## **TUGAS AKHIR**

# PENEMPATAN EFEKTIF REDAMAN GANDA UNTUK MENGURANGI SIMPANGAN HORIZONTAL PADA STRUKTUR BERTINGKAT LIMA

,



DISUSUN OLEH : <u>J U H A R T O N O</u> No. Mhs 94310057

JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK SIPIL DAN PERENCANAAN UNIVERSITAS ISLAM INDONESIA YOGYAKARTA

2000

### LEMBAR PENGESAHAN

## TUGAS AKHIR

# PENEMPATAN EFEKTIF REDAMAN GANDA UNTUK MENGURANGI SIMPANGAN HORIZONTAL PADA STRUKTUR BERTINGKAT LIMA

# Diajukan kepada Universitas Islam Indonesia Untuk memenuhi sebagian persyaratan memperoleh derajat Sarjana Teknik Sipil

### **DISUSUN OLEH :**

Nama:JuhartonoNo. Mhs:94310057NIRM:940051013114120057

Telah diperiksa dan disetujui oleh :

Ir. H. M. Samsudin, MT Dosen Pembimbing I

Ir. H. Sarwidi, MSc, Ph.D Dosen Pembimbing II

Tanggal : 26 /

Tanggal : 26/08/2000

# 🕊 Karya ini kupersembahkan untuk 🖤

Ibunda dan ayahnda tercinta atas doa, cinta, kasih sayang dan dukungannya yang selalu menyertai dalam setiap langkahku
Mas Eko dan Dek Nining yang selalu membantu dengan doa, cinta dan kasih sayangnya
All of my friend who always make me smile and laugh with their funnies,

Hove you all.

### ΜΟΤΤΟ

Sesungguhnya sholatku, ibadahku, hidupku dan matiku hanyalah untuk Allah, Tuhan semesta alam, (QS Al An'aam 162).

Barangsiapa menempuh jalan untuk menuntut ilmu, maka Allah akan memudahkan baginya jalan ke surga (Hadits Rasulullah SAW).

-

.

#### KATA PENGANTAR

#### Bismillahirrahmanirrahim

#### Assalamu'alaikum Warahmatullah Wabarakatuh

Dengan mengucapkan Alhamdulillah kami bersyukur kepada Allah SWT yang telah memberikan ketekunan dan kesabaran sehingga kami dapat menyelesaikan Tugas Akhir ini dengan baik. Tidak lupa Sholawat serta salam kami panjatkan ke hadirat Rasulullah SAW beserta para keluarga, sahabat serta pengikutnya sampai akhir jaman.

Tugas Akhir ini dibuat sebagai salah satu syarat untuk menyelesaikan kuliah pada jenjang Strata 1 (S-1), Fakultas Teknik Sipil dan Perencanaan, Universitas Islam Indonesia.

Dalam penyusunan Tugas Akhir yang berjuduk "PENEMPATAN EFEKTIF REDAMAN GANDA UNTUK MENGURANGI SIMPANGAN HORIZONTAL PADA STRUKTUR BERTINGKAT LIMA", kami telah berusaha semaksimal mungkin untuk memperoleh hasil yang sebaik-baiknya sesuai dengan kemampuan dan pengetahuan yang kami miliki, berdasarkan pada buku referensi dan pedoman yang ada. Disadari bahwa Tugas Akhir ini masih jauh dari sempurna, mengingat keterbatasan kami. Untuk itu kritik dan saran sangat kami harapkan untuk kesempurnaan Tugas Akhir ini.

v

Dalam penyusunan Tugas Akhir ini kami telah banyak mendapatkan bantuan dan bimbingan dari berbagai pihak, baik bantuan moril maupun spiritual. Untuk itu kami haturkan terima kasih sebanyak-banyaknya kepada :

- Bapak Ir. H. Widodo, MSCE, Ph.D.selaku Dekan Fakultas Teknik Sipil dan Perencanaan, Universitas Islam Indonesia.
- Bapak Ir. H. Tadjuddin BM Aris, MS. selaku Ketua Jurusan Teknik Sipil, Fakultas Teknik Sipil dan Perencanaan, Universitas Islam Indonesia.
- 3. Bapak Ir. H. M. Samsudin, MT, selaku Dosen Pembimbing I.
- 4. Bapak Ir. H. Sarwidi, MSCE. Ph.D, selaku Dosen Pembimbing II.
- 5. Bapak, ibu, kakak-kakak dan adik-adik, terima kasih untuk semua do'a dan bantuan.
- Semua teman-teman di kelas C Angkatan'94, special untuk Andi, Alam, Dandung, Dani, Jatmiko, Kuncunk, Hadi, Yudhit, Munir, Melda, Novie, Prapti, Maya, Endah, Yayuk, Ida, Sigit Juga untuk teman-teman angkatan '94 yang lain.
- 7. Teman TA-ku, Arie yang selalu ada hingga selesainya karya ini.
- 8. Novie dan Prapti, with thei, parient to teach and to tell me about everything without bored.
- 9. Teman-teman KKN Angkatan 16 Unit BT-165, Pandega Padma 3 terima kasih untuk persahabatan dan persaudaraannya
- Almamater tercinta Universitas Islam Indonesia, atas segala fasilitas, bantuan dan kerja samanya.
- 11. Semua pihak yang tidak mungkin disebutkan sata persatu.

Tidak ada yang dapat kami berikan selain ucapan terima kasih sebesarbesarnya atas bantuan yang telah diberikan, semoga dapat diterima sebagai amal baik di sisi Allah SWT dan semoga Allah SWT membalas semua kebaikan yang telah diberikan. Amin.

Wassalamu'alaikum Warahmatullah Wabarakatuh.

Yogyakarta, April 2000

Penyusun

# DAFTAR ISI

.

.

| i i i i i i i i i i i i i i i i i i i |  |  |
|---------------------------------------|--|--|
| HALAMAN PENGESAHAN                    |  |  |
| HALAMAN PERSEMBAHANiii                |  |  |
| iv                                    |  |  |
| KATA PENGANTARv                       |  |  |
| DAFTAR ISI                            |  |  |
| DAFTAR GAMBARxi                       |  |  |
| DAFTAR TABEL                          |  |  |
| DAFTAR LAMPIRAN                       |  |  |
| DAFTAR NOTASIxvi                      |  |  |
| INTISARI                              |  |  |
| BAB I PENDAHULUAN1                    |  |  |
| 1.1 Latar Belakang Masalah1           |  |  |
| 1.2 Rumusan Masalah2                  |  |  |
| 1.3 Batasan Masalah2                  |  |  |
| 1.4 Tujuan Penelitian                 |  |  |
| 1.5 Manfaat Penelitian                |  |  |

|          | 1.6 Pendekatan Masalah4                                      |
|----------|--------------------------------------------------------------|
|          | 1.7 Sistematika Penulisan                                    |
| BAB II 7 | FINJAUAN PUSTAKA                                             |
|          | 2.1 Tinjauan Umum                                            |
|          | 2.2 Magnetorheological Damper7                               |
| :        | 2.3 Penelitian Sejenis Sebelumnya10                          |
| BAB III  | LANDASAN TEORI                                               |
|          | 3.1 Sistem Berderajat Kebebasan Tunggal (SDOF)11             |
|          | 3.2 Sistem Berderajat Kebebasan Banyak (MDOF)14              |
|          | 3.3 Persamaan Gerak Akibat Beban Gempa20                     |
|          | 3.3.1 Filisofi dasar penyerapan energi                       |
|          | 3.3.2 Jenis-jenis simpangan dan efeknya terhadap kerusakan30 |
|          | 3.4 Persamaan Diferensial Independen (Uncoupling)31          |
|          | 3.5 Respon Terhadap Beban Gempa                              |
| BAB IV   | METODE PENELITIAN                                            |
|          | 4.1 Data Yang Diperlukan                                     |
|          | 4.2 Pengolahan Data                                          |
|          | 4.3 Pengujian                                                |
| BAB V    | ANALISA DAN PEMBAHASAN                                       |
| :        | 5.1 Analisa                                                  |
|          | 5.1.1 Ragam bentuk (mode shape) dan frekuensi natural        |
|          | 5.1.2 Efek redaman61                                         |

| 5.1.3 Respon terhadap gempa bumi | 65 |  |
|----------------------------------|----|--|
| 5.2 Pembahasan                   | 67 |  |
| BAB VI KESIMPULAN DAN SARAN      |    |  |
| 6.1 Kesimpulan                   |    |  |
| 6.2 Saran                        | 90 |  |
| DAFTAR PUSTAKA                   |    |  |

-

.

LAMPIRAN

## DAFTAR GAMBAR

| Gambar 2.1 Skema MR Damper                                       |
|------------------------------------------------------------------|
| Gambar 2.2 Skema Pemasangan MR Damper8                           |
| Gambar 3.1 (a) Struktur SDOF12                                   |
| Gambar 3.1 (b) Struktur yang disederhanakan12                    |
| Gambar 3.1 (c) Model Matematik                                   |
| Gambar 3.1 (d) "Free Body" Diagram                               |
| Gambar 3.2 (a) Model Matematik15                                 |
| Gambar 3.2 (b) Model MDOF15                                      |
| Gambar 3.2 (c) Model Kesetimbangan Gaya                          |
| Gambar 3.3 Percepatan Tanah Gempa El Centro, 194020              |
| Gambar 3.4 Sistem Derajat Kebebasan Tunggal dengan Beban Gempa21 |
| Gambar 3.5 Respon Getar Bebas dengan Redaman Kritis              |
| Gambar 3.6 Respon Getaran Bebas untuk Sistem Redaman Superkritis |
| Gambar 3.7 Respon Getaran Bebas untuk Sistem Redaman Subkritis   |
| Gambar 3.8 Penyerapan Energi                                     |
| Gambar 3.9 Model Simpangan Relatif                               |
| Gambar 3.10 Model Simpangan Antar Tingkat                        |
| Gambar 4.1 Model Struktur Tanpa Peredam Tambahan41               |

## DAFTAR GAMBAR

| Gambar 2.1 Skema MR Damper                                       |
|------------------------------------------------------------------|
| Gambar 2.2 Skema Pemasangan MR Damper8                           |
| Gambar 3.1 (a) Struktur SDOF12                                   |
| Gambar 3.1 (b) Struktur yang disederhanakan12                    |
| Gambar 3.1 (c) Model Matematik                                   |
| Gambar 3.1 (d) "Free Body" Diagram12                             |
| Gambar 3.2 (a) Model Matematik15                                 |
| Gambar 3.2 (b) Model MDOF15                                      |
| Gambar 3.2 (c) Model Kesetimbangan Gaya15                        |
| Gambar 3.3 Percepatan Tanah Gempa El Centro, 194020              |
| Gambar 3.4 Sistem Derajat Kebebasan Tunggal dengan Beban Gempa21 |
| Gambar 3.5 Respon Getar Bebas dengan Redaman Kritis              |
| Gambar 3.6 Respon Getaran Bebas untuk Sistem Redaman Superkritis |
| Gambar 3.7 Respon Getaran Bebas untuk Sistem Redaman Subkritis   |
| Gambar 3.8 Penyerapan Energi                                     |
| Gambar 3.9 Model Simpangan Relatif                               |
| Gambar 3.10 Model Simpangan Antar Tingkat                        |
| Gambar 4.1 Model Struktur Tanpa Peredam Tambahan41               |

| Gambar 4.2 Model Struktur dengan Kedua MR Damper pada Tingkat Pertama 42  |
|---------------------------------------------------------------------------|
| Gambar 4.3 Model Struktur dengan Kedua MR Damper pada Tingkat Kedua43     |
| Gambar 4.4 Model Struktur dengan Kedua MR Damper pada Tingkat Ketiga44    |
| Gambar 4.5 Model Struktur dengan Kedua MR Damper pada Tingkat Keempat45   |
| Gambar 4.6 Model Struktur dengan Kedua MR Damper pada Tingkat Kelima46    |
| Gambar 4.7 Model Struktur dengan MR Damper pada Tingkat 1 dan 247         |
| Gambar 4.8 Model Struktur dengan MR Damper pada Tingkat 2 dan 348         |
| Gambar 4.9 Model Struktur dengan MR Damper pada Tingkat 3 dan 4           |
| Gambar 4.10 Model Struktur dengan MR Damper pada Tingkat 4 dan 5          |
| Gambar 4.11 Model Struktur dengan MR Damper pada Tingkat 1 dan 351        |
| Gambar 4.12 Model Struktur dengan MR Damper pada Tingkat 1 dan 452        |
| Gambar 4.13 Model Struktur dengan <i>MR Damper</i> pada Tingkat 1 dan 553 |
| Gambar 4.14 Model Struktur dengan MR Damper pada Tingkat 2 dan 454        |
| Gambar 4.15 Model Struktur dengan MR Damper pada Tingkat 2 dan 555        |
| Gambar 4.16 Model Struktur dengan MR Damper pada Tingkat 3 dan 5          |
| Gambar 5.1 Model Bangaunan Geser                                          |
| Gambar 5.2.1 Simpangan Lantai 1 pada Variasi 1-6                          |
| Gambar 5.2.2 Simpangan Lantai 1 pada Variasi 1, 7-11                      |
| Gambar 5.2.3 Simpangan Lantai 1 pada Variasi 1,11-16                      |
| Gambar 5.3.1 Simpangan Lantai 2 pada Variasi 1-6                          |
| Gambar 5.3.2 Simpangan Lantai 2 pada Variasi 1, 7-11                      |
| Gambar 5.3.3 Simpangan Lantai 2 pada Variasi 1, 12-16                     |

| Gambar 5.4.1 Simpangan Lantai 3 pada Variasi 1-6      |    |
|-------------------------------------------------------|----|
| Gambar 5.4.2 Simpangan Lantai 3 pada Variasi 1, 7-11  |    |
| Gambar 5.4.3 Simpangan Lantai 3 pada Variasi 1, 12-16 |    |
| Gambar 5.5.1 Simpangan Lantai 4 pada Variasi 1-6      |    |
| Gambar 5.5.2 Simpangan Lantai 4 pada Variasi 1, 7-11  |    |
| Gambar 5.5.3 Simpangan Lantai 4 pada Variasi 1, 12-16 | 79 |
| Gambar 5.6.1 Simpangan Lantai 5 pada Variasi 1-6      | 80 |
| Gambar 5.6.2 Simpangan Lantai 5 pada Variasi 1, 7-11  |    |
| Gambar 5.6.3 Simpangan Lantai 5 pada Variasi 1, 12-16 | 82 |
| Gambar 5 7 Simpangan Maksimum                         | 83 |
| Gambar 5.8 Prosentase Perubahan Simpangan Lantai 1    | 84 |
| Gambar 5.9 Prosentase Perubahan Simpangan Lantai 2    |    |
| Gambar 5.10 Prosentase Perubahan Simpangan Lantai 3   | 86 |
| Gambar 5.11 Prosentase Perubahan Simpangan Lantai 4   |    |
| Gambar 5.12 Prosentase Perubahan Simpangan Lantai 5   |    |

.

## DAFTAR TABEL

| Tabel 4.1Pengujian Terhadap Perletakan MR Damper                    |    |
|---------------------------------------------------------------------|----|
| Tabel 5.1 Nilai Rasio Redaman pada tiap pengubahan posisi MR Damper | 66 |
| Tabel 5.2 Prosentase Perubahan Simpangan Lantai 1                   | 84 |
| Tabel 5.3 Prosentase Perubahan Simpangan Lantai 2                   | 85 |
| Tabel 5.4 Prosentase Perubahan Simpangan Lantai 3                   | 86 |
| Tabel 5.5 Prosentase Perubahan Simpangan Lantai 4                   |    |
| Tabel 5.6 Prosentase Perubahan Simpangan Lantai 5                   |    |

-

.

### DAFTAR LAMPIRAN

,

`

| 1. | Kartu Peserta Tugas Akhir                                           | L-la |
|----|---------------------------------------------------------------------|------|
| 2. | Surat Bimbingan Tugas Akhir                                         | L-1b |
| 3  | Perhitungan Mode Shape, Partisipasi Faktor dan Rasio Redaman        | L-2a |
| 4. | Perhitungan Nilai a, b dan $\hat{k}$                                | L-3a |
| 5. | Perhitungan Nilai q untuk Pemasangan MR Damper Tingkat 3 dan 5 pada |      |
|    | Mode 1                                                              | L-4a |
| 6. | Perhitungan Nilai Simpangan Horizontal Total                        | L-5a |

| {ÿ}            | vektor percepatan                         |
|----------------|-------------------------------------------|
| z(t)           | generalisasi perpindahan pada mode ke-n   |
| $\ddot{z}(t)$  | generalisasi percepatan pada mode ke-n    |
| $Z_n$          | modal amplitudo mode ke-n                 |
| Ż"             | turunan pertama modal amplitudo mode ke-n |
| Ż <sub>n</sub> | turunan kedua modal amplitudo mode ke-n   |
| $\phi_n$       | mode shape/ragam bentuk ke-n              |
| ω <sub>n</sub> | frekuensi mode ke-n                       |
| ξn             | rasio redaman mode ke-n                   |
| $\Gamma_n$     | partisipasi faktor mode ke-n              |

.

### ABSTRAKSI

Getaran tanah akibat gempa bumi dapat menyebabkan kerusakan, baik kerusakan struktur tanah maupun kerusakan bangunan yang berada ditanah. Struktur tanah yang rusak dapat berakibat pada kestabilan bangunan yang berada diatas tanah yang bersangkutan. Salah satu kerusakan yang mungkin terjadi pada sebuah struktur yang digoyang oleh gempa adalah terjadinya "struktural pounding" akibat simpangan horizontal yang besar. Sebuah alternatif yang dapat ditempuh untuk mengurangi kerusakan akibat "structural pounding" oleh getaran tanah adalah dengan pemakaian alat-alat peredam yang dapat memperkecil simpangan yang besar. Karena redaman berfungsi melesapkan energi, maka hal tersebut akan memperkecil respon struktur.

Dalam penelitian ini dicoba variasi perletakan redaman ganda yang dibandingkan dengan tanpa redaman tamhahan pada model struktur bertingkat lima. Peredam yang digunakan adalah "Magnetorheological Lamper".

Proses analisa dinamik dilakukan dengan menggunakan program komputer yang merupakan aplikasi dari fasilitas program Matlab 5.3 Release II. Dari penelitian yang dilakukan dengan menggunakan "MR Damper", simpangan relatif yang terjadi dapat dikurangi, sehingga dapat memperkecil resiko "structural pounding". Dari penelitian diperoleh bahwa penenpatan "MR Damper" yang efektif adalah sebuah pada tingkat ketiga dan sebuah pada tingkat kelima.

#### BAB I

#### PENDAHULUAN

Bab I Pendahuluan ini berisi tentang latar belakang masalah, rumusan masalah, batasan masalah, tujuan dan manfaat penelitian, pendekatan masalah serta sistematika penulisan, sebagaimana yang akan diuraikan berikut ini.

### 1.1 Latar Belakang Masalah

Gempa bumi adalah suatu fenomena alam yang kompleks, disebabkan oleh beberapa faktor yang tidak dapat diketahui dengan pasti. Hal ini sering menimbulkan bencana yang menyebabkan kerugian yang besar, baik material maupun korban jiwa.

Getaran tanah akibat gempa bumi dapat membuat kerusakan baik kerusakan struktur tanah maupun kerusakan bangunan yang berada di tanah. Kerusakan struktur tanah dapat berupa pada permukaan tanah pecah-pecah, tanah longsor (*land slide*), batu longsor (*rock slide*), batuan yang berjatuhan (*rock fall*), penurunan muka tanah (*settlement*) dan hilangnya daya dukung tanah (*liquefaction*). Struktur tanah yang rusak dapat berakibat pada kestabilan bangunan yang berada pada tanah atau berada di atas tanah yang bersangkutan. Kadang-kadang rusaknya struktur tanah justru yang mengakibatkan kerugian materi yang paling besar. Selain kerusakan struktur tanah, getaran tanah akibat gempa mungkin saja tidak merusakkan struktur tanah.

- 4. struktur bangunan yang ditinjau adalah model bangunan geser bertingkat 5 yang diambil dari buku *Element of Structural Dynamics* (Berg, 1988),
- 5. analisa dinamika struktur dibatasi pada kondisi linear elastis,
- 6. dukungan pondasi tanah dianggap jepit penuh,
- 7. matrik redaman efektif dianggap sebagai matrik diagonal,
- 8. digunakan dua model perilaku, yaitu model tanpa redaman dan model dengan Magnetorheological Damper (MR Damper),
- simpangan yang ditinjau pada struktur adalah simpangan relatif, karena simpangan relatif yang lebih kecil akan mengurangi resiko "Structural Pounding", dan
- 10. redaman dalam struktur diambil 7,56 kg/(cm/sec).
- 11. Perhitungan menggunakan program Matlab dan Microsoft Excel.

#### 1.4 Tujuan Penelitian

Tujuan dari penelitian dalam tugas akhir ini adalah memvariasikan posisi perletakan dari *Magnetorheological Damper* untuk mendapatkan posisi yang paling efektif dalam pengurangan simpangan pada bangunan bertingkat tinggi sehingga dapat mencegah terjadinya simpangan yang besar yang dapat mengakibatkan keruntuhan bangunan.

#### 1.5 Manfaat Penelitian

Manfaat yang ingin diperoleh dari penelitian ini adalah :

 memperluas pengetahuan tentang dinamika struktur terutama untuk mempelajari respon struktur akibat gaya gempa pada struktur bangunan bertingkat,

- 2. ikut menyebarluaskan penggunaan Magnetorheological Damper sebagai salah satu alat yang dapat digunakan untuk mengurangi respon struktur terhadap beban gempa,
- 3. menambah wawasan tentang bangunan tahan gempa, dan
- memberikan alternatif solusi pada perancangan bangunan tahan gempa, terutama dalam penempatan posisi redaman ganda untuk mengurangi simpangan.

#### 1.6 Pendekatan Masalah

Pendekatan masalah yang dilakukan pada penelitian tugas akhir ini adalah :

- 1. penelitian dengan perencanaan numeris pada model struktur bertingkat 5,
- 2. dibuat variasi letak peredam ganda pada model struktur.
- 3. kemudian diteliti besarnya pengaruh posisi redaman terhadap simpangan maksimum dari struktur, dan
- 4. dalam model struktur yang diteliti, dikombinasikan antara redaman dalam struktur dengan *Magnetorheological damper*.

## 1.7 Sistematika Penulisan

Tugas akhir ini ditulis dalam 6 bab dan lampiran sebagai rincian seperti berikut ini.

BAB I Pendahuluan berisi mengenai Latar Belakeng Masalah, Rumusan Masalah, Batasan Masalah, Tujuan Penelitian, Manfaat Penelitian, Pendekatan Masalah dan Sistematika Penulisan. BAB II Tinjauan Pustaka berisi mengenai Tinjauan Umum dan Pengenalan Magnetorheological Damper, Penelitin yang dilakukan sebelumnya.

BAB III Landasan Teori memuat Persamaan Gerak Derajat Kebebasan Tunggal (SDOF), Persamaan Gerak Derajat Kebebasan Banyak (MDOF) yang berisi tentang Ragam Bentuk (*Mode Shape*) dan Frekuensi, Persamaan Gerak akibat Beban Gempa, Persamaan Differensial Independen (*Uncoupling*) dan Respon terhadap Beban Gempa.

BAB IV Metodologi Penelitian berisi Data yang diperlukan, Pengolahan Data dan Pengujian.

BAB V Analisa dan Pembahasan pada bab ini menjelaskan tentang Analisa yang meliputi Ragam Bentuk *(Mode Shape)* dan Frekuensi, Efek Redaman, Respon terhadap Gempa Bumi, sedangkan pada pembahasan memuat Simpangan Relatif, yang terdiri dari Simpangan Lantai 1, Simpangan Lantai 2, Simpangan Lantai 3, Simpangan 4 dan Simpangan Lantai 5.

BAB VI Kesimpulan dan Saran berisi Kesimpulan dan Saran yang merupakan pemikiran hasil dari pengamatan dan pembahasan dimuka.

Lampiran, meliputi Perhitungan Mode Shape, Partisipasi Faktor dan Rasio Redaman, Perhitungan Nilai a, b dan  $\hat{k}$ , Perhitungan Nilai q serta Perhitungan Nilai Simpangan.

#### BAB II

#### **TINJAUAN PUSTAKA**

Tinjauan pustaka merupakan suatu kumpulan informasi yang berupa bukubuku, brosur-brosur, hasil penelitian sebelumnya dan sebagainya yang berhubungan dengan permasalahan yang akan dibahas. Selain hal-hal tersebut, acuan sebuah alat yang digunakan untuk mengurangi respon struktur akibat beban gempa juga akan diuraikan sebagaimana berikut ini.

#### 2.1 Tinjauan Umum

akibat gempa yang gedung yang rusak Banyak bangunan-bangunan disebabkan oleh tidak jelasnya prinsip disain bangunan tahan gempa yang dipakai. Hal ini yang dikategorikan sebagai kesalahan yang sangat mendasar. Prinsip disain ini adalah suatu hal yang sangat vital di dalaun era modern disain dan pelaksanaan bangunan tahan gempa. Prinsip ini dimulai dari bagaimana menentukan/mendisain beban gempa, bagaimana menentukan konfigurasi bangunan yang tepat bagaimana menentukan mekanisme goyangan (Sway Mechanism) yang dipakai, bagaimana mengoptimalkan prinsip pelesapan energi (Energy Dissipation) pada elemen-elemen struktur dan bagaimana memilih bahan dan melaksanakan pembangunan sehingga diperoleh bahan tepat serta perilaku elemen struktur yang daktail

Pada umumnya, struktur mempunyai kemampuan untuk menyerap/ melesapkan energi. Optimalisasi disipasi energi sangat penting agar sebagian input energi dapat dilepaskan dengan baik sehingga respon struktur dapat dikendalikan.

Salah satu kerusakan yang mungkin terjadi pada sebuah struktur adalah akibat adanya simpangan yang besar. Dimana salah satu cara memperkecil simpangan adalah dengan memberi peredam. Chopra (1995) menyatakan bahwa peredaman adalah proses pelesapan energi (*energy Dissipation*) oleh beberapa mekanisme yang bekerja secara bersamaan. Karena redaman berfungsi melesapkankan energi maka hal tersebut akan mengurangi respon struktur.

Nilai redaman struktur yang melekat pada struktur relatif kecil, sehingga untuk mengurangi respon gempa dipasang peredam tambahan (Chopra, 1995). Penggunaan peredam pada semua tingkat tidak praktis. Oleh karena itu digunakan satu peredam pada satu tingkat, yang memiliki efek hampir sama jika peredam tersebut dipasang pada semua tingkat (Gluck dan kawan-kawan, 1996).

#### 2.2 Magnetorheological Damper

Sebuah studi memeperlihatkan bahwa respon struktur terhadap gempa bumi dapat dikurangi secara signifikan seiring dengan bertambahnya nilai peredaman. Hasil tes juga memperlihatkan bahwa meskipun peredam dapat mengurangi respon struktur terhadap gempa, tetapi alat tersebut juga sangat tergantung pada temperatur lingkungan sekitar (Chang dan kawan-kawan, 1995).



Gambar 2.1 Skema MR Damper

(Spencer dan kawan-kawan, 1996)



Gambar 2.2 Skema pemasangan MR Damper

(Spencer dan kawan-kawan, 1996)

#### 2.3 Penelitian Sejenis Sebelumnya

Pada penelitian ini digunakan tinjauan pustaka penelitian yang dilakukan oleh Suprapti dan Novitasari (1999). Topik yang diambil oleh kedua peneliti ini adalah *Penempatan Posisi Effektif Redaman Tunggal Untuk Mengurangi Resiko 'Struktural Pounding' Pada Bangunan Bertingkat Lima*. Dalam penelitian tersebut peneliti mencoba mengurangi simpangan maksimum struktur untuk mengurangi resiko *structural pounding*. Beban gempa El Centro berupa riwayat waktu dipakai sebagai iu,put geturan dengan menggunakan peredam tunggal. Dengan demikian penempatan redaman yang efektif pada struktur bertingkat lima tersebut dapat diketah.ai. Penelitian ini menggunakan sebuah alat yang dinamakan *Magnetorheological Damper* yang berfungsi untuk mengurangi simpangan, nilai redaman yang dipakai sebesar 283,5 kg/(cm/sec) (ASCE Juornal of Engineering Mechanics, August 1996), kemudian dilakukan variasi letak yang paling efektif dari alat peredam tersebut dan hasil yang diperoleh dari penggunaan alat ini adalah penempatan posisi *MR Damper* pada tingkat ketiga merupakan letak yang paling efektif dibandingkan dengan variasivariasi yang lain.

#### **BAB III**

#### LANDASAN TEORI

Landasan Teori memuat dasar-dasar teori yang akan dipergunakan secara garis besar dan merupakan tuntunan yang digunakan untuk memecahkan masalah yang dihadapi. Bagian ini juga akan memuat model-model matematik dan penjabarannya.

#### 3.1 Sistem Berderajat Kebebasan Tunggal

Sistem dengan derajat kebebasan tunggal mempunyai satu koordinat yang diperlukan untuk menyatakan posisi suatu massa pada saat tertentu. Jumlah derajat kebebasan biasanya dapat dikaitkan dengan jumlah massa, artinya suatu struktur 5 tingkat misalnya akan mempunyai 5 massa dan mempunyai 5 derajat kekebasan dengan anggapan bahwa struktur berperilaku seperti *Shear Building*. Struktur dengan derajat kebebasan tunggal atau *single degree of freedom* (SDOF) berarti hanya akan mempunyai satu massa.

Di dalam menyelesaikan masalah dinamik, sebaiknya memakai metoda yang menghasilkan suatu analisa yang tersusun dan sistematik. Yang terutama dan barangkali yang paling penting dalam praktek analisa dinamis adalah menggambar sebuah diagram *free body* (benda bebas) dari sistem yang memungkinkan penulisan

11

besaran matematik dari sistem tersebut. Salah satu contoh yang dapat dipakai misalnya struktur yang diskemakan pada Gambar 3.1.

K

P(i)



Gambar 3.1 Gaya yang bekerja pada sistem kebebasan tunggal

Gambar 3.1 menunjukkan sistem struktur yang dimodelisasikan sebagai osilator sederhana (*simple oscillator*) dengan redaman liat (*viscous damping*). Pada gambar tersebut m dan k adalah massa dan konstanta pegas (*spring constant*) dari osilator dan c adalah koefisien redaman liat (*viscous damping coefficient*).

Gambar 3.1 (c), untuk menentukan gerak, dengan mempelajari perpindahan atau kecepatan massa m pada saat t untuk kondisi awal pada saat t=0. Hubungan analitis antara perpindahan y dan waktu t dapat diberikan berdasarkan Hukum Newton Kedua, yaitu:

$$F = m \ a, \tag{3.1}$$

dimana F adalah resultan gaya yang bekerja pada partikel massa m dan a adalah resultan percepatan.

Anggaplah sistem struktur yang dimodelisasikan tersebut sebagai osilator sederhana (simple oscillator) dengan redaman liat (viscous damping), seperti pada Gambar 3.1 (c). Pada gambar ini m dan k adalah massa dan konstanta pegas (spring coefficient) dari osilator dan c adalah koefisien redaman hat (viscous damping coefficient). Dengan cara seperti pada kondisi osilator tak teredam, dengan menggambar diagram free body (DFB) dan menggunakan Hukum Newton untuk mendapatkan persamaan differensial gerak (differential equation oscillator) dan gaya inersia mÿ, dimana ÿ adalah percepatan sehingga dapat digunakan sebuah alternatif pendekatan untuk mendapatkan persamaan kesetimbangan dinamis (dynamic equilibrium) vaitu menggunakan prinsip d'Alembert, vang menyatakan bahwa sebuah sistem dapat dibuat dalam keadaan kesetimbangan dinamis dengan menambahkan sebuah gaya fiktif pada gaya-gaya luar yang biasanya dikenal sebagai gaya inersia. Gambar 3.1 (d) memperlihatkan DFB dengan gaya inersia mÿ yang sama dengan massa dikalikan percepatan dan selalu diberikan arah negatif terhadap koordinat vang bersangkutan. Penggunaan prinsip d'Alembert memungkinkan pemakai persamaan kesetimbangan untuk mendapatkan persamaan gerak. Dengan memperhatikan Gambar 3.1 (d), jumlah gaya-gaya pada arah y memberikan

13

persamaan differensial gerak (differential equation of motion) untuk suatu sistem persamaan derajat kebebasan tunggal (SDOF) yaitu :

$$p(t) - ky - c\dot{y} = m\ddot{y} \tag{3.2}$$

# 3.2 Sistem Berderajat Kebebasan Banyak

Secara umum struktur bangunan gedung tidak selalu dapat dinyatakan dengan suatu sistem yang mempunyai derajat kebebasan tunggal (SDOF). Umumnya struktur bangunan gedung justru mempunyai derajat kebebasan banyak *(Multi Degree of Freedom)*.

Pada struktur bangunan gedung bertingkat banyak, umumnya massa struktur dapat digumpalkan (*Lumped mass*) pada tiap-tiap tingkat. Banyaknya derajat kebebasan berasosiasi dengan jumlah massa. Untuk tinjauan struktur bidang, pada struktur yang mempunyai *n* tingkat, akan mempunyai *n* derajat kebebasan dan mempunyai *n mode*, bila struktur ruang (3 dimensi) maka struktur yang mempunyai *n* tingkat, akan mempunyai 3 derajat kebebasan dan mempunyai *3 mode*. Pada prinsip bangunan geser (*Shear Building*) setiap massa hanya terpusat pada bidang lantai, balok pada lantai kaku tak hingga dibandingkan dengan kolom dan deformasi dari struktur tidak dipengaruhi gaya aksial yang terjadi pada kolom.

Gambar 3.2 (b) merupakan model-model yang ekivalen untuk bangunan geser sedangkan model matematisnya terdapat pada Gambar 3.2 (a). Selanjutnya didapat persamaan-persamaan gerak dari bangunan berlantai tiga yang berasal dari diagram



Gambar 3.2 (a) Model Matematik



Gambar 3.2 (b) Model MDOF



Gambar 3.2 (c) Model Kesetimbangan Gaya

Persamaan differensial untuk bangunan diatas disusun berdasarkan atas goyangan struktur menurut mode pertama. Berdasarkan pada prinsip kesetimbangan dinamik pada diagram *free body* maka diperoleh : Persamaan differensial untuk bangunan diatas disusun berdasarkan atas goyangan struktur menurut mode pertama. Berdasarkan pada prinsip kesetimbangan dinamik pada diagram *free body* maka diperoleh :

$$m_1 \ddot{y}_1 + k_1 y_1 + c_1 \dot{y}_1 - k_2 (y_2 - y_1) - c_2 - (\dot{y}_2 - \dot{y}_1) - p_1(t) = 0$$
(3.4a)

$$m_2 \ddot{y}_2 + k_2 (y_2 - y_1) + c_2 (\dot{y}_2 - \dot{y}_1) - k_3 (y_3 - y_2) - c_3 (\dot{y}_3 - \dot{y}_2) - p_2 (t) = 0$$
(3.4b)  

$$m_3 \ddot{y}_3 + k_3 (y_3 - y_2) + c_3 (\dot{y}_3 - \dot{y}_2) - p_3 (t) = 0$$
(3.4c)

Dari persamaan di atas, tampak bahwa untuk memperoleh kesetimbangan dinamik suatu massa yang ditinjau ternyata dipengaruhi oleh kekakuan, redaman dan simpangan massa sebelum dan sesudah massa/tingkat yang ditinjau. Persamaan differensial dengan sifat-sifat ini disebut *coupled equation*, karena persamaan-persamaan tersebut akan tergantung satu sama lain. Penyelesaian dari persamaan *coupled* harus dilakukan secara simultan, artinya penyelesaian yang melibatkan seluruh persamaan yang ada.

Persamaan diatas kemudian disusun menurut parameter yang sama (percepatan, kecepatan dan simpangan) akan diperoleh :

$$m_1 \ddot{y}_1 + (c_1 + c_2) \dot{y}_1 - c_2 \dot{y}_2 + (k_1 + k_2) y_1 - k_2 y_2 = p_1(t)$$
(3.5a)

$$m_2 \ddot{y}_2 - c_2 \dot{y}_1 + (c_2 + c_3) \dot{y}_2 - c_3 \dot{y}_3 - k_2 y_1 + (k_2 + k_3) y_2 - k_3 y_3 = p_2(t)$$
(3.5b)

$$m_3 \ddot{y}_3 - c_3 \dot{y}_2 + c_3 \dot{y}_3 - k_3 y_2 + k_3 y_3 = p_3(t)$$
(3.5c)

Selanjutnya persamaan (3.5) lebih tepat ditulis dengan notasi matriks sebagai berikut:

$$[M]{\ddot{y}} + [C]{\dot{y}} + [K]{y} = 0$$
(3.6)

Dimana [M][C][K], berturut-turut adalah matriks massa, redaman dan kekakuan,

$$\begin{bmatrix} M \end{bmatrix} = \begin{bmatrix} m_1 & 0 & 0 \\ 0 & m_2 & 0 \\ 0 & 0 & m_3 \end{bmatrix}$$
(3.7a)

$$\begin{bmatrix} K \end{bmatrix} = \begin{bmatrix} k_1 + k_2 & -k_2 & 0 \\ -k_2 & k_2 + k_3 & -k_3 \\ 0 & -k_3 & k_3 \end{bmatrix}$$
(3.7b)

$$[C] = \begin{bmatrix} c_1 + c_2 & c_2 & c_3 \\ -c_2 & c_2 + c_3 & -c_3 \\ 0 & -c_3 & c_3 \end{bmatrix}$$
(3.7c)

Sedangkan  $\{\ddot{v}\}, \{\dot{v}\}, \{v\}$  dan  $\{P(t)\}$  berturut-turut adalah vektor percepatan, vektor kecepatan, vektor simpangan dan vektor beban dalam bentuk

$$\{ \ddot{Y} \} = \begin{cases} \ddot{y}_1 \\ \ddot{y}_2 \\ \ddot{y}_3 \end{cases}, \\ \{ \dot{Y} \} = \begin{cases} \dot{y}_1 \\ \dot{y}_2 \\ \dot{y}_3 \end{cases}, \\ \{ Y \} = \begin{cases} y_1 \\ y_2 \\ y_3 \end{cases} dan \{ p(t) \} = \begin{cases} p_1(t) \\ p_2(t) \\ p_3(t) \end{cases}$$
(3.8)

#### Mode Shape dan Frekuensi

Suatu struktur umumnya akan bergerak akibat adanya pembebanan dari luar maupun adanya suatu nilai awal (*initial condition*). Misalnya suatu massa ditarik sedemikian rupa sehingga mempunyai simpangan awal sebesar  $y_n$  dan apabila gaya tarik tersebut dilepas kembali maka massa akan bergerak. Peristiwa gerakan massa tersebut dapat dikelompokkan ke dalam getaran bebas (*free vibration system*). Gerakan suatu massa disebabkan adanya pembebanan dari luar misalnya beban angin, beban gempa dan lainnya. Maka gerakan massa dikelompokkan sebagai gerakan dipaksa (forced vibration system). Untuk menyederhanakan permasalahan anggapan bahwa massa bergetar bebas (free vibration system) akan sangat membantu untuk menyelesaikan analisis dinamik struktur.

Persamaan differensial gerak pada getaran bebas pada struktur adalah :

$$[M]{\dot{y}} + [C]{\dot{y}} + [K]{y} = 0$$
(3.9)

Frekuensi sudut pada struktur dengan redaman (*damped frequency*) nilainya hampir sama dengan frekuensi sudut pada struktur tanpa redaman, bila nilai rasio redaman (*damping ratio*) kecil. Maka persamaan 3.9 akan menjadi :

$$[M]{\ddot{v}} + [K]{v} = 0 \tag{3.10}$$

Persamaan diatas diasumsikan pada getaran bebas, maka vektor y berbentuk

$$\{y\} = \{\phi\} z(t)$$
(3.11a)

$$\{\ddot{\mathbf{y}}\} = \{\phi\} \ddot{z}(t) \tag{3.11b}$$

 $\{\Phi\}$  adalah vektor *mode shape* yaitu suatu vektor yang tidak berdimensi, yang memiliki paling sedikit sebuah elemen yang tidak sama dengan nol. Sedangkan z dan z adalah vektor perpindahan dan vektor percepatan. Jika persamaan (3.11) dimasukkan dalam persamaan (3.10), maka akan didapatkan :

$$[M]\{\phi\}\ddot{z}(t) + [K]\{\phi\}z(t) = 0$$
(3.12)

[M]dan [K] adalah matriks konstan dan pada sebuah hipotesis disebutkan, bahwa  $\{\Phi\}$  juga merupakan matriks konstan, maka akan didapatkan

$$\ddot{z}(t) + (\text{constanta}) \ z(t) = 0 \tag{3.13}$$

Jika konstanta diatas adalah  $\omega_n^2$  (undamped natural frequncy), maka persamaan (3.13) menjadi

$$\ddot{z}(t) + \omega_n^2 z(t) = 0 \tag{3.14}$$

Persamaan diatas diselesaikan dengan :

$$z(t) = A\sin\omega_n t \tag{3.15}$$

Dengan demikian maka persamaan (3.11) akan menjadi

$$\{y\} = \{\phi\} A \sin \omega t \tag{3.16a}$$

$${\ddot{\mathbf{y}}} = -\omega^2 {\phi} A \sin \omega \mathbf{t}$$
(3.16b)

Persamaan (3.16) dimasukkan ke dalam persamaan (3.12) didapatkan

$$(-\omega^{2}[M]\{\phi\} + [K]\{\phi\}A\sin\omega t) = 0$$
(3.17)

Persamaan (3.17) akan ada penyelesaiannya (nontrivial solution), jika A dan  $\omega$  keduanya adalah tidak sama dengan nol, sehingga

$$[K] - \omega^2 [M] \{\phi\} = 0$$
 (3.18)

Persamaan (3.18) akan ada penyelesaianya atau suatu sistem akan ada amplitudo yang terbatas apabila nilai determinan  $([K] - \omega^2 [M]])$  adalah nol maka :

$$\left[K\right] - \omega^2[M] = 0 \tag{3.19}$$

Nilai determinan pada persamaan (3.19) akan menghasilkan suatu persamaan polinomial dengan derajat ke-n yaitu $\omega_n$ , kemudian nilai  $\omega_n$  disubstitusikan persamaan (3.18) maka akan menghasilkan nilai mode shape  $\{\phi\}_i$ . Indeks *i* menunjukkan ragam/pola goyangan.

# 3.3 Persamaan Gerak akibat Beban Gempa

Beban gempa adalah suatu beban yang unik. Umumnya beban yang bekerja pada struktur dalam satuan gaya, tetapi beban gempa berupa percepatan tanah, beban lain biasanya statis, tidak berubah pada periode waktu yang pendek. Tetapi beban gempa adalah beban yang dinamis yang berubah dengan sangat cepat dalam periode waktu yang pendek, katakan beban gempa dapat berubah setiap detik. Beban lain biasanya bekerja pada arah vertikal, tetapi beban gempa bekerja secara simultan pada arah vertikal maupun horizontal bahkan beban gempa dapat berupa putaran, (Hu dan kawan-kawan, 1996).

Analisis yang didasarkan pada riwayat waktu dapat dipergunakan untuk memperkirakan besarnya jarak pemisah antara bangunan yang berdekatan didasarkan pada simpangan maksimum relatif. Pada tugas akhir ini dipakai analisa riwayat waktu gempa El Centro, 1940, seperti contoh pada Gambar 3.3.



Gambar 3.3 Percepatan Tanah Gempa El Centro, 1940 (Chopra, 1995)
Pada daerah rawan gempa, masalah prinsip yang perlu diperhatikan adalah perilaku struktur bawah akibat beban gempa. Perpindahan tanah dinotasikan dengan  $y_{g}(t)$ , sedangkan antara massa dengan tanah dinotasikan dengan y(t), sehingga perpindahan total yang terjadi adalah (Chopra, 1995).

$$y_{tot}(t) = y(t) + y_g(t)$$
 (3.20)

Persamaan gerakan struktur yang dikenai beban gempa, dapat diturunkan melalui suatu pendekatan yang sama seperti pada persamaan gerakan struktur berderajat kebebasan tunggal, Gambar 3.4 (a), sedangkan model matematisnya pada Gambar 3.4 (b).

Dengan menggunakan konsep kesetimbangan dinamis, dari diagram *free body* 3.4 (c), maka akan didapatkan persamaan

$$m\ddot{y} + c\dot{y} + ky = -m\ddot{y}_{g}(t) \tag{3.21}$$



Gambar 3.4 Sistem derajat kebebasan tunggal dengan beban gempa

Dapat dibuktikan bahwa solusi coba-caba (trial error)  $y = A \sin \omega t$  atau  $y = B \cos \omega t$  tidak akan memenuhi persamaan (3.2). Namun, fungsi exponensial  $y = Ce^{pt}$  memenuhi persamaan ini.

Dengan mensubstitusi fungsi dari persamaan (3.2) didapat persamaan

$$mCp^{2} e^{pt} + cCp e^{pt} + kC e^{pt} = 0$$
(3.22)

dimana setelah menghilangkan faktor yang sama, didapatkan persamaan yang disebut persamaan karakteristik (the characteristic equation) untuk sistem, yaitu

$$mp^2 + cp + k = 0 \tag{3.23}$$

Akar dari persamaan kuadrat ini adalah

$$p_1, p_2 = -\frac{c}{2m} \pm \sqrt{\left(\frac{c}{2m}\right)^2 - \frac{k}{m}}$$
 (3.24)

schingga solusi umum (general solution) dari persamaan (3.2) didapat dari superposisi dua solusi yang mungkin, yaitu

$$y(t) = C_1 e^{p_1 t} + C_2 e^{p_2 t}$$
(3.25)

dimana  $C_1$  dan  $C_2$  adalah kontanta integrasi yang ditentukan dari kondisi awal *(initial conditions)*.

Bentuk akhir dari persamaan (3.2) tergantung pada tanda dari besaran di bawah tanda akar pada persamaan (3.24). Tiga bentuk dapat ditemukan ; besaran di bawah tanda akar dapat sama dengan nol, positif atau negatif. Kondisi dimana besaran di bawah tanda akar sama dengan nol akan diselesaikan dahulu. Redaman yang terjadai pada kondisi ini disebut redaman kritis (critical damping).

Tiga bentuk yang dapat ditemukan dari persamaan tersebut adalah :

## 1. Sistem Redaman Kritis (Critically Damped System)

Untuk suatu sistem yang berosilasi dengan redaman kritis *(critical damping)* seperti definisi di atas, ekspresi di bawah tanda akar pada persamaan (3.24) sama dengan nol, yaitu :

$$\left(\frac{C_{cr}}{2m}\right)^2 - \frac{k}{m} = 0 \tag{3.26}$$

atau

$$C_{cr} = 2\sqrt{km} \tag{3.27}$$

dimana  $C_{cr}$  menyatakan harga redaman kritis (critical damping value).

Karena frekuensi natural dari sistem tak teredam dinyatakan oleh  $\omega = \sqrt{k/m}$ , maka koefisien redaman kritis (critical damping coefficient) yang diberikan oleh persamaan (3.27) dapat juga dinyatakan dengan notasi,

$$C_{cr} = 2m\omega = \frac{2k}{\omega}$$
(3.28)

Harga-harga akar persamaan karakteristik dari sistem redaman kritis, adalah sama dan berasal dari persamaan (3.24) yaitu.

$$p_1 = p_2 = -\frac{C_{cr}}{2m}$$
(3.29)

Karena kedua akar tersebut sama, maka solusi umum yang diberikan oleh persamaan (3.25) mempunyai satu konstanta integrasi, sebab itu terdapat satu solusi independen yaitu,

$$y_1(t) = C_1 e^{-(c_{\alpha}/2m)t}$$
 (3.30)

Solusi independen yang lain didapat dengan menggunakan fungsi,

$$y_2(t) = C_2 \operatorname{te}^{-(c_{\alpha}/2m)t}$$
 (3.31)

Persamaan ini dapat diuji dan akan memenuhi persamaan diferensial (3.2). Solusi umum untuk sistem redaman kritis diberikan oleh superposisi dua solusi di atas



Gambar 3.5 Respon Getar Bebas dengan Redaman Kritis

## 2. Sistem Redaman Superkritis (Overdamped System)

Pada sistem redaman superkritis (overdamped system), koefisien redamannya lebih besar dari sistem redaman kritis yaitu,

$$C \rangle C_{cr}$$
 (3.33)

Oleh karena itu besaran di bawah tanda dari persamaan (3.24) adalah positif, jadi kedua akar dari persamaan karakteristik adalah riel dan solusinya diberikan oleh persamaan (3.25). Perlu diperhatikan bahwa, untuk sistem redaman superkritis dan redaman kritis, gerakan yang terjadi bukan osilasi, namun besar osilasi mengecil secara eksponensial dengan waktu menuju nol. Gambar 3.5 menyatakan grafik respon dari osilator sederhana dengan redaman kritis.

(3.32)

Respon dari sistem redaman superkritis mirip dengan gerak sistem redaman kritis pada 3.5, tetapi diperlukan lebih banyak waktu untuk kembali ke posisi netral bila redaman bertambah.



Gambar 3.6 Respon Getaran Bebas untuk Sistem redaman Superkritis

### 3. Sistem Redaman Subkritis (Underdamped System)

Bila harga koefisien redaman lebih kecil dari harga kritis ( $C \langle C_{er}$ ), yang mana akan terjadi bila besaran di bawah tanda akar negatif, maka harga akar-akar dari persamaan karakteristik (3.24) adalah bilangan kompleks, jadi

$$p_1, p_2 = -\frac{c}{2m} \pm i \sqrt{\frac{k}{m} - \left(\frac{c}{2m}\right)^2}$$
 (3.34)

dimana  $i = \sqrt{-1}$  adalah unit imajiner. Untuk hal ini perlu digunakan persamaan Euler yang menghubungkan fungsi-fungsi exponensial dengan trigonometrik yaitu,

$$e^{ix} = \cos x + i \sin x,$$
  

$$e^{ix} = \cos x - i \sin x,$$
(3.35)

Dengan mensubstitusi akar-akar  $p_1$  dan  $p_2$  dari persamaan (3.34) ke dalam persamaan (3.25) dan dengan menggunakan persamaan (3.35) akan memberikan bentuk solusi umum dari sistem redaman subkritis *(Underdamped System)*.

$$y(t) = e^{-(c/2m)t} (A\cos\omega_{\rm D}t + B\sin\omega_{\rm D}t)$$
(3.36)

di mana A dan B adalah konstanta integrasi dan  $\omega_D$  adalah frekuensi redaman dari sistem yang diberikan oleh,

$$\omega_{D} = \sqrt{\frac{k}{m} - \left(\frac{c}{2m}\right)^{2}} \tag{3.37}$$

atau

$$\omega_{\rm D} = \omega \sqrt{1 - \xi^2} \tag{3.38}$$

Hasil terakhir ini didapatkan sesudah mensubstitusikan pada persamaan (3.37), besaran frekuensi natural tak teredam (Undamped Natural Frekuensi),

$$\omega = \sqrt{\frac{k}{m}}$$
(3.39)

dan ratio redaman (damping ratio) dari sistem yang didefinisikan sebagai,

$$\xi = \frac{C}{C_{cr}} \tag{3.40}$$

Kemudian bila ditentukan kondisi awal *(initial conditions)* dari perpindahan dan kecepatan adalah  $y_o$  dan  $v_o$ , maka konstanta integrasi dapat dihitung kemudian disubstitusikan ke persamaan (3.36) memberikan,

$$y(t) = e^{-\xi\omega t} \left( y_o \cos \omega_D t + \frac{v_o + y_0 \xi \,\omega}{\omega_D} \sin \omega_D t \right)$$
(3.41)

Alternatif lain penulisan persamaan ini adalah,

$$y(t) = Ce^{-\xi\omega t} \cos(\omega_D t - \alpha)$$
(3.42)

dimana

$$C = \sqrt{y_o^2 + \frac{(v_o + y_o \xi \omega)^2}{\omega_D^2}}$$
(3.43)

dan

$$\tan \alpha = \frac{\left(v_o + y_o \xi \omega\right)}{\omega_D y_o} \tag{3.44}$$

Redaman grafik dari respon pada suatu sistem redaman subkritis (undamped system) dengan perpindahan awal (initial displacement)  $y_o$ , tetapi mulai dengan kecepatan nol ( $v_o = o$ ) adalah seperti Gambar 3.7. Terlihat pada gambar ini bahwa gerak adalah osilasi tapi tidak periodik. Amplitudo dari getaran tidak konstan selaman gerakan tetapi berkurang setiap siklus, namun osilasi itu mempunyai interval waktu yang sama. Interval waktu ini disebut periode redaman getaran (damped period of vibration) dan diberikan oleh persamaan (3.38).

$$T_{D} = \frac{2\pi}{\omega_{D}} = \frac{2\pi}{\omega_{\sqrt{1-\xi^{2}}}}$$
(3.45)

Harga dari koefisien redaman untuk struktur adalah jauh lebih kecil dari koefisien redaman kritis dan biasanya diantara 2 sampai dengan 20 % dari harga redaman kritis. Substitusi harga maksimum  $\xi = 0,20$  pada persamaan (3.38) akan diperoleh,

$$\omega_D = 0.98\,\omega\tag{3.46}$$

teredam. Jadi dalam praktek, frekuensi natural dari sistem teredam dapat diambil sama dengan frekuensi natural sistem tak teredam.



Gambar 3.7 Respon Getaran Bebas untuk Sistem Redaman Subkritis

### 3.3.1 Filosofi Dasar Penyerapan Energi

Sebuah sistem pegas-massa  $k_2, m_2$  pada Gambar 3.8 yang diselaraskan dengan frekuensi gaya eksitasi sedemikian hingga  $\omega^2 = k_2 / m_2$ , akan berfungsi sebagai penyerap energi dan mereduksi gerak massa utama  $m_1$  menjadi nol.Dengan substitusi :

$$\omega_1^2 = \frac{k_1}{m_1}, \, \omega_2^2 = \frac{k_2}{m_2}, \, \mu = \frac{m_1}{m_2}$$
(3.47)

dan asumsi bahwa gerak adalah harmonik, maka persamaan untuk amplitudo  $X_1$  dapat dibuktikan sama dengan :

$$\frac{X_1 k_1}{Fo} = \frac{\left[1 - \left(\frac{\omega}{\omega_2}\right)^2\right]}{\left[1 + \frac{k_2}{k_1} - \left(\frac{\omega}{\omega_1}\right)^2\right] \left[1 - \left(\frac{\omega}{\omega_2}\right)^2\right] - \frac{k_2}{k_1}}$$
(3.48)



Gambar 3.8 Penyerapan Energi

Diketahui bahwa  $k_2/k_1 = \mu (\omega_2/\omega_1)^2$ , karena sistem mempunyai dua derajat kebebasan, maka ada dua frekuensi natural. Sejauh ini tidak ada yang dikatakan tentang ukuran massa penyerap. Pada  $\omega = \omega_2$ , amplitudo  $X_1 = 0$ , tetapi massa penyerap mengalami amplitudo yang sama dengan

$$X_2 = -\frac{Fo}{k_2} \tag{3.49}$$

Karena gaya yang bekerja pada  $m_2$  adalah

$$k_2 X_2 = \omega^2 m_2 X_2 = -Fo \tag{3.50}$$

maka sistem penyerap  $k_2, m_2$  mengadakan gaya yang sama besar dan berlawanan arah dengan gaya pengganggu. Jadi ukuran  $k_2$  dan  $m_2$  tergantung pada nilai  $X_2$ yang diperbolehkan.

#### 3.3.2 Jenis-jenis Simpangan dan Efeknya Terhadap Kerusakan

#### 1. Simpangan Relatif

Simpangan ini adalah simpangan yang dihitung relatif terhadap lantai 1. Simpangan relatif ini mempunyai efek yang berpengaruh terhadap *Struktural Pounding*. Masalah *Structural Pounding* ini biasa terjadi pada bangunan yang berdekatan untuk memaksimalkan penggunaan lahan, hal ini dapat menyebabkan kerusakan yang fatal pada bangunan bahkan dapat menyebabkan kerusakan total. Hal ini dapat dicegah dengan memperhitungkan jarak antara dua bangunan yang saling berdekatan. Jarak tersebut dapat dihitung dengan menghitung simpangan horisontal plastik pada setiap tingkat. Pada simpangan ini dihitung relatif terhadap lantai 1 yaitu  $(y_a - y_g)$ .



Gambar 3.9 Model Simpangan Relatif

2. Simpangan Antar Tingkat (Inter Story Drift)

Simpangan ini adalah simpangan yang terjadi pada tiap tingkat, simpangan ini dihitung dengan cara simpangan lantai atas dikurangi simpangan lantai bawah. Inter

Story Drift terjadi karena cacatnya perencanaan konfigurasi bangunan yang berhubungan dengan kekakuan struktur. Terjadinya distribusi kekakuan struktur secara vertikal tidak merata yang menyebabkan adanya suatu tingkat yang lemah. Inter Story Drift yang berlebihan sangat mungkin terjadi pada daerah tingkat lemah, oleh karena itu kerusakan struktur akibat ini sangat sering terjadi. Dihitung dengan  $(y_a - y_b)$ .



Gambar 3.10 Model Simpangan Antar Tingkat

### 3.4 Persamaan Diferensial Independen (Uncoupling)

Struktur pada kondisi standar yang mempunyai n derajat kebebasan akan mempunyai n modes. Pada prinsip ini, masing-masing mode akan memberikan kontribusi pada simpangan horizontal tiap-tiap massa. Simpangan massa ke-i atau  $Y_i$ dapat diperoleh dengan menjumlahkan pengaruh atau kontribusi tiap-tiap modes. Kontribusi mode ke-j terhadap simpangan horizontal massa ke-i tersebut dinyatakan dalam produk antara  $\phi_{ij}$  dengan suatu model amplitudo  $Z_j$ . Yang dinyatakan dalam bentuk:

$$\{Y\} = [\phi]\{Z\}$$
(3.51a)

$$\{\dot{Y}\} = [\phi]\{\dot{Z}\}$$
 (3.51b)

$$\{\ddot{Y}\} = [\phi]\{\ddot{Z}\}$$
 (3.51c)

Subtitusi persamaan (3.51) kedalam persamaan (3.21) akan diperoleh :

$$[M][\phi]\{\ddot{Z}\}+[C][\phi]\{\dot{Z}\}+[K][\phi]\{Z\}=-[M]\{1\}\ddot{y}, \qquad (3.52)$$

Apabila persamaan (3.52) dikalikan dengan *transpose* suatu *mode*  $\{\phi\}^T$ , maka  $\{\phi\}^T[M][\phi]\{\ddot{Z}\}+\{\phi\}^T[C][\phi]\{\dot{Z}\}+\{\phi\}^T[K][\phi]\{Z\}=-\{\phi\}^T[M]\{1\}\ddot{y}$  (3.53) Misal, diambil sruktur yang mempunyai 3 derajat kebebasan, maka suku pertama persamaaan gerak (3.53) berbentuk :

$$\begin{bmatrix} \phi_{11} & \phi_{21} & \phi_{31} \end{bmatrix} \begin{bmatrix} m_1 & 0 & 0 \\ 0 & m_2 & 0 \\ 0 & 0 & m_3 \end{bmatrix} \begin{bmatrix} \phi_{11} \\ \phi_{21} \\ \phi_{31} \end{bmatrix} \begin{bmatrix} \ddot{Z}_1 \\ \ddot{Z}_2 \\ \ddot{Z}_3 \end{bmatrix}$$
(3.54)

Dengan catatan persamaan diatas dalam hubungan orthogonal,  $\vec{x} = \vec{y}$ . Pada kondisi ortogonal apabila  $\vec{x}$  tidak sama dengan  $\vec{y}$  maka perkalian matriks sama dengan nol.

$$\boldsymbol{\phi}_{\boldsymbol{m}}^{T} \left[ M \right] \boldsymbol{\phi}_{\boldsymbol{n}} = 0 \tag{3.55 a}$$

$$\boldsymbol{\phi}_{\boldsymbol{m}}^{T} \left[ \boldsymbol{K} \right] \boldsymbol{\phi}_{\boldsymbol{n}} = 0 \tag{3.55b}$$

$$\boldsymbol{\phi}_{\boldsymbol{m}}^{T}\left[C\right]\boldsymbol{\phi}_{\boldsymbol{n}}=0 \tag{3.55c}$$

Untuk mode ke n maka secara umum persamaan (3.54) dapat ditulis dengan :

$$\{\phi\}_{n}^{T}[M]\{\phi\}_{n}\ddot{Z}_{n}$$
 (3.56)

Persamaan (3.53) pada suku ke-2 dan ke-3 diubah seperti pada persamaan (3.56), maka persamaan akan menjadi :

$$\{\phi\}_{n}^{T}[M][\phi]_{n}\{\ddot{Z}\}_{n}+\{\phi\}_{n}^{T}[C][\phi]_{n}\{\dot{Z}\}_{n}+\{\phi\}_{n}^{T}[K][\phi]_{n}\{Z\}_{n}$$

$$= -\{\phi\}_{\mu}^{I}[M]\{1\}\tilde{y}_{\mu}$$
 (3.57)

Persamaan (3.57) adalah persamaan deferensial yang bebas/independent antara satu dengan yang lain. Persamaan tersebut diperoleh setelah diterapkan hubungan orthogonal, baik orthogonal matriks massa, redaman, kekakuan. Dengan demikian untuk *n* derajat dengan *n* persamaan diferensial yang dahulu bersifat coupling sekarang menjadi independent/uncoupling. Dengan sifat-sifat tersebut maka persamaan diferensial dapat diselesaikan untuk setiap pengaruh mode.

Berdasarkan persamaan (3.57) maka dapat didefinisikan suatu generalisasi massa (generalized mass), redaman dan kekakuan sebagai berikut,

$$M_{n}^{*} = (\phi)_{n}^{T} [M] \{\phi\}_{n}$$
(3.58 a)

$$C_{n}^{*} = (\phi)_{n}^{T} [C] \{\phi\}_{n}$$
(3.58b)

$$K_{m}^{\bullet} = (\phi)_{n}^{T} [K] \{\phi\}_{n}$$
(3.58c)

Dengan definisi seperti persamaan (3.58) maka persamaan (3.57) akan menjadi:

$$M_{n}^{*} \ddot{Z}_{n} + C_{n}^{*} \dot{Z}_{n} + K_{m}^{*} Z_{n} = -P_{n}^{*} \ddot{y}_{t}$$
(3.59)

Dengan,

$$P_{n}^{*} = \{\phi\}_{n}^{T}[M]\{1\}$$
(3.60)

Terdapat suatu hubungan bahwa :

$$\xi_n = \frac{C_n^*}{C_{cr}^*} = \frac{C_n^*}{2M_n^*\omega_n}$$
, maka  $\frac{C_n^*}{M_n^*} = 2\xi_n\omega_n$  (3.61a)

$$\omega_n^2 = \frac{K_n^*}{M_n^*} \quad \text{dan} \quad \Gamma_n = \frac{P_n}{M_n^*} \tag{3.61b}$$

Dengan hubungan-hubungan seperti pada persamaan (3.61) maka persamaan (3.60) akan menjadi :

$$\ddot{Z}_n + 2\xi_n \omega_n \dot{Z}_n + \omega_n^2 Z_n = -\Gamma_{nt} \ddot{y}_t$$
(3.62)

Dan persamaan (3.63) sering disebut dengan participasi setiap mode mode participation factor.

$$\Gamma = \frac{P_n}{M_n^*} = \frac{\{\phi\}_n^t [M]\{l\}}{\{\phi\}_n^t [M]\{\phi\}_n}$$
(3.63)

Selanjutnya persamaan (3.62) juga dapat ditulis menjadi :

$$\frac{\ddot{Z}_n}{\Gamma_n} + 2\xi_n \frac{\dot{Z}_n}{\Gamma_n} + \omega_n^2 \frac{Z_n}{\Gamma_n} = -\ddot{y}_i$$
(3.64)

apabila diambil suatu notasi bahwa :

$$\ddot{q}_n = \frac{\ddot{Z}_n}{\Gamma_n}, \dot{q} = \frac{\dot{Z}_n}{\Gamma_n} \, \mathrm{dan} \, q = \frac{Z_n}{\Gamma_n}$$
(3.65)

Maka persamaan (3.64) menjadi :

$$\ddot{q}_n + 2\xi_n \omega_n \dot{q}_n + \omega_n^2 q_n = -\Gamma_n \ddot{y}_i \tag{3.66}$$

Persamaan (3.66) adalah persamaan diferensial yang *independent* karena persamaan tersebut hanya berhubungan dengan tiap-tiap *mode*.

Nilai partisipasi setiap *mode* dapat dihitung dengan mudah setelah koordinat setiap *mode*  $\phi_{nm}$  telah diperoleh. Nilai  $q, \dot{q}$  dan  $\ddot{q}$  dapat dihitung dengan integrasi secara numerik.apabila nilai tersebut telah diperoleh maka nilai  $Z_n$  dapat dihitung.

#### 3.5 Respon terhadap Beban Gempa

Dengan gerakan yang disebabkan adanya beban gempa dapat diselesaikan dengan persamaan (3.66). Nilai q(t) dapat diperoleh dengan membandingkan antara persamaan (3.66) dengan persamaan gerakan *mode* ke-*n* sistem dari SDOF. Sistem SDOF mempunyai frekuansi natural (*natural frequency*) ( $\omega_n$ ) dan rasio redaman ( $\xi$ ) *mode* ke-*n* dari sistem MDOF, dengan n = 1, 2, 3, ..., n

Nilai yang akan dicari adalah  $q_n(t)$ , dan misalnya dipakai metode central difference maka proses integrasi adalah sebagai berikut. Pada metode central difference, diperoleh hubungan awal bahwa:

#### **BAB IV**

#### **METODE PENELITIAN**

Metode penelitian adalah tata cara pelaksanaan penelitian yang diuraikan menurut suatu urutan yang sistematis. Metode yang dipergunakan dalam penelitian tugas akhir ini meliputi pengumpulan data, pengolahan data dan pengujian yang akan dilakukan, sebagaimana yang akan diuraikan berikut ini.

#### 4.1 Data yang Diperlukan

Penelitian tugas akhir ini menggunakan suatu model *shear building* yang paling sederhana, untuk mempermudah melihat perbedaan hasil yang akan diteliti. Pengumpulan data tata letak dan fungsi struktur.

- Struktur yang ditinjau menggunakan *time history* dari gempa El Centro(1940), yang diambil dari buku *Dynamics of Structures* oleh Chopra, (1995).
- Struktur merupakan suatu model dari shear building dengan 5 mode dengan massa dan kekakuan yang telah ditentukan, yang diambil dari buku Elements of Structural Dynamics oleh Berg, 1988.
- 3. Struktur berada diatas tanah keras.

### 4.2 Pengolahan Data

Setelah semua data ditentukan, selanjutnya dilakukan pengolahan dan analisis data dengan langkah-langkah sebagai berikut:

- 1. menentukan matrik massa [M] dan kekakuan kolom [K] tiap tingkat,
- 2. membuat persamaan eigenproblem untuk menghitung mode shape (\u00e9j),
- 3. mengubah tata letak redaman pada tiap-tiap tingkat dan menentukan matrik redaman [C],
- 4. menghitung matrik massa efektif [M\*] dan matrik kekakuan efektif [K\*],
- 5. menghitung matrik redaman efektif [C\*], yang kemudian hanya digunakan matrik redaman diagonal efektif,
- 6. menghitung frekuensi sudut ( $\omega$ ),
- 7. menghitung nilai partisipasi faktor ( $\Gamma$ ),
- 8. menghitung rasio redaman  $(\xi)$ ,
- 9. mencari nilai q,
- 10. menghitung simpangan horizontal y(t).

#### 4.3 Pengujian

Dalam tugas akhir ini pengujian yang dilakukan mencakup pengaruh pengunaan Magnetorheological damper terhadap nilai simpangan yang terjadi, sehingga dengan penggunaan alat peredam tersebut diharapkan bangunan tingkat tinggi dapat terhindar dari simpangan yang besar yang dapat mengakibatkan keruntuhan bangunan. Peredam yang digunakan pada tugas akhir ini adalah peredam ganda yaitu sebesar 283,5 kg/(cm/sec) untuk satu buah redaman.

Pengujian data menggunakan program komputer untuk mempermudah pengujian dan ketepatan perhitungan. Program komputer yang digunakan adalah Mat Lab untuk mengolah data dan Excel untuk mengolah grafik.

| (4.1)  |
|--------|
| (4.1)  |
|        |
| (4.2)  |
|        |
| (4.3)  |
|        |
| (4.4)  |
|        |
| (4.5)  |
|        |
| (4.6)  |
|        |
| (4.7)  |
| 、      |
| (4.8)  |
|        |
| (4.9)  |
|        |
| (4.10) |
|        |

| Tabel 4.1 Pengujian terhadap Perletakan Magnetorheological Damper | r |
|-------------------------------------------------------------------|---|
|-------------------------------------------------------------------|---|

.

| Variasi Peredam | Letak Peredam          | Gambar no. | Persamaan Matrik |
|-----------------|------------------------|------------|------------------|
| 11              | MR Damper pada Tingkat |            |                  |
|                 | 1 dan 3                | (4.11)     | (4.11)           |
| 12              | MR Damper pada Tingkat |            |                  |
|                 | 1 dan 4                | (4.12)     | (4.12)           |
| 13              | MR Damper pada Tingkat |            |                  |
|                 | 1 dan 5                | (4.13)     | (4.13)           |
| 14              | MR Damper pada Tingkat |            |                  |
|                 | 2 dan 4                | (4.14)     | (4.14)           |
| 15              | MR Damper pada Tingkat |            | · · /            |
|                 | 2 dan 5                | (4.15)     | (4.15)           |
| 16              | MR Damper pada Tingkat |            |                  |
|                 | 3 dan 5                | (4.16)     | (4.16)           |

-

.

Tabel 4.1 Lanjutan

r

1. Posisi tanpa peredam tambahan.



Gambar 4.1 Struktur tanpa peredam tambahan (hanya redaman dalam struktur)

$$[C_1] = \begin{bmatrix} 15,12 & -7,56 & 0 & 0 & 0 \\ -7,56 & 15,12 & -7,56 & 0 & 0 \\ 0 & -7,56 & 15,12 & -7,56 & 0 \\ 0 & 0 & -7,56 & 15,12 & -7,56 \\ 0 & 0 & 0 & -7,56 & 7,56 \end{bmatrix}$$
(4.1)

## 2. Posisi kedua Magnetorheological Damper diletakkan pada tingkat pertama



Gambar 4.2 Struktur dengan posisi kedua MR damper pada tingkat pertama

$$\begin{bmatrix} C_2 \end{bmatrix} = \begin{bmatrix} 582,12 & -7,56 & 0 & 0 & 0 \\ -7,56 & 15,12 & -7,56 & 0 & 0 \\ 0 & -7,56 & 15,12 & -7,56 & 0 \\ 0 & 0 & -7,56 & 15,12 & -7,56 \\ 0 & 0 & 0 & -7,56 & 7,56 \end{bmatrix}$$
(4.2)

## 3. Posisi kedua Magnetorheological Damper diletakkan pada tingkat kedua



Gambar 4.3 Struktur dengan posisi kedua MR damper pada tingkat kedua

$$[C_3] = \begin{bmatrix} 582,12 & -574,56 & 0 & 0 & 0 \\ -574,56 & 582,12 & -7,56 & 0 & 0 \\ 0 & -7,56 & 15,12 & -7,56 & 0 \\ 0 & 0 & -7,56 & 15,12 & -7,56 \\ 0 & 0 & 0 & -7,56 & 7,56 \end{bmatrix}$$
(4.3)

# 4. Posisi kedua Magnetorheological Damper diletakkan pada tingkat ketiga



Gambar 4.4 Struktur dengan posisi kedua MR damper pada tingkat ketiga

$$\begin{bmatrix} C_4 \end{bmatrix} = \begin{bmatrix} 15,12 & -7,56 & 0 & 0 & 0 \\ -7,56 & 582,12 & -574,56 & 0 & 0 \\ 0 & -574,56 & 582,12 & -7,56 & 0 \\ 0 & 0 & -7,56 & 15,12 & -7,56 \\ 0 & 0 & 0 & -7,56 & 7,56 \end{bmatrix}$$
(4.4)

# 5. Posisi kedua Magnetorheological Damper diletakkan pada tingkat keempat



Gambar 4.5 Struktur dengan posisi kedua MR damper pada tingkat keempat

$$[C_5] = \begin{bmatrix} 15,12 & -7,56 & 0 & 0 & 0 \\ -7,56 & 15,12 & -7,56 & 0 & 0 \\ 0 & -7,56 & 582,12 & -574,56 & 0 \\ 0 & 0 & -574,56 & 582,12 & -7,56 \\ 0 & 0 & 0 & -7,56 & 7,56 \end{bmatrix}$$
(4.5)





Gambar 4.6 Struktur dengan posisi kedua MR damper pada tingkat kelima

$$\begin{bmatrix} C_6 \end{bmatrix} = \begin{bmatrix} 15,12 & -7,56 & 0 & 0 & 0 \\ -7,56 & 15,12 & -7,56 & 0 & 0 \\ 0 & -7,56 & 15,12 & -7,56 & 0 \\ 0 & 0 & -7,56 & 582,12 & -574,56 \\ 0 & 0 & 0 & -574,56 & 574,56 \end{bmatrix}$$
(4.6)

7. Posisi Magnetorheological Damper diletakkan pada tingkat pertama dan kedua



Gambar 4.7 Struktur dengan posisi MR damper pada tingkat pertama dan kedua

$$\begin{bmatrix} C_7^* \end{bmatrix} = \begin{bmatrix} 582,12 & -291,06 & 0 & 0 & 0 \\ -291,06 & 298,62 & -7,56 & 0 & 0 \\ 0 & -7,56 & 15,12 & -7,56 & 0 \\ 0 & 0 & -7,56 & 15,12 & -7,56 \\ 0 & 0 & 0 & -7,56 & 7,56 \end{bmatrix}$$
(4.7)

8. Posisi Magnetorheological Damper diletakkan pada tingkat kedua dan ketiga



Gambar 4.8 Struktur dengan posisi MR damper pada tingkat kedua dan ketiga

$$[C_8] = \begin{bmatrix} 298,62 & -291,06 & 0 & 0 & 0 \\ -291,06 & 582,12 & -291,06 & 0 & 0 \\ 0 & -291,06 & 298,62 & -7,56 & 0^{\circ} \\ 0 & 0 & -7,56 & 15,12 & -7,56 \\ 0 & 0 & 0 & -7,56 & 7,56 \end{bmatrix}$$
(4.8)







$$\begin{bmatrix} C_9 \end{bmatrix} = \begin{bmatrix} 15,12 & -7,56 & 0 & 0 & 0 \\ -7,56 & 298,62 & -291,06 & 0 & 0 \\ 0 & -291,06 & 582,12 & -291,06 & 0 \\ 0 & 0 & -291,06 & 298,62 & -7,56 \\ 0 & 0 & 0 & -7,56 & 7,56 \end{bmatrix}$$
(4.9)



10. Posisi Magnetorheological Damper diletakkan pada tingkat keempat dan kelima



$$\begin{bmatrix} C_{10} \end{bmatrix} = \begin{bmatrix} 15,12 & -7,56 & 0 & 0 & 0 \\ -7,56 & 15,12 & -7,56 & 0 & 0 \\ 0 & -7,56 & 298,62 & -291,06 & 0 \\ 0 & 0 & -291,06 & 582,12 & -291,06 \\ 0 & 0 & 0 & -291,06 & 291,06 \end{bmatrix}$$
(4.10)



54480 kg

<u>63560 kg</u>

7/1/1.

7/17.

15120 kg/cm

15120 kg/cm

291,06 kg/(cm/sec)

7,56 kg/(cm/sec)

291,06 kg/(cm/sec)

11. Posisi Magnetorheological Damper diletakkan pada tingkat pertama dan ketiga

Gambar 4.11 Struktur dengan posisi MR damper pada tingkat pertama dan ketiga

7/11.

$$\begin{bmatrix} C_{11} \end{bmatrix} = \begin{bmatrix} 298,62 & -7,56 & 0 & 0 & 0 \\ -7,56 & 298,62 & -291,06 & 0 & 0 \\ 0 & -291,06 & 298,62 & -7,56 & 0 \\ 0 & 0 & -7,56 & 15,12 & -7,56 \\ 0 & 0 & 0 & -7,56 & 7,56 \end{bmatrix}$$
(4.11)





Gambar 4.12 Struktur dengan posisi MR damper pada tingkat pertama dan keempat

$$[C_{12}] = \begin{bmatrix} 298,62 & -7,56 & 0 & 0 & 0 \\ -7,56 & 15,12 & -7,56 & 0 & 0 \\ 0 & -7,56 & 298,62 & -291,06 & 0 \\ 0 & 0 & -291,06 & 298,62 & -7,56 \\ 0 & 0 & 0 & -7,56 & 7,56 \end{bmatrix}$$
(4.12)





Gambar 4.13 Struktur dengan posisi MR damper pada tingkat pertama dan kelima

$$[C_{13}] = \begin{bmatrix} 298,62 & -7,56 & 0 & 0 & 0 \\ -7,56 & 15,12 & -7,56 & 0 & 0 \\ 0 & -7,56 & 15,12 & -7,56 & 0 \\ 0 & 0 & -7,56 & 298,62 & -291,06 \\ 0 & 0 & 0 & -291,06 & 291,06 \end{bmatrix}$$
(4.13)

14. Posisi Magnetorheological Damper diletakkan pada tingkat kedua dan keempat



Gambar 4.14 Struktur dengan posisi MR damper pada tingkat kedua dan keempat

$$[C_{14}] = \begin{bmatrix} 298,62 & -291,06 & 0 & 0 & 0 \\ -291,06 & 298,62 & -7,56 & 0 & 0 \\ 0 & -7,56 & 298,62 & -291,06 & 0 \\ 0 & 0 & -291,06 & 298,62 & -7,56 \\ 0 & 0 & 0 & -7,56 & 7,56 \end{bmatrix}$$
(4.14)





Gambar 4.15 Struktur dengan posisi MR damper pada tingkat kedua dan kelima

$$\begin{bmatrix} C_{15} \end{bmatrix} = \begin{bmatrix} 298,62 & -291,06 & 0 & 0 & 0 \\ -291,06 & 298,62 & -7,56 & 0 & 0 \\ 0 & -7,56 & 15,12 & -7,56 & 0 \\ 0 & 0 & -7,56 & 298,62 & -291,06 \\ 0 & 0 & 0 & -291,06 & 291,06 \end{bmatrix}$$
(4.15)



16. Posisi Magnetorheological Damper diletakkan pada tingkat ketiga dan kelima



$$\begin{bmatrix} C_{16} \end{bmatrix} = \begin{bmatrix} 15,12 & -7,56 & 0 & 0 & 0 \\ -7,56 & 298,62 & -291,06 & 0 & 0 \\ 0 & -291,06 & 298,62 & -7,56 & 0 \\ 0 & 0 & -7,56 & 298,62 & -291,06 \\ 0 & 0 & 0 & -291,06 & 291,06 \end{bmatrix}$$
(4.16)

#### BAB V

### ANALISIS DAN PEMBAHASAN

Bab ini berisi mengenai perhitungan yang digunakan untuk mendapatkan hasil, dan selanjutnya akan dibahas dalam pembahasan.

#### **5.1 Analisis**

Analisis menggunakan sebuah model 5 lantai diambil dari buku *Element of* Structural Dynamics (Berg, 1998). Berat lantai dan kekakuan seperti Gambar 5.1.


## 5.1.1 Ragam Bentuk (*Mode Shape*) dan Frekuensi Natural

Matrik massa dan kekakuan dari gambar diatas adalah :

$$[M] = \begin{bmatrix} m_1 & 0 & 0 & 0 & 0 \\ 0 & m_2 & 0 & 0 & 0 \\ 0 & 0 & m_3 & 0 & 0 \\ 0 & 0 & 0 & m_4 & 0 \\ 0 & 0 & 0 & 0 & m_5 \end{bmatrix}$$
(5.1a)  
$$[M] = \begin{bmatrix} 63560 & 0 & 0 & 0 & 0 \\ 0 & 54480 & 0 & 0 & 0 \\ 0 & 0 & 54480 & 0 & 0 \\ 0 & 0 & 0 & 54480 & 0 \\ 0 & 0 & 0 & 54480 & 0 \\ 0 & 0 & 0 & 0 & 45400 \end{bmatrix}$$
(5.1b)  
$$[K] = \begin{bmatrix} k1 + k2 & -k2 & 0 & 0 & 0 \\ -k2 & k2 + k3 & -k3 & 0 & 0 \\ 0 & -k3 & k3 + k4 & -k4 & 0 \\ 0 & 0 & -k4 & k4 + k5 & -k5 \\ 0 & 0 & 0 & -k5 & k5 \end{bmatrix}$$
(5.2a)  
$$[K] = \begin{bmatrix} 30240 & -15120 & 0 & 0 & 0 \\ -15120 & 22680 & -7560 & 0 & 0 \\ 0 & -7560 & 15120 & -7560 & 0 \\ 0 & 0 & -7560 & 11340 & -3780 \\ 0 & 0 & 0 & -3780 & 3780 \end{bmatrix}$$
(5.2b)

$$= \begin{bmatrix} 0,6558 & 0 & 0 & 0 & 0 \\ 0 & 1,6019 & 0 & 0 & 0 \\ 0 & 0 & 2,5392 & 0 & 0 \\ 0 & 0 & 0 & 3,5347 & 0 \\ 0 & 0 & 0 & 0 & 4,9877 \end{bmatrix} (1.0e+004*)sec^{-2} (5.7b)$$

Faktor partisipasi tiap mode dihitung dengan persamaan (3.34):

$$\Gamma_{n} = \frac{\{\phi\}_{n}^{T}[M]\{1\}}{\{\phi\}_{n}^{T}[M]\{\phi\}_{n}}$$
(5.8)

Faktor partisipasi tiap mode dari perhitungan diatas adalah :

$$\Gamma_1 = 2,0405; \Gamma_2 = 0,8451; \Gamma_3 = 0,5963; \Gamma_4 = 0,2418; \Gamma_5 = 0,2372$$
 (5.9)

#### 5.1.2 Efek Redaman

Persamaan gerakan dengan redaman adalah sebagai berikut :

$$[M]{\ddot{y}} + [C]{\dot{y}} + [K]{y} = \Gamma \ddot{y}_{g}$$
(5.10)

Jika persamaan diatas diubah menjadi modal koordinat, maka akan menjadi :

$$\{\phi\}_{n}^{T}[M]\{\phi\}_{n}\ddot{q}_{n} + \{\phi\}_{n}^{T}[C]\{\phi\}_{n}\dot{q}_{n} + \{\phi\}_{n}^{T}[K]\{\phi\}_{n}q_{n} = \{\phi\}_{n}^{T}\ddot{y}_{g}$$
(5.11)

Elemen dari matrik redaman efektif adalah :

$$\boldsymbol{c}_{ij}^{*} = \left\{ \boldsymbol{\phi} \right\}_{i}^{T} [C] \left\{ \boldsymbol{\phi} \right\}_{j}$$

$$(5.12)$$

61

Hasil dari matrik redaman adalah (Lampiran 2 hal L2-(k-n)) :

$$\begin{bmatrix} C_1^{*} \end{bmatrix} = \begin{bmatrix} 0,7414 & 0 & 0 & 0 & 0 \\ 0 & 6,8862 & 0 & 0 & 0 \\ 0 & 0 & 13,6562 & 0 & 0 \\ 0 & 0 & 0 & 22,8665 & 0 \\ 0 & 0 & 0 & 0 & 24,9746 \end{bmatrix}^{kg/(cm/sec)} (5.13a)$$

$$\begin{bmatrix} C_2^{*} \end{bmatrix} = \begin{bmatrix} 8,2792 & 0 & 0 & 0 & 0 \\ 0 & 52,6182 & 0 & 0 & 0 \\ 0 & 0 & 134,4694 & 0 & 0 \\ 0 & 0 & 0 & 98,5708 & 0 \\ 0 & 0 & 0 & 0 & 277,3023 \end{bmatrix}^{kg/(cm/sec)} (5.13b)$$

$$\begin{bmatrix} C_3^{*} \end{bmatrix} = \begin{bmatrix} 0,0073 & 0 & 0 & 0 & 0 \\ 0 & 0,0224 & 0 & 0 & 0 \\ 0 & 0,0224 & 0 & 0 & 0 \\ 0 & 0 & 0,0150 & 0 & 0 \\ 0 & 0 & 0 & 0,0605 & -0 \\ 0 & 0 & 0 & 0 & 1,0895 \end{bmatrix}^{(1.0e+004^*)} kg/(cm/sec) (5.13c)$$

$$\begin{bmatrix} C_4^{*} \end{bmatrix} = \begin{bmatrix} 20,5688 & 0 & 0 & 0 & 0 \\ 0 & 6,9225 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1,0895 \end{bmatrix}^{kg/(cm/sec)} (5.13d)$$

$$\begin{bmatrix} C_4^{*} \end{bmatrix} = \begin{bmatrix} 11,3524 & 0 & 0 & 0 & 0 \\ 0 & 64,9833 & 0 & 0 & 0 \\ 0 & 0 & 113,4370 & 0 & 0 \\ 0 & 0 & 0 & 953,4367 & 0 \\ 0 & 0 & 0 & 0 & 953,4367 & 0 \\ 0 & 0 & 0 & 0 & 76,7558 \end{bmatrix}^{kg/(cm/sec)} (5.13e)$$

| <b>[</b> 16 |                                                      | [11,8546 | 0        | 0        | 0        | 0        | ]              |         |
|-------------|------------------------------------------------------|----------|----------|----------|----------|----------|----------------|---------|
|             |                                                      | 0        | 404,0139 | 0        | 0        | 0        |                |         |
| =           | $\begin{bmatrix} C_6^* \end{bmatrix} =$              | 0        | 0        | 551,0033 | 0        | 0        | kg/(cm/sec)    | (5.13f) |
|             |                                                      | 0        | 0        | 0        | 303,0033 | 3 0      |                | . ,     |
| L           |                                                      | 0        | 0        | 0        | 0        | 28,0210  |                |         |
| В           |                                                      | 7,7682   | 0        | 0        | 0        | 0 ]      |                |         |
| an h        |                                                      | 0        | 37,4892  | 0        | 0        | 0        |                |         |
| an d        | $\begin{bmatrix} C_7^* \end{bmatrix}$                | = 0      | 0        | 74,7546  | 0        | 0        | kg /(cm / sec) | (5.13g) |
| nasił       |                                                      | 0        | 0        | 0        | 79,5165  | 0        |                |         |
| mas         |                                                      | 0        | 0        | 0        | 0        | 683,3950 |                |         |
|             | [                                                    | 13,9131  | 0        | 0        | 0        | 0        | ]              |         |
| main        |                                                      | 0        | 14,6414  | 0        | 0        | 0        |                |         |
| atan d      | $\begin{bmatrix} C_{\mathbf{x}}^{*} \end{bmatrix} =$ | 0        | 0        | 146,7913 | 0        | 0        | kg/(cm/sec)    | (5.13h) |
| Da          | 1 01                                                 | 0        | 0        | 0        | 237,1558 | 0        |                | . ,     |
| DC          |                                                      | 0        | 0        | 0        | 0        | 807,9450 |                |         |
| teori       | 1                                                    | L.       |          |          | -        |          | 1              |         |
| h1          |                                                      | 15,6141  | 0        | 0        | 0        | 0 7      |                |         |
| DELKE       |                                                      | 0        | 34,5405  | 0        | 0        | 0        |                |         |
| redam       | $\begin{bmatrix} C_9^{\bullet} \end{bmatrix} =$      | 0        | 0        | 194,1620 | 0        | 0        | kg/(cm/sec)    | (5.13i) |
|             |                                                      | 0        | 0        | 0        | 683,5616 | 0        |                |         |
| apat n      |                                                      | 0        | 0        | 0        | 0        | 298,1186 |                |         |
|             |                                                      | 11,6035  | 0        | 0        | 0        | 0        | ]              |         |
| (espo)      |                                                      | 0        | 234,4986 | 0        | 0        | 0        |                |         |
| Sepe        | $[C_{10}^{*}] =$                                     | 0        | 0        | 332,2201 | 0        | 0        | kg/(cm/sec)    | (5.13j) |
| F           |                                                      | 0        | 0        | 0        | 628,2200 | 0        |                |         |
| reda        |                                                      | 0        | 0        | 0        | 0        | 52,3884  |                |         |

$$2\xi_n \omega_n = \frac{\{\phi\}_n^T [C] \{\phi\}_n}{\{\phi\}_n^T [M] \{\phi\}_n}$$
(5.15)

Maka Persamaan diatas akan menjadi :

$$\ddot{q}_{n} + \frac{\{\phi\}_{n}^{T}[C]\{\phi\}_{n}}{\{\phi\}_{n}^{T}[M]\{\phi\}_{n}} \dot{q}_{n} + \omega_{n}^{2}q_{n} = \frac{\{\phi\}_{n}^{T}[M]\{1\}_{n}}{\{\phi\}_{n}^{T}[M]\{\phi\}_{n}} \ddot{y}_{g}(t)$$
(5.16)

Penyelesaian dari persamaan gerak di atas terdiri dari lima persamaan :

. . .. . .

$$\ddot{q}_1 + 0,00993 \, \dot{q}_1 + 348,4326 \, q_1 = 2,0405 \, \ddot{y}_g(t)$$
 (5.17a)

$$\ddot{q}_2 - 0,0109 \,\dot{q}_2 + 2079,2513 \,q_2 = 0,8451 \,\ddot{y}_g(t)$$
 (5.17b)

$$\ddot{q}_3 + 0,0454 \, \dot{q}_3 + 5224,0582 \, q_3 = 0,5963 \, \ddot{y}_g(t)$$
 (5.17c)

$$\ddot{q}_4 + 0,0754 \, \dot{q}_4 + 10123,9930 \, q_4 = 0,2418 \, \ddot{y}_g(t)$$
 (5.17d)

$$\ddot{q}_{5} + 0,0782 \, \dot{q}_{5} + 20158,0412 \, q_{5} = 0,2373 \, \ddot{y}_{g}(t)$$
 (5.17e)

Contoh persamaan diatas adalah persamaan gerakan tanpa menggunakan *Magnetorheological Damper.* Jadi untuk tiap posisi peredaman yang berbeda akan mempunyai persamaan yang berbeda. Untuk Posisi peredam yang lain dikerjakan seperti diatas. Sehingga dari persamaan diatas akan dihasilkan nilai redaman kritis, seperti pada Tabel 5.1. (Lampiran 2 hal L2-(o-q))

Tabel 5.1 Nilai Redaman pada tiap pengubahan posisi MR Damper (variasi 1-6)

|                | Nilai Rasio Redaman Kritis ( 5 ) |           |           |           |           |           |  |  |  |
|----------------|----------------------------------|-----------|-----------|-----------|-----------|-----------|--|--|--|
|                | Tanpa Redaman                    | Tingkat 1 | Tingkat 2 | Tingkat 3 | Tingkat 4 | Tingkat 5 |  |  |  |
| ξ1             | 0,0018                           | 0,0198    | 0,0173    | 0,0491    | 0,0271    | 0,0283    |  |  |  |
| ξ <sub>2</sub> | 0,0067                           | 0,0514    | 0,0218    | 0,0068    | 0,0635    | 0,3948    |  |  |  |
| ξ3             | 0,0084                           | 0,0829    | 0,0093    | 0,1717    | 0,0699    | 0,3397    |  |  |  |
| $\xi_4$        | 0,0101                           | 0,0436    | 0,0268    | 0,1833    | 0,4222    | 0,1342    |  |  |  |
| ξ5             | 0,0078                           | 0,0870    | 0,3419    | 0,1652    | 0,0241    | 0,0088    |  |  |  |
|                |                                  |           |           |           |           | 1         |  |  |  |

Setelah nilai rasio redaman diketahui untuk setiap posisi redaman pada tiap-tiap mode, selanjutnya dicari nilai q menggunakan metode *cetral difference*. Simpangan dihitung dengan menggunakan persamaan (3.43),

$$y_n(t) = \Gamma_n \phi_n q_n(t) \tag{5.18}$$

#### 5.2 Pembahasan

Pada sub pembahasan ini meliputi simpangan relatif dan jarak antar bangunan yang ditinjau dari simpagan maksimum yang didapat.

#### Simpangan Relatif

Suatu struktur akan bergetar jika mendapat pembebanan dari luar, baik berupa beban angin, getaran mesin atau gempabumi. Getaran yang terjadi akibat pembebanan dari luar akan menyebabkan terjadinya simpangan pada struktur.

Peredaman digambarkan sebagai penyerapan kapasitas energi dari suatu material damping, yang dapat berbentuk gesekan antar join. Sedangkan external damping adalah penyerapan energi sistem dengan suatu alat yang menggunakan gas, cairan ataupun listrik (Hu dan kawan-kawan, 1996).

Simpangan lantai 1 pada persamaan (5.18), Gambar (5.2). Simpangan lantai 2 Gambar (5.3). Simpangan lantai 3 Gambar (5.4). Simpangan lantai 4 Gambar (5.4). Simpangan lantai 5 Gambar (5.5). Selanjutnya simpangan maksimum Gambar (5.6).





















































## 5.2.1.1 Simpangan Lantai 1

| Variasi  | Posisi        | Niloi        | Desserta    |
|----------|---------------|--------------|-------------|
| Redeman  | Pedaman       | ivilar<br>O' |             |
| rtouaman |               | Simpangan    | Pengurangan |
| 1        | Tanpa Redaman | 3,14725      | 0           |
| 2        | Tk 1          | 2,16         | 31,3686     |
| 3        | Tk 2          | 2,7236       | 13,4609     |
| 4        | Tk 3          | 2,4387       | 22.5133     |
| 5        | Tk 4          | 2,1288       | 32.3599     |
| 6        | Tk 5          | 1,752        | 44,3323     |
| 7        | Tk 1 dan 2    | 2,1842       | 30,5997     |
| 8        | Tk 2 dan 3    | 2,31         | 26,6025     |
| 9        | Tk 3 dan 4    | 2,2848       | 27,4032     |
| 10       | Tk 4 dan 5    | 1,8721       | 40 5163     |
| 11       | Tk 1 dan 3    | 2,2987       | 26,9616     |
| 12       | Tk 1 dan 4    | 2,1424       | 31,9278     |
| 13       | Tk 1 dan 5    | 1,9721       | 37,3389     |
| 14       | Tk 2 dan 4    | 2,2141       | 29 6496     |
| 15       | Tk 2 dan 5    | 2.1          | 33 275      |
| 16       | Tk 3 dan 5    | 1,8869       | 40 04607    |

Tabel 5.2 Prosentase Perubahan Simpangan Lantai 1



Gambar 5.8 Prosentase Perubahan Simpangan Lantai 1 (Sesuai Tabel 5.2)

## 5.2.1.2 Simpangan Lantai 2

|   | Variasi | Posisi        | Nilai     | Prosentase  |
|---|---------|---------------|-----------|-------------|
| j | Redaman | Redaman       | Simpangan | Pengurangan |
|   | 1       | Tanpa Redaman | 4.2181    | 0           |
|   | 2       | Tk 1          | 3,9055    | 7 4 1 0 9   |
|   | 3       | Tk 2          | 3,9556    | 6 2231      |
|   | 4       | Tk 3          | 4,2028    | 0.3627      |
|   | 5       | Tk 4          | 3,7384    | 11 3724     |
|   | 6       | Tk 5          | 3.3497    | 20 5874     |
| I | 7       | Tk 1 dan 2    | 3.9381    | 6 63805     |
| l | 8       | Tk 2 dan 3    | 4.1685    | 1 1758      |
| ļ | 9       | Tk 3 dan 4    | 4.0382    | 4 2649      |
|   | 10      | Tk 4 dan 5    | 3,429     | 18 7074     |
|   | 11      | Tk 1 dan 3    | 4,1035    | 2 7168      |
|   | 12      | Tk 1 dan 4    | 3.8248    | 9 3241      |
|   | 13      | Tk 1 dan 5    | 3,4452    | 18 3234     |
|   | 14      | Tk 2 dan 4    | 3.86      | 8 4896      |
|   | 15      | Tk 2 dan 5    | 3,4721    | 17 6856     |
|   | 16      | Tk 3 dan 5    | 3,4796    | 17,5078     |

Tabel 5.3 Prosentase Perubahan Simpangan Lantai 2



Gambar 5.9 Prosentase Perubahan Simpangan Lantai 2 (Sesuai Tabel 5.3)

## 5.2.1.3 Simpangan Lantai 3

|         | The second se |           |             |
|---------|-----------------------------------------------------------------------------------------------------------------|-----------|-------------|
| Variasi | Posisi                                                                                                          | Nilai     | Prosentase  |
| Redaman | Redaman                                                                                                         | Simpangan | Pengurangan |
| 1       | Tanpa Redaman                                                                                                   | 7,8098    | 0           |
| 2       | Tk 1                                                                                                            | 7,194     | 7,8849      |
| 3       | Tk 2                                                                                                            | 7,4775    | 4,2549      |
| 4       | Tk 3                                                                                                            | 6,7304    | 13.821      |
| 5       | Tk 4                                                                                                            | 6,9709    | 10,7416     |
| 6       | Tk 5                                                                                                            | 6,4901    | 16,8979     |
| 7       | Tk 1 dan 2                                                                                                      | 7,3285    | 6,1627      |
| 8       | Tk 2 dan 3                                                                                                      | 7,1908    | 7,9259      |
| 9       | Tk 3 dan 4                                                                                                      | 6,9598    | 10.8837     |
| 10      | Tk 4 dan 5                                                                                                      | 6,5488    | 16,1463     |
| 11      | Tk 1 dan 3                                                                                                      | 7,0509    | 9,7172      |
| 12      | Tk 1 dan 4                                                                                                      | 7,067     | 9.5111      |
| 13      | Tk 1 dan 5                                                                                                      | 6,6493    | 14,8595     |
| 14      | Tk 2 dan 4                                                                                                      | 7,1917    | 7.91441     |
| 15      | Tk 2 dan 5                                                                                                      | 6,7062    | 14 1309     |
| 16      | Tk 3 dan 5                                                                                                      | 6,4192    | 17 8058     |

Tabel 5.4 Prosentase Perubahan Simpangan Lantai 3



Gambar 5.10 Prosentase Perubahan Simpangan Lantai 3 (Sesuai Tabel 5.4)

## 5.2.1.4 Simpangan Lantai 4

|   | Variasi | Pociai        | A 111 -   |             |
|---|---------|---------------|-----------|-------------|
|   | Dodomor |               | Nilai     | Prosentase  |
|   | Redaman | Redaman       | Simpangan | Pengurangan |
|   | 1       | Tanpa Redaman | 9,9218    | 0           |
| I | 2       | Tk 1          | 9,3393    | 5.8709      |
| ł | 3       | Tk 2          | 9,5491    | 3,7563      |
| I | 4       | Tk 3          | 8,5973    | 13.3493     |
| ļ | 5       | Tk 4          | 9,249     | 6.781       |
|   | 6       | Tk 5          | 8,8005    | 11.3013     |
|   | 7       | Tk 1 dan 2    | 9,4463    | 4,7924      |
| ľ | 8       | Tk 2 dan 3    | 9,0698    | 8.5871      |
|   | 9       | Tk 3 dan 4    | 8,9267    | 10.0294     |
|   | 10      | Tk 4 dan 5    | 8,9628    | 9.6655      |
|   | 11      | Tk 1 dan 3    | 8,961     | 9.6837      |
|   | 12      | Tk 1 dan 4    | 9,3022    | 6.2448      |
|   | 13      | Tk 1 dan 5    | 9,0165    | 9,1243      |
|   | 14      | Tk 2 dan 4    | 9,3505    | 5.758       |
|   | 15      | Tk 2 dan 5    | 9,095     | 8.3331      |
| _ | 16      | Tk 3 dan 5    | 8,6381    | 12 9381     |

Tabel 5.5 Prosentase Perubahan Simpangan Lantai 4



Gambar 5.11 Prosentase Perubahan Simpangan Lantai 4 (Sesuai Tabel 5.5)

#### BAB VI

#### KESIMPULAN DAN SARAN

Pembahasan yang telah dilakukan pada penelitian ini, dapat diambil beberapa kesimpulan dan untuk lebih memperdalam pengetahuan tentang kelanjutan penelitian ini maka saran yang dapat diambil adalah sebagai berikut ini.

#### 6.1 Kesimpulan

Berdasarkan analisa penelitian numeris pengunaan Magnehorheological Damper pada model bangunan geser untuk mengurangi simpangan yang terjadi, maka dapat disimpulkan, bahwa :

- 1. simpangan relatif yang terjadi dapat dikurangi dengan pengunaan Magnetorheological Damper,
- 2. penggunaan Magnetorheorogical Damper yang paling efektif dipasang pada tingkat yang ketiga dan kelima, dan
- 3. dengan penggunaan Magnetorheological Damper dapat memperkecil resiko structural pounding yang disebabkan oleh simpangan relatif yang besar.

89

#### 6.2 Saran

Saran yang dapat disampaikan pada penelitian ini adalah :

- perlu penelitian lebih lanjut mengenai pengaruh kapasitas nilai redaman, contoh, pada sebuah model struktur dipakai beberapa macam variasi nilai redaman,
- 2. perlu penelitian lebih lanjut untuk bangunan yang mempunyai jumlah tingkat genap, karena posisi yang paling efektif pada struktur yang mempunyai tingkat genap berbeda dengan struktur yang mempunyai tingkat ganjil, dimana struktur bertingkat ganjil mempunyai tingkat bagian tengah berjumlah satu tetapi struktur dengan tingkat genap akan mempunyai tingkat bagian tengah berjumlah dua, sehingga kita belum dapat mengetahui posisi yang paling efektif, apakah pada tingkat tengah yang bagian bawah atau pada tingkat tengah bagian atas,
- 3. perlu penelitian lebih lanjut dengan menggunakan gempa lain yang mempunyai karakteristik yang beda dari gempa El-Centro,
- 4. penggunaan program Matlab secara lebih mendalam untuk membantu pemecahan problem Dinamika Struktur, dan
- 5. perlu penelitian lebih lanjut dengan penyelidikan di laboratorium dengan membuat contoh sebuah struktur bangunan dan kemudian diberi getaran, setelah itu akan ditinjau respon struktur terhadap getaran tersebut.

#### **DAFTAR PUSTAKA**

- Berg, G. V. 1988. Element of Structural Dynamic. Prentice-Hall International Editions, Inc.
- Chopra, A. K. 1995. Dynamics of Structures Theory and Applications to Earthquake Engineering. Prentice-Hall. Inc.
- Clough, R W. and J. Penzien. 1993. **Dynamics of Structures.** Second Editions. Ms Graw Hill International Editions.
- Chang, K. C, T. T. Soong, S. T. Oh and M. L. Lai. 1995. Seismic Behavior of Steel Frame with Added Viscoelastic Dampers. Journal of Structural Engineering. October 1995.
- Gluck, N, A. M. Reinhorn, J. Gluck and R. Levy. 1996. Design of Supplemental Dampers for Control of Structures. Journal of Struktural Engineering. December. 1996.

Hu, Y-X, S-C Liu and Dong. 1996. Earthquake Engineering. E & FN Spon.

- Muto, K. dan Wira. 1987. Analisa Perancangan Gedung Tahan Gempa, Erlangga, Jakarta.
- Microsoft Corporation, 1985-1999. Microsoft Exel 2000. Copyright All Right Reserved.
- Novitasari dan Suprapti, 1999. Penempatan Posisi Efektif Redaman Tunggal Untuk Mengurangi Resiko 'Structural Pounding' Pada

Bangunan Bertingkat Lima. *Tugas Akhir S-1*, Fakultas Sipil Dan Perencanaan, UII, Yogyakarta.

- Paz, M. 1987. Dinamika Struktur Teori dan Perhitungan. Edisi kedua, Erlangga, Jakarta.
- Scarlat, A. S. 1996. Approximate Methods in Structural Seismic Design. E & FN Spon.
- Spencer, B. F. Jr, S. J. Dyke. M. K. Sain and J. D. Carlson. 1996. Modeling and Control Magnetorheological Dampers for Seismic Response Reduction. ASCE Journal of Engineering Mechanics. August 1996.
- The Matlab Works, Inc. 1994-1999. Matlab Versi 5.3 Release II. Copyright All Right Reserved.
- Widodo, 1996, **"Evaluasi Kerusakan Bangunan mulai dari Gempa El** Centro 1940 sampai Gempa Kobe 1995". Jurnal Teknisia No. 2 Th 1-1996.
- ----- 1981. Peraturan Perencanaan Tahan Gempa Indonesia untuk Gedung. Pusat Penelitian dan Pengembangan Pemukiman dan Pengembangan Pemukiman. DPU. 1981.

## LAMPIRAN 1

\_

forprint ibl72 = 3.661



#### UNIVERSITAS ISLAM INDONESIA FAKULTAS TEKNIK SIPIL DAN PERENCANAAN JURUSAN TEKNIK SIPIL Jl. Kaliurang Km. 14,4 Telp. 95330 Yogyakarta

### KARTU PESERTA TUGAS AKHIR

Law Star

| No.        | Nama        | No. Mhs.   | N.I.R.M. | Bidang Studi |
|------------|-------------|------------|----------|--------------|
| <u> </u> . | ARIE ELFIRA | 94 310 055 |          | TSS          |
|            | JUHARTONO   | 94 310 057 |          | TSS          |

- JUDUL TUGAS AKHIR : PENEMPATAN EFEKTIFREDAMAN GANDA .....UNTUK MENGURANGI SIMPANAGN PADA BANGUNAN TINGKAT TINGGL

Dosen Pembimbing I Dosen Pembimbing II

IR. H.M.SAMSUDIN, MT IR. H.SARWIDI, MSc, Ph<u>.D</u>





ogyakarta, 10 Nop. 1999 ekan, Jurusan Teknik Sipil, DJUDDIN BM ARIS, MS

| No. | Tanggal | Konsultasi ke :       | KETERANGAN                                                           | Paraf |
|-----|---------|-----------------------|----------------------------------------------------------------------|-------|
|     | 1/22/00 | Ŧ, T, <u>m</u>        | · Vanisi Bola vanan falata hys                                       |       |
|     |         |                       | · Byt Silvings filles to first                                       |       |
|     |         |                       | Austra, beging and and they day                                      |       |
| ()  | 03 200  | TV,                   | - Tennshe lee DP louter gourgi                                       |       |
|     |         |                       | - Tenthe le Pulson 26                                                | -5-   |
|     | 14 2000 | <u>V</u> - <u>V</u> I | - United Strent was Culays be DPE of<br>( beend' nonti por boycerdan | Le C  |
|     |         | 6                     | MI : Murie perla muig more had ? yy<br>Fudmental -                   |       |
|     | 08200,2 | Vin                   | -> plunde centin terns difiled<br>Schola ada pensihigun DP I         | B     |
|     | 8-200   |                       | - alle unt dijilid.                                                  |       |
|     |         |                       |                                                                      | -     |

CATATAN - KONSULTASI

• Harman al

# LAMPIRAN 2

-

,

.

## PERHITUNGAN *MODE SHAPE*, PARTISIPASI FAKTOR DAN RASIO REDAMAN

| M=[635     | 60 0 0          | 0 0;0 5   | 4480 0 (    | 0:00          | 54480  | ,<br>0 0. | 0   | <u>م</u> | 54400 |
|------------|-----------------|-----------|-------------|---------------|--------|-----------|-----|----------|-------|
| 0;00       | 0 0 454         | 20]       |             | ,             | 54400  | 0 0;      | 0 ( | 0 0      | 54480 |
| M = Mat    | rik Massa       |           |             |               |        |           |     |          |       |
| 6356       | 50              | 0         | 0           | 0             | 0      |           |     |          |       |
|            | 0 5448          | 0         | 0           | 0             | 0      |           |     |          |       |
|            | 0               | 0 5448    | 30          | 0             | 0      |           |     |          |       |
|            | 0               | 0         | 0 5448      | 0             | 0      |           |     |          |       |
|            | 0               | )         | 0           | 0 4540        | 0      |           |     |          |       |
|            |                 |           |             |               |        |           |     |          |       |
| K = [302]  | 40 -1512        |           | 1 . 1 . 1   | 0000          | _      |           |     |          |       |
| 15120      | -7560 0:        |           | 60 1124     | 22680         | -7560  | 0 0;      | 0 - | 756      | 0     |
| K = Matr   | ik Kekakua      | n 0 0 -73 | 1134        | 0 -3780       | ;0 0 0 | -378      | B 0 | 378      | 0]    |
| 3024       | 0 -1512(        | ) (       |             |               |        |           |     |          |       |
| -1512      | 0 22680         | ,         |             |               | )      |           |     |          |       |
|            | 0 <u>-756</u> ( | ) 15120   | 0<br>) 7560 | 0             |        |           |     |          |       |
|            | 0 0             | -7560     | ) 11240     | - 0           |        |           |     |          |       |
| (          |                 |           | 2790        | -3/80<br>2700 |        |           |     |          |       |
|            | - 0             | U         | -3780       | 3780          |        |           |     |          |       |
| [V, D] = e | eig(K,M)        |           |             |               |        |           |     |          |       |
| V = Mode   | Shape           |           |             |               |        |           |     |          |       |
| 0.6671     | 0.3654          | 0.4616    | 0 2840      | 0 1153        |        |           |     |          |       |
| -0.7031    | 0.1079          | 0.5110    | 0 4492      | 0.1155        |        |           |     |          |       |
| 0.2373     | -0.7225         | -0.1725   | 0 4 5 7 2   | 0.2225        |        |           |     |          |       |
| -0.0647    | 0.5586          | -0.5920   | 0.1371      | 0.5463        |        |           |     |          |       |
| 0.0084     | -0.1443         | 0.3815    | -0.6998     | 0.5103        |        |           |     |          |       |
|            |                 |           |             | 410000        |        |           |     |          |       |
| D = 0.7265 | <u>^</u>        |           |             |               |        |           |     |          |       |
| 0.7265     | 0               | 0         | 0           | 0             |        |           |     |          |       |
| U          | 0.4055          | 0         | 0           | 0             |        |           |     |          |       |
| U          | 0               | 0.2124    | 0           | 0             |        |           |     |          |       |
| U          | 0               | 0         | 0.0996      | 0             |        |           |     |          |       |
| 0          | 0               | 0         | 0           | 0.0170        |        |           |     |          |       |

q1=[0.1153;0.2225;0.4095;0.5463;0.6863] q1 = Mode ke -10.1153 0.2225 0.4095 0.5463 , 0.6863 q2=[0.2840;0.4492;0.4572;0.1371;-0.6998] q2 = Mode ke-20.2840 0.4492 0.4572 0.1371 -0.6998 q3=[0.4616;0.5110;-0.1725;-0.5920;0.3815] q3 = Mode ke-30.4616 0.5110 -0.1725 -0.5920 0.3815 q4=[0.3654;0.1079;-0.7225;0.5586;-0.1443] q4 = Mode ke-40.3654 0.1079 -0.7225 0.5586 -0.1443 q5 = [0.6671; -0.7031; 0.2373; -0.0649; 0.0084]q5 = Mode ke-50.6671 -0.7031 0.2373 -0.0649 0.0084

•

C1=[15.12 -7.56 0 0 0;-7.56 15.12 -7.56 0 0;0 -7.56 15.12 -7.56 0;0 0 -7.56 15.12 -7.56;0 0 0 -7.56 7.56] C1 = Matrik Redaman tanpa Peredam Tambahan 15.1200 -7.5600 0 0 0 -7.5600 15.1200 -7.5600 0 0 0 - 7.5600 15.1200 -7.5600 0 0 - 7.5600 15.1200 -7.5600 0 0 0 0 -7.5600 7.5600 C2=[582.12 -7.56 0 0 0;-7.56 15.12 -7.56 0 0;0 -7.56 15.12 -7.56 0;0 0 -7.56 15.12 -7.56;0 0 0 -7.56 7.56] C2 = Matrik Redaman dengan Kedua MR Damper pada Tingkat 1 582,1200 -7,5600 0 0 0 -7.5600 15.1200 -7.5600 0 0 0 -7.5600 15.1200 -7.5600 0 0 0 -7.5600 15.1200 -7.5600 0 0 0 -7.5600 7.5600 C3=[582.12 -574.56 0 0 0;-574.56 582.12 -7.56 0 0;0 -7.56 15.12 -7.56 0;0 0 -7.56 15.12 -7.56;0 0 0 -7.56 7.56] C3 = Matrik Redaman dengan Kedua MR Damper pada Tingkat 2 582.1200 - 574.5600 0 0 0 -574.5600 582.1200 -7.5600 0 0 0 -7.5600 15.1200 -7.5600 0 0 0 -7.5600 15.1200 -7.5600 0 0 0 -7.5600 7.5600 C4=[15.12 -7.56 0 0 0;-7.56 582.12 -574.56 0 0;0 -574.56 582.12 -7.56 0;0 0 -7.56 15.12 -7.56;0 0 0 -7.56 7.56] C4 = Matrik Redaman dengan Kedua MR Damper pada Tingkat 3 15.1200 -7.5600 0 0 0 -7.5600 582.1200 -574.5600 0 0 0-574.5600 582.1200 -7.5600 0 0 0 -7.5600 15.1200 -7.5600 0 0 0 -7.5600 7.5600 C5=[15.12 -7.56 0 0 0;-7.56 15.12 -7.56 0 0;0 -7.56 582.12 -574.56 0;0 0 -574.56 582.12 -7.56;0 0 0 -7.56 7.561 C5 = Matrik Redaman dengan Kedua MR Damper pada Tingkat 4 15.1200 -7.5600 0 0 0 -7.5600 15.1200 -7.5600 0 0 0 -7.5600 582.1200 -574.5600 0

-7.56000 Δ 0 -7.5600 7.5600 C6=[15.12 -7.56 0 0 0;-7.56 15.12 -7.56 0 0;0 -7.56 15.12 -7.56 0;0 0 -7.56 582.12 -574.56;0 0 0 -574.56 574.36] C6= Matrik Redaman dengan Kedua MR Damper pada Tingkat 5 15.1200 -7.5600 0 0 0 -7.5600 15.1200 -7.5600 0 0 -7.5600 15.1200 -7.5600 0 0 0 0 -7.5600 582.1200 -574.5600 0 0 0-574.5600 574.5600 C7=[582.12 -291.06 0 0 0;-291.06 298.62 -7.56 0 0;0 -7.56 15.12 -7.56 0;0 0 -7.56 15.12 -7.56;0 0 0 -7.56 7.56] C7 = Matrik Redaman dengan MR Damper pada Tingkat 1 dan 2 582.1200 - 291.0600 0 0 Ω -291.0600 298.6200 -7.5600 0 0 -7.5600 15.1200 -7.5600 0 0 0 0 -7.5600 15.1200 -7.5600 0 0 0 -7.5600 7.5600 C8=[298.62 -291.06 0 0;-291.06 582.12 -291.06 0 0;0 -291.06 298.62 -7.56 0;0 0 -7.56 15.12 -7.56;0 0 0 -7.56 7.561 C8 = Matrik Redaman dengan MR Damper pada Tingkat 2 dan 3 298.6200 - 291.0600 0 0 0 -291.0600 582.1200 -291.0600 0 0 0 -291.0600 298.6200 -7.5600 0 0 0 -7.5600 15.1200 -7.5600 0 0 0 -7.5600 7.5600 C9=[15.12 -7.56 0 0 0;-7.56 291.62 -291.06 0 0;0 -291.06 582.12 -291.06 0;0 0 -291.06 298.62 -7.56;0 0 0 -7.56 7.56] C9 = Matrik Redaman dengan MR Damper pada Tingkat 3 dan 4 15.1200 -7.5600 0 0 0 -7.5600 291.6200 -291.0600 0 0 0 -291.0600 582.1200 -291.0600 0 0-291.0600 298.6200 0 -7.56000 0 0 -7.5600 7.5600

0 -574.5600 582.1200

0

C10=[15.12 -7.56 0 0 0;-7.56 15.12 -7.56 0 0;0 -7.56 298.62 -291.06 0;0 0 -291.06 582.12 -291.06;0 0 0 -291.06 291.061 C10 = Matrik Redaman dengan MR Damper pada Tingkat 4 dan 5 15.1200 -7.5600 0 0 0 -7.5600 15.1200 -7.5600 0 0 0 -7.5600 298.6200 -291.0600 0 0 0-291.0600 582.1200-291.0600 0 0 0-291.0600 291.0600 C11=[298.62 -7.56 0 0 0;-7.56 298.62 -291.06 0 0;0 -291.06 298.62 -7.56 0;0 0 -7.56 15.12 -7.56;0 0 0 -7.56 7.561 C11 = Matrik Redaman dengan MR Damper pada Tingkat 1 dan 3 298.6200 -7.5600 0 0 Ω -7.5600 298.6200 -291.0600 0 0 0-291.0600 298.6200 -7.5600 0 0 -7.5600 15.1200 -7.5600 0 0 0 0 -7.5600 7.5600 C12=[298.62 -7.56 0 0 0;-7.56 15.12 -7.56 0 0;0 -7.56 298.62 -291.06 0;0 0 -291.06 298.62 -7.56;0 0 0 -7.56 7.561 C12 = Matrik Redaman dengan MR Damper pada Tingkat 1 dan 4 298.6200 -7.5600 0 0 0 -7.5600 15.1200 -7.5600 0 0 0 -7.5600 298.6200 -291.0600 0 0 0-291.0600 298.6200 -7.5600 0 0 -7.5600 7.5600 0 C13=[298.62 -7.56 0 0 0;-7.56 15.12 -7.56 0 0;0 -7.56 15.12 -7.56 0;0 0 -7.56 298.62 -291.06;0 0 0 -291.06 291.06] C13 = Matrik Redaman dengan MR Damper pada Tingkat 1 dan 5. 298.6200 -7.5600 0 0 0 -7.5600 15.1200 -7.5600 0 0 0 -7.5600 15.1200 -7.5600 0 0 0 -7.5600 298.6200 -291.0600 0 0 0-291.0600 291.0600 C14=[298.62 -291.06 0 0;-291.06 298.62 -7.56 0 0;0 -7.56 298.62 -291.06 0;0 0 -291.06 298.62 -7.56;0 0 0 -7.56 7.561
C14 = Matrik Redaman dengan MR Damper pada Tingkat 2 dan 4 298.6200 - 291.0600 0 0 0 -291.0600 298.6200 -7.5600 0 0 0 -7.5600 298.6200 -291.0600 0 0-291.0600 298.6200 -7.5600 0 0 0 -7.5600 7.5600 0 C15=[298.62 -291.06 0 0 0;-291.06 298.62 -7.56 0 0;0 -7.56 15.12 -7.56 0;0 0 -7.56 298.62 -291.06;0 0 0 -291.06 291.061 C15 = Matrik Redaman dengan MR Damper pada Tingkat 2 dan 5 298.6200 - 291.0600 0 0 0 -291.0600 298.6200 -7.5600 0 0 -7.5600 15.1200 -7.5600 0 0 0 0 -7.5600 298.6200 -291.0600 0 0 0-291.0600 291.0600 C16=[15.12 -7.56 0 0 0;-7.56 298.62 -291.06 0 0;0 -291.06 298.62 -7.56 0;0 0 -7.56 298.62 -291.06;0 0 0 -291.06 291.061 C16 = Matrik redaman dengan MR Damper pada Tingkat 3 dan 5 15.1200 -7.5600 0 0 0 -7.5600 298.6200 -291.0600 0 0 0-291.0600 298.6200 -7.5600 0 0 -7.5600 298.6200 -291.0600 0 0 0 0-291.0600 291.0600 Mn=[q1'\*M\*q1 0 0 0;0 q2'\*M\*q2 0 0 0;0 0 q3'\*M\*q3 0 0;0 0 0 q4'\*M\*q4 0;0 0 0 0 q5'\*M\*q5] Mn = Matrik Massa Efektif 1.0e+004 \* 5.0321 0 0 0 0 0 5.0765 0 0 0 0 5.5091 0 0 0 0 0 0 5.5504 0 0 0 0 0 5.8518 Kn=[q1'\*K\*q1 0 0 0;0 q2'\*K\*q2 0 0 0;0 0 q3'\*K\*q3 0 0;0 0 0 q4'\*K\*q4 0;0 0 0 0 q5'\*K\*q5] Kn = Matrik Kekakuan Efektif 1.0e+004 \* 0.0855 0 0 0 0 0 0.5055 0 0 0

0 0 0 2.2510 0 0 0 0 0 4.2512 Cnl=[ql'\*Cl\*ql ql'\*Cl\*q2 0 0 0;ql'\*Cl\*q2 q2'\*Cl\*q2 q2'\*C1\*q3 0 0;0 q2'\*C1\*q3 q3'\*C1\*q3 q3'\*C1\*q4 0;0 0 q3'\*C1\*q4 q4'\*C1\*q4 q4'\*C1\*q5;0 0 0 c4'\*C1\*q5 q5'\*C1\*q5] Cn1 = Matrik Redaman Efektif tanpa Redaman Tambahan 0.7414 -0.8241 0 0 0 -0.8241 6.8862 -4.1327 0 0 0 -4.1327 13.6562 -3.7662 0 0 0 -3.7662 22.8665 -4.7098 0 0 0 -4.7098 24.9746 Cn2=[q1'\*C2\*q1 q1'\*C2\*q2 0 0 0;q1'\*C2\*q2 q2'\*C2\*q2 q2'\*C2\*q3 0 0;0 q2'\*C2\*q3 q3'\*C2\*q3 q3'\*C2\*q4 0;0 0 q3'\*C2\*q4 q4'\*C2\*q4 q4'\*C2\*q5;0 0 0 q4'\*C2\*q5 q5'\*C2\*q5] Cn2 = Matrik Redaman Efektif dengan Kedua MR Damper pada Tingkat 1 8.2792 17.7425 Ω 0 0 17.7425 52.6182 70.1978 0 0 0 70.1978 134.4694 91.8690 0 0 0 91.8690 98.5708 133.5011 0 0 0 133,5011 277,3023 Cn3=[q1'\*C3\*q1 q1'\*C3\*q2 0 0 0;q1'\*C3\*q2 q2'\*C3\*q2 q2'\*C3\*q3 0 0;0 q2'\*C3\*q3 q3'\*C3\*q3 a3'\*C3\*q4 0;0 0 q3'\*C3\*q4 q4'\*C3\*q4 q4'\*C3\*q5;0 0 0 q4'\*C3\*q5 q5'\*C3\*q5] Cn3 = Matrik Redaman Efektif dengan Kedua MR Damper pada Tingkat 2 1.0e+003 \* 0.0073 0.0092 0 0 0 0.0092 0.0224 0.0005 0 0 0 0.0005 0.0150 -0.0110 0 0 0 -0.0110 0.0605 0.1953 0 0 0 0.1953 1.0895 Cn4=[q1'\*C4\*q1 q1'\*C4\*q2 0 0 0;q1'\*C4\*q2 q2'\*C4\*q2 q2'\*C4\*q3 0 0;0 q2'\*C4\*q3 q3'\*C4\*q3 q3'\*C4\*q4 0;0 0 q3'\*C4\*q4 q4'\*C4\*q4 q4'\*C4\*q5;0 0 0 q4'\*C4\*q5 q5'\*C4\*q5] Cn4 = Matrik Redaman Efektif dengan Kedua MR Damper pada Tingkat 3 20.5688 0.0242 0 0 0 0.0242 6.9225 -7 2331 0 0 0 -7.2331 278.5428 318.0508 0

0

0

1.1703

0

0

0 0 318.0508 413.8494 -447.4848 0 0 0 -447 4848 526 4023 Cn5=[q1'\*C5\*q1 q1'\*C5\*q2 0 0 0;q1'\*C5\*q2 q2'\*C5\*q2 q2'\*C5\*q3 0 0;0 q2'\*C5\*q3 q3'\*C5\*q3 q3'\*C5\*q4 0;0 0 q3'\*C5\*q4 q4'\*C5\*q4 q4'\*C5\*q5;0 0 0 q4'\*C5\*q5 q5'\*C5\*q5] Cn5 = Matrik Redaman Efektif dengan Kedua MR Damper pada Tingkat 4 11.3524 -25.6528 0 0 0 -25.6528 64.9833 72.0052 0 0 0 72.0052 113.4370 - 308.4841 0 0-308.4841 953.4367 -224.2230 0 0 0 0 -224.2230 76.7558 Cn6=[q1'\*C6\*q1 q1'\*C6\*q2 0 0 0;q1'\*C6\*q2 q2'\*C6\*q2 q2'\*C6\*q3 0 0;0 q2'\*C6\*q3 q3'\*C6\*q3 q3'\*C6\*q4 0;0 0 q3'\*C6\*q4 q4'\*C6\*q4 q4'\*C6\*q5;0 0 0 q4'\*C6\*q5 q5'\*C6\*q5] Cn6 = Matrik Redaman Efektif dengan Kedua MR Damper pada Tingkat 5 11.8546 -67.2572 0 0 0 -67.2572 404.0139 -466 0802 0 0 0 -466.0802 551.0033 -391.7490 0 0 0-391.7490 303.0033 -33.9231 0 0 0 -33.9231 28.0210 Cn7=[q1'\*C7\*q1 q1'\*C7\*q2 0 0 0;q1'\*C7\*q2 q2'\*C7\*q2 q2'\*C7\*q3 0 0;0 q2'\*C7\*q3 q3'\*C7\*q3 q3'\*C7\*q4 0;0 0 a3'\*C7\*q4 q4'\*C7\*q4 q4'\*C7\*q5;0 0 0 q4'\*C7\*q5 q5'\*C7\*q5] Cn7 = Matrik Redaman Efektif dengan MR Damper pada Tingkat 1 dan 2 7.7682 13.4798 0 0 0 13.4798 37.4892 35.3462 0 0 0 35.3462 74.7546 40.4451 0 0 40.4451 0 79.5165 164,4220 0 0 0 164.4220 683.3950 Cn8=[q1'\*C8\*q1 q1'\*C8\*q2 0 0 0;q1'\*C8\*q2 q2'\*C8\*q2 q2'\*C8\*q3 0 0;0 q2'\*C8\*q3 q3'\*C8\*q3 q3'\*C8\*q4 0;0 0 q3'\*C8\*q4 q4'\*C8\*q4 q4'\*C8\*q5;0 0 0 q4'\*C8\*q5 q5'\*C8\*q5] Cn8 = Matrik Redaman Efektif dengan MR Damper pada Tingkat 2 dan 3 13.9131 4.6207 0 0 0 4.6207 14.6414 -3.3693 0 0 0 -3.3693 146.7913 153 5361 0 0 0 153.5361 237.1558 -126.0710 0 0 0-126.0710 807.9450

Cn9=[q1'\*C9\*q1 q1'\*C9\*q2 0 0 0;q1'\*C9\*q2 q2'\*C9\*q2 q2'\*C9\*q3 0 0;0 q2'\*C9\*q3 q3'\*C9\*q3 q3'\*C9\*q4 0;0 0 q3'\*C9\*q4 q4'\*C9\*q4 q4'\*C9\*q5;0 0 0 q4'\*C9\*q5 q5'\*C9\*q5] Cn9 = Matrik Redaman Efektif dengan MR Damper pada Tingkat 3 dan 4 15.6141 -13.5140 0 0 0 -13.5140 34.5405 30.7793 0 0 0 30.7793 194.1620 4.3974 0 0 4.3974 683.5616 -335.3228 0 0 0 0-335.3228 298.1186 Cn10=[q1'\*C10\*q1 q1'\*C10\*q2 0 0 0;q1'\*C10\*q2 q2'\*C10\*q2 q2'\*C10\*q3 0 0;0 q2'\*C10\*q3 q3'\*C10\*q3 q3'\*C10\*q4 0;0 0 q3'\*C10\*q4 q4'\*C10\*q4 q4'\*C10\*q5;0 0 0 q4'\*C10\*q5 a5'\*C10\*a51 Cn10 = Matrik Redaman Efektif dengan MR Damper pada Tingkat 4 dan 5 11.6035 -46.4550 0 0 0 -46.4550 234.4986 -197.0375 0 0 0-197.0375 332.2201-350.1166 0 0 0-350.1166 628.2200 -129.0731 0 0 0-129.0731 52.3884 Cn11=[q1'\*C11\*q1 q1'\*C11\*q2 0 0 0;q1'\*C11\*q2 q2'\*C11\*q2 q2'\*C11\*q3 0 0;0 q2'\*C11\*q3 q3'\*C11\*q3 q3'\*C11\*q4 0;0 0 q3'\*C11\*q4 q4'\*C11\*q4 q4'\*C11\*q5;0 0 0 q4'\*C11\*q5 a5'\*C11\*a5] Cn11 = Matrik Redaman Efektif dengan MR Damper pada Tingkat 1 dan 3 14.4240 8.8833 0 0 0 8.8833 29.7703 31.4824 0 0 0 31.4824 206.5061 204.9599 Ω 0 0 204.9599 256.2101 -156.9918 0 0 0-156.9918 401.8523 Cn12=[q1'\*C12\*q1 q1'\*C12\*q2 0 0 0;q1'\*C12\*q2 q2'\*C12\*q2 q2'\*C12\*q3 0 0;0 q2'\*C12\*q3 q3'\*C12\*q3 q3'\*C12\*q4 0;0 0 q3'\*C12\*q4 q4'\*C12\*q4 q4'\*C12\*q5;0 0 0 q4'\*C12\*q5 q5'\*C12\*q51 Cn12 = Matrik Redaman Efektif dengan MR Damper pada Tingkat 1 dan 4 9.8158 -3.9552 0 0 0 -3.9552 58.8008 71.1015 0 0 0 71.1015 123.9532 -108.3076 Δ 0 0-108.3076 526.0037 -45.3609 0 0 0 -45.3609 177.0291

Cn13=[q1'\*C13\*q1 q1'\*C13\*q2 0 0 0;q1'\*C13\*q2 q2'\*C13\*q2 q2'\*C13\*q3 0 0;0 q2'\*C13\*q3 q3'\*C13\*q3 q3'\*C13\*q4 0;0 0 q3'\*C13\*q4 q4'\*C13\*q4 q4'\*C13\*q5;0 0 0 q4'\*C13\*q5 q5'\*C13\*a51 Cn13 = Matrik Redaman Efektif dengan MR Damper pada Tingkat 1 dan 5 10.0669 -24.7574 0 0 0 -24.7574 228.3161 -197.9412 0 0 0-197.9412 342.7364 -149.9400 0 0-149.9400 200.7870 49.7890 0 0 0 0 49.7890 152.6617 Cn14=[q1'\*C14\*q1 q1'\*C14\*q2 0 0 0;q1'\*C14\*q2 q2'\*C14\*q2 q2'\*C14\*q3 0 0;0 q2'\*C14\*q3 q3'\*C14\*q3 q3'\*C14\*q4 0;0 0 q3'\*C14\*q4 q4'\*C14\*q4 q4'\*C14\*q5;0 0 0 q4'\*C14\*q5 q5'\*C14\*c5] Cn14 = Matrik Redaman Efektif dengan MR Damper pada Tingkat 2 dan 4 9.3048 -8.2178 0 0 0 -8.2178 43.6718 36.2498 0 0 0 36.2498 64.2384 -159.7314 0 0 0-159.7314 506.9494 -14.4401 0 0 0 -14,4401 583 1217 Cn15=[q1'\*C15\*q1 q1'\*C15\*q2 0 0 0;q1'\*C15\*q2 q2'\*C15\*q2 q2'\*C15\*q3 0 0;0 q2'\*C15\*q3 q3'\*C15\*q3 q3'\*C15\*q4 0;0 0 q3'\*C15\*q4 q4'\*C15\*q4 q4'\*C15\*q5;0 0 0 q4'\*C15\*q5 q5'\*C15\*a5] Cn15 = Matrik Redaman Efektif dengan MR Damper pada Tingkat 2 dan 5 9.5559 -29.0200 0 0 0 -29.0200 213.1871 -232.7928 0 0 0-232.7928 283.0216 -201.3639 0 0 0-201.3639 181.7327 80 7098 0 · 0 0 80,7098 558,7543 Cn16=[q1'\*C16\*q1 q1'\*C16\*q2 0 0 0;q1'\*C16\*q2 q2'\*C16\*q2 q2'\*C16\*q3 0 0;0 q2'\*C16\*q3 q3'\*C16\*q3 q3'\*C16\*q4 0;0 0 q3'\*C16\*q4 q4'\*C16\*q4 q4'\*C16\*q5;0 0 0 q4'\*C16\*q5 q5'\*C16\*c5 Cn16 = Matrik Redaman Efektif dengan MR Damper pada Tingkat 3 dan 5 16.2117 -33.6165 0 0 0 -33.6165 205.4682 -236.6566 0 0 0-236.6566 414.7731 -36.8491 0 -36.8491 358.4264 -240.7039 0 0 0 0 0-240.7039 277.2117

cnn1=[q1'\*C1\*q1 0 0 0;0 q2'\*C1\*q2 0 0 0;0 0 q3'\*C1\*q3 0 0;0 0 0 q4'\*C1\*q4 0;0 0 0 0 q5'\*C1\*q5] cnn1 = Matrik Redaman Efektif Diagonal tanpa Redaman Tambahan 0.7414 6.8862 0 13.6562 0 22.8665 0 24.9746 cnn2=[q1'\*C2\*q1 0 0 0;0 q2'\*C2\*q2 0 0 0;0 0 q3'\*C2\*q3 0 0;0 0 0 q4'\*C2\*q4 0;0 0 0 0 q5'\*C2\*q5] cnn2 = Matrik Redaman Efektif Diagonal dengan Kedua MR Damper pada Tingkat 1 8.2792 0 52.6182 0 134.4694 0 98.5708 0 277.3023 cnn3=[q1'\*C3\*q1 0 0 0;0 q2'\*C3\*q2 0 0 0;0 0 q3'\*C3\*q3 0 0;0 0 0 q4'\*C3\*q4 0;0 0 0 0 q5'\*C3\*q5] cnn3 = Matrik Redaman Efektif Diagonal dengan Kedua MR Damper pada Tingkat 2 1.0e+003 \* 0.0073 0.0224 0.0150 0.0605 1.0895 cnn4=[q1'\*C4\*q1 0 0 0;0 q2'\*C4\*q2 0 0 0;0 0 q3'\*C4\*q3 0 0;0 0 0 q4'\*C4\*q4 0;0 0 0 0 q5'\*C4\*q5] cnn4 = Matrik Redaman Efektif Diagonal dengan Kedua MR Damper pada Tingkat 3 20.5688 6.9225 0 278,5428 0 413.8494 Ω 0 526,4023 cnn5=[q1'\*C5\*q1 0 0 0;0 q2'\*C5\*q2 0 0 0;0 0 q3'\*C5\*q3 0 0;0 0 0 q4'\*C5\*q4 0;0 0 0 0 q5'\*C5\*q5] cnn5 = Matrik Redaman Efektif Diagonal dengan Kedua MR Damper pada Tingkat 4 11.3524 0 64.9833 0 113.4370 

0 953,4367 0 76.7558 cnn6=[q1'\*C6\*q1 0 0 0;0 q2'\*C6\*q2 0 0 0;0 0 q3'\*C6\*q3 0 0;0 0 0 q4'\*C6\*q4 0;0 0 0 0 q5'\*C6\*q5] cnn6 = Matrik Redaman Efektif Diagonal dengan Kedua MR Damper pada Tingkat 5 11.8546 0 404.0139 0 551.0033 0 303.0033 0 28.0210 cnn7=[q1'\*C7\*q1 0 0 0;0 q2'\*C7\*q2 0 0 0;0 0 q3'\*C7\*q3 0 0;0 0 0 q4'\*C7\*q4 0;0 0 0 0 q5'\*C7\*q5] cnn7 = Matrik Redaman Efektif Diagonal dengan MR Damper pada Tingkat 1 dan 2 7.7682 0 37.4892 74.7546 0 79.5165 0 683.3950 cnn8=[q1'\*C8\*q1 0 0 0;0 q2'\*C8\*q2 0 0 0;0 0 q3'\*C8\*q3 0 0;0 0 0 q4'\*C8\*q4 0;0 0 0 0 q5'\*C8\*q5] cnn8 = Matrik Redaman Efektif Diagonal dengan MR Damper pada Tingkat 2 dan 3 13.9131 0 14.6414 0 146.7913 0 237,1558 0 807.9450 cnn9=[q1'\*C9\*q1 0 0 0;0 q2'\*C9\*q2 0 0 0;0 0 q3'\*C9\*q3 0 0;0 0 0 q4'\*C9\*q4 0;0 0 0 0 q5'\*C9\*q5] cnn9 = Matrik Redaman Efektif Diagonal dengan MR Damper pada Tingkat 3 dan 4 15.6141 0 34.5405 0 194,1620 0 683.5616 0 298 1186 cnn10=[<u>a</u>1'\*C10\*q1 0 0 0;0 q2'\*C10\*q2 0 0 0;0 0 q3'\*C10\*q3 0 0;0 0 0 q4'\*C10\*q4 0;0 0 0 q5'\*C10\*q5] cnn10 = Matrik Redaman Efektif Diagonal dengan MR Damper pada Tingkat 4 dan 5

```
Lm1 = (((cnn1*980)/(2*wn*Mn))*I)
 Lm1 = Rasio Redaman Tanpa Peredam tambahan
   0.0018
   0.0067
   0.0084
   0.0101
   0.0078
Lm2=(((cnn2*980)/(2*wn*Mn))*I)
Lm2 = Rasio Redaman dengan Kedua MR Damper pada Tingkat 1
  0.0198
  0.0514
  0.0829
  0.0436
  0.0870
Lm3=(((cnn3*980)/(2*wn*Mn))*I)
Lm3 = Rasio Redaman dengan Kedua MR Damper pada Tingkat 2
  0.0173
  0.0218
  0.0093
  0.0268
  0.3419
Lm4 = (((cnn4*980)/(2*wn*Mn))*I)
Lm4 = Rasio Redaman dengan Kedua MR Damper pada Tingkat 3
  0.0491
  0.0068
  0.1717
  0.1833
  0.1652
Lm5=(((cnn5*980)/(2*wn*Mn))*I)
Lm5 = Rasio Redaman dengan Kedua MR Damper pada Tingkat 4
  0.0271
  0.0635
  0.0699
  0.4222
  0.0241
Lm6=((cnn6*980)/(2*wn*Mn))*I)
Lm6 = Rasio Redaman dengan Kedua MR Damper pada Tingkat 5
```

0.0283 0.3948 0.3397 0.1342 0.0088 Lm7 = (((cnn7\*980)/(2\*wn\*Mn))\*I)Lm7 = Rasio Redaman dengan MR Damper pada Tingkat 1 dan 2 0.0185 0.0366 0.0461 0.0352 0.2145 Lm8 = (((cnn8\*980)/(2\*wn\*Mn))\*I)Lm8 = Rasio Redaman dengan MR Damper pada Tingkat 2 dan 3 0.0332 0.0143 0.0905 0.1050 0.2535 Lm9=(((cnn9\*980)/(2\*wn\*Mn))\*I)Lm9 = Rasio Redaman dengan MR Damper pada Tingkat 3 dan 4 0.0373 0.0338 0.1197 0.3027 0.0936 Lm10=(((cnn10\*980)/(2\*wn\*Mn))\*I)Lm10 = Rasio Redaman dengan MR Damper pada Tingkat 4 dan 5 0.0277 0.2291 0.2048 0.2782 0.0164 Lm11=(((cnn11\*980)/(2\*wn\*Mn))\*I)Lm11 = Rasio Redaman dengan MR Damper pada Tingkat 1 dan 3 0.0344 0.0291 0.1273

0.1135 0.1261 Lm12=(((cnn12\*980)/(2\*wn\*Mn))\*I)Lm12 = Rasio Redaman dengan MR Damper pada Tingkat 1 dan 4 0.0234 0.0575 0.0764 0.2329 0.0556 Lm13 = (((cnn13\*980)/(2\*wn\*Mn))\*I)Lm13 = Rasio Redaman dengan MR Damper pada Tingkat 1 dan 5 0.0240 0.2231 0.2113 0.0889 0.0479 Lm14 = (((cnn14\*980)/(2\*wn\*Mn))\*I)Lm14 = Rasio Redaman dengan MR Damper pada Tingkat 2 dan 4 0.0222 0.0427 0.0396 0.2245 0.1830 Lm15=(((cnn15\*980)/(2\*wn\*Mn))\*I)Lm15 = Rasio Redaman dengan MR Damper pada Tingkat 2 dan 5 0.0228 0.2083 0.1745 0.0805 0.1753 Lm16=((cnn16\*980)/(2\*wn\*Mn))\*I)Lm16 = Rasio Redaman dengan MR Damper pada Tingkat 3 dan 5 0.0387 0.2008 0.2557 0.1587 0.0870

Tl=(ql'\*M\*I)/(ql'\*M\*ql) T1 = Partisipasi Faktor Mode 1 2.0405 T2=(q2'\*M\*I)/(q2'\*M\*q2)T2 = Partisipasi Faktor Mode 2 0.8496 T3 = (q3' \* M \* I) / (q3' \* M \* q3)T3 = Partisipasi Faktor Mode 3 0.5963 T4 = (q4 \* M\*I) / (q4 \* M\*q4)T4 = Partisipasi Faktor Mode 4 0.2454 T5=(q5'\*M\*I)/(q5'\*M\*q5)T5 = Partisipasi Faktor Mode 5 0.2370 u1=T1\*q1 u1 = 0.2353 0.4540 0.8356 1.1147 1.4004 u2=T2\*q2 u2 = 0.2413 0.3816 0.3884 0.1165 -0.5946 u3=T3\*q3 u3 = 0.2752 0.3047 -0.1029 -0.3530 0.2275

| u4=T4*q4          |
|-------------------|
| u4 =              |
| 0.0897            |
| 0.0265            |
| -0.1773           |
| 0.1371            |
| -0.0354           |
|                   |
| u5=T5*q5          |
| u5 =              |
| 0.1581            |
| -0.1666           |
| 0.0562            |
| -0.0154           |
| 0.0020            |
|                   |
| ut=u1+u2+u3+u4+u5 |

#### ut =

0.9996 1.0002 1.0001 0.9999 0.9999

•

# LAMPIRAN 3

.

•

### Menentukan Nilai a, b dan k

### Mencari Nilai a

| Mode   | frekuensi natural | a                                                             |
|--------|-------------------|---------------------------------------------------------------|
|        | (ω)               | $\left[\omega_n^2 - \frac{2}{\left(\Delta t\right)^2}\right]$ |
| Mode 1 | 4,0799            | -4983 3544                                                    |
| Mode 2 | 9,8783            | -4902 4191                                                    |
| Mode 3 | 14,4286           | -4791 8155                                                    |
| Mode 4 | 19,9358           | -4602 5638                                                    |
| Mode 5 | 26,6823           | -4288.0548                                                    |

## Mencari Nilai b dan $\hat{k}$

| Variasi | 1. | Tanpa | redaman    | tambahan |
|---------|----|-------|------------|----------|
|         | _  |       | reactinuit | camoanan |

| Tanpa R                                        | edaman                                         | Frekuensi natural                                 | h                                                                                   | 1.                                                                                    |
|------------------------------------------------|------------------------------------------------|---------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
|                                                |                                                | (ω)                                               | $\left[\frac{1}{\left(\Delta t\right)^{2}}-\frac{2\xi\omega_{n}}{2\Delta t}\right]$ | $\left[\frac{1}{\left(\Delta t\right)^{2}} + \frac{2\xi\omega_{n}}{2\Delta t}\right]$ |
| Mode 1<br>Mode 2<br>Mode 3<br>Mode 4<br>Mode 5 | 0,0018<br>0,0067<br>0,0084<br>0,0101<br>0,0078 | 4,0799<br>9,8783<br>14,4286<br>19,9358<br>26,6823 | 2499,6328<br>2496,6907<br>2493,9399<br>2489,9324<br>2489,5939                       | 2500,3670<br>2503,3090<br>2506,0600<br>2510,0680<br>2510,4060                         |

Variasi 2. Kedua MR Damper pada Tingkat 1

| Tanpa Re | edaman | Frekuensi natural | b                                                                                 | k                                                                                     |
|----------|--------|-------------------|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
|          |        | (ω)               | $\left[\frac{1}{\left(\Delta t\right)^2} - \frac{2\xi\omega_n}{2\Delta t}\right]$ | $\left[\frac{1}{\left(\Delta t\right)^{2}} + \frac{2\xi\omega_{n}}{2\Delta t}\right]$ |
| Mode 1   | 0,02   | 4,0799            | 2495 9201                                                                         | 2504 08                                                                               |
| Mode 2   | 0,052  | 9.8783            | 2474 3164                                                                         | 2504,00                                                                               |
| Mode 3   | 0.0839 | 14 4286           | 2420 4720                                                                         | 2525,664                                                                              |
| Mode     | 0.0444 | 10,0250           | 2439,4720                                                                         | 2560,528                                                                              |
|          | 0,0441 | 19,9358           | 2456,0415                                                                         | 2543,958                                                                              |
| Wode 5   | 0,0881 | 26,6823           | 2382,4644                                                                         | 2617,536                                                                              |

| Variasi 3. | Kedua MR | Damper | nada | Tingkat 2 |
|------------|----------|--------|------|-----------|
|            |          | Dumper | paua | 1 mgKat Z |

| Tanpa Re | daman  | Frekuensi natural | b                                                                                   | k                                                                                     |
|----------|--------|-------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
|          |        | (ω)               | $\left[\frac{1}{\left(\Delta t\right)^{2}}-\frac{2\xi\omega_{n}}{2\Delta t}\right]$ | $\left[\frac{1}{\left(\Delta t\right)^{2}} + \frac{2\xi\omega_{n}}{2\Delta t}\right]$ |
| Mode 1   | 0,0175 | 4.0799            | 2496 4300                                                                           | 2502.57                                                                               |
| Mode 2   | 0.0221 | 9 8783            | 2480,4000                                                                           | 2503,57                                                                               |
| Mode 3   | 0 0003 | 14,4000           | 2409,0044                                                                           | 2510,916                                                                              |
| Mada     | 0,0093 | 14,4286           | 2493,2907                                                                           | 2506,709                                                                              |
| Iviode 4 | 0,027  | 19,9358           | 2473.0866                                                                           | 2526 913                                                                              |
| Mode 5   | 0,3464 | 26,6823           | 2037,8625                                                                           | 2962,137                                                                              |

Variasi 4. Kedua MR Damper pada Tingkat 3

| Tanpa Red                                      | daman                                          | Frekuensi natural                                 | h                                                                                   | 1                                                                                     |
|------------------------------------------------|------------------------------------------------|---------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
|                                                |                                                | ( <i>w</i> )                                      | $\left[\frac{1}{\left(\Delta t\right)^{2}}-\frac{2\xi\omega_{n}}{2\Delta t}\right]$ | $\left[\frac{1}{\left(\Delta t\right)^{2}} + \frac{2\xi\omega_{n}}{2\Delta t}\right]$ |
| Mode 1<br>Mode 2<br>Mode 3<br>Mode 4<br>Mode 5 | 0,0497<br>0,0068<br>0,1739<br>0,1856<br>0,1673 | 4,0799<br>9,8783<br>14,4286<br>19,9358<br>26,6823 | 2489,8614<br>2496,6413<br>2374,5433<br>2314,9957<br>2276,8025                       | 2510,139<br>2503,359<br>2625,457<br>2685,004<br>2723,197                              |

Variasi 5. Kedua MR Damper pada Tingkat 4

| Tanna R  | edaman | Erekuenci netural |                                                                        |                                                                                       |
|----------|--------|-------------------|------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| 1 anpu I | cauman | Trekuensi natural | b                                                                      | k k                                                                                   |
|          |        | (ω)               | $\left[\frac{1}{(\Delta t)^2} - \frac{2\xi\omega_n}{2\Delta t}\right]$ | $\left[\frac{1}{\left(\Delta t\right)^{2}} + \frac{2\xi\omega_{n}}{2\Delta t}\right]$ |
| Mode 1   | 0,0274 | 4,0799            | 2494 4105                                                              |                                                                                       |
| Mode 2   | 0 0643 | 0.9792            | 2434,4103                                                              | 2505,589                                                                              |
|          | 0,0045 | 9,0703            | 2468,2412                                                              | 2531.759                                                                              |
| Mode 3   | 0,0707 | 14,4286           | 2448 9948                                                              | 2551 005                                                                              |
| Mode 4   | 0 4277 | 10 0358           | 2072.0700                                                              | 2001,000                                                                              |
| Mode F   | 0,1277 | 19,9550           | 2073,6729                                                              | 2926,327                                                                              |
| Wode 5   | 0,0243 | 26,6823           | 2467,5810                                                              | 2532,419                                                                              |

| Tanpa Redaman                                                    | Frekuensi natural                      | b                                                                                   | k                                                                                   |
|------------------------------------------------------------------|----------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
|                                                                  | (ω)                                    | $\left[\frac{1}{\left(\Delta t\right)^{2}}-\frac{2\xi\omega_{n}}{2\Delta t}\right]$ | $\left[\frac{1}{\left(\Delta t\right)^{2}}+\frac{2\xi\omega_{n}}{2\Delta t}\right]$ |
| Mode 1 0,0286<br>Mode 2 0,0643<br>Mode 3 0,0707<br>Mode 4 0,4277 | 4,0799<br>9,8783<br>14,4286<br>19,9358 | 2494,1657<br>2302,4833<br>2251,7559<br>2364,6359                                    | 2505,834<br>2697,517<br>2748,244<br>2635,364                                        |
|                                                                  | 26,6823                                | 2488,2597                                                                           | 2511,74                                                                             |

Variasi 6. Kedua MR Damper pada Tingkat 5

Variasi 7. MR Damper pada Tingkat 1 dan 2

| Tanpa Redama                                                                                                                                | Frekuensi natural                                                                                | h                                                                                   | · · · · · · · · · · · · · · · · · · ·                                               |
|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
|                                                                                                                                             | ( <i>\omega</i> )                                                                                | $\left[\frac{1}{\left(\Delta t\right)^{2}}-\frac{2\xi\omega_{n}}{2\Delta t}\right]$ | $\left[ \frac{1}{\left(\Delta t\right)^2} + \frac{2\xi\omega_n}{2\Delta t} \right]$ |
| Mode 1         0,01           Mode 2         0,03           Mode 3         0,04           Mode 4         0,03           Mode 5         0,21 | 35     4,0799       56     9,8783       51     14,4286       52     19,9358       45     26,6823 | 2496,2260<br>2481,9227<br>2466,7420<br>2464,9129<br>2213,8323                       | 2503,774<br>2518,077<br>2533,258<br>2535,087<br>2786,168                            |

Variasi 8. MR Damper pada Tingkat 2 dan 3

| Tanpa Redaman                                                                    | Frekuensi natural                                 | b                                                                                 | k                                                                                     |
|----------------------------------------------------------------------------------|---------------------------------------------------|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
|                                                                                  | (ω)                                               | $\left[\frac{1}{\left(\Delta t\right)^2} - \frac{2\xi\omega_n}{2\Delta t}\right]$ | $\left[\frac{1}{\left(\Delta t\right)^{2}} + \frac{2\xi\omega_{n}}{2\Delta t}\right]$ |
| Mode 1 0,0332<br>Mode 2 0,0143<br>Mode 3 0,0905<br>Mode 4 0,105<br>Mode 5 0,2535 | 4,0799<br>9,8783<br>14,4286<br>19,9358<br>26,6823 | 2493,2273<br>2492,9370<br>2434,7105<br>2395,3370<br>2161,8018                     | 2506,773<br>2507,063<br>2565,289<br>2604,663                                          |

| Variasi 9 | Э. М | R Damper | pada | Tingkat 3                                                                                                      | dan 4 |
|-----------|------|----------|------|----------------------------------------------------------------------------------------------------------------|-------|
|           | _    |          |      | the second s |       |

| Tanpa Redama | in Frekuensi natural | b                                                                                   | k                                                                                   |  |
|--------------|----------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--|
|              | ·( <i>w</i> )        | $\left[\frac{1}{\left(\Delta t\right)^{2}}-\frac{2\xi\omega_{n}}{2\Delta t}\right]$ | $\left[\frac{1}{\left(\Delta t\right)^{2}}+\frac{2\xi\omega_{n}}{2\Delta t}\right]$ |  |
| Mode 1 0.03  | 373 4 0799           | 2492 2000                                                                           |                                                                                     |  |
| Mada         | 4,0700               | 2492,3909                                                                           | 2507,609                                                                            |  |
| Mode 2 0,03  | <b>338   9,8783</b>  | 2483.3056                                                                           | 2516 694                                                                            |  |
| Mode 3 0 11  | 97 14 4286           | 2412 6449                                                                           | 2010,004                                                                            |  |
|              | 17,7200              | 2413,0440                                                                           | 2586,355                                                                            |  |
| Mode 4 0,30  | 027   19,9358        | 2198 2716                                                                           | 2801 728                                                                            |  |
| Mode 5 0.00  | 136 26 6922          | 0075 4000                                                                           | 2001,720                                                                            |  |
|              | 20,0023              | 2375,1268                                                                           | 2624,873                                                                            |  |

Variasi 10. MR Damper pada Tingkat 4 dan 5

| Tanpa Redama                                                            | n Frekuensi natural                                                  | Frekuensi natural b                                                                 |                                                                                       |
|-------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
|                                                                         | (ω)                                                                  | $\left[\frac{1}{\left(\Delta t\right)^{2}}-\frac{2\xi\omega_{n}}{2\Delta t}\right]$ | $\left[\frac{1}{\left(\Delta t\right)^{2}} + \frac{2\xi\omega_{n}}{2\Delta t}\right]$ |
| Mode 1 0,02<br>Mode 2 0,22<br>Mode 3 0,20<br>Mode 4 0,27<br>Mode 5 0,01 | 277 4,0799<br>291 9,8783<br>248 14,4286<br>282 19,9358<br>64 26,6823 | 2494,3493<br>2386,8440<br>2352,2511<br>2222,6930<br>2478 1205                       | 2505,651<br>2613,156<br>2647,749<br>2777,307<br>2521 879                              |

Variasi 11. MR Damper pada Tingkat 1 dan 3

| Tanpa Redaman    |                  | Frekuensi natural  | h                                                                                   | 1 <sub>2</sub>                                                                        |  |
|------------------|------------------|--------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--|
| _                |                  | (ω)                | $\left[\frac{1}{\left(\Delta t\right)^{2}}-\frac{2\xi\omega_{n}}{2\Delta t}\right]$ | $\left[\frac{1}{\left(\Delta t\right)^{2}} + \frac{2\xi\omega_{n}}{2\Delta t}\right]$ |  |
| Mode 1<br>Mode 2 | 0,0344<br>0,0291 | 4,0799<br>9,8783   | 2492,9825<br>2485 6270                                                              | 2507,017                                                                              |  |
| Mode 3           | 0,1273           | 14,4286            | 2408,1619                                                                           | 2514,373                                                                              |  |
| Mode 5           | 0,1135<br>0,1261 | 19,9358<br>26,6823 | 2386,8643<br>2331,7680                                                              | 2613,136<br>2668,232                                                                  |  |

| Tanpa Redaman | Frekuensi natural  | L .                                                                    | 1                                                                                   |  |
|---------------|--------------------|------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--|
| 1 1           | i lokuonsi natural | D D                                                                    | k k                                                                                 |  |
|               | (ω)                | $\left[\frac{1}{(\Delta t)^2} - \frac{2\xi\omega_n}{2\Delta t}\right]$ | $\left[\frac{1}{\left(\Delta t\right)^{2}}+\frac{2\xi\omega_{n}}{2\Delta t}\right]$ |  |
| Mode 1 0.0234 | 4 0700             | 2405 2005                                                              |                                                                                     |  |
| Made 2 0.0575 | 4,0799             | 2495,2265                                                              | 2504,773                                                                            |  |
| WODE 2 0,0575 | 9,8783             | 2471 5998                                                              | 2529 4                                                                              |  |
| Mode 3 0 0764 | 14 4286            | 2444,0007                                                              | 2320,4                                                                              |  |
| Made 4 0,0000 | 14,4200            | 2444,8827                                                              | 2555,117                                                                            |  |
| Mode 4 0,2329 | 19,9358            | 2267 8476                                                              | 2732 152                                                                            |  |
| Mode 5 0 0556 | 26,6922            | 2105,0000                                                              | 2732,152                                                                            |  |
|               | 20,0023            | 2425,8232                                                              | 2574,177                                                                            |  |

Variasi 12. MR Damper pada Tingkat 1 dan 4

Variasi 13. MR Damper pada Tingkat 1 dan 5

| Tanpa Redama | an Frekuensi natural | b                                                                                   | k                                                                                     |  |
|--------------|----------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--|
|              | (ω)                  | $\left[\frac{1}{\left(\Delta t\right)^{2}}-\frac{2\xi\omega_{n}}{2\Delta t}\right]$ | $\left[\frac{1}{\left(\Delta t\right)^{2}} + \frac{2\xi\omega_{n}}{2\Delta t}\right]$ |  |
| Mode 1 0 C   | 24 4 0799            |                                                                                     |                                                                                       |  |
| Made 0       | 4,0735               | 2495,1041                                                                           | 2504.896                                                                              |  |
| Wode 2 0,22  | 231   9,8783         | 2389 8075                                                                           | 2610 102                                                                              |  |
| Mode 3 0 2   | 113 11 1286          | 2000,0010                                                                           | 2010, 192                                                                             |  |
| Made 4 0.00  | 14,4200              | 2347,5618                                                                           | 2652,438                                                                              |  |
| 1000e 4 0,08 | 889   19,9358        | 2411.3853                                                                           | 2588 615                                                                              |  |
| Mode 5 0 04  | 179 26 6823          | 2420,0050                                                                           | 2000,010                                                                              |  |
|              | 20,0023              | 2436,0958                                                                           | 2563,904                                                                              |  |

Variasi 14. MR Damper pada Tingkat 2 dan 4

.

| Tanpa Redaman                                               | Frekuensi natural                                 | h                                                                                   | T                                                                                            |  |
|-------------------------------------------------------------|---------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--|
|                                                             | (\omega)                                          | $\left[\frac{1}{\left(\Delta t\right)^{2}}-\frac{2\xi\omega_{n}}{2\Delta t}\right]$ | $\begin{bmatrix} k \\ \frac{1}{(\Delta t)^2} + \frac{2\xi\omega_n}{2\Delta t} \end{bmatrix}$ |  |
| Mode 10,0222Mode 20,0427Mode 30,0396Mode 40,2245Mode 50,183 | 4,0799<br>9,8783<br>14,4286<br>19,9358<br>26,6823 | 2495,4713<br>2478,9098<br>2471,4313<br>2276,2206<br>2255,8569                       | 2504,529<br>2521,09<br>2528,569<br>2723,779<br>2744,143                                      |  |

| Tanpa Redaman |        | Frekuensi natural | b                                                                                 | k                                                                                   |  |
|---------------|--------|-------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--|
|               |        | (ω)               | $\left[\frac{1}{\left(\Delta t\right)^2} - \frac{2\xi\omega_n}{2\Delta t}\right]$ | $\left[\frac{1}{\left(\Delta t\right)^{2}}+\frac{2\xi\omega_{n}}{2\Delta t}\right]$ |  |
| Mode 1        | 0.0228 | 4 0799            | 2495 3480                                                                         |                                                                                     |  |
| Mode 2        | 0,2083 | 0,8780            | 2493,3409                                                                         | 2504,651                                                                            |  |
|               | 0,2003 | 9,0/03            | 2397,1175                                                                         | 2602.882                                                                            |  |
| Mode 3        | 0,1745 | 14.4286           | 2374 1104                                                                         | 2625 80                                                                             |  |
| Mode 4        | 0.0805 | 10 0358           | 2440 7504                                                                         | 2025,09                                                                             |  |
| Mader         | 0,0000 | 19,9000           | 2419,7584                                                                         | 2580,242                                                                            |  |
|               | 0,1753 | 26,6823           | 2266,1296                                                                         | 2733,87                                                                             |  |

Variasi 15. MR Damper pada Tingkat 2 dan 5

Variasi 16. MR Damper pada Tingkat 3 dan 5

| Tanpa Redaman |        |                   |                                                                        |                                                                                       |  |
|---------------|--------|-------------------|------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--|
|               |        | Frekuensi natural | b                                                                      | k                                                                                     |  |
|               |        | (ω)               | $\left[\frac{1}{(\Delta t)^2} - \frac{2\xi\omega_n}{2\Delta t}\right]$ | $\left[\frac{1}{\left(\Delta t\right)^{2}} + \frac{2\xi\omega_{n}}{2\Delta t}\right]$ |  |
| Mode 1        | 0,0387 | 4,0799            | 2492 1053                                                              | 2507 895                                                                              |  |
| Mode 2        | 0,2008 | 9.8783            | 2400 8218                                                              | 2500,035                                                                              |  |
| Mode 3        | 0,2557 | 14,4286           | 2315,5303                                                              | 2684 47                                                                               |  |
| Mode 4        | 0,1587 | 19,9358           | 2341.8094                                                              | 2658 191                                                                              |  |
| Mode 5        | 0,087  | 26,6823           | 2383,9319                                                              | 2616.068                                                                              |  |

.

| t    | yg       | yg*980   | (yg*980-a+b)/k | (yg*980-a+b)/k | va*980-a+b   | (va*980 a+b)/k |    |
|------|----------|----------|----------------|----------------|--------------|----------------|----|
| 0    | 0,0063   | 6,174    |                |                | 6 174        | 0.002464000    | =  |
| 0,02 | 0,00364  | 3,5672   |                | 0.002461826    | 15 83534021  | 0,002401820    |    |
| 0,04 | 0,00099  | 0,9702   | 0,002461826    | 0.006314199    | 26 30096482  | 0,000314199    |    |
| 0,06 | 0,00428  | 4,1944   | 0,006314199    | 0.010487267    | 40 7205192   | 0,010487267    |    |
| 0,08 | 0,00758  | 7,4284   | 0,010487267    | 0.016236931    | 62 20740604  | 0,016236931    |    |
| 0,1  | 0,01087  | 10,6526  | 0,016236931    | 0.02480463     | 93 79871717  | 0,02480463     |    |
| 0,12 | 0,00682  | 6,6836   | 0,02480463     | 0.037401373    | 131 2521466  | 0,037401373    |    |
| 0,14 | 0,00277  | 2,7146   | 0,037401373    | 0.052335583    | 170 3131927  | 0,052335583    |    |
| 0,16 | -0,00128 | -1,2544  | 0,052335583    | 0.067910815    | 206 7434688  | 0,007910615    |    |
| 0,18 | 0,00368  | 3,6064   | 0,067910815    | 0.082437051    | 245 1785342  | 0.002437031    |    |
| 0,2  | 0,00864  | 8,4672   | 0,082437051    | 0.097762679    | 290 2114565  | 0,037702079    |    |
| 0,22 | 0,0136   | 13,328   | 0,097762679    | 0,115719142    | 346.3625926  | 0,113719142    |    |
| 0,24 | 0,00727  | 7,1246   | 0,115719142    | 0,138108889    | 406,985843   | 0.162281851    |    |
| 0,26 | 0,00094  | 0,9212   | 0,138108889    | 0,162281851    | 465,4472683  | 0.185592805    |    |
| 0,28 | 0,0042   | 4,116    | 0,162281851    | 0,185592805    | 524,5672451  | 0.209166351    |    |
| 0,3  | 0,00221  | 2,1658   | 0,185592805    | 0,209166351    | 581,999022   | 0.232066742    |    |
| 0,32 | 0,0021   | 2,058    | 0,209166351    | 0,232066742    | 637.2642279  | 0 254103233    |    |
| 0,34 | 0,00444  | 4,3512   | 0,232066742    | 0,254103233    | 692.302884   | 0 27604939     |    |
| 0,36 | 0,00867  | 8,4966   | 0,254103233    | 0,27604939     | 750,8965009  | 0 299413054    | İ. |
| 0,38 | 0,0129   | 12,642   | 0,27604939     | 0,299413054    | 816,7791852  | 0.325683167    |    |
| 0,4  | 0,01713  | 16,7874  | 0,299413054    | 0,325683167    | 893.613153   | 0.356320003    |    |
| 0,42 | -0,00343 | -3,3614  | 0,325683167    | 0,356320003    | 960,6706746  | 0 383058571    |    |
| 0,44 | -0,024   | -23,52   | 0,356320003    | 0,383058571    | 997.4096119  | 0 397707883    |    |
| 0,46 | -0,00992 | -9,7216  | 0,383058571    | 0,397707883    | 1017.575397  | 0.405748804    |    |
| 0,48 | 0,00416  | 4,0768   | 0,397707883    | 0,405748804    | 1034,936925  | 0 412671553    |    |
| 0,5  | 0,00528  | 5,1744   | 0,405748804    | 0,412671553    | 1050,494214  | 0 418874879    |    |
| 0,52 | 0,01653  | 16,1994  | 0,412671553    | 0,418874879    | 1075,180364  | 0 428718253    |    |
| 0,54 | 0,02779  | 27,2342  | 0,418874879    | 0,428718253    | 1119.808848  | 0.44651345     |    |
| 0,56 | 0,03904  | 38,2592  | 0,428718253    | 0,44651345     | 1194,982889  | 0.476488405    |    |
| 0,58 | 0,02449  | 24,0002  | 0,44651345     | 0,476488405    | 1285,752212  | 0.512681835    |    |
| 0,6  | 0,00995  | 9,751    | 0,476488405    | 0,512681835    | 1377,166953  | 0.54913262     | ĺ  |
| 0,62 | 0,00961  | 9,4178   | 0,512681835    | 0,54913262     | 1468,283089  | 0.585464339    |    |
| 0,64 | 0,00926  | 9,0748   | 0,54913262     | 0,585464339    | 1558,154723  | 0.621299824    |    |
| 0,66 | 0,00892  | 8,7416   | 0,585464339    | 0,621299824    | 1645,859971  | 0,656271483    |    |
| 0,68 | -0,00486 | -4,7628  | 0,621299824    | 0,656271483    | 1717,325936  | 0,684767878    |    |
| 0,7  | -0,01864 | -18,2672 | 0,656271483    | 0,684767878    | 1758,676109  | 0,701255877    |    |
| 0,72 | -0,03242 | -31,7716 | 0,684767878    | 0,701255877    | 1756,321237  | 0,700316894    |    |
| 0,74 | -0,03365 | -32,977  | 0,701255877    | 0,700316894    | 1709,346716  | 0,681586237    |    |
| 0,76 | -0,05723 | -56,0854 | 0,700316894    | 0,681586237    | 1595,23686   | 0,636085985    |    |
| 0,78 | -0,04534 | -44,4332 | 0,681586237    | 0,636085985    | 1426,823948  | 0,568932889    |    |
| 0,8  | -0,03346 | -32,7908 | 0,636085985    | 0,568932889    | 1217,2101    | 0,4853513      |    |
| 0,82 | -0,03201 | -31,3698 | 0,568932889    | 0,4853513      | 969,467013   | 0,38656603     |    |
| 0,84 | -0,03056 | -29,9488 | 0,4853513      | 0,38656603     | 686,9001284  | 0,273895091    |    |
| 0,86 | -0,02911 | -28,5278 | 0,38656603     | 0,273895091    | 373,0252151  | 0,148740364    |    |
| 0,88 | -0,02766 | -27,1068 | 0,273895091    | 0,148740364    | 31,54371272  | 0,012577765    |    |
| 0,9  | -0,04116 | -40,3368 | 0,148740364    | 0,012577765    | -348,3340061 | -0,138894972   |    |
| 0,92 | -0,05466 | -53,5668 | 0,012577765    | -0,138894972   | -777,0747853 | -0,309851403   |    |

 Tabel L-1 Contoh Perhitungan Nilai q untuk Pemasangan MR Damper tk 3 dan 5

 Pada mode 1

| t    | yg       | yg*980    | (yg*980-a+b)/k | (vg*980-a+b)/k | V0*980.2+b   | 14              |     |
|------|----------|-----------|----------------|----------------|--------------|-----------------|-----|
| 0,94 | -0,06810 | -66,7968  | -0,138894972   | -0.309851403   | 1364 75504   | [(yg*980-a+b)/k |     |
| 0,96 | -0,08166 | -80,0268  | -0,309851403   | -0 504309488   |              | -0,50430948     | 8   |
| 0,98 | -0,06846 | -67,0908  | -0,504309488   | -0 726105898   | -1020,997352 | -0,72610589     | 8   |
| 1    | -0,05527 | -54,1646  | -0,726105898   | -0.968438242   | -2420,741420 | -0,96843824     | 2   |
| 1,02 | -0,04208 | -41,2384  | -0,968438242   | -1 224414558   | -3070,703144 | -1,22441455     | 6   |
| 1,04 | -0,04259 | -41,7382  | -1,224414556   | -1 487095709   | -3/29,4/9894 | -1,48709570     | 9   |
| 1,06 | -0,04311 | -42,2478  | -1,487095709   | -1 754895248   |              | -1,/5489524     | 8   |
| 1,08 | -0,02428 | -23,7944  | -1,754895248   | -2.026206643   | -5747 716267 | -2,02620664     | 3   |
| 1,1  | -0,00545 | -5,341    | -2,026206643   | -2.291848848   | -3747,710207 | -2,291848848    | 3   |
| 1,12 | 0,01338  | 13,1124   | -2,291848848   | -2.542736248   | -6946 714581 | -2,042/38248    | 3   |
| 1,14 | 0,03221  | 31,5658   | -2,542736248   | -2.769938367   | -7435 252014 | -2,709930307    |     |
| 1,16 | 0,05104  | 50,0192   | -2,769938367   | -2.964738163   | -7821 343405 | -2,904/38163    | , I |
| 1,18 | 0,06987  | 68,4726   | -2,964738163   | -3.118688544   | -8084 617601 | -3,118688544    | 1   |
| 1,2  | 0,0887   | 86,926    | -3,118688544   | -3.223666737   | -8205 647257 | -3,223006/3/    |     |
| 1,22 | 0,04524  | 44,3352   | -3,223666737   | -3,27192616    | -8227 115143 | -3,27 192010    |     |
| 1,24 | 0,00179  | 1,7542    | -3,27192616    | -3,280486282   | -8192 086694 | -3,200400282    |     |
| 1,26 | -0,04167 | -40,8366  | -3,280486282   | -3,26651901    | -8143 740906 | -3,20031901     |     |
| 1,28 | -0,08513 | -83,4274  | -3,26651901    | -3,247241574   | -8125.073319 | -3,247241574    |     |
| 1,3  | -0,12858 | -126,0084 | -3,247241574   | -3,239798045   | -8178.601984 | -3,261142107    |     |
| 1,32 | -0,17204 | -168,5992 | -3,239798045   | -3,261142107   | -8346 107862 | -3,327033521    |     |
| 1,34 | -0,12908 | -126,4984 | -3,261142107   | -3,327933531   | -8583,66075  | -3 4228555554   |     |
| 1,36 | -0,08613 | -84,4074  | -3,327933531   | -3,422655554   | -8847,15189  | -3 527720216    |     |
| 1,38 | -0,08902 | -87,2396  | -3,422655554   | -3,527720216   | -9137.501271 | -3 643494353    |     |
| 1,4  | -0,09192 | -90,0816  | -3,527720216   | -3,643494353   | -9455,454617 | -3 770275317    |     |
| 1,42 | -0,09482 | -92,9236  | -3,643494353   | -3,770275317   | -9801,56974  | -3 90828553     |     |
| 1,44 | -0,09324 | -91,3752  | -3,770275317   | -3,90828553    | -10171.82362 | -4 055920848    |     |
| 1,46 | -0,09166 | -89,8268  | -3,90828553    | -4,055920848   | -10562,05833 | -4 211523341    |     |
| 1,48 | -0,09478 | -92,8844  | -4,055920848   | -4,211523341   | -10972,61553 | -4.375229236    |     |
| 1,5  | -0,09789 | -95,9322  | -4,211523341   | -4,375229236   | -11403.69001 | -4 547116209    |     |
| 1,52 | -0,12902 | -126,4396 | -4,375229236   | -4,547116209   | -11882,79876 | -4 738156407    | 1   |
| 1,54 | -0,07652 | -74,9896  | -4,547116209   | -4,738156407   | -12355,00932 | -4.926446011    |     |
| 1,56 | -0,02401 | -23,5298  | -4,738156407   | -4,926446011   | -12765,77104 | -5.090233458    |     |
| 1,58 | 0,02849  | 27,9202   | -4,926446011   | -5,090233458   | -13061,29439 | -5.208070669    |     |
| 1,6  | 0,08099  | 79,3702   | -5,090233458   | -5,208070669   | -13188,8934  | -5.258949597    |     |
| 1,62 | 0,1335   | 130,83    | -5,208070669   | -5,258949597   | -13097,31857 | -5.22243498     |     |
| 1,64 | 0,186    | 182,28    | -5,258949597   | -5.22243498    | -12737,10765 | -5.078804195    |     |
| 1,00 | 0,2385   | 233,73    | -5,22243498    | -5,078804195   | -12060,89282 | -4,809169769    |     |
| 1,00 | 0,21993  | 215,5314  | -5,078804195   | -4,809169769   | -11093,35057 | -4,423371221    |     |
| 1,7  | 0,20135  | 197,323   | -4,809169769   | -4,423371221   | -9860,945488 | -3,931961062    |     |
| 1.74 | 0,18277  | 179,1146  | -4,423371221   | -3,931961062   | -8391,733552 | -3,346126354    |     |
| 1,74 | 0,1642   | 160,916   | -3,931961062   | -3,346126354   | -6715,156093 | -2,677606556    |     |
| 1,70 | 0,14562  | 142,7076  | -3,346126354   | -2,677606556   | -4861,855255 | -1,93861994     |     |
| 1.0  | 0,10143  | 158,2014  | -2,677606556   | -1,93861994    | -2829,751053 | -1,128337132    |     |
| 1.0  | 0,17725  | 1/3,705   | -1,93861994    | -1,128337132   | -617,9535922 | -0,246403295    |     |
| 1.84 | 0,13213  | 129,507   | -1,128337132   | -0,246403295   | 1713,527115  | 0,683253133     |     |
| 1.86 | 0.04106  | 00,309    | -0,246403295   | 0,683253133    | 4104,264488  | 1,636537609     |     |
| 1.88 | -0 00314 | 41,1208   | 0,683253133    | 1,636537609    | 6493,828875  | 2,589354369     |     |
|      | 0,00014  | -3,0172   | 1,030537609    | 2,589354369    | 8822,169073  | 3,517758548     |     |

Tabel L-1 Lanjutan

|   | +    |          |           |                |                |              |               |   |
|---|------|----------|-----------|----------------|----------------|--------------|---------------|---|
|   | 10   | yg       | yg*980    | (yg*980-a+b)/k | (yg*980-a+b)/k | yg*980-a+b   | (yg*980-a+b)/ | k |
|   | 1,9  | -0,04824 | -47,2752  | 2,589354369    | 3,517758548    | 11030,01833  | 4,398118076   |   |
|   | 1,92 | -0,09334 | -91,4732  | 3,517758548    | 4,398118076    | 13059,28279  | 5,207268563   |   |
|   | 1,54 | -0,13843 | -135,6614 | 4,398118076    | 5,207268563    | 14853,4295   | 5,922668014   |   |
|   | 1,90 | -0,18353 | -179,8594 | 5,207268563    | 5,922668014    | 16357,8322   | 6,522534716   |   |
|   | 1,90 | -0,22863 | -224,0574 | 5,922668014    | 6,522534716    | 17520,13174  | 6,985990936   |   |
|   | 2    | -0,27372 | -268,2456 | 6,522534716    | 6,985990936    | 18290,57908  | 7,293199707   |   |
| l | 2,02 | -0,31882 | -312,4436 | 6,985990936    | 7,293199707    | 18622,32951  | 7,425482133   |   |
| I | 2,04 | -0,25024 | -245,2352 | 7,293199707    | 7,425482133    | 18583,15149  | 7.409860256   |   |
| l | 2,06 | -0,18166 | -178,0268 | 7,425482133    | 7,409860256    | 18242,84879  | 7.274167694   |   |
| l | 2,08 | -0,11309 | -110,8282 | 7,409860256    | 7,274167694    | 17672,77463  | 7.046855881   |   |
|   | 2,1  | -0,04451 | -43,6198  | 7,274167694    | 7,046855881    | 16945,36787  | 6,756809143   |   |
| l | 2,12 | 0,02407  | 23,5886   | 7,046855881    | 6,756809143    | 16133,65558  | 6 433146356   |   |
|   | 2,14 | 0,09265  | 90,797    | 6,756809143    | 6,433146356    | 15310,76465  | 6.105026187   |   |
|   | 2,16 | 0,16123  | 158,0054  | 6,433146356    | 6,105026187    | 14549,43574  | 5.801453305   |   |
|   | 2,18 | 0,22981  | 225,2138  | 6,105026187    | 5,801453305    | 13921,54293  | 5,551086838   |   |
|   | 2,2  | 0,29839  | 292,4222  | 5,801453305    | 5,551086838    | 13497,62211  | 5.382052323   |   |
|   | 2,22 | 0,23197  | 227,3306  | 5,551086838    | 5,382052323    | 13214,11124  | 5,269004978   |   |
|   | 2,24 | 0,16554  | 162,2292  | 5,382052323    | 5,269004978    | 13006,90668  | 5,186384072   |   |
|   | 2,26 | 0,09912  | 97,1376   | 5,269004978    | 5,186384072    | 12811,81173  | 5,108591759   | 1 |
|   | 2,28 | 0,0327   | 32,046    | 5,186384072    | 5,108591759    | 12564,95347  | 5.010159304   |   |
|   | 2,3  | -0,03372 | -33,0456  | 5,108591759    | 5,010159304    | 12203,2047   | 4.86591532    |   |
|   | 2,32 | -0,10014 | -98,1372  | 5,010159304    | 4,86591532     | 11664,59826  | 4.651150971   |   |
|   | 2,34 | -0,16656 | -163,2288 | 4,86591532     | 4,651150971    | 10888,73101  | 4.34178106    |   |
|   | 2,36 | -0,23299 | -228,3302 | 4,651150971    | 4,34178106     | 9817,145099  | 3.914496061   | L |
|   | 2,38 | -0,29941 | -293,4218 | 4,34178106     | 3,914496061    | 8393,723343  | 3.346919765   |   |
|   | 2,4  | -0,00421 | -4,1258   | 3,914496061    | 3,346919765    | 6919,424764  | 2 759056804   |   |
|   | 2,42 | 0,29099  | 285,1702  | 3,346919765    | 2,759056804    | 5693,651246  | 2,27029092    |   |
|   | 2,44 | 0,2238   | 219,324   | 2,759056804    | 2,27029092     | 4657,127884  | 1 856986789   |   |
|   | 2,46 | 0,15662  | 153,4876  | 2,27029092     | 1,856986789    | 3749,706626  | 1 495160932   |   |
|   | 2,48 | 0,08943  | 87,6414   | 1,856986789    | 1,495160932    | 2910,751405  | 1 160635276   |   |
|   | 2,5  | 0,02224  | 21,7952   | 1,495160932    | 1,160635276    | 2079.553476  | 0.829202768   |   |
|   | 2,52 | -0,04495 | -44,051   | 1,160635276    | 0,829202768    | 1195 734824  | 0,020202700   |   |
|   | 2,54 | 0,01834  | 17,9732   | 0,829202768    | 0.476788232    | 327 5172391  | 0,470700232   |   |
|   | 2,56 | 0,08163  | 79,9974   | 0,476788232    | 0.130594478    | -457 4105601 | 0,100394478   |   |
|   | 2,58 | 0,14491  | 142,0118  | 0,130594478    | -0.182388242   | -1092 348653 | -0,102300242  |   |
|   | 2,6  | 0,2082   | 204,036   | -0,182388242   | -0.43556395    | -1512 002805 | -0,43556395   |   |
|   | 2,62 | 0,18973  | 185,9354  | -0,43556395    | -0.602897173   | -1733 043606 | -0,00209/1/3  |   |
|   | 2,64 | 0,17125  | 167,825   | -0,602897173   | -0.691035153   | -1773 364772 | -0,091035153  |   |
|   | 2,66 | 0,13759  | 134,8382  | -0,691035153   | -0 707112846   | -1666 822277 | -0,707112846  |   |
|   | 2,68 | 0,10393  | 101,8514  | -0,707112846   | -0 664630408   | -1448 027726 | -0,004030408  |   |
|   | 2,7  | 0,07027  | 68,8646   | -0.664630408   | -0 577391687   | -1452 152777 | -0,577391687  |   |
|   | 2,72 | 0,03661  | 35,8778   | -0.577391687   | -0.459410692   | -1152,155777 | -0,459410692  |   |
|   | 2,74 | 0,00295  | 2,891     | -0,459410692   | -0.324817247   | -470 8885022 | -0,32481/247  |   |
|   | 2,76 | -0,03071 | -30,0958  | -0.324817247   | -0 187762483   |              | -0,18//62483  |   |
|   | 2,78 | -0,00561 | -5,4978   | -0,187762483   | -0.06232477    | 151 9206700  | -0,06232477   |   |
|   | 2,8  | 0,01948  | 19,0904   | -0.06232477    | 0.060544672    | 131,0390/92  | 0,060544672   |   |
|   | 2,82 | 0,04458  | 43,6884   | 0.060544672    | 0 189850702    | 4/0,1208524  | 0,189850792   |   |
|   | 2,84 | 0,06468  | 63,3864   | 0 189850702    | 0.33450202     | 030,0984/74  | 0,33450303    |   |
|   |      |          | ,         | 9,103030192    | 0,33450303     | 1257,205364  | 0,501299043   |   |

Tabel L-1 Lanjutan

| l | t    | yg       | yg*980     | (yg*980-a+b)/k | (va*980-a+b)/k | luct080 aut  |                |          |
|---|------|----------|------------|----------------|----------------|--------------|----------------|----------|
|   | 2,86 | 0,0847   | 8 83,0844  | 0 33450303     | 0 50120004     |              | (yg*980-a+b)/k | <u> </u> |
|   | 2,88 | 0,1048   | 7 102,772  | 6 0.501299043  | 0,50129904.    | 3 1/4/,61838 | 4 0,69684671   | 2        |
|   | 2,9  | 0,05895  | 5 57,771   | 0.696846712    | 0,03004071     | 2 2326,11667 | 5 0,92751756   | ;9       |
| I | 2,92 | 0,01303  | 12,7694    | 0.927517569    | 1 172615446    | 2943,30430   | 7 1,17361544   | 5        |
| I | 2,94 | -0,03289 | -32,2322   | 2 1 173615445  | 1,173013445    | 3549,83955   | 1,41546577     | 9        |
|   | 2,96 | -0,07882 | 2 -77.2436 | 1 415465779    | 1,410400//9    | 4096,76203   | 1,63354607:    | 3        |
| I | 2,98 | -0,03556 | -34,8488   | 1.633546073    | 1,033546073    | 4535,8055    | 1,808610608    | 8        |
| I | 3    | 0,00771  | 7,5558     | 1.808610608    | 1,000010000    | 4907,12984   | 1,956672763    | 3        |
|   | 3,02 | 0,05097  | 49,9506    | 1,956672763    | 2 09382822     | 5251,101363  | 2,093828236    | 5        |
| ļ | 3,04 | 0,01013  | 9,9274     | 2,093828236    | 2,035020250    | 5608,003991  | 2,236139867    | '        |
|   | 3,06 | -0,03071 | -30,0958   | 2,236139867    | 2,366671727    | 5935,36419   | 2,366671727    | ′        |
|   | 3,08 | -0,07156 | -70,1288   | 2,366671727    | 2,468672702    | 6334 146792  | 2,468672702    |          |
|   | 3,1  | -0,1124  | -110,152   | 2,468672702    | 2.525682607    | 6324 026062  | 2,525682607    |          |
|   | 3,12 | -0,15324 | -150,1752  | 2,525682607    | 2 521647423    | 6121 920340  | 2,521647423    | ·        |
|   | 3,14 | -0,11314 | -110,8772  | 2,521647423    | 2 441019386    | 6760 2760    | 2,441019386    | ·        |
|   | 3,16 | -0,07304 | -71,5792   | 2,441019386    | 2 300485602    | 5200 270255  | 2,300485602    |          |
|   | 3,18 | -0,03294 | -32,2812   | 2,300485602    | 2 117025735    | 5309,278235  | 2,117025735    |          |
|   | 3,2  | 0,00715  | 7,007      | 2,117025735    | 1 907797463    | 4704,000/18  | 1,907797463    |          |
|   | 3,22 | -0,0635  | -62,23     | 1,907797463    | 1 690017571    | 7230,300015  | 1,690017571    |          |
|   | 3,24 | -0,13415 | -131,467   | 1,690017571    | 1 437577784    | 3605,294137  | 1,437577784    |          |
|   | 3,26 | -0,2048  | -200,704   | 1,437577784    | 1 124764259    | 1821 700502  | 1,124764259    |          |
|   | 3,28 | -0,12482 | -122,3236  | 1,124764259    | 0.726425772    | 1021,799562  | 0,726425772    |          |
|   | 3,3  | -0,04485 | -43,953    | 0,726425772    | 0.276998193    | 094,0823843  | 0,276998193    |          |
|   | 3,32 | 0,03513  | 34,4274    | 0,276998193    | -0 188964221   | -473,902424  | -0,188964221   |          |
|   | 3,34 | 0,1151   | 112,798    | -0,188964221   | -0.637011108   | -1597,550974 | -0,637011108   |          |
|   | 3,36 | 0,19508  | 191,1784   | -0.637011108   | -1 033031828   | -2590,735355 | -1,033031828   |          |
|   | 3,38 | 0,12301  | 120,5498   | -1.033031828   | -1 343471009   | -3369,286481 | -1,343471908   |          |
|   | 3,4  | 0,05094  | 49,9212    | -1,343471908   | -1 594972127   | -4000,022648 | -1,594972137   |          |
|   | 3,42 | -0,02113 | -20,7074   | -1.594972137   | -1 814306702   | -4550,31662  | -1,814396783   |          |
|   | 3,44 | -0,0932  | -91,336    | -1.814396783   | -2 028652979   | -5087,650917 | -2,028653878   |          |
|   | 3,46 | -0,02663 | -26,0974   | -2.028653878   | -2 26451624    | -56/9,16920/ | -2,26451634    |          |
|   | 3,48 | 0,03995  | 39,151     | -2,26451634    | -2 494269331   | -0205,360585 | -2,494269331   |          |
|   | 3,5  | 0,10653  | 104,3994   | -2,494269331   | -2 690409147   | -0/4/,20304/ | -2,690409147   |          |
|   | 3,52 | 0,17311  | 169,6478   | -2,690409147   | -2 82582835    | -7000,080789 | -2,82582835    |          |
|   | 3,54 | 0,11283  | 110,5734   | -2,82582835    | -2 873993201   | 7160 201472  | -2,873993201   |          |
|   | 3,56 | 0,05255  | 51,499     | -2,873993201   | -2.85868873    | -7032.066095 | -2,858688/3    |          |
|   | 3,58 | -0,00772 | -7,5656    | -2,85868873    | -2.803971492   | -6856 505652 | -2,803971492   |          |
|   | 3,6  | 0,01064  | 10,4272    | -2,803971492   | -2.734004275   | -0000,090002 | -2,734004275   |          |
|   | 3,62 | 0,029    | 28,42      | -2,734004275   | -2.642173033   | -6325 03770  | -2,6421/3033   |          |
|   | 3,64 | 0,04737  | 46,4226    | -2,642173033   | -2.522050481   | -5017 275077 | -2,522050481   |          |
|   | 3,66 | 0,06573  | 64,4154    | -2,522050481   | -2 367433675   | -5449 120001 | -2,36/433675   |          |
|   | 3,68 | 0,02021  | 19,8058    | -2,367433675   | -2.172391588   | -3448,130001 | -2,172391588   |          |
|   | 3,7  | -0,0253  | -24,794    | -2,172391588   | -1.95626098    | -4350,097131 | -1,95626098    |          |
|   | 3,72 | -0,07081 | -69,3938   | -1,95626098    | -1.738392937   | -3857 212240 | -1,/38392937   |          |
|   | 3,74 | -0,04107 | -40,2486   | -1,738392937   | -1,538028243   | -3372 620000 | -1,538028243   |          |
|   | 3,76 | -0,01133 | -11,1034   | -1,538028243   | -1,344765226   | -2879 616617 | -1,344/65226   | 1        |
|   | 3,78 | 0,00288  | 2,8224     | -1,344765226   | -1.148220566   | -2367 870000 | -1,148220566   | ĺ        |
| _ | 3,8  | 0,01709  | 16,7482    | -1,148220566   | -0.944166693   | -2301,010929 | -0,944166693   |          |
|   |      |          |            |                |                | -1020,0023/1 | -0,728452495   | l l      |

Tabel L-1 Lanjutan

| 1 | the second s |          |           |                |                |              |                |        |
|---|----------------------------------------------------------------------------------------------------------------|----------|-----------|----------------|----------------|--------------|----------------|--------|
|   | t                                                                                                              | yg       | yg*980    | (yg*980-a+b)/k | (yg*980-a+b)/k | vg*980-a+b   | (va*980-2+b)/b |        |
|   | 3,82                                                                                                           | 0,03131  | 30,6838   | -0,944166693   | -0,728452495   | -1246 49023  |                |        |
|   | 3,84                                                                                                           | -0,02278 | -22,3244  | -0,728452495   | -0,497026484   | -683 803117/ | -0,49702040    | 4<br>6 |
| I | 3,86                                                                                                           | -0,07686 | -75,3228  | -0,497026484   | -0,272660186   | -195,4427544 | -0,27200018    | 6      |
| l | 3,88                                                                                                           | -0,13095 | -128,331  | -0,272660186   | -0,077930996   | 162,8091523  | 0.064918646    | 0<br>2 |
| ł | 3,9                                                                                                            | -0,18504 | -181,3392 | -0,077930996   | 0,064918648    | 336,3856845  | 0 134130680    | י<br>ג |
| l | 3,92                                                                                                           | -0,14347 | -140,6006 | 0,064918648    | 0,134130689    | 366.0360467  | 0 145953409    |        |
|   | 3,94                                                                                                           | -0,1019  | -99,862   | 0,134130689    | 0,145953498    | 293 2081897  | 0,145355498    |        |
| l | 3,96                                                                                                           | -0,06034 | -59,1332  | 0,145953498    | 0,116914061    | 159,7595022  | 0,063702629    | ,      |
|   | 3,98                                                                                                           | -0,01877 | -18,3946  | 0,116914061    | 0,063702628    | 7,696008106  | 0.003068712    |        |
|   | 4                                                                                                              | 0,0228   | 22,344    | 0,063702628    | 0,003068712    | -121,1171825 | -0.048204250   | ,      |
|   | 4,02                                                                                                           | -0,00996 | -9,7608   | 0,003068712    | -0,048294359   | -258 0762629 | -0,040294559   | '      |
|   | 4,04                                                                                                           | -0,04272 | -41,8656  | -0,048294359   | -0.10290553    | -434 3256893 | -0,10290555    |        |
|   | 4,06                                                                                                           | -0,02147 | -21,0406  | -0,10290553    | -0.173183363   | -627 6232466 | -0,173103303   |        |
|   | 4,08                                                                                                           | -0,00021 | -0,2058   | -0,173183363   | -0.250258981   | -815 7437997 | -0,250258981   |        |
|   | 4,1                                                                                                            | 0,02104  | 20,6192   | -0,250258981   | -0.325270316   | -976 6463041 | -0,325270316   |        |
|   | 4,12                                                                                                           | -0,01459 | -14,2982  | -0,325270316   | -0,389428706   | -1144 351543 | -0,309420700   |        |
|   | 4,14                                                                                                           | -0,05022 | -49,2156  | -0,389428706   | -0.456299623   | -1352 620953 | -0,450299023   |        |
|   | 4,16                                                                                                           | -0,08585 | -84,133   | -0,456299623   | -0,539345129   | -1634 734169 | -0,559545129   |        |
|   | 4,18                                                                                                           | -0,12148 | -119,0504 | -0,539345129   | -0,651835172   | -2023 271164 | -0,001000172   |        |
|   | 4,2                                                                                                            | -0,15711 | -153,9678 | -0,651835172   | -0,806760715   | -2549 900408 | -1.016740260   |        |
|   | 4,22                                                                                                           | -0,19274 | -188,8852 | -0,806760715   | -1,016749269   | -3245.174408 | -1 293983364   |        |
|   | 4,24                                                                                                           | -0,22837 | -223,8026 | -1,016749269   | -1,293983364   | -4138.333946 | -1 650122401   |        |
|   | 4,26                                                                                                           | -0,18145 | -177,821  | -1,293983364   | -1,650122491   | -5176 22325  | -2.063971270   |        |
|   | 4,28                                                                                                           | -0,13453 | -131,8394 | -1,650122491   | -2,063971279   | -6305.060581 | -2 514084753   |        |
|   | 4,3                                                                                                            | -0,08761 | -85,8578  | -2,063971279   | -2,514084753   | -7470,799146 | -2 978912254   |        |
|   | 4,32                                                                                                           | -0,04069 | -39,8762  | -2,514084753   | -2,978912254   | -8619 487498 | -3 436941120   |        |
|   | 4,34                                                                                                           | 0,00623  | 6,1054    | -2,978912254   | -3,436941139   | -9697.627034 | -3,450941139   |        |
|   | 4,36                                                                                                           | 0,05316  | 52,0968   | -3,436941139   | -3,866839335   | -10652.51444 | -4 247591882   |        |
|   | 4,38                                                                                                           | 0,10008  | 98,0784   | -3,866839335   | -4,247591882   | -11432 60611 | -4 558648227   |        |
|   | 4,4                                                                                                            | 0,147    | 144,06    | -4,247591882   | -4,558646237   | -11987.84312 | -4 780041875   |        |
|   | 4,42                                                                                                           | 0,09754  | 95,5892   | -4,558646237   | -4,780041875   | -12364.42661 | -4.930201068   |        |
|   | 4,44                                                                                                           | 0,04808  | 47,1184   | -4,780041875   | -4.930201068   | -12609 45262 | 5.027002020    |        |
|   | 4,46                                                                                                           | -0,00138 | -1,3524   | -4,930201068   | -5.027902929   | -12770 59388 | -5,027902929   |        |
|   | 4,48                                                                                                           | 0,05141  | 50,3818   | -5,027902929   | -5.092156521   | -12795 57476 | -5,092150521   |        |
|   | 4,5                                                                                                            | 0,1042   | 102,116   | -5,092156521   | -5.102117419   | -12633 35253 | -5,102117419   | 1      |
|   | 4,52                                                                                                           | 0,15699  | 153,8502  | -5,102117419   | -5,037432798   | -12234 44833 | -3,037432790   |        |
|   | 4,54                                                                                                           | 0,20979  | 205,5942  | -5,037432798   | -4.878373427   | -11551 256   | -4,070575427   |        |
|   | 4,56                                                                                                           | 0,26258  | 257,3284  | -4,878373427   | -4,60595679    | -10538 36588 | -4,00055079    |        |
|   | 4,58                                                                                                           | 0,16996  | 166,5608  | -4,60595679    | -4,202076194   | -9295 344301 | -3,202070194   |        |
|   | 4,6                                                                                                            | 0,07734  | 75,7932   | -4,202076194   | -3,706432806   | -7922 658256 | -3,159086006   | l      |
|   | 4,62                                                                                                           | -0,01527 | -14,9646  | -3,706432806   | -3,159086906   | -6520 993024 | -2 600185822   |        |
|   | 4,64                                                                                                           | -0,10789 | -105,7322 | -3,159086906   | -2,600185823   | -5190 602122 | -2 060704704   |        |
|   | 4,66                                                                                                           | -0,20051 | -196,4998 | -2,600185823   | -2,069704721   | -4030.634801 | -1 607179454   |        |
|   | 4,68                                                                                                           | -0,06789 | -66,5322  | -2,069704721   | -1,607178451   | -2917 749691 | -1,007170401   |        |
|   | 4,7                                                                                                            | 0,06479  | 63,4942   | -1,607178451   | -1,163425778   | -1729 010673 | -1,103423/18   |        |
|   | 4,72                                                                                                           | 0,01671  | 16,3758   | -1,163425778   | -0,689427059   | -519,9039031 | -0,003427039   |        |
|   | 4,74                                                                                                           | -0,03137 | -30,7426  | -0,689427059   | -0,207306886   | 654,298613   | 0.260895537    |        |
| _ | 4,76                                                                                                           | -0,07945 | -77,861   | -0,207306886   | 0,260895537    | 1738.904533  | 0.693372144    |        |
|   |                                                                                                                |          |           |                |                |              | -,             |        |

Tabel L-1 Lanjutan

| t    | yg       | vg*980    | (vg*980-a+b)/k | (va*980_a+b)/k | luctono - ut | 1              |
|------|----------|-----------|----------------|----------------|--------------|----------------|
| 4 78 | 0 12752  | 404.0704  | 109 000 U.D//K | (yg 300-a+D)/K | Jyg-980-a+b  | (yg*980-a+b)/k |
| 4,70 | -0,12/53 | -124,9/94 | 0,260895537    | 0,693372144    | 2680,160548  | 1.068689298    |
| 4,8  | -0,17561 | -172,0978 | 0,693372144    | 1,068689298    | 3425 603253  | 1 365927701    |
| 4,82 | -0,22369 | -219,2162 | 1,068689298    | 1.365927701    | 3924 399240  | 1.564940004    |
| 4,84 | -0,27177 | -266,3346 | 1,365927701    | 1 564818004    | 4127 672243  | 1,304010004    |
| 4,86 | -0,15851 | -155.3398 | 1 564818004    | 1 645974064    | 4121,012201  | 1,6458/1254    |
| 4,88 | -0.04525 | -44 345   | 1 645971054    | 1,045071254    | 4146,928554  | 1,653549512    |
| Å 9  | 0.06802  |           | 1,045071254    | 1,653549512    | 4094,193599  | 1,632521935    |
| 4,5  | 0,00002  | 66,6596   | 1,653549512    | 1,632521935    | 4081,275301  | 1.627370883    |
| 4,92 | 0,18128  | 177,6544  | 1,632521935    | 1,627370883    | 4219.00352   | 1 68228874     |
| 4,94 | 0,14464  | 141,7472  | 1,627370883    | 1.68228874     | 4469 60843   | 1 792245427    |
| 4,96 | 0,108    | 105.84    | 1 68228874     | 1 782218427    | 4100,00040   | 1,/0441013/    |
| 4,98 | 0.07137  | 69 9426   | 1 702245427    | 1,702215137    | 4/94,808/89  | 1,91188578     |
| 5    | 0.02472  | 00,0420   | 1,702215137    | 1,91188578     | 5156,079049  | 2,055938964    |
|      | 0,03473  | 34,0354   | 1,91188578     | 2,055938964    | 5514,887008  | 2,199010328    |

.

Tabel L-1 Lanjutan

# **LAMPIRAN 5**

.

`

Tabel L-2 Contoh Perhitungan Nilai Simpangan Total permasangangan MR Damper pada tingkat 3 dan 5 untuk mode 1

|                     |                               | ••••••     |            |            |            |            |            |            |            |            |            |           |            |            |            |            |            |            |                     |           |            |             |            |
|---------------------|-------------------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|-----------|------------|------------|------------|------------|------------|------------|---------------------|-----------|------------|-------------|------------|
| Yn                  | $y_1 + y_2 + y_3 + y_4 + y_5$ | 0.002367   | 0.005702   | 0 008671   | 0.012368   | 0.017793   | 0.025774   | 0.034174   | 0.041097   | 0.045036   | 0.048376   | 0.053168  |            | 0,070122   | 0.076648   | 0.082156   | 0.086058   | 0,08853    | COUNTRY OF CONTRACT | 00010     |            | 0 1 2 5 1 0 | 0 12044    |
| <i>y</i> ,          | $q_5 * \phi_5 * \Gamma_5$     | 0,000373   | 0,000827   | 0.001074   | 0,001261   | 0,001537   | 0,002013   | 0,002304   | 0.002106   | 0.001276   | 0.000391   | -1.04E-05 |            | 0,0001148  | 0.001544   | 0.001733   | 0.001565   | 0.00111    | 0.000656            | 0 000578  | 0 001113   | 0.002312    | 0,002573   |
| y4                  | $q_4 * \phi_4 * \Gamma_4$     | 0,000208   | 0,000481   | 0,000682   | 0,000899   | 0,001206   | 0,001655   | 0,002029   | 0,002147   | 0,001887   | 0,001498   | 0.001217  | 0.001237   | 0.00131    | 0.001209   | 0,001079   | 0,000875   | 0.000635   | 0,000475            | 0.00055   | 0.00096    | 0.001744    | 0,00206    |
| <i>y</i> 3          | $q_3 * \phi_3 * \Gamma_3$     | 0,000633   | 0,001496   | 0,002223   | 0,003109   | 0,004393   | 0,006252   | 0,008056   | 0,009266   | 0,009462   | 0,009268   | 0,009249  | 0.009883   | 0.010393   | 0,010122   | 0,009525   | 0,008493   | 0,007156   | 0,005894            | 0,005219  | 0.005528   | 0,007088    | 0,007539   |
| <i>y</i> 2          | $q_2 * \phi_2 * \Gamma_2$     | 0,000573   | 0,001412   | 0,002224   | 0,00328    | 0,004822   | 0,007054   | 0,009471   | 0,011601   | 0,013015   | 0,014168   | 0,015487  | 0,017362   | 0,019102   | 0,020079   | 0,020609   | 0,020526   | 0,01987    | 0,018921            | 0,018124  | 0,01788    | 0,018543    | 0,018146   |
| <i>y</i> 1          | $q_1 * \phi_1 * \Gamma_1$     | 0,00057919 | 0,00148554 | 0,00246734 | 0,00382006 | 0,00583578 | 0,00879541 | 0,01231297 | 0,01597735 | 0,01939494 | 0,02300059 | 0,0272252 | 0,03249283 | 0,03817999 | 0,04366435 | 0,04921049 | 0,05459826 | 0,05978278 | 0,06494604          | 0,0704428 | 0.07662336 | 0,08383128  | 0,09012206 |
| <i>q</i> 5          |                               | 0,00236    | 0,005232   | 0,0006796  | 0,0007975  | 0,009719   | 0,0#2735   | 0,0114572  | 0,013319   | 0,0008072  | 0,002473   | -6,57E-05 | 0,002733   | 0,007264   | 0,000767   | 0,0:110964 | 0,0009899  | 0,0@7021   | 0,0004151           | 0,003654  | 0,0007039  | 0,0114625   | 0,0116273  |
| 94                  |                               | 0,002323   | 0,005364   | 0,007606   | 0,010021   | 0,013446   | 0,01846    | 0,022632   | 0,023944   | 0,021049   | 0,016707   | 0,01357   | 0,013791   | 0,014604   | 0,013484   | 0,012029   | 0,009763   | 0,007082   | 0,005298            | 0,00613   | 0,010703   | 0,019447    | 0,022977   |
| <i>q</i> ,          |                               | 0,0023     | 0,005434   | 0,008078   | 0,011294   | 0,015959   | 0,022714   | 0,029269   | 0,033664   | 0,034377   | 0,03367    | 0,033603  | 0,035904   | 0,037758   | 0,036772   | 0,034604   | 0,030856   | 0,025998   | 0,021412            | 0,01896   | 0,020085   | 0,025751    | 0,027389   |
| <i>q</i> 2          |                               | 0,002375   | 0,005853   | 0,009218   | 0,013595   | 0,019985   | 0,029235   | 0,039253   | 0,048078   | 0,053941   | 0,05872    | 0,064187  | 0,071955   | 0,079169   | 0,083215   | 0,085412   | 0,085068   | 0,082348   | 0,078419            | 0,075114  | 0,074105   | 0,076849    | 0,075206   |
| 9,1                 |                               | 0,002462   | 0,006314   | 0,010487   | 0,016237   | 0,024805   | 0,037401   | 0,052336   | 0,067911   | 0,082437   | 0,097763   | 0,115719  | 0,138109   | 0,162282   | 0,185593   | 0,209166   | 0,232067   | 0,254103   | 0,276049            | 0,299413  | 0,325683   | 0,35632     | 0,383059   |
| y <sub>8</sub> *980 |                               | 6,174      | 3,5672     | 0,9702     | 4,1944     | 7,4284     | 10,6526    | 6,6336     | 2,7146     | -1,2544    | 3,6364     | 8,4572    | 13,328     | 7,1246     | 0,9212     | 4,116      | 2,1658     | 2,058      | 4,3512              | 8,4966    | 12,542     | 16,7874     | -3,3614    |
| -                   |                               | <br>       | 2          | 3          | 8          | 8          | ••••••     | 2          | 4          | 16         | <u>80</u>  | Ņ         | 52         | 54         | 26         | 28         | n,         | 32         | 7                   | g         | 38         | 4           | \$         |

L5-a

| $y_{ht}$              | $y_1 + y_2 + y_3 + y_4 + y_5$ | 0,115342   | 0,105429   | 0,097637   | 0,093053   | 0,095938   | 0,109317   | 0,13496    | 0,163887   | 0,188023   | 0,206336   | 0,218989   | 0,227067   | 0,227074  | 0,216357   | 0,192939   | 0,160062   | 0,112142   | 0,057615   | 0,00369    | -0,047974  | -0,096747 | -0,142664  | -0,18602   | -0,232671  | -0,287297  |
|-----------------------|-------------------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|-----------|------------|------------|------------|------------|------------|------------|------------|-----------|------------|------------|------------|------------|
| <i>y</i> ,            | $q_5 * \phi_5 * \Gamma_5$     | 0,000689   | -0,001803  | -0,003337  | -0,003514  | -0,001739  | 0,001997   | 0,00717    | 0,011383   | 0,012714   | 0,011036   | 0,007052   | 0,002031   | -0,003386 | -0,008504  | -0,012774  | -0,015182  | -0,016634  | -0,016115  | -0,013239  | -0,008911  | -0,004352 | -0,000737  | 0,00112    | 6,87E-05   | -0,004145  |
| $y_4$                 | $q_4 * \phi_4 * \Gamma_4$     | 0,001238   | 1,75E-07   | -0,000953  | -0,001475  | -0,001168  | 0,000195   | 0,002658   | 0,00524    | 0,00706    | 0,007925   | 0,007809   | 0,006834   | 0,004792  | 0,001661   | -0,002418  | -0,006762  | -0,01147   | -0,015402  | -0,017669  | -0,018083  | -0,016754 | -0,014041  | -0,010465  | -0,007112  | -0,004901  |
| <i>y</i> ,            | $q_3 * \phi_3 * \Gamma_3$     | 0,004931   | 0,001303   | -0,00151   | -0,003288  | -0,002906  | 0,000441   | 0,007217   | 0,014963   | 0,021484   | 0,026408   | 0,029538   | 0,030843   | 0,029089  | 0,023447   | 0,013504   | 0,000499   | -0,016508  | -0,034453  | -0,050622  | -0,06386   | -0,073397 | -0,078856  | -0,080229  | -0,079327  | -0,07789   |
| <i>y</i> 2            | $q_2 * \phi_2 * \Gamma_2$     | 0,014915   | 0,010469   | 0,006347   | 0,002781   | 0,000888   | 0,001633   | 0,005812   | 0,011682   | 0,017571   | 0,023224   | 0,028417   | 0,032958   | 0,035474  | 0,034769   | 0,029864   | 0,02115    | 0,007101   | -0,010267  | -0,028969  | -0,048067  | -0,066684 | -0,084025  | -0,099405  | -0,113623  | -0,127463  |
| <i>y</i> 1            | $q_1 * \phi_1 * \Gamma_1$     | 0,09356859 | 0,09546038 | 0,09708909 | 0,09854855 | 0,10086439 | 0,10505106 | 0,11210326 | 0,12061848 | 0,12919424 | 0,13774199 | 0,14617299 | 0,15440076 | 0,1611051 | 0,16498422 | 0,16476331 | 0,16035656 | 0,14965173 | 0,13385264 | 0,11418843 | 0,09094725 | 0,0644392 | 0,03499409 | 0,00295917 | -0,0326778 | -0,0728986 |
| <i>q</i> <sub>5</sub> |                               | 0,004356   | -0,011406  | -0,021106  | -0,022224  | -0,011002  | 0,012628   | 0,04535    | 0,072001   | 0,080419   | 0,069805   | 0,044605   | 0,012843   | -0,021416 | -0,053789  | -0,080797  | -0,096025  | -0,105208  | -0,101929  | -0,083737  | -0,056361  | -0,027524 | -0,004661  | 0,007081   | 0,000435   | -0,026216  |
| <i>q</i> <sup>4</sup> | r<br>1                        | 0,013804   | 1,95E-06   | -0,010624  | -0,016451  | -0,01303   | 0,002177   | 0,029642   | 0,058435   | 0,078732   | 0,088385   | 0,087088   | 0,076213   | 0,053446  | 0,018526   | -0,026961  | -0,075408  | -0,127913  | -0,17176   | -0,197044  | -0,201658  | -0,18684  | -0,156581  | -0,116711  | -0,079311  | -0,054655  |
| <i>q</i> ,            | <u>,</u>                      | 0,017916   | 0,004734   | -0,005484  | -0,011945  | -0,010558  | 0,001603   | 0,02622    | 0,054361   | 0,078051   | 0,09594    | 0,107311   | 0,112054   | 0,10565   | 0,085182   | 0,04906    | 0,001813   | -0,059973  | -0,125169  | -0,183913  | -0,232006  | -0,266653 | -0,286487  | -0,291474  | -0,288198  | -0,282976  |
| $q_2$                 |                               | 0,061816   | 0,043387   | 0,026303   | 0,011527   | 0,003678   | 0,006768   | 0,024088   | 0,048416   | 0,07282    | 0,096252   | 0,117774   | 0,136594   | 0,147018  | 0,144099   | 0,123769   | 0,087656   | 0,029431   | -0,042552  | -0,120059  | -0,199213  | -0,27637  | -0,348238  | -0,411977  | -0,470904  | -0,528264  |
| 41                    |                               | 0,397708   | 0,405749   | 0,412672   | 0,418875   | 0,428718   | 0,446513   | 0,476488   | 0,512682   | 0,549133   | 0,585464   | 0,6213     | 0,656271   | 0,684768  | 0,701256   | 0,700317   | 0,681586   | 0,636086   | 0,568933   | 0,485351   | 0,386566   | 0,273895  | 0,14874    | 0,012578   | -0,138895  | -0,309851  |
| y, *980               | 0                             | -23,52     | -9,7216    | 4,0768     | 5,1744     | 16,1994    | 27,2342    | 38,2592    | 24,0002    | 9,751      | 9,4178     | 9,0748     | 8,7416     | -4,7628   | -18,2672   | -31,7716   | -32,977    | -56,0854   | -44,4332   | -32,7908   | -31,3698   | -29,9488  | -28,5278   | -27,1068   | -40,3368   | -53,5668   |
|                       |                               | 0,44       | 0,46       | 0,48       | 0,5        | 0,52       | 0.54       | 0,56       | 0,58       | 0'0        | 0,62       | 0,64       | 0,66       | 0,68      | 0,7        | 0,72       | 0.74       | 0,76       | 0,78       | 0,8        | 0,82       | 0,84      | 0,86       | 0,88       | 6'0        | 0,92       |

L5-b

| y <sub>tot</sub>      | $y_1 + y_2 + y_3 + y_4 + y_5$ | -0,353137  | -0,432048  | -0,514791  | -0,593192  | -0,661008  | -0,719454  | -0,77106   | -0,811633  | -0,837955      | -0,847503  | -0,838201  | -0,808276  | -0,756236  | -0,680941  | -0,605101  | -0,548001  | -0,524445  | -0,544464  | -0.613711  | -0,734383  | -0.873893 | -1.003939  | -1.120053  | -1 222274  | -1,3137   |
|-----------------------|-------------------------------|------------|------------|------------|------------|------------|------------|------------|------------|----------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|-----------|------------|------------|------------|-----------|
| <i>y</i> 5            | $q_5 * \phi_5 * \Gamma_5$     | -0,010893  | -0,018915  | -0,025132  | -0,027231  | -0,024225  | -0,017416  | -0,009025  | -0,00036   | 0,007311       | 0,013104   | 0,016725   | 0,018496   | 0,019214   | 0,019893   | 0,017777   | 0,011117   | -0,000445  | -0,015902  | -0,033275  | -0,050241  | -0,059673 | -0.05713   | -0.044537  | -0,026385  | -0,00828  |
| $y_4$                 | $q_4 * \phi_4 * \Gamma_4$     | -0,004474  | -0,006128  | -0,008932  | -0,011895  | -0,014117  | -0,015372  | -0,015605  | -0,014279  | -0,011156      | -0,006295  | -6,45E-06  | 0,007222   | 0,01482    | 0,02223    | 0,026931   | 0,027104   | 0,021827   | 0,0111     | -0,00426   | -0,022843  | -0,040066 | -0,052095  | -0,057847  | -0,057304  | -0,051393 |
| <i>y</i> <sub>3</sub> | $q_3 * \phi_3 * \Gamma_3$     | -0,077459  | -0,079285  | -0,081591  | -0,082806  | -0,081661  | -0,07862   | -0,074232  | -0,06713   | -0,056345      | -0,041329  | -0,021934  | 0,001625   | 0,02884    | 0,058992   | 0,084971   | 0,100969   | 0,102752   | 0,087766   | 0,055114   | 0,005387   | -0,050893 | -0,104147  | -0,15095   | -0,188851  | -0,216425 |
| $y_2$                 | $q_2 * \phi_2 * \Gamma_2$     | -0,141663  | -0,156889  | -0,171292  | -0,183192  | -0,191136  | -0,195172  | -0,195494  | -0,190662  | -0,179536      | -0,161301  | -0,135472  | -0,101885  | -0,06068   | -0,012271  | 0,037019   | 0,081321   | 0,115398   | 0,134798   | 0,135959   | 0,116275   | 0,081985  | 0,039399   | -0,009516  | -0,062702  | -0,118102 |
| y,                    | $q_1 * \phi_1 * \Gamma_1$     | -0,1186487 | -0,1708307 | -0,2278441 | -0,2880676 | -0,3498685 | -0,4128736 | -0,4767049 | -0,5392025 | -0,5982287     | -0,6516824 | -0,6975129 | -0,7337328 | -0,7584309 | -0,7697849 | -0,7717989 | -0,7685128 | -0,7639774 | -0,7622262 | -0,7672478 | -0,7829618 | -0,805247 | -0,8299655 | -0,8572036 | -0,8870314 | -0,919501 |
| q,5                   |                               | -0,068901  | -0,119638  | -0,158959  | -0,172237  | -0,153226  | -0,110158  | -0,057081  | -0,002276  | 0,046244       | 0,082886   | 0,105786   | 0,116985   | 0,121527   | 0,125821   | 0,11244    | 0,070317   | -0,002814  | -0,100581  | -0,210467  | -0,317773  | -0,377431 | -0,361346  | -0,281697  | -0,166888  | -0,052369 |
| $q_4$                 |                               | -0,049891  | -0,068341  | -0,099616  | -0,132651  | -0,157434  | -0,171432  | -0,174025  | -0,159241  | -0,124418      | -0,070204  | -7,19E-05  | 0,080541   | 0,165276   | 0,247917   | 0,300333   | 0,302266   | 0,243414   | 0,123787   | -0,047513  | -0,254747  | -0,446816 | -0,580973  | -0,645118  | -0,639062  | -0,573137 |
| <i>q</i> <sup>3</sup> |                               | -0,281409  | -0,288045  | -0,296423  | -0,300838  | -0,296678  | -0,28563   | -0,269687  | -0,243884  | -0,204704      | -0,150148  | -0,079688  | 0,005902   | 0,104778   | 0,21432    | 0,308702   | 0,366825   | 0,373301   | 0,318858   | 0,200231   | 0,019573   | -0,184897 | -0,378369  | -0,548406  | -0,6861    | -0,786278 |
| <i>q</i> <sub>2</sub> |                               | -0,587114  | -0,650219  | -0,70991   | -0,759232  | -0,792153  | -0,80888   | -0,810217  | -0,790188  | -0,744077      | -0,668505  | -0,561459  | -0,422258  | -0,251484  | -0,050858  | 0,153425   | 0,337033   | 0,478264   | 0,558664   | 0,563474   | 0,481896   | 0,339784  | 0,163286   | -0,039438  | -0,259867  | -0,48947  |
| 91                    |                               | -0,504309  | -0,726106  | -0,968438  | -1,224415  | -1,487096  | -1,754895  | -2,026207  | -2,291849  | -2,542736      | -2,769938  | -2,964738  | -3,118689  | -3,223667  | -3,271926  | -3,280486  | -3,266519  | -3,247242  | -3,239798  | -3,261142  | -3,327934  | -3,422656 | -3.52772   | -3,643494  | -3,770275  | -3,908286 |
| y <sub>8</sub> * 980  |                               | -66,7968   | -80,0268   | -67,0908   | -54,1646   | -41,2384   | -41,7382   | -42,2478   | -23,7944   | -5,341         | 13,1124    | 31,5658    | 50,0192    | 68,4726    | 86,926     | 44,3352    | 1,7542     | -40,8366   | -83,4274   | -126,0084  | -168,5992  | -126,4984 | -84,4074   | -87,2396   | -90,0816   | -92,9236  |
| ~                     |                               | 0,94       | 0,96       | 0,98       | -          | 1,02       | 1,04       | 1,06       | 1,08       | <del>.</del> , | 1,12       | 1,14       | 1,16       | 1,18       | 1<br>7     | 1,22       | 1,24       | 1,26       | 1,28       | +<br>,3    | 1,32       | 1,34      | 1,36       | 1,38       | 1,4        | 1,42      |

٢

Т

L5-c

| y <sub>tet</sub>      | $y_1 + y_2 + y_3 + y_4 + y_5$   | -1,396985  | -1.4746    | -1.549514  | -1.622741  | -1,704063  | -1,769065  | -1,796348  | -1,769747 | -1,679363  | -1,521303  | -1,296367  | -1,008071  | -0,687319 | -0,359574  | -0.042793 | 0,252839   | 0,52357    | 0,782692   | 1.042879   | 1,290589   | 1.511499    | 1.691713  | 1 819322   | 1 885824  | 1,886984   |
|-----------------------|---------------------------------|------------|------------|------------|------------|------------|------------|------------|-----------|------------|------------|------------|------------|-----------|------------|-----------|------------|------------|------------|------------|------------|-------------|-----------|------------|-----------|------------|
| <i>y</i> ,            | $q_5 * \phi_5 * \Gamma_5$       | 0,00495    | 0,010231   | 0,006645   | -0,004229  | -0,020629  | -0,034491  | -0,039159  | -0,031068 | -0,010444  | 0,019099   | 0,05184    | 0,081692   | 0,099689  | 0,100885   | 0,085345  | 0,057682   | 0,025401   | -0,001368  | -0,014891  | -0,015335  | -0,00641    | 0,005952  | 0.015412   | 0.01698   | 0,008261   |
| y4                    | $q_4 * \phi_4 * \Gamma_4$       | -0,041583  | -0,029754  | -0,018018  | -0,00822   | -0,002625  | 0,000167   | 0,001808   | 0,003925  | 0,007881   | 0,014601   | 0,024487   | 0,03742    | 0,050489  | 0,06111    | 0,067372  | 0,068244   | 0,063623   | 0,055376   | 0,045691   | 0,034695   | 0,022699    | 0,010124  | -0,002572  | -0,014967 | -0,026735  |
| <i>y</i> 3            | $q_3 * \phi_3 * \Gamma_3$       | -0,232794  | -0,238071  | -0,233684  | -0,221613  | -0,20698   | -0,185995  | -0,155882  | -0,114957 | -0,062602  | 0,000826   | 0,074164   | 0,155636   | 0,23594   | 0,307144   | 0,363107  | 0,399719   | 0,414933   | 0,412098   | 0,395505   | 0,3638     | 0,316986    | 0,256239  | 0,183654   | 0,101954  | 0,014197   |
| <i>y</i> 2            | $q_2 * \phi_2 * \Gamma_2$       | -0,173323  | -0,226161  | -0,275099  | -0,31888   | -0,359085  | -0,389703  | -0,405538  | -0,402347 | -0,376926  | -0,32715   | -0,251968  | -0,151367  | -0,032752 | 0,096358   | 0,228625  | 0,357153   | 0,475712   | 0,582049   | 0,674545   | 0,74668    | 0,793197    | 0,810202  | 0,795207   | 0,747113  | 0,666148   |
| y,                    | $q_1 \ast \phi_1 \ast \Gamma_1$ | -0,9542351 | -0,9908436 | -1,0293587 | -1,0697984 | -1,1147444 | -1,1590432 | -1,1975774 | -1,225301 | -1,2372712 | -1,2286804 | -1,1948885 | -1,1314517 | -1,040685 | -0,9250711 | -0,787242 | -0,6299596 | -0,4560984 | -0,2654635 | -0,0579712 | 0,16074873 | 0,38502763  | 0,6091965 | 0,82762182 | 1,0347437 | 1,22511225 |
| q,5                   |                                 | 0,031311   | 0,064709   | 0,042027   | -0,026749  | -0,130476  | -0,218155  | -0,247678  | -0,196506 | -0,066057  | 0,120804   | 0,327885   | 0,516703 - | 0,630536  | 0,6381     | 0,539804  | 0,364837   | 0,160658   | -0,008652  | -0,094185  | -0,096992  | -0,040545   | 0,037647  | 0,097478   | 0,107401  | 0,052249   |
| <i>q</i> <sup>4</sup> |                                 | -0,46374   | -0,331821  | -0,200934  | -0,091673  | -0,029275  | 0,001862   | 0,020163   | 0,043775  | 0,08789    | 0,162831   | 0,27308    | 0,417306   | 0,563055  | 0,681504   | 0,751343  | 0,761069   | 0,709534   | 0,617561   | 0,509548   | 0,386927   | 0,253142    | 0,112901  | -0,028685  | -0,166916 | -0,29815   |
| q,                    | -                               | -0,84575   | -0,86492   | -0,84898   | -0,805128  | -0,751963  | -0,675724  | -0,566325  | -0,417641 | -0,227436  | 0,003002   | 0,269439   | 0,56543    | 0,85718   | 1,115863   | 1,319179  | 1,452192   | 1,507465   | 1,497167   | 1,436885   | 1,321697   | 1,15162     | 0,930925  | 0,66722    | 0,370403  | 0,051579   |
| $q_2$                 |                                 | -0,718329  | -0,937315  | -1,140136  | -1,321583  | -1,488212  | -1,615105  | -1,680731  | -1,667508 | -1,562153  | -1,355856  | -1,04427   | -0,627333  | -0,13574  | 0,399351   | 0,947526  | 1,480204   | 1,971565   | 2,412275   | 2,795619   | 3,094579   | 3,287366    | 3,357844  | 3,295696   | 3,096372  | 2,76082    |
| q1                    |                                 | 4,055921   | 4,211523   | 4,375229   | -4,547116  | -4,738156  | 4,926446   | -5,090233  | -5,208071 | -5,25895   | -5,222435  | -5,078804  | -4,80917   | -4,423371 | -3,931961  | -3,346126 | -2,677607  | -1,93862   | -1,128337  | -0,246403  | 0,683253   | 1,636538    | 2,589354  | 3,517759   | 4,398118  | 5,207269   |
| y <sub>s</sub> * 980  |                                 | -91,3752   | -89,8268   | -92,8844   | -95,9322   | -126,4396  | -74,9896   | -23,5298   | 27,9202   | 79,3702    | 130,83     | 182,28     | 233,73     | 215,5314  | 197,323    | 179,1146  | 160,916    | 142,7076   | 158,2014   | 173,705    | 129,507    | 85,309      | 41,1208   | -3,0772    | -47,2752  | -91,4732   |
| _                     |                                 | 1,4        | 1,46       | 1,48       | 1,5        | 1,52       | 1.54       | 1.56       | 1,58      | 1.6        | 1.62       | 1.64       | 1.66       | 1.68      | 1,7        | 1.72      | 1,74       | 1,76       | 1,78       | 1,8        | 1.82       | <b>1</b> .8 | 1,86      | 1,88       | 6,1       | 1,92       |

L5-d

|         |                       | + y,                                         |            |            |            |            |            |            |            |            |                    |            |            |            |            |            |            |            |           |            |            |            |            |            |            |            |            |
|---------|-----------------------|----------------------------------------------|------------|------------|------------|------------|------------|------------|------------|------------|--------------------|------------|------------|------------|------------|------------|------------|------------|-----------|------------|------------|------------|------------|------------|------------|------------|------------|
|         | y tot                 | $y_1 + y_2 + y_3 + y_4$                      | 1 807061   | 1,044001   | 1 6140393  | 118410,1   | 1,202/01   | 0.727721   | 0.485961   | 0,304435   | 0,196927           | 0.168671   | 0.219396   | 0.346414   | 0.547045   | 0.819951   | 1.114591   | 1.389761   | 1,614715  | 1,768468   | 1 837901   | 1 815381   | 1 696573   | 1 47RBRR   | 1,71,0000  | 0.877447   | 0,742718   |
|         | <i>y</i> <sub>5</sub> | $q_5 * \phi_5 * \Gamma_5$                    | -0.010132  | -0.035005  | -0,051686  | -0.085423  | -0.102689  | -0,105298  | -0,089778  | -0,057901  | -0,015731          | 0,028404   | 0,066379   | 0,09247    | 0,104691   | 0,105009   | 0,09046    | 0,062389   | 0,0257    | -0,012791  | -0,046382  | -0.070301  | -0.082831  | -0.085506  | -0.082406  | -0.057405  | -0,001766  |
|         | $y_4$                 | $\left q_4 \ast \phi_4 \ast \Gamma_4\right $ | -0.037681  | -0.047758  | -0.057053  | -0.06576   | -0.074139  | -0,078708  | -0,076971  | -0,067671  | -0,050831          | -0,0276    | 5,49E-05   | 0,029741   | 0,059044   | 0,085895   | 0,104377   | 0,110526   | 0,102694  | 0,081522   | 0,049566   | 0,010692   | -0,03066   | -0,070208  | -0.10445   | -0,119139  | -0,104647  |
|         | $\mathcal{Y}_3$       | $\left q_3 \ast \phi_3 \ast \Gamma_3\right $ | -0.07651   | -0.167259  | -0.255539  | -0.339373  | -0.417403  | -0,477484  | -0,510532  | -0,510809  | -0,475907          | -0,406475  | -0,305753  | -0,178962  | -0,032624  | 0,126115   | 0,276566   | 0,401527   | 0,488134  | 0,528269   | 0,518532   | 0,459857   | 0,356847   | 0,216908   | 0,049294   | -0,099529  | -0,190941  |
| ;       | $y_2$                 | $\left q_2 \ast \phi_2 \ast \Gamma_2\right $ | 0,55376    | 0.412462   | 0.245663   | 0.057468   | -0,147527  | -0,354104  | -0,548149  | -0,717095  | -0,850276          | -0,939181  | -0,977613  | -0,961741  | -0,890067  | -0,763302  | -0,59645   | -0,404879  | -0,20371  | -0,00727   | 0,171383   | 0,320858   | 0,431728   | 0,496731   | 0,510886   | 0,504398   | 0,505941   |
| :       | J.                    | $\left q_1 \ast \phi_1 \ast \Gamma_1\right $ | 1,39342403 | 1,53455446 | 1,64359164 | 1,71586854 | 1,74699058 | 1,74331523 | 1,71139089 | 1,65791132 | 1,58967212         | 1,51352409 | 1,43632737 | 1,36490589 | 1,30600226 | 1,26623357 | 1,23963696 | 1,22019877 | 1,2018966 | 1,17873843 | 1,14480219 | 1,09427466 | 1,02148931 | 0,92096212 | 0,78742864 | 0,64912233 | 0,53413055 |
| ,       | 45                    |                                              | -0,064085  | -0,221408  | -0,390163  | -0,540301  | -0,649509  | -0,66601   | -0,567847  | -0,366223  | -0,09 <b>94</b> 99 | 0,179653   | 0,41985    | 0,584872   | 0,66217    | 0,664184   | 0,572163   | 0,394609   | 0,162552  | -0,080902  | -0,293368  | -0,444656  | -0,523904  | -0,540823  | -0,52122   | -0,363088  | -0,011168  |
| ,       | 94                    |                                              | -0,420222  | -0,532598  | -0,636257  | -0,733363  | -0,826802  | -0,877759  | -0,858386  | -0,754671  | -0,566877          | -0,307804  | 0,000612   | 0.33167    | 0,658459   | 0,957913   | 1,164025   | 1,232597   | 1,14526   | 0,909141   | 0,552764   | 0,119239   | -0.341921  | -0,782968  | -1,16484   | -1,328654  | -1,167038  |
| 2       | ч,                    |                                              | -0,277963  | -0,607659  | -0,928382  | -1,232954  | -1,516439  | -1,734714  | -1,854779  | -1,855786  | -1,728985          | -1,476738  | -1,110812  | -0,650173  | -0,118525  | 0,458179   | 1,004775   | 1,45876    | 1,773408  | 1,919219   | 1,883843   | 1,670676   | 1,296437   | 0,788035   | 0,179088   | -0,361593  | -0,693695  |
| v       | 42                    |                                              | 2,295032   | 1,70943    | 1,018139   | 0,238175   | -0,611417  | -1,467568  | -2,27178   | -2,971968  | -3,523927          | -3,89239   | -4,051669  | -3,98589   | -3,688842  | -3,163467  | -2,471958  | -1,678001  | -0,844266 | -0,030131  | 0,71029    | 1,329782   | 1,789274   | 2,058679   | 2,117344   | 2,090454   | 2,09685    |
| v       | 41                    |                                              | 5,922668   | 6,522535   | 6,985991   | 7,2932     | 7,425482   | 7,40986    | 7,274168   | 7,046856   | 6,756809           | 6,433146   | 6,105026   | 5,801453   | 5,551087   | 5,382052   | 5,269005   | 5,186384   | 5,108592  | 5,010159   | 4,865915   | 4,651151   | 4,341781   | 3,914496   | 3,34692    | 2,759057   | 2,270291   |
| v * 980 | y <sub>8</sub> / UV   |                                              | -135,6614  | -179,8594  | -224,0574  | -268,2456  | -312,4436  | -245,2352  | -178,0268  | -110,8282  | -43,6198           | 23,5886    | 20,797     | 158,0054   | 225,2138   | 292,4222   | 227,3306   | 162,2292   | 97,1376   | 32,046     | -33,0456   | -98,1372   | -163,2288  | -228,3302  | -293,4218  | -4,1258    | 285,1702   |
| ~       |                       |                                              | 1,94       | 1,96       | 1,98       | 7          | 2,02       | 2,04       | 2,06       | 2,08       | 2,1                | 2,12       | 2,14       | 2,16       | 2,18       | 2,2        | 2,22       | 2,24       | 2,26      | 2,28       | 2,3        | 2,32       | 2,34       | 2,36       | 2,38       | 2,4        | 2,42       |

r

T

L5-e

| Г       |                    |                                          | -          |            |           |            | _          |           |            |            |           |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |           |            |             |
|---------|--------------------|------------------------------------------|------------|------------|-----------|------------|------------|-----------|------------|------------|-----------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|-----------|------------|-------------|
|         | y tot              | $y_1 + y_2 + y_3 + y_4 + y_5$            |            | SORON / N  | 0,715455  | 0,717602   | 0.674027   | 0.560039  | 0.414396   | 0.278712   | 0.190259  | 0 176475   | 0 221627   | 0.303273   | 0 391172   | 0.458868   | 0.487888   | 0.469728   | 0.405653   | 0 3036     | 0,106872   | 0 114065   | 0.075010   |            | 0,001201   | 0,140033   | 2//162/0  | 0,360675   | 0,445726    |
|         | y's                | $\left q_{5}*\phi_{5}*\Gamma_{5}\right $ | 0.067670   | 7/0700'A   | 0,113612  | 0,13441    | 0,118101   | 0,068436  | 0,00564    | -0,048284  | -0,0757   | -0.067752  | -0.030833  | 0,021343   | 0,07123    | 0.103461   | 0.108838   | 0.086286   | 0.042428   | -0.010904  | -0.056868  | -0.082124  | -0.080148  | -0.052706  | 0.008334   | 0,00004    | 0.04020   | 700/0010   | 1 เรราราว่า |
|         | <i>∀</i> ,<br>4    | $q_4 * \phi_4 * \Gamma_4$                | 359930 0   |            | -0,021817 | 0,025824   | 0,064669   | 0,087736  | 0,095545   | 0,090839   | 0,077901  | 0,061739   | 0,04542    | 0,028393   | 0,01447    | 0,003476   | -0,004406  | -0.009481  | -0.012437  | -0.014196  | -0.013809  | -0.21076   | -0.04991   | 0.002976   | 0 01 2352  | 102233     | 0,00060   | 2000200    | 1 620200'N  |
|         | y,                 | $q_3 * \phi_3 * \Gamma_3$                | 107670 U   |            | -0'23420/ | -0,209178  | -0,168822  | -0,125436 | -0,076443  | -0,020052  | 0,044705  | 0,118016   | 0,191164   | 0,256642   | 0,307044   | 0,33715    | 0,344033   | 0,326969   | 0,287189   | 0,227518   | 0,157841   | 0.087456   | 0,024441   | -0.025309  | -0.05774   | -0.070698  | -0.070469 | -0.063497  | 1010000     |
|         | <i>y</i> 2         | $q_2 * \phi_2 * \Gamma_2$                | 0.508733   |            | attene'n  | 0,493483   | 0,464993   | 0,41713   | 0,358928   | 0,299119   | 0.245828  | 0.206315   | 0,179333   | 0,163257   | 0,154796   | 0,150524   | 0,147509   | 0,142424   | 0,132648   | 0,115845   | 0.095464   | 0.074827   | 0.057011   | 0,044299   | 0.038607   | 0.04144    | 0.047864  | 0.053187   |             |
|         | <i>y</i> 1         | $q_1 * \phi_1 * \Gamma_1$                | 0.43689263 | 0 36176600 | 6800/1000 | 0,27306226 | 0,19508624 | 0,1121738 | 0,03072492 | -0,0429104 | -0,102475 | -0,1418434 | -0,1625796 | -0,1663622 | -0,1563674 | -0,1358427 | -0,1080854 | -0,0764196 | -0,0441748 | -0,0146631 | 0,01424432 | 0,04466613 | 0,07869841 | 0,11794045 | 0,16394688 | 0.21821673 | 0,2761161 | 0,33301614 |             |
|         | 4s                 |                                          | 0.396402   | 0 718608   | 00001.0   | 0,850144   | 0,746988   | 0,432858  | 0,035673   | -0,305397  | -0,478806 | -0,42853   | -0,19502   | 0,134995   | 0,450531   | 0,654391   | 0.688398   | 0,545758   | 0,268356   | -0,068967  | -0,35969   | -0,519431  | -0,506938  | -0,333364  | -0,05271   | 0,256671   | 0,49083   | 0,575517   |             |
|         | $q_4$              |                                          | -0.767661  | 102210     | 10004310- | 0,287996   | 0,721198   | 0,978438  | 1,065532   | 1,013043   | 0,868762  | 0,688519   | 0,496733   | 0,31664    | 0,161366   | 0,038762   | -0,049138  | -0,105732  | -0,138695  | -0,158319  | -0,154005  | -0,119997  | -0,05566   | 0,033187   | 0,137754   | 0,247941   | 0,329676  | 0,357196   |             |
| ;       | Ч,                 |                                          | -0,844656  | -0.852180  | 0,20010   | -0,759951  | -0,613335  | -0,455713 | -0,277718  | -0,072848  | 0,162416  | 0,428757   | 0,694507   | 0,93239    | 1,1155     | 1,224877   | 1,249883   | 1,187888   | 1,043367   | 0,826582   | 0,573441   | 0,31773    | 0,088797   | -0,091947  | -0,20977   | -0,256847  | -0,256016 | -0,230687  |             |
| ;       | 42                 |                                          | 2,108418   | 2 099      | 2015240   | 2,045216   | 1,927139   | 1,728775  | 1,48756    | 1,239685   | 1,018822  | 0.855064   | 0.743239   | 9,676612   | 2.641546   | 0.624256   | 0.611344   | 3,590269   | 0.549754   | 0.480113   | 0.395646   | 0,310117   | 0.236281   | 0.183596   | 0,160004   | 0.171746   | 0,198371  | 0,22043    |             |
| ;       | 5                  |                                          | 1,856987   | 1 495161   | 1 160675  | crono1,1   | 0,829203   | 0,476788  | 0,130594   | -0,182388  | -0,435564 | -0,602897  | -0,691035  | -0,707113  | -0,66463   | -0.577392  | -0,459411  | -0,324817  | -0,187762  | -0,062325  | 0,060545   | 0,189851   | 0,334503   | 0,501299   | 0,696847   | 0,927518   | 1,173615  | 1,415466   |             |
| 080 * 1 | y <sub>s</sub> 700 | _                                        | 219,324    | 153.4876   | 07 C111   | 01,0414    | 21,7952    | -44,051   | 17,9732    | 79,9974    | 142,0118  | 204,036    | 185,9354   | 167,825    | 134,8382   | 101,8514   | 68,8646    | 35,8778    | 2,891      | -30,0958   | -5,4978    | 19,0904    | 43,6884    | 63,3864    | 83,0844    | 102,7726   | 57,771    | 12,7694    |             |
| ~       |                    | ·                                        | 2,44       | 2.46       | 07 0      | 4'40<br>   | 2'2        | 2,52      | 2,54       | 2,56       | 2,58      | 2,6        | 2,62       | 2,64       | 2,66       | 2,68       | 2,7        | 2,72       | 2,74       | 2,76       | 2,78       | 2,8        | 2,82       | 2,84       | 2,86       | 2,88       | 2,9       | 2,92       |             |

Tabel L-2 Lanjutan

L5-f

|                       |                         |                               |            |            |            |            |            |            |            |            |            | _          |            |           |            | _          |            |                                         |            |            |            |            |           |            |            | _          |            |           |
|-----------------------|-------------------------|-------------------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|-----------|------------|------------|------------|-----------------------------------------|------------|------------|------------|------------|-----------|------------|------------|------------|------------|-----------|
|                       | <i>Y</i> 104            | $y_1 + y_2 + y_3 + y_4 + y_5$ | 0 ARE287   | 0.470507   | 0.436606   | 0,41247    | 0.423757   | 0.460662   | 0.503162   | 0.529625   | 0.518896   | 0 453551   | 0.352691   | 778782.0  | 0 128670   | 0.045562   |            | 400000-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0- |            |            |            | 1000000    | 0/40/0/0- | -0,675921  | -0,587998  | -0,465684  | -0,35669   | -0.298383 |
| ۷.                    | 75<br>                  | $ q_5 * \phi_5 * \Gamma_5 $   | 0.076481   | 0.037777   | -0.009879  | -0.050162  | -0,0702    | -0,068756  | -0,050547  | -0,024436  | -0,000649  | 0.012128   | 0,01377    | 0.007193  | -0.002709  | -0.010572  | -0.01862   | -0.02833                                | -0.042422  | -0.050653  | -0.047025  | -0.028841  | 0.00206   | 0,002330   | U,U41/62   | 0,0/3556   | 17000n'n   | 0,0/191   |
| ۷.                    |                         | 94 * 04 * 14                  | 0.028327   | 0.018225   | 0.005424   | -0.006409  | -0,01419   | -0,018589  | -0,0207    | -0,021831  | -0,023279  | -0,026139  | -0,028492  | -0,028719 | -0,025714  | -0.018986  | -0.012319  | 600000-0-                               | -0.011568  | -0.016192  | -0.019329  | -0.01804   | -0.010403 | CO+O+O'O-  | 0,00433    | 0,02776    | 0,000,0    | 0,039494  |
| γ,                    | بر بر<br>بر بر<br>بر بر | $q_3 \cdot \phi_3 \cdot l_3$  | -0,055864  | -0.052868  | -0,049757  | -0.04244   | -0,027716  | -0,011848  | -0,000327  | 0,002444   | -0,006649  | -0,029375  | -0,058069  | -0,085655 | -0,106117  | -0,114819  | -0.119801  | -0,128288                               | -0.146238  | -0,162923  | -0.169187  | -0.157939  | -0 124423 | D DESDE1   | 0.001106   | 0,4100,0   | 011000     | 0,114303  |
| ٧,                    | ⊥* <b>*</b> * ↓         | <i>4</i> 2 . <i>Ф</i> 2 . 1 2 | 0,053114   | 0,043882   | 0,030472   | 0,017643   | 0,009768   | 0,003048   | -0,006067  | -0,020769  | -0,043795  | -0,07736   | -0,115752  | -0,153514 | -0,185627  | -0,20767   | -0,226012  | -0,246672                               | -0,275127  | -0,302437  | -0,320389  | -0.321746  | -0.300449 | -0.25175   | -0 186176  | -0.113887  | -0.044800  | contto'o  |
| <u>بر</u>             | ⊥+<br>**<br>*           | 41 %1 1                       | 0,38432381 | 0.42551118 | 0,46034572 | 0.49261424 | 0,52609584 | 0,55680603 | 0,58080376 | 0,59421646 | 0,59326711 | 0,57429778 | 0,54123444 | 0,4980719 | 0,44884684 | 0,39760984 | 0,33821842 | 0,26462289                              | 0,17090594 | 0,06516927 | -0,044575  | -0,1498694 | -0.243041 | -0.3160782 | -0 3752485 | -0.4268725 | -0 4772807 |           |
| 4,                    |                         |                               | 0,483745   | 0,238941   | -0,062487  | -0,317275  | -0,444016  | -0,43488   | -0,319709  | -0,154558  | -0,004105  | 0,076709   | 0,087094   | 0,045493  | -0,017136  | -0,066866  | -0,117774  | -0,182366                               | -0,268317  | -0,320379  | -0,297434  | -0,182419  | 0,015151  | 0.264145   | 0.46524    | 0.540962   | 0.454829   |           |
| ď,                    | 7                       |                               | 0,315909   | 0,203244   | 0,060491   | -0,071473  | -0,158253  | -0,207309  | -0,230852  | -0,24346   | -0,259605  | -0,291509  | -0,317743  | -0,320275 | -0,286765  | -0,211731  | -0,137382  | -0,100799                               | -0,129003  | -0,18058   | -0,215554  | -0,201186  | -0,116013 | 0,048288   | 0.231164   | 0,376492   | 0,440442   |           |
| <i>q</i> .            | m<br>1                  |                               | -0,202956  | -0,192071  | -0,180768  | -0,154185  | -0,100691  | -0,043042  | -0,00119   | 0,00888    | -0,024157  | -0,106721  | -0,210966  | -0,311187 | -0,385526  | -0,41714   | -0,435241  | -0,466074                               | -0,531289  | -0,591906  | -0,614663  | -0,573799  | -0,452033 | -0,24073   | 0,005108   | 0,235359   | 0,408      |           |
| <i>q</i> <sub>2</sub> | 1                       |                               | 0,220128   | 0,181867   | 0,126291   | 0,073121   | 0,040482   | 0,012633   | -0,025144  | -0,086075  | -0,181504  | -0,320614  | -0,47973   | -0,636232 | -0,769324  | -0,86068   | -0,936695  | -1,022322                               | -1,140252  | -1,253436  | -1,327836  | -1,333461  | -1,245197 | -1,043368  | -0,77139   | -0,472001  | -0,185707  |           |
| $q_1$                 |                         |                               | 1,633546   | 1,808611   | 1,956673   | 2,093828   | 2,23614    | 2,366672   | 2,468673   | 2,525683   | 2,521647   | 2,441019   | 2,300486   | 2,117026  | 1,907797   | 1,690018   | 1,437578   | 1,124764                                | 0,726426   | 0,276998   | -0,188964  | -0,637011  | -1,033032 | -1,343472  | -1,594972  | -1,814397  | -2,028654  |           |
| y <sub>8</sub> * 980  | :                       |                               | -32,2322   | -77,2436   | -34,8488   | 7,5558     | 49,9506    | 9,9274     | -30,0958   | -70,1288   | -110,152   | -150,1752  | -110,8772  | -71,5792  | -32,2812   | 7,007      | -62,23     | -131,467                                | -200,704   | -122,3236  | -43,953    | 34,4274    | 112,798   | 191,1784   | 120,5498   | 49,9212    | -20,7074   |           |
| ~                     |                         |                               | 2,94       | 2,96       | 2,98       | m          | 3,02       | 3,04       | 3,06       | 3,08       |            | 3,12       | 3,14       | 3.16      | 3,18       | 3,2        | 3,22       | 3,24                                    | 3,26       | 3,28       | 3,3<br>2,3 | 3,32       | 3,34      | 3,36       | 3,38       | 3,4        | 3,42       |           |

Г

L5-g

|                       |                                                |           |            |            | _          |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |           |                     |
|-----------------------|------------------------------------------------|-----------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|-----------|---------------------|
| y tot                 | $y_1 + y_2 + y_3 + y_4 + y_5$                  | 0 345307  | 200010.0-  | -0,30/83   | 0 420802   | -0,420032  | -0.265236  | -0.172549  | -0.115065  | -0.089376  | -0.087228  | -0.096313  | 110010     | 1112010-   |            | 0 1 80377  | 11000100-  | 200122.0-  | -0,259382  | 9719120    | 0.2021/23  |            | 1/1261,0-  | -0,188652  | -0,230521  | -0,326799 | -0.44433            |
| <i>y</i> ,            | $\left  q_{5} * \phi_{5} * \Gamma_{5} \right $ | 0.034411  | -0.010702  | -0.010103  | -0.060213  | -0.046039  | -0,01391   | 0,022265   | 0,048714   | 0,060189   | 0,055983   | 0,039721   | 0.017984   | -0.00552   | -0.026936  | -0.043314  | -0.048884  | -0.041327  | -0.02010-  | 0.000034   | 0.024366   | 0.027200   | 0,000,000  | Z01050'0   | 0,015391   | -0,017719 | -0,051566           |
| <i>y</i> 4            | $\left q_4 \ast \phi_4 \ast \Gamma_4\right $   | 0.03556   | 0 075897   | 0.014833   | 0.00639    | 0.003719   | 0,00454    | 0,006321   | 0,006691   | 0,006367   | 0,006089   | 0,0065     | 0,008063   | 0,0068902  | 0,007474   | 0.002758   | -0.003167  | -0.008288  | -0 011465  | -0 011985  | -0.009616  | -D ODERA   | 0.005      | 26000'n-   | -0,006549  | cn/cln'n- | -0,024404           |
| <i>y</i> 3            | $\left q_3 \ast \phi_3 \ast \Gamma_3\right $   | 0.135217  | 0.14182    | 0.140532   | 0.139226   | 0,144698   | 0,149534   | 0,147389   | 0,133333   | 0,111937   | 0,087716   | 0,06478    | 0,046578   | 0,029296   | 0,009575   | -0,015294  | -0.039685  | -0.058785  | -0.070412  | -0.073263  | -0,066895  | -0.058503  | -0.05445   | 0,050,0    | -0,03623   | 700010'n- | -0,102938           |
| <i>y</i> 2            | $\left q_2 * \phi_2 * \Gamma_2\right $         | 0,012202  | 0,061981   | 0,109269   | 0,158537   | 0,213842   | 0,267163   | 0,311165   | 0,339425   | 0,353754   | 0,356346   | 0,349671   | 0,336359   | 0,313272   | 0,277885   | 0,228324   | 0,170237   | 0,10916    | 0,048909   | -0,007026  | -0,05558   | -0.100414  | -0.145049  | 0.102746   | -0.2464    | F0F3,0-   | -0,299/62           |
| $\mathbf{y}_1$        | $\left  q_1 * \phi_1 * \Gamma_1 \right $       | -0,532772 | -0,5868259 | -0,6329716 | -0,6648316 | -0,6761634 | -0,6725627 | -0,6596894 | -0,6432282 | -0,6216231 | -0,5933619 | -0,5569853 | -0,5110978 | -0,4602488 | -0,4089911 | -0,3618514 | -0,3163824 | -0,2701415 | -0,2221338 | -0,1713828 | -0,1169352 | -0,0641487 | -0.0183348 | 0.01527339 | 0.03155688 | 0.0000000 | 0,03433843          |
| q,5                   |                                                | 0,217647  | -0,067695  | -0,29433   | -0,380847  | -0,291194  | -0,087982  | 0,140827   | 0,308116   | 0,380694   | 0,354093   | 0,251233   | 0,113752   | -0,034916  | -0,170367  | -0,273961  | -0,309191  | -0,261395  | -0,145624  | 0,005907   | 0,154113   | 0,238694   | 0,222018   | 0.097346   | -0.112072  | -0 376154 | +CI 070'0-          |
| 94                    |                                                | 0,396569  | 0,2888.06  | 0,165418   | 0,071258   | 0,041472   | 0,050627   | 0,070497   | 0,074616   | 0,071011   | 0,067909   | 0,072487   | 0,089916   | 0,099277   | 0,083353   | 0,030757   | -0,03532   | -0,092428  | -0,127858  | -0,133654  | -0,107234  | -0,076323  | -0,066017  | -0.095344  | -0.175145  | A 275154  |                     |
| <i>q</i> ,            | _                                              | 0,491249  | 0,515238   | 0,510557   | 0,505814   | 0,525693   | 0,543262   | 0,535469   | 0,484403   | 0,406672   | 0,318674   | 0,235349   | 0,169219   | 0,106433   | 0,034786   | -0,055562  | -0,144178  | -0,213569  | -0,25581   | -0,266168  | -0,243031  | -0,212542  | -0,197819  | -0.217583  | -0,285309  | -0.373976 | 1 ~ · · ~ · ^ · ^ · |
| <i>q</i> <sup>2</sup> |                                                | 0,050571  | 0,256877   | 0,452859   | 0,657048   | 0,886258   | 1,107244   | 1,28961    | 1,406732   | 1,466115   | 1,476858   | 1,449197   | 1,394022   | 1,298342   | 1,151682   | 0,946277   | 0,705538   | 0,45241    | 0,202701   | -0,029118  | -0,230347  | -0,416161  | -0,60115   | -0,798826  | -1,021194  | -1.242348 | · · · · · ·         |
| $q_1$                 |                                                | -2,264516 | -2,494269  | -2,690409  | -2,825828  | -2,873993  | -2,858689  | -2,803971  | -2,734004  | -2,642173  | -2,52205   | -2,367434  | -2,172392  | -1,956261  | -1,738393  | -1,538028  | -1,344765  | -1,148221  | -0,944167  | -0,728452  | -0,497026  | -0,27266   | -0,077931  | 0,064919   | 0,134131   | 0.145953  | <b>T</b>            |
| y <sub>s</sub> *980   |                                                | -91,336   | -26,0974   | 39,151     | 104,3994   | 169,6478   | 110,5734   | 51,499     | -/,5656    | 10,42/2    | 28,42      | 46,4226    | 64,4154    | 19,8058    | -24,794    | -69,3938   | -40,2486   | -11,1034   | 2,8224     | 16,7482    | 30,6838    | -22,3244   | -75,3228   | -128,331   | 181,3392   | 140,6006  |                     |
| ~                     |                                                | 3,44      | 3,46       | 3,48       | 3,5        | 3,52       | 3.54       | 3.56       | 7<br>7     | 0, 2       | 70'r       | 3          | 8          | 3,63       | ۲.<br>۳    | 3,72       | 3,74       | 3,75       | 3,78       | 3,8<br>2,8 | 3,82       | 3,84       | 3,85       | 3,83       | 3,9        | 3,92      |                     |

L5-h

|            |                               | _          |            |            |            |            |            |                   |            |            |            |            |           |               |            |           |            |            |            |            |            |            |            |            |            |           |               |
|------------|-------------------------------|------------|------------|------------|------------|------------|------------|-------------------|------------|------------|------------|------------|-----------|---------------|------------|-----------|------------|------------|------------|------------|------------|------------|------------|------------|------------|-----------|---------------|
| y,         | $y_1 + y_2 + y_3 + y_4 + y_5$ | -0.552005  | -0 62444   | -0.646994  | -0.611157  | -0.546034  | -0,480394  | -0.418385         | -0,360187  | -0.301862  | -0.257804  | -0.237664  | -0.247489 | 0.201262      | 2021202,0- |           | -0,4%42(4  | / 95099'n- | -0,049046  | BC/CZD'1-  | -1,183845  | c1/02/1-   | -1,386751  | -1,416491  | -1,392034  | -1,310226 | -1,205018     |
| <i>y</i> , | $q_5 * \phi_5 * \Gamma_5$     | -0.074411  | -0.078553  | -0.062061  | -0,028792  | 0,00877    | 0,038082   | 0,053158          | 0,052417   | 0,038723   | 0,014842   | -0,013934  | -0.041448 | -0.062437     | -0.073876  | -0.07561  | 100100     | 0.056913   | 0.037175   | 0.011352   | 200410.0   | 0 00546E   | 0,020001   | 0,039291   | 0,046214   | 0,048651  | 0,043409      |
| <i>y</i> 4 | $q_4 * \phi_4 * \Gamma_4$     | -0,031787  | -0,035534  | -0,034142  | -0,027058  | -0,0171    | -0,007184  | 0,001917          | 0,009641   | 0,0157     | 0,018208   | 0,016035   | 0,008885  | -0,002758     | -0.017797  | -0.034757 | -0.052051  | -0.065503  | -0.02000   | -0 DEGRER  | -0.058820  | 0.040104   | 0.010104   | COSCID'0-  | 6/0110/0   | 0,038105  | 0,059442      |
| <i>y</i> 3 | $q_3 * \phi_3 * \Gamma_3$     | -0,126246  | -0,142623  | -0,147575  | -0,13811   | -0,120237  | -0,099788  | -0,076568         | -0,050623  | -0,022203  | 0,002567   | 0,018687   | 0,022516  | 0,011865      | -0,014028  | -0.054643 | -0.108386  | -0 16457   | -0.213787  | -0.248465  | -0.263196  | -0.254866  | -0.22573   | 0 102220   | 0.00000    | ACUZEO,0- | -0,01013      |
| <i>y</i> 2 | $q_2 * \phi_2 * \Gamma_2$     | -0,347067  | -0,383222  | -0,403938  | -0,405834  | -0,393256  | -0,370759  | -0,338013         | -0,295096  | -0,242461  | -0,186067  | -0,13156   | -0,084084 | -0,048126     | -0,027399  | -0,024759 | -0.042167  | -0.073171  | -0.111301  | -0,150312  | -0.184406  | -0.208407  | -0.217916  | FEFOUC U   | -0.180375  | C70001'0- | -0,13/812     |
| уı         | $q_1 * \phi_1 * \Gamma_1$     | 0,02750633 | 0,01498729 | 0,00072197 | -0,0113622 | -0,0242105 | -0,0407448 | -0,0588783        | -0,0765262 | -0,0916208 | -0,1073535 | -0,1268915 | -0,153357 | -0,1898063    | -0,2392102 | -0,304435 | -0,3882237 | -0.4855898 | -0,5914878 | -0,7008476 | -0,8086079 | -0.9097499 | -0.9993295 | -1 0725111 | -1 1245988 | 1 1500267 | 1078801'1-    |
| q,5        |                               | -0,470651  | -0,496845  | -0,392533  | -0,182111  | 0,055469   | 0,240868   | 0,336223          | 0,331537   | 0,244923   | 0,093874   | -0,088131  | -0,262162 | -0,394912     | -0,467264  | -0,478236 | -0,443634  | -0,359343  | -0,235135  | -0,090777  | 0,050233   | 0,167394   | 0,248517   | 0.292301   | 0.307719   | 0 274564  | +00+170       |
| $q_4$      |                               | -0,354494  | -0,396278  | -0,380759  | -0,301753  | -0,190706  | -0,080112  | 0,021381          | 0,10752    | 0,175088   | 0,203056   | 0,178822   | 0,099085  | -0,030762     | -0,198478  | -0,387514 | -0,580479  | -0,730494  | -0,803033  | -0,779173  | -0,656657  | -0,448247  | -0,178024  | 0.12355    | 0.424953   | 0 662906  |               |
| <i>q</i> , |                               | -0,458654  | -0,518154  | -0,536144  | -0,50176   | -0,436825  | -0,362534  | -0,278175         | -0,183914  | -0,080664  | 0,009325   | 0,06789    | 0,0818    | 0,043107      | -0,050966  | -0,19852  | -0,393769  | -0,597887  | -0,776697  | -0,902681  | -0,956201  | -0,925936  | -0,808616  | -0,608175  | -0.334453  | -0.036803 | 1,,,,,,,,,,,, |
| $q_2$      |                               | -1,438404  | -1,588246  | -1,674103  | -1,681961  | -1,629829  | -1,536594  | -1,400881         | -1,223011  | -1,004866  | -0,771145  | -0.545245  | -0,348482 | -0,199456     | -0,113552  | -0,102612 | -0.174759  | -0.303254  | -0,461281  | -0,622963  | -0,76426   | -0,863733  | -0,903144  | -0,867906  | -0,747349  | 0 571157  | T             |
| $q_1$      |                               | 0,116914   | 0,063703   | 0,003069   | -0,048294  | -0,102906  | -0,173183  | -0,250259         | -0,32527   | -0,389429  | -0,4563    | -0,539345  | -0,651835 | -0,806761     | -1,016749  | -1,293983 | -1,650122  | -2,063971  | -2,514085  | -2,978912  | -3,436941  | -3,866839  | 4,247592   | 4,558646   | -4,780042  | 4 930201  | <b>1</b>      |
| y, *980    |                               | -99,862    | -59,1332   | -18,3946   | 22,344     | -9,7608    | 41,8656    | -21,0406          | -0,2058    | 20,6192    | -14,2382   | 49,2156    | -84,133   | -119.0504     | -153.9678  | -188,8852 | -223,8026  | -177,821   | -131,8394  | -35,8578   | -39,8762   | 6,1054     | 52,0968    | 38,0784    | 144,06     | 35,5892   |               |
| ~          |                               | З°,        | 3,86       | 3,98       | 4          | 4 03       | 8          | <del>4</del><br>8 | 4<br>0,9   | 4          | 4, 72      | 4          | <b>4</b>  | <b>4</b><br>0 | 4          | 4 22      | 4,24       | 4,25       | 4,28       | 4<br>Ú     | 4,32       | 4,34       | 4,36       | 4,38       | 4.4        | 4.42      |               |

L5-j

| y tot                   | $y_1 + y_2 + y_3 + y_4 + y_5$ | -1,105145 | -1,032624  | -0,964122  | -0,876697  | -0,750991  | -0,573199  | -0,335535 | -0,089981  | 0,117339   | 0,250672   | 0,286818   | 0,214768   | 0,11781    | 0,070871   | 0,064766  | 0,08165   | 0,098405   | 0,091077   | 0,039199   | -0,071084  | -0,245733  | -0,4229    | -0,546046  | -0,569778  | -0,463371  |
|-------------------------|-------------------------------|-----------|------------|------------|------------|------------|------------|-----------|------------|------------|------------|------------|------------|------------|------------|-----------|-----------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| <i>J</i> v <sub>5</sub> | $q_5 * \phi_5 * \Gamma_5$     | 0,029667  | 0,008988   | -0,009257  | -0,017192  | -0,010447  | 0,010968   | 0,04305   | 0,070635   | 0,08113    | 0,067711   | 0,030665   | -0,023314  | -0,07018   | -0,089951  | -0,082498 | -0,055113 | -0,019865  | 0,010108   | 0,02427    | 0,017322   | -0,00982   | -0,041269  | -0,061376  | -0,058967  | -0,029988  |
| $\mathcal{Y}_4$         | $q_4 * \phi_4 * \Gamma_4$     | 0,070942  | 0,07042    | 0,061131   | 0,047253   | 0,033151   | 0,022707   | 0,018791  | 0,01815    | 0,017429   | 0,013683   | 0,00477    | -0,010424  | -0,024495  | -0,031087  | -0,031694 | -0,028527 | -0,024099  | -0,02081   | -0,020607  | -0,024742  | -0,033669  | -0,041741  | -0,044106  | -0,037347  | -0,019816  |
| <i>y</i> 3              | $q_3 * \phi_3 * \Gamma_3$     | 0,066155  | 0,126688   | 0,174242   | 0,212218   | 0,244292   | 0,274093   | 0,304928  | 0,324955   | 0,324801   | 0,297945   | 0,240832   | 0,152743   | 0,058094   | -0,021542  | -0,086884 | -0,139659 | -0,182334  | -0,217819  | -0,249181  | -0,279385  | -0,31108   | -0,330222  | -0,325671  | -0,289654  | -0,217909  |
| $y_2$                   | $q_2 * \phi_2 * \Gamma_2$     | -0,088996 | -0,04069   | 0,010135   | 0,06618    | 0,129746   | 0,202675   | 0,286318  | 0,36829    | 0,437217   | 0,483079   | 0,49749    | 0,473883   | 0,42811    | 0,375652   | 0,314614  | 0,243569  | 0,161574   | 0,068168   | -0,036645  | -0,152434  | -0,278388  | -0,398698  | -0,498976  | -0,56668   | -0,59145   |
| у,                      | $q_1 * \phi_1 * \Gamma_1$     | -1,182913 | -1,1980299 | -1,2003734 | -1,1851551 | -1,1477332 | -1,0836418 | -0,988621 | -0,8720111 | -0,7432373 | -0,6117448 | -0,4869387 | -0,3781203 | -0,2737188 | -0,1622013 | -0,048773 | 0,0613808 | 0,16312942 | 0,25143016 | 0,32136133 | 0,36815418 | 0,38722355 | 0,38903002 | 0,38408286 | 0,38287098 | 0,39579148 |
| $q_{s}$                 |                               | 0,187642  | 0,05685    | -0,058549  | -0,10874   | -0,066075  | 0,069375   | 0,272291  | 0,446767   | 0,513149   | 0,428269   | 0,193955   | -0,147464  | -0,443888  | -0,568937  | -0,521798 | -0,348589 | -0,125646  | 0,063935   | 0,153508   | 0,109561   | -0,06211   | -0,261024  | -0,388203  | -0,372969  | -0,189676  |
| $q_4$                   |                               | 0,79115   | 0,785333   | 0,681744   | 0,526969   | 0,369705   | 0,253226   | 0,209555  | 0,20241    | 0,194366   | 0,152589   | 0,053194   | -0,116246  | -0,273168  | -0,346685  | -0,353456 | -0,31814  | -0,268752  | -0,232077  | -0,229811  | -0,275922  | -0,375486  | -0,465496  | -0,491878  | -0,4165    | -0,220988  |
| <i>q</i> ,              |                               | 0,240345  | 0,46026    | 0,633025   | 0,770994   | 0,887521   | 0,99579    | 1,107813  | 1,180573   | 1,180013   | 1,082443   | 0,87495    | 0,554922   | 0,211058   | -0,078263  | -0,315651 | -0,507387 | -0,662427  | -0,791344  | -0,905281  | -1,015015  | -1,130164  | -1,199708  | -1,183174  | -1,052324  | -0,79167   |
| $q_2$                   |                               | -0,368841 | -0,168637  | 0,042003   | 0,27428    | 0,537724   | 0,839976   | 1,18663   | 1,526362   | 1,812023   | 2,002098   | 2,061824   | 1,963985   | 1,774281   | 1,556871   | 1,303903  | 1,009461  | 0,669635   | 0,282518   | -0,151874  | -0,631755  | -1,153765  | -1,652387  | -2,067982  | -2,348577  | -2,451235  |
| $q_1$                   |                               | -5,027903 | -5,092157  | -5,102117  | -5,037433  | -4,878373  | -4,605957  | -4,202076 | -3,706433  | -3,159087  | -2,600186  | -2,069705  | -1,607178  | -1,163426  | -0,689427  | -0,207307 | 0,260896  | 0,693372   | 1,068689   | 1,365928   | 1,564818   | 1,645871   | 1,65355    | 1,632522   | 1,627371   | 1,682289   |
| y <sub>8</sub> * 980    |                               | 47,1184   | -1,3524    | 50,3818    | 102,116    | 153,8502   | 205,5942   | 257,3284  | 166,5608   | 75,7932    | -14,9646   | -105,7322  | -196,4998  | -66,5322   | 63,4942    | 16,3758   | -30,7426  | -77,861    | -124,9794  | -172,0978  | -219,2162  | -266,3346  | -155,3398  | -44,345    | 66,6596    | 177,6544   |
| 1                       |                               | 4,44      | 4,46       | 4,48       | 4,5        | 4,52       | 4,54       | 4,56      | 4,58       | 4,6        | 4,62       | 4,64       | 4,66       | 4,68       | 4,7        | 4,72      | 4,74      | 4,76       | 4,78       | 4,8        | 4,82       | 4,84       | 4,86       | 4,88       | 4,0        | 4,92       |

Г

1

[-2-j

ſ
Tabel L-2 Lanjutan

| $y_{i\alpha}$ $y_1 + y_2 + y_3 + y_4 + y_5$                         | -0,267735                | -0,027506              | 0,21554                | 0,427807              |
|---------------------------------------------------------------------|--------------------------|------------------------|------------------------|-----------------------|
| $y_5$<br>$q_5 * \phi_5 * \Gamma_5$                                  | 0,013147                 | 0,055273               | 0,082846               | 0,087483              |
| $\frac{y_4}{q_4} * \phi_4 * \Gamma_4$                               | 0,003373                 | 0,026868               | 0,045909               | 0,056968              |
| $\begin{array}{c} y_3\\ q_3 \ast \phi_3 \ast \Gamma_3 \end{array}$  | -0,12459                 | -0,023582              | 0,072544               | 0,153323              |
| $\frac{y_2}{q_2 * \phi_2 * \Gamma_2}$                               | -0,578966                | -0,535874              | -0,469459              | -0,387328             |
| $\begin{array}{c} y_1 \\ q_1 \ast \phi_1 \ast \Gamma_1 \end{array}$ | 0,41930113               | 0,4498087              | 0,48370004             | 0,51736039            |
| <i>q</i> s                                                          | 0,083154                 | 0,349603               | 0,524002               | 0,553332              |
| 94                                                                  | 0,037619                 | 0,299638               | 0,511984               | 0,635311              |
| <i>q</i> ,                                                          | -0,45264                 | -0,085675              | 0,263555               | 0,557028              |
| <b>C</b> 4                                                          | 497                      | 0903                   | 1565                   | 5262                  |
| 6                                                                   | -2,399                   | -2,22(                 | -1'94                  | -1,60                 |
| <i>d</i> <sup>1</sup> <i>d</i>                                      | 1,782215 -2,399          | 1,911886 -2,220        | 2,055939 -1,94         | 2,19901 -1,60         |
| $y_{g}^{*}$ * 980 $q_{1}$ $q_{2}$                                   | 141,7472 1,782215 -2,399 | 105,84 1,911886 -2,220 | 69,9426 2,055939 -1,94 | 34,0354 2,19901 -1,60 |

:

.

-