SUBSTITUTION OF EXPENSIVE WELDING ELECTRODE FROM JAPAN WITH DOMESTIC ELECTRODE TO BE APPLIED IN CONTINUOUS GALVANIZING LINE MACHINE

Thesis

Submitted to International Program Faculty of Industrial Technology in Partial Fulfillment of the Requirements for the degree of Sarjana Teknik Industri at Universitas Islam Indonesia

By Kusuma Sani Santosa

INTERNATIONAL PROGRAM DEPARTMENT OF INDUSTRIAL ENGINEERING FACULTY OF INDUSTRIAL TECHNOLOGY UNIVERSITAS ISLAM INDONESIA YOGYAKARTA 2010

THESIS APPROVAL OF SUPERVISOR

SUBSTITUTION OF EXPENSIVE WELDING ELECTRODE FROM JAPAN WITH DOMESTIC ELECTRODE TO BE APPLIED IN CONTINUOUS GALVANIZING LINE MACHINE

Yogyakarta, June 2010

Supervisor

DED Dr. Eng. Hr. Rudi Suhradi Rachmat, M.Eng

THESIS APPROVAL OF EXAMINATION COMMITTEE

SUBSTITUTION OF EXPENSIVE WELDING ELECTRODE FROM JAPAN WITH DOMESTIC ELECTRODE TO BE APPLIED IN CONTINUOUS GALVANIZING LINE MACHINE

THESIS			
ISLBY			
Name : Kusuma Sani Santosa			
Student Number : 96522013			
Was defended in front of Examination Committee in Partial Fulfillment of the			
Requirements for the degree of Sarjana Teknik Industri			
Fakultas Teknologi Industri Universitas Islam Indonesia			
Yogyakarta, June 2010			
Examination Committee			
· · · · · · · · · · · · · · · · · · ·			
Winda Nur Cahyo, ST., MT			
Examination Committee Chair			
Agung Nugroho Adi, ST., MT			
Member I			
propy			
Dr. Eng. Ir. Rudi Subradi Rachmat M Eng			
Member II			
Accepted by, Director of International Program			
Department of Industrial Engineering			
STAS Faculty of Industrial Technology			
Brity ersitas Islam Indonesia			
* YOGYANDOW THE			
EVITIMITY AND			
Jors M. Ibnu Mastur, MSIE			
iii iii			

DEDICATION PAGE

Alhamdulillah, I dedicated this thesis to:

My Lovely Parents Ir. Sigid Santoso, MM and Nurusani Ratnawati, Bsc Thank you for your unconditional support and love for me, I am very honored and grateful to have you as my parents. I love you.

ACKNOWLEDGEMENT

Assalamu'alaikum Wr. Wb

I would like to thank Allah SWT for blessing my life in so many ways, also in helping me accomplished this thesis entitled "Developing Domestic Welding Electrode to Substitute Japan Made Welding Electrode at Overlap Seam Welding Machine in Continuous Galvanizing Line Machine" to obtain my Bachelor Degree in Universitas Islam Indonesia. Alhamdulillah.

I also would like to express my gratitude to my supervisor Dr. Eng. Ir. Rudi Suhradi Rachmat, M.Eng for the continuous support of my study and research, for his patience, motivation, enthusiasm, and immense knowledge. His guidance helped me in all the time of research and writing of this thesis. I could not have imagined having a better advisor and mentor for my bachelor study.

Finally I humbly express my appreciation and gratitude to:

- My mom, dad, grandpa, grandma and all my relatives for the support, love, care, and everlasting pray for me.
- 2. My supervisor Dr. Eng. Ir. Rudi Suhradi Rachmat, M.Eng and family for the enormous help to whom this thesis could be finished.
- All of IP FIT Lecturers and Officers who teach, help and let me bother their activity in doing so.
- 4. My friends in IP FIT UII especially generation 2006 for the support, laugh and fun we have.
- 5. All of my friends and all people who cannot be mentioned here, Thanks a lot.

May Allah SWT always bless us all, amien.

Yogyakarta, June 2010

TABLE OF CONTENT

COVERi
THESIS APPROVAL OF SUPERVISORii
THESIS APPROVAL OF EXAMINATION COMMITTEEiii
DEDICATIONiv
ACKNOWLEDGEMENTv
TABLE OF CONTENTvi
FIGURE LIST ix
TABLE LIST
ABSTRACT
CHAPTER I INTRODUCTION
1.1 Background of the Study 1
1.2 Problem Statement 3
1.3 Objectives of the Research 3
1.4 Significance of the Research
1.5 Scope of the Research 4
1.6 Outline of the Research
CHAPTER II LITERATURE REVIEW
2.1 Hot Dip Galvanizing7
2.2 Continues Galvanizing Line Machine9
2.3 Limited Over-Lap Seam Welding Machine
2.3.1 General

2.3.2 Welding Capacity 17
2.3.3 Utilities17
2.3.4 Main Unit18
2.4 Welding
2.5 Electrode
2.6 Metallurgy Aspect
2.7 Copper Based Altoy
CHAPTER III RESEARCH METHODOLOGY
3.1 Research Object
3.2 Identification and Problem Statement
3.3 Data Collection
3.4 Data Processing
3.5 Research Result Analysis
3.6 Research Framework
CHAPTER IV DATA COLLECTING AND PROCESSING
4.1 PT. XYZ (14.24) 32
4.1.1 PT. XYZ in Brief
4.1.2 Limited Over-Lap Seam Welding Machine
4.1.3 Welding Wheel Electrode
4.2 Domestic Welding Electrode Development
4.2.1 Data Collecting
4.2.1.1 Properties of Import Welding Electrode
4.2.1.2 Microstructure Test of Import Electrode

4.2.2 Data Processing	37
4.2.2.1 Developing Domestic Welding Electrode	
4.2.2.2 Microstructure Analysis	45
4.3 Domestic Electrode Performance Test	47
4.3.1 Data Collecting	47
4.3.1.1 Visual and Physical Examination	47
4.3,1.2 Hardness Test	48
4.3.1.3 Welding Test	49
4.3.1.4 Weld Strength Test	50
4.3.2 Data Processing	54
4.3.2.1 Visual and Physical Analysis	54
4.3.2.2 Hardness Test Analysis	
4.3.2.3 Welding Test Analysis	57
4.3.1.4 Weld Strength Analysis	63
CHAPTER V DISCUSSION	
5.1 Domestic Welding Electrode Development	65
5.2 Domestic Welding Electrode Analysis	66
5.3 Domestic Welding Electrode Performance Analysis	66
5.4 Cost Analysis	67
CHAPTER VI CONCLUSION AND RECOMMENDATION	
6.1 Conclusion	
6.2 Recommendation	69

REFERENCES

APPEN	DICES
-------	-------

FIGURE LIST

Figure 2.1 Photomicrograph of Galvanized Coatings
Figure 2.2 Continuous Galvanizing Line Machine
Figure 2.3 Temperature Cycles in Annealing Furnace
Figure 2.4 Limited Over-Lap Seam Welding Machine
Figure 2.5 Welding Machine Component
Figure 2.6 Welding Process
Figure 2.7 Welded Area In Strip Of Coil
Figure 3.1 Research Framework
Figure 4.1 Import Welding Electrode
Figure 4.2 Import Welding Electrode Microstructure Photo with 50x Magnification35
Figure 4.3 Import Welding Electrode Microstructure Photo with 100x Magnification35
Figure 4.4 Import Welding Electrode Microstructure Photo with 200x Magnification36
Figure 4.5 Import Welding Electrode Microstructure Photo with 400x Magnification36
Figure 4.6 Correlation of Hardness with Strength of CuCrZr Alloy42
Figure 4.7 The Equilibrium Phase Diagram Of Cu - Cr
Figure 4.8 Detail of General Microstructure (BSE Image) with EDS Spectra46
Figure 4.9 Import and Domestic Welding Electrode47
Figure 4.10 Electrode Radius Information
Figure 4.11 Weld Result49
Figure 4.12 0.20mm x 914mm Strip of Coil Weld
Figure 4.13 0.25mm x 882mm Strip of Coil Weld
Figure 4.14 0.30mm x 882mm Strip of Coil Weld
Figure 4.15 0.50mm x 914mm Strip of Coil Weld

Figure 4.16 0.60mm x 1219mm Strip of Coil Weld
Figure 4.17 0.70mm x 1219mm Strip of Coil Weld
Figure 4.18 0.80mm x 914mm Strip of Coil Weld
Figure 4.19 1.0mm x 914mm Strip of Coil Weld
Figure 4.20 1.2mm x 1219mm Strip of Coil Weld
Figure 4.21 Hardness in Electrode Outer Radius
Figure 4.22 Hardness in Electrode Middle Radius
Figure 4.23 Hardness in Electrode Inner Radius
Figure 4.24 Weld Thickness Comparison
Figure 4.25 Weld Width Comparison
Figure 4.26 HAZ Width Comparison
Figure 4.27 Weld Length Comparison
Figure 4.28 HAZ Length Comparison
Figure 4.29 Weld Interval Comparison
Figure 4.30 HAZ Interval Comparison
Figure 4.31 Weld Spot Comparison
Figure 4.32 Strip of Coil Punch Test
Figure 4.33 Strip of Coil Punch Test

TABLE LIST

Table 4.1 Overview of Different Aging Parameters	44
Table 4.2 Hardness of import Electrode	49
Table 4.3 Hardness of Domestic Electrode	49
Table 4.4 Welding Test of Import Electrode	50
Table 4.5 Welding Test of Domestic Electrode	

DEVELOPING DOMESTIC WELDING ELECTRODE TO SUBSTITUTE JAPAN MADE WELDING ELECTRODE AT OVERLAP SEAM WELDING MACHINE IN CONTINUOUS GALVANIZING LINE MACHINE

By Kusuma Sani Santosa

Submitted to International Program, Departement of Industrial Engineering, Faculty of Industrial Technology, on June , 2010 in Partial Fulfillment of the Requirement for the degree of Sarjana Teknik Industri at Universitas Islam Indonesia

ABSTRACT

Nowadays, efficiency improvement is a main necessity. Continuous Galvanizing Line is a machine that produces galvanized iron sheet using continuous hot dip galvanizing as the coating process. A welding machine is equipped to join the strip of coil and make sure the process in Continuous Galvanizing Line machine runs continuously. The welding machine use Japan made welding electrode that is very expensive and have a long lead time. The purpose of this research is to develop a domestic welding electrode to substitute Japan made welding electrode and resolve its weakness. The domestic welding electrode developed is an alloy that made of 98.9% of Cu, 1% of Cr and 0.1% of Zr elements. The domestic welding electrode has a good welding quality to substitute the original Japan made welding electrode and reduce the cost of the welding electrode from Rp. 110.000.000 to Rp. 7.000.000,

KEYWORDS: Continuous Galvanizing Line machine, welding, welding electrode, efficiency

Thesis Supervisor: Dr. Eng. Ir. Rudi Suhradi Rachmat, M.Eng.