
DNS Tunneling Detection Using Elasticsearch

Ahmad Faisal Sani

Department of Informatics
Universitas Islam Indonesia

Yogyakarta

INDONESIA

14917133@students.uii.ac.id

Mukhammad Andri Setiawan

Department of Informatics
Universitas Islam Indonesia

Yogyakarta

INDONESIA

andri.setiawan@uii.ac.id

Abstract — Domain Name System (DNS) Protocol is a

popular medium used by malware to perform ‘command and

control’ in taking over victim’s computer, this technique called as

DNS tunneling. Moreover, DNS tunneling can also be used to
bypass captive portal hotspot in public places and worsen the

network quality. However, in more dangerous stage, DNS

tunneling can also be used to exfiltrate data from the victim’s

computer. Instead of using DNS Protocol to translate domain
name, the medium misused to bootleg the data. Those are the

weaknesses which frequently used by the attacker to deceive

network administrator. Our approach to this problem is
analyzing the traffic using unique hostname as indicator of

compromise and utilizing Elasticsearch tool to detect DNS

tunnelling. Elasticsearch will send an email to notify the
administrator about DNS tunneling. The email contain

information about domain suspected as perpetrator of DNS

tunneling. The result from Elasticsearch can be use to add the

domain blacklist, so the domain can no longer be use to perform
DNS tunneling. Hopefully those combinations are able to support

the network administrator to secure the network from DNS

tunneling. Moreover, the result of network quality analysis shows
that there is a rise in jitter value and packet lost when DNS

tunneling happens.

Keywords — DNS tunneling, data exfiltration, traffic analysis,

elasticsearch.

I. INTRODUCTION

Recently, Internet Security Researchers found a malware

diversified as Remote Access Trojan. This kind of malware

uses a new technique which is hard to detect by the Network

Administrator. Those malware does ‘command and control’

and takes over the victim’s computer through DNS Protocol,

this kind of malware called DNSMessenger [1]. ‘Command

and Control’ or sending data through DNS Protocol called

DNS tunneling or DNS ex-filtration. Besides doing ‘command

and control’, the malware uses DNS tunneling to bypass the

captive portal or login hotspot in public places [2]. However,

data thievery through DNS Protocol considers being more

dangerous than bypassing captive portal. The malware could

ex-filtrate various data, such as classified trade data,

intellectual property, employee data, customer data, and many

others. DNS tunneling requires software installed on the

victim’s computer to work. If the software installed, the

attacker can easily bypass the firewall and security system of

the victim.

DNS tunneling can also worsen network quality. The

research concluded that using DNS tunneling can increase the

delay of the entire network up to 140-1500 ms, jitter until 8-57

ms, and DNS Overhead 200-2000% [3]. We can imply that; a

client on the network is making a VOIP call or video call, the

high jitter causes a voice and video transmission can not run

smoothly, the high delay causes a slight or minor delay to the

voice and video. DNS Overhead causes an increase in data

package size and resulting in higher using of bandwidth. To

experience the best quality of the network, Cisco recommends

we set the jitter below 30 ms and delay less than 150 ms [4].

Network Administrator usually does not give extra

attention to the DNS traffic. DNS Protocol is a protocol uses

to translate IP Address into a domain name, with the result

that we can access a computer or server using the name

without remembering the IP Address of the computer or

server. With that common sense, the Administrator is

forgetting about the fact that DNS Protocol also can be used to

exchange data. That flaw uses by the attacker to ‘Command

and Control’ or steal data using DNS tunneling.

Therefore, DNS traffic in a network should be monitored

to prevent DNS tunneling. Actually, the Administrator able to

block all DNS traffic to prevent tunneling. However, that is

not the ideal solution, because that method will also block the

user to acces host address. Another approach is using DNS

Sinkhole [5]. DNS Sinkhole is a DNS server which able to

give wrong IP address (spoofing) from DNS request, so the

destined domain can no longer be accessed. This condition can

be use to prevent malware or DNS tunnel from contacting the

server.

DNS Sinkhole is using a domain list to be blocked. We can

manually make the list or download it from website such as;

urlblacklist.com, malwaredomain.com, and etc. To obtain the

domain suspected doing DNS tunneling is necessary to

monitor and log all DNS traffic in the network. Those log can

be obtain from many resources, such as DNS server, Intruder

Detection System (IDS), proxy, and computer log. To detect

DNS tunneling from the log, analysis should be done

manually using capture analyzer packet, such as Wireshark.

This kind of approcach considered hard to do and take times,

especially if we want to visualize the result, we need another

tools. Another approach is using Payload Analysis Method

and traffic analysis [2]. Payload analysis able to detect certain

DNS tunneling, while traffic analysis able to detect DNS

tunneling universally.

Traffic analysis is the approach we use to resolve the issues

we stated before. We use traffic analysis with the amount of

unique hostname as an indicator of compromise using

Elasticsearch. Elasticsearch has components which can be

used in this research, such as Packetbeats, Kibana, and

Watcher. Packetbeats is a real-time sniffer which will capture

the traffic DNS, Watcher will give an email notification when

DNS tunneling happened, and Kibana is a panel of

visualization which will show a graphic bar of domain names

which have the most unique hostname. That combination

hopefully helps the administrator to secure and monitor the

network.

II. LITERATURE REVIEW

DNS tunneling is a technique to bypass the security control

and to infiltrate or ex-filtrate data from a target. This technique

is still used because DNS usually do not monitor well. The

practitioner blindly trusted DNS is secure [6].

Popular tools to perform DNS tunneling are Iodine [7] and

Dnscat2 [8]. Iodine is an app which able to create a tunnel

interface between client and server, all the traffic can be

passed up through the tunnel. On the other hand, Dnscat2 used

for performs ‘command and control’ between client and

server. Both apps can bypass the security control of a network.

DNS has a caching mechanism to accelerate the response

from DNS query, therefore, all DNS Tunnel program will

create random and long hostname string (unique hostname), so

that DNS cannot cache the tunnel and the data thievery

become possible.

DNS tunneling detection methods divided into two, which

is, payload analysis and traffic analysis. Payload Analysis can

only detect certain DNS tunneling, while Traffic Analysis can

detect DNS tunneling universally. Farnham tries to detect

DNS tunneling using Traffic analysis making unique

hostname as an indicator of compromise. The normal amounts

of unique hostnames are below 300, after conducting DNS

tunneling the amount of unique hostname rapidly increase

until 700 [2].

A tool which can be used to detect DNS tunneling with

traffic analysis method is Elasticsearch. Elasticsearch is a

search engine which builds the base on Apache Lucene and

opensource product which also developed with Java.

Elasticsearch can conduct a real-time and distributed analysis

and also able to do multiple searching mechanism.

Elasticsearch can manage various kinds of logs, such as

operating system log, web server, log traffic, app log, and

Amazon Web Service Log [9].

III. RESEARCH METHODOLOGY

A. Design and Topology

To support this research, the researcher will build a lab in a

virtual neighborhood so that easier and cheaper to maintain.

Though only in a virtual neighborhood, the condition already

represents the real condition in a real network. The researcher

will use a computer with Quad-Core processor, RAM 8GB,

and SSD 128GB. The host run Ubuntu 19.10 and using

Virtualbox with Hypervisor KVM as the virtualization

software.

In the VirtualBox will be built a virtual machine. The

virtual machine will run Elasticsearch. The Virtual machine

will run with the specification of 2 virtual core, 4GB RAM,

network mode bridge, and run CentOS 7.

For the tunneling server, the researcher using a VPS with

CentOS7, RAM 1GB, one virtual core CPU. Iodine and

DNScat2 used as DNS tunneling software.

The researcher uses Mikrotik RB750 as the router. The

router will be used as a gateway and firewall. For the client,

the researcher will use Windows 10 and Ubuntu 19.10.

The topology used by the researcher can be seen in an

image below. That topology was chosen because it represents

the real condition of a network. On of the client computer will

be the DNS tunnel client which call the DNS tunnel server.

The router will be set to do mirroring port to Elasticsearch

server, with that scheme, all the traffic can be read by

Elasticsearch to run the inspection.

Fig. 1. DNS tunneling simulation topology

B. Log aggregation and simulation.

Log aggregation will be done by Elasticsearch using a

plug-in. The plug-in will capture a packet called Packetbeat in

real-time. So the data used is adequate, DNS Grind from

Pentestmonkey is used to generate traffic simulation [10].

DNS tunnel server Iodine and DNSCat2DNScat2 will run

the services in DNS tunnel server. The client will also run the

DNS tunnel client which will contact the DNS tunnel server.

On the first experiment, the client will browse uses DNS

tunnel, this experiment intends to create DNS tunnel log.

Elasticsearch will run the job which will detect DNS tunnel

from the collected log. Visualization of the result will be seen

on Kibana Dashboard. Elasticsearch will detect and count the

amount of unique hostname, domain with the largest amounts

of unique hostname will detect as an anomaly. To get the best

result, we need more or less 48 hours.

C. Detection and analysis

In this stage, an analysis will be conducted to find out

whether Elasticsearch able to detect DNS tunneling or not.

The method applied is Traffic Analysis. Each communication

on DNS tunneling will create a new hostname, the normal

average amount of unique hostname is below 300 [2], because

of that, the more unique hostname indicates DNS tunneling is

happening. All logs captured by Packetbeat will be processed

with a custom script by the Watcher. After that, Watcher

counts the amount of unique hostname based on the

cardinality of the domain. The amount of unique hostname on

a domain will be visualized in Kibana in the form of a graphic

bar. If the amount of unique hostname more than 300 and the

domain does not exist in the whitelist, the watcher will send an

email to the administrator.

Fig. 2. Flowchart detection of dns tunneling.

IV. RESULTS

Mikrotik router will do a port mirroring to duplicate

packets from DNS server to Elasticsearch server. The

Elasticsearch server will run Packetbeat app to sniff the DNS

packet. A Laptop will be prepared to run the DNS tunneling to

the server.

Watcher will find cardinality from the hostname of each

domain and come out with the amount of unique hostname.

Here is a graphic from Kibana dashboard shows the amount of

unique hostname for 15 minutes without DNS tunneling.

Fig. 3 shows the amount of unique hostname in normal

situation is below 100.

Fig. 3. Unique hostname on DNS with normal traffic.

In this research we use Iodine, Dnscat2, and malware

DNSExfiltrator. We choose those tools because already

represent several methods in DNS tunneling.

Tunneling using Iodine

In this first experiment, we use Iodine to perform DNS tunnel.

We try to browse through DNS tunnel.

Fig. 4. Tunneling process using Iodine

The domain name which the researcher uses as DNS tunnel
server is sanisa.xyz. When the tunnelling runs for 3 minutes,
the amounts of unique hostname on that domain spike up until
700.

Fig. 5. The spike on unique hostname when tunneling using Iodine on domain
sanisa.xyz

Tunneling using dnscat2

In the next experiment, we use Dnscat2 to perform
‘command and control’ on domain sanisa.xyz

Fig. 6. Tunneling process using dnscat2

When the dnscat2 runs for 3 minutes, the amount of unique
hostname on domain sanisa.xyz escalates until 900.

Fig. 7. The escalation of unique hostname when tunneling using dnscat2 on
domain sanisa.xyz.

Tunneling using malware

In this experiment, the researcher using a malware called
DNSExfiltrator. That malware listed in virustotal.com with
hash value:

“ed937bcd5dc05f1021aa83afdb47af266083ef47228e23a32
292bad577c53191”.

Fig. 8. Malware DNSExfiltrator status based on virustotal.com

This malware can send a file through DNS protocol. On

the side of the server, this malware uses python language, but

on the side of the client (the victim), we use powershell

windows. On this trial, we send a file with a name “data.pdf”

file size: 685KB to the server with domain t4.sanisa.xyz.

Fig. 9. DNS tunneling process using DNSExfiltrator to send a file data.pdf

When the DNS tunnelling process runs, there are
escalations of unique hostname until more than 5000 as shown
in the graphic below:

Fig. 10. The escalation of unique hostname when tunnelling using

DNSExfiltrator on domain sanisa.xyz.

 To assure that Elasticsearch successfully detect DNS
tunneling, during the process of tunneling we do capture packet
using Wireshark.

Fig. 11. Wireshark process to sniff the DNS traffic.

To analyze the DNS traffic using wireshark, the researcher

use filter “dns.qry.name.len > 30 and !mdns” which means,

DNS query filter with the amount of subdomain/hostname

more than 30 and is not multicast DNS. The filtering result

shows there are long query with encoding base64 on domain

sanisa.xyz.

Fig. 12. Pict 11. The result of filtering Query DNS on Wireshark.

In a journal written by Leijenhorst, DNS tunneling can also

worsen the network quality [3]. Therefore in this research we

also analyzing jitter value and packet loss in the UDP

protocol. We would like to find out the effect of DNS

tunneling to the network. We provide to clients, the first one

perform DNS tunneling, the second one is normal client. Both

clients run in one network. In this experiment we use iperf3.

And the result as shown below:

TABLE 1. NETWORK QUALITY ANALYSIS

Client Parameter Before
Tunneling

On
Tunneling

Client
Running
DNS Tunnel

Jitter 0.792 ms 3.726 ms

Packet Loss 0 % 36 %

Client Not
Running
DNS Tunnel

Jitter 0.15 ms 1.096 ms

Packet Loss 0 % 1.7 %

From the experiments we can conclude that there is a rise
of jitter value and packet loss. The rise happens significantly on
the client who did DNS tunneling. On the other client who did
not perform DNS tunneling, the rise still happen but not
significant, still acceptable according to Cisco recommendation
[4].

Notification to the Administrator

When the unique hostname more than 300 and the domain
are not in the whitelist, the watcher will be triggered and send
an email notification about suspicious activities which
indicated DNS tunneling. An email notification is sent to
Administrator, with the contents:

“This Domain has high unique
hostnames:{sanisa.xyz.={unique_hostnames=661,total_bytes_i
n=371114.0,total_bytes=1490168.0,total_requests=2024,
total_bytes_out=1119054.0}}”

The email notifies the administrator that the domain
sanisa.xyz suspects of doing DNS tunneling. From the
experiments, Elasticsearch, Packetbeat, and Watcher can be
used to detects DNS tunneling.

V. CONCLUSIONS AND RECOMMENDATIONS

In our experiments, we conducted our simulation with

Iodine, dnscat2, and executing DNSExfiltrator malware. We

can conclude that traffic analysis in a way of counting unique

hostname as an indicator of DNS tunneling with Elasticsearch

is successfully detecting the DNS tunneling and able to notify

the administrator about the attacker. The output from the

detection can add up the list of blacklisted domain. On top of

that, on the network quality analysis, DNS tunneling can

increase jitter value and packet loss on the network but not

significant and still acceptable.

REFFERENCES

[1] E. Brumaghin and C. Grady, “Talos Blog || Cisco Talos Intelligence

Group - Comprehensive Threat Intelligence: Covert Channels and

Poor Decisions: The Tale of DNSMessenger,” 2017. [Online].

Available:

https://blog.talosintelligence.com/2017/03/dnsmessenger.html.

[Accessed: 03-Apr-2019].

[2] G. Farnham, “Detecting DNS tunneling,” 2013.

[3] T. Van Leijenhorst, K. Chin, and D. Lowe, “On the Viability and

Performance of DNS tunneling,” 2008.

[4] “Acceptable Jitter and Latency.” [Online]. Available:

https://getvoip.com/blog/2018/12/20/acceptable-jitter-latency/.

[Accessed: 29-Jun-2019].

[5] G. Bruneau, “DNS Sinkhole,” 2010.

[6] M. Branscombe, “Why you need to care more about DNS.” [Online].

Available: https://www.cio.com/article/2948378/why-you-need-to-

care-more-about-dns.html.

[7] “Iodine DNS tunneling Tools.” [Online]. Available:

https://code.kryo.se/iodine/.

[8] “DNScat2 C&C tunneling tools.” [Online]. Available:

https://github.com/iagox86/dnscat2.

[9] Elasticsearch, “Elasticsearch: RESTful, Distributed Search & Analytics |

Elastic.” [Online]. Available:

https://www.elastic.co/products/elasticsearch. [Accessed: 03-Apr-

2019].

[10] “DNS Grind.” [Online]. Available:

https://github.com/pentestmonkey/dns-grind.

