BAB VI

ANALISA DATA

6.1. Deskripsi Data

Data yai g dipergunakan dalam penelitian ini adalah data sekunder, terutama bersumber dari Badan Pusat Statistik, Intenational Financial Statistic dan situs Badan Pusat Statistik. Adapun data yang telah di olah terdapat terdapat pada tabel 6.1 dibawah ini:

Tabel 6.1
Data Observasi

Obs	Volume Ekspor Teh Indonesia ke Inggris	Harga Teh Internasional	Harga Kopi Internasional	X4 = Nilai Tukar Rupiah terhadap Dollar Amerika /
	(Ribu Ton)	(US\$/Kg)	(US\$ / Kg)	Kurs (Rp / US\$)
1983	7500	1760	1780	994
1984	12300	1640	1930	1076
1985	7900	1650	1970	1131
1986	12400	1250	1990	1655
1987	7700	1310	1880	1652
1988	4600	1350	1850	1729
1989	9000	1420	1750	1805
1990	6700	1630	1440	1901
1991	6800	1680	1790	1992
1992	10800	1760	1680	2062
1993	12000	1320	1868	2110
1994	9200	1530	2360	2200
1995	7100	1740	2030	2308
1996	10500	1770	1690	2383
1997	7900	1680	1680	4650
1998	4300	1690	1700	8025
1999	11700	1840	1370	7100
2000	15800	1360	1289	9595
2001	12400	1000	1130	10400
2002	13700	1030	1080	8940
2003	12100	1085	974	8465
2004	5800	1130	1020	9290

6.1.1. Uji Akar Unit dan Derajat Integrasi

Pada tabel 6.1 secara umum variabel-variabel dapat dikatakan tidak stasioner melalui uji ADF melalui tes equasi trend dan intercept. Namun demikian untuk variabel LY telah stasioner pada level satu dengan tingkat signifikansi 5%. Oleh karena itu kurang untuk meyakinkan bahwa semua variabel telah stasioner pada derajat satu. Selanjutnya dilakukan dengan uji derajat integrasi, agar mengetahui tingkat ke berapa variabel-variabel tersebut akan stasioner. Hasil uji akar-akar unit pada derajat integrasi pertama (first-differece), selanjutnya menunjukkan semua variabel telah stasioner pada derajat integrasi pertama atau pada I(1).

Tabel 6.2 Estimasi OLS Statistik ADF untuk Uji Stasioner Ekspor Teh di Indonesia Ke Inggris tahun 1983-2004

Variabel		AD	F test	
	L.	Level	Fir	st differences
	Lag		Lag	
LY	12	-3.1984436**	10 1	-4.948799***
LX1	IZ	-1.897299	1	-3.363749***
LX2	15	-0.27303	D 1	-3.31657***
LX3	1	-0.682984		-3.151331***

Keterangan: * signifikan pada tingkat 10%

^{**} signifikan pada tingkat 5%

^{***} signifikan pada tingkat 1%

6.1.2. Hasil Estimasi Error Correction Model (ECM)

Dengan bantuan software komputer yaitu E - views, maka hasil estimasi adalah sebagai berikut :

Tabel 6.3.
Hasil Estimasi Error Correction Model (EG-ECM)

Dependent Variable: DLY Method: Least Squares Date: 08/14/06 Time: 13:49 Sample(adjusted): 1984 2004

Included observations: 21 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.
	41			
C	5.484588	7.411617	0.739999	0.4725
DLX1	-1.387498	0.658157	-2.108156	0.055
DLX2	-0.322974	0.751829	-0.429584	0.6745
DLX3	-0.930826	0.412787	-2.25498	0.042
LX1(-1)	0.489967	0.662688	0.739364	0.4728
LX2(-1)	-0.106106	0.6701	-0.158344	0.8766
LX3(-1)	0.055018	0.179315	0.306825	0.7638
ECT(-1)	-0.949942	0.265964	-3.571691	0.0034
R-squared	0.708348	Mean dependent var		-0.01224
Adjusted R-squared	0.551304	S.D. dependent var		0.466633
S.E. of regression	0.312573	Akaike info criterion		0.794376
Sum squared resid	1.270127	Schwarz	Schwarz criterion	
Log likelihood	-0.340952	F-statistic	F-statistic	
Durbin-Watson stat 2.645197		Prob(F-st	Prob(F-statistic)	

^{* =} signifikan pada alpha 5 %

Bentuk persamaannya adalah sebagai berikut :

 $\begin{array}{l} DLY = 5.484588 \text{ - } 1.387498 \ DLX1 \text{ - } 0.322974 \ DLX2 \text{ - } 0.930826 \ DLX3 + 0.489967 \\ LX1_{t-1} \text{ - } 0.106106 \ LX2_{t-1} + 0.055018 \ LX3_{t-1} \text{ - } 0.949942 \ ECT_{t-1} \end{array}$

^{** =} signifikan pada alpha 10 %

6.2. Uji Hipotesa

6.2.1. Uji Parsial (uji t)

Pengujian parsial dilakukan guna mengetahui tingkat signifikan masing-masing variabel independen. Pada estimasi ECM pengujian parsial untuk variabel ECT(error correction term) haruslah signifikan secara statistik, karena hal tersebut menunjukkan sahihnya spesifikasi model yang digunakan dalam penelitian.

Dari tabel 4.2. menunjukkan bahwa variabel ECT signifikan pada α 5 % , hal ini terlihat dari nilai prob. yakni 0.0034 < 0.05, sehingga model estimasi ECM adalah sahih (valid) digunakan dalam penelitian ini.

Selain variabel ECT variabel-variabel lain yang signifikan secara statistik pada α 5 % adalah DLX1 dan DLX2.

6.2.2. Uji Simultan (Uji F)

Adapun nilai F-tabel diperoleh sebagai berikut:

F-tabel = $(\alpha = 0.05; \text{ k-1;n-k})$, maka F-tabel = (0.05; 6; 14) = 2.85. Asumsi yang digunakan adalah interval keyakinan $\alpha = 0.05$. Dari hasil estimasi didapat F-hitung = 4.510516.

Karena F-hitung > F-tabel, maka Ho ditolak dan Ha diterima, berarti secara bersama-sama variabel independen mempengaruhi variabel dependen.

6.2.3. Interretasi R squared (R²)

Dari hasil penghitungan komputer didapat R squared (R²) sebesar 0.708348 (71%). Artinya variasi dari variabel-variabel independen yang dipakai mampu menjelaskan variasi variabel dependennya yaitu sebesar 71%. Sedangkan sisanya yaitu 29 % dijelaskan oleh variabel-variabel independen yang tidak dimasukkan dalam model (dijelaskan oleh variabel-variabel diluar variabel-variabel independen dalam model).

6.3. Uji Asumsi Klasik

6.3.1. Autokorelasi

Autokorelasi terjadi karena adanya korelasi antar anggota serangkaian observasi yang diurutkan menurut waktu (seperti dalam data runtun waktu atau *time series*) atau ruang (seperti dalam data lintas sektoral atau *cross section*). Salah satu untuk mengetahui keberadaan autokorelasi adalah dengan uji ARCH.

Dengan $\alpha = 5$ % dengan df = 18 maka χ -tabel 28,87, dan diperoleh hasil dari uji *ARCH*:

Tabel 6.4 Uji Autokorelasi

ARCH Test:			
F-statistic	1.157050	Probability	0.296285
Obs*R-squared	1.207963	Probability	0.271736

Karena χ^2 -hitung (3,1) < χ^2 -tabel (28,87) yang berarti dapat dikatakan tidak terdapat autokorelasi pada model ini.

6.3.2. Linieritas

Uji linieritas yang digunakan adalah Ramsey RESET test, uji ini berkaitan dengan masalah spesifikasi kesalahan serta menentukan bahwa fungsi yang benar adalah fungsi linier.

Uji ini menggunakan nilai F hitung, adapun hipotesanya adalah sebagai berikut :

- Jika F hitung > F tabel, maka hipotesa nol yang menyatakan bahwa spesifikasi model digunakan dalam bentuk linier adalah ditolak.
- Jika F hitung < F tabel, maka hipotesa alternatif yang menyatakan bahwa spesifikasi model digunakan dalam bentuk linier adalah benar dan tidak dapat ditolak.

Tabel 6.5 Uji Linieritas

Ramsey RESET Test:			
F-statistic Log likelihood ratio	1.739685 2.843016	Probability Probability	0.211795 0.091772

Dari hasil perhitungan menunjukkan nilai F hitung adalah 2,843 yang lebih kecil dibandingkan F tabel yaitu 2,59, berada pada hipotesa alternatif,

sehingga spesifikasi model digunakan dalam bentuk linier adalah benar dan tidak dapat ditolak.

6.3.3. Normalitas

Tabel 6.6 Uji Normalitas

Jarque-Bera	1.152893
Probability	0.561892

Uji normalitas di gunakan untuk mengetahui normal atau tidak normalnya faktor penggangu (ut). Salah satu uji untuk mengetahui normalitas adalah Jarque-Bera test atau J-B test. Uji ini menggunakan hasil estimasi residual dan *chi-square probability distribution*. Hasil estimasi dengan menggunakan E-views 3.0 menunjukkan nilai JB test adalah 0.397212 dengan nilai χ^2 -tabel (0,05) dengan *degree of freedom* adalah χ^2 -tabel (0,05) dengan *degree of freedom* adalah χ^2 -tabel sehingga model empiris yang digunakan adalah mempunyai residua atau faktor pengganggu yang berdistribusi normal.

6.3.4. Heteroskedastisitas

Untuk melihat ada tidaknya heteroskedastisitas atas data-data yang telah diolah maka untuk mengujinya digunakan uji *White* yang perhitungannya terdapat pada lampiran

Uji ini menggunakan hipotesis nol (H₀), dengan pedoman sebagai berikut :

- Terima Ho yang menyatakan ada masalah autokorelasi dalam model yang digunakan bila (Obs*R-squared) = $\chi^2_{hitung} > \chi^2_{tabel}$
- Tolak Ho yang menyatakan tidak ada masalah autokorelasi dalam model yang digunakan bila (Obs*R-squared) = $\chi^2_{hitung} < \chi^2_{tabel}$

Tabel 6.7 Uji Heteroskedastisitas

vvnite Heteroskedas	ticity lest:		
F-statistic	0.807648	Probability	0.654950
Obs*R-squared	13.71974	Probability	0.470793

Dari hasil estimasi tabel 4.3 ditemukan nilai (Obs*R-squared) = χ^2_{hitung} =13.71974, sementara nilai $\chi^2(14)$ dengan α 5 % sebesar 31,32. Dengan demikian maka $\chi^2_{hitung} < \chi^2_{tabel}$, sehingga model empiris yang digunakan tidak ditemukan heteroskedastisitas.

6.4. Error Correction Model (ECM)

6.4.1. Jangka pendek

 $\begin{array}{l} DLY = 5.484588 - 1.387498 \ DLX1 - 0.322974 \ DLX2 - 0.930826 \ DLX3 + 0.489967 \\ LX1_{t-1} - 0.106106 \ LX2_{t-1} + 0.055018 \ LX3_{t-1} - 0.949942 \ ECT_{t-1} \end{array}$

Perkiraan jangka pendek nilai koefisien untuk variabel harga teh internasional (DLX1) menunjukkan angka - 1.387498, artinya setiap kenaikan harga teh internasional sebesar 1 US\$/kg mengakibatkan turunnya volume ekpor teh sebesar 1,387498; Variabel kurs (DLX3) menunjukkan angka - 0.930826, artinya setiap kenaikan kurs sebesar 1 US\$ mengakibatkan turunnya volume ekpor teh sebesar 0.930826, semetara harga kopi internasional dalam jangka pendek secara statistik tidak mampu menjelaskan variabel ekspor, namun secara jangka panjang adanya fluktuasi ketiga variabel tersebut secara signifikan memberikan pengaruh positif dan negatif terhadap variasi ekspor teh.

6.4.2. Jangka Panjang

Untuk mengetahui besarnya koefisien jangka panjang maka dipergunakan rumus sebagai berikut :

- * Konstanta = $\beta_0 / \beta_8 = 5.485 / 0.9499 = -5.7736$
- * LX1t = $(\beta_5 + \beta_8) / \beta_8 = (0.4899 + 0.9499) / 0.9499 = -0.51579$
- * LX2t = $(\beta_6 + \beta_8) / \beta_8 = (-0.1061 + 0.9499) / 0.9499 = 0.111697$
- * LX3t = $(\beta_7 + \beta_8) / \beta_8 = (0.055018 + 0.9499) / 0.9499 = -0.05792$

Sehingga untuk jangka panjang hasil estimasi adalah sebagai berikut :

 $Y_t = -5.7736 - 0.51579 LX1t + 0.111697 LX2t - 0.05792 LX3t$

Untuk perkiraan jangka panjang ekspor akan mengalami penurunan sebesar 0.51579 jika terjadi kenaikan pada harga teh internasional sebesar 1 US\$/kg. Pada variabel harga kopi internasional, jika terjadi kenaikan sebesar 1 US\$/kg maka ekspor teh akan naik sebesar 0.111697

Untuk variabel kurs, jika terjadi kenaikan sebesar 1 rupiah maka ekspor teh akan turun sebesar 0.05792.

Dari semua penelitian yang telah dilakukan terdapat beberapa intepretasi yang menjelaskan arti dari penelitian ini. Signifikasi yang dimaksud di dalam penelitian ini adalah tingkat pengaruh yang terdapat diantara variabel-variabel indepanden dan dependen sehingga mempunyai implikasi saling mempengaruhi.

Sedangkan tanda negatif maupun positif mempunyai arti ; positif artinya bahwa variabel dependen mempunyai pengaruh meningkatkan ekspor teh (var abel independen). Tanda negatif mempunyai arti variabel dependen mempunyai pengaruh menurunkan ekspor teh (variabel independen).

Error Correction Term atau ECT dilakukan untuk mengetahui signifikasi masing-masimg variabel. Pada pengujian ECT hasilnya haruslah signifikan karena akan menunjukkan sahihnya spesifikasi model ECM untuk penelitian lanjutan. Pada penelitian ini variabel ECT signifikan sehingga model ECM bisa dilanjutkan untuk penelitian ini.

Pada hasil penelitian ini dapat dipilah menjadi dua, pertama jangka pendek dan kedua jangka panjang. Jangka pendek dapa, diintepretasikan sebagai berikut: nilai koefisien untuk variabel harga teh international dan variabel kurs adalah signifikan negatif yang apabila harga teh internasional naik 1 US\$ /kg dan rupiah terapresiasi terhadap dollar AS sebesar 1 US\$ akan mengakibatkan turunya volume ekspor teh indonesia ke inggris sebesar nilai *coefficient* jangka pendek pada tabel 6.3 ECM. Sedangkan pada variabel harga kopi internasional tidak mempunyai pengaruh apa-apa terhadap volume ekspor teh indonesia ke inggris.

Pada hasil penelitian jangka panjang ditemukan variabel harga teh internasional dan kurs adalah signifikan negatif dimana apabila terjadi kenaikan harga teh internasional sebesar 1 US\$/kg dan kenaikan kurs 1 US\$ maka berdampak pada penurunan volume ekspor teh indonesia ke inggris. Begitu pula yang terjadi pada harga kopi internasional jangka penjang adalah signifikan positif yang berarti apabila terjadi kenaikan harga kopi internasional sebesar 1 US\$/kg maka akan mengakibatkan kenaikan volume ekspor teh indonesia ke inggris.