
TUGAS AKHIR

APLIKASI VALUE ENGINEERING PADA PROYEK PERUMAHAN

(STUDI KASUS PADA PERUMAHAN PULO MAS DI CIREBON)

Disusun oleh :

MILIK PERPUSTAKAAN FARUTAS TEKIBK SPILDAN PEREKTANAAN UN YOGYAKARTA

FERI SURYA PRANADI

No. Mhs.

94 310 256

Nirm

940051013114120249

YUDI KURNIADI

No. Mhs.

94 310 265

Nirm

940051013114120257

JURUSAN TEKNIK SIPIL
FAKULTAS TEKNIK SIPIL DAN PERENCANAAN
UNIVERSITAS ISLAM INDONESIA
YOGYAKARTA
2002

LEMBAR PENGESAHAN TUGAS AKHIR

APLIKASI VALUE ENGINEERING PADA PROYEK PERUMAHAN (STUDI KASUS PADA PERUMAHAN PULO MAS DI CIREBON)

Disusun oleh:

FERI SURYA PRANADI

No. Mhs. 94 310 256

Nirm 940051013114120249

YUDI KURNIADI

No. Mhs. : 94 310 265

Nirm 940051013114120257

Telah diperikşa dan disetujui oleh:

Ir. H. Tadjuddin BMA, MS

Dosen Pembimbing I

Tanggal 7 19/9-2002

Ir. H. Faisol AM, MS

Dosen Pembimbing II

Tanggal: ۱۶-4-**2**0 ~

KATA PENGANTAR

Assalamu'alaikum wr.wb

Puji syukur kami panjatkan kehadirat Allah SWT, yang telah melimpahkan rahmat dan hidayah-Nya berupa keimanan, kekuatan, kesabaran serta keselamatan selama menyusun laporan Tugas Akhir dengan judul Aplikasi Value Engineering pada Proyek Perumahan hingga dapat terselesaikan. Shalawat serta salam tercurah kepada junjungan kita Nabi Muhammad SAW beserta keluarganya dan para pengikut-pengikutnya.

Laporan Tugas Akhir ini merupakan salah satu syarat untuk memperoleh derajat Sarjana Teknik Sipil program strata satu pada Jurusan Teknik Sipil, Fakultas Teknik Sipil dan Perencanaan, Universitas Islam Indonesia Yogyakarta. Penelitian Tugas Akhir ini berjudul "Aplikasi Value Engineering pada Proyek Perumahan Pulo Mas di Cirebon", yang diharapkan berguna sebagai bekal dalam mengamalkan ilmu pengetahuan penyusun pada saat terjun ke masyarakat. Laporan tugas akhir ini disusun berdasarkan data-data berupa wawancara, kuisioner maupun studi pustaka pada proyek perumahan Pulo Mas di Cirebon.

Selama penyusunan Tugas Akhir ini, penyusun telah banyak mendapat bimbingan dan bantuan dari berbagai pihak. Untuk itu pada kesempatan ini penyusun bermaksud menyampaikan ucapan terima kasih yang sebesar-besarnya kepada:

- 1. Bapak Ir. H. Widodo, MSCE., Phd, selaku Dekan Fakultas Teknik Sipil dan Perencanaan, Universitas Islam Indonesia,
- 2. Bapak Ir. H. Tadjuddin BMA, MS., selaku Dosen Pembimbing I Tugas Akhir,
- 3. Bapak Ir. H. Faisol AM, MS., selaku Dosen Pembimbing II Tugas Akhir,
- 4. Bapak Ir. Setyo Winarno, MT., selaku Dosen Tamu dalam Tugas Akhir ini,
- 5. Bapak Ir. Ali , selaku Pimpinan Proyek Pembangunan Perumahan Pulo Mas Cirebon,
- 6. Bapak Ir. M. Ridwan, selaku Pelaksana Proyek Pembangunan Perumahan Pulo Mas Cirebon,
- 7. Seluruh responden yang telah berpartisipasi dalam mengisi kuisioner,
- 8. Ayahanda dan Ibunda serta adik tercinta dan terkasih yang selalu memberikan dorongan semangat serta mendo'akan kesuksesan penyusun,
- 9. Serta teman-teman yang telah membantu selama penyusunan Tugas Akhir ini yang tidak dapat penyusun sebutkan satu-persatu.

Segala daya, upaya serta kemampuan telah penyusun curahkan sepenuhnya demi terselesaikannya laporan Tugas Akhir ini, namun semua itu tidak terlepas dari segala kekurangan yang ada. Untuk itu penyusun sangat mengharapkan segala saran dan kritikan yang bersifat membangun. Semoga

laporan Tugas Akhir ini dapat bermanfaat bagi yang membacanya, serta bagi penyusun pada khususnya. Akhir kata, semoga Allah SWT selalu melimpahkan rahmat serta hidayah-Nya kepada kita semua, Amin-amin ya robbal'alamin.

Wassalaamu 'alaikum Wr. Wb.

Yogyakarta, April 2002

Penyusun

DAFTAR ISE

HALAM	AN J	UDUL	i
LEMBA	R PE	NGESAHAN	ii
KATA P	ENG	ANTAR	iii
DAFTAI	R ISI		v
DAFTAI	R TA	BEL	viii
DAFTAI	R GA	MBAR	X
DAFTAI	R LA	MPIRAN	X
ABSTRA	KSI		xi
BAB I	PEN	SDAHULUAN	1
	1.1	Latar Belakang	1
	1.2	Rumusan Masalah	2
	1.3	Batasan Masalah	2
	1.4	Tujuan Penelitian	3
	1.5	Manfaat Penelitian	3
	1.6	Metode Penelitian	3
BAB II	TIN	JAUAN PUSTAKA	7
вав ні	LA	NDASAN TEORI	10
	3.1	Pengertian dan Dasar Pemikiran Value Engineering	10
	3.2	Tujuan Value Engineering	11
	3.3	Beberapa Istilah dalam Value Engineering	11
		3.3.1 Nilai (<i>Value</i>)	11
		3.3.2 Biaya (<i>Cost</i>)	13
		3.3.3 Harga (<i>Worth</i>)	13
	3.4	Waktu Penerapan Value Engineering	13
	3.5	Analisis Fungsional	14
	3.6	Analisis Keuntungan dan Kerugian	16

	3.7	Analisis Tingkat Kelayakan	18
	3.8	Analisis Matriks	21
	3.9	Life Cycle Cost (Biaya Siklus Hidup)	26
		3.9.1 Konsep Nilai Waktu Uang (Time Value of Money)	28
		3.9.2 Konsep Present Value	29
		3.9.3 Dasar-dasar Perhitungan Present Value	29
	3.10	Penggunaan Present Value pada Value Engineering	30
BAB IV	APL	IKASI VALUE ENGINEERING PADA PROYEK	
	PER	RUMAHAN PULO MAS DI CIREBON	32
	4.1	Latar Belakang Proyek	32
	4.2	Tahap Informasi (Information Phase)	33
	4.3	Tahap Kreatif (Creative Phase)	41
	4.4	Tahap Penilaian/Analisis (Judgement Phase)	42
		4.4.1 Tahap Analisis Untung Rugi	42
		4.4.2 Tahap Analisis Tingkat Kelayakan	53
		4.4.3 Tahap Analisis Matriks	56
		4.4.3.1 Penentuan Kriteria	56
		4.4.3.2 Analisis Pembobotan Kriteria Parameter dan	Uji
		Data	57
	4.5	Tahap Pengembangan (Development Phase)	66
		4.5.1 Perhitungan Biaya Pekerjaan	66
		4.5.2 Perhitungan Rasio (Ratio)	69
		4.5.3 Biaya Pemeliharaan	71
		4.5.4 Biaya Biaya Siklus Hidup (Life Cycle Cost)	73
	4.6	Tahap Presentasi/Rekomendasi (Recommendation Phase)	76
BAB V	PEM	IBAHASAN	81
	5.1	Analisis Untung Rugi	81
	5.2	Analisis Tingkat Kelayakan	86
	5.3	Analisis Matriks	89
	5.4	Biaya Siklus Hidup	93

BAB VI	KES	SIMPUI	LAN DAN SARAN	97
	6.1	Kesim	pulan	97
	6.2	Saran		98
DAFTA]	R PU	STAKA	······	99
LAMPII	RAN-	LAMPI	IRAN	101

DAFTAR TABEL

	NO.	NAMA TABEL	HAL.
-	TABEL	TATALLY LYMPOLY	1
	2.1	Perbandingan Biaya Pondasi Gedung	7
	2.2	Perbandingan Biaya Pondasi Jembatan	8
	2.3	Perbandingan Biaya Atap	9
	3.1	Skala Banding Secara Berpasangan	23
	3.2	Matriks Perbandingan Berpasangan	23
	3.3	Index Random Value	26
	4.1	Informasi Proyek	33
	4.2	Tahap Informasi Pekerjaan Penutup Atap	34
	4.3	Tahap Informasi Pekerjaan Rangka Atap	34
1	4.4	Tahap Informasi Pekerjaan Plafond	34
	4.5	Tahap Informasi Pekerjaan Lantai	35
	4.6	Tahap Informasi Pekerjaan Pondasi	35
	4.7	Ide-Ide Alternatif Pada Tahap Kreatif	41
	4.8	Analisis Untung Rugi Penutup Atap	43
	4.9	Analisis Untung Rugi Rangka Atap	44
	4.10	Analisis Untung Rugi Plafond	45
	4.11	Analisis Untung Rugi Lantaí	46
	4.12	Analisis Untung Rugi Pondasi	47
	4.13	Hasil Revisi Analisis Untung Rugi Penutup Atap	48
	4.14	Hasil Revisi Analisis Untung Rugi Rangka Atap	49
	4.15	Hasil Revisi Analisis Untung Rugi Plafond	50
	4.16	Hasil Revisi Analisis Untung Rugi Lantai	51
	4.17	Hasil Revisi Analisis Untung Rugi Pondasi	52
	4.18	Analisis Tingkat Kelayakan Penutup Atap	53
	4.19	Analisis Tingkat Kelayakan Rangka Atap	54
l	4.20	Analisis Tingkat Kelayakan Plafond	54
	4.21	Analisis Tingkat Kelayakan Lantai	55
	4.22	Analisis Tingkat Kelayakan Pondasi	55
	4.23	Penilaian Bobot Pekerjaan dengan PHA	59
	4.24	Analisis Matriks Penutup Atap	61
	4.25	Analisis Matriks Rangka Atap	62
	4.26	Analisis Matriks Plafond	63
	4.27	Analisis Matriks Lantai	64
	4.28	Analisis Matriks Pondasi	65

1	4.29	Desain Alternatif dari Hasil Analisis Matriks	66
	4.30	Rekapitulasi Biaya Penutup Atap	67
I	4.31	Rekapitulasi Biaya Rangka Atap	67
	4.32	Rekapitulasi Biaya Plafond	67
	4.33	Rekapitulasi Biaya Lantai	67
I	4.34	Rekapitulasi Biaya Pondasi	68
İ	4.35	Perhitungan Rasio Setiap Pekerjaan	70
	4.36	Biaya Pemeliharaan dalam Biaya Sekarang (Present Worth)	72
	4.37	Harga Item Pekerjaan Keseluruhan dan Penghematan	74
	4.38	Biaya Siklus Hidup dalam Annual Cost (AC)	75
I	4.39	Penghematan Biaya Siklus Hidup (Annual Cost)	76
I	4.40	Rekapitulasi Hasil dari Analisis Value Engineering	80
	5.1	Hasil Analisis Untung Rugi Pekerjaan Penutup Atap	83
	5.2	Hasil Analisis Untung Rugi Pekerjaan Rangka Atap	83
	5.3	Hasil Analisis Untung Rugi Pekerjaan Plafond	84
	5.4	Hasil Analisis Untung Rugi Pekerjaan Lantai	85
	5.5	Hasil Analisis Untung Rugi Pekerjaan Pondasi	85
	5.6	Hasil Analisis Tingkat Kelayakan Pekerjaan Penutup Atap	87
	5.7	Hasil Analisis Tingkat Kelayakan Pekerjaan Rangka Atap	87
	5.8	Hasil Analisis Tingkat Kelayakan Pekerjaan Plafond	88
	5.9	Hasil Analisis Tingkat Kelayakan Pekerjaan Lantai	88
	5.10	Hasil Analisis Tingkat Kelayakan Pekerjaan Pondasi	89
	5.11	Hasil Analisis Matriks Pekerjaan Penutup Atap	90
	5.12	Hasil Analisis Matriks Pekerjaan Rangka Atap	91
	5.13	Hasil Analisis Matriks Pekerjaan Plafond	92
	5.14	Hasil Analisis Matriks Pekerjaan Lantai	92
	5.15	Hasil Analisis Matriks Pekerjaan Pondasi	93
	5.16	Presentase Penghematan Biaya yang Terjadi	95
	5.17	Perbandingan Biaya Desain Awal dengan Desain Perubahan	96

DAFTAR GAMBAR

NO. GAMBAR	NAMA GAMBAR	HAL.
3.1	Potensi Penghematan oleh Value Engineering	13
3.2	Diagram Aturan Dasar "Fast"	16
3.3	Biaya Siklus Hidup	27
4.1	Diagram FAST Pekerjaan Penutup Atap	36
4.2	Diagram FAST Pekerjaan Rangka Atap	37
4.3	Diagram FAST Pekerjaan Plafond	38
4.4	Diagram FAST Pekerjaan Lantai	39
4.5	Diagram FAST Pekerjaan Pondasi	40

DAFTAR LAMPIRAN

NO. LAMPIRAN	KETERANGAN
I	Tabel Rangking Kriteria Berdasarkan Data Kuisioner
II	Tabel Perhitungan Rangking Kriteria Berdasarkan Data Kuisioner
III	Daftar Analisa Pekerjaan Proyek
IV	Biaya Pemeliharaan Untuk Perbaikan Material
V	Perencanaan Biaya Pondasi
V-a	Daftar Harga Upah dan Barang
VI	Perhitungan Rasio Pekerjaan
VII	Denah Lokasi Proyek
VIII	Denah Rumah dan Tampak Depan
IX	Tampak Samping
X	Denah Pondasi Awal
XI	Detail Pondasi Awal
XII	Denah Pondasi Perubahan
XIII	Detail Pondasi Perubahan
XIV	Denah Rencana Atap
XV	Rencana Atap
XVI	Perubahan Rencana Atap
XVII	Kuisioner Penelitian Tugas Akhir
XVIII	Tabel Rekapitulasi Hasil Analisis/Penilaian
XIX	Perhitungan Struktur Pondasi dengan Program SAP'90
XX	Kartu Peserta Tugas Akhir
XXI	Lembar Konsultasi

Terjadinya krisis ekonomi yang berkepanjangan di Indonesia menyebabkan pula perkembangan jasa konstruksi mengalami kemunduran. Sedangkan permintaan masyarakat pada sektor fisik berupa penyediaan sarana perumahan terus meningkat. Hal ini merupakan tantangan bagi para pengembang agar dapat memenuhi kebutuhan masyarakat akan perumahan tersebut. Oleh sebab itu diperlukan suatu metode untuk meningkatkan efisiensi dan penghematan, agar harga jual lebih murah tanpa mengurangi mutu dan kualitas. Salah satunya adalah dengan menggunakan metode Value Engineering (VE).

Dalam Tugas Akhir ini, peneliti mengambil obyek penelitian pada proyek perumaban Pulo Mas di Cirebon Hal ini dikarenakan dalam pengamatan di lapangan ternyata masih ada beberapa item pekerjaan yang menghabiskan biaya cukup besar, antara lain adalah pekerjaan penutup atap, rangka atap/kuda-kuda, plafond, lantai dan pondasi. Desain awal penutup atap adalah genteng beton, rangka atap digunakan kayu meranti, plafond menggunakan gypsum, lantai keramik dan pondasi menggunakan batu kali. Dalam pembangunan proyek perumahan tersebut membutuhkan dana yang cukup besar sehingga untuk memperoleh penghematan dana pembangunan maka digunakan metode Value Engineering (VE).

Analisis dilakukan dengan pengumpulan data proyek, pengajuan ide-ide alternatif yakni dengan mengajukan lima alternatif untuk masing-masing item yang dianalisis. Alternatif-alternatif tersebut dianalisis dengan menggunakan penilaian untung rugi, tingkat kelayakan dan analisis matriks. Kemudian dilanjutkan dengan tahap perhitungan biayanya baik biaya awal, biaya pemeliharaan maupun siklus hidupnya.

Dari hasil analisis yang dilakukan peneliti ternyata diperoleh untuk pekerjaan penutup atap adalah genteng plentong dengan penghematan mencapai 28,05% dari desain awal, untuk pekerjaan rangka atap menggunakan gunungan batu bata dengan penghematan 34,62% dari desain awal, pekerjaan plafond menggunakan eternit kerang dengan penghematan 29,40%, pada pekerjaan lantai menggunakan plesteran batu bata dengan biaya penghematan 73,93% dan pada pekerjaan pondasi menggunakan pondasi sloof dengan penghematan mencapai 24,86%. Sehingga penghematan total seluruh item pekerjaan setelah dilakukan Value Engineering mencapai 31,18%.

BABI

PENDAHULUAN

1.1 Latar Belakang

Tidak stabilnya nilai tukar mata uang Rupiah terhadap Dollar AS, menyebabkan terjadinya krisis ekonomi yang berkepanjangan di Indonesia beberapa tahun ini. Salah satunya diakibatkan oleh situasi politik dalam negeri yang tidak menentu dan tidak adanya jaminan keamanan dari pihak pemerintah sehingga menyebabkan para pelaku bisnis baik dalam maupun luar negeri enggan untuk menanamkan modalnya di Indonesia.

Sebagaimana uraian di atas hal itu menyebabkan pula perkembangan dunia jasa kontruksi mengalami kemunduran. Sedangkan permintaan masyarakat pada sektor fisik, berupa penyediaan sarana perumahan terus meningkat. Menurut Komarudin dalam bukunya "Menelusuri Pembangunan dan Pemukiman", diperkirakan kebutuhan rumah di Indonesia dari tahun 1989 sampai tahun 2000 adalah sebanyak 31,9 juta unit atau 2,9 juta unit pertahun. Sedangkan perhitungan yang dilakukan oleh Kantor Menteri Negara Perumahan Rakyat menunjukkan angka kebutuhan rumah 2,4 juta unit pertahun. Sementara itu kemampuan pemerintah sendiri sangat terbatas sehingga usaha pembangunannya lebih diarahkan oleh sektor swasta (pengembang), sedangkan pemerintah lebih banyak

sebagai motivator saja. Hal ini merupakan tantangan bagi para pengembang (developer) agar dapat memenuhi kebutuhan masyarakat akan perumahan tersebut.

Pelaksanaan proyek perumahan Pulo Mas di Cirebon membutuhkan dana yang cukup besar sedangkan dana yang tersedia sangat terbatas. Dalam mengelola dana yang terbatas tersebut diperlukan suatu usaha untuk meningkatkan efisiensi dan penghematan. Salah satu alternatifnya adalah dengan menggunakan metode *Value Engineering*, yang diharapkan dapat memberikan penghematan biaya dalam pelaksanaan proyek perumahan Pulo Mas di Cirebon tanpa mengurangi mutu dan kualitas dari bangunan tersebut.

1.2 Rumusan Masalah

Dalam proyek perumahan Pulo Mas di Cirebon masalah yang terjadi adalah keterbatasan dana yang tersedia untuk pelaksanaan pembangunannya sehingga diperlukan suatu metode efisiensi dan penghematan. Pada tugas akhir ini permasalahan yang dibahas adalah bagaimana peranan *Value Engineering* dalam mengurangi biaya proyek serta aplikasi metode *Value Engineering* pada proyek perumahan Pulo Mas di Cirebon sehingga dapat memberikan penghematan biaya total proyek tersebut.

1.3 Tujuan Penelitian

Tujuan dari penulisan tugas akhir ini adalah untuk mendapatkan alternatif material atau bahan, yang dimungkinkan dapat memberikan penghematan terhadap biaya pembangunan perumahan Pulo Mas di Cirebon serta menunjang

fungsi yang diperlukan tanpa mengurangi mutu dan kualitas bangunan dengan cara mengaplikasikan metode *Value Egincering*.

1.4 Batasan Masalah Penelitian

Dalam tugas akhir ini, batasan masalah penelitian meliputi pembahasanpembahasan pada hal sebagai berikut :

- Analisis hanya dilakukan pada lima komponen rumah yaitu pada pekerjaan atap, rangka atap/kuda-kuda, plafond, lantai, dan pondasi.
- 2. Penelitian ini hanya dibatasi pada proyek perumahan Pulo Mas di Cirebon dengan type 36.
- 3. Pemilihan bentuk desain dan bahan alternatif tidak ditentukan oleh pemilik proyek (pengembang).
- 4. Studi ini tidak melakukan revisi atau pengkajian ulang, melainkan implementasi studi analisa *Value Engineering* terhadap desain yang sudah ada.

1.5 Manfaat Penelitian

Manfaat yang diharapkan dari penulisan ini adalah untuk memahami kegunaan penerapan *Value Engineering* pada suatu proyek dalam mengurangi biaya yang tidak diperlukan tanpa mengurangi kualitas dan mutu bangunan tersebut sehingga nantinya dapat dihasilkan harga rumah yang murah serta berkualitas dan terjangkau oleh masyarakat khususnya di daerah Cirebon.

1.6 Metode Penelitian

Rencana kerja yang akan dipakai dalam studi ini adalah dengan menggunakan metode *Standart-five phase job plan*, dengan alasan bahwa rencana kerja ini cukup sederhana dan umum dipakai secara luas, yaitu:

a. Tahap Informasi (Information Phase)

Pada tahap ini akan dikumpulkan data atau informasi tentang proyek perumahan tersebut sebanyak mungkin yang akan diperlukan untuk aplikasi *Value Engineering*. Informasi tentang proyek yang dikumpulkan tersebut diantaranya adalah.

- latar belakang proyek.
- 2 kondisi lapangan (topografi, kondisi tanah, lingkungan proyek).
- 3. elemen-elemen disain (komponen kontrukst).
- 4. informasi biaya provek (rencana anggaran biaya).
- 5 disain proyek (gambar dan perhitungannya)
- 6 fasilitas-fasilitas vano tersedia
- 7. batasan-batasan yang ditentukan untuk proyek.

Teknik-teknik yang digunakan dalam tahap informasi :

Mengumpulkan semua fakta dan informasi secara lengkap.

Dalam hal ini kita harus melakukan survei langsung pada lokasi proyek dan mengadakan wawancara baik dengan pemilik maupun pelaksana proyek, untuk mendapatkan informasi tentang proyek tersebut.

2. Membuat diagram FAST (Function Analysis System Technique)

Setelah semua fakta dan informasi terkumpul, susunlah secara teratur dan sistematis. Kemudian tentukan fungsi-fungsi dan tentukan fungsi dasarnya dengan menggunakan diagram FAST, yaitu suatu diagram yang menggambarkan secara terorganisir fungsi-fungsi suatu proyek dan hubungannya antara yang satu dengan yang lainnya.

3. Membuat buku kerja lembar kerja.

Semua mengenai informasi proyek maupun diagram FAST dibuat dalam lembar kerja.

b. Tahap Kreatif (Creative Phase)

Bertujuan untuk memotivasi orang untuk berfikir dan membangkitkan segala alternatif untuk memenuhi fungsi utama. Kreatifitas seseorang atau tim sangat berperan dalam mendapatkan alternatif-alternatif yang dibutuhkan.

e. Tahap Penilaian/Analisis (Judgement Phase)

Tujuannya untuk mengevaluasi semua alternatif dari tahap sebelumnya (tahap kreatif). Evaluasi dilaksanakan untuk menentukan pilihan terbaik yang mempunyai potensi besar dalam penghematan. Metode penilaian yang digunakan dalam tugas akhir ini ada tiga, yaitu:

- 1. Analisis untung rugi.
- Analisis tingkat kelayakan
- 3 Analisis matriks

d. Tahap Pengembangan (Development Phase)

Pada tahap ini diambil dua alternatif yang terbaik hasil dari tahap penilaian. Kemudian akan dikembangkan mengenai perhitungan biayanya, yaitu biaya awal, biaya siklus hidup dan biaya penghematan yang terjadi.

e. Tahap Rekomendasi/Presentasi (Recommendation Phase)

Pada tahap ini usulan yang telah dibuat melalui tahap pengembangan seterusnya dipresentasikan pada pihak-pihak yang berkepentingan, seperti owner, konsultan dan kontraktor

Pada kasus ini, karena titik berat pada tugas akhir untuk menempuh jenjang sarjana maka presentasi ini dilakukan pada sidang tugas akhir dihadapan para dosen pembimbing dan dosen penguji berupa suatu studi secara keseluruhan lengkap dengan dasar teorinya.

BAB II

TINJAUAN PUSTAKA

Optimasi Biaya Proyek dengan Value Engineering

Sebelumnya ada beberapa penelitian optimasi biaya suatu proyek dengan metoda *Value Engineering* yang dapat dijadikan sebagai bahan acuan dalam penyusunan Tugas Akhir ini. Penelitian-penelitian tersebut antara lain adalah :

1. Optimasi Biaya pada Pondasi Gedung

Dalam penelitian tugas akhir yang dilakukan oleh Benny Prastowo dan Arif Harianto Kancono (1997), dengan topik *Analisis Nilai pada Pondasi gedung Rektorat Universitas Muhammadiyah di Yogyakarta*, peneliti mencoba menerapkan metode *Value Engineering* pada pekerjaan pondasi gedung yang desain awalnya menggunakan pondasi Tiang Jaya Daido. Kemudian setelah dilakukan analisis diperoleh dua alternatif, yaitu pondasi Tiang Hume (alternatif I) dan pondasi Tiang Franki (alternatif II).

Dari hasil analisis didapatkan bahwa kedua alternatif tersebut lebih ekonomis dibandingkan dengan desain awal. Untuk alternatif I (pondasi Tiang Hume) penghematan yang terjadi mencapai 32.2 % dan alternatif II (pondasi Tiang Franki) mencapai 18.3 %. dibandingkan dengan pondasi awal (pondasi Tiang Jaya Daido). Untuk lebih jelasnya lihat pada tabel berikut ini:

Tabel 2.1 Perbandingan Biaya Pondasi Gedung

<u>and the second of the second </u>	Harga (Rp)	Penghematan (Rp)
Pondasi Tiang Jaya Daido (asli)	441.377.750	• • • • • • • • • • • • • • • • • • •
Pondasi Tiang Hume (alternatif l)	299,340,085	142.037.665
Pondasi Tiang Franki (alternatif II)	360.613.275	80.764.475
		and the second s

2. Optimasi biaya pada Pondasi Jembatan

Wawan Setiawan dan Eko Siswinardi (1999), mengambil topik tentang Konsep dan Penerapan Nilai pada Proyek Jembatan Surakaria. Dimana peneliti hanya menerapkan Value Engineering pada pondasi jembatannya saja. Dalam proyek jembatan ini pondasi yang digunakan sebagai desain awalnya adalah pondasi tiang bor.

Kemudian setelah peneliti menerapkan metode *Falue Engineering* pada pekerjaan pondasi jembatan tersebut, didapatkan bahwa pondasi tiang paneang beton lebih hemat 9.3 % dibandingkan dengan pondasi tiang bor sebagai desain awalnya. Untuk lebih jelasnya lihat pada tabel berikut ini :

Tabel 2.2 Perbandingan Biaya Pondasi Jembatan

and the second of the second o	Harga (Rp)	Penghematan (Rp)	
Pondasi Tiang Bor (asti)	5()4()()()()()		
Pondasi Tiang Pancang Beton (usulan)	457.200.000	46.800.000	
Account to the second of the s	and the second second		

3. Optimasi Biaya pada Atap Gedung

Iwan Agus Diansjah dan Hendri (1997), membahas tentang Analisa Rekayasa Nilai pada Siruktur Arap Pembangunan Laboratorium Fakultas Teknik Industri Universitas Islam Indonesia Yagyakarta. Peneliti menerapkan metode Falue Engineering hanya pada atap gedungnya saja. Selanjutnya diperoleh dua alternatif, yaitu alternatif I kuda-kuda baja profil WF dan alternatif II kuda-kuda baja siku ganda.

Dari hasil analisis didapatkan bahwa kedua alternatif tersebut lebih ekonomis dibandingkan dengan desain awal. Penghematan yang terjadi mencapai 44 % untuk alternatif I (kuda-kuda baja profil WF) dan alternatif II (kuda-kuda baja siku ganda) sebesar 39 %. Untuk lebih jelasnya lihat pada tabel berikut ini Tabel 2.3. Perbandingan Biaya Atap

 Kuda-kuda rangka yang ada
 164.092.870.10

 Kuda-kuda baja profil WF
 90.988.447.98
 73.104.422.12

 Kuda-kuda baja siku ganda
 100.075.885.50
 64.016.984.60

BAB III

LANDASAN TEORI

3.1 Pengertian dan Dasar Pemikiran Value Engineering

Pengertian Value Engineering secara umum adalah suatu teknik manajemen yang menggunakan pendekatan sistematis, kreatif dan usaha yang terorganisir yang diarahkan untuk menganalisa fungsi dari suatu sistem dengan tujuan untuk mencapai fungsi yang diperlukan dengan biaya yang serendah-rendahnya, akan tetapi masih sesuai dengan batasan fungsional dan teknik yang berlaku sehingga hasilnya tetap menjamin keandalan suatu proyek atau produk tersebut.

Dasar pemikiran yang mendasari perlunya *Value Engineering* adalah bahwa disetiap kegiatan konstruksi selalu terdapat biaya-biaya yang tidak diperlukan. Biaya tersebut tidak terlihat atau disadari oleh pemilik, perencana maupun pelaksana kegiatan tersebut. Beberapa hal yang menyebabkan terjadinya biaya-biaya tersebut adalah:

- 1. Terbatasnya waktu yang disediakan untuk proses perencanaan.
- 2. Kurangnya informasi dalam perencanaan.
- 3. Kurangnya kreatifitas dalam mengembangkan ide-ide baru.
- 4. Kurang tepatnya konsepsi.

- 5. Keadaan sementara yang menjadi permanen.
- 6. Kebijaksanaan-kebijaksanaan dari para pelaku birokrasi dan keadaan politik.

Melihat permasalahan tersebut maka metode *Value Engineering* sangat diperlukan dalam setiap kegiatan proyek konstruksi, hal ini disebabkan oleh :

- 1. Biaya kontruksi yang meningkat.
- 2. Kurangnya sumber dana dalam pembangunan.
- 3. Suku bunga yang tinggi.
- 4. Inflansi yang meningkat setiap tahun.
- 5. Kemajuan teknologi yang semakin pesat.
- 6. Terjadinya persaingan ketat hampir di semua bidang kegiatan.

3.2 Tujuan Value Engineering

Tujuan dari *Value Engineering* adalah untuk memperoleh suatu produk atau bangunan yang seimbang antara fungsi-fungsi yang dimiliki dengan biaya yang dikeluarkan dengan menghilangkan biaya-biaya yang tidak perlu, tanpa harus mengorbankan mutu, keandalan. *performance* dari suatu produk atau bangunan tersebut (Tadjuddin BMA,1997).

3.3 Beberapa Istilah dalam Value Engineering

3.3.1 Nilai (Value)

Nilai adalah suatu ukuran kepuasan konsumen/orang terhadap sesuatu barang yang menunjukkan kegunaan, kualitas, keandalan, biaya dan harga dari barang tersebut.

Dalam studi Value Engineering ada empat jenis nilai yaitu :

- 1. Nilai guna (*Use Value*), yaitu nilai yang menunjukkan seberapa besar kegunaan suatu produk/proyek akibat sudah terpenuhinya suatu fungsi, yang umumnya dipengaruhi oleh kualitas dan sifat produk/proyek tersebut,
- 2. Nilai kebanggaan (*Esteem Value*), adalah nilai yang menunjukkan seberapa besar kemampuan produk/proyek untuk menimbulkan keinginan konsumen untuk memilikinya atau dengan kata lain rasa kebanggan memiliki produk/proyek tersebut,
- 3. Nilai tukar (*Exchange Value*), yaitu nilai yang menunjukkan seberapa besar keinginan konsumen untuk berkorban/mengeluarkan biaya atau menukar dengan sesuatu untuk dapat memiliki produk tersebut,
- 4. Nilai biaya (*Cost Value*), yaitu nilai yang menunjukkan seberapa besar biaya total yang diperlukan untuk menghasilkan suatu produk dan memenuhi semua fungsi yang diinginkan.

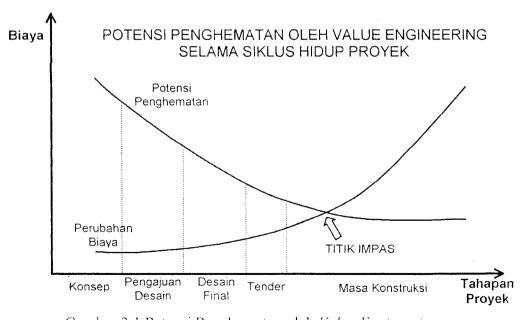
Nilai (*Value*) secara konsep merupakan rasio antara *Worth* (harga) dengan *Cost* (biaya), yang dirumuskan sebagai berikut (E.D. Heller, 1971):

Ratio > 2, jelas akan terjadi penghematan jika dilakukan *Value Engineering*.

Ratio 1-2, kemungkinan akan terjadi penghematan jika dilakukan VE.

Ratio < 1, tidak mungkin terjadi penghematan, karena biaya yang dikeluarkan tidak memenuhi fungsi yang diharapkan.

3.3.2 Biaya (*Cost*)


Biaya adalah sejumlah uang, waktu dan tenaga dan lain-lain yang diperlukan untuk memperoleh suatu fasilitas produk baik berupa barang ataupun jasa yang diinginkan.

3.3.3 Harga (*Worth*)

Harga adalah jumlah uang, waktu dan lain-lain yang dibutuhkan untuk memperoleh suatu fasilitas dan memenuhi suatu fungsi.

3.4 Waktu Penerapan Value Engineering

Secara teoritis penerapan *Value Engineering* dapat diterapkan setiap waktu selama berlangsungnya proyek tersebut (Chandra S.,1986), dari awal hingga selesainya proyek, bahkan dapat pula diterapkan pada saat penggantian. Namun dalam setiap memulai pekerjaan *Value Engineering* harus dilihat saat yang paling tepat yang berpotensi mempunyai hasil yang maksimal, gambaran tentang penghematan selama berlangsungnya proyek dapat dilihat pada gambar berikut:

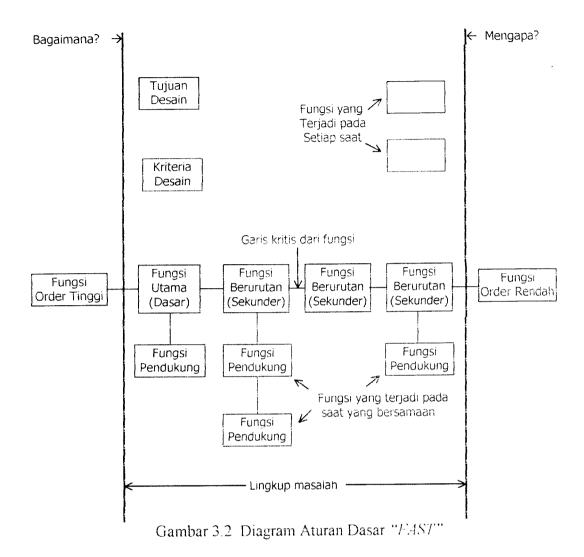
Gambar 3.1 Potensi Penghematan oleh Value Engineering

Dari gambaran tersebut dapat disimpulkan bahwa tahapan konsep terdapat potensi penghematan terbesar, pengalaman menunjukkan bahwa dengan berakhirnya tahapan konsep 70% dari biaya kontruksi telah tertentu (Chandra S. 1986), dimana pada saat yang tepat untuk mengadakan perubahan-perubahan tanpa menumbulkan biaya tambahan untuk desain ulang Dari gambai tersebut terlihat garis potensi penghematan akan semakin turun, dimana dengan berkembangnya proses proyek tersebut biaya-biaya yang ada akan semakin naik sedangkan potensi penghematan habis ditelah oleh biaya untuk mengadakan perencanaan batu dan pelaksanaan proyek tersebut.

3.5 Analisis Fungsional

Fungsi adalah suatu pendekatan untuk mendapatkan suatu nilai tertentu. pendekatan fungsi dalam *Value Engineering* adalah apa yang memisahkannya dari teknik reduksi biaya yang lain. Konsep dari fungsi digunakan dalam *Value Engineering* untuk mendapatkan tujuan dari ringkasan pernyataan tertentu, seperti dalam penentuan biaya proyek perlu diketahui terlebih dahulu apa penggunaan dari masing-masing jenis pekerjaan dan apa pula fungsinya

Pengertian fungsi adalah dasar dari maksud suatu *irem.* Fungsi ini berarti pula sebuah karakteristik yang membuat *irem* itu dapat berjalah atau bernilai (Miles L. D., 1972). Aplikasi fungsi dalam studi *Udere Engineering* disebut analisa fungsi (Zimmerman & Hart, 1971). Proyek atau produk yang dievaluasi dengan fungsi diidentifikasikan dengan dua kata, yaitu kata benda dan kata kerja. Kata benda dan kata kerja ini digunakan untuk mengidentifikasi bagaimana suatu


item bekerja. Kata kerja disini adalah kata kerja aktif, dan kata benda disini adalah benda yang dapat diukur.

Cara lain mengenai pendekatan fungsional membantu pemikiran yang lebih dalam tentang proyek adalah mengklasifikasikan fungsi dalam dua jenis. yaitu

- fungsi dasar (primer), adalah suatu fungsi yang merupakan tujuan utama dan harus dipenuhi;
- 2. fungsi penunjang (sekunder), adalah suatu fungsi penunjang dari fungsi utama.

Keuntungan dari pendekatan analisa fungsi adalah membantu dalam mempertemukan ide-ide yang lebih baik dalam mengatasi keragu-raguan, membantu dalam pemikiran yang lebih mendalam.

Cara yang dianggap paling efektif dalam analisa Value Engineering adalah "FAST" (Functional Analysis System Techniques). Teknik analisa ini diperkenalkan pada tahun 1965 oleh Charles W. Bytheway seorang ahli Value Engineering pada "UNIVAC" di Salt Lake City Amerika Serikat (Zimmerman & Hart, 1971). "FAST" adalah suatu metode untuk menganalisis, mengorganisir dan mencatat fungsi-fungsi dari suatu proses yang rumit dari suatu item agar dapat menjelaskan, menerangkan dan menyederhanakan proses dari item tersebut dalam bagian-bagian yang dapat teridentifikasi. Contoh diagram "FAST" dapat dilihat pada gambar berikut ini "

3.6 Analisis Keuntungan dan Kerugian

Dalam analisa untung rugi kriteria yang dapat dinilai dan dapat dipakai untuk menganalisis setiap pekerjaan yaitu biaya awal, waktu pelaksanaan, daya dukung, mudahnya pelaksanaan, pabrikasi dan pemeliharaan struktur.

Dalam memberikan penilaian atas kriteria-kriteria yang ditinjau harus ditentukan dulu salah satu kriteria, kemudian baru menentukan kriteria lain secara relatif terhadap kriteria tadi. Kriteria utama yang dipandang sangat penting diberi nilai 4 (empat) untuk kriteria awal, sedang kriteria lain ditetapkan secara relatif.

Nilai kriteria diberikan secara rinci adalah sebagai berikut:

Nilai kriteria diberikan secara rinci adalah sebagai berikut :

- a. Biaya awal (murah = +4 dan mahal = -4)
 - Karena titik berat dalam studi *Value Engineering* ini adalah penghematan biaya maka faktor biaya adalah yang utama (terpenting).
- b. Waktu pelaksanaan (cepat = +3,5 dan lambat = -3,5)
 Semakin banyak tahapan dalam pelaksanaan, maka akan semakin banyak menyita waktu dalam penyelesaian.
- c. Daya dukung (kuat = +3 dan lemah = -3)
 Kemampuan suatu bagian komponen konstruksi dalam mendukung beban sangat penting peranannya dalam keamanan suatu konstruksi.
- d. Biaya pemeliharaan (murah = +2,5 dan mahal = -2,5)
 Umur rencana dari suatu struktur berpengaruh besar terhadap biaya pemeliharaan dari struktur yang akan digunakan. Semakin murah biaya pemeliharaan yang dikeluarkan maka akan semakin menguntungkan.
- e. Kemudahan pelaksanaan (mudah = +2 dan sulit = -2)

 Semakin mudahnya pelaksanaan akan membantu mempercepat penyelesaian proses konstruksi.
- f. Teknologi (lama = +1,5 dan baru = -1,5)
 Penerapan teknologi pada suatu konstruksi mempengaruhi waktu pelaksanaan suatu proyek
- g. Kemungkinan diterapkan (mungkin = +1,5 dan tidak mungkin = -1,5)

 Pemilihan bahan/item suatu pekerjaan memungkinkan untuk diterapkan pada pelaksanaan proyek

- h. Sarana kerja (lengkap = +1 dan tidak lengkap -1)

 Suatu metode akan dapat diterapkan bila alat-alat kerja yang mendukung tersedia dengan mudah dan lengkap.
- i. Pabrikasi (ya = +1 dan tidak = -1)
 Kualitas suatu bahan akan lebih terjamin bila diproduksi oleh pabrik, sehingga akan memberikan kepastian hasil hitungan konstruksi.

Sistem penilaian dilakukan dengan membandingkan semua kriteria terhadap komponen yang ditinjau dari segi keuntungan dan kerugian. Apabila kriteria berada dalam kolom keuntungan diberi nilai positif (+) dari nilai kriteria tersebut dan sebaliknya jika dikolom kerugian mendapat nilai negatif (–) setelah ide kreatif diberi nilai, lalu dijumlahkan. Jumlah nilai komponen/ide kreatif tersebut antara (–20) dan (+20).

3.7 Analisis Tingkat Kelayakan

Analisis tingkat kelayakan adalah salah satu cara lain menyeleksi/menilai masing-masing ide kreatif yang diajukan, hasil dari penyaringan ini dipilih beberapa alternatif yang mempunyai nilai tertinggi dalam penilaian tahap ini untuk diajukan dalam analisis matriks, kriteria-kriteria yang umum dipakai dalam analisa tingkat kelayakan adalah sebagai berikut:

- a. Penggunaan teknologi, yaitu yang berkaitan dengan :
 - teknologi baru atau teknologi yang sudah biasa dilakukan (lama)
 - sumber daya manusia dan perangkat kerasnya

b.	Biaya pengembangan, yang berkaitan dengan:
	- biaya perancangan kembali
	- biaya pemesanan kembali
	- biaya pengembangan kembali
c.	Kemungkinan penerapan, berkaitan dengan kemungkinan:
	- diterima oleh pemilik proyek
	- sesuai dengan kondisi lapangan, keamanan struktur, dan sebagainya
d.	Waktu pelaksanaan, berkaitan dengan:
	- waktu perancangan
	- waktu pemesanan
	- lama pabrikasinya
	- lama pelaksanaan di lapangan
e.	Keuntungan biaya potensial, yang berkaitan dengan:
	- penghematan biaya awal
	- penghematan biaya selama siklus hidup
f.	Sarana alat kerja, yang berkaitan dengan:
	- banyak sedikitnya alat kerja ·
	- mudah tidaknya dioperasikan
	- mudah tidaknya pengadaan peralatan kerja
K	riteria-kriteria tersebut diberi nilai 0 – 10 seperti pada :
a.	Penggunaan teknologi,
	- teknologi baru = 0
	- teknologi biasa = 10

-- ()

b.	Biaya pengembangan,			
	- tanpa biaya		10	
	- biaya tinggi	-	()	
Ç	Kemungkinan diterapkan,			
	- kemungkinan diterapkan		10	
	- tidak mungkin		()	
d.	Waktu pelaksanaan,			
	- waktu singkat	****	10	
	- waktu lama		G	
e.	Keuntungan biaya potensial.			
	- keuntungan potensial		10	
	- tanpa keuntungan		O	
f.	Sarana alat kerja			
	- sedikit alat kerja, mudah diop	era	sikan, mudah didapatkan	- 10

- banyak alat kerja, sulit dioperasikan, sulit didapatkan

Setiap kriteria pada tempat kelayakan diberi nilai. Kemudian nilai-nilai tersebut dijumlahkan untuk setiap alternatif. Alternatif yang mempunyai nilai tertinggi diberi rangking 1, nilai berikutnya yang lebih rendah diberi urutan 2 dan seterusnya. Bila ada dua alternatif atau lebih yang mempunyai nilai sama, maka urutan akan sama. Kemudian dipilih beberapa alternatif yang mempunyai urutan tertinggi.

3.8 Analisis Matriks

Tujuan dari analisis matrik adalah untuk melihat masing-masing dari ide kreatif. Dimana analisis ini merupakan seleksi penilaian tahap kedua dari dua sistem analisis penilaian sebelumnya yaitu analisis untung-rugi dan analisis kelayakan

Kriteria-kriteria yang digunakan untuk analisis matrik, akan dilakukan konsultasi dengan para ahli. Kriteria hasil konsultasi harus dinji dan diberi mlai untuk uji dan pembobotan dipakai metode hirarkis analitis. Masing-masing kriteria mempunyai bobot hasil dari proses hirarkis, yang mempunyai bobot skala sebagai berikut:

- 4 Excelent (baik sekali)
- · 3 Chambelinike
- 2 Fair (wajar)
- 1 Poor (rendah jelek)

Proses hirarki analitis adalah suatu model yang luwes yang memberikan kesempatan bagi perseorangan atau kelompok untuk membangun gagasan dan mendefinisikan persoalan-persoalan dengan cara membuat asumsi serta memperoleh pemecahan yang dikemukakan (Tadjuddin 1997)

Proses Hirarkis Analitis (PHA) dikembangkan oleh L. Saaty, seorang matematikawan dari Universitas Pitsburgh, PHA merupakan alat yang hiwes yang memungkinkan kita mengambil keputusan dengan mengkombinasikan data dan data subyoktiktif secara togis. Data obyoktif adalah fakta ataupun data-data

numerik hasil perhitungan, sedang data subyektif didasari pendalaman dan pengalaman.

Ada tiga prinsip dalam memecahkan persoalan dengan PHA yaitu:

a. Penyusunan struktur birarki

Hirarki adalah pemecahan masalah menjadi elemen-elemen yang terpisah menurut tingkat kepentingan. Penyusunan hirarki berhubungan dengan pengidentifikasian elemen-elemen suatu masalah, mengelompokkan elemen-elemen dalam kelompok yang homogen dan mengatur kelompok-kelompok ini dalam tingkatan yang berbeda. Tingkat teratas dari suatu hirarki hanya berisi satu elemen yaitu tujuan pokok yang dinamakan fokus. Tingkat berikutnya berisi elemen yang lebih spesifik yang merupakan uraian dari tingkat diatasnya

b. Penentuan prioritas

Prioritas adalah besar kecilnya kontribusi suatu elemen untuk mencapai tujuan. langkah pertama dalam menetapkan prioritas adalah dengan menetapkan prioritas elemen-elemen dalam penilaian yang berpasangan, yaitu dibandingkan berpasangan terhadap suatu kriteria yang ditemukan. Perbandingan berpasangan dibentuk menjadi matrik bujur sangkar dengan ordo yang sesuai dengan jumlah elemen dalam tingkatan tersebut. Pendekatan matrik ini unik karena dapat mewakili aspek prioritas, yaitu lebih penting dan kurang penting. Dalam penilaian perbandingan berpasangan digunakan skala penilaian sebagai berikut:

Tabel 3.1 Skala Banding Secara Berpasangan

Tingkat Kepentingan	Definisi	Keterangan
1	Sama penting	Kedua elemen memberikan kontribusi yang sama terhadap tujuan
3	Elemen yang satu sedikit lebih penting dari ele- men yang lain	Pengalaman dan pertimbangan sedikit menyokong satu elemen atas elemen yang lainnya
5	Elemen yang satu esen- sial/sangat penting ke- timbang elemen yg lain	Pengalaman dan perhitungan dengan kuat menyokong satu elemen atas elemen yang lainnya.
7	Satu elemen jelas lebih penting dari elemen yang lainnya	Satu elemen dengan kuat disokong dan dominannya terlihat dalam praktik
9	Satu elemen mutlak le- bih penting ketimbang elemen yang lainnya	Bukti yang menyokong elemen yang satu atas yang lain memiliki tingkat penegasan tertinggi yang mungkin menguatkan
2,4,6,8	Nilai tengah diantara dua pertimbangan yang berdekatan	Kompromi diperlukan antara dua pertimbangan

Catatan : Kebalikannya bila elemen i mendapat nilai n dibandingkan dengan elemen j, maka j mendapat nilai 1/n bila dibandingkan faktor I.

Untuk memulai proses perbandingan berpasangan dibentuk menjadi matrik bujur sangkar sesuai dengan elemen-elemen dari tingkat hirarkinya. Untuk memulai proses perbandingan berpasangan, yaitu dimulai pada puncak hirarki untuk memilih kriteria atau sifat yang digunakan untuk melakukan perbandingan yang pertama. Tingkat dibawah diambil dari elemen-elemen A₁, A₂, A₃. Lebih jelas tentang matrik perbandingan berpasangan dapat dilihat pada Tabel 3.2.

Tabel 3.2 Matrik Perbandingan Berpasangan

X	Aı	A_2	A ₃
A_1	1	2	3
A_2	1/2	1	2
Λ_3	1/3	1/2	1

Bandingkan elemen A₁ dalam kolom kiri dengan elemen-elemen A₁, A₂, A₃ yang terdapat pada baris atas dengan sifat X di sudut atas. Kemudian elemen-elemen kolom A₂ dibandingkan dengan elemen baris atas, begitu dan seterusnya sampai elemen terakhir. Untuk mengisi matrik banding berpasangan harus menggunakan bilangan yang menggambarkan relatif pentingnya suatu elemen terhadap elemen lainnya yang berhubungan dengan sifat tersebut. Bilangan tersebut berkisar antara 1 sampai dengan 9. Semua pertimbangan diterjemahkan secara numerik adalah merupakan perkitaan belaka. Kesalahannya dapat dievaluasi dengan suatu uji konsistensi.

Menguji konsistensi data.

Kebenaran data dapat diketahui dengan uji konsistensi data, yaitu dengan rasio konsistensi (CR). Data dapat dikatakan konsisten bila nilai CR lebih kecil atau sama dengan 0,10 dan apabila CR > 0,10 maka proses penilaian terhadap matrik perbandingan berpasangan harus diulangi

Bilangan atau nilai dari masing-masing baris pada matrik perbandingan berpasangan dikalikan secara kumulatif. Kemudian hasil perkalian tersebut dimasukkan akar dengan derajat sesuai dengan jumlah elemen pada baris matrik. Hasilnya disebut matrik I. Untuk mendapatkan matrik vektor prioritas (eigen vektor) adalah elemen matrik I dibagi dengan jumlah total matrik I. Contoh perhitungan dapat dilihat berikut ini .

Sedangkan nilai prioritas (eigen value), didapatkan dengan cara matrik perbandingan berpasangan dikalikan dengan vektor prioritas sehingga didapat matrik II. Elemen pada matrik II dibagi dengan elemen vektor prioritas didapat nilai prioritas. Nilai vektor maksimum adalah harga rata-rata dari matrik nilai prioritas (λ).

Matrik Perbandingan Berpasangan Prioritas III
$$\begin{bmatrix} \frac{X}{A_1} & A_1 & A_2 & A_3 \\ A_1 & 1 & 2 & 3 \\ A_2 & 1 & 2 \\ A_3 & 1 & 1 & 2 & 3 \end{bmatrix} X \begin{bmatrix} 0.5396 \\ 0.3002 \\ 0.1652 \end{bmatrix} = \begin{bmatrix} 1.6356 \\ 0.9004 \\ 0.4952 \end{bmatrix}$$
Matrik Vektor Prioritas
$$\begin{bmatrix} 1,6356 \\ 0.9004 \\ 0.4952 \end{bmatrix} : \begin{bmatrix} 0.5396 \\ 0.3002 \\ 0.1652 \end{bmatrix} = \begin{bmatrix} 3.0311 \\ 2.9993 \\ 2.9976 \end{bmatrix}$$

$$\Sigma = 9.0280$$

$$\lambda = \frac{9.0280}{3} = 3.0094$$

$$CI = \frac{(\lambda - n)}{(n - 1)} = \frac{(3.0094 - 3)}{(3 - 1)} = 0.0047$$

$$CR = \frac{CI}{RI} = \frac{0.0047}{0.58} = 0.0081 < 0.1$$

Kesimpulannya penilaian matrik berpasangan konsisten

Random indeks (RI) adalah indeks random yang menyatakan besarnya koreksi terhadap indeks konsistensi pada nilai matrik perbandingan.

CR - Consistency Ratio.

CI - Consistency Indeks.

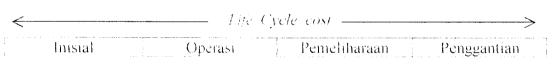
λ - nilai prioritas maksimum,

n = jumlah faktor/elemen dalam matrik.

N 0.00 0.90 1,12 1.24 1.32 RI 0,00 0,58 15 10 1.12 1,49 1,51 1,48 1.58 1,41 1,45

Tabel 3.3 Index Random Value

3.9 Life Cycle Cost (Biaya Siklus Hidup)


Didalam menyusun anggaran suatu proyek yang harus dibuat terlebih dahulu adalah membuat estimasi anggaran biaya, kemudian dengan analisa fungsi dalam studi *Value Engineering* didapatkan beberapa alternatif yang kesemuanya mengeliminasi biaya-biaya yang tidak perlu dan akhirnya dapat mereduksi biaya proyek.

Dalam mengevaluasi kriteria mana yang harus diambil demi menghemat biava, perlu diperhatikan dasar-dasar pertimbangan sebagai berikut:

- 1. Kemungkinan penghematan yang cukup berarti
- 2. Terdapatnya sumber daya dan waktu yang cukup
- 3. Kemungkinan adanya pengembangan alternatif *life cycle cost* yang lebih rendah
- 4. Mungkin untuk dilaksanakan

- 5. Data kebutuhan proyek yang kurang lengkap
- 6. Data biaya untuk *Life Cycle Cost* yang belum bisa diestimasi, seperti biaya operasi, perawatan, penggantian

Oleh karena studi *Value Engineering* untuk bidang konstruksi harus ada metode yang sistematis untuk mencapai total biaya yang optimal dari suatu proyek untuk waktu tertentu. Total biaya disini berarti biaya ultimatum atau biaya yang dapat dipertanggungjawabkan dari pekerjaan konstruksi, operasi, pemeliharaan dan penggantian alat atau barang didalam suatu periode yang disebut *Life Cycle Cost* seperti tergambar dibawah ini.

Gambar 3.3 Biava Siklus Hidup

Life Cycle Cost adalah total biaya ekonomis, biaya yang dimiliki dan biaya operasi suatu fasilitas, proses manufuktur atau produk. Analisa Life Cycle Cost sendiri menggambarkan nilai sekarang dan nilai yang akan datang (present dan future cost) dari suatu proyek selama umur manfaat proyek itu sendiri. Life Cycle Cost dipakai sebagai alat bantu dalam analisa ekonomi untuk mencari alternatif berbagai kemungkinan atau faktor dalam pengambilan keputusan. Prinsip-prinsip ekonomi yang dipakai dalam / ife Cycle Cost yaitu

- 1. Biaya sekarang (present value)
- 2. Biaya dikemudian hari (puture cost)

Jenis-jenis yang termasuk biaya dalam Life Cycle Cost adalah :

- 1. Biaya investasi
- 2. Biava pemilikan
- 3. Biaya rekayasa (perencanaan, desain dan pengawasan)
- 4. Biaya perubahan desain
- 5. Biaya administrasi
- 6. Biaya penggantian
- 7. Biaya operasi
- 8. Biaya pemeliharaan
- 9. Biaya beban bunga yang dibebankan selama proyek

Penggunaan *Life Cyle Cost* sebagai alat bantu dalam proses pengambilan keputusan dan sensifitas terhadap biaya operasi merupakan suatu rangkaian perhitungan dengan memperhatikan faktor-faktor ekonomi dan moneter yang saling berhubungan satu sama lain.

3.9.1 Konsep Nilai Waktu Uang (Time Value of Money)

Kalau seseorang ditanyakan mana yang lebih disukai menerima Rp.1.000-, saat ini atau menerima Rp.1.000-, nanti (misal 1 bulan lagi). Meskipun penerimaan tersebut pasti sifatnya, artinya dia pasti menerima saat ini atau nanti, bisa diduga dia akan lebih suka menerima jumlah yang sama pada saat ini dari pada nanti. Sebaliknya kalau kita harus membayar Rp.1.000-, saat ini atau Rp.1.000-, nanti, maka tentunya lebih senang untuk membayar nanti, apabila jumlahnya sama.

Contoh tadi menunjukkan bahwa sebenarnya kita menghargai uang secara berbeda, apabila waktunya tidak sama. Dengan kata lain kita mengakui bahwa uang mempunyai nilai waktu. Kita selalu menyukai Rp.1.000-, saat ini daripada nanti, karena kita menganggap bahwa nilai sekarang dari Rp.1.000-, saat ini adalah lebih besar daripada nilai Rp.1.000-, nanti. Sebaliknya kalau kita membayar, kita lebih suka membayar nanti, karena kita menyadari bahwa Rp1.000 nanti nilajnya lebih kecil daripada Rp.1.000-, saat ini. Inilah yang disebut konsep nilai waktu uang (*Time Value of Money*).

3.9.2 Konsep Present Value

Karena suatu investasi menyangkut pengeluaran saat ini atau sekarang untuk mendapatkan penghasilan pada waktu yang akan datang, maka pemehaman tentang nilai waktu uang menjadi lebih penting. Apalagi bila investasi modal tersebut mempunyai pengaruh jangka panjang, maka semakin penting pula konsep nilai waktu uang itu.

Pada dasarnya nilai waktu uang (*time value of money*) menyatakan bahwa setiap individu berpendapat bahwa nilai saat ini (*present value worth*) adalah lebih berharga dari pada saat ini nanti. Lebih suka membayar jumlah yang sama pada waktu nanti daripada saat ini.

Sebagai ilustrasi para investor akan lebih suka suatu proyek yang memberikan keuntungan setiap tahun, mulai dari tahun pertama sampai dengan ketiga, daripada proyek yang memberikan keuntungan yang sama tetapi mulai tahun keempat sampai dengan tahun keenam. Dengan demikian waktu daripada aliran kas yang diharapkan dimasa yang akan datang merupakan hal yang penting

bagi rencana investasi tersebut. Konsep ini lebih dikenal dengan istilah konsep nilai sekarang atau value dan didalam pemakaian Value Engineering dikenal dengan nama present worth

3.9.3 Dasar-dasar Perhitungan Present Value

Present Volue (PV) atau Pessent Wort (PW) dapat dihitung jika perhitungan PV, untuk investasi digunakan anggapan bahwa tingkat bunga yang relevan setiap tahunnya adalah sama atau tetap.

Perhitungan PV ini secara umum dapat dituliskan sebagi berikut:

$$PT = \sum_{i=1}^{n} \frac{1}{(1+i)^{n}} \quad \text{atau} \quad PT = \sum_{n=1}^{n} \frac{1}{(1+i)^{n}} \quad \text{bila t} \longrightarrow n$$

dimana . At — aliran yang diterima pada periode t

i – tingkat bunga

Jika pembayaran setiap tahun dalam jumlah yang sama, maka keadan ini disebut sebagi faktor cicilan modal (Capital Recovery Faktor) dengan rumus sebagai berikut:

$$CRF = \frac{i(1+i)^n}{(1+i)n-1}$$

"CRF" dapat digunakan untuk menghitung besar pengembalian dari beban hutang secara periodik untuk *n* tahun dengan beban bunga sebesar *i.*

3.10 Penggunaan Present Value pada Value Engineering

Tujuan analisa proyek adalah untuk memperbaiki pemilihan investasi. karena sumber-sumber yang tersedia bagi pembangunan adalah terbatas. Aspek yang paling penting dalam mengevaluasi suatu proyek adalah aspek finansial dan analisis ekonomi disamping aspek lainnya seperti aspek teknis, aspek manajerial, aspek organisasi dan aspek komersil (Kadariah dkk. 1978)

Penggunaan *present value* pada aplikasi *Value Engineering* dilakukan dengan langkah-langkah sebagai berikut:

- Penggunaan dilakukan dalam tahap pengembangan (Development phase) pada Life Costing.
- 2. Pada bagian pertama dihitung biaya investasi atau biaya kontruksi (*initial cost*) ditambah biaya operasi, pemeliharaan dan penggantian, kemudian hasilnya dikurangi dengan biaya investasi, biaya kontruksi, biaya operasi dan pemeliharaan. Dari usulan pertama dan kedua, hasilnya disebut dengan *inisial saving* atau penghematan saat itu (*present saving*).
- 3. Pada bagian kedua menganualisasikan biaya investasi (initial), biaya penggantian (replacement) ditambah biaya aktual dari operasi dan pemeliharaan. Kemudian dikalikan dengan faktor cicilan bagi beban hutang selama periode tertentu (CRF). Hasil untuk desain awal dikurangi dengan desain usulan pertama disebut penghematan tahunan (annual saving). Untuk desain usulan pertama, selanjutnya dihitung pula penghematan tahunan untuk desain usulan kedua. Sehingga dari hasil perhitungan ini sebagai rekomendasi adalah berupa nilai penghematan (saving) diukur selama siklus hidup proyek.

BAB IV

APLIKASI VALUE ENGINEERING

PADA PROYEK PERUMAHAN PULO MAS DI CIREBON

4.1 Latar Belakang Proyek

Proyek pembangunan perumahan Pulo Mas di Cirebon adalah sebagai usaha untuk meningkatkan pemenuhan perumahan/pemukiman yang murah, aman, nyaman serta berwawasan lingkungan bagi masyarakat Cirebon dan sekitarnya. Rencana pembangunan perumahan tersebut dilakukan secara bertahap mengingat dana yang tersedia terbatas sedangkan dana yang dibutuhkan cukup besar.

Pada Tugas Akhir ini, tipe perumahan yang diamati adalah tipe 36. Setelah dilakukan pengamatan pada proyek perumahan tersebut, ternyata masih terdapat beberapa *item* pekerjaan yang menelan biaya cukup besar dalam pelaksanaannya, seperti pada pekerjaan atap, pekerjaan lantai dan pekerjaan pondasi. Pada pekerjaan-pekerjaan tersebut masih banyak tersedia beberapa alternatif bahan pengganti sehingga masih memungkinkan untuk dilakukan optimasi dengan menganalisa fungsi dan biaya dari beberapa sistem tersebut untuk mendapatkan penghematan biaya proyek.

4.2 Tahan Informasi (Information Phase)

Tujuan dan tahapan ini adalah untuk mendapatkan gambaran secara jelas dan menyebarah dari hingkup yang akan ditinjau. Dalam tahapan ini dakumpulkan informasi, sebanyak mungkin tentang data-data proyek sehingga dapat memperlancai dan mempermudah gagasan-gagasan bagi pengembangan desain. Data-data informasi tentang proyek tersebut terdapat pada Tabel 4.1

Tabel 4.1. Informasi Provek

TAHAP INFORMASI	CATATAN-CATATAN
I. LOKASI PROYEK	: Perumahan Pulo Mas Cirebon
2. BATAS-BATAS	: Utara : Rumah Penduduk Barat : Jl Sultan Agung Timur : Rumah Penduduk Selatan : Rumah Penduduk
3. FUNGSI	: Sebagai tempat tinggal
4. KETENTUAN	: Rumah type 36
5. PENYELIDIKAN TANAH	: Tes lapangan tanpa laboratorium
	Catatan : tanah cukup baik
6. LUAS BANGUNAN	: 36 m ²
7. LUAS TANAH	: 98 m ²
8. TOPOGRAFI	: Tanah relatif datar
9. DANA	: Bank Tabungan Negara
10. STATUS PROYEK	: Tender
H. KOMENTAR TINJAUAN AWAL	: Item-item yang perlu ditinjau lebih lanjut : a. Atap : genteng beton b. Kuda-kuda : kayu meranti c. Plafond : gypsum d. Lantai : keramik 30x30 e. Pondasi : batu kali

Akhir ini dapat dilihat pada Tabel 4.2 sampai dengan Tabel 4.6 di bawah ini.

Tabel 4.2. Tahap Informasi Pekerjaan Penutup Atap.

			FUNGSI	
NO.	TEM "	KATA KERJA	KATA BENDA	JENIS FUNGSI
1	Pekerjaan Persiapan	Mempersiapkan	lapongan	sekunder
2	Pokerjaan pemasangan Penutup Atap	Melindungi	rangka atap	primer
3.	Pokerjaan pemasangan Bubungan	Menyatukan	atap	sekunder

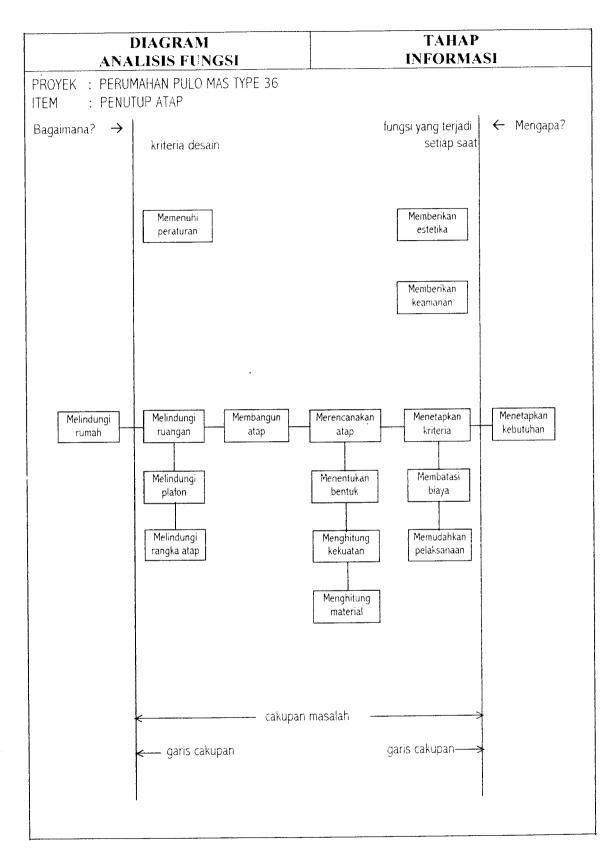
Tabel 4.3 Tahap Informasi Pekerjaan Rangka Atap

	· · · · · · · · · · · · · · · · · · ·	FUNGSI								
NO.	ITEM	KATA KERJA	KATA BENDA	JENIS FUNGSI						
1	Pekerjaan Persiapan	Mempersiapkan	lapangan	sekunder						
2	Pekerjaan pemasangan Rangka Atap	Menahan	beban	primer						
3	Pekerjaan pemasangan Nok	Mendukung	atap	sekunder						
-4	Pekerjaan pemasangan Gording	Mendukung	atap	sekunder						

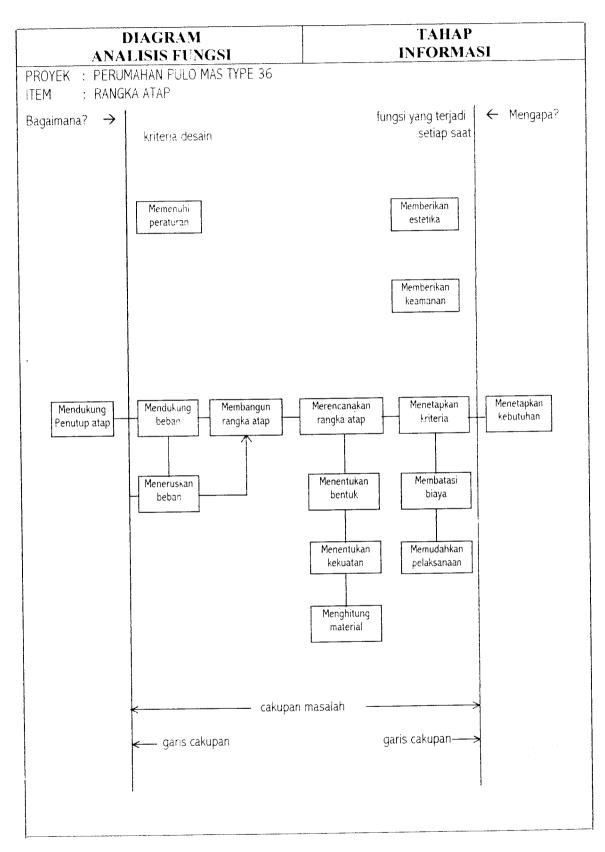
Tabel 4.4 Tahap Informasi Pekerjaan Plafond

		FUNGSI								
NO.	ITEM	KATA KERJA	KATA BENDA	JENIS FUNGSI						
: . 1	Pekerjaan Persiapan	Mempersiapkan	lapangan	sekunder						
2	Pekerjaan pemasangan Usuk	Mengikat	plafond	sekunder						
3	Pekerjaan pemasangan Platond	Melindungi	trangan	primer						

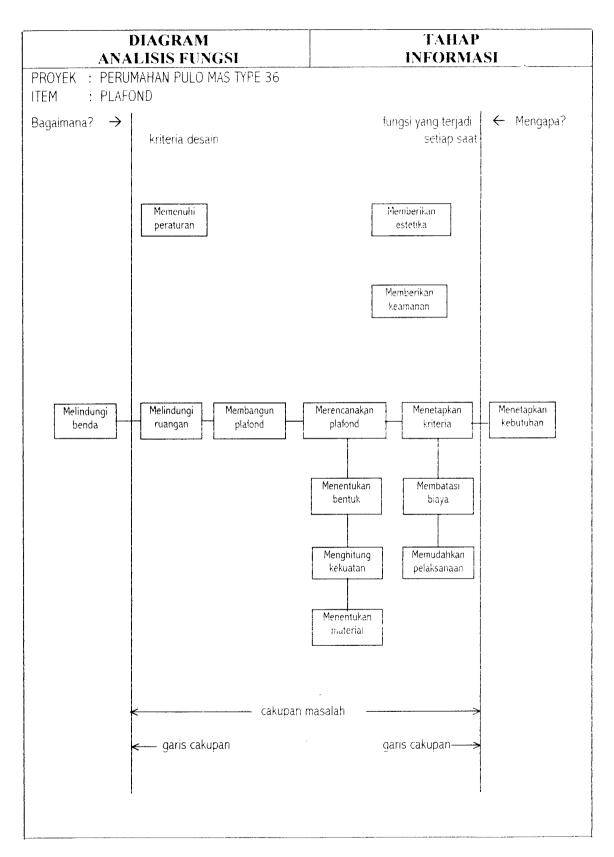
Tabel 4.5 Tahap Informasi Pekerjaan Lantai

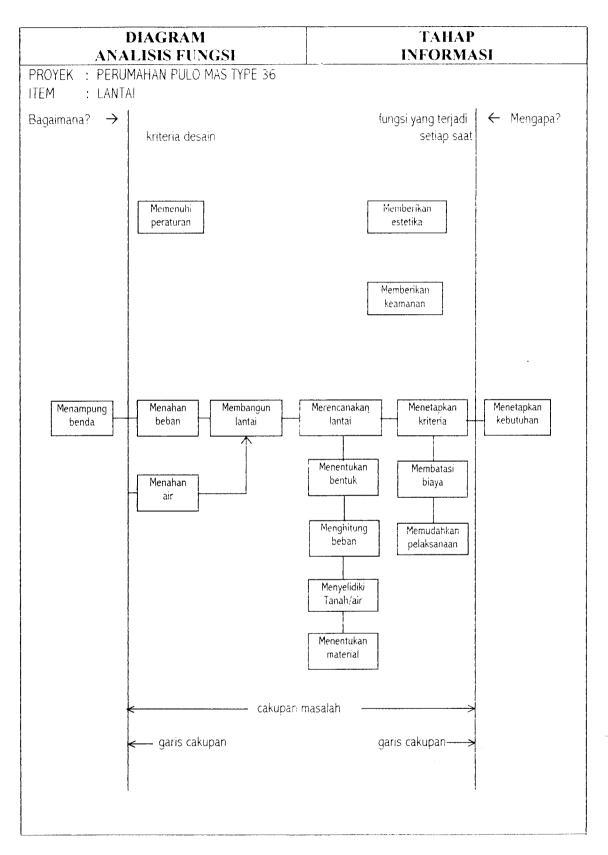

		FUNGSI							
NO.	TEM	KATA KERJA	KATA BENDA	JENIS FUNGSI					
Ī	Pekerjaan Persiapan	Mempersiapkan	lapangan	sekunder					
2	Pekerjaan pemasangan Lantai	Menahan	beban	primer					

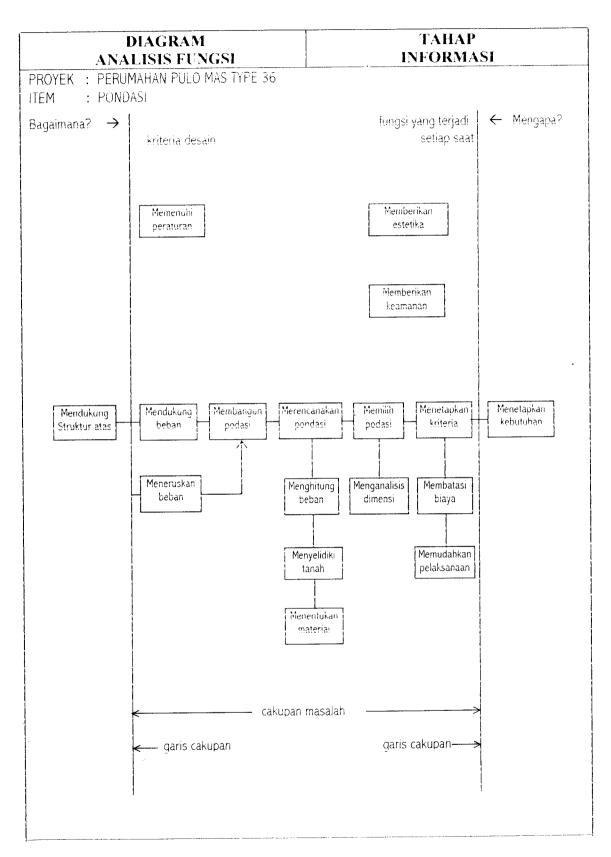
Tabel 4.6 Tahap Informasi Pekerjaan Pondasi


		FUNGSI							
NO.	FTEM	KATA KERJA	KATA BENDA	JENIS FUNGSI					
1	Pekerjaan Persiapan	Mempersiapkan	lapangan	sekunder					
2	Pekerjaan pembuatan Pondasi	Mendukung	beban	primer					
3	Pekerjaan Penimbunan	Menimbun	pondasi	sekunder					

Pada setiap tabel tahap informasi pekerjaan diatas dapat diketahui yang merupakan fungsi utama atau yang terpenting dari suatu pekerjaan sehingga akan menjadi fungsi yang mendasar dalam pelaksanaan suatu struktur. Oleh sebab itu, pada tiap item pekerjaan tersebut layak untuk dilakukan *Value Engineering*. Untuk mendapatkan pemahaman tentang fungsi setiap pekerjaan digunakan diagram FAST agar didapat penjabaran fungsi secara mendetail dan terarah yang akan digunakan pada analisis selanjutnya.


Untuk lebih jelasnya mengenai diagram FAST pada masing-masing item pekerjaan dapat dilihat pada gambar berikut ini.


Gambar 4.1 Diagram FAST Pekerjaan Penutup Atap


Gambar 4.2 Diagram FAST Pekerjaan Rangka Atap

Gambar 4.3 Diagram FAST Pekerjaan Plafond

Gambar 4.4 Diagram FAST Pekerjaan Lantai

Gambar 4.5 Diagram FAST Pekerjaan Pondasi

4.3 Tahap Kreatif (Creative Phase)

l'ahap ini melakukan pendekatan secara kreatif dengan mengemukakan ide-ide sebanyak mungkin karena semakin banyak ide-ide semakin banyak pula kemungkinan suksesnya studi *Value Engmeering*. Ide-ide alternatif pada tahap kreatif masing-masing pekerjaan dapat lihat pada tabel berikut ini.

Tabel 4.7 Ide-ide Alternatif Pada Tahap Kreatif

No.	TUEM	IDE ALTERNATIF
	Penutup Atap	Genteng keramikGenteng plentongAsbes gelombangSirapSeng
2.	Rangka Atap	 Rangka baja Rangka beton Rangka kayu glugu Gunungan batubata Rangka bambu petung
, , , , , , , , , , , , , , , , , , ,	Plafond	 Asbes datar 1x1m Eternit kerang 1x1m Anyaman bambu Tripleks Papan
4.	Lantai	 Tegel abu-abu Keramik 20x20 cm Tegel wafel Plesteran Plesteran - batubata
5.	Pondasi	 Pond. telapak + batu kapur Pond. telapak + batu kosong Pond. telapak - paving block Pond. telapak - perbaikan dg. pasir Pondasi sloof

4.4 Tahap Penilaian/Analisis (Judgement Phase).

Pada tahap ini ide-ide yang telah ditabelkan pada tahapan sebelumnya, mulai dilakukan penilaian dan analisis, pada tahap sebelumnya sengaja tidak dilakukan agar pemikiran kreatif tidak terhalang. Pada tahapan ini dilakukan analisis pada kriteria yang ada. Analisis ini meliputi dua tahapan, yaitu tahapan pertama dan tahapan kedua. Tahapan pertama menganalisis dengan metode untung rugi dan analisis kelayakan, selanjutnya tahap kedua dievaluasi dengan analisis matriks.

4.4.1 Tahap Analisis Untung Rugi

Pada proses analisis ini ide-ide kreatif dipertimbangkan dengan membandingkan segi keuntungan (+) dan kerugian (-) terhadap beberapa kriteria. Pada tabel berikut ini ide-ide dianalisis dengan memilih alternatif yang mempunyai keuntungan tertinggi. Dengan memilih alternatif yang paling menguntungkan dapat memudahkan untuk mengadakan pemilihan alternatif yang dapat diajukan pada tahapan berikutnya. Pada tahap ini, penganalisisan masih bersifat sangat kasar karena bentuk penilaian yang kaku, hanya keuntungan (+) dan (-) kerugian.

Tabel 4.8 sampai dengan Tabel 4.12 membahas masalah analisis untungrugi berdasarkan dari data hasil kuisioner pada Lampiran I dan II. Pada tabel untung-rugi, pemberian nilai (skala 1-4) pada setiap kolom ide alternatif berdasarkan data hasil penelitian kuisioner yang dilakukan selama penelitian tugas akhir kepada 20 orang responden yang terdiri dari para pengembang, kontraktor dan konsultan perumahan. Parameter yang mempunyai rangking tertinggi (I) diberi nilai 4 dan seterusnya hingga rangking terendah (IX) diberi nilai 1. Proses

penentuan rangking parameter penilaian terdapat pada Lampiran I dan II. Hasil proses rangking parameter penilaian untuk setiap item pekerjaan dapat dilihat pada Tabel 4.8 sampai dengan Tabel 4.12 berikut ini.

Tabel 4.8 Analisis Untung Rugi Penutup Atap

	PARAMETER PENILAIAN					DE AL	TERN	ATIF			
. NO		GENTENG KERAMIK			GENTENG PLENTONG		ASBES GELOMB.		SIRAP		NG
		+	-	+	_	+		+		+	_
1	Biaya Awal		4	4		4			4	4	
2	Waktu Pelaksanaan	3,5		3,5		3,5			3,5		3,5
3	Daya Dukung	3		3		3			3	3	
4	Kemudahan Pelaksanaan	2,5		2,5		2.5			2,5		2.5
5	Kemungkinan Diterapkan	2		2		2		2		2	
6	Teknologi	1,5		1,5		1.5		1,5		1,5	
7	Sarana Kerja	1,5		1,5		1,5		1,5		1,5	
8	Pabrikasi	1		1		1		:	1	1	
9	Biaya Pemeliharaan		1	1			1		1	,	1
	Jumlah	15	5	20	0	19	1	5	15	13	7
	TOTAL	+	10	+ 20		+ 18		- 10		+ 6	
F	RANGKING	11			1		II		V		/

Tabel 4.9 Analisis Untung Rugi Rangka Atap

	PARAMETER PENILAIAN				1	DE AL	TERN	ATIF			
NO		RANGKA BAJA		RANGKA BETON			KAYU GLUGU		GUNUNGAN BATUBATA		MBU UNG
1		+	-	+	-	+	_	+	-	+	-
1	Biaya Awal		4		4	4		4		4	
2	Waktu Pelaksanaan		3,5		3,5	3,5		3.5			3.5
3	Daya Dukung	3		3			3	3			3
4	Kemudahan Pelaksanaan		2,5	2.5		2,5	: :	2,5			2,5
5	Kemungkinan Diterapkan	2		2	AME 18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2		2		2	
6	Teknologi		1,5	1,5		1,5		1,5			1,5
7	Sarana Kerja		1,5		1,5	1,5		1.5		1,5	
8	Pabrikasi	1		1		1		1			1
9	Biaya Pemeliharaan		1	1	The second of th		1	1			1
	Jumlah		14	11	9	16	4	20	0	7,5	12,5
	TOTAL	_	8	+	+ 2		+ 12		+ 20		5
	RANGKING		V		111	1	1		1	IV	

Tabel 4.10 Analisis Untung Rugi Plafond

						DE AL	rern <i>i</i>	ATIF			
NO	PARAMETER PENILAIAN	ASBES DATAR		ETERNIT KERANG		ANYAMAN BAMBU		TRIPLEKS		PAPAN	
		+	-	+	-	+		+	-	+	- !
1	Biaya Awal	4		4			4		4		4
2	Waktu Pelaksanaan	3,5		3,5		3,5		3,5	,		3,5
3	Daya Dukung	3			3		3	3		3	
4	Kemudahan Pelaksanaan	2,5		2.5		2,5		2,5		2,5	
5	Kemungkinan Diterapkan	2		2		2		2		2	
6	Teknologi	1,5		1,5		1,5		1,5		1,5	
! 7	Sarana Kerja	1,5		1,5		1,5	:	1.5		1,5	,
8	Pabrikasi	1		1			1	: : :	1		1
9	Biaya Pemeliharaan	1		1			1		1		1
1	Jumlah		0	17	3	11	9	14	6	10,5	9,5
	TOTAL	+	20	+	15	+	+ 2		+ 8		1
	RANGKING		1	II.		IV		111		V	

Tabel 4.11 Analisis Untung Rugi Lantai

ľ						DE AL	TERN	ATIF				
NO	PARAMETER PENILAIAN	TEGEL ABU-ABU		KERAMIK 20X20 CM		TEGEL WAFEL		PLESTERAN		PLESTERAN +BATUBATA		
!		+	-	+		+	-	+	-	+	-	
1	Biaya Awal	4			4		4	4		4		
2	Waktu Pelaksanaan	3,5			3,5	3,5		3,5		3,5		
3	Daya Dukung	3		3		3			3	3		
4	Kemudahan Pelaksanaan	2,5		2.5		2.5		2,5		2,5		
5	Kemungkinan Diterapkan	2		2		2		2		2		
6	Teknologi	1,5		1,5		1,5		1,5		1,5		
7	Sarana Kerja	1,5		1.5		1,5		1,5		1,5		
8	Pabrikasi	1		1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1		1	
9	Biaya Pemeliharaan	1			1	1			1		1	
	Jumlah	20	0	11,5	8,5	16	4	15	5	18	2	
	TOTAL	+	20	+	+ 3		+ 12		+ 10		16	
	RANGKING		1	,	V		III		IV		II	

Tabel 4.12 Analisis Untung Rugi Pondasi

	PARAMETER PENILAIAN				I	DE AL	TERN	ATIF			
NO		TELAPAK+ BATU KAPUR		BA	TELAPAK+ BATU KOSONG		TELAPAK+ CONBLOK		APAK+ SAIKAN SIR	PONDASI SLOOF	
		+	-	+	-	+		+	-	+	-
. 1	Biaya Awal		4		4		4		4	4	
2	Waktu Pelaksanaan		3,5	3,5			3,5	3.5		3,5	
3	Daya Dukung	3		3		3			3	3	
4	Kemudahan Pelaksanaan		2,5	2.5		2,5		2,5	! :	2.5	
5	Kemungkinan Diterapkan	2		2		2		2		2	
6	Teknologi	1,5		1,5		1,5		1,5		1.5	
7	Sarana Kerja	1,5		1.5		1,5		1.5			1.5
8	Pabrikasi		1		1		1		1		1
9	Biaya Pemeliharaan	1		1		1		1		1	
!	Jumlah	9	14	10	5	11,5	8,5	12	8	7,5	12,5
	TOTAL	-	2	+	10	+ 3		+ 4		+	15
	RANGKING	,	V		!	1\	/	111		I	

Setelah diamati pada analisis untung rugi hasil kuisioner, ternyata masih terdapat beberapa kesalahan dalam penilaiannya. Setelah itu dianjurkan oleh dosen pembimbing untuk dianalisis kembali hasil dari penilaian pada tahapan untung rugi. Kemudian analisis untung rugi yang digunakan adalah berdasarkan hasil revisi. Berikut ini adalah hasil revisi dari analisis untung rugi.

Tabel 4.13 Hasil Revisi Analisis Untung Rugi Penutup Atap

		IDE ALTERNATIF												
NO	PARAMETER PENILAIAN	GENTENG KERAMIK		GENTENG PLENTONG			BES OMB.	SIRAP		SENG				
		+	-	+	-	+	-	+	-	+	-			
1	Biaya Awal		4	4		4			4	4				
2	Waktu Pelaksanaan	3,5		3,5		3,5			3,5	3,5				
3	Daya Dukung	3		3		3		3			3			
4	Kemudahan Pelaksanaan	2,5		2,5		2,5			2,5	2,5				
5	Kemungkinan Diterapkan	2		2		2		2			2			
6	Teknologi	1,5		1,5		1,5	Parallel and the second	1,5	And the Property of the Proper	1,5				
7	Sarana Kerja	1,5		1,5		1,5		1,5		1,5				
8	Pabrikasi	1		1		1			1	1				
9	Biaya Pemeliharaan	1		1			1		1		1			
	Jumlah	16	4	20	0	19	1	8	12	14	6			
	TOTAL	+	12	+	20	+	18	- 4		4	-8			
	RANGKING		111	ı		11		V		IV				

Tabel 4-14 Hasil Revisi Analisis Untung Rugi Rangka Atap

	:	IDE ALTERNATIF									
NO	PARAMETER PENILAIAN		GKA JA	RANGKA BETON		KAYU GLUGU		GUNUNGAN BATUBATA		BAMBU PETUNG	
	:	+	-	+	-	÷	-	+	-	+	-
1	Biaya Awal	;	4	. 4	•	4		4		4	
2	Waktu Petaksanaan	3,5			3,5	3.5		3,5		3,5	
3	Daya Dukung	3		3		3		3			3
4	Kemudahan Pelaksanaan	2.5		2.5		2,5		2.5		2,5	
5	Kemungkinan Diterapkan	2		2		2		2			2
6	Teknologi	1,5		1,5		1,5		1.5		1,5	
7	Sarana Kerja	1,5			1.5	1.5	•	1.5		1,5	
8	Pabrikasi	1			1		1		1		1
9	Biaya Pemeliharaan	1		1			1	1			1
	Jumlah	16	4	14	6	18	2	19	1	13	7
	TOTAL	+	12	+ 8		+ 16		+ 18		+ 6	
	RANGKING	ı	11	l	V		!	i !	-		V

Tabel 4.15 Hasil Revisi Analisis Untung Rugi Plafond

					1	DE AL	TERNA	ATIF			
NO	PARAMETER PENILAIAN		BES TAR	ETERNIT KERANG		ANYA BAN		TRIPLEKS		PAPAN	
		+	-	+	-	+	-	+	-	+	-
1	Biaya Awal	4		4		4			4		4
2	Waktu Pelaksanaan	3,5		3,5		3,5		3,5			3,5
3	Daya Dukung	3			3		3	3		3	
4	Kemudahan Pelaksanaan	2,5		2,5		2,5		2,5		2,5	
5	Kemungkinan Diterapkan	2		2		2		2		2	
6	Teknologi	1,5		1,5		1,5		1,5		1,5	
7	Sarana Kerja	1,5		1,5		1,5		1,5		1,5	
8	Pabrikasi	1		1	and democratic variety		1		1		1
9	Biaya Pemeliharaan	1	,	1			1		1		1
	Jumlah	20	0	17	3	15	5	14	6	10,5	9,5
	TOTAL	+	20	+ 14		+ 10		+ 8		+1	
	RANGKING		1	11		III			IV	V	

Tabel 4.16 Hasil Revisi Analisis Umung Rugi Lamai

		IDE ALTERNATIF										
NO	PARAMETER PENILAIAN		GEL -ABU		AMIK 20 CM	TE(WA	GEL FEL	PLES	TERAN	PLESTERAN +BATUBATA		
		+	-	+	-	+ ·	- -	+	-	+	_	
1	Biaya Awal	4			4		4	4	:	4		
2	Waktu Pelaksanaan		3,5	3.5		: :	3,5	3.5		3,5		
3	Daya Dukung	3		3		3		:	3	3		
4	Kemudahan Pelaksanaan	2,5	-	2,5		2,5		2.5		2,5		
5	Kemungkinan Diterapkan	2		2		2		2		2		
6	Teknologi	1,5		1,5		1,5		1.5		1.5		
: 7	Sarana Kerja	1,5		1,5		1,5		1.5		1,5		
8	Pabrikasi	1		1		1			1		1	
9	Biaya Pemeliharaan	1		1		1			1		1	
	Jumlah	16,5	3,5	16	4	12,5	7,5	15	5	18	2	
	TOTAL	+	13	+ 12		+ 5		+	10	+ 16		
ı	RANGKING	l	1		11	V	/	. I	V			

Tabel 4.17 Hasil Revisi Analisis Untung Rugi Pondasi

						DE AL	TERN	ATIF			
NO	PARAMETER PENILAIAN	BA	PAK+ ATU PUR	TELAPAK+ BATU KOSONG		PAV	PAK+ /ING DCK	PERE	APAK+ BAIKAN PASIR		DASI DOF
		+	-	+	-	+	-	+	-	+	-
1	Biaya Awal		4	4			4		4	4	
2	Waktu Pelaksanaan	3,5		3,5			3,5	3,5		3,5	
3	Daya Dukung	3		3		3		3		3	
4	Kemudahan Pelaksanaan	2,5		2,5			2,5	2,5		2,5	
5	Kemungkinan Diterapkan	2		2		2		2		2	
6	Teknologi	1,5		1,5		1,5		1,5		1,5	
7	Sarana Kerja	·	1,5		1,5	1,5		1,5		1,5	, ,
8	Pabrikasi		1		1		1		1		1
	Jumlah	12,5	6,5	16,5	2,5	8	11	14	5	18	1
	TOTAL	+	6	+	14	- 3		+	9	+ 17	
i	RANGKING	['	V	[]		v		165		1	

Dari penilaian hasil analisis untung rugi pekerjaan pondasi ada penilaian yang tidak sesuai dengan kondisi di lapangan, yaitu kriteria tentang biaya pemeliharaan. Pada pekerjaan pondasi tidak memerlukan biaya pemeliharaan sehingga untuk analisis untung rugi pada pekerjaan pondasi kriteria biaya pemeliharaan dihilangkan. Hal ini disebabkan kurangnya informasi, pemahaman dan pengetahuan responden terhadap studi *Value Engineering*.

4.4.2 Tahap Analisis Tingkat Kelayakan

Salah satu bentuk dari analisis ide-ide kreatif ini akan membahas penilaian kriteria dengan sangat subyektif karena sulit mendapatkan nilai yang sangat ideal. Sebaiknya diperlukan tim yang terdiri dari berbagai disiplin yang berpengalaman di bidangnya masing-masing. Pada tabel analisis tingkat kelayakan, penilaian yang ada berdasarkan dari para responden yang terdiri dari para pengembang, kontraktor dan konsultan perumahan. Selanjutnya untuk analisis tingkat kelayakan dapat dilihat pada Tabel 4.18 sampai dengan Tabel 4.22 berikut ini.

Tabel 4.18 Analisis Tingkat Kelayakan Penutup Atap

ANALISIS TINGKAT KELAYAKAN								
Item : Penutup Atap								
Fungsi : Melindungi Rumah								
Nilai masing-masing ide untuk fakto	r-faktor	yang	terca	ntum (dalam	tabel	antara 0-1	0
A = Penggunaan Teknologi		D = /	Vaktu	Pelak	sanaa	n		
B = Biaya Pengembangan E = Keuntungan Biaya Potensial								
C = Kemungkinan Diterapkan F = Sarana Alat Kerja								
TIPE PENUTUP ATAP	A	В	C	D	E	F	TOTAL	RANGK.
Genteng Keramik	8	7	8	8	8	7	46	111
Genteng Plentong	8	7	9	8	8	8	48	I
Asbes Gelombang	8	7	7	9	8	8	47	11
Sirap	7	6	6	6	6	6	37	V
Seng	8	7	5	9	8	8	45	IV

Tabel 4.19 Analisis Tingkat Kelayakan Rangka Atap

ANALIS	IS TING	GKA	ΓKEI	LAYA	KAN	Į		
Item Rangka Atap								
Fungsi : Menahan Beban								
Nilai masing-masing ide untuk fakto	or-fakto	r yang	g terca	ntum	dalam	tabe	antara 0-1	0
A = Penggunaan Teknologi		$\mathbf{D} = \mathbf{V}$	Vaktu	Pelak	sanaai	n		
B = Biaya Pengembangan E = Keuntungan Biaya Potensial								
C = Kemungkinan Diterapkan F = Sarana Alat Kerja								
TIPE RANGKA ATAP	A	В	C	D	E	F	TOTAL	RANGK.
Rangka Baja	7	7	7	7	7	7	42	III
Rangka Beton	7	7	7	7	7	6	41	IV
Rangka Kayu Glugu	8	7	8	8	8	7	46	II
Gunungan Batubata	8	8	8	8	8	8	48	I
Bambu Petung	7	6	6	7	6	7	39	V

Tabel 4.20 Analisis Tingkat Kelayakan Plafond

ANALISIS TINGKAT KELAYAKAN								
Item : Plafond								
Fungsi : Melindungi Ruangan								
Nilai masing-masing ide untuk faktor	-fakto	r yang	terca	ntum	dalam	tabel	antara 0-1	10
A = Penggunaan Teknologi		D = V	Vaktu	Pelak	sanaa	n		
B = Biaya Pengembangan E = Keuntungan Biaya Potensial								
C = Kemungkinan Diterapkan		F = S	arana	Alat I	Kerja		,	,
TIPE PLAFOND	A	В	C	D	E	F	TOTAL	RANGK.
Asbes Datar	8	8	8	8	8	8	48	I
Eternit Kerang	8	8	8	8	7	8	47	II
Anyaman Bambu	7	7	6	7	7	7	41	III
Tripleks	7	6	6	7	6	6	38	IV
Papan	7	6	6	6	6	6	37	V

Tabel 4.24 - Analisis Emgkat Kelayakan Lamai

ANALIS	AS TINC	#KAT	КЕТ	AYA	KAN			
tem Lantai								
rungsi - Menahan Beban								
Silai masing-masing ide untuk takt	or-faktor	yang	tercai	itum d	lalam	tabel	antara (ET	()
 A - Penggunaan Teknologi		7 - C	Vaktu	Pelak	sanaa	n		
B - Biaya Pengembangan		E = K	.euntu	mgan	Biaya	Pote	nsial	
C - Kemungkinan Diterapkan		F = S	arana	Alat l	Cerja			
TIPE LANTAL	.1	В	C	Ð	E	F	TOTAL	RANGK
Tegel Abu-abu	S	7	9	7	8	8	47	11
Keramik 20x20 cm	8	7	. 8	8	7	7	45	111
Tegel Wafel	8	7	6	7	7	7	42	V
Plesteran	8	7	6	9	6	8	44	i IV
Plesteran – Batubata	8	7	ò	1 9	7	8	48	

Tabel 4.22 Analisis Tingkat Kelayakan Pondasi

ANALISIS	TIN	GKAT	r KEI	AYA	KAN			
Item : Pondasi								
Fungsi : Meneruskan Beban								
Nilai masing-masing ide untuk faktor-	fakto	r yang	tercai	itum (dalam	tabel	antara 0-1	0
A = Penggunaan Teknologi		D - /	Vaktu	Pelak	sanaa	n		
B = Biaya Pengembangan		E=K	Ceuntu	กยูลท	Biaya	Pote	nsial	
C = Kemungkinan Diterapkan		F = S	arana	Alat l	Kerja			
TIPE PONDASI	Α	В	C	D	E	F	TOTAL	RANGK.
Pond Telapak – Batu Kapur	7	. 7	. 6	6	0	6	38	l V
Pond Telapak - Batu Kosong	. 7	7	8	8	8	6	- 44	11
Pond. Telapak - Paving Block	7	- 6	6	7	7	6	39	IV
Pond. Telapak - Perbaikan dg. Pasir	. 7	7	7	7	: 7	7	42	111
Pondasi Sloof	7	7	9	9	8	8	48	1

4.4.3 Tahap Analisis Matriks

4.4.3.1 Penentuan Kriteria

Dari ringkasan analisis sebelumnya dan seleksi dari parameter-parameter yang ada maka dibuat suatu kriteria yang dilakukan dengan proses perbandingan berpasangan. Parameter-parameter yang ada pada penelitian ini adalah sebanyak 9 parameter kriteria. Kemudian diambil suatu penilaian, yaitu kriteria yang mempunyai rangking tertinggi (I) diberi nilai tertinggi sesuai dengan banyaknya kriteria (9) dan seterusnya hingga kriteria rangking terendah (IX) diberi nilai terendah (I).

Parameter penilaian berdasarkan urutan tingkat kepentingannya terdapat pada Lampiran II dengan hasil penilaian sebagai berikut :

1.	Biaya Pelaksanaan		156
2.	Waktu Pelaksanaan		149
3.	Daya Dukung	===	142
4.	Kemudahan Pelaksanaan		132
5.	Kemungkinan Diterapkan		110
6.	Teknologi	* ***	74
7.	Sarana Kerja		54
8.	Pabrikasi		47
9.	Biaya Pemeliharaan		36

Selanjutnya parameter-parameter ini dipakai sebagai kriteria yang akan dianalisis dengan pembobotan dari masing-masing kriteria ditentukan dan diuji dengan PHA.

4.4.3.2 Analisis Pembobotan Kriteria Parameter dan Uji Data

Data yang telah ditetapkan berdasarkan kepentingannya kemudian diuji keabsahannya dengan uji konsistensi serta menentukan bobot dari masing-masing parameter. Variabel parameter tersebut adalah sebagai berikut:

a. 🗛 — Biaya Pe	daksanaan	f. A6 ·	Teknologi
b A2 = Wakiu I	Pelaksanaan	g. A7 —	Sarana Kerja
c. A3 = Dava Di	ıkımg	h. A8	Pabrikasi
d. A4 Kemuda	nhan Pelaksanaan	i. A9 ==	Biaya Pemeliharaan

e. A5 = Kemungkinan Diterapkan

Parameter-parameter ini diuji dengan uji konsistensi dengan menyusun matriks perbandingan berpasangan, seperti berikut.

1. Menghitung Matriks I

	M	atrik:	s perl	oand	ingai	n ber	pasat	ıgan		Matriks I	Vektor Prioritas
ΕX	Ą	A	A_{i}	Α,	A	A_{\cdot}	A_{\pm}	A_{s}	A_{i}		
Λ_{i}	1	1	1	1	1	2	3	3	4	1,6038	[0.1715]
A		4	1	i	1	1	2	3	3	1.3787	0.1469
\perp_{Λ}	1	1	1	į	1	}	1	2	3 :	1,2203	0.1301
A	,	1	1	ŀ)	}	}	ļ.	2 .	1,0801	0,1152
A	•		ì	•	1	ì	I	ł	1	-> 1,0000	: 0.1066
A	4	1		i	1	1	ı	I	1	0,9259	0.0987
A_{s}	•		1		1	ì	1	1		0,8195	0.0874
			1	·	}	1	i	1	1	0.7253	0,0773
A		÷			1		i	1	1	0,6218	0,0663
	4	:	ŧ		•	•		,		<u>v</u> 0,3700	

2. Menghitung Matriks II

	Mi	urik	s pert	sand	ingar	ı ber	pasa	Ve	ktor Prioritas	Matriks H		
- N	Α.	A	Λ_{\perp}	\	Ą	Ä.	A	1	A			
1	i		1					?			1-1715	1.6271
		i		I		1	7		3		0.14(9)	1,3746
Α.		!			ļ	1	ļ		ŧ.		o (20)	1,2100
.1			1	į	}	;	1	:	*		0.1150	1.0663
Ą	i				-	į	1	:	1	X	0,1006 ==	1.0001
A		Ĭ	i	i	î	į	1				0.0987	0.9144
Α	-			1	i	ĺ	1	!	ì		0.0874	0,8123
A_{i}		÷ 	i i	1	1	i	i	1	i		0.0773	0,7217
Α.					1	}	1	!	1		0,0663	0.6282

3. Matriks Nilai Prioritas (Eigen Value)

Matriks II	Vektor Pr	ioritas	
[1,6271]	0,171	5]	9,4875
1,3746	0.1469	9	9,3510 [
1,2100	0.130	1	9,3005
1,0663	0.115	2	9,2561
1,0001	: 0,1066	6 =	9,3818
0.9144	0,098	7	9,2644
0,8123	0.087	4	9,2941
0.7217	0.077	3	9,3364
0,6282	0,066	3	9,4751
· <u> </u>			\(\sum_{=84,1460}\)

Sehingga didapat:

$$\lambda = 84.1469 : 9 = 9.3497$$

$$CI = \frac{(9.3497 - 9)}{(9 - 1)} = 0.0437$$

$$CR = \frac{0.0437}{1.45} = 0.030 < 0.1 \implies \text{(Data Konsisten)}$$

Sehingga data-data yang berasal dari hasil analisis kuisioner tersebut merupakan data valid (konsisten). Dari hasil Lampiran II, maka masing-masing bobot dari kriteria penilaian (berdasarkan hasil perhitungan vektor prioritas) terhadap pekerjaan dapat ditetapkan sesuai dengan urutan pada Tabel 4.23 berikut ini.

Tabel 4.23 Penilaian Bobot Pekerjaan dengan PHA

NO RANGK.	KRITERIA/PARAMETER PENILAIAN	NILAI	BOBOT [%]		
[Biaya Awal Pelaksanaan	156	17,15		
2	Waktu Pelaksanaan	149	14,70		
3	Daya Dukung	142	13,01		
4	Kemudahan Pelaksanaan	132	11,52		
5	Kemungkinan Diterapkan	110	10,66		
6	Teknologi	74	9,87		
7	Sarana Kerja	54	8,74		
8	Pabrikasi	47	7,73		
9	Biaya Pemeliharaan	36	6,63		
	TOTAL	900	100		

Kriteria dalam tahap ini diberikan berdasarkan besarnya hasil proses hierarki analitis (PHA). Sedangkan skala penilaian terhadap kriteria tiap alternatif diberikan nilai antara 1 sampai dengan 4, sama dengan tingkatan penilaian Zimmerman (1982), yang mempunyai arti :

- a. Nilai 1 = Rendah(poor)
- b. Nilai 2 = Wajar(fair)
- c. Nilai 3 = Baik (good)
- d. Nilai 4 = Baik sekali (*excelent*)

Analisis matriks akan membahas dari analisis untung-rugi dan analisis tingkat kelayakan dengan kriteria diatas. Penilaian diatas dilakukan dengan memberi nilai antara 1– 4 secara relatif sebagai pembanding terhadap alternatif dalam kriteria yang ditinjau. Skala nilai tiap-tiap kriteria tersebut dikalikan dengan bobot (%) masing-masing kriteria yang ada kemudian dijumlahkan.

Nilai total dari masing-masing item, secara rinci dapat dilihat pada Tabel 4.24 sampai Tabel 4.28 berikut ini.

Tabel 4.24 Analisis Matriks Penutup Atap

Pr	oyek : F	erui	mahan T	ype	ype 36 TAHAPAN ANALISIS						
Sistem	: Rum	ah Ti	nggal	-							
Item	1										
Fungsi : Melindungi Rumah											
		Per	nilihan d	lan F	Penilaiar	ı lde	ide Krite	ria T	erbaik		
A = Biaya Awal F= Teknologi											
B = Waktu Pelaksanaan G= Sarana Kerja											
C = Day	a Dukur	ng				Н	= Pabrika	asi			
			aksanaar			į	i= Biaya F	eme	liharaan		
E = Kem	nungkina	an Di	terapkan								
	Nilai	Ge	enteng	Ge	enteng	Asbes			Siran	Cona	
Kriteria	Bobot	Plentong		Keramik		Gelombang		Sirap		Seng	
	(%)	*	**	*	**	*	**	*	**	*	**
Α	17,15	4	68,60	2	34,30	3	51,45	2	34,30	4	68,60
В	14,69	3	44,07	3	44,07	4	58,76	2	29,38	4	58,76
С	13,01	4	52,04	4	52,04	3	39,03	3	39,03	2	26,02
D	11,52	3	34,56	3	34,56	4	46,08	2	23,04	4	46,08
E	10,66	4	42,64	4 42,64		4	42,64	3	31,98	2	21,32
F	9,87	3	29,61	3	29,61	3	29,61	2	19,74	3	29,61
G	8,74	4	34,96	4	34,96	4	34,96	3	26,22	4	34,96
Н	7,73	4	30,92	4	30,92	4	30,92	2	15,46	4	30,92
1	6,63	3	19,89	4	26,52	2	13,26	2	13,26	2	13,26
TOTAL	100		357,29		329,62		346,71		232,41		329,53
RANG	KING		ı		111	II		V		IV	

ANALISIS MATRIKS PENUTUP ATAP

Keterangan

: * hasil analisis

Dari analisis matriks pada Tabel 4.24 terlihat bahwa desain penutup atap yang mempunyai nilai tertinggi adalah genteng plentong dengan skor 357,29% (3,5729). Sedangkan yang kedua adalah asbes gelombang, skor 346,71% (3,4671).

^{**} hasil perkalian antara nilai bobot dan nilai analisis.

Tabel 4.25 Analisis Matriks Rangka Atap

			ANALIS	IS I	//ATRIKS	RA	NGKA A1	ΆP			
Pro	yek : P	eru	mahan T	ype	36		TAH	APA	AN ANAL	ISIS	
Sistem	: Ruma	ah T	inggal								
Item	: Rang	ka A	Atap								
Fungsi	: Mena	han	Beban								
	Pemilihan dan Penilaian Ide-ide Kriteria Terbaik										
A = Biaya	a Awal						= Teknolo	_			
B = Wak			aan				= Sarana		ja		
C = Daya	C = Daya Dukung H= Pabrikasi										
1			aksanaan				= Biaya F	'eme	eliharaan		
E = Kem	ungkina										
	Nilai	Ku	da-kuda	Ku	da-kuda			Gunungan		Bambu	
Kriteria	Bobot		Beton		Baja	. (Glugu Batubata		Petung		
	(%)	*	**	*	**	*	**	*	**	*	**
Α	17,15	2	34,30	1	17,15	3	51,45	3	51,45	3	51,45
В	14,69	2	29,38	3	44,07	3	44,07	4	58,76	4	58,76
С	13,01	4	52,04	4	52,04	3	39,03	3	39,03	1	13,01
D	11,52	3	34,56	3	34,56	4	46,08	4	46,08	4	46,08
E	10,66	3	31,98	3	31,98	3	31,98	3	31,98	1	10,66
F	9,87	3	29,61	3	29,61	3	29,61	3	29,61	3	29,61
G	8,74	2	17,48	3	26,22	3	26,22	3	26,22	3	26,22
Н	7,73	2	15,46	3	23,19	2	15,46	2	15,46	2	15,46
1	6,63	4	26,52	4	26,52	3	19,89	3	19,89	2	13,26
TOTAL	100		271,33	285,34 303,79 318,48 264,5			264,51				
RANG	KING		IV		III		II		l		V

Keterangan : * hasil analisis

** hasil perkalian antara nilai bobot dan nilai analisis.

Dari analisis matriks terlihat bahwa desain rangka atap yang mempunyai nilai tertinggi adalah gunungan batubata dengan skor 318,48 % (3,1849). Sedangkan yang kedua adalah kayu glugu dengan skor 303,79 % (3,0379).

Tabel 4.26 Analisis Matriks Plafond

			ANAL	ISIS	S MATRII	(S F	LAFONE)		.,	
Pro	yek : P	erur	nahan Ty	/pe	36		TAH	APA	N ANALI	SIS	
Sistem	: Ruma	ıh Ti	nggal								
Item	: Plafor	าต์									
Fungsi			gi Ruanga								
		em	ilihan da	n Pe	nilaian l				erbaik		
A = Biaya	a Awal						= Teknolo	•			Ì
B = Wakt	tu Pelak	sana	aan				= Sarana		a		
C = Daya		-					= Pabrika				
D = Kem	D = Kemudahan Pelaksanaan I= Biaya Pemeliharaan										
E = Kemi	ungkina	n Dit	erapkan								
	Nilai	E	Eternit Tripleks			Asbes		Papan		Anyaman	
Kriteria	Bobot	K	erang		ripiono	Datar				Bambu	
	(%)	*	**	*	**	*	**	*	**	*	**
Α	17,15	4	68,60	2	34,30	4	68,60	2	34,30	4	68,60
В	14,69	3	44,07	3	44,07	3	44,07	3	44,07	3	44,07
С	13,01	3	39,03	4	52,04	4	52,04	4	52,04	2	26,02
D	11,52	3	34,56	3	34,56	3	34,56	3	34,56	3	34,56
E	10,66	4	42,64	3	31,98	4	42,64	3	31,98	3	31,98
F	9,87	3	29,61	3	29,61	3	29,61	3	29,61	3	29,61
G	8,74	3	26,22	3	26,22	3	26,22	3	26,22	3	26,22
Н	7,73	3	23,19	3	23,19	3	23,19	2	15,46	2	15,46
1	6,63	4	26,52	3	19,89	4	26,52	3	19,89	4	26,52
TOTAL	100		334,44		295,86		347,45		288,13		303,04
RANG	KING		II		IV		ŀ		V		Ш

Keterangan : * hasil analisis

** hasil perkalian antara nilai bobot dan nilai analisis.

Dari analisis matriks terlihat bahwa desain plafond yang mempunyai nilai tertinggi adalah asbes datar dengan skor 347,45% (3,4745). Sedangkan yang kedua adalah eternit kerang dengan skor 334,44% (3,3444).

Tabel 4.27 Analisis Matriks Lantai

	ANALISIS MATRIKS LANTAI										
Pro	yek : P	erur	nahan Ty	/pe	36		TAH	APA	N ANALI	SIS	
Sistem	: Ruma	h Ti	nggal								
Item	: Lanta	i									
Fungsi	: Mena										
	Pemilihan dan Penilaian Ide-ide Kriteria Terbaik										
A = Biaya	a Awal						= Teknolo	-			Ì
B = Wakt	tu Pelak	sana	an				= Sarana		ja		Ì
C = Daya		-					= Pabrika				
}	D = Kemudahan Pelaksanaan I= Biaya Pemeliharaan										
E = Kemungkinan Diterapkan											
	Nilai	•	regel	K	Keramik Tegel		Plesteran		Plesteran +		
Kriteria	Bobot	Al	ou-abu	20	x20 cm		Nafel				atubata
	(%)	*	**	*	**	*	**	*	**	*	**
А	17,15	3	51,45	2	34,30	2	34,30	4	68,60	4	68,60
В	14,69	2	29,38	3	44,07	2	29,38	3	44,07	3	44,07
С	13,01	3	39,03	3	39,03	3	39,03	2	26,02	3	39,03
D	11,52	2	23,04	2	23,04	2	23,04	3	34,56	3	34,56
Е	10,66	4	42,64	3	31,98	2	21,32	2	21,32	3	31,98
F	9,87	3	29,61	3	29,61	3	29,61	3	29,61	4	39,48
G	8,74	3	26,22	3	26,22	3	26,22	3	26,22	3	26,22
Н	7,73	4	30,92	4	30,92	4	30,92	2	15,46	2	15,46
1	6,63	4	26,52	4	26,52	4	26,52	1	6,63	2	13,26
TOTAL	100		298,81		285,69		260,34		272,49		312,66
RANG	KING		H		III		V		IV		<u> </u>

Keterangan : * hasil analisis

** hasil perkalian antara nilai bobot dan nilai analisis.

Dari hasil analisis matriks terlihat bahwa desain lantai yang mempunyai nilai tertinggi adalah plesteran + batubata dengan skor 312,66% (3,1266). Sedangkan yang kedua adalah tegel abu-abu dengan skor 298,81% (2,9881).

Tabel 4.28 Analisis Matriks Pondasi

ANALISIS MATRIKS PONDASI						
Proyek : Perumahan Type 36	TAHAPAN ANALISIS					
Sistem : Rumah Tinggal						
Item : Pondasi						
Fungsi : Meneruskan Beban						
Pemilihan dan Penil	aian Ide-ide Kriteria Terbaik					
A = Biaya Awal	E = Kemungkinan Diterapkan					
B = Waktu Pelaksanaan	F = Teknologi					
C = Daya Dukung	G = Sarana Kerja					
D = Kemudahan Pelaksanaan	H = Pabrikasi					

	Nilai	Те	lapak +	Те	lapak +	Te	lapak +	Te	lapak +	Р	ondasi
Kriteria	Bobot	Bat	u Kapur	Batu	ı Kosong	Pav	ing Block	Pe	rb.Pasir	;	Sloof
	(%)	*	**	*	**	*	**	*	**	*	**
Α	17.52	2	35.04	3	52.56	2	35.04	3	52.56	3	52.56
В	15.28	2	30.56	3	45.84	2	30.56	2	30.56	4	61.12
С	13.32	3	39.96	3	39.96	3	39.96	3	39.96	3	39.96
D	12.21	2	24.42	3	36.63	2	24.42	3	36.63	3	36.63
E	12.21	3	36.63	3	36.63	3	36.63	3	36.63	4	48.84
F	11.20	3	33.60	3	33.60	3	33.60	3	33.60	3	33.60
G	9.76	3	29.28	3	29.28	3	29.28	3	29.28	3	29.28
Н	8.50	2	17.00	2	17.00	3	25.50	2	17.00	2	17.00
TOTAL	100		246.49		291.50		254.99		276.22		318.99
RANGI	KING		٧		11		IV		111		1

Keterangan

Dari analisis matriks terlihat bahwa desain pondasi yang mempunyai nilai tertinggi adalah pondasi sloof dengan skor 318,99% (3,1899). Sedangkan yang kedua adalah pondasi telapak + perbaikan dengan pasir dengan skor 291,50% (2,9150).

Pada analisis matriks pekerjaan pondasi untuk kriteria biaya pemeliharaan dihilangkan, hal ini disebabkan pada pekerjaan pondasi tidak memerlukan biaya pemeliharaan.

^{: *} hasil analisis

^{**} hasil perkalian antara nilai bobot dan nilai analisis.

Dari setiap item pekerjaan diambil dua urutan/rangking yang terbaik sebagai alternatif pengganti desain awal (asli). Untuk lebih jelasnya dapat dilihat dalam Tabel 4.29 berikut mi:

Tabel 4.29 Desain Alternatif dari hasil Analisis Matriks

PEKERJAAN	ALTERNATIF I	ALTERNATIF B
PENUTUP ATAP	Genteng Plentong	Asbes Gelombang
RANGKA ATAP	Gunungan Batubata	Kayu Glugu
PLAFOND	Asbes Datar	Eternit Kerang
LANTAI	Plesteran – Batubata	Tegel Abu-abu
PONDASI	Pondasi Sloof	Telapak + Batu Kosong

4.5 Tahap Pengembangan (Development Phase)

Di dalam tahap pengembangan ini akan dilanjutkan dengan penentuan perhitungan biaya setiap item pekerjaan, perhitungan rasio, biaya pemeliharaan dan biaya siklus hidup.

4.5.1 Perhitungan Biaya Pekerjaan

Dalam *Value Engineering* perhitungan biaya pekerjaan sangat penting sekali untuk mengetahui pekerjaan mana yang paling hemat/murah diantara pekerjaan yang lainnya. Hal ini dapat menjadi salah satu pertimbangan dalam pengambilan keputusan akhir dalam pemilihan pekerjaan/material mana yang nantinya keluar sebagai pemenang.

Untuk perhitungan biaya setiap item pekerjaan diperoleh dari analisa rencana anggaran biaya proyek yang terdapat pada Lampiran III. Selanjutnya untuk rekapitulasi dari hasil perhitungan rencana anggaran biaya terdapat pada Tabel 4.30 sampai dengan Tabel 4.34 berikut ini.

Tabel 4.30 Rekapitulasi Biaya Penutup Atap

No.	Jenis Pekerjaan	Volume	Harga	Harga Total
140.	Jenis i ekcijaan	Volume	Satuan (Rp)	(Rp)
1	Genteng Beton			
	■ 1 m ² pas. genteng beton	$78,8 \text{ m}^2$	20.945,00	1.650.466,00
	■ 1 m ⁻¹ bubungan beton	14,5 m ¹	21.430,00	310.735,00
	• 1 m ² pekerjaan usuk + reng	$78,8 \text{ m}^2$	16.572,50	1.305.913,00
	■ 1 m ³ pas. gording	$0,32 \mathrm{m}^3$	2.835.700,00	907.424,00
			Jumlah	4.174.538,00
2	Genteng Plentong			
	■ 1 m ² pas. genteng plentong	$78,8 \text{ m}^2$	14.195,00	1.118.566,00
	■ 1 m ⁻¹ bubungan plentong	14,5 m ¹	20.180,00	292.610,00
	■ 1 m ² pekerjaan usuk + reng	$78,8 \text{ m}^2$	16.572,50	1.305.913,00
	■ 1 m³ pas. gording	0.32 m^3	2.835.700,00	907.424,00
			Jumlah	3.624.513,00
3	Asbes Gelombang			
	• 1 m ² atap asbes gelombang	$78,8 \text{ m}^2$	16.918,50	1.333.177,80
	■ 1 m ¹ bubungan asbes	14,5 m ¹	15.404,25	223.361,63
	■ 1 m ³ pas. gording	$0,78 \text{ m}^3$	2.835.700,00	2.211.846,00
			Jumlah	3.768.385,43

Tabel 4.31 Rekapitulasi Biaya Rangka Atap

No.	Jenis Pekerjaan	Volume	Harga	Harga Total
			Satuan (Rp)	(Rp)
1	Rangka Atap Kayu Meranti	$0,59 \mathrm{m}^3$	1.886.400,00	1.112.976,00
2	Rangka Atap Kayu Glugu	$0,59 \mathrm{m}^3$	1.721.400,00	1.015.626,00
3	Gunungan Batu bata			
	■ 1 m ² pek. pasangan bata	$0,53 \text{ m}^2$	136.862,00	72.646,00
	■ 1 m³ pek beton cor	0.23 m^3	339.906,00	79.130,12
	■ 100 kg pek. besi beton	62,8 kg	5.741,00	360.615.,17
1	• 10 m ² pek. bekisting	$9,32 \text{ m}^2$	16.225,00	151.087,20
			Jumlah	727.694,49

Tabel 4.32 Rekapitulasi Biaya Plafond

No.	Jenis Pekerjaan	Volume	Harga Satuan (Rp)	Harga Total (Rp)
1	Gypsum	66,9 m ²	22.468,30	1.503.129,27
2	Asbes Datar	66,9 m ²	18.413,00	1.231.829,70
3	Eternit Kerang	66,9 m ²	15.863,00	1.061.234,70

Tabel 4.33 Rekapitulasi Biaya Lantai

No.	Jenis Pekerjaan	Volume	Harga Satuan (Rp)	Harga Total (Rp)
1	Keramik 30x30	36,8 m ²	41.411,10	1.523.928,48
2	Plesteran Batu bata	36,8 m ²	10.795,90	397.274,40
3	Tegel Abu-abu 20x20	36,8 m ²	25.072,50	922.668,00

Tabel 4.34 Rekapitulasi Biaya Pondasi

No.	Jenis Pekerjaan	Volume	Harga	Harga Total
	Jenis i ekcijaan	Volume	Satuan (Rp)	(Rp)
1	Pondasi Batu Kali			
	■ batu kali	$29,99 \text{ m}^3$	188.191,00	5.643.848,09
	galian tanah	$46,77 \text{ m}^3$	6.312,50	295.235,63
	• timbunan tanah	$11,54 \text{ m}^3$	4.162,50	53.265,15
	• beton	$2,04 \text{ m}^3$	339.906,00	693.408,24
	• bekisting	$27,20 \text{ m}^2$	16.225,00	441.320,00
	• pasir urug	$3,07 \text{ m}^3$	23.400,00	71.838,00
	• pekerjaan besi	402,91 kg	5.741,25	2.313.207,04
			Jumlah	9.512.122,14
2	Pondasi Sloof			
	Sloof			
	galian tanah	$4,08 \text{ m}^3$	6.312,50	25.755,00
	■ timbunan tanah	$1,02 \text{ m}^3$	4.162,50	4.704,75
	• beton	$2,04 \text{ m}^3$	339.906,00	693.408,24
	bekisting	$27,20 \text{ m}^2$	16.225,00	441.320,00
	■ lantai kerja	$0,73 \text{ m}^3$	220.968,00	163.074,38
	pekerjaan besi	402,91 kg	5.741,25	2.313.207,04
	<u>Umpak</u>			
	■ batu kali	17,04 m ³	188.191,00	3.206.774,64
	galian tanah	$6,80 \text{ m}^3$	6.312,50	42.950,25
	timbunan tanah	$1,70 \text{ m}^3$	4.162,50	7.845,86
	pasir urug	0.87 m^3	23.400,00	20.880,00
			Jumlah	7.147.865,97
3	Pond. Telapak + Batu Kosong			
	galian tanah	$11,78 \text{ m}^3$	6.312,50	74.418,06
	■ timbunan tanah	$2,94 \text{ m}^3$	4.162,50	13.593,04
	■ beton	$7,72 \text{ m}^3$	339.906,00	2.624.074,32
	bekisting	$102,00 \text{ m}^2$	16.225,00	1.654.950,00
	• batu kali	$11,02 \text{ m}^3$	99.690,00	1.099.082,25
	■ lantai kerja	1,52 m ³	220.968,00	336.976,20
	pekerjaan besi	333,54 kg	5.741,25	1.914.936,53
			Jumlah	7.718.030,40

4.5.2 Perhitungan Rasio (Ratio)

Perhitungan rasio perlu dilakukan untuk dapat mengetahui apakah terjadi suatu penghematan atau tidak dalam studi *Value Engineering*, yang dirumuskan sebagai berikut (E.D. Heller, 1971):

Dimana parameter penilaiannya adalah:

- Ratio > 2, jelas akan terjadi penghematan jika dilakukan Value Engineering.
- Ratio 1-2, kemungkinan akan terjadi penghematan jika dilakukan VE.
- Ratio < 1, tidak mungkin terjadi penghematan, karena biaya yang dikeluarkan tidak memenuhi fungsi yang diharapkan.

Dibawah ini adalah contoh mencari rasio pekerjaan penutup atap antara genteng beton (sebagai desain awal) dengan genteng plentong (sebagai desain alternatif). Dan untuk lebih jelasnya mengenai perhitungan rasio setiap item pekerjaan dapat dilihat pada Lampiran VI.

Diketahui total biaya pekerjaan:

Rasio =
$$\frac{\text{Biaya asli}}{\text{Biaya alternatif}} = \frac{\text{Rp. } 1.961.201,00}{\text{Rp. } 1.411.176,00}$$

= 1,39 \longrightarrow 1<1,39<2

(kemungkinan akan terjadi penghematan jika dilakukan Value Engineering)

Sedangkan untuk hasil perhitungan rasio setiap item pekerjaan dapat dilihat pada Tabel 4.35 dibawah ini.

Tabel 4.35 Perhitungan Rasio Setiap Pekerjaan

NO.	PERBANDINGAN RASIO	NILAI RASIO	KETERANGAN
	Pekerjaan Atap		
1.	Genteng beton – Genteng plentong	1,39	Ada penghematan
2.	Genteng beton – Asbes gelombang	1,26	Ada penghematan
	Pekerjaan Rangka Atap		
3.	Kayu meranti – Kayu glugu	1,24	Ada penghematan
4.	Kayu meranti – Gunungan Bata	1,74	Ada penghematan
	Pekerjaan Plafond		
5.	Gypsum – Asbes datar	1,22	Ada penghematan
6.	Gypsum – Eternit Kerang	1,42	Ada penghematan
· · · · · ·	Pekerjaan Lantai		
7.	Keramik 30/30 – Plesteran Batu bata	3,84	Ada penghematan
8.	Keramik 30/30 – Tegel Abu-abu 20/20	1,65	Ada penghematan
	Pekerjaan Pondasi		
9.	Batu kali – Sloof	1,33	Ada penghematan
10.	Batu kali – Telapak dg. Batu kosong	1,23	Ada penghematan

Berdasarkan hasil rasio pada Tabel 4.35, maka dapat disimpulkan bahwa setiap item pekerjaan mempunyai rasio diantara 1-2 sehingga kemungkinan dapat terjadi penghematan apabila dilakukan *Value Engineering*. Kecuali pada pekerjaan lantai dengan menggunakan plesteran batubata sebagai desain alternatifnya yang mempunyai nilai rasio lebih besar dari 2, sehingga dalam pekerjaan lantai tersebut jelas akan terjadi penghematan jika dilakukan *Value Engineering*.

4.5.3 Biaya Pemeliharaan

Biaya pemeliharaan adalah biaya yang digunakan untuk pemeliharaan atau perawatan selama umur rencana konstruksi. Biaya pemeliharaan setiap item pekerjaan dapat dilihat pada Tabel 4.36 hasil dari konsultasi dengan pelaksana di lapangan. Pada kuda-kuda kayu meranti dan glugu membutuhkan pengecatan untuk perawatan setiap 10 tahun sekali agar tahan terhadap rayap, bubuk atau serangga kecil lainnya. Karena umur proyek diasumsikan 20 tahun maka diperlukan perawatan dua kali selama umur proyek. Sedangkan gunungan batu bata tidak membutuhkan perawatan dikarenakan sudah cukup kuat untuk menahan gangguan dari luar seperti rayap, bubuk atau serangga lainnya.

Penutup atap membutuhkan perawatan berupa penggantian material yang rusak (pecah/retak), yang diasumsikan setiap 5 tahun terjadi kerusakan sebesar 5% untuk genteng plentong, 4% asbes gelombang dan 3% untuk genteng beton dari volume pekerjaan sebesar 78,8 m². Karena umur proyek diasumsikan selama 20 tahun maka diperlukan empat kali penggantian material yang rusak.

Pada plafond memerlukan pengecatan setiap 10 tahun sekali, agar plafond selalu tampak bersih dari kotoran-kotoran (debu) dan jamur. Karena umur proyek 20 tahun maka diperlukan dua kali pengecatan. Selain itu diperlukan juga perawatan berupa penggantian material yang rusak (pecah/retak), yang diasumsikan setiap 5 tahun terjadi kerusakan sebesar 5 % untuk eternit kerang, 4% asbes datar dan 3% untuk gypsum dari volume pekerjaan plafond 66,9 m². Karena umur proyek diasumsikan 20 tahun maka diperlukan penggantian material yang rusak sebanyak empat kali selama umur proyek berlangsung.

Sedangkan pada pekerjaan lantai plesteran + batubata, memerlukan perawatan berupa perbaikan plesteran yang rusak (retak/pecah), yang diasumsikan setiap 5 tahun terjadi kerusakan sebesar 20% dengan volume pekerjaan lantai 36,8m². Karena umur proyek 20 tahun maka diperlukan perbaikan sebanyak 4 kali selama umur proyek. Sedangkan untuk tegel, keramik dan pekerjaan pondasi tidak memerlukan biaya perawatan, dikarenakan sudah cukup kuat menahan gangguan dari luar seperti rayap atau serangga kecil lainnya. Untuk lebih jelasnya mengenai biaya perawatan pada tiap item pekerjaan dapat dilihat pada Lampiran VI.

Tabel 4.36 Biaya Pemeliharaan dalam Biaya Sekarang (Present Worth)

No.	Item Pekerjaan	Volume	Harga Satuan (Rp)	Total Biaya (Rp)
I	Penutup Atap	Penutup Atap		
	1. Genteng Beton	_		
	 biaya penggantian 	9,46 m ²	19.100,00	198.092,40
	2. Genteng Plentong	2		
	- biaya penggantian	15,76 m ²	12.350,00	223.634,40
	3. Asbes Gelombang	2		
	- biaya penggantian	12,61 m ²	16.722,00	232.553,62
П	Rangka Atap			
	Kayu Meranti	51.16 2	2 (0) 15	104 400 62
	- biaya pengecatan	51,16 m ²	3.606,15	184.490,63
	2. Kayu Glugu	51.162	2 606 15	184.490,63
TTT	- biaya pengecatan	51,16 m ²	3.606,15	104.490,03
Ш	Plafond	T		
	1. Gypsum	$133,80 \text{ m}^2$	8.047,50	1.076.755,50
	biaya pengecatanbiaya penggantian	8,03 m ²	21.895,30	175.819,26
	- biaya penggantian	0,05 III	Jumlah	1.252.574,76
	2. Asbes datar		3 diffidir	1.202.371,70
	- biaya pengecatan	133,80 m ²	8.047,50	1.076.755,50
	- biaya penggantian	$10,71 \text{ m}^2$	17.840,00	191.066,40
	36		Jumlah	1.267.821,90
	3. Eternit Kerang			
	- biaya pengecatan	$133,80 \text{ m}^2$	8.047,50	1.076.755,50
	- biaya penggantian	13,38 m ²	15.290,00	204.580,20
			Jumlah	1.281.335,70
IV	Lantai (Plesteran + Bata)			
	- biaya perawatan	29,44 m ²	8.895,50	261.883,52

4.5.4 Biaya Siklus Hidup (Life Cycle Cost)

Biaya siklus hidup adalah biaya selama umur rencana konstruksi dalam jangka waktu tertentu yang meliputi biaya awal dan biaya pemeliharaan yang dihitung dengan menggunakan *Capital Recovery Factor* (CRF), yaitu faktor bagi cicilan modal yang pembayaran setiap tahunnya berjumlah yang sama. Rumusnya adalah sebagai berikut:

$$CRF = \frac{i \cdot (1+i)^n}{(i+1)^n - 1}$$
 (4.2)

dimana: i = tingkat suku bunga
n = tahun

Dalam proyek pembangunan perumahan Pulo Mas di Cirebon ini, umur rencana konstruksinya adalah 20 tahun sedangkan untuk tingkat suku bunganya diasumsikan sebesar 15 % pertahun. Maka dari data tersebut dapat dinitung Capital Recovery Factor (CRF), sebagai berikut:

CRF =
$$\frac{\mathbf{i} \cdot (1+\mathbf{i})^{n}}{(\mathbf{i}+\mathbf{1})^{n}-\mathbf{1}}$$
=
$$\frac{15\% \cdot (1+15\%)^{20}}{(15\%+1)^{20}-\mathbf{1}} = 0,1597$$

Pada Tabel 4.37 dan Tabel 4.38 berikut menyajikan biaya yang dikeluarkan untuk keseluruhan item pekerjaan yang ditinjau (desain awal) agar dapat dilihat penghematan serta biaya siklus hidup dari setiap item pekerjaan alternatif.

Tabel 4.37 Harga Item Pekerjaan Keseluruhan dan Penghematan (Initial Cost)

No	Item Pekerjaan	Harga (Rp)	Penghematan (Rp)
1	Penutup Atap		
	- Genteng Beton (desain awal)	4.174.538,00	
	- Genteng Plentong (alternatif I)	3.624.513,00	550.025,00
	- Asbes Gelombang (alternatif II)	3.768.385,43	404.661,57
2	Rangka Atap		
	- Kayu Meranti (desain awal)	1.112.976,00	
	- Gunungan bata (alternatif I)	727.694,49	385.281,51
	- Kayu Glugu (alternatif II)	1.015.626,00	97.350,00
3	Plafond		
	- Gypsum (desain awal)	1.503.129,27	
	- Asbes Datar (alternatif I)	1.231.829,70	271.299,57
	- Eternit Kerang (alternatif II)	1.061.234,70	441.894,57
4	Lantai		
	- Keramik 30x30 (desain awal)	1.523.928,48	
	- Plesteran Batubata (alternatif I)	397.274,40	1.126.654,08
	- Tegel Abu-abu 20x20 (alter. II)	922.668,00	601.260,48
5	Pondasi		
	- Batu Kali (desain awal)	9.512.122,14	
	- Pondasi Sloof (alternatif I)	7.147.865,97	2.364.256,17
	- Telapak + Bt. Kosong (alter. II)	7.718.030,40	1.794.091,74

Tabel 4.38 Biaya Siklus Hidup dalam Annual Cost (AC)

No	Item Pekerjaan	(Bi	klus Hidup aya Awal) = `x Initial Cost	(Pen Ci	dus Hidup neliharaan)= RF x Biaya neliharaan	Si	otal Biaya klus Hidup nnual Cost)
i	Penutup Atap						
	- Genteng Beton (desain awal)	Rp	666.673,72	Rp	31.635,36	Rp	698,309,07
	- Genteng Plentong (alternatif I)	Rp	578.834,73	Rp	35.714,41	Rp	614.549,14
	- Asbes Gelombang (alter. II)	Rp	601.811,15	Rp	37.138,81	Rp	638.949,97
2	Rangka Atap						
	- Kayu Meranti (desain awal)	Rp	177.742,27	Rp	29.463,15	Rp	207.205,42
	- Gunungan bata (alternatif I)	Rp	116.212,81		-	Rp	116.212,81
	- Kayu Glugu (alternatif II)	Rp	162.195,47	Rp	29.463,15	Rp	191.658,62
3	Plafond				******		
	- Gypsum (desain awal)	Rp	240.049,74	Rp	200.036,19	Rp	440.085,93
	- Asbes Datar (alternatif I)	Rp	196,723,20	Rp	202.471,16	Rр	399.194,36
İ	- Eternit Kerang (alternatif II)	Rp	169.479,18	Rp	204.629,31	Rp	374.108,49
4	Lantai						
	- Keramik 30x30 (desain awal)	Rp	243.371,38		-	Rp	243.371,38
	- Plesteran Batubata (alter. I)	Rp	63.444,72	Rp	41.822,80	Rp	105.338,04
	- Tegel Abu-abu 20x20 (alter. II)	Rp	147.350,08		-	Rp	147,350,08
5	Pondasi	•	·····				······································
	- Batu Kali (desain awal)	Rp	1.519.085,91		-	Rp	1.519.085,91
	- Pondasi Sloof (alternatif I)	Rp	1.141.514,20		-	Rp	1.141.514,20
	- Telapak+Bt.Kosong (alter. II)	Rр	1.232.569,45		-	Rp	1.232.569,45

Adapun besarnya penghematan untuk biaya siklus hidup (*Annual Cost*) pada setiap item pekerjaan dapat dilihat pada Tabel 4.39 berikut ini.

Tabel 4.39 Penghematan Biaya Siklus Hidup (Annual Cost)

No	Item	Total Biaya		Penghe	matan Biaya
	Pekerjaan	Sikh	ıs Hidup	Siklus Hidup	
1	Penutup Atap				
	- Genteng Beton (desain awal)	Rp	698.309,07		
	- Genteng Plentong (alternatif I)	Rp	614.549,14	Rp	85.611,48
	- Asbes Gelombang (alternatif II)	Rp	638.949,97	Rp	59.804,96
2	Rangka Atap				
	- Kayu Meranti (desain awal)	Rp	207.205,42		
	- Gunungan Batubata (alternatif I)	Rp	116.212,81	Rp	90.992,61
	- Kayu Glugu (alternatif II)	Rp	191.658,62	Rp	15.546,80
3	Plafond				
	- Gypsum (desain awal)	Rp	440.085,93		
1	- Asbes Datar (alternatif I)	Rp	399.194.36	Rp	40.891,57
	- Eternit Kerang (alternatif II)	Rp	374.108,49	Rp	65.977,44
4	Lantai				
	- Keramik 30x30 (desain awal)	Rp	243.371,38		
	- Plesteran Batubata (alternatif I)	Rp	105.338,04	Rp	138.103,86
	- Tegel Abu-abu 20x20 (alter. II)	Rp	147.350,08	Rp	96.021,30
5	Pondasi				
	- Batu Kali (desain awal)	Rp	1.519.085,91		
	- Pondasi Sloof (alternatif I)	Rp	1.141.514,20	Rp	377.571,71
	- Telapak+Bt.Kosong (alternatif II)	Rp	1.232.569,45	Rp	286.516,45

4.6 Tahap Presentasi/Rekomendasi (Recommendation Phase)

Tahapan ini merupakan kelanjutan dari tahapan pengembangan yang merupakan tahapan paling akhir dari studi *Value Engineering*. Tahap ini merupakan penentu sukses atau tidaknya studi *Value Engineering* yang dilaksanakan. Dalam tahapan ini gambaran tentang *Value Engineering* pada setiap item pekerjaan dibuat dalam suatu bentuk laporan proposal *Value Engineering*, yaitu suatu ringkasan hasil studi *Value Engineering* dengan mengajukan laporan secara tertulis (*Proposal Summary Report*) yang berupa perbandingan desain awal (asli/terpakai) dengan desain alternatif yang diajukan setelah dilakukan studi *Value Engineering*.

Didalam ringkasan laporan tersebut juga tercantum besarnya penghematan Initial Cost (IC) dan Annual Cost (AC) dari alternatif-alternatif yang diajukan.

Ringkasan tersebut dapat dilihat berikut ini.

Proposal Value Engineering No: 1	Tanggal :

I. Umum

Pada studi *Value Engineering* ini membahas tentang proyek perumahan type 36 di Cirebon. Item pekerjaan yang dibahas adalah pekerjaan penutup atap, rangka atap, plafond, lantai dan pondasi

Disini tidak membahas hitungan struktur secara mendetail. Oleh karena itu dimensi kuda-kuda serta pondasi alternatif diperkirakan dengan pendekatan terhadap standar perencanaan awal dimensi yang berlaku yang berasal dari spesifikasi teknis dari produsen. Harga desain yang dipakai adalah harga saat ini yang didapat dari produsen.

II. Tata Letak Bangunan

Tata letak bangunan rumah tipe 36 adalah sesuai dengan desain aslinya (tidak mengubah desain awal) sehingga denah yang dipergunakan untuk ide alternatif dan asli adalah sama.

III. DESAIN AWAL

Model desain asli dari kuda-kuda, penutup atap, plafond, lantai dan pondasi pada proyek perumahan tipe 36 di Cirebon adalah :

- a. Penutup Atap = Genteng Beton
- b. Kuda-kuda = Kayu Meranti
- c. Plafond = Gypsum
- d. Lantai = Keramik 30/30
- e. Pondasi = Batu Kali

IV. DESAIN ALTERNATIF

Model desain asli dari kuda-kuda, penutup atap, plafond, lantai dan pondasi pada proyek perumahan tipe 36 di Cirebon adalah :

- a. Penutup Atap = 1. Genteng Plentong
 - 2. Asbes Gelombang
- b. Kuda-kuda = 1. Gunungan Bata
 - 2. Kayu Glugu
- :. Plafond = 1. Asbes Datar
 - 2. Eternit Kerang
- f. Lantai = 1. Plesteran + Batu bata
 - 2. Tegel Abu-abu
- e. Pondasi = 1. Pondasi Sloof
 - 2. Pondasi Telapak + Batu Kosong

Proposal Value Engineering No: 2	Tangg	al :
Penghem	atan Pada Pekerjaan Penuti	ıp Atap
Tak	siran Penghematan Inisial (F [Estimated Initial Saving]	Rp)
Desain awal	Alternatif I	Alternatif II
0	550.025,00	404.661,57
	Penghematan Biaya Siklus H Estimated Life Cycle Saving]	
Desain awal	Alternatif I	Alternatif II
0	85.611,18	59.804,96

Proposal Value Engineering No: 3	Tangg	al :
Penghen	natan Pada Pekerjaan Rangl	ka Atap
Tak	siran Penghematan Inisial (F [Estimated Initial Saving]	Rp)
Desain awal	Alternatif I	Alternatif II
0	385.281,51	97.350,00
	Penghematan Biaya Siklus H Estimated Life Cycle Saving	
Desain awal	Alternatif I	Alternatif II
0	90.992,61	15.546,80

Proposal Value Engineering No: 4	Tangg	Tanggal:	
Pengl	nematan Pada Pekerjaan Pla	fond	
Tak	siran Penghematan Inisial (F [Estimated Initial Saving]	Rp)	
Desain awal	Alternatif I	Alternatif II	
0	271.299,57	441.894,57	
	Penghematan Biaya Siklus H Estimated Life Cycle Saving]		
Desain awal	Alternatif I	Alternatif II	
0	40.891,57	65.977,44	

Proposal Value Engineering No:5	Tangg	Tanggal:		
Peng	hematan Pada Pekerjaan La	ntai		
Tal	siran Penghematan Inisial (R [Estimated Initial Saving]	(p)		
Desain awal	Alternatif I	Alternatif II		
0	1.126.654,08	601.206,48		
	Penghematan Biaya Siklus Hi Estimated Life Cycle Saving]			
Desain awal	Alternatif I	Alternatif II		
0	138.033,34	96.021,30		

Proposal Value Engineering No : 6	Tangg	Tanggal :	
Pengl	hematan Pada Pekerjaan Pon	dasi	
Tal	ssiran Penghematan Inisial (F [<i>Estimated Initial Saving</i>]	Rp)	
Desain awal	Alternatif I	Alternatif II	
0	2.364.256,17	1.794.091,74	
	Penghematan Biaya Siklus Hi Estimated Life Cycle Saving]		
Desain awal	Alternatif I	Alternatif II	
0	377.571,71	286.516,45	

Berdasarkan proposal tersebut maka penelitian tentang "Aplikasi Value Engineering Pada Proyek Perumahan Pulo Mas di Cirebon" yang dilakukan oleh peneliti pada tugas akhir ini adalah berhasil dengan diperolehnya sejumlah penghematan, baik itu penghematan inisial dan biaya siklus hidup pada setiap item pekerjaannya. Sehingga terpilih beberapa desain alternatif pada setiap item pekerjaan yang dapat digunakan sebagai alternatif pengganti desain awal. Namun untuk menghasilkan penghematan yang maksimal harus menerapkan studi Value Engineering ini sejak awal desain rencana.

Untuk lebih jelasnya mengenai hasil dari analisis *Value Engineering* Pada Proyek Perumahan Pulo Mas di Cirebon terdapat pada Tabel 4.40 berikut ini.

Tabel 4.40 Rekapitulasi Hasil dari Analisis Value Engineering

No	Item Pekerjaan	Biaya Awal (Rp)	Penghematan (Rp)	Keterangan
1	Penutup Atap			Digunakan genteng
	- Genteng Beton (desain awal)	4.174.538,00		plentong karena
	- Genteng Plentong (alter. I)	3.624.513,00	550.025,00	
	- Asbes Gelombang (alter. II)	3.768.385,43	404.661,57	murah.
2	Rangka Atap			Digunakan gunung-
	- Kayu Meranti (desain awal)	1.112.976,00		an batu bata karena
	- Gunungan bata (alternatif I)	727.694,49	385.281,51	biaya awalnya lebih
	- Kayu Glugu (alternatif II)	1.015.626,00	97.350,00	murah.
3	Plafond			Digunakan eternit
	- Gypsum (desain awal)	1.503.129,27		kerang karena bia-
	- Asbes Datar (alternatif I)	1.231.829,70	271.299,57	ya awalnya lebih
	- Eternit Kerang (alternatif II)	1.061.234,70	441.894,57	murah.
4	Lantai			Digunakan plester-
	- Keramik 30x30 (desain awal)	1.523.928,48		an batu bata karena
	- Plesteran Batubata (alter. I)	397.274,40	1.126.654,08	biaya awalnya le-
	- Tegel Abu-abu 20x20(alter. II)	922.668,00	601,260,48	bih murah.
5	Pondasi			Digunakan pondasi
	- Batu Kali (desain awal)	9.512.122,14		sloof karena biaya
	- Pondasi Sloof (alternatif I)	7.147.865,97	2.364.256,17	awalnya lebih mu-
	- Telapak + Bt.Kosong (alter.II)	7.718.030,40	1.794.091,74	rah.

BAB V

PEMBAHASAN

5.1 Analisis Untung Rugi

Sistem penilaian dengan teknik analisis untung rugi ini dirasakan masih sangat kasar karena nilai yang diberikan hanya mempunyai dua pilihan, yaitu nilai negatif (-) dan nilai positif (+) pada angka yang sudah diasumsikan. Misalnya untuk bahan yang mempunyai biaya awal mahal mempunyai nilai (-4) dan yang mempunyai biaya awal murah mempunyai nilai (+4). Sedang nilai diantaranya, yaitu (-3, -2, -1, 0, 1, 2, dan 3) tidak terpakai. Dengan demikian asumsi biaya terhadap bahan diberikan dengan sangat ekstrim, yaitu mahal atau murah saja.

Begitu juga pada penilaian kriteria-kriteria pekerjaan yang lainnya, penilaian yang diambil hanya dua kemungkinan saja, negatif (merugikan) dan positif (menguntungkan). Hal ini mengakibatkan penilaian pada tahap untung rugi ini akurasinya kurang bisa diandalkan sehingga perlu kiranya ada suatu penilaian lain yang mempunyai akurasi penilaian yang lebih baik.

Dari penilaian hasil analisis kusioner ada beberapa penilaian yang tidak sesuai dengan kondisi lapangan. Hal ini disebabkan kurangnya informasi, pemahaman dan pengetahuan responden terhadap ide-ide alternatif yang diajukan oleh penyusun pada setiap item pekerjaan, sehingga banyak terjadi

penyimpangan/kesalahan dalam penilaian dan penyusunan peringkat pemenang ide altenatif pada setiap item pekerjaan.

Oleh karena itu diperlukan suatu tim yang benar-benar ahli dan menguasai metode *Value Engineering*, sehingga hasil yang diperoleh dapat semaksimal mungkin. Kemudian dianjurkan oleh dosen pembimbing untuk dianalisis kembali hasil dari penilaian pada tahapan analisis untung rugi. Setelah itu analisis untung rugi yang digunakan adalah berdasarkan hasil dari revisi.

Dari penilaian analisis untung-rugi hasil revisi diambil dua alternatif yang terbaik pada setiap item pekerjaannya. Kemudian salah satunya akan digunakan sebagai desain usulan setelah perhitungan biayanya diketahui sehingga biaya yang paling murah direkomendasikan sebagai desain usulan.

Pada pekerjaan penutup atap alternatif I dan II adalah atap genteng plentong dan asbes gelombang (Tabel 4.13). Penutup atap dari genteng plentong dan asbes gelombang mempunyai nilai/rangking yang tertinggi daripada bahan penutup atap lainnya. Hal ini dikarenakan selain biaya awalnya yang lebih murah, secara keseluruhan atap genteng plentong dan asbes gelombang mempunyai keuntungan yang lebih baik (waktu pelaksanaan lebih cepat, daya dukung kuat, kemudahan pelaksanaan, pabrikasi, dan biaya pemeliharaan yang murah) dibandingkan dengan alternatif lainnya. Sehingga pada pekerjaan penutup atap didapatkaaan dua alternatif yaitu genteng plentong dan asbes gelombang. Untuk lebih jelasnya mengenai hasil dari analisa untung rugi hasil revisi pada pekerjaan penutup atap dapat dilihat pada Tabel 5.1 berikut ini.

Tabel 5.1 Hasil Analisis Untung Rugi Pekerjaan Penutup Atap

Alternatif Penutup Atap	Nilai	Rangking
Genteng Plentong	+ 20	I
Asbes Gelombang	+ 18	11
Genteng Keramik	+12	III
Seng	+ 8	IV
Sirap	- 4	V

Pada pekerjaan rangka atap/kuda-kuda didapatkan dua alternatif yaitu gunungan batu bata dan glugu (Tabel 4.14). Diambilnya dua alaternatif tersebut disebabkan karena gunungan batu bata dan kayu glugu mempunyai nilai/rangking yang tertinggi daripada bahan rangka atap lainnya. Disamping biaya awal yang lebih murah, secara keseluruhan rangka atap gunungan bata dan kayu glugu mempunyai keuntungan (waktu pelaksanaan lebih cepat, kemudahan pelaksanaan, kemungkinan diterapkan dan sarana kerja) yang lebih baik dibandingkan dengan alternatif lainnya. Untuk lebih jelasnya mengenai analisa untung rugi hasil revisi pada pekerjaan kuda-kuda/rangka atap dapat dilihat pada Tabel 5.2 berikut ini.

Tabel 5.2 Hasil Analisis Untung Rugi Pekerjaan Rangka Atap/Kuda-kuda

Alternatif Rangka Atap	Nilai	Rangking
Gunungan Batubata	+ 18	·I
Kayu Glugu	+ 16	II
Rangka Baja	+ 12	III
Rangka Beton	+ 8	IV
Bambu Petung	+6	V

Sedangkan untuk plafond alternatif I dan II adalah asbes datar dan eternit kerang (Tabel 4.15). Dipilihnya dua alternatif tersebut karena mempunyai nilai/rangking yang tertinggi daripada alternatif lainnya. Disamping itu juga mempunyai biaya yang lebih murah dan secara keseluruhan mempunyai keuntungan (waktu pelaksanaan lebih cepat, kemudahan pelaksanaan, pabrikasi dan biaya pemeliharaan) yang lebih baik dibandingkan dengan alternatif lainnya. Untuk lebih jelasnya mengenai analisa untung rugi hasil revisi pada pekerjaan plafond dapat dilihat pada Tabel 5.3 berikut ini.

Tabel 5.3 Hasil Analisis Untung Rugi Pekerjaan Plafond

Alternatif Plafond	Nilai	Rangking
Asbes Datar	+ 20	Ī
Eternit Kerang	+ 14	11
Anyaman Bambu	+ 10	III
Tripleks	+ 8	IV
Papan	+ 1	V

Kemudian pada pekerjaan lantai diambil dua alternatif juga, yaitu plesteran batu bata dan tegel abu-abu (Tabel 4.16). Kedua alternatif tersebut juga dipilih karena disamping mempunyai nilai/rangking yang tertinggi juga mempunyai biaya yang lebih murah dan secara keseluruhan mempunyai keuntungan (waktu pelaksanaan lebih cepat, daya dukung dan biaya pemeliharaan) yang lebih baik dibandingkan dengan alternatif lainnya. Untuk lebih jelasnya mengenai analisa untung rugi hasil revisi pada pekerjaan lantai dapat dilihat pada Tabel 5.4 berikut ini.

Tabel 5.4 Hasil Analisis Untung Rugi Pekerjaan Lantai

Alternatif Lantai	Nilai	Rangking
Plesteran Batubata	+16	I
Tegel Abu-abu	+ 13	11
Keramik 20x20	+ 12	III
Plesteran	+ 10	IV
Tegel Wafel	+ 5	V

Analisis untung rugi pekerjaan pondasi untuk kriteria biaya pemeliharaan dihilangkan hal ini disebabkan pada pekerjaan pondasi tidak memerlukan biaya pemeliharaan. Pada pekerjaan pondasi diambil dua alternatif yaitu pondasi sloof dan pondasi telapak dengan batu kosong (Tabel 4.17). Dipilihnya dua alternatif tersebut karena mempunyai nilai/rangking yang tertinggi daripada alternatif lainnya. Disamping itu juga mempunyai biaya yang lebih murah dan secara keseluruhan mempunyai keuntungan (waktu pelaksanaan lebih cepat, kemudahan pelaksanaan dan biaya pemeliharaan) yang lebih baik dibandingkan dengan alternatif lainnya. Untuk lebih jelasnya mengenai analisa untung rugi hasil revisi pada pekerjaan pondasi dapat dilihat pada Tabel 5.5 berikut ini.

Tabel 5.5 Hasil Analisis Untung Rugi Pekerjaan Pondasi

Alternatif Pondasi	Nilai	Rangking
Pondasi Sloof	+ 17	I
Telapak + Batu Kosong	+ 14	II
Telapak + Perbaikan dg. Pasir	+9	III
Telapak + Batu Kapur	+ 6	IV
Telapak + Paving Block	- 3	V

5.2 Analisis Tingkat Kelayakan

Untuk analisis tingkat kelayakan, sistem penilainnya sudah cukup akurat jika dibandingkan dengan tahap analisis untung rugi, hanya subyektivitas penilaian dari analisis studi sangat dominan dalam memberikan nilai pada kriteria-kriteria yang ada. Oleh karena itu dibutuhkan suatu tim yang sudah berpengalaman pada bidang yang ditinjau sebagai pemberi nilai agar penilaian lebih obyektif dan akurasinya bisa dipertanggungjawabkan. Nilai-nilai kriteria yang diberikan pada beberapa alternatif tersebut (Tabel 4.18 sampai dengan Tabel 4.22) berdasarkan hasil wawancara di lapangan/proyek.

Pada analisis tingkat kelayakan sama halnya dengan analisis untung rugi, diambil juga dua alternatif yang terbaik diantara alternatif yang lainnya. Setelah dilakukan penilaian pada tahap analisis tingkat kelayakan, ternyata dihasilkan alternatif-alternatif yang sama pada analisis untung rugi untuk setiap item pekerjaannya.

Pada pekerjaan penutup atap diambil dua alternatif yang terbaik, yaitu genteng plentong dan asbes gelombang (Tabel 4.18). Dipilihnya genteng plentong dan asbes gelombang sebagai alternatif yang terbaik karena selain mempunyai nilai/rangking yang tertinggi juga mempunyai waktu pelaksanaan yang tercepat dibandingkan alternatif-alternatif yang lainnya. Untuk lebih jelasnya mengenai hasil dari analisa tingkat kelayakan pada pekerjaan penutup atap dapat dilihat pada Tabel 5.6 berikut ini.

Tabel 5.6 Hasil Analisis Tingkat Kelayakan Pekerjaan Penutup Atap

Alternatif Penutup Atap	Nilai	Rangking
Genteng Plentong	48	I
Asbes Gelombang	47	II
Genteng Keramik	46	III
Seng	45	IV
Sirap	37	V

Sedangkan pada pekerjaan rangka atap alternatif I dan II adalah gunungan batu bata dan glugu (Tabel 4.19). Dipilihnya dua alternatif tersebut selain mempunyai nilai/rangking yang tertinggi juga mempunyai waktu pelaksanaan yang tercepat dibandingkan alternatif-alternatif yang lainnya. Untuk lebih jelasnya mengenai hasil dari analisa tingkat kelayakan pada pekerjaan rangka atap/kuda-kuda dapat dilihat pada Tabel 5.7 berikut ini.

Tabel 5.7 Hasil Analisis Tingkat Kelayakan Pekerjaan Rangka Atap/Kuda-kuda

Alternatif Rangka Atap	Nilai	Rangking
Gunungan Batubata	48	I
Kayu Glugu	46	II
Rangka Baja	42	III
Rangka Beton	41	IV
Bambu Petung	39	V

Untuk pekerjaan plafond alternatif yang didapatkan adalah asbes datar dan eternit kerang (Tabel 4.20). Asbes datar dan eternit kerang mempunyai nilai/rangking yang tertinggi dibandingkan dengan alternatif yang lainnya, selain itu juga mempunyai waktu pelaksanaan yang tercepat dan kemungkinan diterapkan pada proyek perumahan tersebut juga sangat besar dibandingkan

dengan alternatif-alternatif yang lainnya. Untuk lebih jelasnya mengenai hasil dari analisa tingkat kelayakan pada pekerjaan plafond dapat dilihat pada Tabel 5.8 berikut ini.

Tabel 5.8 Hasil Analisis Tingkat Kelayakan Pekerjaan Plafond

Alternatif Plafond	Nilai	Rangking
Asbes Datar	48	I
Eternit Kerang	47	II
Anyaman Bambu	41	III
Tripleks	38	IV
Papan	37	V

Kemudian pada pekerjaan lantai juga diambil dua alternatif yang terbaik. Untuk alternatif I adalah plesteran batu bata dan alternatif II adalah tegel abu-abu (Tabel 4.21). Kedua alternatif tersebut dipilih selain mempunyai nilai/rangking yang tertinggi juga mempunyai waktu pelaksanaan yang tercepat biaya yang lebih murah dibandingkan dengan alternatif-alternatif yang lainnya. Untuk lebih jelasnya mengenai hasil dari analisa tingkat kelayakan pada pekerjaan lantai dapat dilihat pada Tabel 5.9 berikut ini.

Tabel 5.9 Hasil Analisis Tingkat Kelayakan Pekerjaan Lantai

Alternatif Lantai	Nilai	Rangking
Plesteran Batubata	48	I
Tegel Abu-abu	47	II
Keramik 20x20	45	III
Plesteran	44	IV
Tegel Wafel	42	V

Dan untuk pekerjaan pondasi alternatif I dan II adalah pondasi sloof dan pondasi telapak dengan batu kosong (Tabel 4.22). Pondasi sloof dan telapak dengan batu kosong mempunyai nilai/rangking yang tertinggi dibandingkan dengan alternatif yang lainnya, selain itu juga mempunyai waktu pelaksanaan yang tercepat dibandingkan dengan alternatif-alternatif yang lainnya. Untuk lebih jelasnya mengenai hasil dari analisa tingkat kelayakan pada pekerjaan pondasi dapat dilihat pada Tabel 5.10 berikut ini.

Tabel 5.10 Hasil Analisis Tingkat Kelayakan Pekerjaan Pondasi

Alternatif Pondasi	Nilai	Rangking
Pondasi Sloof	48	I
Telapak + Batu Kosong	44	II
Telapak + Perbaikan Pasir	42	III
Telapak + Paving Block	39	IV
Telapak + Batu Kapur	38	V

5.3 Analisis Matriks

Pada analisis matriks sama halnya dengan analisis untung rugi dan tingkat kelayakan, nantinya diambil juga dua alternatif terbaik diantara alternatif lainnya. Setelah dilakukan penilaian pada tahap analisis matriks, ternyata dihasilkan alternatif-alternatif yang sama baik pada analisis untung rugi maupun analisis tingkat kelayakan untuk setiap item pekerjaannya.

Pada analisis matriks penilaian sudah baik, karena terdapat uji konsistensi pada data yang dipergunakan sebagai kriteria-kriteria penilaian sehingga subyektivitas penilaian dari analisis dapat diminimalkan secara optimal.

Analisis matriks akan membahas lima jenis alternatif pada setiap item pekerjaan dari analisis untung-rugi dan analisis tingkat kelayakan. Penilaian tersebut dilakukan sesuai dengan ketentuan-ketentuan yang terdapat pada Tabel 4.23 dan skala nilai antara 1 – 4, dengan ide awal sebagai pembanding terhadap ide-ide alternatif. Skala nilai tiap-tiap kriteria tersebut dikalikan dengan bobot (%) masing-masing kriteria yang ada (diperoleh dari vektor prioritas) kemudian dijumlahkan.

Dari penilaian pada teknik ini didapat nilai hasil total untuk setiap item pekerjaannya yang terdapat pada Tabel 4.24 sampai Tabel 4.28. Untuk pekerjaan penutup atap diambil dua alternatif terbaik, yaitu genteng plentong dan asbes gelombang (Tabel 4.24). Dipilihnya genteng plentong dan asbes gelombang sebagai alternatif yang terbaik karena selain mempunyai nilai/skor total tertinggi juga mempunyai biaya awal dan biaya pemeliharaan yang lebih murah dibandingkan alternatif-alternatif yang lainnya. Untuk lebih jelasnya mengenai hasil dari analisis matriks pada pekerjaan penutup atap dapat dilihat pada Tabel 5.11 berikut ini.

Tabel 5.11 Hasil Analisis Matriks Pekerjaan Penutup Atap

Alternatif Penutup Atap	Nilai Total	Rangking
Genteng Plentong	357,29	I
Asbes Gelombang	346,71	II
Genteng Keramik	329,62	III
Seng	329,53	IV
Sirap	232,41	V

Pada pekerjaan kuda-kuda/rangka atap dihasilkan dua alternatif juga, yaitu gunungan batu bata dan kayu glugu sebagai alternatifnya (Tabel 4.25). Hal ini disebabkan kedua alternatif tersebut mempunyai nilai/skor total tertinggi dibandingkan dengan alternatif lainnya. Selain itu memiliki waktu pelaksanaan yang tercepat serta biaya awal yang murah dibandingkan dengan alternatif lainnya. Untuk lebih jelasnya mengenai hasil dari analisa matriks pada pekerjaan rangka atap/kuda-kuda dapat dilihat pada Tabel 5.12 berikut ini.

Tabel 5.12 Hasil Analisis Matriks Pekerjaan Rangka Atap/Kuda-kuda

Alternatif Rangka Atap	Nilai	Rangking
Gunungan Batu bata	318,48	I
Kayu Glugu	303,79	II
Rangka Baja	285,34	III
Rangka Beton	271,33	IV
Bambu Petung	264,51	V

Sedangkan pada pekerjaan plafond alternatif yang didapatkan adalah asbes datar dan eternit kerang (Tabel 4.26). Asbes datar dan eternit kerang mempunyai nilai/skor total yang tertinggi dibandingkan dengan alternatif yang lainnya, selain itu juga mempunyai waktu pelaksanaan yang tercepat dan biaya pemeliharaan yang murah dibandingkan dengan alternatif-alternatif yang lainnya. Dan secara keseluruhan mempunyai keuntungan yang lebih baik dibandingkan dengan alternatif lainnya. Untuk lebih jelasnya mengenai hasil dari analisis matriks pada pekerjaan plafond dapat dilihat pada Tabel 5.13 berikut ini.

Tabel 5.13 Hasil Analisis Matriks Pekerjaan Plafond

Alternatif Plafond	Nilai	Rangking
Asbes Datar	347,45	I
Eternit Kerang	334,44	II
Anyaman Bambu	303,04	III
Tripleks	295,86	IV
Papan	288,13	V

Kemudian pada pekerjaan lantai dihasilkan dua alternatif juga, yaitu tegel abu-abu dan plesteran batu bata (Tabel 4.27). Kedua alternatif tersebut juga dipilih karena disamping mempunyai nilai/skor yang tertinggi juga mempunyai biaya yang lebih murah dan secara keseluruhan mempunyai keuntungan yang lebih baik dibandingkan dengan alternatif lainnya. Untuk lebih jelasnya mengenai hasil dari analisis matriks pada pekerjaan lantai dapat dilihat pada Tabel 5.14 berikut ini.

Tabel 5.14 Hasil Analisis Matriks Pekerjaan Lantai

Alternatif Lantai	Nilai	Rangking
Plesteran + Batu bata	312,66	I
Tegel Abu-abu	298,81	II
Keramik 20x20	285,69	III
Plesteran	272,49	IV
Tegel Wafel	260,34	v
	1	1

Dan untuk pekerjaan pondasi didapatkan dua alternatif juga, yaitu pondasi sloof dan pondasi telapak dengan batu kosong (Tabel 4.28). Pondasi sloof dan telapak dengan batu kosong mempunyai nilai/skor total yang tertinggi dibandingkan dengan alternatif yang lainnya, selain itu juga mempunyai waktu

pelaksanaan yang tercepat dan daya dukung yang besar dibandingkan dengan alternatif-alternatif yang lainnya. Untuk lebih jelasnya mengenai hasil dari analisis matriks pada pekerjaan pondasi dapat dilihat pada Tabel 5.15 berikut ini.

Tabel 5.15 Hasil Analisis Matriks Pekerjaan Pondasi

Alternatif Pondasi	Nilai	Rangking
Pondasi Sloof	318,99	l
Telapak + Batu Kosong	291,50	II
Telapak + Perbaikan Pasir	276,22	III
Telapak + Paving Block	254,99	IV
Telapak + Batu Kapur	246,49	V

Dari ketiga tahap penilaian di atas, ternyata dihasilkan alternatif-alternatif yang sama pada setiap item pekerjaannya. Untuk pekerjaan penutup atap dihasilkan genteng plentong dan asbes gelombang. Pada pekerjaan kuda-kuda/rangka atap didapatkan gunungan batu bata dan kayu glugu. Kemudian untuk pekerjaan plafond dihasilkan asbes datar dan eternit kerang. Untuk pekerjaan lantai didapatkan plesteran batu bata dan tegel abu-abu. Sedangkan untuk pekerjaan pondasi dihasilkan pondasi sloof dan pondasi telapak dengan batu kosong. Karena alternatif yang dihasilkan untuk setiap item pekerjaannya sama maka data yang diperoleh adalah konsisten.

5.4 Biaya Siklus Hidup

Pada tahap pengembangan hanya diambil dua alternatif dari setiap item pekerjaan yang memiliki nilai/rangking tertinggi, yang nantinya akan dikembangkan lebih lanjut dalam perhitungan biaya awal dan biaya pemeliharaan.

Dari hasil perhitungan dan analisis, ternyata didapat biaya awal (IC) yang paling murah untuk keseluruhan pekerjaan atap adalah genteng plentong, yaitu sebesar Rp 3.624.513,00 dengan penghematan IC terhadap pekerjaan atap terpakai sebesar Rp 550.025,00 (Tabel 4.37). Sedangkan pada pekerjaan kuda-kuda/rangka atap biaya awal yang termurah adalah gunungan batubata, yaitu sebesar Rp727.694,49 dengan penghematan IC yang terjadi adalah sebesar Rp 385.281,51 (tabel 4.37). Untuk pekerjaan plafond biaya awal termurah adalah eternit kerang, yaitu sebesar Rp1.061.234,70 dengan penghematan yang terjadi Rp 441.894,57 (Tabel 4.37). Kemudian pada pekerjaan lantai biaya awal termurah adalah plesteran batubata, yaitu sebesar Rp 397.274,40 dengan penghematan yang terjadi Rp 1.126.654,08 (Tabel 4.37). Dan pada pekerjaan pondasi biaya awal termurah adalah pondasi sloof, yaitu sebesar Rp 7.147.865,97 dengan penghematan yang terjadi Rp 2.364.256,17 (Tabel 4.37).

Biaya pemeliharaan untuk penutup atap dari bahan genteng plentong (alternatif I) adalah biaya penggantian material yang rusak (retak/pecah) sebesar Rp 223.634,40 sedangkan untuk asbes gelombang (alternatif II) totalnya sebesar Rp 232.553,62 (Tabel 4.36). Pada rangka atap alternatif I (gunungan batu bata), tidak memerlukan biaya pemeliharaan, sedangkan pada rangka atap alternatif II (kayu glugu) memerlukan biaya pemeliharaan berupa pengecatan dari hama rayap, bubuk atau serangga kecil lainnya sebesar Rp 184.490,63 selama umur konstruksi 20 tahun (Tabel 4.36).

Besarnya persentase kerusakan pada plafond didasarkan pada kekuatan daya dukung bahan. Pada asbes datar daya dukungnya lebih kuat dibandingkan

dengan eternit kerang, sehingga untuk eternit kerang kemungkinan terjadinya kerusakan akan lebih besar dibandingkan dengan asbes datar. Biaya pemeliharaan pada plafond dari bahan asbes datar (alternatif I) memerlukan biaya perbaikan material yang rusak (pecah/retak) sebesar Rp 191.066,40 dan eternit kerang sebesar Rp 204.580,20. Disamping itu memerlukan biaya pengecatan agar plafond tersebut agar plafond selalu tampak bersih dari kotoran-kotoran (debu) dan jamur sebesar Rp 1.076.755,50. Sehingga total biaya pemeliharaan untuk asbes datar adalah Rp 1.267.821,90 dan untuk eternit kerang Rp 1.281.335,70 (Tabel 4.36).

Kemudian untuk biaya pemeliharaan pada lantai (plesteran batu bata) diperlukan biaya perbaikan material yang rusak (pecah/retak) setiap 5 tahun sekali sebesar Rp 8.895,50 sehingga total biaya pemeliharaan lantai (plesteran batu bata) sebesar Rp 261.883,52 (Tabel 4.36). Sedangkan pada pekerjaan podasi tidak memerlukan biaya pemeliharaan.

Pada pekerjaan pondasi untuk mengetahui tingkat keamanan perlu adanya analisis kekuatan pondasi. Dalam Tugas Akhir ini untuk mengecek keamanan pondasi, peneliti menggunakan SAP 90 dengan diperoleh dimensi balok sloof untuk lebar 150 mm, tinggi 200 mm, tulangan sengkang dipergunakan Ø8 dan Ø12 untuk tulangan pokok. Setelah dilakukan perbandingan antara perhitungan SAP90 dan hitungan manual, kapasitas balok sloof berdasarkan hitungan cukup aman yaitu sebesar 8,881 kNm lebih besar dari analisis SAP 90 sebesar 6,332 kNm. Dengan demikian dimensi dan tulangan sloof berdasarkan hitungan dapat diterapkan pada proyek. Hasil selengkapnya mengenai perhitungan SAP 90 dapat dilihat pada lampiran XIX.

Kemudian untuk lebih jelasnya mengenai persentase penghematan biaya setiap item pkerjaan yang terjadi dapat dilihat pada Tabel 5.16 berikut ini.

Tabel 5.16 Persentase Penghematan Biaya yang Terjadi

Alternatif Terpilih	Biaya Penghematan	Persentase Penghematan	
1. Penutup Atap: Genteng Plentong	Rp 550.025,00	28,05% %	
2. Kuda-kuda: Gunungan Batu Bata	Rp 385.281,51	34,62%	
3. Plafond: Eternit Kerang	Rp 441.894,57	29,40%	
4. Lantai: Plesteran Batu Bata	Rp 1.126.654,08	73,93%	
5. Pondasi : Sloof	Rp 2.364.256,17	24,86%	

Tabel 5.17 Perbandingan Biaya Desain Awal dengan Desain Perubahan

Item Pekerjaan]	Biaya Desain Awal		Biaya Perubahan	
1. Penutup Atap	Rp	4.174.538,00	Rp	3.624.513,00	
2. Kuda-kuda	Rp	1.112.976,00	Rp	727.694,49	
3. Plafond	Rp	1.503.129,27	Rp	1.061.234,70	
4. Lantai	Rp	1.523.928,48	Rp	397.274,40	
5. Pondasi	Rp	9.512.122,14	Rp	7.147.865,97	
Jumlah	Rp	17.826.693,89	Rp	12.958.582,56	
Persentase Penghematan = 31,18 %					

Jadi, penelitian tugas akhir dengan memakai studi *Value Engineering* pada proyek perumahan Pulo Mas di Cirebon berhasil diterapkan karena adanya penghematan yang terjadi pada setiap item pekerjaan. Namun untuk menghasilkan penghematan yang maksimal harus menerapkan *Value Engineering* sejak tahap konsep biaya dan desain awal.

BAB VI

KESIMPULAN DAN SARAN

6.1 Kesimpulan

Pada uraian bab-bab sebelumnya telah dilakukan analisis dan pembahasan mengenai aplikasi studi *Value Engineering* terhadap proyek perumahan Pulo Mas tipe 36 di Cirebon, sehingga dapat diambil kesimpulan :

- 1. Alternatif yang direkomendasikan untuk setiap item pekerjaannya adalah :
 - a. Pekerjaan atap menggunakan genteng plentong dengan penghematan sebesar 28,05 %.
 - b. Pekerjaan kuda-kuda menggunakan gunungan batu bata dengan penghematan sebesar 34,62 %.
 - c. Pekerjaan plafond menggunakan eternit kerang dengan penghematan sebesar 29,40 %.
 - d. Pekerjaan lantai menggunakan plesteran + batu bata dengan penghematan sebesar 73,93 %.
 - e. Pekerjaan pondasi menggunakan pondasi sloof dengan penghematan sebesar 24,86 %.
- 2. Penghematan total untuk seluruh item pekerjaan yang di *Value Engineering* sebesar 31,18 %.

7.2 Saran

Dari analisis yang telah dilakukan dapat diberikan beberapa saran yang diharapkan berguna bagi penghematan biaya pembangunan proyek, antara lain adalah perlunya diadakan penerapan studi *Value Engineering* pada tahapan awal proyek (tahap perencanaan/desain) sehingga akan didapat penghematan biaya awal yang optimal. Selain itu pada studi *Value Engineering* ini diperlukan suatu tim yang benar-benar ahli dan menguasai metode *Value Engineering* sehingga hasil yang diperoleh dapat semaksimal mungkin. Disamping itu diperlukan juga saling kerjasama dan penuh kreatifitas sehingga akan mendapatkan ide-ide kreatif dalam pengajuan alternati-alternatif yang bisa diterapkan pada suatu masalah.

DAFTAR PUSTAKA

- Candra S. Robert H. Mitchel, 1986, THE APPLICATION OF VALUE ENGINEERING AND ANALYSIS DESIGN AND CONSTRUCTION, Jakarta.
- Edward D. Heller, 1971, VALUE MANAGEMENT: VALUE ENGINEERING AND COST REDUCTION, Addison Wesley Publising Company Inc, Philipines.
- Iman Soeharto, 1995, MANAJEMEN PROYEK DARI KONSEPTUAL SAMPAI OPERASIONAL, Penerbit Erlangga, Jakarta.
- Istimawan Dipohusodo, 1996, STRUKTUR BETON BERTULANG, PT.Gramedia Pustaka Utama, Jakarta.
- Kadariah, Lien Karlina, Clive Gray, 1978, PENGANTAR EVALUASI PROYEK, Lembaga Penerbit Fakultas Ekonomi UI, Jakarta.
- 6. Komarudin, Drs, MA, 1997, MENELUSURI PEMBANGUNAN PERUMAHAN DAN PEMUKIMAN, Yayasan REI PT. RAKASINDO, Jakarta.
- 7. Robert J. Kodoatie, 1995, ANALISIS EKONOMI TEKNIK, Andi Offset, Yogyakarta.
- 8. Rochman Hadi, 1992, TEKNIK PENILAIAN DISAIN (VALUE ENGINEERING), Yayasan Gema Aproteknika, Semarang.

- Tadjuddin BMA, 1994, PENERAPAN REKAYASA NILAI PADA DISAIN
 JEMBATAN KAMPUS TERPADU UII YOGYAKARTA, Tesis Program
 Magister Manajemen dan Rekayasa Konstruksi, ITB, Bandung.
- 10. Yayasan Dana Normalisasi Indonesia, 1983, PERATURAN PEMBEBANAN INDONESIA UNTUK GEDUNG 1983, DPMB Departemen Pekerjaan Umum RI, Bandung.
- 11. Yayasan LPMB, 1991, TATA CARA PENGHITUNGAN STRUKTUR BETON UNTUK BANGUNAN GEDUNG, Standar SK SNI T-15-1991-03, LPMB Dep. Pekerjaan Umum RI, Bandung.
- 12. Zimmerman, PE. Glen D. Hart, 1982, VALUE ENGINEERING PRACTICAL APPROACH FOR OWNERS, DESIGNER, AND CONTRACTORS, Van Nostrand Reinhold Company, NewYork.

TABEL RANGKING KRITERIA BERDASARKAN DATA KUISONER

1 Biaya Awal 2 Waktu Pelaksanaan 3 Daya Dukung 4 Biaya pemeliharaan 5 Kemudahan Pelaksa	ARITERIA /al	-								カルド	KEVFONDEN	<u>-</u> حال	주 규								
		_	2	3	4	ည	တ	1	æ	ნ	2	ή 4	12	5	す	را ت	9	1	60	<u></u>	0.7
		-	2	-	2	က	3	4	_	-	4	-	4	-	8	-	2	2	-	CV.	rO.
	aksanaan	7	-	5	-	-	2	ဗ	5	3	+	2	2	က	2	ঘ	ব	ব	ന	,	C4
	6un	3	ις	2	4	2	•	-	3	2	8	8	<u> </u>	ល	マ	7	τ	8	က	73	ďΩ
	neliharaan	6	∞	8	6	ත	6	7	8	6	8	6	œ	1~	Γ	<u></u>	တ	<u></u>	ω	l ~	/ ~
	Kemudahan Pelaksanaan	4	9	3	т т	5	တ	7	2	4	2	ゆ	4 5	ব		က	23	V	73	(1)	
6 Teknologi		9	ග	7	7	9	4	5	7	9	9	G	1/	ယ	rΩ	r	W	င္	10	ť	(O)
7 Kemungkir	Kemungkinan diterapkan	5	3	4	5	4	5	9	4	2	ம	5	m	CQ.	S	ω	ന	<u> </u>	(N	œ	5.1
8 Sarana Kerja	erja	7	7	6	9	7	7	တ	6	7	ග	7	ယ	Ø	ထ	ശ	∞	5	တ	(C)	ا ی
9 Pabrikasi		ထ	4	9	8	හ	ထ	6	တ	ω		¢C	G.	(J)	တ	co	P	:::		7.	1. K. J. J.

TABEL PERHITUNGAN RANGKING KRITERIA BERDASARKAN KUKSIONER

										ZES!	RESPONDEN KE	DEN	ᄍ		1						Į,	Y (5)
Š.	KRITERIA	-	2	8	4	5	9	2	8	9 10	0 11	1 12	13	77		స్	11.	స	ಎ	20	7	
-	Biaya Awal	တ	∞	0	$ \infty $	7	7	9	6	9 6	6	9	6	7	6	∞	ω	ග	ယ	5	156	
0		ω	တ	5	6	6	8	7	5	6 /	80	ω	7	ω	0	9	9	7	ာ	တ	149	gas open
(m		7	5	8	9	ω	6	6	2	8 7	7	6	9	9	(C)	0	7	7	9	7	142	
4	Biava pemeliharaan	-	N	2	-	-	-	8	2	-	2 1	2	(C)	ω		-	-	0	(2)	(1)	36	\times
\rac{1}{2}	Kemudahan Pelaksanaan	9	4	7	1	5	4	8	8	6 8	3 6	5	(U)	5		5	6	တ	<u></u>	တ	132	>
) <u>(</u>	Teknologi	4	-	8	(1)	4	9	5	3 4	4	4 4	3	7	5	8	4	2	S	u)	S	77	
) ^	Kemiinakinan diterapkan	5	7	9	3	9	5	4	9	5	5 5	2	ω	4	4		(1)	တ	4	9	110	and the second
∞	Sarana Keria	3	3	-	4	8	8	2	-	83	3	4	2	2	9	2	5	τ	C1	4	54	5
0		2	9	4	2	2	2	-	4	2	3 2	7	τ-		CI	(7)	4	(3)			7.47	81/
		+	ļ.													.01	R	TOTAL MILA	Paurin (d un de des		<u>0</u> 88	
			1		-								1	-		the same of the same	1	-				

DAFTAR ANALISA PEKERJAAN PROYEK

1 m² pasan	g genteng beton				
9,0000 bh	genteng beton	@ Rp	2.000,00	Rp	18.000,00
0,1000 org	tukang batu	@ Rp	11.000,00	Rp	1.100,00
0,0100 org	kepala tukang batu	@ Rp	12.000,00	Rp	120,00
0,2000 org	pekerja	@ Rp	8.000,00	Rp	1.600,00
0,0100 org	mandor	@ Rp	12.500,00	_Rp	125,00
				Rp	20.945,00
	g genteng plentong				
25,0000 bh	genteng plentong	@ Rp	450,00	Rp	11.250,00
0,1000 org	tukang batu	@ Rp	11.000,00	Rp	1.100,00
0,0100 org	kepala tukang batu	@ Rp	12.000,00	Rp	120,00
0,2000 org	pekerja	@ Rp	8.000,00	Rp	1.600,00
0,0100 org	mandor	@ Rp	12.500,00	<u>Rp</u>	125,00
				Rp	14.195,00
1 m² atan as	sbes gelombang				
0,3810 lbr	asbes gelombang	@ Rp	42.000,00	Rp	16.002,00
2,0000 bh	paku ulir	@ Rp	250,00	Rp	500,00
0,0200 org	tukang batu	@ Rp	11.000,00	Rp	220,00
0,0020 org	kepala tukang batu	@ Rp	12.000,00	Rp	24,00
0,0200 org	pekerja	@ Rp	8.000,00	Rp	160,00
0,0010 org	mandor	@ Rp	12.500,00	Rp	12,50
		<u> </u>		Rp	16.918,50
1 m¹ bubung	gan genteng beton				
3,5000 bh	bubungan beton	@ Rp	2.500,00	Rp	8.750,00
0,2700 zak	PC	@ Rp	21.000,00	Rр	5.670,00
0.0320 m^3	pasir	@ Rp	35.000,00	Rp	1.120,00
0,2000 org	tukang batu	@ Rp	11.000,00	Rp	2.200,00
0,0200 org	kepala tukang batu	@ Rp	12.000,00	Rp	240,00
0,4000 org	pekerja	@ Rp	8.000,00	Rp	3.200,00
0,0200 org	mandor	@ Rp	12.500,00	Rp	250,00
				Rp	21.430,00
1 m1 huhung	ion gontong plantar	. ~			
5.0000 bh	an genteng plentor		4 500 00	Б.	7.500.00
0,2700 zak	bubungan genteng	@ Rp	1.500,00	Rp	7.500,00
0,2700 2ak 0,0320 m³	PC posis	@ Rp	21.000,00	Rp	5.670,00
	pasir	@ Rp	35.000,00	Rp	1.120,00
0,2000 org	tukang batu	@ Rp	11.000,00	Rp	2.200,00
0,0200 org 0,4000 org	kepala tukang batu	@ Rp	12.000,00	Rp	240,00
0,4000 org	pekerja	@ Rp	8.000,00	Rp	3.200,00
0,0200 org	mandor	@ Rp	12.500,00	Rp	250,00
				Rp	20.180,00

1 m¹ bubung	an asbes gelomba				_	
1,0000 lbr	bubungan asbes	@	Rр	15.000,00	Rр	15.000,00
1,0000 bh	paku ulir		Rр	250,00	Rp	250,00
0,0050 org	tukang batu		Rρ	11.000,00	Řρ	55,00
0,0015 org	kepala tukang batu		Rp	12.000,00	Rp	18,00
0,0100 org	pekerja		Rp	8.000,00	Rp	80,00
0,0001 org	mandor	@	Rр	12.500,00	Rp	1,25
					Rp	15.404,25
1 m² plafono	l avpsum					
1,0000 m ²	gypsum	ര	Rp	9.750,00	Rp	9.750,00
0,0200 kg	paku gypsum		Rp	9.765,00	Rp	195,30
0,8000 org	tukang kayu		Rp	12.500,00	Rp	10.000,00
0,0080 org	kepala tukang kayu		Rp	13.500,00	Rp	108,00
0,2800 org	pekerja		Rp	8.000,00	Rp	2.240,00
0,0140 org	mandor		Rp	12.500,00	Rp	175,00
0,0 (40 0/g	THO TO	•			Rp	22.468,30
	d asbes datar		_		_	F 750 00
1,0000 lbr	asbes datar		Rp	5.750,00	Rp	5.750,00
0,0200 kg	paku		Rp	7.000,00	Rp	140,00
0,8000 org	tukang kayu		Rp	12.500,00	Rp	10.000,00
0,0080 org	kepala tukang kayu		Rp	13.500,00	Rp	108,00
0,2800 org	pekerja		Rp	8.000,00	Rp	2.240,00
0,0140 org	mandor	@	Rρ	12.500,00	<u>Rp</u>	175,00
					Rp	18.413,00
1 m² plafono	d eternit kerang					
1,0000 m ³	eternit kerang	@	Rp	3.200,00	Rp	3.200,00
0,0200 kg	paku	_	Rp	7.000,00	Rp	140,00
0,8000 org	•		Rp	12.500,00	Rp	10.000,00
0,0080 org	kepala tukang kayu		Rp	13.500,00	Řр	108,00
0,2800 org	pekerja	@		8.000,00	Rр	2.240,00
0,0140 org	mandor	@	Rр	12.500,00	Rp	175,00
					Rp	15.863,00
1 m² nacan	g keramik 30x30					
		Ø.	Ro	23.000,00	Ŕр	23.000,00
1,0000 m ²	keramik 30x30	@	Rp	23.000,00	Rρ	2.973,60
0,1416 zak		@	Rp		-	332,50
0,0095 m ³	pasir	@	Rp	35.000,00	Rp	
0,0100 zak		@	Rp	38.000,00	Rp	380,00
0,5000 org	tukang batu	@		11.000,00	Rp	5.500,00
0,0500 org	kepala tukang batu	@		12.000,00	Rp	600,00
1,0000 org	pekerja	@	Rp	8.000,00	Rp	8.000,00
0,0500 org	mandor	@	Rp	12.500,00	Rp	625,00
					Rp	41.411,10

1 m3 nekeris	aan beton cor						
0.8200 m3	kerikil split	@	Rp	95.800,00	Rp	78.556,00	
8,5000 zak	PC	_	Rp	21 000 00	Rp	178.500.00	
0,5400 m3	pasir		Rp	35.000,00	Rp	18.900.00	
1.0000 org	tukang batu	_	Rp	11 000.00	Rp	11.000 00	
0.1000 org	_	_	Rp	12.000,00	Rp	1,200,00	
6,0000 org	pekerja	_	Rp	8 000.00	Rp	48,000,00	
0.3000 org	mandor	@	Rp	12.500.00	Rp	3.750.00	
0 3000 dig	manadi	&	()	12.000.00	,	339.906,00	
					<u> </u>	333,800,00	
100 kg besi	beton untuk pekerja	ian be	si be	<u>ton</u>			
110,000 m3	besi beton		Rp	3,800,00	Rp	418.000,00	
1.0000 kg	bendrat	_	Rp	6,500 00	Rp	6.500,00	
	tukang besi	_	Rp	10.500.00	Rp	70.875.00	
2,2500 org	_	_	Rρ	11,000.00	Rp	24,750 00	
6,7500 org	· · · · · · · · · · · · · · · · · · ·	<u></u>	Rp.	8.000.00	Rp		
	, ,	_	·		Ro	574.125.00	
						Rp 5.741.25	
10 m2 peker	rjaan bekisting						
0,2000 m3	papan bekisting	@	Rp	450.000.00	Rp	90.000,00	
2,5000 kg	paku	@	Rp	6,500 00	Rρ		
2,5000 org	tukang kayu	@	Rp	12.500.00	Rp	31 250.00	
0.2500 org	kepala tukang kayu	@	Rρ	13,500,00	Rp	3,375,00	
2,0000 org	tukang bongkar	@	Rp	8.000,00	Rp	16,000,00	
1,0000 org	pekerja	@	Rρ	8.000 00	Rρ	8,000,00	
0,0500 org	mandor	@	Rp	12.500,00	Rp	625,00	
					Rp	165.500,00	
						Rp. 16.225,00	
1 m3 pekeri	aan batu kali						
1.2000 m3	batu kali	(0)	Rp	45.000.00	Rp	54.000.00	
3,1960 zak	PC	_	Rp	21.000,00	Rp	67.116.00	
0,0510 m3	kapur		Rp	70.000.00	Rp	3.570,00	
0,5090 m3	pasir		Rp	35.000.00	Rp	17.815,00	
1.2000 org	tukang batu		Rp	11.000.00	Rp	13.200.00	
0.1200 org	kepala tukang batu	_	Rp	12.000.00	Rp	1.440.00	
3.6000 org	pekerja		Rp	8.000.00	Rp	28.800.00	
0.1800 org	mandor	@	Rp	12.500.00	Rp	2.250.00	
5.1000 org	Control of the terms	۳			Rp	188.191,00	
					170	100.191,00	
1 m3 galian	tanah						
0.7500 org	pekerja	@	Rp	8.000.00	Rp	6.000.00	
0.0250 org		@		12,500.00	ЯÞ	312.50	
					Rp	6.312,50	

1 m3 timbun	an tanah					
0.5000 org	pekerja	(<u>0</u>)	Rp	8,000.00	Rp	4 000.00
0.0130 org	mandor	(<u>G</u>)	Кp	12.500 (0)	ЯÞ	162.50
					Rp	4.162.50
1 m3 pekeria	aan batu kosong					
1.2000 m3	batu kalı	(a)	Rp	45.000.00	Rp	54.000 00
1.2000 org	tukang batu	(A)	Rp	11,000.00	Rp	13.200.00
0,1200 org	kepala tukang batu	@	Rp	12.000.00	Rp	1.440,00
3.6000 org	pekerja	<u>@</u>	Rp	8.000.00	Rp	28,800,00
0.1800 org	mandor	@	Rp	12.500,00	Rp	2.250.00
					Rp	99 690,00
1 m3 pekeria	aan beton cor (1PC	: 3Ps	::5k	(r)		
0 8750 m3	kerikil	@	Rp	27.650,00	Rp	24.193,75
218.00 kg	PC	@	Rp	525.00	Rp	114.450 00
0.5250 m3	pasir	@	Rp	35,000.03	Rp	18.375,00
1,0000 org	tukang batu	@	Rp	11,000,00	Rp	11.000,00
0,1000 org	kepala tukang batu	@	Rp	12,000.00	Rp	1.200,00
6,0000 org	pekerja	@	Rp	8,000,00	Rp	48.000.00
0,3000 org	mandor	@	Rp	12.500,00	Rp	3.750,00
					Rp	220.968.75

LAMPIRAN IV

BIAYA PEMELIHARAAN UNTUK PERBAIKAN MATERIAL

1 m2 perbail	kan genteng beton					
9,0000 bh	genteng beton	@	Rp	2.000,00	Rp	18.000,00
0,1000 org	tukang batu	@	Rp	11.000,00	Rp	1.100,00
					Rp	19.100,00
1 m2 norbail	kan genteng plenton	~				
25,0000 bh	genteng plentong	_	D۸	450,00	Rp	11.250,00
0,1000 bit	tukang batu	@	Rp Rp	11.000,00	Rp	1.100,00
0,1000 dig	tukang batu	w	Νρ	11.000,00	Rp.	12.350,00
					115	12.000,00
1 m2 perbail	kan genteng asbes g	elo	mba	<u>ng</u>		
0,3810 lbr	asbes gelombang	@	Rр	42.000,00	Rp	16.002,00
2,0000 bh	paku ulir	@	Rp	250,00	Rp	500,00
0,0200 org	tukang batu	@	Rр	11.000,00	Rp_	220,00
					Rp	16.722,00
1 m2 nerhail	kan plafond gypsum					
1,0000 lbr	gypsum	@	Rp	9.750,00	Rp	9.750,00
0,0200 bh	paku gypsum	@	Rp	9.765,00	Rp	195,30
0,0200 bit 0,1500 kg	cat	@	Rp	13.000,00	Rp	1.950,00
0,8000 org	tukang kayu	@	Rp	12.500,00	Rp	10.000,00
0,0000 019	tanang naya	•	٠,١	,	Rp	21.895,30
1 m2 perbai	<u>kan plafond asbes da</u>	<u>atar</u>				
1,0000 lbr	asbes datar	@	Rρ	5.750,00	Rp	5.750,00
0,0200 bh	paku	@	Rp	7.000,00	Rp	140,00
0,1500 kg	cat	@	Rр	13.000,00	Rp	1.950,00
0,8000 org	tukang kayu	@	Rр	12.500,00	Rp	10.000,00
					_Rp	17.840,00
1 m2 perbai	kan plafond eternit k	erar	na			
1,0000 lbr	eternit kerang		Rp	3.200,00	Rp	3.200,00
0,0200 bh	paku	@		7.000,00	Rp	140,00
0,1500 kg	cat	@	Rp	13.000,00	Rp	1.950,00
0,8000 org	tukang kayu	@	Rp	12.500,00	Rp	10.000,00
					. Rp	15.290,00
4 0	lene lentoi					
1 m2 perbai		•	Do	165.00	Do	9 250 00
50,0000 bh	batu bata		Rp	165,00	Rp	8.250,00
0,0220 zak	PC	@	Rp	21.000,00 35.000,00	Rp	462,00 73,50
0,0021 m3	pasir	@	Rp	11.000,00	Rp	110,00
0,0100 org	tukang batu	@	Rp	11.000,00	Rp Rp	8.895,50
					<u> IVP</u>	0.000,00
10 m2 cat p	<u>lafond</u>					
4,2500 kg	cat	@	Rp	10.500,00	Rp	44.625,00
0,8000 kg	plamur	@		4.500,00	Rρ	3.600,00
1,0000 lbr	ampelas	@		2.250,00	Rp	2.250,00
3,0000 org	tukang cat	@	Rp	10.000,00	<u>Rp</u>	30.000,00
					Rp	80.475,00
					1 m2 = R	p. 8.047,50

10 m2 cat kayu

					Rp	36.061,50
3,0000 org	tukang cat	@	Rр	10.000,00	Ŗр	30.000,00
0,5000 lbr	ampelas	@	Rр	2.250,00	Řр	1.125,00
0,8000 kg	plamur	@	Rр	4.500,00	Rp	3.600,00
0,0570 ltr	minyak cat	@	Rр	4.500,00	Rp	256,50
0,1200 kg	cat menie	@	Rр	9.000,00	Rp	1.080,00

1 m2 = Rp. 3.606,15

PERENCANAAN BIAYA PONDASI

Pondasi Bat	tu Kali						
29.9900 m3	batu kali	Œ	Rp	188.191.00		Rp	5.643.848.09
46.7700 m3	galian	-1-2-	Rp	6 312.50		Rp	295 235.63
11,5480 m3	timbunan	~	Rp	4,612.50		Řр	53,265,15
2,0400 m3	beton	@	Rp	339,906.00		Rp	693,408,24
27.2000 m2	bekisting		Rp	16.225.00		Rp	441.320.00
3.0700 m3	pasir urug		Rp	23.400.00		Rp	71,838,00
161,16 kg	besi D8	-44	Rp	5.741.25		Rp	925.259.65
241.75 kg	besi D12	-	Rp	5.741.25		Rp	1.387.947.19
2 () ,			•		-	Rр	9.512.122,14
randoni Cir	-						
Pondasi Slo	001						
<u>- Umpak</u>							
17,0400 m3	batu kali		Rρ	188.191.00		Rp	3.206.774,64
6.8040 m3	galian		Rp	6.312.50		Rp	42.950,25
1,7010 m3	timbunan	_		4.612.50		Rp	7.845.86
0,7560 m3	lantai kerja	4635		220,968.00		Rp	167.051,81
5,0400 m2	bekisting	@	Rp	16.225,00		Rp	81.774,00
						Rp	3.506.396,56
- Sloof							
4.0800 m3	galian	@	Rp	6.312.50		Rp	25.755,00
1.0200 m3	timbunan	@	Rp	4.612.50		Rp	4.704,75
2,0400 m3	beton	@	Rp	339,906,00		Rp	693,408,24
27,2000 m2	bekisting	@	Rp	16.225,00		Rp	441.320,00
0,7380 m3	beton lantai kerja	@	Rp	220.968,00		Rp	163.074,38
161,16 kg	besi D8	@	Rp	5.741,25		Rp	925.259,85
241,75 kg	besi D12	@		5.741,25		Rp	1.387.947,19
						Rp	3.641.469,41
	Total Biaya	a Peker	rjaan	Pondasi Sloof	=	Rp	7.147.865,97
Pondasi Te	elapak + Batu Kos	ona					,
11,789 m3	galian		Rp	6.312,50		Rp	74.418,06
2,947 m3	timbunan	-	Rp	4.612.50		Rp	13.593,04
7,720 m3	beton	_	Rp	339.906,00		Rp	2.624.074,32
102,000 m2	bekisting	_	Rp	16,225,00		Rp	1.654.950.00
11,025 m3	batu kali		Rp	99.690,00		Rp	1.099.082,25
1.525 m3	beton lantai kerja	_	Rp	220.968.00		Rp	336.976.20
	besi D8	(<u>0</u>		5.741.25		Rp	594,276,79
103,510 kg 230,030 kg	besi D10	(0)		5.741,25		Rp	1.320.659.74
200,000 kg	2001 2 10	<u> </u>		2,20			
						Rp	7.718.030,40

DAFTAR HARGA UPAH DAN BAHAN

I. DAFTAR HARGA UPAH

NO	URAIAN	SATUAN		HARGA
1	tukang kayu	org	Rp	12.500,00
2	kepala tukang kayu	org	Rp	13.500,00
3	tukang batu	org	Rp	11.000,00
4	kepala tukang batu	org	Rp	12.000,00
5	tukang besi	org	Rp	10.500,00
6	kepala tukang besi	org	Rp	11.000,00
7	tukang cat	org	Rp	10.000,00
8	kepala tukang cat	org	Rp	10.500,00
9	tukang bongkar	org	Rp	8.000,00
10	pekerja	org	Rp	8.000,00
11	mandor	org	Rp	12.500,00

II. DAFTAR HARGA MATERIAL

NO	URAIAN	SATUAN		HARGA
1	genteng beton	bh	Rp	2.000,00
2	genteng plentong	bh	Rp	450,00
3	asbes gelombang	lbr	Rp	42.000,00
4	bubungan beton	bh	Rp	2.500,00
5	bubungan genteng plentong	bh	Rp	1.500,00
6	bubungan asbes	bh	Rp	15.000,00
7	gypsum	lbr	Rp	9.750,00
8	asbes datar	lbr	Rp	5.750,00
9	eternit kerang	m2 .	Rp	3.200,00
10	paku ulir	bh	Rp	250,00
11	paku gypsum	kg	Rp	9.765,00
12	paku eternit	kg	Rp	7.000,00
13	cat tembok	kg	Rp	10.500,00
14	cat menie	kg	Rp	9.000,00
15	cat minyak	kg	Rp	4.500,00
16	plamur	kg	Rp	4.500,00
17	ampelas	lbr	Rp	2.250,00

NO	URAIAN	SATUAN		HARGA
18	keramik 30x30	m2	Rp	23.000,00
19	tegel abu-abu	bh	Rp	500,00
20	batu bata	bh	Rp	165,00
21	pasir	m3	Rp	35.000,00
22	PC (40 kg)	zak	Rp	21.000,00
23	PC warna	zak	Rp	38.000,00
24	kayu meranti	m3	Rp	1.350.000,00
25	kayu glugu	m3	Rp	1.200.000,00
26	batu kali	m3	Rp	45.000,00
27	krikil split	m3	Rp	98.800,00
28	besi beton	kg	Rp	5.741,00
29	kawat bendrat	kg	Rp	6.500,00
30	papan bekisting	m3	Rp	450.000,00
31	paku 5 cm	kg	Rp	6.500,00

•

PERHITUNGAN RASIO PEKERJAAN

1. Genteng beton dengan genteng plentong

Diketahui total biaya pekerjaan:

Rasio =
$$\frac{\text{Biaya asli}}{\text{Biaya alternatif}} = \frac{\text{Rp. } 1.961.201,00}{\text{Rp. } 1.411.176,00}$$
$$= 1.39 \longrightarrow 1 < 1.39 < 2 \text{ (ada penghematan)}$$

2. Genteng beton dengan asbes gelombang

Diketahui total biaya pekerjaan:

Rasio =
$$\frac{\text{Biaya asli}}{\text{Biaya alternatif}} = \frac{\text{Rp. } 1.961.201,00}{\text{Rp. } 1.556.539,43}$$
$$= 1.26 \longrightarrow 1 < 1.26 < 2 \text{ (ada penghematan)}$$

3. Rangka kayu meranti dengan kayu glugu

Rasio =
$$\frac{\text{Biaya asli}}{\text{Biaya alternatif}} = \frac{\text{Rp. } 1.266.528,96}{\text{Rp. } 1.020.790,20}$$
$$= 1,24 \longrightarrow 1 < 1,24 < 2 \text{ (ada penghematan)}$$

4. Rangka kayu meranti dengan gunungan bata

Diketahui total biaya pekerjaan:

Rasio =
$$\frac{\text{Biaya asli}}{\text{Biaya alternatif}} = \frac{\text{Rp. } 1.266.528,96}{\text{Rp. } 727.694,49}$$
$$= 1.74 \longrightarrow 1 < 1.74 < 2 \text{ (ada penghematan)}$$

5. Plafond gypsum dengan asbes datar

Diketahui total biaya pekerjaan:

- gypsum (desain asli) = Rp.
$$1.503.129,27$$

- asbes datar (alternatif) =
$$Rp. 1.231.829,70$$

Rasio =
$$\frac{\text{Biaya asli}}{\text{Biaya alternatif}} = \frac{\text{Rp. } 1.503.129,27}{\text{Rp. } 1.231.829,70}$$
$$= 1,22 \longrightarrow 1 < 1,22 < 2 \text{ (ada penghematan)}$$

6. Plafond gypsum dengan eternit kerang

- gypsum (desain asli) = Rp.
$$1.503.129;27$$

Rasio =
$$\frac{\text{Biaya asli}}{\text{Biaya alternatif}} = \frac{\text{Rp. } 1.503.129,27}{\text{Rp. } 1.061.234,70}$$
$$= 1.42 \longrightarrow 1 < 1.42 < 2 \text{ (ada penghematan)}$$

7. Lantai Keramik 30/30 dengan tegel abu-abu 20/20

Diketahui total biaya pekerjaan:

- keramik
$$30/30$$
 (desain asli) = Rp. 1.523.928,48

Rasio =
$$\frac{\text{Biaya asli}}{\text{Biaya alternatif}} = \frac{\text{Rp. } 1.523.928,48}{\text{Rp. } 922.668,00}$$
$$= 1.65 \longrightarrow 1<1.65<2 \text{ (ada penghematan)}$$

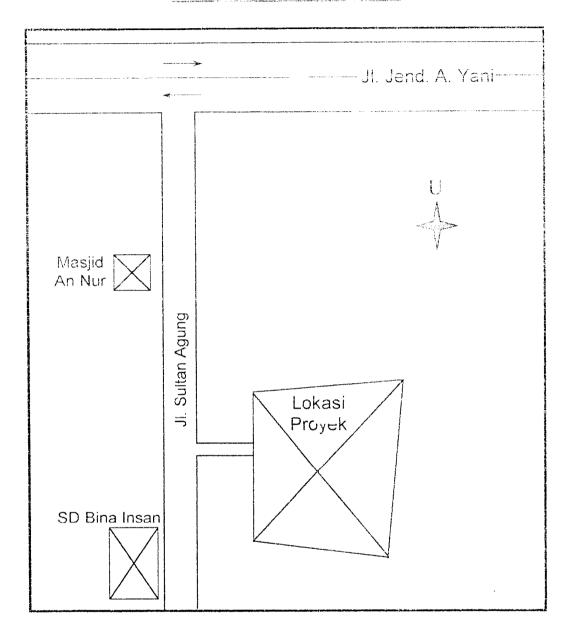
8. Lantai Keramik 30/30 dengan plesteran batu bata

Diketahui total biaya pekerjaan:

- keramik
$$30/30$$
 (desain asli) = Rp. 1.523.928,48

Rasio =
$$\frac{\text{Biaya asli}}{\text{Biaya alternatif}} = \frac{\text{Rp. } 1.523.928,48}{\text{Rp. } 397.274,40}$$
$$= 3,84 \longrightarrow 3,84 > 2 \text{ (jelas ada penghematan)}$$

9. Pondasi batukali dengan pondasi sloof

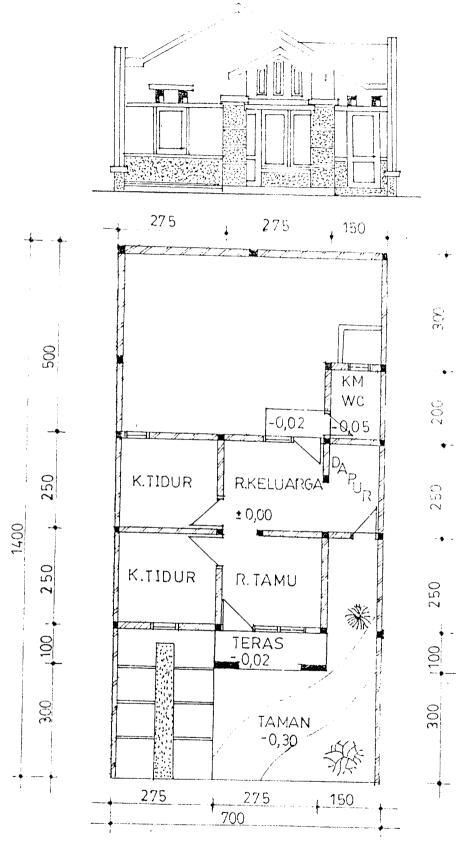

Rasio =
$$\frac{\text{Biaya asli}}{\text{Biaya alternatif}} = \frac{\text{Rp. } 9.512.122,14}{\text{Rp. } 7.147.865,97}$$
$$= 1,33 \longrightarrow 1<1,33<2 \text{ (ada penghematan)}$$

10. Pondasi batukali dengan pondasi telapak + batu kosong

- pondasi batu kali (desain asli) = Rp. 9.512.122,14
- telapak + batu kosong (alternatif) = Rp. 7.718.030,40

Rasio =
$$\frac{\text{Biaya asli}}{\text{Biaya alternatif}} = \frac{\text{Rp. } 9.512.122,14}{\text{Rp. } 7.718.030,40}$$
$$= 1,23 \longrightarrow 1<1,23<2 \text{ (ada penghematan)}$$

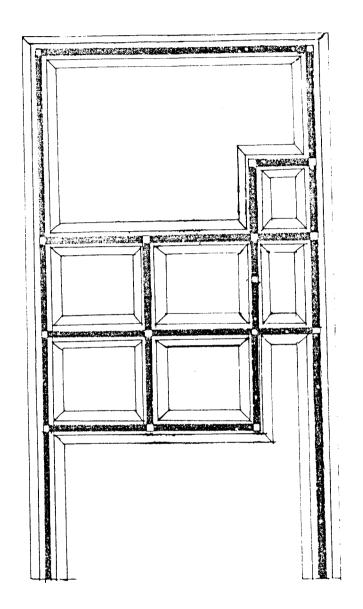
DENAII LOKASI PROYEK


Batasan-batasan lokasi proyek:

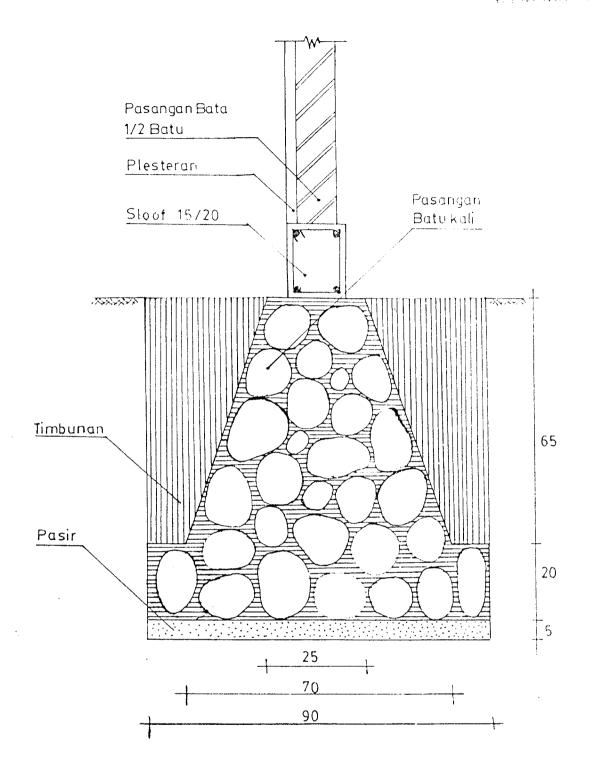
• Utara : Pemukiman Penduduk


Selatan : Pemukiman Penduduk

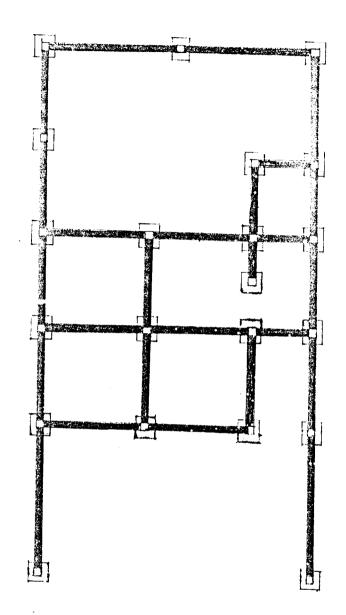
• Barat : Jl. Sultan Agung


• Timur : Pemukiman Penduduk

DENAH DAN TAMPAK DEPAN SKALA 1:100

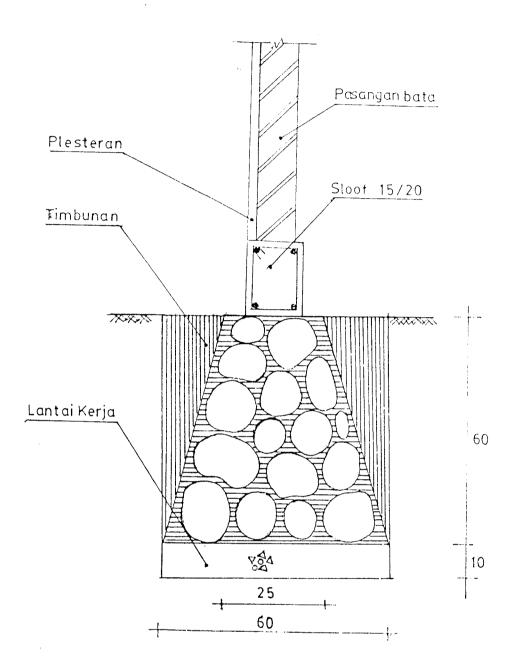


TAMPAK SAMPING
SKALA 1: 100



DENAH PONDASI AWAL

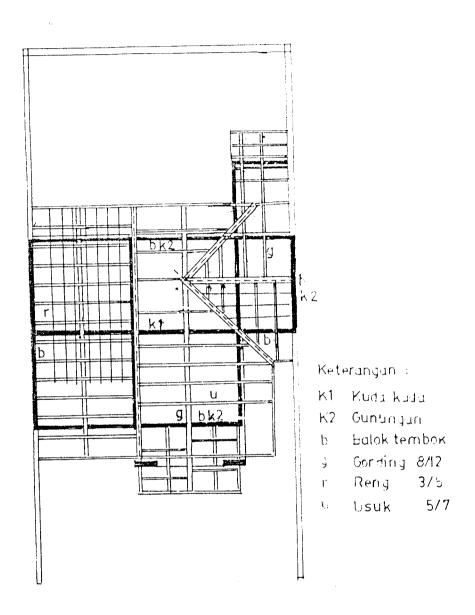
SKALA 1:100



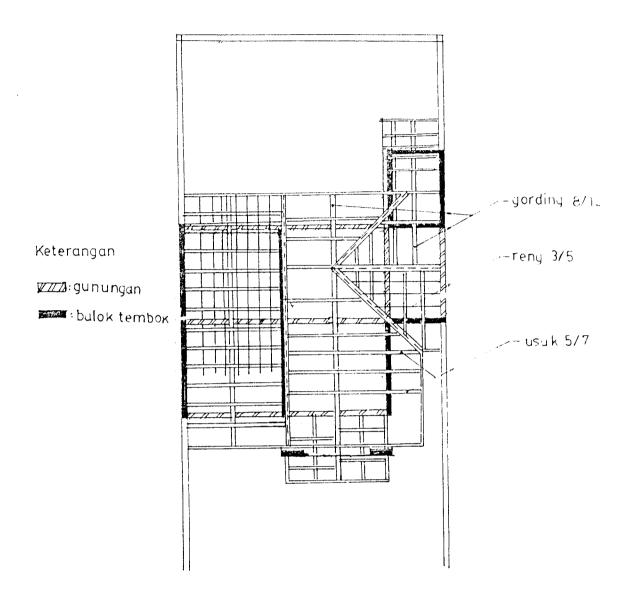
DETAIL PONDASI AWAL
SYALA 1:100

DENAH PONDASI PERUBAHAN

SKALA 1:100



DE TAIL PONDASI PERUBAHAN SKALA 1:100



DENAH RENCANA ATAP

SKALA 1:100

RENCANA ATAP
SKALA 1:100

PERUBAHAN RENCANA ATAP

SKALA 1:100

KUISIONER PENELITIAN TUGAS AKHIR

Petunjuk Umum:

Kami mahasiswa peserta Tugas Akhir Jurusan Teknik Sipil UH Yogyakarta, mengharapkan partisipasi para pengembang perumahan, kontraktor, Dosen UII untuk mengisi kuisioner ini demi kepentingan penelitian kami, mengenai Value Engineering pada proyek perumahan dengan type-36.

Pada proyek perumahan tersebut kami meninjau lima item pekerjaan, antara lain

- Pekerjaan Penutup Atap, dengan desain awal adalah Genting Beton
- Pekerjaan Rangka Map, dengan desain awal adalah Kayu Meranti
- Pekerjaan Plafond, dengan desain awal adalah Gypsum
- Pekerjaan Lantai, dengan desain awal adalah Keramik 30x30 em
- Pekerjaan Pondasi, dengan desain awal adalah Pasangan Batu Kali

Kami meminta para partisipan untuk membandingkan desain awal proyek tersebut dengan alternatif yang ada ditinjau dengan kriteria yang diberikan pada Value Engineering.

Definisi kriteria yang diberikan

- 1. Daya Dukung, adalah kemampuan bahan/matrial untuk menahan beban pada struktur.
- 2. Biaya Awal, adalah biaya yang dikeluarkan atau digunakan untuk pelaksanaan proyek ditinjau dari segi penghematan.
- Waktu Pelaksanaan, adalah intensitas waktu pelaksanaan pekerjaan di lapangan semakin cepat pelaksanaan di lapangan maka proyek akan cepat terselesaikan.
- Kemudahan Pelaksanaan, adalah tingkat kemudahan dan kesulitan pelaksanaan pekerjaan di lapangan, semakin mudah pelaksanaan pekerjaan di lapangan hasil pekerjaaan tersebut akan semakin baik.
- 5. Teknologi, adalah berupa penggunaan teknologi biasa atau baru sesuai dengan tingkat penguasaan teknologi pada pelaksanaan pekerjaan di lapangan.
- 6. Pabrikasi, adalah penilaian untuk meninjau suatu bahan/matrial dari segi mutu, kualitas dan keandalannya sesuai dengan persyaratan teknis untuk masing-masing bahan atau matrial yang dipergunakan.
- 7. Kemungkinan Diterapkan, adalah bisa atau tidaknya suatu bahan/matrial diterapkan pada suatu struktur.
- 8. Biaya Pemeliharaan, adalah biaya yang diperuntukkan bagi pemeliharaan dan perawatan dalam jangka waktu tertentu setelah struktur selesai dibangun atau telah dioperasionalkan.
- Sarana Kerja, adalah banyaknya penggunaan sarana kerja dalam pekerjaan atau pemasangan suatu bahan/matrial pada struktur.

Petunjuk Khusus Pengisian:

- 1. Pada tabel I berilah urutan/rangking dari kriteria yang terpenting hingga tidak penting pada pelaksanaaan suatu proyek. Dengan memberi angka 1 s.d. 9 pada kotak rangking di sebelah kanan kriteria yang ada.
- 2. Pada tabel II berilah tanda positif (+) atau negatif (-) dengan membandingkan antara desain awal proyek dan alternatif yang ada ditinjau dengan kriteria yang diberikan pada Value Engineering.

T	•	D	•		
1	. 2	b	r	1.	- 1

	1ABEL I	
NO.	KRITERIA PENDUKUNG	URUTAN/RANGKING
1.	Biaya Awal Proyek	
2.	Waktu Pelaksanaan	<u> </u>
3.	Daya Dukung Bahan	2
4.	Biaya Perneliharaan	8
5.	Kemudahan Pelaksanaan	3
6.	Teknologi Pelaksanaan	. 7
7.	Kemungkinan Diterapkan	4
8.	Sarana Kerja Proyek	9
9.	Pabrikasi	1 6

TABEL II

				TABEL	. 11				
	Biaya Awal Proyek	Waktu Pelaksanaan	Daya Dukung	Biaya Pemeliharaan	Kemudahan Pelaksanaan	Teknologi Pelaksanaan	Kemungkinan Diterapkan	Sarana Kerja Proyek	Pabrikasi
JAAN PEN	UTUP ATAP	redesain awa	Genteng Bet	on)		in a maria de la composición del la composición del composición del composición del composición de la composición de la composición de la composición del composición del composición del composición del composición del composición del composición del composición del composición del composición del composición del composición del composición del composic			
erioirg 	+	+	+		+	+	+	+	+
. st. street	+	+	+	+	+	+	+	+	+
	+	+	•		<u> </u>	+	+	+	+
· " "	+				+	+	_	+	_
	+		•+		+	+	+	+	t
PILM PAN		(desam awai	Kayu Meranti	· · · · · · · · · · · · · · · · · · ·		gran in the second of the second			
Eq.a	-	C	+	_	+		+		+
Batan	_	,—	+	+	-	+	+	-	+
Pangka yu Glugu	+	+	_		+	_	+		+
inungan atribata	+	+	+	+	+		+	-	+
Rangka Bambu	+		+	_	+		+	~	+
	FOND (desa	in awal Gyps	um)	1	1	· · · · · · · · · · · · · · · · · · ·	7		
Datar -	+	+	+	+	+	+	+	+	+
Eternit Kerong	•	+		•	+	+	+		+
nyaman Berriya	+		+	+	_		***	+	
Francks		+		+		+	+	+	, -
Pupan	+			+	_		<u> </u>	_	+
	ITAI (desain	awal Keramik	(30x30 cm)	1	т		T	<u> </u>	
Tagal Ipwahu	+	+	+	+	+	+	+	+	+
Coremik Ox20 om		-	~	,	+	+	+	+	+
Tegel Wafel	_	+	+	+	-	+	+	+	+
lesteran	+	+	_	_	+	+	+	+	_
Plesteran Batubata	+	+	+	_		+	+	+	+
	VDASI (desa	in awal Batu T	Kali) T	T		1	<u></u>	Ţ 	r
asi Telapak + atu Kapur		-	+	+	+	+		+	
asi Telapak + tu Kosang	-	+	+	+	+	+	+	+	_
asi Telapak + Conblok		+	+	_	+		+	-	+
asi Telapak + uhan dg Pasir	-	+	_	+	+	+	_	+	_
التحمانوست سسست	1	!	1	1		1	-	 	

REKAPITULASI ANALISIS UNTUNG RUGI PEK. PENUTUP ATAP

KRITEFJA		GENTENG KERAWIK	GENTENG PLENTONG	ASBES DATAR	SIRAP	SENG
Biaya Awc		3	20	17	7	161
Provek.	-	17	C	3	10	8
Waktii	4	17	20	17		fy.
Pelaksansan		and the second s	0	3	15	15
Daya	4-	16	19	14	6	13
Dukung		4	1	6	14	8
Kemudahan	-4-	18	20	11	7	8
Pelaksanaan		2	0	9	13	12
Kemungkinan	-}-	15	20	17	11	15
Ditorepko		\$-\$.	0	9	0	<u> </u>
embersales authorized rates president as an older 1865 to 1865. I	+	13	20	18	12	14
Teknologi		7	O	2	8	6
Sarana	-+-	12	19	14	16	14
Kerja	-	8	4	6	4	6
	+	18	20	17	7	17
Pabrikasi	-	2	0	3	13	3
Biaya	+	5	20	6	2	2
Pemeliharaan	-	15	0	14	18	18

REKAPITULASI ANALISIS UNTUNG RUGI PEK. RANGKA ATAP

		RANGKA	RANGKA	KAYU	GUNUNGAN	BAMBU	
KRITERIA	ļ	BAJA	BETON	GLUGU	BATA	PETUNG	
Biaya Awal	4	8	9	17	20	13	
Proyek	-	12	11	3	0	7	
Waktu	+	5	7	18	20	5	
Pelaksanaan	.	15	13	2	0	15	
Daya	+	15	17	6	20	5	
Dukung	-	5	3	14	0	15	
Kemudahan	+	7	16	15	20	. 7	
Pelaksanaan	-	13	4	5	0	13	
Kemungkinan	+	18	14	13	15	12	
Diterapkan	-	2	5	7	5	8	
	-+-	6	14	18	15	7	
Teknologi	-	14	6	2	5	13	
Sarana	+	8	8	15	20	14	
Kerja	-	12	12	5	0	6	
	+	15	17	11	19	5	
Pabrikasi	-	5	3	9	1	15	
Biaya	+	16	5	6	20	4	
Pemeliharaan	_	4	15	14	0	16	

REKAPITULASI ANALISIS UNTUNG RUGI PEK. PLAFOND

KRITERIA		ASBES DATAR	ETERNIT KERANG	ANYAMAN BAMBU	TRIPLEKS	PAPAN
Biaya Awal	+	20	14	6	4	8
Proyek		Ü	6	14	16	12
Waktu	+	20	19	17	16	-
Pelaksanaan		0	1	3	4	4.4
Daya	+	19	6	5	16	-1-7
Dukung	-	1	14	14	4	()
Kemudahan	+	20	15	15	15	14
Pelaksanaan	-	0	5	5	5	6
Kemungkinan	+	20	18	13	16	11
Diterapkan		0	2	7	4	9
Teknologi	+	20	15	17	16	13
reknologi	-	0	5	3	4	7
Sarana	+	18	15	13	18	16
Kerja		2	5	7	2	4
Pabrikasi	+	20	20	6	5	9
r autikasi	٠	0	0	14	15	11
Biaya	+	20	16	5	3	8
Pemeliharaan	-	0	4	15	17	12

REKAPITULASI ANALISIS UNTUNG RUGI PEK. LANTAI

KRITERIA		TEGEL ABU-ABU	KERAMIK 20X20 CM	TEGEL WAFEL	PLESTERAN	PLESTERAN + BATA
Biaya Awal	+	20	4	4	12	18
Proyek	-	0	16	16	8	2
Waktu	+	18	3	16	14	17
Pelaksanaan	-	2	17	4	6	3
Daya	+	20	15	15	6	17
Dukung	-	0	5	5	14	3
Kemudahan	4	17	15	15	15	17
Pelaksanaan	~	3	5	5	5	ŝ
Kemungkinan	+	20	16	20	16	20
Diterapkan	-	0	4	0	4	0
Teknologi	+	19	13	11	13	17
reknologi	-	1	7	9	7	3
Sarana	+	16	15	17	15	13
Kerja	-	4	5	3	5	7
Pabrikasi	+	20	11	20	8	9
GUINGSI	-	0	9	0	12	11
Biaya	+	20	6	16	8	4
Pemeliharaan	-	0	14	4	12	16

REKAPITULASI ANALISIS UNTUNG RUGI PEK. PONDASI

		TELAPAK +	TELAPAK +	TELAPAK +	TELAPAK +	Commence of the Commence of th
KRITERIA		BATU	BATU	PAVING	PERBAIKAN	SLOOF
		KAPUR	KOSONG	BLOCK	dg. FASIR	E. C.
Biaya Awa	+-	5	\$	8	8	17
Froyek		15	15	4.2	12	3
VVaktu	+	5	16	\$	15	13
Pelaksanaan	-	15	4	4.7	5	7
Daya	-+-	20	15	17	4	16
Dukung	-	0	5	3	16	4
Kemudahan	+	5	13	x-1	15	14
Pelaksanaan		15	7	6	5	6
Kemungkinan	+	12	18	13	14	15
Diterapkan		8	2	7	6	5
Teknolog		16	14	11	15	16
reknolog	-	4	6	9	5	4
Sarana	+	14	15	15	15	8
Kerja	-	6	5	5	5	12
Pabrikasi	+	4	3	4	2	8
r abtind51	-	16	17	16	18	12
Biaya	+	15	15	16	15	11
Pemeliharaan	-	5	5	4	5	9

LAMPIRAN XIX

\$\$\$\$	\$\$\$\$	\$\$\$\$\$	\$\$\$\$\$	\$\$\$	\$\$\$\$\$	\$:	\$\$\$\$\$\$	\$	SS\$\$\$\$\$
\$\$\$\$\$\$	\$\$\$\$	\$\$\$\$\$\$	\$\$\$\$	\$\$\$\$	\$\$\$\$\$\$	\$\$\$	\$\$\$\$\$\$	\$\$ \$5	555\$\$\$\$\$\$
\$\$	9	\$\$	\$\$	\$\$	\$\$	\$\$	\$	\$ SS	\$\$
\$\$	\$3	\$	\$8	\$\$	SS	\$8	\$\$	SS	\$\$
\$\$\$\$\$\$\$\$	\$\$\$	3\$\$\$\$\$\$	\$	\$\$\$\$\$\$\$	3\$\$\$	\$\$\$\$\$	\$5\$\$\$	\$\$	\$\$
\$\$	\$\$	3\$	\$	\$\$			\$\$	\$\$	\$\$
\$\$	\$\$	\$\$	\$\$	3			ŞŜ	\$\$	\$\$
\$\$\$\$\$\$\$\$\$\$	\$\$	\$\$	S\$		S	\$\$\$\$\$\$\$.	SS	\$\$\$\$\$\$\$	23\$
\$\$\$\$\$\$\$\$	\$\$	\$\$	\$\$		S	\$\$\$\$\$\$\$		\$8\$\$\$	ŝŝ

STRUCTURAL ANALYSIS PROGRAMS

VERSION 5.20

Copyright (C) 1978-1990 EDWARD L. WILSON All rights reserved

C S I / S A P 9 V - - FINITE ELEMENT ANALYSIS OF STRUCTURES ***COPAM:MANAMENT ** C S TRUCTURES ****COPAM:MANAMENT ** C S TRUCTURES ***COPAM:MANAMENT ** C S TRUCTURES ***COPAM:MANAMENT ** C S

FRAME BIBBLES STORY

ELT LOWER	AKIAL			FLANE	1-3	PLANE	AXIAL
	EVE III			ROMENT	SHEAR	MOMENT	TORQ
1							
	-14.85						-1.21
		· '	117.6	-113.28	75	10.43	
		. 1	* * * * * * * * * * * * * * * * * * *	-117.78	75	10.34	
		•		-93.28	75	10.26	
		•	• • • •	-41.78	75	10.18	
		• **		-68,28	75	10.09	
		. !		-11.76	75	10.01	
		• 7	111.00	-45.28	75	9.93	
				-31.78	75	9.84	
		•	1.1.50	-13.28	75	9.76	
		÷ •	111.00	±£.78	75	9.67.	
2							
1	349.58		57 44				-1.09
		.0	-87.59	51.22	-42.97	60.33	
		• •	-~	41.49	-42.97	55.56	
		· 2	-57.59	31.75	-42.97	50.78	
		•		11.02	-42.97	46.01	
		• **	-15.59	11.29	-42.97	41.24	
		• 5	1.59	1.56	-42.97	36.46	
		. 7	-97.59	-8.18	-42.97	31.69	
					-42.97	26.91	
		.9	-21 . 59	-27.04	-42.97	22.14	
3		- • •	-47,19		-42.97	17.36	
	363.63						
	eria eri e	• 🕁	24.91	ma am	10.00		.71
		• 10	24.91	-34.13	-43.72	27.04	
		. 4	24.91	-28.60 -23.06	-43.72	17.32	
		. "	24.91	-153	-43.72	7.60	
		. 3	24.01	-11.99	-43.72	-2.11	
			29.32 29.32		-43.72	-11.83	
		1 5	24.31	-4.45 92	-43.72	-21.54	
		1.0	14.91		-43.72 -43.72	-31.26	
		1.2	24.91	10.15	-43.72	-40.98	
				18.69	-43.72 -43.72	-50.69	
4		• 			793.72	-60.41	
•	1021.53						1.0
		.0	30.01	−£7.97	4.85	-7.53	.10
		* 15 * 15	30.11	-81,97	4.85	-7.93 -5.91	
		•	30.01	-47.97	4.85		
			20.01	-3T.36	4.85	-4.29 -2.68	
		1.3	30.01	-27.96	4.85	-2.00 -1.06	
			21.01	-17.96	4.85		
		2.0	30.01	-7.95	4.85	.56	
		2.3		2.15	4.85	2.17	
		2.7	30.01	12.05	4.85	3.79 5.41	
		3.6	31.11	22.06	4.85	7.03	
				400 No. ■ 17 No.	4.00	7.93	

5								
	1	362.58	3					
			.0	43.45	-99.95	42.86	-65.85	·
			.3	43.45	-85.46	42.86	-51.50	
			. 7	43.45	-70.98	42.86	-37.27	
			1.0	43.45	-56.50	42.86	-22.99	
			1.3	43.45	-42.02	42.86	-8.70	
			1.7	43.45	-27.53	42.86	5.50	
			2.0	43.45	-13.05	42.86	19.88	
			2.3	43.45	1.43	42.86	34.1€	
			2.7	43.45	15.91	42.86	48.45	
ā			3.0	43.45	30.40	42.86	62.74	
	1	323.58						. '
			.0	3.15	-6.36	-40.92	63.75	• '
			.3	3.15	-5.31	-40.92	50.11	
			.7	3.15	-4.26	-40.92	36.47	
			1.0	3.15	-3.21	-40.92	22.82	
			1.3	3.15	-2.16	-40.92	9.18	
			1.7	3.15	-1.12	-40.92	-4.46	
			2.0	3.15	07	-40.92	-18.10	
			2.3	3.15	.98	-40.92	-31.74	
			2.7	3.15	2.03	-40.92	-45.38	
7			3.0	3.15	3.08	-40.92	-59.02	
	1	944.85						
			.0	-1.08	3.93	10.23	~16.67	. 1
			.3	-1.08	3.56	19.23	-13.20	
			. 7	-1.08	3.20	10.23	-9.85	
			1.0	-1.18	2.84	10.23	-6.44	
			1.3	-1,68	2.48	10.23	-3.04	
			1.7	-1.08	2.12	10.23	.37	
			2.0	-1.08	1.76	10.23	3.78	
			2.3	-1.Ca	1.40	10.23	7.19	
			2.7	-1.08	1.04	10.23	10.60	
			3.0	-1.03	.68	10.23	14.01	
	 1	 569,47						
	Ţ	303.47	.0	-34,40	81.38	20.21	20.27	.0
			.3	-34.40	59.91		-28.24	
			.7	-34.40	58.44	20.21 20.21	-21.50	
			1.0	-34.40	46.97	20.21	-14.77	
			1.3	-34.40	35.50	20.21	-8.03	
			1.7	-34.40	24.04		-1.29	
			2.0	-34.40	12.57	20.21	5.44	
			2.3	-34.40	1.10	20.21	12.18	
			2.7	-34.40	-10.37	20.21	18.91	
			3.0	-34.40 -34.40	-10.37 -21.84	20.21 20.21	25.65 32.39	
						لد ست ا • خسال	96.JD	
	·							
	1	230.87	.0	49 QT	-30.00	0 50		0
	1	230.87	.0	49.97 49.97	-30.02	2.58	-4.76	-, <u>©</u>
	1	230.87	.2	49.97	-13.91	2.58	-4.76 -4.19	- , ů:
	1	230.87	.2 .4	49.97 49.97	-13.91 -7.81	2.58 2.58	-4.76 -4.19 -3.61	Ü
	1	230.87	.2 .4 .7	49.97 49.97 49.97	-13.91 -7.81 3.30	2.58 2.58 2.58	-4.76 -4.19 -3.61 -3.04	©
	1	230.87	.2 .4 .7 .9	49.97 49.97 49.97 49.97	-18.91 -7.61 3.30 14.40	2.58 2.58 2.58 2.58	-4.76 -4.19 -3.61 -3.04 -2.47	©
	1	230.87	.2 .4 .7 .9	49.97 49.97 49.97 49.97 49.97	-18.91 -7.81 3.30 14.40 28.51	2.58 2.58 2.58 2.58 2.58	-4.76 -4.19 -3.61 -3.04 -2.47 -1.89	<u>©</u>
	1	230.87	.2 .4 .7 .9 1.1	49.97 49.97 49.97 49.97 49.97	-13.91 -7.81 3.30 14.40 23.51 36.61	2.58 2.58 2.58 2.58 2.58 2.58	-4.76 -4.19 -3.61 -3.04 -2.47 -1.89 -1.32	©
	1	230.87	.2 .4 .7 .9 1.1 1.3	49.97 49.97 49.97 49.97 49.97 49.97	-18.91 -7.81 3.30 14.40 28.51 36.61 47.71	2.58 2.58 2.58 2.58 2.58 2.58 2.58	-4.76 -4.19 -3.61 -3.04 -2.47 -1.89 -1.32 75	0
	1	230.87	.2 .4 .7 .9 1.1	49.97 49.97 49.97 49.97 49.97	-13.91 -7.81 3.30 14.40 23.51 36.61	2.58 2.58 2.58 2.58 2.58 2.58	-4.76 -4.19 -3.61 -3.04 -2.47 -1.89 -1.32	0

10								
1.0	1	-8.24						.01
			.0	93.83	- 4.9 1.6 5.	05	31	•
			. 1	93.23		ut	31	
			.2	93.83	-67.20	05	32	
			. 3	93.83	= i + . 1 + .	05	33	
			. 4	93.83	-46.35	05	33	
			. 6	93.83	-55.95	95	34	
			. 7	93.83	-35.50	05	35	
			.8	93.85	-15.007	OB	35	
			.9	93.83	-4.65	05	36	
			1.0	93.83	5.7£	05	36	
11	;	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						
	į	216.25	.0	-2.40	-16.55	2.43	r 70	.13
			.1	-2.40	-16.82	2.43	-5.79 -5.52	
			.2	-2.40	-17.09	2.43	-5.25	
			.3	-2,40	-17.35	2.43	-4.98	
			. 4	-2.40	-17.62	2.43	-4.71	
			. 6	-2,40	-17.89	2.43	-4.44	
			.7	-2.40	-18.16	2.43	-4.17	
			.8	- 24↑	-18.42	2.43	-3.90	
			.9	-2.40	-18.69	0.43	-3.63	
			1.0	-2.47	-18.96	1.43	-3.36	
12								
	<u>:</u>	3€7.8€	2					2.48
			.0	-29.49	14.92	-47.05	-15.06	
			.1	-29.49	11.64	-47.05	-20.29	
			.2	-29.49	8.36	-47.05	-25.52	
			.3 .4	-29.49	5.09	7.05	-30.74	
			.6	-29.49 -29.49	1.81	-47.05	-35.97	
			.7	-29.49	-1,47 -4.75	-4 ⁻ .05	-41,20	
			.8	-29.49	-8.02	-47.05 -47.05	-46.43 -51.65	
			.9	-29.49	-11.30	-47.05	-51.65 -56.88	
			1.0	-29.49	-14.58	-47.05	-50.66 -62.11	
13						™ • = √	02.11	
	1	361.79						1.38
			.0	-13.06	30.22	-38.35	61.02	
			.2	-13.0€	27.31	-32.35	52.50	
			. 4	-13.03	24.41	-38.35	43.98	
			• 7	-13.00	21.51	-38.35	35.46	
			. 9	-13.06	18.61	-38.35	26.93	
			1.1	1 -13.06	15.71	-34.35	18.41	
			1.3	-13.06	12.81	-38.35	9.89	
			1.6	-13.00	9.91	-3a.35	<u>1</u> .37	
			1.8	-13,06	7.00	-38.35	-7.15	
14			2.0	-13.0r	4.10	-38.35	-15.68	
T -3	1	985.94						; €
	A.	270.25	. C	-25.96	57.33	11.18	-18.21	
			.3	-25.96	48.67	11.18	-14.48	
			.7	-25.96	40.02	11.18	-10.76	
			1.0	-25.98	31.36	11.18	-7.03	
			1.3	-25.96	22.71	11.18	-3.31	
			1.7	-25.98	14.05	11.18	.42	
			2.0	-25.96	5.40	11.18	4.14	
			2.3	-25.98	-3.26	11.18	7.87	
			2.7	-25.96	-11.91	11.18	11.60	
			3.0	-25.96	-20.57	11.18	15.32	

	15							
	10	1 437	ું કર્					.08
			.0	-1.34	.42	11.33	-14.71	• 1219
				-1.34	-1.02		-10.94	
			. 7	-1.34	47	11.33	-7.16	
			1.0	-2.34	= .01		-3.39	
			1.3	-1.34	-1.30	11.33	.39	
				-1.34	-1.81	11.35	4.17	
			3.0	-1.34	-2.25	11.33	7.94	
			2.3	-1.34	-7.70	11.33	11.72	
			2.7	-1.54	-5.14	11.33	15.49	
			5.0	-1.34	-3.59	11.33	19.27	
	16						d. 2/ ♥ 2 <u></u> ?	
		1 475	.64					.02
±			.0	5.99	-15.84	17.13	-23,21	• • •
			.3	5.99	-11.84	17.13	-17.50	
			. 7	5.99	-9.84	17,13	-11.79	
			<u>.</u> 1 . 4	5.99	- 1.85	17.13	-6.08	
			1.3	5.99	-5.85	17.13	37	
			1.7	5.99	-3.85	17.13	5.34	
			2.0	5.99	-1.85	17.13	11.05	
			2.3	5.99	.14	17.13	16.75	
			21 - 17	5.99	3.14	17.13	22.46	
			5.0	5.99	4.14	17.13	28.17	
	17					1 • 2 .	2.07 • 1 7	
-		1 251	.52					09
-			. <u>0</u>	-23.99	31.82	3.63	-8.82	• - "
			.3	-23.99	23.82	3.63	-7.61	
			. 7	-23.99	18.82	3.63	-6.40	
			1.3	-23,99	82	3.63	-5.19	
			1.3	-23.99	17	3.63	-3.99	
			1.7	-23.99	-5.17	3.63	-2.78	
			2.0	-23.99	-16.17	3.63	-1.57	
			2.3	-23.99	-217	3.63	36	
			2.7	-23.99	-32.16	3.63	.85	
			3.1	-23.99	-41.16	3.63	2.06	
	18					J. • 0.0	2.00	
1		1 -9	.45					13
al.			, Ç	-14.09	32.49	-1.21	6.24	
			.3	-14.09	27.80	-1.21	5.83	
			. 7	-14.09	23.10	-1.21	5.43	
			.3 .7 1.0 1.3	-14.09	11.41	-1.21	5.02	
			1.3	-14.09	13.71	-1.21	4.62	
			1.7	-14.09	3.02	-1.21	4.22	
			2.0	-14.09	4.32	-1.21	3.81	
			2.3	-14.09	37	-1.21	3.41	
			2.7	-14.09	-5.07	-1.21	3.00	
			3.0	-14.09	-3.76	-1.21	2.60	
	19							
1		1 -37	. .					47
Δ.			.0	-27.12	27.91	8.92	.74	
			. 1	-27.12	24.90	8.92	1.73	
			. 2	-27.12	21.89	8.92	2.72	
			.2 .3	-27.12	13.87	8.92	3.71	
			. 4	-27.12	15.86	8.92	4.70	
			.6	-27.12	12.85	8.92	5.69	
			.6 .7	-27.12	9.84	8.92	6.68	
			, g	-27.12	c.82	8.92	7.68	
			.9	-27.12	3.81	8.92	8.67	
			1.0	-27.12	.80	8.92	9.66	
					• • •		J. 00	

```
1 -21.23
                                                                    . (14
             -1.35
                                                            -:.:
                                                            -1.25
                                                            -1.1
                                                            -1.15
                                                            -1.14
                                                            -1.11
                                                            -1...
                                                            -1.06
                                                            -:..:
1 .00
                                                                - 1
             -1.21
                                                            -1.00
-.06
                                                            -:--
                                                          -.30
                                                           -.15
                                                            .07
                                                             .118
                                                             .49
                                                             . 74
1 112.50
                                                                   9.67
             1 .00
             .1 +900.86 353.47 .14 +.22

.2 +084.32 131.84 .14 +.16

.6 +487.99 +30.07 .14 +.11

.1 +281.66 +139.14 .14 +.11

1.1 +75.32 +186.74 .14 +.07

1.4 131.01 +161..1 .14 +.03

1.7 337.34 +115.26 .14 .01

1.2 543.68 6.41 .14 .05

2.2 750.01 186.19 .14 .09

2.1 866.34 423..3 .14
1 28.35
             -.77
```

·						7.84
			- * (* · · · · · · · · · · · · · · · · ·	43.49	05	.07
		• 1	-112.11	- 27.70 -101.70	05 05	.05 .04
		• * ·	- 3.2% . 7.1	 35	US	.02
		•	(구) (세.) 공왕(헌화	 	05	.01
		. i		-3 . 4. 63	05	00
			482.52	-144.31	05	02
	_	. %	· Disks . · ·	1+.53	05	03
		. Ž	894.99	238.28	05	04
		. :	1161.58	$\mathbb{C}_{i_1, i_2, \dots, i_m} \subseteq \mathbb{C}_{i_1, i_2, \dots, i_m}$	0°	06
28						1.76
 .a	19.89		=7.47	23.57	1.11	-1.40
		.5	-3.97	71.29	1.11	-1.10
		. 6	-10.47	18.59	1.11	79
1		• ** • **	-112	15.48	1.11	48
		. 1	-13.47	11.95	1.11	17
	1	. 4	-14.97	8.00	1.11	. 1 4
	1	.7	-16.47	3,63	1.11	.44
		.9	-17.97	-1.15	1.11	.75
		. 2	-19.47	-6.35	1.11	1.06 1.37
	2	.5	-20.97	-11.96	1.11	1.07
29						-34.27
	•	.0	-889.25	116.37	03	.07
		. 3	-682.92	-101.99	03	.06
		.6	-476.59	-263.03	03	.05
		. 8	-270.25	-366.76	03	.04
		1	-63.92	-413.17	03	.03 .02
		.4	142.41	-402.27 -334.06	03 03	.01
		7	348.75 555.08	-208.52	03	.00
		.9 2.2	761.41	-25.68	03	01
		1.5	987.78	214.48	03	02
36						
	45,53					-10.56
		• Q	.73	27.46	1.50	-1.15 73
			77	27.46	1.50 1.50	32
		. 6	-2.27 -3.77	27.04 26.20	1.50	.10
	-	.8 !.1	-5.27	24.95	1.50	.52
		4	-6.77	23.28	1.50	.94
		1.7	-8.27	21.19	1.50	1.35
		1.9	-9.77	18.68	1.50	1.77
		2.2	-11.27	15.76	1.50	2.19
		2.5	-12.77	12.43	1.50	2.61
31						.7 <i>6</i>
)	20 ° 5 2 ° 5 0	.0	-1003.12	435.20	26	.20
		.3	-796.79	185.22	26	.13
		. S	-590.45	-7.46	26	.06
		.6	-384.12	-142.81	26	01
		1.1	-177.79	-220,86	26	08
		1.4	28.55	-241.58	-,26	16
		1.7	234.88	-205.00	26	23
		1.9	441.21	-111.09	26	30 37
		2.2	647.55	40.12	26 26	44
		2.5	853.88	248.65	20	• "2" "3"

32								
**** * *	1	29.10						.16
			.0 .3	16.85 15.80	-10.75 -6.28	-1.22 -1.22	1.34 1.00	
			. 6	13.85	-2.23	-1.22	1.05 .66	
			.8	12.35	1.41	-1.22	.32	
			1.1	10.85	4.63	-1.22	02	
			1.4 1.7	9.35 7.85	7.44 9.83	+1.22 -1.22	36 69	
			1.9	6.35	11.80	-1.22	-1.03	
			2.2	4.85	13.35	-1.22	-1.37	
33			2.5	3.35 	14.49	-1.22	-1.71	
	1	.00						1.18
			. Ü	-1104.98	546.39	.02	.00	
			.3 .6	-898.85 -692.32	$268.11 \\ 47.14$.02 .02	.01 .01	
			.8	-485.98	-116.51	.02	.02	
			1.1	-279.65	-222.85	.02	.02	
			1.4 1.7	-73.32 133.02	-271.88 -263.58	.02 .02	.03 .03	
			1.9	339.35	-203.30 -197.98	.02	.03	
			2.2	545.68	-75.06	.02	.04	
34			2.5	752.02	105.18	.02	.04	
24	1	27.49						.40
			.0	19.75	-15.90	98	1.43	
			.3 .6	18.25 16.75	+10.62 -5.76	98	1.15	
			.e	15.28	-1.31	98 98	.88 .61	
			1.1	13.75	2.72	98	.34	
			1.4	12.25	6.33	98	.06	
			1.7 1.9	10.75 9.28	9.53 12.30	98 98	21 48	
			2.2	7.75	14.67	98	75	
35 -			2.5	6.25	16.61	98	-1.03	
33	1	.00						2.70
			.0	-933.43	357.98	.00	.02	
			.3 .6	-727.09 -520.78	127.35 -45.96	.00	.02	
			.8	-314.43	-181.98	.00 .00	.02 .02	
			1.1	-108.09	-220.64	.00	.02	
			1.4 1.7	98.24	-222.61	.00	.02	
			1.7	304.57 510.91	-166.06 -52.80	.00 .00	.03 .03	
			2.2	717.24	117.77	.00	.03	
2.6			2.5	923.5	345.66	.04	.03	
36 -	1	47.21						.52
			.0	-301.36	80.60	1.78	-1.86	• 5 =
			.3	-231.83	6.53	1.78	-1.37	
			.6 .8	-162.42 -92.93	-48.23 -83.70	1.78 1.78	88 38	
			1.1	-23.48	-99.87	1.78	.11	
			1.4	46.00	-96.74	1.78	.60	
			1.7 1.9	115.47 184.94	-74.32 -32.59	1.78 1.78	1.10 1.59	
			2.2	254.41	28.43	1.78	2.09	
			2.5	323.89	108.75	1.78	2.58	

```
14.71
1 .30
                  .0 -172.56
.1 -90.00
2 -7.49
                                                                          . લ
                                    -.42 -.14
-11. . . .15
-20.43 -.14
-10.70 -.14
-0.76 -.14
-0.76 -.14
-0.76 -.16
-1.6 -.16
                                                          - . . .
                                           . .
                                                                          .04
                                                                           . . . . .
                            75.04
                 .5 75.64 -10.77
.4 157.57 -5.95
.5 240.11 +0.04
.7 322.64 49.61
.8 495.17 90.04
.9 487.71 132.65
1.0 570.24 194.42
                  .
                                                                           , v. j
                                                                         - . 1 f
                                                                         -.02
                                                                         -.64
                                                                         = . (\cdot, t)
                                                          -.14
                                                                         -.67
                                                          -.14
                                                                                  9.99
1 11.86
                 7.83
7.83
                                                                        -3.25
                                                                        -2.38
                                                           7.83
                                                                        -1.51
                                                           7.57
                                                                         -.64
                                                    .11
7.83
7.83
                                                                           .23
                                                                          1.10
                                                           7.83
                                                                          1.97
                                                           7.83
                                                                          2.85
                                                           7.83
                                                                          3.72
                                                            7.83
                                                                          4.59
                                                                               -30.42
                 -.01
-.00
                                                                          -.03
                                                                          -.00
                                                                           .01
                                                     .06
.06
.06
                                                                           .02
                                                                           .()4
                 1.3 151.42 -184.84
1.6 318.49 +124.86
1.8 481.56 -44.18
2.1 648.02 11.18
                                                                            .05
                                                            .06
                                                                            .06
                                                            .06
                                                            .06
.06
                                                                            .08
                                                                            .09
                                                                               -11.49
 1 14.14
                 .0 13.56 +3.13
.2 12.58 +.25
.4 11.16 2.37
.5 9.95 4.72
.9 8.76 6.61
1.1 5.54 8.63
1.3 6.36 10.18
1.6 5.18 11.46
1.6 3.96 12.48
2.6 2.8

    -4.42
    5.27

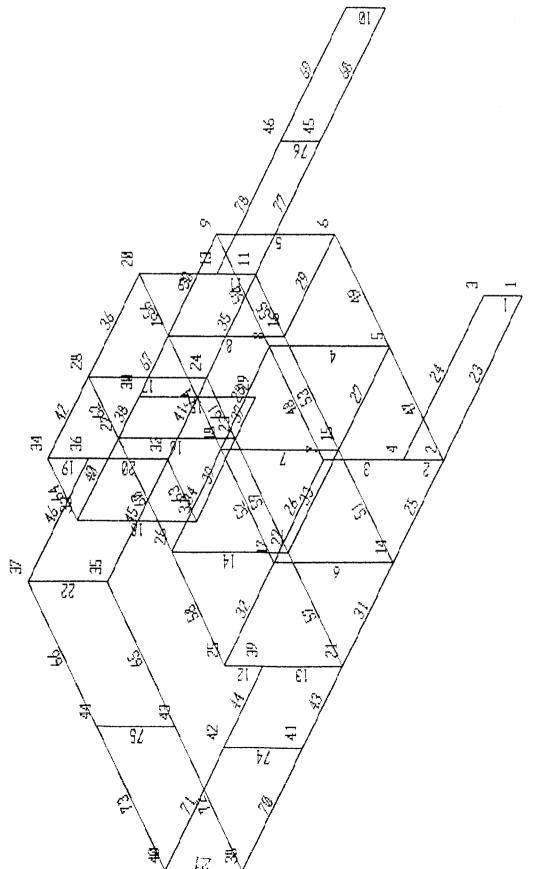
    -4.42
    4.29

    -4.42
    3.30

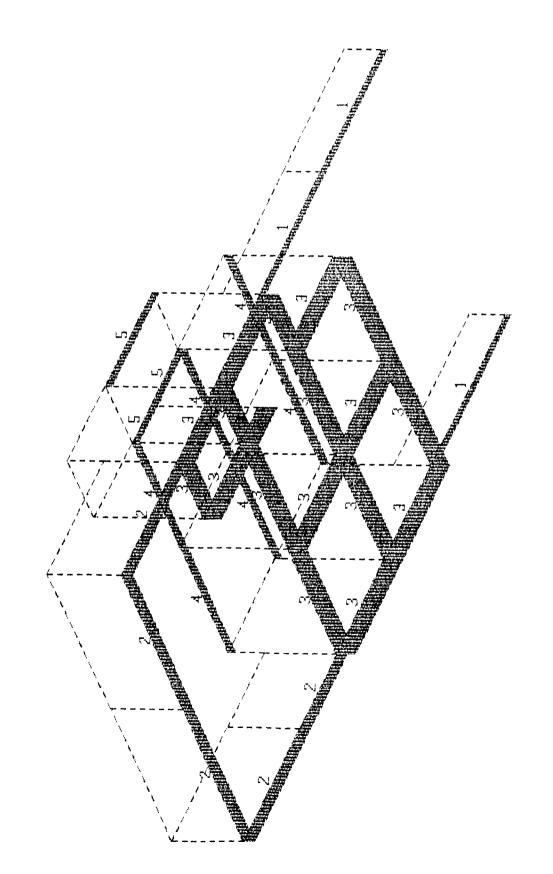
                                                                          2.32
                                                           -4.42
                                                           -4.42
                                                                          1.34
                                                           -4.42
                                                                           .36
                                                           -4.42
                                                                           -.63
                                                           -4.42
                                                                          -1.61
                                                           -4.42
                                                                          -2.59
                                                                          -3.57
                                                           -4.42
                                                                                  14.17
                  .01
                                                           -.06
-.06
                                                                           -.01
                                                                           -.02
                                                                           -.03
                                                                           -.04
                                                                           -.06
                                                                           -.07
                                                                           -.08
                                                                           -.09
                                                           -.06
                                                             -.06
                                                                           -.11
```

40 -							
71	-	71.94					3.45
			.0	-24.04	54.62	-3.28	3.28
			• 2	-25.24	49.14	-3.28	2.55
			. 4	-26.44	43.40	-3.28 -3.28	1.82 1.09
			.7	-27.64	37.39 31.11	-3.28	.36
			.9 1.1	-28.84 -30.04	24.57	-3.28	37
			1.3	-31,24	17.76	+3.28	-1.10
			1.6	-32.44	10.68	-3.28	-1.83
			1.8	-33.64	3.34	-3.28	-2.55
			2.0	-34.84	-4.27	-3.28	-3.28
43 -							18.30
	1	.10	.0	-423.96	231.06	39	.55
			.2	-325.56	147.78	39	.46
			.4	-227.16	86.37	39	.37
•			. 7	-128.76	46.82	39	.28
			.9	-30.36	29.14	39	.20
			1.1	68.04	33.33	39	.11
			1.3	166.44	59.38	39	.02
			1.6	264.84	107.30	39	06
			1.8	363.24	177.08	39	15
44 -			2.0	461.64	268.74	39	24
44.5	1	18.44					61
			.0	. 67	-10.81	8.70	-3.86
			. 2	53	-10.80	8.70	-1.92
			· 4	-1.73	-11.05	8.70	.01
			* i	-2.93	-11.57	8.7.	1.94
			.9	-4.13	-12.35	8.70 8.71	3.87 5.81
			1.1	-5.33	-13.40 -14.72	8.70	7.74
			1.3 1.8	-6.53 -7.73	-14.72 -16.30	8.90	9.67
			1.8	-7.73 -8.93	-18.15	8.70	11.61
			2.0	-10.13	-20.27	8.70	13.54
45 -							
	1	.10		7.65 75	204 52	4.5	32.79 13
			.0	-762.73	394.63 164.99	.18 .13	07
			.3 .7	-615.13 -467.53	-15.45	.18	01
			1.0	-319.93	-146.69	. 18	.05
			1.3	-172.33	-228.74	.18	.11
			1.7	-24.73	-261.58	.18	.17
			2.0	122.87	-245,22	.18	.23
			2.3	270.47	-179.66	.īė	.29
			2.7	418.07		.13	.35
			3.0		99.05	· ÷ 5	.41
46 -							.01
	Τ	ଷ୍ଟି.୫୯	.0	15.75	-7.62	1.72	55
			.3	13.95	-2.68	1.72	.02
			.7	12.15	1.67	1.72	.59
			1.0	10.35	5.42	1.72	1.17
			1.3	8.55	8.57	1.72	1.74
			1.7	6.75	11.12	1.72	2.31
			2.0	4.95	13.07	1.72	2.89
			2.3	3.15	14.42	1.72	3.46 4.04
			2.7	1.35	15.17	1.72 1.72	4.04 4.61
			3.0	45	15.32	J. • 4 ==	™ • C ±

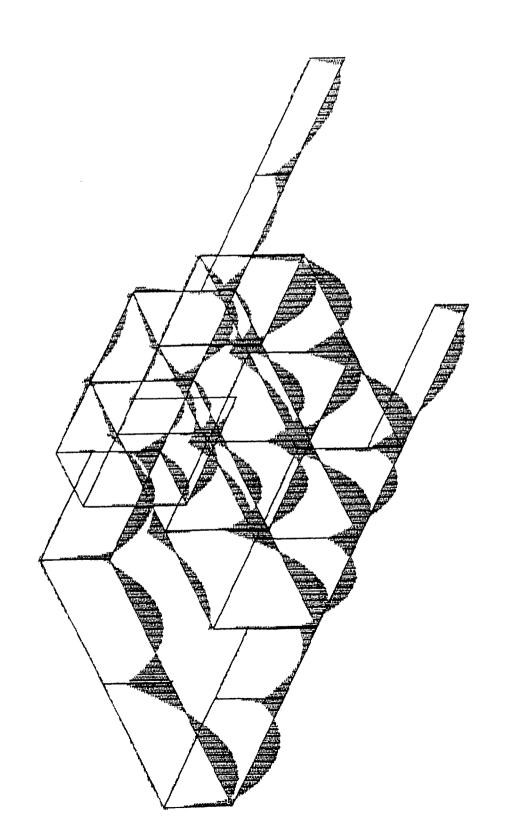
47							
	1	.00					31.94
			.0	-806.51	67.04	.08	17
			.3	-579.54	-144.72	.08	15
			.6	-352.57	-287.12	.08	12
			.9 1.2	-125.61 101.36	-360.18 -363.88	.08	10
			1.5	328.33	-298.24	.08 .08	07 05
			1.8	555.29	-163.24	.08	02
			2.1	782.26	41.11	.08	.00
			2.4	1009.23	314.81	.08	.03
			2.8	1236.19	623.86	.08	.05
48	1	45.10					7 / 7
	.1.	40.10	.0	-361.83	59.64	64	-1.41 .88
			.3	-264.63	-36.07	64	.69
			.6	-167.43	-102.08	64	.50
			.9	-70.24	-138.39	64	.30
			1.2	26,96	-145.00	64	.11
			1.5	124.16	-121.91	64	09
			1.8	221.36	-69.12	64	28
			2.1	318.55 415.75	13,36 125.55	64	48
			2.8	512.95	267.43	64 64	67 87
49						.04	• 0 /
	1	.00					16.42
			.0	-1224.28	633.17	06	.08
			.3 .6	-997.31 -770.34	318.77 48.71	06	.06
			.9	-543.38	-152.00	06 06	.04 .02
			1.2	-316.41	-283.36	+.06	.00
			1.5	-89.44	-345.36	06	02
			1.8	137.52	-338.02	06	04
			2.1	364.49	-261.32	06	C6
			2.4	591.46	-115.28	06	08
50			2.8	818.42	100.12	06	09
50	1	41.36					-2.93
			.0	-506.07	262.16	52	.44
			. 3	-408.87	122.38	52	.28
			. 6	-311.67	12.30	52	.12
			.9	-214.47	-68.08	52	
			1.2 1.5	-117,28	-118.77	52	20
			1.8	-20.08 77.12	-139.75 -131.04	52 52	35 51
				174.32	-131.04 -92.62	52 52	67
			2.4	271.51	-24.51	52	83
			2.8	368.71	73.30	52	99
51 -							
	1	.00	.0	-823.73	68.23	01	-5.77 00
			.3	-596.76	-148.79	01 01	00 01
			.6	-369.80	-296.46	ci ci	01
			. 9	-142.83	-374.78	01	01
			1.2	84.14	-383.75	01	01
			1.5	311.10	-323.36	01	01
			1.8	538.07	-193.63	01	02
			2.1	765.04	5.46	01	02
			2.4	992.00	273.90	01	02
			4.0	1218.97	611.68	()1	02

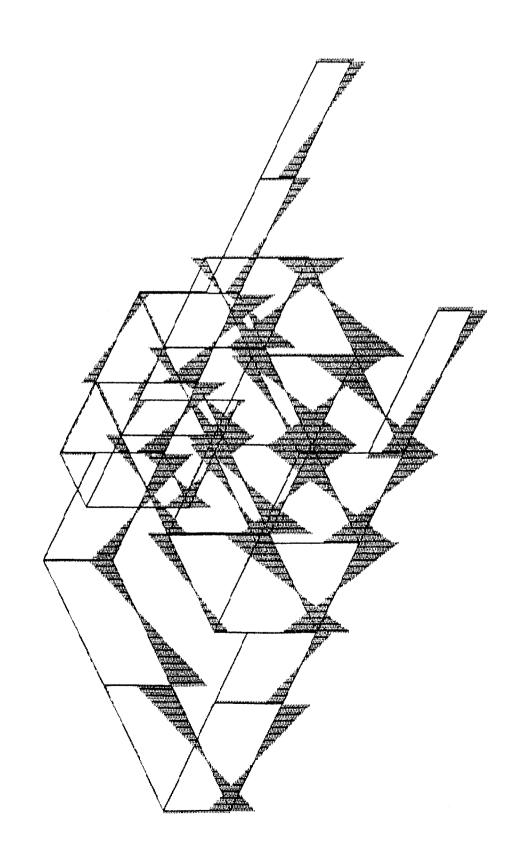

6 11 _							
• .		1					. 4.1
			. (:	-384.62	59.95	41	. 44
			.3	-267.43	-36.61	41	.32
			. 6	-170.23	-103.48	41	.19
			. 9	-73.03	-140.64	- , <i>i</i> , j	.07
			1.2	24.16	~148.11	- 41	+.06
			3 . 6	153.36	-125,87	- , 4 !	19
			1.8	218.56	-73,94	41	31
			2.1	315.76	7.69	41	-,44
			2.4	412.95	119.02	41	56
			2.8	510.15	260.05	41	69
£ 3 =						• • •	
		.00					-40.54
			.0	-1113.91	588.35	00	.02
			.3	-886.94	282.67	CO	.02
			. 6	-659.97	46.34	00	.02
			.9	-433.01	-120.65	00	.02
			1.2	-206.04	-218,28	00	.01
			1.5	20.93	-246,56	00	.G1
			1.8	247.89	-205.49	00	.01
			2.1	474.36	-95.07	(C)	.01
			2.4	701.83	84.70	00	.01
			2.8	928.79	333.82	00	.01
54 -							
		26.01					5.42
			.0	-480.82	244.68	.91	85
			. 3	-383.62	112.61	.91	57
			. 6	-286.42	10.25	.91	29
			.9	-189.13	-62.42	.91	*** **********************************
			1.2	-92.03	-105.39	.91	.26
			1.5	5.17	-118.66	.9]	<u>, 6,4</u>
			1.8	102.36	-102.24	.91	.82
			2.1	199.58	-56.11	.91	1.10
			2.4	296.76	19.72	.91	1.38
			2.8	393.96	125.25	.91	1.65
55 -							
	1	.00					92.57
			.0	-780.57	339.86	03	00
			. 2		220.08	03	01
			.3	-532.97	120.93	43	02
			.5	-409.17	42.42	→. 03	02
			. 7	-285.37	-15.46	03	03
			. 8	-161.57	-52.70	03	03
			1.0	-37.77	-69.32	03	→ , © ⊈
			1.2	86.93	-65.29	 ∪3	U <u>-</u>
			1.3	209.83	-40.64	03	05
			1.5	333.63	4.65	:5	- Ci
56 -							
	Ĭ.	.80	0	E0. 30	04.14	0.75	10.87
			.0	-58.79	94.14	-2.76	2.19
			.2	-59.69	84.26	-2.78	1.73
			.3	-80.59	74.24	-2.76	1.27
			.5	-61.49	64.07	-2.76	.81
			. 7	-62.39	53.74	-2.76	.35
			.8	-63.29	43.27	-2.76	1 1
			1.0	-64.19	32.65	-2.76	57
			1.2	-65.09	21.87	-2.76	-1.03
			1.3	-65.99	10.95	-2.76	-1.49
			1.5	-66.89	12	-2.76	-1.95

	1	. ()()					-12.0
		•	.0	-831.84	78.58	20	.39
			.3	-004.88	-140.94	20	.33
			. 6	-377.91	-291.09	20	.27
			. 9	-150.94	-371.88	20	.21
						s0 20	.15
			1.2	76.02	-383.33		
			1.5	342.99	= 325.42	20	.09
			1.8	529.96	-198.17	20	.03
			2.1	756.92	-1.500	20	03
			2.4	983.89	264.39	20	09
			2.8	1210.86	599.70	20	15
58 -							0
	1	48.26	, Ç	-366.32	61.95	39	.77
			.3	-269.12	-35.13	39	.65
			. 6	-171.92	-102.51	39	.53
			.9	-74.72	-140.20	39	.41
			1.2	22.47	-148.18	39	.29
			1.5	119.67	-126.46	39	.17
			1.8	216.87	-75.05	39	.05
			2.1	314.06	6.07	39	- . ()' <i>i</i>
			2.4	411.26	116.88	39	19
			2.8	508.46	257.39	39	31
59 -							T, 7"
	1	.00		1000 00	naa na	6.5	35.2 05
			.0	-1099.99	580.31	.02	
			. 3	-873.03	278.53	.02	04
			. 0	-848.06	46.79	.02	03
			. 9	-419.09	-111.7.	.02	03
			1.2	-192,13	-209.32	.02	02
			1.5	34.84	-233.11	.02	01
			1.8	261.81	-188.03	.02	01
			2.1	488.97	- 13.34	.02	00
					110.67	.02	.01
			2.4	715.74 941.71	364.64	.92	.01
60 -						• = •	• · · · · · · · · · · · ·
	e1 pm	38.07					+4.i
			• G	-476.63	241.67	1.14	-1.40
			. 13	-379.43	110.59	1.14	-1.05
			. ő	-282.23	9.80	1.14	70
			. 9	-185.04	-61.59	1.14	36
			1.2	-87.84	-103.25	1.14	01
			1.5	9.36	116.2	.14	.34
			1.8	106.56	-97.56	1.14	.69
					-50.15	1.14	1.03
			2.1	203.75			
			2.4	300.95	26.96	1.14	1.38
			2.6	598.15 	133.7	2 • 2 4	1.73
e a		.go			— — — — —		-26.
61 -	1.		.0	-756.00	295.70	.05	01
61 -	<u>.</u>				180.00	.05	00
61 -	1.			-632.20			
61 -	<u>1</u> .		. 2			(1.F)	.01
61 -	1.		.2 .3	-508.40	84.97	,05 65	.01 01
61 -	1.		.2 .9 .5	-508.40 -384.60	84.97 10.53	.05	.01
61 -	1		.2 .3 .5	-508.40 -384.80 -280.80	84.97 10.53 -43.23	.05 .05	.01 .02
61 -	e .i.		.2 .3 .5 .7	-506.40 -384.60 -260.80 -137.00	84.97 10.53 -43.23 -76.38	.05 .05 .05	.01 .02 .03
61 -	ž.		.2 .3 .5 .7 .8	-506.40 -384.60 -260.80 -137.00 -13.20	84.97 10.53 -43.23 -76.33 -88.90	.05 .05 .05 .05	.01 .02 .03 .04
61 -	t.		.2 .3 .5 .7	-506.40 -384.60 -260.80 -137.00	84.97 10.53 -43.23 -76.38 -88.90 -80.78	.05 .05 .05 .05	.01 .02 .03 .04 .05
61 -	e di		.2 .3 .5 .7 .8	-506.40 -384.60 -260.80 -137.00 -13.20	84.97 10.53 -43.23 -76.33 -88.90	.05 .05 .05 .05	.01 .02 .03 .04


62		 я.(a					
	ļ	.0	-52,61	-4.12	2.2	-13	. 97
		• C	= 1 % . ; .	1984 4 W	28 2%	1.03 .98	
		.3	-64.41	66.29	28	.so .93	
		• "	-	6	s	.95 .89	
		. Ž	-1.6.21	4 77 . 25 fs	28	.05 .64	
		. *:	=111	. 41	・20 シャ	.ee .ee	
		1.0	=58.c1	. 74.82 28.82	28	.75	
			+ 5x . 31	19.67	0x	.71	
		1.3	-59.61	9.18	28	. 7 s . 66	
		1.5	-60.71	- [24]	28	.61	
63					• 4. W	• 01	
	1	· (.				48.	68
		. Ç	-580.27	30.66	05	04	
		. 2	-456.47	-49.74	05	05	
		.3	-332.67	$= \frac{1}{4} \int_{\mathbb{R}^{2}} \int_{\mathbb{R}^{2}} \widetilde{\xi}_{i}(t)$	05	06	
		, r	-200.97	-1.471.713	 ₹5	07	
		. /	-85.07	-185.12	05	08	
		.8	38.73	-188.98	05	08	
		1.0	162.53	-172.21	05	09	
		1.2	286.33	-104.60	05	10	
		1.3	410.13	-76.76	05	11	
		1.5	533.93	1.91	=	12	
64 -							
		5.63				3.	47
		.0	ნ.მხ	કે.89	4.17	-3.44	
		.2	5.96	9.95	4.17	-2.75	
		.3	5.06	10.87	4.17	-2.05	
		.5	4.16	11.64	4.17	-1.36	
		• 7	3.26	12.26	4.17	66	
		. 8	2.36	12.73	4.17	.04	
		1.0	1.46	13.05	4.17	.73	
		1.2	الله الله الله الله الله الله الله الله	13.22	4.17	1.43	
		1.3	÷.34	13.24	4.17	2.12	
85 -		1.5	-1.24	13.10	4.17	2.82	
<i>500</i> −	1	.62				7.7	~ ~
		.0	-924.27	627.10	.07	-11. .02	90
		. G	-752.07	3.1.15	.07	.05	
		. 6	-579.87		.07	.03	
		1.2	-407.67	-149.87	.07	.11	
				-274.92	.07	.14	
		1.9	-63.27	-333.01	.07	.17	
		2.3		-324.14	.07	.19	
		2,7	281.13	-246.29	.07	.22	
		3.1	453.33	-105.48	. 07	.25	
		3.5	625.53	104.29	.07	.28	
€6 -					• •	. 20	
		10.18				2.	97
		.0	22.91	-21.69	-4.11	9.11	
		. 4	20.81	-13.19	-4.11	7.51	
		.8	18.71	-5.50	-4.11	5.91	
		1.2	16.61	1.37	-4.11	4.31	
		1.6	14.51	7.42	-4.11	2.71	
		1.9	12.41	12.65	-4.11	1.11	
		2.3	10.31	17.07	-4.11	-,49	
		2.7	6.21	20.80	-4.11	-2.09	
		3.1	6.11	23.46	-4.11	-3,69	
		3.5	4.01	25.43	-4.11	-5.29	

<i>C</i> //					
				-9.2	18
. (.	-154.89	-14.66	-3.49	2.07	
• 4	- 3.21	-33.67	-3.49	1.49	
.3	-51.52	-45.73	-3.49	.91	
• •	-9.84	-50.84	-3.49	.32	
.)	31.84	-49.01	-3.49	26	
. 8	13.5	-40.23	-3.49	84	
1.0	115.21	-24.50	-3.49	-1,42	
1.2	150.89	-1.82	-3.49	-2.01	
1.3	198.58	27.80	-3.49	-2.59	
1.5	240.20	64.37	-3.49	-3.17	
1 .00				. 3	1
. C	-343,80	88.05	02		1
• **	-256.13	-20.27	02 02	.01	
. 7	-168.45	-96.93	02 02	.01	
1.1	-80.77	-141.92		.00	
1.4			02	00	
1.8	6.91	-155.26	02	01	
	94.59	-136.94	02	 01	
2.2	182,26	-86.95	02	02	
2.5	269.94	-5.30	02	03	
2.9	357.62	108.01	02	03	
3.3 -69	445.30	282.98	02	04	
1 93.63				3	ř.
.0	6.44	5.78	05	Ul	
. ċ	4.49	7.75	05	03	
• "	2.54	9.02	05	05	
l.i	.59	9.58	05	07	
1.4	-1.36	9.45	05	09	
1.8	-3.31	6.60			
2,2	-5.26	7.06	 05	11	
2,3	-7.21		05	13	
2.9		4.80	05	15	
3.3	-9.16 -11.11	i.85 -1.81	05 05	17	
70			03	19	
1 .00				-16.1	Ģ
.0	-739.47	334.33	.11	12	
. 5	-591.87	111.44	.11	09	
. 7	-444.27	-60.25	.11	05	
A O	-296.67	-1-3.74	.11	01	
1.3	-149.07	-258.03	.11	.02	
1.7	-1.47	-283.12	.11	.08	
2.0	146.13	-239.00	.11	.10	
2.3	293.73	-1:5.69	. 1.1	.13	
2.7	441.33	-63.18	.11	.17	
3.0	538.93	108.53	.11	.21	
1 61.26 .0	11.27	s, stog stop	^ ^	-,1	1
		3.77	-8.29	13.42	
. 3	9.47	7.23	-8.29	19.66	
• /	7.67	19.09	-8.29	7.89	
1.0	5.87	34	-8.29	5.13	
1.3	4.07	14.00	-8.29	2.36	
1.7	2.27	.5.06	-8.29	40	
2.0	. 47	15.51	-8.29	-3.17	
2.3	-1.33	15.37	-8.29	-5.93	
2.7	-3.13	14.63	-8.29	-8.70	
3.0	-4.93	13,29	-8.29	-11.46	


72								
	1	.00					į,	
			.0	-619.06	85.78	62	06	
			. 4	-446.86	-121.45	(: <u>¿</u>	= , ;, ''	
			. 8	-274.66	-261.78	02	=.0%	
			1.2	-102.46	-335.11	132	= . / m	
			1.ő	69.74	-341.47	02	09	
			1.9	241.94	-280.81	02	1:	
			2.3	414.14	-153.30	02	11	
			2.7	586.34	41.24	02	17	
			3.1	758.54	302.74	02	12	
			3.5	930.74	631.22	02	15	
73 -		53.96						3.00
	-	33.90	. 0	-2.00	21.85	5.84	-11.20	3
			. 4	-4.10	20.66	5.84 5.84	-8.92	
			.8	-6.20	18.66	5.84	-6.65	
			1.2	-8.30	15.84	5.84	-6.80 -4.38	
			1.6	-10.40	12.20	5.84	-2.10	
			1.9	-12.50	7.75	5.84	.17	
			2.3	-14.60	2.47	5.84	2,44	
			2.7	-16.70	-3.61	5.84	4.71	
			3.1	-18.80	-10.52	5.84	6.99	
			3.5	-20.90	-18.24	5.84	9.26	
77				20.20		J.04	వ•చ5	
	ar min	.00					-	1.50
			.0	-385.46	219.31	03	.06	
			. ÷	-197.76	95.95	03	- 1. 1. - 1. No. 1	
				-210.10	4.25	 03	.03	
			1.1	-210.10 -122.42	4.25 -55.79	03 03	.03 .02	
			1.1	-122.42 -34.75			.12 .01	
			1.1 1.4 1.8	-112.42	-55.79	03		
			1.1 1.4 1.8 2.2	-122.42 -34.75	-55.79 -84.17	03 03	.12 .01	
			1.1 1.4 1.8	-122.42 -34.75 52.93	-55.79 -84.17 -80.89	03 03 03	.12 .01 00	
			1.1 1.4 1.8 2.2	-122.42 -34.75 52.93 140.61	-55.79 -84.17 -80.89 -45.94	03 03 03 03	.02 .01 00 02	
			1.1 1.4 1.8 2.2 2.5	-122.42 -34.75 52.93 140.61 225.29	-55.79 -84.17 -80.89 -45.94 20.68	03 03 03 03 03	.02 .01 00 02 03	
78 -			1.1 1.4 1.8 2.2 2.5 2.9	-122.42 -34.75 52.93 140.61 225.29 315.96	-55.79 -84.17 -80.89 -45.94 20.68 118.93	03 03 03 03 03	.02 00 02 03 04 05	1 ZF
78 -	1		1.1 1.4 1.8 2.2 2.5 2.9 3.3	-122.42 -34.75 52.93 140.61 226.29 315.96 403.64	-55.79 -84.17 -80.89 -45.94 20.66 118.93 248.86	03 03 03 03 03 03	.02 00 02 03 04 05	1.40
78 -	1.		1.1 1.4 1.8 2.2 2.5 2.9 3.3	-122.42 -34.75 52.93 140.61 226.29 315.96 403.64	-55.79 -84.17 -80.89 -45.94 20.66 118.93 248.86	03 03 03 03 03 03	.02 00 02 03 04 05	1.40
78 -	1.		1.1 1.4 1.8 2.2 2.5 2.9 3.3	-122.42 -34.75 52.93 140.61 226.29 315.96 403.64	-55.79 -84.17 -80.89 -45.94 -20.66 118.93 -248.86	03 03 03 03 03 03	.02 00 02 03 04 05	1.40
78 -		52.37	1.1 1.4 1.8 2.5 2.5 2.9 3.3 	-122.42 -34.75 52.93 140.61 226.29 315.96 403.64 	-55.79 -84.17 -80.89 -45.94 20.66 118.93 248.86 -9.60 -6.94 -4.99	03 03 03 03 03 03 03	.02 00 02 +.03 04 05	1.48
78		 52.37	1.1 1.4 1.8 2.2 2.5 2.9 3.3 .0 .4 .7	-122.42 -34.75 52.93 140.61 228.29 315.96 403.64 	-55.79 -84.17 -80.89 -45.94 20.66 118.93 248.86 -9.60 -6.94 -4.99 -3.78	03 03 03 03 03 03 03 15 .15	.02 00 02 03 04 05 29 29 23 18	1.40
78	1	52.37	1.1 1.4 1.8 2.2 2.5 2.9 3.3 .0 .4 .7 1.1	-122.42 -34.75 52.93 140.61 228.29 315.96 403.64 8.32 6.37 4.42 2.47 .52	-55.79 -84.17 -80.89 -45.94 -20.66 118.93 -248.869.60 -6.94 -4.99 -3.78 -3.20	03 03 03 03 03 03 03 15 .15	.02 00 02 03 04 05 29 29 18 12 06	1.40
78	1	52.37	1.1 1.4 1.8 2.2 2.5 9 3.3 .0 .4 .7 1.1 1.8	-122.42 -34.75 52.93 140.61 228.29 315.96 403.64 	-55.79 -84.17 -80.89 -45.94 -20.66 118.93 -248.869.60 -6.94 -4.99 -3.75 -3.20 -3.37	03 03 03 03 03 03 03 15 .15 .15	.02 00 02 03 04 05 29 29 18 12 +.06 01	E.40
78	1	52.37	1.1 1.4 1.8 2.2 2.5 9 3.3 .0 .4 .7 1.1 4 1.8 2.2	-122.42 -34.75 52.93 140.61 228.29 315.96 403.64 	-55.79 -84.17 -80.89 -45.94 -20.66 118.93 -248.869.60 -6.94 -4.99 -3.78 -3.20 -3.37 -4.23	03 03 03 03 03 03 03 15 .15 .15 .15	.02 00 02 03 04 05 29 18 18 04 05	1.40
78	1	52.37	1.1 1.4 1.8 2.2 2.5 2.5 3.3 	-122.42 -34.75 52.93 140.61 228.29 315.96 403.64 	-55.79 -84.17 -80.89 -45.94 -20.66 118.93 248.86	03 03 03 03 03 03 03 15 .15 .15 .15	.02 00 02 03 05 05 18 12 01 05	1.40
76	<u>1</u> .	52.37	1.1 1.4 1.8 2.2 2.5 9 3.3 .0 .4 .7 1.1 4 1.8 2.2	-122.42 -34.75 52.93 140.61 228.29 315.96 403.64 	-55.79 -84.17 -80.89 -45.94 -20.66 118.93 -248.869.60 -6.94 -4.99 -3.78 -3.20 -3.37 -4.23	03 03 03 03 03 03 03 15 .15 .15 .15	.02 00 02 03 04 05 29 18 18 04 05	1.45

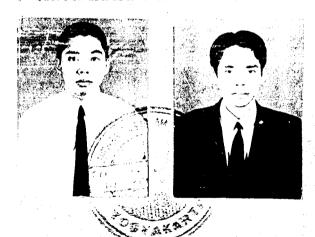

X X X	yudi FRAME LOADS LOAD	MININA . 2500E+03 P . 0000E+00 MAXINA . 7500E+03 P . 0000E+00	SAP90
-------	--------------------------------	--	-------

LOAD ENVELOPES MAX A A A A A A A A A A A A	× × × × × × × × × × × × × × × × × × ×	. 6332F-	SAP90
--	---------------------------------------	----------	-------

Y Z X Y Yudi yudi FRAME OUTPUT V22 LOAD	ENVELOPES MIN < 49> 1224E+04 AT .000 MAX < 47> .1236E+04 AT 2.75 GAP90
---	--

KARTU PESERTA TUGAS AKHIR

NO.	NAMA	NO. MHS.	BID-STUDI
	FERISURYA PRANADI	94 310 256	MANKON
2	YUDI KURNIADI	94 310 265	MANKON


JUDUL TUGASAKHIK:

APLIKASI VALUE ENGGUNERRING PADA PROVEK PERUMAHAN
PERIODE III: MARET - AGUSTUS
TAHUN: 2000/2001

··/	Esciatan	Bulan Ke:					
		Marri	April	Mei	Juni	Juli	ក់ខ្លាមមេខ ្លាំ
i,	Fendaltaran			The same of the sa			i
2,	Penentuan Posen Pemblading			and the same of th			
3.	Pembuatan Proposal				and the contract of the contra		
i	Seminar Proposal		100	100			
5,	Konsultasi Penyusunan 1A.	1					***
6.	Sidong-Sidong			and the state of t	agang gangahagan akadhada ana aka aka da da da da		
1 7.	Pendadaran.	1					

DOMEST PERSONNELLE I.

IR. H. TADJUDDIN DM ARIS, MS IR. H. FAISOL AM, MS

An Dekan, /

IR. H. MUNADHIR, MS

Catatan	:

Seminar	* ******************	****************
Sidang	* 1000407272712710000000000000000000000000	************
Pendadaran	* *************************************	

CATATAN KONSULTASI TUGAS AKHIR

No.	Tanggal	Catatan Konsultasi	Tanda Tangan
	2001	Pubaili trubuh bings lunding schop I th 7 cat - baba + upan - baba.	De
	22 M	- ole. lengtoni - onthe in - neumin - akkneri	
	201.	Semina Svap	
	bol	Siapbas until Sidamp ulang.	
		Acom num	