0,5 fc sampai 0,6 \sqrt{f} c untuk beton berbobot biasa.

Dari hasil penelitian diperoleh nilai koefisien hubungan antara kuat tarik dan kuat desak beton pada umur 28 hari yang dapat dilihat pada tabel 5.26.

Tabel 5.26 Nilai koefisien hubungan antara kuat tarik dengan kuat desak beton.

Ben da uji	BL (° 0)	Umur test (hari)	Nilai koefisien
BN	0	28	0,442
BBL	5	28	0,514
BBL	10	28	0,424
BBL	15	28	0,355
BBL	20	28	0,426

Dari tabel 5.26 terlihat bahwa nilai koefisien mengalami perubahan menjadi lebih kecil dibandingkan dengan nilai koefisien menurut Wang dan Salmon. Dari penelitian diperoleh bahwa:

fct = $0.355 \sqrt{f^4}$ c sampai $0.514 \sqrt{f^4}$ c Mpa

Dari rumus diatas didapatkan penurunan nilai koefisien kuat tarik terhadap kuat desak beton dibandingkan dengan beton berbobot biasa.

BAB VI

KESIMPULAN DAN SARAN

6.1 Kesimpulan

Berdasarkan hasil penelitian yang telah dilakukan tentang beton dengan penambahan batu lintang sebagai filler dapat diambil kesimpulan sebagai berikut:

- Pada hasil pengujian kadar air silinder beton didapat hasil bahwa penambahan batu lintang sebagai filler dari 5% sampai 20% terhadap berat semen, kadar air meningkat.
- 2. Hasil pengujian kuat desak beton yang paling baik diperoleh pada persentase batu lintang 5% yaitu sebesar 50,871 Mpa pada umur beton 28 hari atau naik sebesar 10,101% dari beton tanpa batu lintang dan Berat volumenya sebesar 2383 kg/m³ naik sebesar 3,6% dari beton tanpa batu lintang.
- Penggunaan batu lintang sebesar 5% dapat mengurangi semen sebesar 35,2 kg dari kebutuhan semen sebesar 704 kg untuk setiap 1 m³ adukan beton.
- Kuat desak yang dihasilkan variasi batu lintang lebih besar dari 5% yaitu
 10%, 15%, 20% mengalami penurunan dari beton tanpa batu lintang.

- 5. Pada pengujian kuat tarik beton yang paling baik diperoleh pada persentase batu lintang 5% yaitu sebesar 3,767 Mpa pada umur beton 28 hari atau naik sebesar 17,645% dari beton tanpa batu lintang.
- 6. Dari hasil penelitian terjadi perubahan nilai koefisien sehingga diperoleh nilai kopefisien antara fct = 0.355 √f c sampai 0,514 √f c dari Wang dan Salmon.

6.2 Saran

Dalam pembuatan dan pengujian benda uji beton dengan menggunakan batu lintang sebagai filler banyak kekurangan dan kesulitan yang dialami penulis, untuk itu penulis menyarankan beberapa hal:

- Adanya kelanjutan penelitian untuk mengetahui seberapa besar kekuatan mortar semen jika menggunakan batu lintang gunung kidul dengan faktor air semen yang sama.
- Agar dalam penelitian selanjutnya interval persentase batu lintang gunung kidul lebih diperkecil lagi.
- 3. Pemakaian bahan tambah batu lintang gunung kidul dalam campuran beton terutama dilapangan harus diawasi dengan ketat karena pemakaian bahan tambah yang berlebihan sangat berpengaruh terhadap sifat-sifat beton, terutama terhadap kekuatan beton.
- 4. Untuk setiap penambahan variasi batu lintang, faktor air semen diubah atau direncana ulang.

DAFTAR PUSTAKA

Aman Subakti, 1995, TEKNOLOGI BETON DALAM PRAKTEK, Jurusan Teknik Sipil FTSP-ITS.

Dinas Pertambangan Jogjakarta, 1996.

Herry Prijatna,1995, ABU TERBANG DAN PEMANFAATANNYA, Pusat Penelitian dan Pengembangan Geoteknologi LIPI.

L. Wahyudi dan Syahril A. Rahim, 1997, STRUKTUR BETON BERTULANG, PT. Gramedia Pustaka Utama, Jkarta

Murdock, L.J, Brook, K.M. 1986, BAHAN DAN PRAKTEK BETON, (Terjemahan oleh S. Hindarko) Erlangga, Jakarta

Nawy, E.G, 1950, BETON BERTULANG (Suatu Pendekatan Dasar) Penterjemah Universitas Katolik Parahyangan, PT. Eresco Bandung.

Tjokrodimulyo, Kardiyono, 1992, TEKNOLOGI BETON, Jurusan Teknik Sipil Fakultas Teknik Sipil UGM

Triono Budi Astanto, 2001, KONSTRUKSI BETON BERTULANG, Kanisius, Jogjakarta..

LAMPIRAN

a feet of the state of the

SOOS \ 100S : NUHAT

and the second section of the second second

Jln. Kaliurang Km. 14,4 telp. (0274) 895707, 895042 Fax. (0274) 895330 Yogyakarta.

DATA PEMERIKSAAN BERAT VOLUME AGREGAT HALUS " SSD "

Jenis benda uji	:	Di periksa oleh :	
Nama benda uji	: PASIIL	1. MAMAN.S	96310303
Asal	: KALI URANG	2. POMI. M	96 310 030
Keperluan	: PENELITIAN		
		Tanggal: 30 M	ARET 2002

ALAT - ALAT

- L. Tabung silinder (\odot 15 x (30) $\rm cm$
- 2. Timbangan kap. 20 kg
- 3. Tøngkat penumbuk \varnothing 16 panjang 60 cm
- 4. Serok/sekop, lap dll.

	BENDA UJI 1		BENDA UJI	II
Berat tabung (W1)	5,413	Kg	5,413	Kg
Berat tabung + Agregat (W2)	13.,696	Kg	13,.66 8	Kg
Volume tabung $\sqrt{\pi}$, π , d^2 , t	52 98,76 163	m³	529875-60	3 m ³
W ₂ - W ₁ Berat volume	13,696 - 5,413 5,2977 · 103 t :1563,19 + 3/115=	$/ m^3$		t/m³ t/ 143
Berat volume rata-rata	1,5605	6	t / m³	

Yogvakarta, 13-5-2002 Mengetahui Laboratorium BKT FTSP UII,

S INTO ADMITTEN IN TERNIN

(Emmo mo

Jln. Kaliurang Km. 14,4 telp. (0274) 895707, 895042 Fax. (0274) 895330 Yogyakarta.

DATA PEMERIKSAAN BERAT JENIS AGREGAT HALUS

Jenis benda uji		Di periksa oleh :
Nama benda uji	PASIR	I. MAMAN . S
Asal	KALI URANE	2. ROM1.M
Keperluan	PENELITIAN	
	<tugas aftir=""></tugas>	Tanggal: 29 MARET 2002

ALAT -- ALAT

- 1. Gelas ukur kap 1000 ml
- 2. Timbangan ketelitian 0.01 gram
- 3. Piring, Sendok, Lap, dan lain-lain

	BENDA	U JI I	BENDA	UJI II
Berat agregat (W)	400	Gram	400.	Gram
Volume air (V ₁)	500	Сс	S.Q.D.	Сс
Volume air + Agregat (V ₂)	66a	Сс	6.55.	Сс
Berat jenis (BJ) $\frac{W}{V_2 - V_1}$	660-500		440	
Berat jenis rata – rata		2,5.	41032	

<u>Catatan</u>	
	•
	Yogyakarta, 13-5-2002
	Mengetahui
	Mengetahui Laboratorium BKT FT P UII,

BANDA HONSTRANS TENAME

Jln. Kaliurang Km. 14,4 telp. (0274) 895707, 895042 Fax. (0274) 895330 Yogyakarta.

DATA PEMERIKSAAN MODULUS HALUS BUTUR PASIR

Jenis benda uji		Di periksa oleh :			
Nama benda uji	PASIR	1. MAMAN . S	96 316 303		
Asal	: FALI URANG	2. ROM1. M	96 310 030		
Keperluan	PENELITIAN				
		Tanggal: 29 M	4PET 2002		

	Saringan	Berat te	Berat tertinggal Berat tertinggal Berat ke		Berat tertinggal Berat tertinggal Berat kun		tertinggal Berat tertinggal Berat kumulat		Berat tertinggal		ımulatif
		gra	ım	9/	6						
No	Ø lubang mm	I	. 11	I	II	I	11				
1	4.75	10:3	29,4	0,687	1.96	0,687	14.96				
2	2.36	88;4	123 , 3	5:56	8,22	6.1247	10118				
3	1.18	33:2:	273;3	22 7 133	18:22	28,38	28.14				
4	0.600	453,1	398,5	30,207	26,567	58.1587	5.4, 967				
5	0.300	297,1	314,4	19,807	20196	77,894	75,927				
6	0.150	200,7	22.173	13/38	14,753	9 1,274	90,68				
7	Pan	91,1	1251.1	6,073	8,34	977397	99,02				
		.1	J.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1	Jumlah	360,416	362,034				

Jumlah rata - rata

361,225

	262.1.602.			
MODULUS HALUS BUTIR =	· · · · · · · · · · · · · · · · · · ·	X	100 % =	21.6.
	100			L

Yogyakarta, _

13-5-2002

Mengetahui

Laboratorium BKT FTSP UII,

BRHHN KONSTANTA LEKNIN FAMULTASTERNIK UTI

(Sumoring)

Jln. Kaliurang Km. 14,4 telp. (0274) 895707, 895042 Fax. (0274) 895330 Yogyakarta.

DATA PEMERIKSAAN BERAT JENIS AGREGAT KASAR

Jenis benda uji	e. Si paggana naga naganakan naganakan naganakan kanan kana	Di periksa oleh :	
Nama benda uji	KERIKIL	MAMAN . S	9631030
Asal	LERASAK	2. POMI.M	96 310 030
Keperluan	RENELITIAN		
•		Tanggal: 36 MA	POT 2002

ALAT - ALAT

- 1. Gelas ukur kap 1000 ml
- 2. Timbangan ketelitian 0.01 gram
- 3. Piring , Sendok , Lap, dan lain-lain

	BENDA UJI I BENDA U			UJI II
Berat agregat (W)	400	Gram	400.	Gram
Volume air (V ₁)	500	Cc	500	Ce
Volume air + Agregat (V ₂)	659	Сс	.65./	Сс
Berat jenis (BJ) $\frac{W}{V_2 - V_1}$	460 619-500	2,21572	400	<u>- 1,64901</u>
Berat jenis rata rata		2,582	3 7	

<u>Catatan</u> :			
	•.		
	Yogyakarta,	13-5-2002	
		Mengetahui	
	Labora	itorium BKT FTSP UII,	

HABOS BRIONI

HABOS TENNIN

SALUMI

LABOS TENNIN

Jln. Kallurang Km. 14,4 telp. (0274) 895707, 895042 Fax. (0274) 895330 Yogyakarta.

DATA PEMERIKSAAN BERAT VOLUME AGREGAT KASAR " SSD "

Jenis benda uji	:	Di periksa oleh :	
Nama benda uji	: kenikil	1. MAMAN · S	26310303
Asal	: Krasak	2. ROMI.M	96310 030
Keperluan	: PENELITIAN	-	
		Tanggal: 30 MA	12et 2002

ALAT - ALAT

- 1. Tabung silinder (\emptyset 15 x t 30) cm
- 2. Timbangan kap. 20 kg
- 3. Tongkat penumbuk Ø 16 panjang 60 cm
- 4. Serok/sekop, lap dll.

	BENDA UJI	J	BENDA UJI	11
Berat tabung (W ₁)	7,352	Kg	7,348	Kg
Berat tabung + Agregat (W ₂)	15,288	Kg	15:,459	Kg
Volume tabung 1/4.π. d2. t	5,24071.103	m ³	5,29875.00-3	m ³
W ₂ - W ₁ Berat volume V	12,788 - 7,352 17,29875: 60-3 = 1497,912 by/m3 = 1,49771 t/m3	t/m³	15,459 -7,348 5,29875. 10-3 = 1503,74 kg/m3 > 1,53074 t/m3	t / m³
Berat volume rata-rata	1, 5142	3	t / m ³	

Yogyakarta,		13-	5-	2002
	Mengetah	mi		

Laboratorium BKT FTSP UII,

BAHSW KONS HAVE TEX SE

[Samanarino]

PENGUJIAN DAYA SERAP AIR (KADAR AIR)

NAMA BENDA UJI

: SILINDER BETCH

TANGGAL PEMBUATAN : 12 APRIL 2002

TANGGAL PENGUJIAN

: 25 APRIL 2002

NAMA PENGUJI

:1. MAMAN S 96310 303

2. POMI M 96 310 050

TABEL HASIL PENGUJIAN DAYA SFRAP AIR

sampel	Ü	T	Volume	Wk	Wb	Wb-Wk	Kadar air	Kadar air
. :	cm	cm	cm ³	kg	kg	Wk	(%)	rerata (%)
BN I	15161	29,547	5228,350	11,980	12,575	0,049	4,9	5
BN II	15,03	25:435	52221421	11,837	12,435	0.051	5,1	· ·
BL I 5%	14,97	29,584	5267,634	li, 979	12,621	01054	5.4	5,25
BL II 5%	14.92	25.702	5192,939	12,667	12,677	0,051	511	100
BL I 10%	15,00	20,840	5273,163	11,867	12,530	0,05E	516	5,5
BL II 10%	14.89	29,767	5246,245	111807	12,439	0,054	5,4	
BL I 15%	14,81	29,347	5055,495	111747	12517	01066	6,6	6,5
BL II 15%	15,06	18,530	5260,212	11,691	12,434	0.064	6,4	617
BL I 20%	15103	29,876	5300,664	11,832	12,825	01084	8,4	6,85
BL II 20%	14,82	29,748	5131,497	12,112	12,756	0,053	\$13	6,67

Yogyakarta, _ Mengetahui

Laboratorium BKJ FTSP UII,

NAMA BENDA UJI

: BETON NORMAL O%

TANGGAL PEMBUATAN : 1 APRIL 2002

TANGGAL PENGUJIAN : 29 APRIL 2002

NAMA PENGUJI

9 6 310 303 :1. MAMAN.S

2. RGM1. M

96 310 030

TABEL HASIL PENGUJIAN KUAT DESAK BETON

NOMOR	UKI	URAN	LUAS	BERAT	BEBAN	KUAT
BENDA	BEN	DA UJI	(cm ⁻)	(kg)	MAKSIMUM	DESAK
UJI	- (1	cm)		1	(KN)	(MPa)
	D	Н				
BN 01	14,95	29,89	175,538	12, 453	870	50,538
BN 02	14,91	29,99	174,600	12, 320	840	49,658
BN 03	14,82	29,96	172, 499	12, 250	760	44,926
BN 04	14, 93	30,65	175,069	12, 481	900	52,421
BN OS	14,97	30,04	176,008	12, 495	860	49,823
BN 06	14,95	30,04	175,538	12,609	930	54, 024
BN 67	15/65	29,94	177,895	12,599	950	54, 454
BN 08	15,00	29,90	176,715	12,483	950	54, 218
BN 09	15102	30,14	177,186	12,550	850	48, 917
BN 10	14,99	30,02	176,479	12,573	950	54, 891
BN 11	14,96	30123	175,773	12, 684	910	54, 531
13N 12	15,10	30,07	13-9, 150	12,810	945	53, 788
BN 13	15,09	30,18	138,842	12, 290	935	53,311
BN 14	15 /03	29,89	177,422	12,665	945	54, 312
BN 15	14.99	30,09	176,479	12,672	935	54,025

Yogyakarta, _____

Mengetahui

Laboratorium BKT FTSP UII,

NAMA BENDA UJI : BETON BATU LINTANG 5%

:1. MAMAN . S 96 310 303

TANGGAL PEMBUATAN : 7 APRIL 2002

TANGGAL PENGUJIAN : 6 MEL 2062

NAMA PENGUJI

2. ROMI. M

96 310 030

TABEL HASIL PENGUJIAN KUAT DESAK BETON

NOMOR	UKURAN		LUAS	BERAT	BEBAN	KUAT
BENDA	BEN	DA UJI	(cm ²)	(kg)	MAKSIMUM	DESAK
UJI	(0	cm)			(KN)	(MPa)
	D	Н				
BBL OI	14.97	30,26	176,008	12,672	945	54,748
BBL 02	15/03	30,07	177,422	12,533	935	53,737
BBL 03	15,09	30, 26	170,842	12,872	935	53,310
BBL 04	14,99	29195	176,479	12,413	900	52, 141
BBL 65	14,97	30,09	176,008	12, 481	935	54,097
BBL OG	14,98	30,19	176,244	12,568	890	51, 493
BBL 07	15/02	30131	177, 186	12,525	580	56, 399
BBL 08	14,95	30,19	175,538	12, 554	920	53, 443
BBL 09	15,15	30,32	180,267	12,788	910	51,475
BBL 10	15/02	30,18	177,186	12,558	535	53,868
B61 11	15111	30102	179,316	12,535	160	54, 591
BBL 12	15104	30,47	177,683	12,702	970	55,667
BBL 13	15,04	30127	177, 683	12,841	915	52,511
BBL 14	15,06	30,43	130, 131	12,769	935	53,523
88L 15	15/00	30,10	176,715	12,737	975	56, 261

Yogyakarta, ____

Mengetahui

Laboratorium BKT FTSP UII.

LABORATORIUM

NAMA BENDA UJI

: BETON BATU LINTANG 10%

TANGGAL PEMBUATAN:

7 APRIL 2002

TANGGAL PENGUIJAN

: 6 MEI 2002

NAMA PENGUJI

:1. MAMAN.S

96 310 363

2. ROMI. M

96 310 030

TABEL HASIL PENGUJIAN KUAT DESAK BETON

NOMOR	UKURAN		LUAS	BERAT	BEBAN	KUAT
BENDA	BEN	D.A UJI	(cm ²)	(kg)	MAKSINUM	DESAK
UJI	(6	em)			(KN)	(MPa)
	D	<u> </u>				
BBL 01	14,92	30,08	174,764	12, 379	820	47,845
BBL 02	14,93	30,09	175,069	12, 341	820	47,261
BBL 63	15102	36,34	177.186	12, 468	815	46,903
BBL DY	15 103	29,98	1771 422	12, 470	890	51,151
BBL 65	15102	30,34	177,186	12,645	850	4:,917
BBL 06	15:16	29,89	180, 565	12, 559	840	47,453
BBC 07	15104	30,12	177,658	12, 593	720	41, 325
BAL 08	15/17	30,09	180,743	12, 637	880	49,647
BBL 69	14, 99	30,16	176, 479	12, 468	850	49, 113
BBL 10	14,97	30,09	176,008	12,588	890	51,562
BBL 11	15/03	30,18	177,422	12,647	740	42,530
BBL 12	15109	30,48	178,842	12, 935	210	51,886
BBL 13	15168	30,23	178,605	12,741	1)50	54,238
BBL 14	15 163	30,31	177,422	12,656	970	55,749
BBL 15	15/02	30147	177,186	12,729	990	56,5-4

Yogyakarta, ____

Mengetahui

Laboratorium BKT FTSP UII.

LABORATORIUM

BAHAN KONSCRUKS! TEKNIK

FARULT ASSERNIR UI

D

NAMA BENDA UJI

BETON BATU LINTANG 15%

TANGGAL PEMBUATAN :

10 APRIL 2002

TANGGAL PENGUJIAN

8 MEI 2002

NAMA PENGUJI

:1. MAMAN. S

96 310 363

2. ROMI. M

96 310 030

TABEL HASIL PENGUJIAN KUAT DESAK BETON

NOMOR	UKURAN		LUAS	BERAT	BEBAN	KUAT
BENDA	BENI	DA ÜJI	(cm ²)	(kg)	MAKSIMUM	DESAK
UJI	(0	cm)			(KN)	(MPa)
	D	Н				
BBL 01	14.99	36,51	176,479	12,665	770	44,491
BBL 02	K1,98	30,29	176,244	12,579	820	47,443
BBL 03	15/10	36, 17	175,079	12,715	850	48,400
BBLOY	15,06	30,09	138,131	12, 725	830	47,513
BBL 05	15,02	30,44	177,186	12, 616	815	46,903
BBL 06	14198	30,19	176,244	12,627	840	48,600
BOL 07	14,99	30,37	176, 479	12, 640	820_	47,380
BBL 68	14,96	30,24	175, 773	12,602	850	49,30
BBL 09	14.99	30,41	176,479	12,686	870	50,269
BBL 10	15109	30148	178,842	12, 724	680	38,771
BBL II	15,13	30,10	179,791	12,714	880	49,910
BBL 12	1514	29,93	177,658	12, 289	820	47.065
13BL 13	10/21	29,97	176,950	12,530	760	43,796
BBL 14	15,02	30,19	177,186	12, 494	825	47,438
BBL 15	14,94	30133	175,304	12,603	820	47,607

Yogyakarta, _

Mengetahui

Laboratorium BKT FTSP UII,

LABORATORIUM

Com Soria

NAMA BENDA UJI

BETON BATU LINTANG 20%

TANGGAL PEMBUATAN :

12 APRIL 2002

TANGGAL PENGUJIAN

10 MEI 2002

NAMA PENGUJI

:1. MAMAN . S 96 310 303

ROMI. M 96 310 630

TABEL HASIL PENGUJIAN KUAT DESAK BETON

NOMOR	UKURAN		LUAS	BERAT	BEBAN	KUAT
BENDA	BENI	DA UJI	(cm ²)	(kg)	MAKSIMUM	DESAK
UJI	(c	m)			(KN)	(MPa)
	D	Н	-			
BBL 01	15/62	30,23	177,186	12,477	910	52,370
BBC 02	14,93	30,16	175,069	12, 337	890	51,834)
BB 6 03	14.98	30,31	176,244	12, 624	880	50,914
BBL 04	15100	30, 17	176,715	12, 459	860	46,162
BBL as	14,99	30136	176,479	12, 668	840	48,535
BBL 06	12109	30,26	178,842	12, 509	845	48,179
BBL 67	14: 99	30,23	176,479	12, 434	8 EC	49.69;
BBL 08	18105	30,44	173,895	12, 835	830	47,576
BBL 09	14.98	30,36	176,244	12,547	890	51, 492
BBL 10	10121	30,13	176,950	12,659	895	51,577
BBL 11	15/01	30,19	176, 950	12,494	860	49:559
BBL 12	15101	30,28	176,950	12, 668	855	49,271
BBL 13	14,09	30,44	176,479	12,562	780	45,065
BBL 14	15/61	30,52	176,950	12,735	850	48,982
BBL 15	15,07	\$0,21	178,368	12,598	895	51,166

Yogyakarta, _____

Mengetahui

Laboratorium BKT FTSP UII,

NAMA BENDA UJI : BETON NORMAL O'/

TANGGAL PEMBUATAN : 3 APRIL 2002

TANGGAL PENGUJIAN : 1 Met 2002

NAMA PENGUJI

:1. MAMAN.S 96 316 363

2. POMI.M 96316 030

TABEL HASIL PENGUJIAN KUAT TARIK BETON

NOMOR	UKURAN		LUAS	BERAT	BEBAN	KUAT
BENDA	BENI	DA UJI	(cm ²)	(kg)	MAKSIMUM	TARIK
UJI	(0	m)			(KN)	(MPa)
	D	H	-			
BUT OI	15.08	30.27	178,605	12,836	230	3,271
BUT 62	15.02	30.32	177,186	12,824	240	3,421
BNT 03	14.92	29,86	174,835	12,326	260	2,914
	<u> </u>		ļ			·
					<u> </u>	
	· 		ļ		<u> </u>	
ļ		<u> </u>				
		<u> </u>	 -			
- -		 -	<u>-</u>			
	 -					
					f'C talu-taru -	7 3,202

i ogyakaita,
Mengetahui
Laboratorium BKT FTSP UII,
MUIROTASOL
TEKNIK
ANUTAS TENNIK UIT
TEKNIK

NAMA BENDA UJI : BETON NER MAL O%

TANGGAL PEMBUATAN : 3 APRIL 2002

TANGGAL PENGUJIAN : 1 Met 2002

NAMA PENGUJI

:1. MAMAN S 96 316 363

2. FEMI.M 96316 030

TABEL HASIL PENGUJIAN KUAT TARIK BETON

NOMOR	UKURAN		LUAS	BERAT	BEBAN	KUAT
BENDA	BENT	DA UJI	(cm ²)	(kg)	MAKSIMUM	TARIK
UJI	(0	m)			(KN)	(MPa)
	D	Н	- <u>!</u>			
SUT OI	15.68	30.27	178,605	12,836	230	5,271
SUT 62	15,02	30.32	177,186	12,824	240	3,421
BUT 13	14,92	29,86	174,835	12,326	260	2,914
	<u> </u>					
					-	
			<u> </u>			
ļ						
			-			
			<u> </u>			
					f'C tata-rani -	7 3, 202

Y ogyaкапа, Mengetahui
Laboratorium BKT FTSP UII,
MUIROTATOR
TEKNIK
AKULTAS TENNIK IIII

NAMA BENDA UJI : BETON BATO CINTANT 5%

TANGGAL PEMBUATAN : 6 APPIL 2002

TANGGAL PENGUJIAN

: 4 MET 2002

NAMA PENGUJI

:1. MAMAN-S

96 310 303

2. E-MI M

96 316 050

TABEL HASIL PENGUJIAN KUAT TARIK BETON

NOMOR	UKU	RAN	LUAS	BERAT	BEBAN	KUAT
BENDA	BEN	DA UJI	(cm ²)	(kg)	MAKSIMUM	TARIK
UJI	(0	em)			(KN)	(MPa)
	D	Н	-	And the state of t	3	:
BLT CI	15,02	30,26	177,186	12,643	290	4,144
BLT 02	14,98	30,21	176,245	12,449	290	4,160
BLT C3	15,10	28,72	179,679	12,621	200	2,994
		1	1			tic rata-rata
						= 3,765
 	_	1		_		
· -		<u> </u>				
	<u> </u>	 				
:						
:			İ			i

Yogyakarta,				
-------------	--	--	--	--

Mengetahui

Laboratorium BKT/FTSP UII,

NAMA BENDA UJI

BETON BATE LINTANE <16%>

TANGGAL PEMBUATAN :

7 April 2002

TANGGAL PENGUJIAN

: 6 Met 2012

NAMA PENGUJI

:1. MAMAN SUPRATHAN 96310 303

2. REW MAPINELA

96 310030

TABEL HASIL PENGUJIAN KUAT TARIK BETON

NOMOR	UKU	JRAN	LUAS	BERAT	BEBAN	KUAT
BENDA	BENDA UJI		(cm ²)	(kg)-	MARSIMUM	TARIK
Un	(cm)			= +1 - 	(KN)	(MPa)
	D	H				
BLTCI	15,09	30,13	178,842	12,625	265	2, 927
BLT 02	15,60	29194	176,715	12,659	220	3.180
BLT C3	15,07	30.52	178,368	12, 633	200	2,841
	<u>:</u> !					fic rata-rata
	I					= 2,983
	<u> </u>	-			· :	: :
	‡ ‡	!	-		-	
	<u> </u>					
	<u> </u>				<u>:</u>	
	<u> </u>			<u> </u>	:	

Yogyakarta,	
-	

Mengetahui

Laboratorium BKT FTSP UII,

NAMA BENDA UJI	:	BETEN EATO LINTANT 15%
TANGGAL PEMBUATAN	:	10 APRIL 2002
TANGGAL PENGUJIAN	:	8 MB7 2012
NAMA PENGUJI	: 1.	MAMAN . 5 96 310 303
	2	Read 1 11 96 310 630

TABEL HASIL PENGUJIAN KUAT TARIK BETON :

NOMOR BENDA UJI	BENI	JRAN DA UJI m) H	LUAS (cm ²)	(kg)	BEBAN MAKSIMUM (KN)	KUAT TARIK
BLT 01	15,00	30,45	178,842	12,873	195	2,755
BLT 02	15,06	30,04	178, 131		140	2,009
BLT 03	14.07	36,10	176,008		176	2,536
						flc risa-rate = 2,433

Yogyakarta,		_
-------------	--	---

Mengetahui

Laboratorium BKT FTSP UII,

FANULTAS TENNIK UIT

NAMA BENDA UJI

BETS N BATE LINTANE RE',

TANGGAL PEMBUATAN:

12 APRIL 2002

TANGGAL PENGUJIAN

ic met 2002

NAMA PENGUII

:1. MAMAN S 96510 303

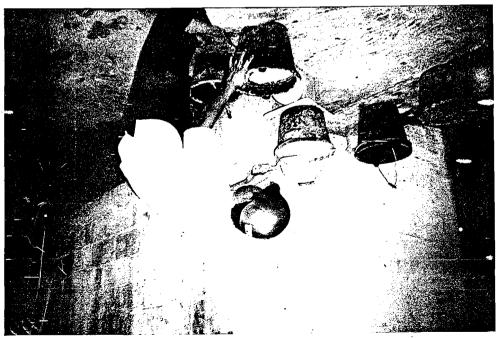
2. ROMI. M 96 510 030

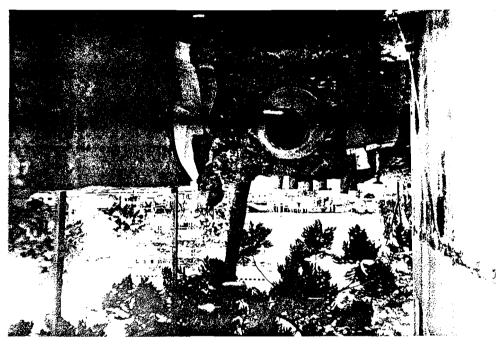
TABEL HASIL PENGUJIAN KUAT TARIK BETON:

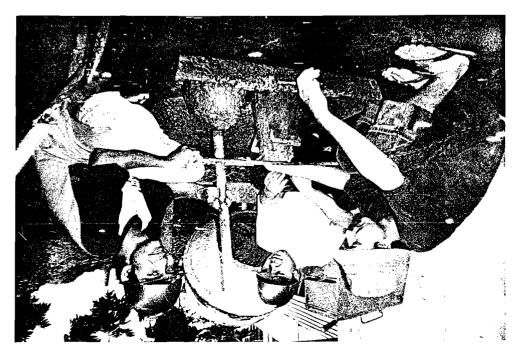
NOMOR BENDA	BEND	RAN DA UJI	LUAS (cm ²)	BERAT (kg)	BEBAN MAKSIMUM	KUAT TARIK
UJI	(c)	m) H			(KN)	< Milsely
BLT 01	15:34	29.81	184,81E	12,594	142	2,017
BLT OL	15.02	30,37	177,186	12,673	267	2,947
BLT 03	14.66	30,25	175,773	12,566	2.80	4,019
						1
						flc rath-rate
						: 2,994
		_				;
						N. C.
						:

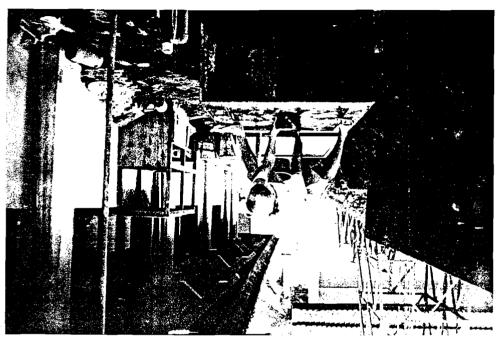
Mengetahui

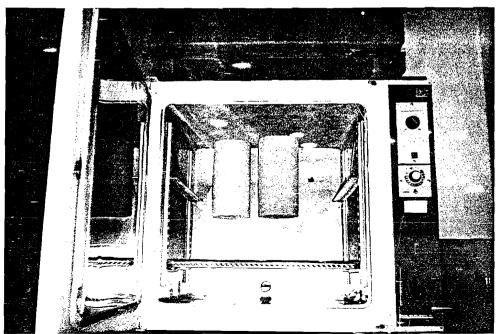
Laboratorium BKT FTSP UII, DRATORIUM

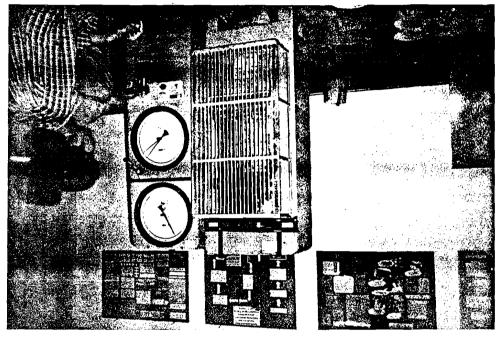

Foto-foto Penelitian

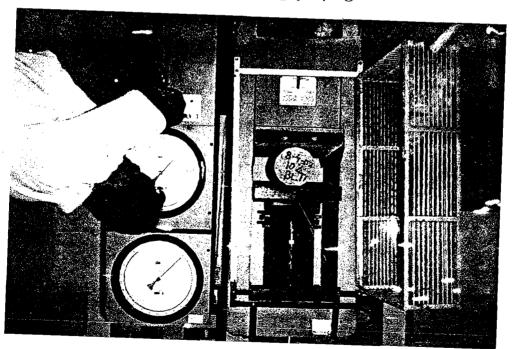

Gambar 1. Pengayakan Kerikil dan Pasir


Gambar 2. Penyaringan Batu Lintang (Filler)


Gambar 3. Persiapan Material


Gambar 4. Pengadukan Beton


Gambar 5. Pengujian Xilai Slump


Gambar 6. Perawatan Beton

Gambar 7. Pengovenan Benda Uiti

Gambar 8. Pengujian Desak

Gambar 9. Pengujian Tarik

Gambar 10. Batu lintang (kalsit)