BAB V

ANALISIS DAN PEMBAHASAN

5.1 Tahap Informasi (Information Phase)

Tahap informasi ini dikumpulkan informasi-informasi proyek yang dapat menunjang dan mempermudah dalam memperoleh gagasan-gagasan pengembangan desain. Data-data informasi berupa:

1. Data umum

Data umum mencakup informasi-informasi umum dari proyek seperti lokasi proyek, luas bangunan, dan fungsional bangunan.

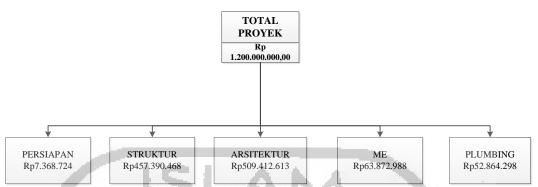
2. Data teknis

Merupakan informasi-informasi karakteristik fisik dari proyek. Data fisik meliputi jenis tanah, kondisi tanah, jenis pondasi yang digunakan, daya dukung tanah.

3. Data anggaran biaya

Data anggaran biaya meliputi informasi-informasi sumber anggaran biaya dan biaya awal pekerjaan.

Tujuan dari tahap informasi ini adalah untuk mendapatkan informasi secara jelas dan menyeluruh dari lingkup yang ditinjau, yaitu pada pekerjaan struktur pondasi, kolom, balok, plat, dan tangga. Data-data yang diperoleh dapat dilihat pada tabel 5.1

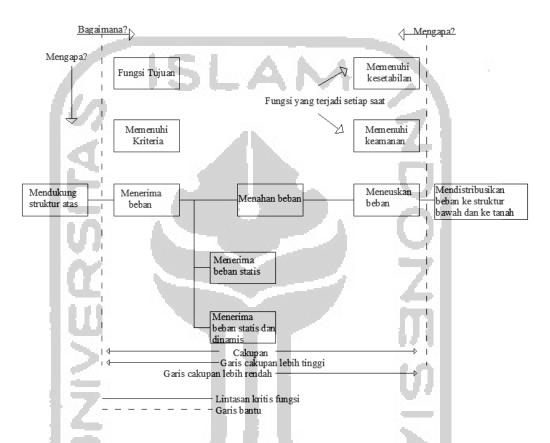

Tabel 5.1 Data proyek pembangunan gedung pemeriksa inspektor daerah Sleman

No	Uraian	Keterangan				
1	Proyek	proyek pembangunan gedung pemeriksa				
		inspektor Daerah Sleman				
2	Lokasi proyek	Jl.Roro Jonggrang, Beran Tridadi, Kec.				
		Sleman, Kab. Sleman DIY.				
3	Fungsi	Bangunan gedung perkantoran				
4	Biaya	Rp 1.200.000.000,00				
	47	Dengan biaya pekerjaan struktur				
	4	Rp457.390.468				

Biaya pekerjaan struktur untuk penyusunan tesis didapatkan dari RAB yang diperoleh dari tim perencana, sedangkan alternatif yang akan disusun berdasarkan data-data analisa harga dari data proyek yang ada.

Analisis rekayasa nilai (*value engineering*) pada pembahasan tesis ini dilakukan pada pekerjaan struktur pondasi, kolom, balok, plat, dan tangga. Oleh karena itu pada pekerjaan lain tidak diperhitungkan.

Pada tahap informasi dilakukan investigasi terhadap data-data yang telah diperoleh. Untuk mendapatkan kemudahan dalam melihat potensi penghematan dari rincian pekerjaan digunakan *cost mode. Cost model* dibuat secara grafis kemudian dilakukan *breakdown* dengan tabel secara rinci jenis pekerjaan dan harga atau biayapada setiap item pekerjaan, setelah itu diperhitungkan bobot pada masing-masing pekerjaan. Tabel tersebut memudahkan untuk untuk menentukan penghematan potensial dari masing-masing bobot yang nilainya paling besar. Bobot yang paling besar mempunyai peluang besar penghematan yang optimal. Hasil investigasi *cost model* dapat dilihat pada gambar 5.1 berikut ini:


Gambar 5.1 cost model pembangunan gedung pemeriksa inspektor daerah Sleman

Dari hasil investigasi *cost model* dapat dilihat bahwa pekerjaan arsitektur mempunyai biaya yang tinggi dibandingkan dengan pekerjaan lainnya. Akan tetapi potensi untuk dilakukan penghematan terdapat pada pekerjaan struktur dengan menggunakan metode *value engineering*. Setelah melakukan investigasi tahap selanjutnya adalah *breakdown* biaya struktur yang dapat dilihat pada tabel 5.2

Tabel 5.2 *Breakdown* biaya struktur proyek pembangunan gedung pemeriksa inspektor daerah Sleman

Proyek : Lokasi : Klien : Tanggal : Halaman :		TAHAP INFORMASI					
	/ /A	COST BREAKDOWN					
No	Uraian Pekerjaan	Breakdown Biaya	Bobot (%)				
1	Pekerjaan Pondasi	Rp78.722.888	17,211				
2	Pekerjaan Sloof	Rp42.669.963	9,3290				
3	Pekerjaan Kolom	Rp80.415.248	17,581				
4	Pekerjaan Balok	Rp120.859.834	26,423				
5	Pekerjaan Plat	Rp50.335.367	11,004				
6	Pekerjaan Tangga	Rp20.817.728	4,5514				
7	Pekerjaan Topi-topi	Rp6.000.192	1,3118				
8	Pekerjaan Atap	Rp57.569.248 12,586					
	TOTAL	Rp457.390.468	100				

Hasil analisis fungsi FAST pada pekerjaan struktur dapat dilihat pada gamabr 5.2 berikut ini.

Gambar 5.2 Diagram Analisis Fungsi FAST pada pekerjaan struktur

Dengan menggunakan FAST, melibatkan diagram blok yang cukup berfungsi berdasarkan jawaban-jawaban terhadap pertanyaan bagaimana(*HOW*) dan mengapa (*WHY*). Hasil dari diagram ini adalah hirarki dari fungsi yang memperlihatkan hubungan antara *HOW*/ *WHY*, serta memperlihatkan bagaimana urutan fungsi-fungsi sehingga menempatkan bagaimana suatu fungsi dasar, tujuan, atau hasil akhir.

Pertanyaan-pertanyaan bagaiman adan mengapa dapat terjawab secara sudut pandang fungsional dengan cakupan tinggi bergerak kearah kanan ke cakupan yang lebih rendah dari diagram FAST.

Pemetaan fungsional menggunakan metode FAST ini merupakan suatu titik awal. Pelayanan adalah suatu set proses dan sub-proses untuk mendapatkan fitur yang diinginkan dan dianalisa dari sudut pandang fungsional. Metode FAST menghasilkan suatu *logical functional map* untuk desain. Sehingga metode ini menghasilkan banyak mekanisme berbeda untuk menyediakan fungsi proses yang sama, diluar batas dan kreativitas yang ada.

5.2 Tahap Kreatif (Creative Phaase)

Tahap ini dilakukan pendekatan-pendekatan secara kreatif dengan mengemukakan ide-ide sebanyak mungkin, dimana banyak informasi ide-ide kreatif yang dikemukakan diharapkan studi *value engineering* dapat berjalan dengan sukses. Tetapi kurang lengakapnya informasi yang didapat tidak mengahalangi kemampuan usaha *value engineering* karena dengan berlanjutnya studi akan semakin banyak informasi yang nantinya dapat dipecahkan.

Ide-ide kreatif yang dikemukakan merupakan ide-ide kreatif yang sesuai cakupan fungsional yang telah dijabarkan pada tahapan sebelumnya dengan menggunakan metode FAST.

Ide kreatif desain struktur pondasi, kolom, balok, plat, dan tangga yang telah didapat, kemudian ditabelkan mencakup sistem teknologi dan bahan material yang digunakan. Hasil usulan ide kreatif dapat dilihat pada tabel 5.3 sampai dengan tabel 5.7

Tabel 5.3 Ide kreatif alternatif desain struktur pondasi

No	Jenis pondasi	Sistem struktur	Bahan material
1	Pasangan batu	Pondasi dangkal	Batu kali dan cor
2	Footplat	Pondasi dangkal	Beton bertulang
3	Sumuran	Pondasi dangkal	Beton bertulang
4	Mini bor	Pondasi dangkal	Beton bertulang

Tabel 5.4 Ide kreatif alternatif desain struktur kolom

No	Jenis kolom	Sistem struktur	Bahan material
1	Beton bertulang	Kolom Pendek	Beton bertulang
2	Baja	Kolom Pendek	Baja
3	komposit	Kolom Pendek	Beton bertulang
	15	4 4 4	dan baja

 Tabel
 5.5 Ide kreatif alternatif desain struktur balok

No	Jenis balok	Sistem struktur	Bahan material		
1	Beton bertulang	Balok induk dan anak	Beton bertulang		
2	Baja	Balok induk dan anak	Baja		
3	komposit	Balok induk dan anak	Beton bertulang dan baja		

Tabel 5.6 Ide kreatif alternatif desain struktur plat

No	Jenis plat	Sistem struktur	Bahan material
1	Plat konvensional	Satu arah dan dua arah	Beton bertulang
2	Precast	Satu arah dan dua arah	Precast concrete
3	Bondek	Satu arah dan dua arah	Bondek
4	Baja		baja

Tabel 5.7 Ide kreatif alternatif desain struktur tangga

No	Jenis tangga	Sistem struktur	Bahan material
1	Plat tangga beton	Satu arah dan dua	Beton bertulang
	dengan anak tangga bata	arah	dan bata
2	Plat dan anak	Satu arah dan dua	Beton bertulang
	tangga beton	arah	
3	Balok dengan anak tangga beton	Balok menerus	Beton bertulang

5.3 Tahap Pertimbangan (judgmnet phase)

Pada tahap pertimbangan dilakukan analisis dengan kriteria desain pondasi, kolom, balok, plat, dan tangga yang telah ditampilkan pada tahap kreatif. Analisis yang dilakukan pada tahap ini adalah analisis keuntungan dan kerugian, analisis tingkat kelayakan, dan analisis matrik berpasangan untuk menentukan nilai atau bobot terbaik.

Penilaian dilakukan dengan cara membandingkan semua kriteria terhadap komponen yang ditinjau. Penilaian dilakuakan secara relatif dengan melibatkan tim. Penilaian diberikan oleh tim rekayasa nilai (*value engineering*) dengan cara mengisi kuisioner yang diwakili oleh orang-orang yang berkompeten dibidangnya.

Penilaian terhadapa kriteria-kriteria parameter dilakukan bersama-sama dengan cara pengumpulan angket atau kuisioner dari para ahli serta praktisi yang berkompeten dibidangnya. Pemberian penilaian pada kriteria dilakukan secara relatif berdasarkan pengetahuan dan pengalaman dari para ahli atau responden. Penilaian diambil responden sebanyak 6 orang. Hasil dar kuisioner selanjutnya dilakukan analisis untuk menentukan nilai atau bobot terbaik dari masing-masing ide alternatif desain pondasi,; kolom, balok, plat, dan tangga.

5.3.1 Analisis keuntungan dan kerugian

Hasil kuisioner dengan responden sebanyak 6 orang yang berkompeten dibidangnya didapat rekapitulasi hasil untuk masing-masing jenis alternatif desain struktur pondasi, kolom, balok, plat, dan tangga dapat dilihat pada tabel dibawah ini.

Tabel 5.8 Rekapitulasi hasil kuisioner Analisis keuntungan dan kerugian alternatif desain pondasi

No	Parameter	R1	R2	R3	R4	R5	R6	TOTAL	RATA- RATA	KET	
Ι	Pasangan Batu										
1	Biaya awal	3	2	3	3	3	3	17	2,833	+	
2	Daya dukung	-2	3	-2	1	-2	-3	-5	-0,833	-	
3	Waktu pelaksanaan	3	1	2	2	2	3	13	2,167	+	
4	Kemungkinan implementasi	1	3	2	3	3	1	13	2,167	+	
5	Tingkat kesulitan pelaksanaan	3	3	3	3	3	3	18	3,000	+	
6	Sarana kerja (peralatan)	3	3	3	3	3	3	18	3,000	+	
No	Parameter	R1	R2	R3	R4	R5	R6	TOTAL	RATA- RATA	KET	
II					Foo	tplat					
1	Biaya awal	2	2	2	3	2	3	14	2,333	+	
2	Daya dukung	2	3	2	3	3	3	16	2,667	+	
3	Waktu pelaksanaan	2	3	2	3	2	3	15	2,500	+	
4	Kemungkinan implementasi	3	2	3	3	2	3	16	2,667	+	
5	Tingkat kesulitan pelaksanaan	1	3	1	2	2	2	11	1,833	+	
6	Sarana kerja (peralatan)	2	-3	2	2	2	3	8	1,333	+	
No	Parameter	R1	R2	R3	R4	R5	R6	TOTAL	RATA- RATA	KET	

III					Sun	nuran				
1	Biaya awal	-2	-3	-2	-2	-2	-2	-13	-2,167	-
2	Daya dukung	2	3	1	3	3	2	14	2,333	+
3	Waktu pelaksanaan	-2	-3	-2	-3	-2	-1	-13	-2,167	-
4	Kemungkinan implementasi	1	-2	1	-3	-1	1	-3	-0,500	-
5	Tingkat kesulitan pelaksanaan	-2	-2	-2	-3	-2	2	-9	-1,500	W_
6	Sarana kerja (peralatan)	-2	3	-1	-3	-2	1	-4	-0,667	-
No	Parameter	R1	R2	R3	R4	R5	R6	TOTAL	RATA- RATA	KET
IV		Y			Min	i Bor			.di	
1	Biaya awal	-3	-2	-1	-2	-3	-2	-13	-2,167	-
2	Daya dukung	3	3	2	2	3	3	16	2,667	+
3	Waktu pelaksanaan	-2	1	-1	-3	-2	1	-6	-1,000	-
4	Kemungkinan implementasi	2	3	2	1	2	1	11	1,833	+
5	Tingkat kesulitan pelaksanaan	-3	-3	-2	-2	-2	-2	-14	-2,333	-
6	Sarana kerja (peralatan)	-3	-2	-2	-3	-2	-2	-14	-2,333	-

Tabel 5.9 Rekapitulasi hasil kuisioner Analisis keuntungan dan kerugian alternatif desain kolom

		-						and the second second	Control of the last of the las	
No	Parameter	R1	R2	R3	R4	R5	R6	TOTAL	RATA- RATA	KET
Ι				Be	ton B	ertul	ang			
1	Biaya awal	1	3	3	3	2	2	14	2,333	+
2	Daya dukung	2	3	2	3	3	3	16	2,667	+
3	Waktu pelaksanaan	2	2	3	3	3	2	15	2,500	+
4	Kemungkinan implementasi	3	3	2	3	3	3	17	2,833	+

	TC' 1 /				I		I				
	Tingkat kesulitan										
		_	1	1	_	_	_	10	1.667	+	
5	pelaksanaan	2	-1	1	3	2	3	10	1,667		
	Sarana kerja									+	
6	(peralatan)	2	2	2	2	2	3	13	2,167	'	
No	Parameter	R1	R2	R3	R4	R5	R6	TOTAL	RATA- RATA	KET	
II	Baja										
1	Biaya awal	2	3	2	3	2	2	14	2,333	+	
2	Daya dukung	2	3	3	3	2	2	15	2,500	+	
	Waktu										
3	pelaksanaan	2	3	2	2	2	3	14	2,333	+	
	Kemungkinan				Th.	8					
4	implementasi	1	2	1	3	1	2	10	1,667	+	
-+	Tingkat	1		1		1		10	1,007		
	kesulitan			-	b				44	+	
5	pelaksanaan	1	3	2	2	2	2	12	2,000		
			3				2	12	2,000		
	Sarana kerja	_	2			1		10	2 000	+	
6	(peralatan)	2	2	2	3	1	2	12	2,000		
No	Parameter	R1	R2	R3	R4	R5	R6	TOTAL	RATA-	KET	
				-110				l d	RATA		
III					Kom	posit	-	- 10			
1	Biaya awal	-3	-2	-2	-2	-2	-2	-13	-2,167	-	
2	Daya dukung	3	3	3	3	2	2	16	2,667	+	
	Waktu								,,,,,,		
3	pelaksanaan	1	3	2	1	2	2	11	1,833	+	
	Kemungkinan			, -					1,000		
4	implementasi	1	-2	1	-1	-1	1	-1	-0,167	+	
	-	1	-2	1	-1	-1	1	-1	-0,107		
	Tingkat kesulitan					100					
5	pelaksanaan	-3	-3	-3	-3	-3	-2	-17	-2,833	_	
)		-3	-3	-3	-3	-3	-2	-1/	-2,833		
	Sarana kerja		4 4				6.			-	
6	(peralatan)	-3	3	-3	3	-3	-2	-11	-1,833		

Tabel 5.10 Rekapitulasi hasil kuisioner Analisis keuntungan dan kerugian alternatif desain balok

No	Parameter	R1	R2	R3	R4	R5	R6	TOTAL	RATA- RATA	KET
I				Be	ton B	Bertul	ang			

								1.1		. 1
1	Biaya awal	1	3	1	3	1	2	11	1,833	+
2	Daya dukung	2	3	2	3	3	3	16	2,667	+
3	Waktu pelaksanaan	2	1	1	3	2	2	11	1,833	+
4	Kemungkinan implementasi	3	3	3	3	3	3	18	3,000	+
5	Tingkat kesulitan pelaksanaan	2	-2	1	3	2	2	8	1,333	+
6	Sarana kerja (peralatan)	2	3	2	1	3	2	13	2,167	+
No	Parameter	R1	R2	R3	R4	R5	R6	TOTAL	RATA- RATA	KET
II					В	aja				
1	Biaya awal	2	2	2	3	2	2	13	2,167	+
2	Daya dukung	2	3	2	3	2	2	14	2,333	+
3	Waktu pelaksanaan	2	3	1	2	2	3	13	2,167	+
4	Kemungkinan implementasi	1	2	2	3	1	2	11	1,833	+
5	Tingkat kesulitan pelaksanaan	1	2	1	2	1	2	9	1,500	+
6	Sarana kerja (peralatan)	1	2	1	3	1	2	10	1,667	+
No	Parameter	R1	R2	R3	R4	R5	R6	TOTAL	RATA- RATA	KET
III			1	F,	Kom	posit				
1	Biaya awal	-3	-3	-2	-2	-2	-1	-13	-2,167	-
2	Daya dukung	3	3	3	_3	3	3	18	3,000	+
3	Waktu pelaksanaan	1	3	1	1	_1	2	9	1,500	+
4	Kemungkinan implementasi	1	1	1	-1	1	1	4	0,667	+
5	Tingkat kesulitan pelaksanaan	-3	-2	-2	-3	-2	-2	-14	-2,333	-
6	Sarana kerja (peralatan)	-3	-2	-2	-3	-2	-2	-14	-2,333	-

Tabel 5.11 Rekapitulasi hasil kuisioner Analisis keuntungan dan kerugian alternatif desain plat

No	Parameter	R1	R2	R3	R4	R5	R6	TOTAL	RATA- RATA	KET
Ι		I	I	Plat	Kon	vensi	onal		ı	
1	Biaya awal	2	3	2	3	2	2	14	2,333	+
2	Daya dukung	2	3	2	3	2	2	14	2,333	+
3	Waktu pelaksanaan	-2	-2	-2	-3	-1	-1	-11	-1,833	-
4	Kemungkinan implementasi	3	3	2	3	3	2	16	2,667	+
5	Tingkat kesulitan pelaksanaan	1	1	1	3	1	1	8	1,333	+
6	Sarana kerja (peralatan)	1	1	_1	3	2	2	10	1,667	+
No	Parameter	R1	R2	R3	R4	R5	R6	TOTAL	RATA- RATA	KET
II	1111				Pre	cast	1		. 1	
1	Biaya awal	-1	-3	-1	-3	-2	-1	-11	-1,833	-
2	Daya dukung	2	3	2	3	3	2	15	2,500	+
3	Waktu pelaksanaan	2	-2	2	3	3	2	10	1,667	+
4	Kemungkinan implementasi	3	2	2	3	3	2	15	2,500	+
5	Tingkat kesulitan pelaksanaan	1	2	2	3	2	2	12	2,000	+
6	Sarana kerja (peralatan)	1	-2	1	2	1	2	5	0,833	+
No	Parameter	R1	R2	R3	-R4	R5	R6	TOTAL	RATA- RATA	KET
III		1	1	1	bor	ıdek				
1	Biaya awal	-1	-3	-2	-3	2	1	-6	-1,000	-
2	Daya dukung	2	3	2	3	3	3	16	2,667	+
3	Waktu pelaksanaan	2	3	2	3	2	3	15	2,500	+
4	Kemungkinan implementasi	2	3	2	3	2	3	15	2,500	+

5	Tingkat kesulitan pelaksanaan	2	2	2	1	2	3	12	2,000	+
6	Sarana kerja (peralatan)	1	-2	1	1	1	2	4	0,667	+
No	Parameter	R1	R2	R3	R4	R5	R6	TOTAL	RATA- RATA	KET
IV					В	aja				115.1
1	Biaya awal	1	-3	-1	-1	1	1	-2	-0,333	²⁰⁰
2	Daya dukung	-1	-2	-1	-3	-2	1	-8	-1,333	-
3	Waktu pelaksanaan	3	3	2	3	3	3	17	2,833	+
4	Kemungkinan implementasi	1	-3	-1	-1	1	1	-2	-0,333	-
5	Tingkat kesulitan pelaksanaan	2	3	2	1	1		10	1,667	+
6	Sarana kerja (peralatan)	-1	1	1	1	1	1	4	0,667	+

Tabel 5.12 Rekapitulasi hasil kuisioner Analisis keuntungan dan kerugian alternatif desain tangga

No	Parameter	R1	R2	R3	R4	R5	R6	TOTAL	RATA- RATA	KET
I	13	Pla	at tan	gga d	lenga	n ana	k tan	gga bata		
1	Biaya awal	2	3	3	2	3	2	15	2,500	+
2	Daya dukung	1	3	-1	3	1	2	11	1,833	+
3	Waktu pelaksanaan	7 1	-3	1	3	3	2	7	1,167	+
4	Kemungkinan implementasi	3	-2	2	- 2	3	3	11	1,833	+
5	Tingkat kesulitan pelaksanaan	2	2	2	3	3	3	15	2,500	+
6	Sarana kerja (peralatan)	1	1	1	2	2	2	9	1,500	+
No	Parameter	R1	R2	R3	R4	R5	R6	TOTAL	RATA- RATA	KET
II			Pla	at dan	anak	tang	ga be	eton	·	

1	Biaya awal	-2	2	-1	1	-2	1	-1	-0,167	-
2	Daya dukung	2	2	2	2	3	3	14	2,333	+
3	Waktu pelaksanaan	1	2	1	2	1	2	9	1,500	+
4	Kemungkinan implementasi	3	2	2	2	3	3	15	2,500	+
5	Tingkat kesulitan pelaksanaan	1	2	1	2	1	. 1	8	1,333	+
6	Sarana kerja (peralatan)	1	1	1	2	2	2	9	1,500	+
No	Parameter	R1	R2	R3	R4	R5	R6	TOTAL	RATA- RATA	KET
III			balok	deng	gan ar	nak ta	ıngga	beton	39 i 📗	
1	Biaya awal	2	-2	1-	2	2	2	7	1,167	+
2	Daya dukung	2	2	2	3	2	3	14	2,333	+
3	Waktu pelaksanaan	1	3	1.	2	1	2	10	1,667	+
4	Kemungkinan implementasi	2	3	2	1	1	1	10	1,667	+
5	Tingkat kesulitan pelaksanaan	-2	-2	1	-2	-2	-1	-8	-1,333	-
6	Sarana kerja (peralatan)	-1	3	1	1	-1	1	4	0,667	+

keterangan: R1-R6 = Responden 1 – Responden 6

Tanda (+) = Untung

Tanda (-) = Rugi

Hasil kuisoner tersebut selanjutnya dilakukan analisis keuntungan dan kerugian berdasarkan faktor-faktor penilaiannya pada masing-masing jenis alternatif sistem pondasi, kolom, balok, plat, dan tangga yang di usulkan. Hasil analisis keuntungan dan kerugian dapat dilihat pada tabel dibawah ini.

Tabel 5.13 Analisis keuntungan dan kerugian alternatif desain pondasi

No	Ide Usulan	Faktor Penilaian	Nilai keuntungan	Nilai kerugian	Selisih
		Biaya awal	2,833		
		Daya dukung		-0,8333	
	Pasangan	Waktu pelaksanaan	2,167		
1	Batu	Kemungkinan implementasi	2,167	L. 90	
	<i>#.</i>	Tingkat kesulitan			
	IO	pelaksanaan	3,000		
	24.6	Sarana kerja (peralatan)	3,000		
		Jumlah	13,16667	-0,8333	12,33
No	Ide Usulan	Faktor Penilaian	Nilai keuntungan	Nilai kerugian	Selisih
	1 6 3	Biaya awal	2,333	l I	
	6	Daya dukung	2,667	4	
		Waktu pelaksanaan	2,500		
2	Footplat	Kemungkinan implementasi	2,667	2	
		Tingkat kesulitan	0.0		
		pelaksanaan	1,833		
		Sarana kerja (peralatan)	1,333		
		Jumlah	13,333	0	13,33
No	Ide Usulan	Faktor Penilaian	Nilai keuntungan	Nilai kerugian	Selisih
		Biaya awal		-2,167	
		Daya dukung	2,333		
	100	Waktu pelaksanaan		-2,167	
3	Sumuran	Kemungkinan implementasi		-0,500	
		Tingkat kesulitan			
		pelaksanaan		-1,500	
		Sarana kerja (peralatan)		-0,667	

		Jumlah	2,333	-7,000	-4,67
No	Ide Usulan	Faktor Penilaian	Nilai keuntungan	Nilai kerugian	Selisih
		Biaya awal		-2,167	
		Daya dukung	2,667		
		Waktu pelaksanaan		-1,000	
4	Mini bor	Kemungkinan implementasi	1,833	188	
	6-	Tingkat kesulitan pelaksanaan		-2,333	
	197	Sarana kerja (peralatan)	49	-2,333	
		Jumlah	4,500	-7,833	-3,33

Tabel 5.14 Analisis keuntungan dan kerugian alternatif desain kolom

No	Ide Usulan	Faktor Penilaian	Nilai keuntungan	Nilai kerugian	Selisih
	144	Biaya awal	2,333		
	1.11	Daya dukung	2,667		
		Waktu pelaksanaan	2,500		
1	Beton Bertulang	Kemungkinan implementasi	2,833		
	17	Tingkat kesulitan pelaksanaan	1,667		
	14	Sarana kerja (peralatan)	2,167		
	15	Jumlah	14,167	0	14,17
No	Ide Usulan	Faktor Penilaian	Nilai keuntungan	Nilai kerugian	Selisih
		Biaya awal	2 222		
		1 Diaya awai	2,333		
		Daya dukung	2,500		
2	Baja	Daya dukung Waktu pelaksanaan Kemungkinan	2,500 2,333		
2	Baja	Daya dukung Waktu pelaksanaan	2,500		
2	Baja	Daya dukung Waktu pelaksanaan Kemungkinan implementasi	2,500 2,333		
2	Baja	Daya dukung Waktu pelaksanaan Kemungkinan implementasi Tingkat kesulitan	2,500 2,333 1,667		

No	Ide Usulan	Faktor Penilaian	Nilai keuntungan	Nilai kerugian	Selisih
		Biaya awal		-2,1667	
		Daya dukung	2,667		
		Waktu pelaksanaan	1,833		
3	Komposit	Kemungkinan			
		implementasi		-0,1667	
		Tingkat kesulitan			
	Hen.	pelaksanaan		-2,833	
	IO	Sarana kerja (peralatan)	- 4	-1,833	
		Jumlah	4,5	-7	-2,5

Tabel 5.15 Analisis keuntungan dan kerugian alternatif desain balok

No	Ide Usulan	Faktor Penilaian	Nilai keuntungan	Nilai kerugian	Selisih
	14.6	Biaya awal	1,833		
		Daya dukung	2,667		
	Beton	Waktu pelaksanaan	1,833		
1	Bertulang	Kemungkinan implementasi	3,000		
		Tingkat kesulitan	1.0		
		pelaksanaan	1,333		
	207 A	Sarana kerja (peralatan)	2,167		
	14	Jumlah	12,833	0	12,8333
No	Ide Usulan	Faktor Penilaian	Nilai keuntungan	Nilai kerugian	Selisih
	111	Biaya awal	2,167	23	
	70	Daya dukung	2,333		
		Waktu pelaksanaan	2,167		
2	Baja	Kemungkinan implementasi	1,833		
		Tingkat kesulitan			
		pelaksanaan	1,500		
		Sarana kerja (peralatan)	1,667		
		Jumlah	11,667	0	11,6667

No	Ide Usulan	Faktor Penilaian	Nilai keuntungan	Nilai kerugian	Selisih
		Biaya awal		-2,167	
		Daya dukung	3,000		
	Komposit	Waktu pelaksanaan	1,500		
3		Kemungkinan implementasi	0,667		
		Tingkat kesulitan pelaksanaan		-2,333	
	II.a	Sarana kerja (peralatan)		-2,333	
	147	Jumlah	5,167	-6,833	-1,6667

Tabel 5.16 Analisis keuntungan dan kerugian alternatif desain plat

No	Ide Usulan	Faktor Penilaian	Nilai keuntungan	Nilai kerugian	Selisih
		Biaya awal	2,333		
		Daya dukung	2,333		
	Plat	Waktu pelaksanaan		-1,833	
1 konvensional	Kemungkinan implementasi	2,667			
	Tingkat kesulitan				
		pelaksanaan	1,333		
		Sarana kerja (peralatan)	1,667	_	
		Jumlah	10,333	-1,833	8,5
No	Ide Usulan	Faktor Penilaian	Nilai keuntungan	Nilai kerugian	Selisih
		Biaya awal		-1,833	
	1 W	Daya dukung	2,500	rii.	
		Waktu pelaksanaan	1,667		
2	Precast	Kemungkinan implementasi	2,500		
		Tingkat kesulitan		-	
		pelaksanaan	2,000		
		Sarana kerja (peralatan)	0,833		
				-	
		Jumlah	9,500	1,833333	7,667
No	Ide Usulan	Faktor Penilaian	Nilai keuntungan	Nilai kerugian	Selisih

		Biaya awal		-1,000	
		Daya dukung	2,667		
		Waktu pelaksanaan	2,5		
3	Bondek	Kemungkinan implementasi	2,5		
		Tingkat kesulitan			
		pelaksanaan	2		
		Sarana kerja (peralatan)	0,666667		
		Jumlah	10,333	-1	9,333
No	Ide Usulan	Faktor Penilaian	Nilai keuntungan	Nilai kerugian	Selisih
	-	Biaya awal	4	-0,333	
		Daya dukung		-1,333	
		Waktu pelaksanaan	2,833		
4	Baja	Kemungkinan implementasi		-0,333	
	S	Tingkat kesulitan pelaksanaan	1,667		
	<i>~</i>	Sarana kerja (peralatan)	0,667		
	1.4	Jumlah	5,167	-2,000	3,167

Tabel 5.17 Analisis keuntungan dan kerugian alternatif desain tangga

No	Ide Usulan	Faktor Penilaian	Nilai keuntungan	Nilai kerugian	Selisih
		Biaya awal	2,500		
		Daya dukung	1,833		
	Plat tangga	Waktu pelaksanaan	1,167		
1	dengan anak	Kemungkinan implementasi	1,833		
	tangga bata	Tingkat kesulitan	14/20		
	100	pelaksanaan	2,500		
		Sarana kerja (peralatan)	1,500		
		Jumlah	11,333	0	11,3333
No	Ide Usulan	Faktor Penilaian	Nilai keuntungan	Nilai kerugian	Selisih

		Biaya awal		0,167	
		Daya dukung	2,333		
	Plat dan anak	Waktu pelaksanaan	1,500		
2	tangga beton	Kemungkinan implementasi	2,500		
		Tingkat kesulitan pelaksanaan	1,333		
		Sarana kerja (peralatan)	1,500		
		Jumlah	9,167	0,167	9,33333
No	Ide Usulan	Faktor Penilaian	Nilai keuntungan	Nilai kerugian	Selisih
	-4	Biaya awal	1,167		
	184	Daya dukung	2,333		
	balok dengan	Waktu pelaksanaan	1,667		
3	anak tangga	Kemungkinan implementasi	1,667		
	beton	Tingkat kesulitan pelaksanaan	Ö	-1,333	
	A/	Sarana kerja (peralatan)	0,667		
		Jumlah	7,500	-1,333	6,16667

Berdasarkan tabel diatas, maka usulan alternatif desain yang mempunyai nilai keuntungan yang terbesar adalah pondasi *footplat*, kolom beton bertulang, balok beton bertulang, plat bondek, dan Plat tangga dengan anak tangga bata.

5.3.2 Analisis tingkat kelayakan

Tahap analisis tingkat kelayakan akan membahas penilaian kriteria ide-ide kreatif dengan subjektif. Penilaian dilakukan dengan cara memberikan kuisioner kepada para praktisi yang berkompeten dan berpengalaman.

Setiap kriteria pada analisis kelayakan diberi bobot nilai dengan bobot nilai yang diberikan antara 0-10, kemudian hasil nilai-nilai tersebut dijumlahkan setiap alternatifnya. Hasil penilaian tingkat kelayakan pada penelitan ini dapat dilihat pada tabel dibawah ini.

Tabel 5.18 Hasil penilaian tingkat kelayakan desain pondasi

No	Parameter	R1	R2	R3	R4	R5	R6	RATA- RATA
I	Pa	asang	an Ba	itu				
1	Biaya awal	6	6	7	7	8	7	6,83333
2	Daya dukung	4	8	5	8	6	6	6,16667
3	Waktu pelaksanaan	4	4	5	8	7	7	5,83333
4	Kemungkinan implementasi	7	8	7	8	8	5	7,16667
	Tingkat kesulitan							
5	pelaksanaan	8	2	6	7	7	8	6,33333
6	Sarana kerja (peralatan)	6	2	6	7	7	8	6
No	Parameter	R1	R2	R3	R4	R5	R6	RATA- RATA
II		Foo	tplat	85.	,			
1	Biaya awal	5	8	6	7	7	7	6,66667
2	Daya dukung	8	- 8	8	8	8	9	8,16667
3	Waktu pelaksanaan	8	8	8	8	8	- 8	8
4	Kemungkinan implementasi	9	8	7	8	8	9	8,16667
_	Tingkat kesulitan	· ·		.4	_			
5	pelaksanaan	9	2	6	7	7	7	6,33333
6	Sarana kerja (peralatan)	7	8	6	7	7	9	7,33333
No	Parameter	R 1	R 2	R3	R4	R5	R6	RATA- RATA
III	7	Sum	uran					
1	Biaya awal	4	10	5	7	6	6	6,33333
2	Daya dukung	9	10	8	8	7	7	8,16667
3	Waktu pelaksanaan	4	8	8	8	6	7	6,83333
4	Kemungkinan implementasi	5	6	7	8	7	8	6,83333
5	Tingkat kesulitan pelaksanaan	5	8	7	7	7	7	6,83333
6	Sarana kerja (peralatan)	5	4	6	7	7	6	5,83333
No	Parameter	R1	R2	R3	R4	R5	R6	RATA- RATA
IV		Mini	Bor					
1	Biaya awal	3	8	8	7	6	7	6,5
2	Daya dukung	8	8	8	8	8	8	8
3	Waktu pelaksanaan	3	9	7	8	6	7	6,66667
4	Kemungkinan implementasi	4	8	6	8	7	7	6,66667
5	Tingkat kesulitan pelaksanaan	3	3	5	7	7	7	5,33333

6	Sarana kerja (peralatan)	2	6	3	7	6	8	5,33333
---	--------------------------	---	---	---	---	---	---	---------

Tabel 5.19 Hasil penilaian tingkat kelayakan desain kolom

No	Parameter	R1	R2	R3	R4	R5	R6	RATA- RATA
Ι	Bet	on B	ertula	ng				
1	Biaya awal	5	8	7	8	7	8	7,1667
2	Daya dukung	8	8	7	- 8	7	7	7,5
3	Waktu pelaksanaan	7	5	6	. 8	8	8	7
4	Kemungkinan implementasi	9	8	8	8	9	8	8,3333
5	Tingkat kesulitan pelaksanaan	8	5	8	8	8	8	7,5
6	Sarana kerja (peralatan)	6	2	6	8	7	7	6
No	Parameter	R1	R2	R 3	R4	R5	R6	RATA- RATA
II		Ва	ija			- B.		
1	Biaya awal	8	9	7	8	7	7	7,6667
2	Daya dukung	6	8	8	8	7	7	7,3333
3	Waktu pelaksanaan	8	8	8	7	7	8	7,6667
4	Kemungkinan implementasi	4	6	7	7	8	7	6,5
5	Tingkat kesulitan pelaksanaan	5	6	6	8	6	6	6,1667
6	Sarana kerja (peralatan)	4	4	5	7	6	6	5,3333
No	Parameter	R1	R2	R3	R4	R5	R6	RATA- RATA
III		Kom	posit				2	
1	Biaya awal	3	9	6	8	6	7	6,5
2	Daya dukung	9	8	7	8	7	8	7,8333
3	Waktu pelaksanaan	4	9	6	7	7	7	6,6667
4	Kemungkinan implementasi	6	6	5	7	7	7	6,3333
	Tingkat kesulitan		S					_
5	pelaksanaan	3	6	6	8	7	7	6,1667
6	Sarana kerja (peralatan)	2	5	6	7	6	7	5,5

Tabel 5.20 Hasil penilaian tingkat kelayakan desain balok

No	Parameter	R1	R2	R3	R4	R5	R6	RATA- RATA
I	Ber	ton B	ertula	ıng				
1	Biaya awal	5	8	7	8	8	7	7,1667

2	Daya dukung	8	8	8	8	7	8	7,8333
3	Waktu pelaksanaan	7	5	7	8	8	8	7,1667
4	Kemungkinan implementasi	9	8	8	8	8	8	8,1667
	Tingkat kesulitan	0		7	0	0	7	7.1667
5	pelaksanaan	8	5	7	8	8	7	7,1667
6	Sarana kerja (peralatan)	6	2	6	8	7	7	6
No	Parameter	R1	R2	R3	R4	R5		RATA- RATA
II	/ 13L	Ba	ja					300
1	Biaya awal	8	9	7	- 8	7	7	7,6667
2	Daya dukung	6	8	7	8	7	7	7,1667
3	Waktu pelaksanaan	8	8	7	7	7	-8	7,5
4	Kemungkinan implementasi	4	6	7	7	7	7	6,3333
	Tingkat kesulitan							
5	pelaksanaan	5	6	8	8	6	- 8	6,8333
6	Sarana kerja (peralatan)	4	4	5	7	6	7	5,5
No	Parameter	R1	R2	R3	R4	R5		RATA-
110	1 arameter	Kı	K2	KS	114	KJ	3	RATA
III		Kom	posit			- 5		
1	Biaya awal	3	9	7	8	6	7	6,6667
2	Daya dukung	9	8	8	8	8	8	8,1667
3	Waktu pelaksanaan	4	9	6	7	6	7	6,5
4	Kemungkinan implementasi	6	6	7	7	6	7	6,5
	Tingkat kesulitan							
5	pelaksanaan	3	6	6	8	6	7	6
6	Sarana kerja (peralatan)	2	5	5	7	6	6	5,1667

Tabel 5.21 Hasil penilaian tingkat kelayakan desain plat

No	Parameter	R1	R2	R3	R4	R5	R6	RATA- RATA
Ι	Plat	Konv	vensio	onal			- 1700	
1	Biaya awal	5	8	6	8	8	7	7
2	Daya dukung	7	8	7	8	7	7	7,3333
3	Waktu pelaksanaan	5	5	6	8	7	8	6,5
4	Kemungkinan implementasi	9	8	7	8	8	8	8
5	Tingkat kesulitan pelaksanaan	7	5	6	8	8	7	6,8333
6	Sarana kerja (peralatan)	6	2	6	8	8	8	6,3333
No	Parameter	R1	R2	R3	R4	R5	R6	RATA- RATA

II		Pred	cast					
1	Biaya awal	4	9	6	8	8	7	7
2	Daya dukung	7	8	8	8	8	7	7,6667
3	Waktu pelaksanaan	8	8	9	7	8	7	7,8333
4	Kemungkinan implementasi	9	6	7	7	7	7	7,1667
_	Tingkat kesulitan	0		_	0		1	5 2222
5	pelaksanaan	8	6	7	8	8	7	7,3333
6	Sarana kerja (peralatan)	5	4	4	7	6	7	5,5
No	Parameter	R1	R2	R3	R4	R5	R6	RATA- RATA
III		bon	dek				- 4	
1	Biaya awal	4	8	6	8	8	8	7
2	Daya dukung	7	8	7	8	8	8	7,6667
3	Waktu pelaksanaan	7	8	7	8	8	8	7,6667
4	Kemungkinan implementasi	8	6	6	7	8	8	7,1667
	Tingkat kesulitan		100					
5	pelaksanaan	6	6	7	8	7	7	6,8333
6	Sarana kerja (peralatan)	7	4	5	7	7	8	6,3333
No	Parameter	R1	R2	R3	R4	R5	R6	RATA- RATA
IV		Ва	ija					
1	Biaya awal	7	9	7	8	7	6	7,3333
2	Daya dukung	6	9	7	8	7	6	7,1667
3	Waktu pelaksanaan	8	9	6	8	7	7	7,5
4	Kemungkinan implementasi	3	4	6	7	7	7	5,6667
	Tingkat kesulitan							
5	pelaksanaan	5	7	6	8	6	7	6,5
6	Sarana kerja (peralatan)	3	8	7	7	6	7	6,3333

Tabel 5.22 Hasil penilaian tingkat kelayakan desain tangga

No	Parameter	R1	R2	R3	R4	R5	R6	RATA- RATA
I	Plat tangga d	engar	n anal	c tang	ga ba	ata		
1	Biaya awal	9	6	8	8	8	8	7,8333
2	Daya dukung	6	6	7	8	7	7	6,8333
3	Waktu pelaksanaan	7	4	6	8	8	8	6,8333
4	Kemungkinan implementasi	9	5	8	8	8	8	7,6667
5	Tingkat kesulitan pelaksanaan	7	3	8	8	8	8	7
6	Sarana kerja (peralatan)	6	6	7	8	8	8	7,1667

No	Parameter	R1	R2	R3	R4	R5		RATA- RATA
II	Plat dan	anak	tangg	ga bet	ton			
1	Biaya awal	5	8	7	8	8	7	7,1667
2	Daya dukung	9	8	8	8	8	8	8,1667
3	Waktu pelaksanaan	6	6	7	7	7	7	6,6667
4	Kemungkinan implementasi	9	8	8	7	-8	8	8
5	Tingkat kesulitan pelaksanaan	7	6	6	8	7	8	7
6	Sarana kerja (peralatan)	5	4	6	. 7	7	8	6,1667
No	Parameter	R1	R2	R3	R4	R5	la la	RATA- RATA
	balok dengan anak tangga beton							
III	balok deng	an an	ak tai	ngga	beton			
111	balok deng Biaya awal	an an 4	ak tai	ngga 7	beton 8	7	7	6,8333
							7 8	6,8333 8,1667
1	Biaya awal	4	8	7	8	7		
1 2	Biaya awal Daya dukung	9	8	7 8	8	7 8	8	8,1667
1 2 3	Biaya awal Daya dukung Waktu pelaksanaan	4 9 5	8 8 6	7 8 6	8 8 7	7 8 7	8	8,1667 6,3333

Rekap hasil analisis tingkat kelayakan pada penelitian ini dapat dilihat pada tabel dibawah ini.

Penilaian masing-masing ide kreatif untuk kriteria atau faktor desain struktur pendukung bangunan. Skala 1-10

- A = Biaya awal
- B = Daya dukung
- C = Waktu pelaksanaan
- D = Kemungkinan implementasi
- E = Tingkat kesulitan pelaksanaan
- F = Sarana kerja (peralatan)

Tabel 5.23 Rekapitulasi tingkat kelayakan desain pondasi

No	Tipe Pondasi	A	В	C	D	Е	F	Total
1	Pasangan batu	6,8	6,2	5,8	7,2	6,3	6	38,3
2	Footplat	6,7	8,2	8	8,2	6,3	7,3	44,7
3	Sumuran	6,3	8,2	6,8	6,8	6,8	5,8	40,8
4	Mini bor	6,5	8	6,7	6,7	5,3	5,3	38,5

Tabel 5.24 Rekapitulasi tingkat kelayakan desain kolom

No	Tipe Kolom	A	В	С	D	Е	F	Total
1	Beton Bertulang	7,2	7,5	7	8,3	7,5	6	43,5
2	Baja	7,7	7,3	7,7	6,5	6,2	5,3	40,7
3	Komposit	6,5	7,8	6,7	6,3	6,2	5,5	39

Tabel 5.25 Rekapitulasi tingkat kelayakan desain balok

No	Tipe Balok	A	В	С	D	Е	F	Total
1	Beton Bertulang	7,2	7,8	7,2	8,2	7,2	6	43,5
2	Baja	7,7	7,2	7,5	6,3	6,8	5,5	41
3	Komposit	6,7	8,2	6,5	6,5	6	5,2	39

Tabel 5.26 Rekapitulasi tingkat kelayakan desain plat

No	Tipe Plat	A	В	С	D	Е	F	Total
1	Plat konvensional	7	7,3	6,5	8	6,8	6,3	42
2	Precast	7	7,7	7,8	7,2	7,3	5,5	42,5
3	Bondek	7	7,7	7,7	7,2	6,8	6,3	42,7
4	Baja	7,3	7,2	7,5	5,7	6,5	6,3	40,5

Tabel 5.27 Rekapitulasi tingkat kelayakan desain

Lun	abel 2127 Rekapitalasi tiligkat kelayakali desalli							
No	Tipe Tangga	A	В	С	D	Е	F	Total
1	Plat tangga dengan anak tangga bata	7,8	6,8	6,8	7,7	7	7,2	43,3
2	Plat dan anak tangga beton	7,2	8,2	6,7	8	7	6,2	43,2
3	balok dengan anak tangga beton	6,8	8,2	6,3	7,2	7,2	5,8	41,5

Hasil analisis tingkat kelayakan dapat disimpulkan bahwa jenis desain struktur pondasi, kolom, balok, plat, dan tangga yang memilik rangking tertinggi. Hasil analisis tingkat kelayakan ini sama dengan hasil dari analisis keuntungan dan kerugian. Tahap selanjutnya dilakuakan analisis matrik.

5.3.3 Analisis matrik

Kriteria parameter penilaian yang dipakai pada tahap analisis matrik ini sama seperti pada tahap sebelumnya. Dari masing-masing kriteria tersebut

dilakukan penilaian tingkat urutan pentingnya secara subjektif dari praktisi yang telah berkompeten dibidangnya.

Dengan enam (6) parameter kriteria diberikan penilaian berdasarkan urutan pentingnya kriteria tersebut, maka skala penilaian diberikan satu (1) sampai enam (6). Urutan kriteria yang paling penting menpatkan penilaian 1, begitu seterusnya dengan kriteria yang dianggap tidak terlalu penting dengan nilai enam (6).

Berdasarkan hasil penilaian dari masing-masing parameter kriteria desain pondasi, kolom, balok, plat, dan tangga, didapat hasil yang dapat dilihat pada tabel 5.28 dibawah ini.

Tabel 5.28 Rekapitulasi penilaian parameter berdasarkan urutan pentingnya

No	Parameter	R1	R2	R3	R4	R5	R 6
1	Biaya awal	3	3	1.	3	2	1
2	Daya dukung	2	1	2	1	1	3
3	Waktu pelaksanaan	5	5	5	4	4	2
4	Kemungkinan implementasi	1	2	3	6	3	4
	Tingkat kesulitan						
5	pelaksanaan	4	4	4	2	5	6
6	Sarana kerja (peralatan)	6	6	6	5	6	5

Hasil penilaian berdasarkan urutan pentingnya kriteria dihitung dengan peniliaan sebagai berikut:

Penilaian dengan urutan atau rangking 1 mempunyai nilai 6, ranking 2 mempunyai nilai 5, ranking 3 mempunyai nilai 4, dan seterusnya.

Rekapitulasu penilaian parameter berdasarkan urutan pentingnya kriteria dapat dilihat pada tabel 5.29 berikut ini.

Tabel 5.29 Rekapitulasi penilaian parameter kriteria

	1 1							
No	Parameter	R1	R2	R3	R4	R5	R6	Total
1	Biaya awal	4	4	6	4	5	6	29
2	Daya dukung	5	6	5	6	6	4	32
3	Waktu pelaksanaan	2	2	2	3	3	5	17

4	Kemungkinan implementasi	6	5	4	1	4	3	23
	Tingkat kesulitan							
5	pelaksanaan	3	3	3	5	2	1	17
6	Sarana kerja (peralatan)	1	1	1	2	1	2	8

Selanjutnya parameter-parameter ini sebagai kriteria yang akan dianalisa menggunakan analisa matrik, dengan pembobotan dari masing-masing kriteria yang ditentukan dan diuji melalui matrik berpasangan.

Data yang telah ditetapkan berdasarkan kepentingannya kemudian diuji kesahihannya dengan menggunakan uji konsistensi serta menentukan bobot dari masing-masing parameter, variabel parameter tersebut sebagai berikut:

 $A_1 = Biaya$

 A_2 = Daya dukung

 $A_3 = Waktu pelaksanaan$

A₄ = Kemungkinan implementasi

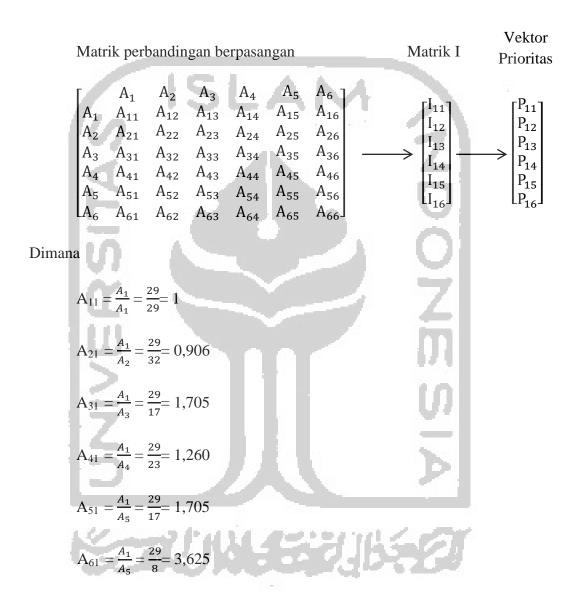
 $A_5 = Tingkatan kesulitan pelaksanaan$

 $A_6 = Sarana kerja (peralatan)$

Parameter-parameter ini diuji dengan uji konsistensi disusun secara matrik perbandingan berpasangan sebagai berikut:

Dimana nilai dari masing-masing parameter sebagai berikut

$$A_1 = 29$$


$$A_2 = 32$$

$$A_3 = 17$$

$$A_4 = 23$$

$$A_5 = 17$$

$$A_6 = 8$$

Nilai matrik I didapat dari masing-masing baris pada matrik perbandingan berpasangan dikaliakan secara komulatif, kemudian diakar dengan derajat sesuai jumlah elemen pada baris matrik. Matrik vektor prioritas didapat dari vektor matrik I dibagi dengan jumlah total matrik I.

Matrik I:
$$I_{11} = n = \sqrt[6]{(A_{11}xA_{21}xA_{31}xA_{41}xA_{51}xA_{61})}$$

$$= \sqrt[6]{(1x0,906x1,705x1,260x1,705x3,625)}$$
$$= 1,514$$

Vektor prioritas :
$$P_{11} = \frac{I_{11}}{\sum (I_{11} + I_{21} + I_{31} + I_{41} + I_{51} + I_{61})}$$

$$= \frac{1,514}{1+0,906+1,705+1,260+1,705+3,625}$$
$$= 0,230$$

Dengan cara yang sama, maka didapat matrik perbandingan berpasangan sebgai berikut:

	Matrik perban	dingan b	erpasangan		Matrik I	Vektor
	110			A		Prioritas
$\begin{bmatrix} A_1 \\ A_2 \\ A_3 \\ A_4 \\ A_5 \end{bmatrix}$	A ₁ A ₂ 1,000 0,906 1,034 1,000 0,586 0,531 0,793 0,718 0,586 0,531	A ₃ 1,705 1,882 1,000 1,352 1,000	A ₄ A ₅ 1,260 1,705 1,391 1,882 0,739 1,000 1,000 1,352 0,739 1,000	A ₆ 3,625 4,000 2,125 2,875 2,125	$ \begin{array}{c} \begin{bmatrix} 1,556 \\ 1,670 \\ 0,887 \\ 1,200 \\ 0,887 \\ 0,417 \end{bmatrix} $	$\Rightarrow \begin{bmatrix} 0,230 \\ 0,253 \\ 0,134 \\ 0,182 \\ 0,134 \\ 0,063 \end{bmatrix}$
LA_6	0,275 0,250	0,470	0,347 0,470	1,000	10,4173	10,0031
					6,579	

Nilai matrik I didapat dari masing-masing baris pada matrik perbandingan berpasangan diklaikan secara komulatif, kemudian diakar dengan derajat sesuai jumlah elemen pada baris matrik. Matrik vektor prioritas didapat dari vektor matrik I dibagi dengan jumlah total matrik I.

Untuk mendapatkan matrik II adalah hasil perkalian matrik perbandingan berpasangan dengan vektor prioritas.

Matrik perbandingan berpasangan Vektor Matrik II **Prioritas** A_1 A_2 A_5 A_6 A_3 A_4 г0,230--1,380 1,000 0,906 1,705 3,625 1,260 1,705 0,253 1,523 1,034 1,000 1,882 1,391 1,882 4,000 0,134 0,809 0,586 0,531 1,000 0,739 1,000 2,125 0,182 1,095 0,793 1,352 0,718 1,000 1,352 2,875 0,134 0,809 0,586 0,531 1,000 0,739 1,000 2,125 L0,063 L0,380J 0,470 0,275 0,250 0,347 0,470 1,000

Matrik nilai prioritas adalah hasil bagi matriks II dengan matrik vektor prioritas.

Dengan jumlah parameter (n) = 6, sesuai tabel 3.2. Terdapat nilai RI = 1,25. Maka dihitung nilai Rasio Konsistensi/ *Consistency ratio* (CR) sebagai berikut:

$$CR = \frac{CI}{RI}$$

$$= \frac{0,0003926}{1,25} = 0,000314 < 0,1 \text{ data konsisten}$$

Dari hasil matrik vektor prioritas maka masing-masing bobot dari kriteria penilaian terhadap struktur pondasi, kolom, balok, plat, dan tangga dapat ditetapkan sesuai urutan sebagai berikut:

```
    a. Biaya = 0,23015873 = 23,015%
    b. Daya dukung = 0,253968254`= 25,396%
    c. Waktu pelaksanaan = 0,134920635 = 13,492%
    d. Kemungkinan implementasi = 0,182539683 = 18,253%
    e. Tingkat kesulitan = 0,134920635 = 13,492%
    f. Sarana kerja (peralatan) = 0,063492063 = 6,349%
```

Kriteria dalam tahap ini diberikan berdasarkan hasil proses hirarki analitik. Skala penilaian terhadap kriteria pada masing-masing alternatif diberikan nilai dengan skala 1-4 dengan tingkatan menurut Zimmerman (1982), yang mempunyai arti:

```
Nilai 4 = Baik sekali (excellent)

Nilai 3 = Baik (good)

Nilai 2 = Wajar (fair)

Nilai 1 = Jelek (poor)
```

Selanjutnya dilakukan analisis matrik dengan jenis struktur pondasi, kolom, balok, plat, dan tangga dari analisis untung rugi dan analisis tingkat kelayakan dengan kriteria yang ditinjau seperti diatas. Penilaian dilakukan dengan memberi nilai skala 1-4 secara relatif pada masing-masing kriteria yang ditinjau dengan struktur awal sebagai pembanding terhadap alternatif-alternatif desain. Angka penilaian tersebut kemudian digandakan dengan bobot dari hasil matrik vektor prioritas pada masing-masing kriteria yang ada (%) yang kemudian dijumlahkan berdasarkan jenis alternatif struktur.

Hasil penilaian secara relatif terhadap kriteria-kriteria yang ditinjau dapat dilihat pada tabel 5.30 berikut ini.

Tabel 5.30 Penilaian terhadap kriteria

Penilaian secara relatif terhadap kriteria-kriteria yang ditinjau, dengan kriteria sebagai berikut.

A = Biaya

D = Kemungkinan implementasi

B = Daya dukung

E = Tingkat kesulitan

C = Waktu pelaksanaan

F = Sarana kerja (peralatan)

Dengan penilaian sebagai berikut.

Nilai 4 = Baik sekali (excellent)

Nilai 2 = Wajar (fair)

Nilai 3 = Baik (good)

Nilai 1 = Jelek (poor)

NO	KRITERIA BOBOT	A	В	С	D	Е	F
1	Pasangan batu	2	1	3	2	4	4
2	Footplat (asli)	3	4	4	4	4	4
3	Sumuran	3	3	4	4	3	3
4	Mini bor	2	4	4	3	3	3

Pada alternatif pondasi batu mempunyai skala penilaian secara relatif pada masing-masing parameter/kriteria desain pondasi sebagai berikut.

b. Daya dukung = 1

c. Waktu pelaksanaan = 3

d. Kemungkinan implementasi = 2

e. Tingkat kesulitan = 4

f. Sarana kerja (peralatan) = 4

Angka penilaian tersebut kemudian digandakan dengan nilai dari kriteria yang ada (%) yang kemudian dijumlahkan.

Kriteria/ parameter A = $2 \times 23,015\% = 46,031\%$

Kriteria/ parameter B = $1 \times 25,396\% = 25,396\%$

Kriteria/ parameter $C = 3 \times 13,492\% = 40,476 \%$

Kriteria/ parameter D = $2 \times 18,253\% = 36,507\%$

Kriteria/ parameter $E = 4 \times 13,492\% = 53,968 \%$

Kriteria/ parameter $F = 4 \times 6,349\% = 25,396\%$

Total = 227,777 %

Dengan metoda yang sama, untuk jenis alternatif pondasi *footplat*, sumuran, dan mini bor kemudian dilanjutkan untuk struktur kolom, balok, plat, dan tangga. Secara rinci analisis matrik dapat dilihat pada tabel tabel dibawah ini.

Tabel 5.31 Tabel analisis matrik struktur pondasi

	ANALISIS MATRIK	
Sistem: Struktur bawah		\neg

Sistem : Straktar bawar

Item: 4

Fungsi: menyalurkan beban ke tanah

Penilaian secara relatif terhadap kriteria-kriteria yang ditinjau, dengan kriteria sebagai berikut.

A = Biaya D = Kemungkinan implementasi

B = Daya dukung E = Tingkat kesulitan

C = Waktu pelaksanaan F = Sarana kerja (peralatan)

NO	KRITERIA BOBOT	A	В	С	D	Е	F	Tot al (%)	Rank
		2	1	3	2	4	4	227	4
1	Pasangan batu	47,61	25,39	40,4	36,50	53,3	25,3	,77	
		3	4	4	4	4	4	376	1
2	Footplat (asli)	69,04	101,58	53,9	73,01	53,3	25,3	,98	

		3	3	4	4	3	3	331	2
3	Sumuran	69,04	76,19	53,9	73,01	40,4	19,0	,74	
		2	4	4	3	3	3	315	3
4	Mini bor	46,03	101,58	53,9	54,76	40,4	19,0	,87	

Tabel 5.32 Tabel analisis matrik struktur kolom

ANALISIS MATRIK

Sistem: Struktur atas

Item: 3

Fungsi: menyalurkan dan menahan beban

Penilaian secara relatif terhadap kriteria-kriteria yang ditinjau, dengan kriteria sebagai berikut.

A = Biaya

D = Kemungkinan implementasi

B = Daya dukung

E = Tingkat kesulitan

C = Waktu pelaksanaan

F = Sarana kerja (peralatan)

NO	KRITERIA BOBOT	A	В	C	D	Е	F	Tot al (%)	Rank
	Beton	3	3	4	4	4	3	345	1
1	betulang (asli)	69,04	76,19	53,9	73,01	53,3	19,0	,23	
		2	3	4	3	4	3	303	2
2	Baja	46,03	76,19	53,9	54,76	53,3	19,0	,96	
	1000	2	3	4	3	2	3	263	3
3	Komposit	46,03	76,19	53,9	54,76	26,9	19,0	,49	

Tabel 5.33 Tabel analisis matrik struktur balok

ANALISIS MATRIK

Sistem: Struktur atas

Item: 3

Fungsi: menyalurkan dan menahan beban

Penilaian secara relatif terhadap kriteria-kriteria yang ditinjau, dengan kriteria sebagai berikut.

A = Biaya

D = Kemungkinan implementasi

B = Daya dukung

E = Tingkat kesulitan

C = Waktu pelaksanaan

F = Sarana kerja (peralatan)

NO	KRITERIA BOBOT	A	В	С	D	E	F	Tot al (%)	Rank
	Beton	3	3	4	4	4	4	351	1
1	betulang (asli)	69,04	76,19	53,9	73,01	53,3	25,3	,58	
		3	3	3	3	4	4	319	2
2	Baja	69,04	76,19	40,4	54,76	53,3	25,3	,84	
		2	3	3	3	3	3	276	3
3	Komposit	46,03	76,19	40,4	54,76	40,4	19,0	,98	

Tabel 5.34 Tabel analisis matrik struktur plat

ANALISIS MATRIK

Sistem: Struktur atas

Item: 4

Fungsi: menyalurkan dan menahan beban

Penilaian secara relatif terhadap kriteria-kriteria yang ditinjau, dengan kriteria sebagai berikut.

A = Biaya

D = Kemungkinan implementasi

B = Daya dukung

E = Tingkat kesulitan

C = Waktu pelaksanaan

F = Sarana kerja (peralatan)

	KRITERIA							Tot	
NO	DODOT	Α	В	C	D	E	F	al	Rank
	ВОВОТ							(%)	
	Plat	10000				11/	1.		2
	konvensional	2	3	3	4	4	_ 4	31	
1	(asli)	47,61	76,19	40,4	73,01	53,3	25,3	5,0	
	. S	3	3	3	3	3	3	300	3
2	precast	69,04	76,19	40,4	54,76	40,4	19,0		
		2	3	4	4	3	4	315	1
3	Bondek	47,61	76,19	53,9	73,01	40,4	25,3	,07	
	Par - 47	2		3	2	3	3	233	4
4	Baja	47,61	50,79	40,4	36,50	40,4	19,0	,3	

Tabel 5.35 Tabel analisis matrik struktur tangga

ANALISIS MATRIK

Sistem : Struktur atas

Item : 3

Fungsi: menyalurkan dan menahan beban

Penilaian secara relatif terhadap kriteria-kriteria yang ditinjau, dengan kriteria sebagai berikut.

A = Biaya D = Kemungkinan implementasi

B = Daya dukung E = Tingkat kesulitan

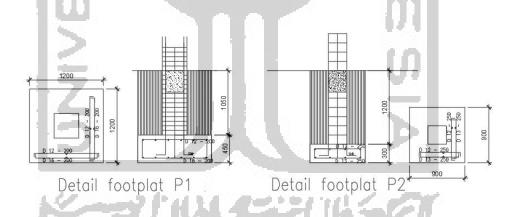
C = Waktu pelaksanaan F = Sarana kerja (peralatan)

NO	KRITERIA BOBOT	A	В	C	D	Е	F	Tot al (%)	Rank
	Plat tangga	Back		100	1		A I		1
	dengan anak	3	3	4	4	3	3	33	
1	tangga bata	69,04	76,19	53,9	73,01	40,4	19,0	1,7	
	Plat dan anak							318	2
	tangga beton	3	3	3	4	3	3	,2	
2	(asli)	69,04	76,19	40,4	73,01	40,4	19,0		
	balok dengan		7					318	2
	anak tangga	3	3	3	4	3	3	,2	
3	beton	69,04	76,19	40,4	73,01	40,4	19,0		

Hasil analisis matrik yang telah dilakukan terlihat bahwa desain struktur dengan penilaian tertinggi adalah pondasi footplat, kolom beton bertulang, balok beton bertulang, plat bondek dan konvensional, tangga dengan plat beton dan anak tangga bata. Analisis matrik diatas dengan koefisien rasio yang konsisten dan analisis keuntungan dan kerugian serta analisis tingkat kelayakan yaitu jenis struktur yang sama berada pada alternatifdengan nilai tertinggi inilah yang selanjutnya menjadi alternatif yang akan dilanjutkan pada tahap berikutnya.

5.4 Tahap Pengembangan (Development Phase)

Tahap pengembangan ini, merupakan tahap dimana ide-ide kreatif yang terpilih pada tahapan sebelumnya dengan pertimbangan keuntungan dan kerugiannya, tingkat kelayakan serta pembobotan terhadap parameter kriteria yang mempengaruhi penilaian, selanjutnya dikembangkan dengan


memperhitungkan secara teknis dan memperhitungkan potensial biaya pada alternatif terpilih. Perhitungan teknis struktur terpilih harus mempunyai kriteria perencanaan yang sama atau lebih baik dengan mengacu pada perencanaan desain struktur awal.

Perhitungan potensi penghematan, untuk menghitung biaya desain alternatif terpilih dipegunakan harga satuan sesuai kontrak (awal) tanpa memperhitungkan kenaikan harga pada saat kontrak terjadi.

5.4.1 Desain Alternatif Struktur Pondasi, Kolom, dan balok

Dari hasil penilaian analisis untung rugi, analisis tingkat kelayakan dan analisis matrik didapat desain struktur pondasi, kolom, dan balok sama dengan desain yang telah ada.

Untuk pondasi menggunakan pondasi *footplat* dengan dua tipe yaitu P1 dan P2. Desain pondasi footplat dapat dilihat pada gamabar dibawah ini

Gambar 5.3 Pondasi footplat P1 dan P2 (sumber: tim perencana proyek pembangunan gedung pemeriksa inspektor Daerah Sleman)

Desain kolom terdiri dari 2 tipe kolom yaitu K1 dan K2. Desain kolom beton bertulang dapat dilihat pada gambar berikut.

	K1 - 4	0 X 40		
TIPE	TUMPUAN	LAPANGAN		
POTONGAN				
TUL UTAMA	10 D 16	10 D 16		
SENGKANG	2P10 - 75	P10 - 150		

	K2 - 30) X 30
TIPE	TUMPUAN	LAPANGAN
POTONGAN		
TUL. UTAMA	8 D 16	8 D 16
SENGKANG	2P10 - 100	P10 - 150

Gambar 5.4 Kolom K1 dan K2 (sumber: tim perencana proyek pembangunan gedung pemeriksa inspektor Daerah Sleman)

Desain balok menggunakan beton bertulang terdiri dari 5 tipe yaitu B1, B2, B3, B4, B latiu. Untuk disain balok dapat dilihat gambar dibawah ini.

TIPE	B1 - 3	00 X 350	TIPE	B2 - 3	00 X 450	TIPE	B3 - 2	200 X 250
POSISI	TUMPUAN	LAPANGAN	POSISI	TUMPUAN	LAPANGAN	POSISI	TUMPUAN	LAPANGA
POTONGAN			POTONGAN			POTONGAN		
TUL ATAS	3 D 16	2 D 16	TUL ATAS	4 D 16	3 D 16	TUL ATAS	3 D 16	2 D 16
TUL BAWAH	2 D 16	3 D 16	TUL BAWAH	3 D 16	4 D 16	TUL BAWAH	2 D 16	2 D 16
TUL SUSUT	2 D 16	2 D 16	TUL SUSUT	2 D 16	2 D 16	TUL SUSUT	2 D 16	2 D 16
SENGKANG	P10 - 100	P10 - 150	SENGKANG	P10 - 100	P10 - 150	SENGKANG	P10 - 100	P10 - 1
TIPE	B4 - 200	X 300	TIPE		10 X 150			
POSISI	TUMPUAN	LAPANGAN	POSISI	TUMPUAN	LAPANGAN			
POTONGAN			POTONGAN					
TUL ATAS	2 D 12	2 D 12	TUL ATAS	2 P 10	2 P 10			
TUL BAWAH	2 D 12	2 D 12	TUL BAWAH	2 P 10	2 P 10	1		
TUL SUSUT	2 D 12	2 D 12	TUL SUSUT	L-7 26 7 L				
SENGKANG	P10 - 100	P10 - 150	SENGKANG	P8 - 150	P8 - 150			

Gambar 5.5 balok B1, B2, B3, B4, dan B Latiu (sumber: tim perencana proyek pembangunan gedung pemeriksa inspektor Daerah Sleman)

5.4.2 Desain Alternatif Struktur Plat Bondek

1. Data perhitungan

Untuk melakukan desain alternatif pada plat bondek diperlukan data untuk menghitung dan menganalisis. Data yang diperlukan sebagai berikut.

a. Bondek

Bondek yang digunakan adalah Union Floor Deck W-1000 yang dipasarkan oleh PT. Union Metal, berikut adalah spesifikasi bahannya:

1) Bahan dasar : Baja High - Tensile

2) Tegangan leleh minimum : 560 MPa

3) Tebal lapis lindung : 220-275gr/m²

4) Tebal standar : 0,65mm; 0,7mm; 1mm; 1,4mm

5) Berat bahan : 7,03kg/m² untuk ketebalan 0,7mm

6) Standar bahan : SNI 07-2053-2006

7) Tinggi gelombang : 50 mm8) Lebar efektif : 995 mm

9) Panajang : maksimum 12.000 mm

10) Harga : Rp 115.000 per m²

b. Wiremesh

Wiremesh yang digunakan adalah Union Wiremesh yang dipasarkan oleh PT. Union Metal, berikut spesifikasi bahannya.

1) Diameter tulangan : 4mm sampai 16 mm

2) Tipe Wiremesh : Union Wiremesh M8

3) Standar bahan : SNI 07-0663-1995

4) Tegangan leleh : 5000 kg/cm², mutu U-50

5) Ukuran : 5,4 m x 2,1 m

6) Harga : 595.000/ lembar

c. Denah plat lantai proyek pembangunan gedung pemeriksa inspektor Daerah Sleman

d. RAB proyek pembangunan gedung pemeriksa inspektor Daerah Sleman

e. Peraturan Menteri Pekerjaan Umum dan Perumahan Rakyat Nomer 28/PRT/M/2016

2. Pembebanan plat

Beban yang diterima oleh plat berupa beban mati dan hidup. Beban mati (Qd) dapat dilihat pada tabel 5.35

Tabel 5.36 beban mati yang diterima

100		Berat	Taylor .	
Komponen	h	Volume	Hasil	Satuan
a. Plat	0,12	2,4	0,288	T/m2
b. Pasir	0,04	1,8	0,072	T/m2
c. Spesi	0,02	2	0,04	T/m2
d. keramik		0,015	0,015	T/m2
e. Plafond		0,02	0,02	T/m2
Qd			0,435	T/m2

Beban hidup untuk bangunan perkantoran menurut SKBI-1.3.53.1987 (Pedoman perencanaan pembebanan untuk rumah dan gedung) sebesar 0,25 t/m² Beban ultimate yang diterima plat sebesar:

Qu =1,2 Qd+1,6Ql
= 0,922
$$t/m^2$$

3. Perhitungan plat lantai bondek

Bondek digunakan sebagai tulangan positif satu arah seperti yang tercantum pada brosur *Union floor deck W-1000*. Untuk analisa perhitungan digunakan rumus dari *steel deck institute* 2011. Data yang diterima dapat dilihat pada tabel dibawah ini

Tabel 5.37 Data plat eksisting

Data plat existing								
fc	22,5	MPa						
fy	300	MPa						
ly	6150	mm						
lx	3000	mm						
ly/lx	2,05	>2 (satu arah)						
qu	0,922	t/m2						
	9,04482	kN/m2						

h plat	120	mm
tulangan	13	mm
selimut beton	20	mm
d	93,5	mm
Mu+	21,38110653	kNm
ru	2,445721242	Mpa

Sumber: tim perencana proyek pembangunan gedung pemeriksa inspektor Daerah Sleman.

Perhitungan plat bondek dengan rumus dari *steel deck institute* 2011 dapat dilihat dibawah ini.

d =
$$h - \frac{1}{2}$$
 tinggi gelombang

$$= 120 - \frac{1}{2} \times 50$$

$$h_c = h - tinggi gelombang$$

$$= 120 - 50$$

Ycc =
$$d\{\sqrt{2\rho n + (\rho n)^2 - \rho n}\}$$
 < h_c

 $\frac{265666}{0,043x(2400)^{1,5}x\sqrt{22,5}}$

Dimana:

$$n = \frac{E_S}{E_C}$$

$$=\frac{E_S}{0,043x(Wc)^{1,5}x\sqrt{Fc}}$$
203000

=0.0025

$$\rho = \frac{As}{b \ x \ d} = \frac{236,3125}{995 \ x \ 95}$$

Maka didapat

Ycc =
$$95{\sqrt{2x \ 0.0025x \ 8.464 + (0.0025 \ x \ 8.464)^2 - 0.0025 \ x \ 8.464}} < 70$$

$$Ycs = d-Ycc$$

$$= 95-13,964$$

$$= 81,0354 \text{ mm}$$
Ic
$$= \frac{b}{3 \times h} \times \text{Ycc}^3 + \text{As } \times \text{Ycs}^2 + \text{Isf}$$

$$= \frac{95}{3 \times 120} \times 13,964^3 + 236,3125 \times 81,0354^2 + 422063,6$$

$$= 12320833,68 \text{ mm}^4$$

Flexural strength

My =
$$\frac{Fy \times Ic}{h - Ycc}$$

= $\frac{560 \times 12320833,68}{120 - 13,964}$
= $65069462,77 \text{ Nmm}$
= $65,0694 \text{ KNm}$
Mru = $\emptyset \times \text{My}$

Mru =
$$\emptyset$$
 x My
= 0,85 x 65,0694
= 55,30904335 KNm

4. Perhitungan wiremesh

Data awal:

$$fy = 3000 \text{ kg/cm}^2$$

$$fyw = 5000 \text{ kg/cm}^2$$

a. Tulangan konvensional

As
$$= \frac{\pi}{4} \times D^{2} \times (\frac{1000}{s})$$
$$= \frac{\pi}{4} \times 13^{2} \times (\frac{1000}{120})$$
$$= 1106,102 \text{ mm}^{2}$$

b. Tulangan wiremesh

As perlu = As
$$x \frac{fy}{fyw}$$

= 1106,102 $x \frac{3000}{5000}$
= 663,6614481 mm²
digunakan tulangan wiremesh M8-75

Asw
$$= \frac{\pi}{4} \times D^{2} \times (\frac{1000}{s})$$

$$= \frac{\pi}{4} \times 8^{2} \times (\frac{1000}{75})$$

$$= 670,2064328 \text{ mm}^{2} > \text{As perlu.... oke}$$

c. Jumlah wiremesh

Didapat data awal

Luas total plat lantai $= 88449240,67 \text{ mm}^2$

Luas wiremesh = 5400x1200

 $= 11340000 \text{ mm}^2$

 $= \frac{\text{Luas total plat lantai}}{\text{Luas wiremesh}}$

 $=\frac{88449240,67}{11340000}$

= 7.79 = 8 lembar

Dari analisis perhitungan kekuatan bondek dan wiremesh mempunyai elemenelemen yang digunakan sebagai acuan aman atau tidak, yaitu:

a. Bondek dikatakan aman apabila flexural strength nya memiliki nilai Mru> Mu+. Dari hasil analisis diketahui nilai Mru lebih besar dari Mu+. Untuk nilai safety factor dicari dengan membandingkan nilai Mru dengan Mu+.

$$= \frac{Mru}{Mu+}$$

$$= \frac{55,30904335}{21,38110653}$$

$$= 2,58$$

 b. Wiremesh dikatakan aman apabila flexural strength nya memiliki nilai Asw>As perlu.

5.4.3 Desain alternatif struktur tangga

Pekerjaan pembetonan pada struktur tangga dengan anak tangga menggunakan cor dapat dilihat pada tabel 5.37

Tabel 5.38 Volume pekerjaan tangga

	T 1 ' 0					Vol	ume pek	erjaan	
No	Lokasi & Macam Pekerjaan	Panjang	Lebar	Tinggi	Luas	Volume	Jml Unit	Total luas	Total Vol
	1 ekerjuur	m'	m'	m'	m2	m3	bh	m2	m3
1	2	3	4	5	6 = 3x4	7 = 3x4x5	8,00	9 = 6x8	10 = 7x8
	Plat Balok Tangga Anak Tangga Bordes	15,60 2,10 0,78 1,13	3,39 0,20 0,30 1,83	0,12 0,25 0,20 0,12	4	6,35 0,11 0,25	1,00 1,00 24,00 1,00		6,35 0,11 1,12 0,25
	Į()					Beton			7,82

Sumber: tim perencana proyek pembangunan gedung pemeriksa inspektor Daerah Sleman.

Alternatif perubahan desain dilakukan dengan mengganti material anak tangga dengan menggunakan bata.

5.4.4 Rencana Anggaran Biaya

Untuk perhitungan volume pekerjaan plat dan tangga dapat dilihat tabel berikut

Tabel 5.39 Perhitungan volume pekerjaan bondek

Panjang (Ly)	Layar (Lx)	Tebal	Jumlah (n)	Volume	Luas
6,15	3,00	0,10	5,00	8,76375	92,25
2,10	1,65	0,10	1,00	0,32918	3,47
				9,09293	95,715

Tabel 5.40 Perhitungan volume *Wiremesh*

Ly	Lx	Area Wiremesh	Jumlah	Volume $(\frac{Ly.Lx}{area\ wiremesh}x\ jumlah)$
6,15	3,00	11,34	5	8,134921
2,10	1,65	11,34	1	0,305556

Tabel 5.41 Perhitungan volume anak tangga

panajng	lebar	tinggi	jumlah	volume	
0,78	0,30	0.20	24,00	1.12	

Analisis harga satuan pada pekerjaan plat bondek dan tangga dapat dilihat pada tabel dibawah ini.

Tabel 5.42 Analisis harga satuan pekerjaan plat dan tangga

Membuat 1 m3	3 beton mutu f'c =	= 22,5 k250	
384 kg	Semen portland	Rp 990,00	Rp 380.160,00
0,692 m3	Pasir pasang	Rp 250.000,00	Rp 173.000,00
1,039 m3	Koral beton	Rp 198.718,18	Rp 206.468,19
10		BAHAN :	Rp 759.628,19
1,650 Oh	Pekerja	Rp 65.000,00	Rp 107.250,00
0,275 Oh	Tukang batu	Rp 70.000,00	Rp 19.250,00
0,028 Oh	Kepala tukang batu	Rp 75.000,00	Rp 2.100,00
0,165 Oh	Mandor	Rp 95.000,00	Rp 15.675,00
		UPAH :	Rp 144.275,00
		JUMLAH	Rp
		(BELUM JASA)	903.903,19
		Jasa 10 %	Rp 90.390,32
		Jumlah	Rp

	994.293,51 Rp 994.200,00				
1,000	kg	Pembesian dengan bes	si polos atau ulir Rp		Rp
1,050	kg	Besi beton	10.130,00		10.636,50
0,015	kg	Kawat beton / bendrat	Rp 10.130,00	10	Rp 151,95
- /	w		BAHAN	:	Rp 10.788,45
0,007	Oh	Pekerja	Rp 65.000,00 Rp	Rp 65.000,00 Rp	Rp 455,00 Rp
0,007	Oh	Tukang besi	70.000,00	70.000,00	490,00
0,001	Oh	Kepala tukang besi	Rp 75.000,00 Rp	Rp	Rp 52,50 Rp
0,000	Oh	Mandor	95.000,00	95.000,00	38,00 Rp
	CNIVE		UPAH JUMLAH (BELUM JASA) Jasa 10 % Jumlah Dibulatkan		1.035,50 Rp 11.823,95 Rp 1.182,40 Rp 13.006,35 Rp 13.000,00
Mema	sang 1 m2	bekisting untuk Plat	D.		D.
0,040	m3	Kayu kelas III	Rp 1.450.000,00		Rp 58.000,00
0,400	kg	Paku 5cm s/d 12cm	Rp 13.000,00		Rp 5.200,00
0,200	Ltr	minyak bekisting	Rp 3.000,00		Rp 600,00
0,015	m3	Kayu kelas II	Rp 6.450.000,00		Rp 96.750,00
0,350	Lbr	Plywood tebal 9 mm	Rp 125.454,55		Rp 43.909,09
6,000	Btg	Dolken kayu galam dia.8-10, t=4m	Rp 23.588,07 BAHAN	:	Rp 141.528,41 Rp

					345.987,5
	Oh	Pekerja	Rp		Rp
),660	Oli	i ekcija	65.000,00		42.900,00
	Oh	Tukang kayu	Rp		Rp
),330	On	Tukung kuyu	70.000,00		23.100,00
	Oh	Kepala Tukang kayu	Rp		Rp
0,033	011	114 para 1 aniang naj a	75.000,00		2.475,00
022	Oh	Mandor	Rp		Rp
0,033		ICIA	95.000,00	93	3.135,00
	Á		UPAH	:	Rp
	ln -		JUMLAH		71.610,00 Rp
		247	(BELUM JASA)		417.597,5
	d		1000		Rp
			Jasa 10 %		41.759,75
			4. 181		Rp
- 1			Jumlah		229.678,6
l l	1		Dibulatkan		Rp
- 9					229.600,0
	m3		_di		
,000		MEMBONGKAR CE			_
		D.I.	Rp	Rp	Rp
2,00		Pekerja	65.000,00	65.000,00	130.000,0
			UPAH	:	Rp 130.000,0
	4		JUMLAH		130.000,0 Rp
1 3			(BELUM JASA)	:	130.000,0
- 1					Rp
			Jasa 10 %	:	13.000,00
			Ilak		Rp
- 13		PT 1 H M A Z	Jumlah	•	143.000,0
100			Dibulatkan	•	Rp
177.2			Dibulatkun	•	143.000,0
		THE PROPERTY	Dibulatkan	:	
		-			
**					
**					

1,000	m^2	PEKERJAAN 1 M² F 1PC : 4PS	PASANGAN BATA MERA	AH TEBAL ½ BATA,
72,000	bh	Bata Merah 5 x 11 x 22 cm	Rp 10.000,00	Rp 720.000,00
11,500	Kg	Semen Portland	Rp 990,00	Rp 11.385,00
0,043	m³	Pasir Pasang	Rp 250.000,00	Rp 10.750,00
- (67		BAHAN	: Rp 742.135,00
0,300	Oh	Pekerja	Rp 65.000,00	Rp 19.500,00 Rp
0,100	Oh	Tukang Batu	Rp 70.000,00	7.000,00
0,010	Oh	Kepala Tukang Batu	Rp 75.000,00	Rp 750,00
0,010	Oh	Mandor	Rp 95.000,00	Rp 950,00
	111		UPAH JUMLAH	: Rp 28.200,00
	۳		(BELUM JASA)	Rp 770.335,00
	2	111	Jasa 10 %	Rp 77.033,50
	7		Jumlah	Rp 847.368,50
	3		Dibulatkan	Rp 847.300,00
perhitu	ngan ha	rga satuan pekerjaan pla	t lantai bondek	
1	m2	pekerjaan wiremesh/lembar	HILLSON	
1,02	lbr	wiremeh M8 (SNI) 10kg	Rp 595.000,00	Rp 606.900,00
0,5	kg	Wiremesh/khg kawat ikat	Rp 21.000,00	Rp 10.500,00
	C		BAHAN	: Rp 742.135,00
0,025	ОН	pekerja	Rp 65.000,00 Rp	Rp 1.625,00 Rp
0,025	OH	tukang besi	70.000,00	1.750,00
0,025	ОН	kepala tukang	Rp	Rp

			Jasa 10 %	Rp
			JUMLAH (BELUM JASA)	Rp 254.398,01
			UPAH	: Rp 18.350,00
0,01	ОН	mandor	95.000,00	950,00
0,01	ОН	kepala tukang	75.000,00 Rp	750,00 Rp
			Rp	Rp
0,08	ОН	tukang kayu	Rp 70.000,00	Rp 5.600,00
0,17	ОН	pekerja	65.000,00	11.050,00
400	رد ال وي	No alexander	Rp	236.048,01 Rp
1,5		Toom, vanjan g	BAHAN	. Rp
1,5	btg	dolken kayu (8- 10cm) 0anjan g4	Rp 23.588,07	Rp 35.382,10
0,09	lbr	plywood 9mm	125.454,55	11.290,91
0,00375	m3	II	1.300.000,00 Rp	4.875,00 Rp
0.00075	2	balok kayu kelas	Rp	Rp
0,05	1	minyak bekisting	20.000,00	1.000,00
0,1	kg	paku 5-12 cm	13.000,00 Rp	1.300,00 Rp
155			Rp	Rp
0,04	m3	kayu kelas III	Rp 1.450.000,00	Rp 58.000,00
1,08	m2	bondek 0,7	115000	124.200,00
100			OI	Rp
PEKERJAAN BO	ONDEK		91	
12		46	- ci	
1 1 2				822.200,00
10			Dibulatkan	Rp
	13	FAM	Jumlah	Rp 822.228,00
	16	IAKA	Jasa 10 %	74.748,00
		(BE	LUM JASA)	747.480,00 Rp
		(D.T.)	JUMLAH	Rp
		UPAH	I :	Rp 5.345,00
0,001 OH	mandor	95.000),00	95,00
		Rp	7,00	Rp
		75.000	0.00	1.875,00

	25.439,80
Jumlah	Rp 279.837,81
Dibulatkan	Rp 279.800,00

Rencana anggaran biaya pekerjaan plat bondek dan tangga dapat dilihat pada tabel berikut ini.

Tabel 5.43 Rencana anggaran biaya pekerjaan tangga

NO.	JENIS KEGI ATAN	VOLUME	SAT	HARGA SATUAN	JUMLAH HARGA	TOTAL HARGA
1	2	3	4	5	$6 = 3 \times 5$	$7 = \Sigma 6$
	a Beton K250/ 22,5 Mpa b Besi Tulangan	6,70	m³	Rp 994.200,00	Rp 6.659.549	
	D 13	156,03	kg	11.823,95	Rp 1.844.942	
	C Bekisting	43,89	m²	229.600,00	Rp 10.078.062	
	d Bongkar Cetakan	6,70	m²	143.000,00	Rp 957.871	
	e bata	1,12	m2	847.300,00	Rp 951.687	_
	IΖ			Sub Tota	al Pekerjaan Tangga	Rp 20.492.112,72

Untuk pekerjaan plat bondek rencana anggaran biaya dapat dilihat pada tabel berikut ini.

Tabel 5.44 Rencana anggaran biaya pekerjaan plat bondek

NO.	JENIS KE	VOLUME		HARGA	JUMLAH	TOTAL
NO.	GIATAN	VOLUME	SAT	SATUAN	HARGA	HARGA
1	2	3	4	5	$6 = 3 \times 5$	$7 = \Sigma 6$
	a. Pembetonan	9,09	m³	Rp 994.200,00	Rp 9.040.186	
	b. Bondek	95,72	kg	Rp 279.800,00	Rp 26.781.057	

c. Wiremesh	8,44	m²	Rp 822.200,00	Rp 6.939.760	
			Sub Total Pekerjaan		Rp
				Tangga	42.761.002,56

Tabel 5.45 Rencana anggaran biaya pekerjaan plat konvensional

NO.	JENIS	KEGIATAN	VOLUME	SAT	HARGA JUMLAH SATUAN HARGA	
1		2	3	4	$6 = 3 \times 5$	$7 = \Sigma 6$
	Plat Lantai =12 cm		45	-33	Rp Rp	
	Beton K250	0/ 22,5 Mpa	11,49	m3	994.200,00 11.419.182,	36
	Besi Tulang	gan 1 arah				
	tumpuan	D13-100		40.	W.	
	17	45	492,58	kg	Rp Rp 11.823,95 5.824.284,9	5
	lapangan	D13-100			W.	
	in	berat	1.970,33	kg	Rp Rp 11.823,95 23.297.139,	81
	pembagi	D13-200	A		4-1	
		berat	234,42	kg	Rp Rp 11.823,95 2.771.819,1	3
	2 arah	D13-300			141	
	12	berat	15,32	kg	Rp Rp 11.823,95 181.092,18	
	17	berat	14,18	kg	Rp Rp 11.823,95 167.695,06	
	Bekisting		21,92	m2	Rp Rp 229.600,00 5.031.684,0	0
	Bongkar Cetakan		11,49	m²	Rp Rp 143.000,00 1.642.469,4	0
					Sub Total Pekerja	•
					Bet	on 50.335.366,90

Tabel 5.46Rencana anggaran biaya pekerjaan tangga eksisting

NO.	JENIS KEGIAT AN	VOLUME	SAT	HARGA SATUAN	JUMLAH HARGA	TOTAL HARGA
1	2	3	4	5	$6 = 3 \times 5$	$7 = \Sigma 6$
	a. Beton K250/ 22,5 Mpa	7,82	m³	Rp 994.200,00	Rp 7.776.235	
	b. Besi Tulangan	156,03	kg	11.823,95	Rp 1.844.942	
	c. Bekisting	43,89	m²	229.600.00	Rp 10.078.062	

			Sub Total Peker	rjaan Tangga	Rp 20.817.728,40
d. Bongkar Cetakan	7,82	m²	143.000,00	Rp 1.118.489	

Tahap selanjutnya setelah perencanaan dilakukan perhitungan rencana anggaran biaya (RAB).

Hasil perhitungan RAB struktur plat dan tangga dengan hanya memperhitungkan *direct cost* (biaya material, upah tenaga, dan alat) didapat total biaya sebesar Rp 71.153.095

Dari total biaya RAB alternatif didapat total biaya sebesar Rp 63.253.115 dengan penghematan biaya sebesar:

Besar penghematan biaya awal = Rp 71.153.095 - Rp 63.253.115

= Rp7.899.980

Besar penghematan biaya awal (%) = $\frac{\text{Rp7.899.980}}{\text{Rp 71.153.095}} \times 100\%$

= 11,10279178 %

Perhitungan waktu penyelesaian pekerjaan plat dan tangga dihitung dengan menggunakan 1 OH pekerja. Perbandingan waktu penyelesaian pekerjaan plat konvensional dan plat dengan menggunakan bondek dapat dilihat pada tabel berikut ini.

Tabel 5.47 waktu penyelesaian pekerjaan plat konvensional dengan 1 OH

Plat Konvensional	Pekerja	Satuan	Volume	Satuan	Durasi (hari)
	.				, ,
Beton	0,275	ОН	11,4858	m3	3,159
Pembesian	0,007	ОН	2726,84096	kg	19,088
					4
Bekisting	0,33	OH	21,915	m2	7,232
Bongkar	2	ОН	11,4858	m2	22,972
19				1000 D	52,450

Tabel 5.48 waktu penyelesaian pekerjaan plat bondek dengan 1 OH

Plat Bondek	Pekerja	Satuan	Volume	Satuan	Durasi (hari)
Pembetonan	0,275	ОН	9,092925	m³	2,500554375
Bondek	0,08	ОН	95,715	kg	7,6572
Wiremesh	0,025	ОН	8,44047619	m²	0,211011905
					10,36876628

Perbandingan waktu penyelesaian pekerjaan tangga eksisting dan tangga setelah dilakukan *value engineering* dapat dilihat pada tabel berikut ini.

Tabel 5.49 waktu penyelesaian pekerjaan tangga eksisting dengan 1 OH

tangga eksisting	Pekerja	Satuan	Volume	Satuan	Durasi (hari)
Beton K250	0,275	ОН	7,8216	m³	2,151
Besi Tulangan	0,007	ОН	156,0344	kg	1,092
Bekisting	0,33	ОН	43,894	m²	14,485
Bongkar Cetakan	2	ОН	7,8216	m²	15,643
					33,371

Tabel 5.50 waktu penyelesaian pekerjaan tangga VE dengan 1 OH

					Durasi
tangga VE	Pekerja	Satuan	Volume	Satuan	(hari)
Beton K250	0,275	OH	6,6984	m³	1,842
Besi Tulangan	0,007	OH	156,0344	kg	1,092
Bekisting	0,33	OH	43,894	m²	14,485
		1 40000		1	
Bongkar Cetakan	2	OH	6,6984	m ²	13,397
1111			380	83333	
Bata	0,1	OH	1,1232	m2	0,112
		- 2			
18.3					30,928

5.5 Tahap Rekomendasi

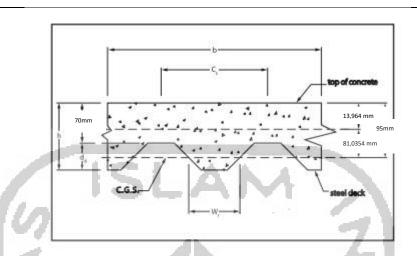
Tahap rekomendasi adalah tahapan terakhir dalam studi value engineering, dalam tahapan ini disajikan laporan akhir hasil studi rekayasa nilai berupa pengajuan ide alternatif terbaik. Data-data dalam penyajian tahap rekomendasi meliputi:

- 1. Desain struktur alternatif terbaik
- 2. Hasil desain, dan
- 3. Rencana anggaran biaya pekerjaan struktur alternatif.

Tahap ini bertujuan untuk meyakinkan pengambil keputusan bahwa alternatif desain yang diusulkan atau direkomendasikan merupakan alternatif desain terbaik. Pada pekerjaan struktur pondasi, kolom, dan balok didapati desain alternatif sesuai hasil analisi untung rugi, tingkat kelayakan dan analisis matrik sama dengan desain yang telah ada. Oleh karena itu tahap rekomendasi ini akan menyajikan hasil dari plat dan tangga. Hasil pada tahap ini dapat dilihat pada tabel dibawah ini.

Tabel 5.51 Tahap pengembangan dan rekomendasi struktur Plat

Proyek : pembangunan	TAHAP PENGEMBANGAN DAN		
gedung pemeriksa	REKOMENDASI		
inspektor Daerah Sleman	(DEVELOPMENT AND RECOMMENDATION		
Lokasi : Sleman	PHASE)		
Klien :	ITEM: NO:		
Tanggal:	Plat Bondek 1		
Halaman :			


Konsep Asal (Original Concept)

Desain awal plat pada proyek ini menggunakan plat cor beton konvensional dengan 2 tipe plat. Tebal plat 120 mm dan tulangan arah panjang dan pendek menggunakan D13-100. Desain awal memiliki biaya awal sebesar Rp 50.335.366,90. Pada desain awal waktu penyelesaian pekerjaan plat jika didasarkan dengan 1 OH didapat durasi waktu 52,450 hari

Usulan perubahan (proposal change)

Plat bondek dipilih dari alternatif yang lain karena memiliki nilai tertinggi dari analisis yang telah dilakukan sesuai parameter yang telah ditentukan seperti kemungkinan implementasi, biaya awal, daya dukung, dan sarana kerja. Plat bondek yang diusulkan memiliki ketebalan 95 mm dan tidak perlu menggunakan tulangan positif. Penggunaan plat bondek memiliki keuntungan dari segi biaya dan waktu. Biaya awal pekerjaan bondek sebesar Rp 42.761.002,56 dan penyelesaian pekerjaan selama 10,368 hari dengan 1 OH.

Hasil usulan alternatif desain untuk struktur plat bondek dapat dilihat pada gamabar dibawah ini.

Gambar 5.6 detail plat bondek pada usulan alternatif desain

Diskusi (discusssion)

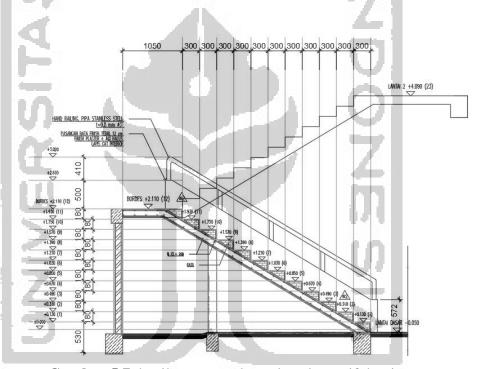
Hasil analisis yang telah dilakukan terdapat penghematan sebesar Rp 7.574.364,34 dan memiliki durasi waktu yang lebih singkat.

Untuk tahap pengembangan dan rekomendasi struktur tangga dapat dilihat pada tabel dibawah ini.

Tabel 5.52 Tahap pengembangan dan rekomendasi struktur tangga

Proyek : pembangunan	TAHAP PENGEMBANGAN DAN		
gedung pemeriksa	REKOMENDASI		
inspektor Daerah Sleman	(DEVELOPMENT AND RECOMMENDATION		
Lokasi : Sleman	PHASE)		
Klien :	ITEM:	NO:	
Tanggal:	Plat Bondek	1	
Halaman :			

Konsep Asal (Original Concept)


Desain awal struktur tangga adalah plat cor beton bertulang dan anak tangga dengan cor beton. Tebal plat adalah 120 mm menggunakan tulangan D13-200. Pada desain awal ini memiliki biaya awala sebesar Rp 20.817.728,40 dan durasi

pekerjaan 33,371 hari dengan 1 OH.

Usulan perubahan (proposal change)

Desai alternatif yang dipilih adalah plat tangga dengan cor dan anak tangga dengan bata. Yang menjadi perbedaan adalah bahan material dari anak tangga diganti dengan bata merah. Biaya awal yang dikeluarkan sebesar Rp 20.492.112,72 dengan durasi waktu 30,928 hari dengan 1 OH.

Hasil usulan alternatif desain untuk struktur tangga dapat dilihat pada gamabar dibawah ini.

Gambar 5.7 detail tangga pada usulan alternatif desain

Diskusi (discusssion)

Hasil analisis yang telah dilakukan terdapat penghematan Rp325.615,68 dan memiliki durasi waktu yang lebih singkat.

5.6 Pembahasan

Ide-ide usulan jenis struktur yang direkomendasikan merupakan usulan alternatif dengan nilai keuntungan terbesar. Berdasarkan analisis keuntungan dan kerugian, usulan alternatif struktur dengan nilai keuntungan terbesar adalah sebagai berikut.

- 1. Pondasi footplat dengan nilai keuntungan 14
- 2. Kolom beton bertulang dengan nilai keuntungan 14,6
- 3. Balok beton bertulang dengan nilai keuntungan 13,2
- 4. Plat bondek dengan nilai keuntungan 10,6 dan nilai kerugian 0,6
- 5. Plat tangga dengan anak tangga bata dengan nilai keuntungan 12,8

Hasil tersebut didapat berdasarkan dari pengisian kuisioner para responden sesuai pengalaman dilapangan masing-masing.

Sedangkan hasil analisis berdasarkan tingkat kelayakan dapat disimpulkan bahwa jenis struktur alternatif yang memiliki nilai dengan ranking tertinggi adalah.

- 1. Pondasi footplat dengan nilai 45,2
- 2. Kolom beton bertulang dengan nilai 45
- 3. Balok beton bertulang dengan nilai 45
- 4. Plat bondek dengan nilai keuntungan 43,2
- 5. Plat tangga dengan anak tangga bata dengan nilai 46

Hasil analisi tingkat kelayakan sama dengan hasil analisis keuntungan dan kerugian dengan pemilihan alternatif struktur seperti diatas.

Hasil analisis matrik alternatif desain struktur didapat penilaian tertinggi sebagai berikut.

- 1. Pondasi footplat dengan nilai 376,1904
- 2. Kolom beton bertulang dengan nilai 344,7619
- 3. Balok beton bertulang dengan nilai 351,4285

- 4. Plat bondek dengan nilai keuntungan 314,2857
- 5. Plat tangga dengan anak tangga bata dengan nilai 331,4285

Pada penelitian ini dari ketiga analisis yang telah dilakuakan mempunyai hasil yang sama, selanjutnya dilakukan perhitungan lebih lanjut. Untuk struktur pondasi, kolom, dan balok didapat alternatif desain yang sama dengan desain yang telah ada, untuk plat menggunakan bondek dan tangga menggunakan plat tangga dengan anak tangga bata.

Pondasi footplat merupakan sistem pondasi dangkal yang umum digunakan untuk mendukung struktur gedung bertingkat rendah. Pondasi merupakan struktur yang penting dari sebuah bangunan, karena pondasi untuk menyalurkan beban yang diterima dari struktur atas ke tanah. Untuk mendesain pondasi Footplat diperlukan penyelidikan tanah untuk mengetahui beban yang diperbolehkan untuk menopang struktur. Kelebihan pondasi footplat dari alternatif desain lainnya adalah penyiapan lahan yang lebih cepat serta biaya awal lebih hemat. Selain itu karena umum digunakan maka pengerjaan dan alat yang tersedia lebih mudah dikerjakan. Untuk alternatif desain yang lain dapat diterapkan karena gedung dengan 2 lantai memiliki beban yang dapat di tumpu semua pondasi alternatif. Untuk pondasi batu kali memiliki kekurangan jika diterapakan pada bangunan ini diantaranya adalah, dimensi pondasi yang besar sehingga penyiapan lahan yang memakan waktu dan biaya yang besar sehingga tidak efisien. Untuk sumuran dan mini bor pengerjaan relatif tidak umum diterapkan pada struktur gedung dua lantai.

Kolom beton bertulang merupakan satuan komposit untuk menahan beban desak maupun tarik. Perancangan kolom menggunakan beban aksial dan momen. Penghematan menggunakan kolom dengan beton bertulang dapat dilakukan dengan cara variasi dimensi dan jumlah tulangan sesuai dengan beban yang ditumpu.

Balok beton bertulang juga merupakan satuan komposit menahan beban desak dan tarik. Perencanaan balok menggunakan momen. Dimensi balok

tergantung dengan bentang bangunan tersebut. Untuk mereduksi volume balok dapat digunakan balok anak sebagai pengaku dan mengurangi dimensi balok awal.

Plat bondek merupakan alternatif yang dipilih dari desain yang telah ada. Perbedaan plat bondek dengan plat konvensional adalah pada bekisting, tulangan, dan penggunakan *scaffolding* atau perancah. Bekisting pada plat bondek digantikan oleh lembaran-lembaran bondek yang ditumpu pada balok. Selain sebagai bekisting bondek juga menggantikan tulangan positif pada plat lantai. Kebutuhan tulangan pada plat akan berkurang secara signifikan, tulangan digantikan dengan *wiremesh*. dengan waktu pengerjaan lebih cepat. Dengan adanya plat bondek penggunaan *scaffolding* dapat dikurangi. Berkurangnya jumlah *scaffolding*, pekerjaan pada lantai satu dapat dikerjakaan seperti pekerjaan pasangan dinding dan mobilitas material sehingga dapat mereduksi durasi pekerjaan.

Tangga merupakan struktur pelengkap untuk mobilitas dari lantai bawah ke atasnya. tangga didukung oleh pondasi untuk meneruskan beban ke tanah, balok pada bordes dan plat atas. Selain menggunakan plat untuk menyalurkan beban alternatif yang disediakan dapat menggunakan balok. Anak tangga pada keadaan eksisting adalah cor beton kemudian diganti dengan bata merah. Secara struktural pergantian material tersebut tidak berpengaruh karena beban mati yang diterima plat lebih besar menggunakan anak tangga dengan cor beton. Selain mengurangi volume beton yang dibutuhkan penggunaan bata merah dapat menghemat biaya pengerjaan tangga.

Hasil desain plat bondek dan tangga dapat dilihat tabel dibawah ini.

Tabel 5.53 hasil desain plat bondek dan tangga

Tuber ever hash degam plat conden dan tangga					
Uraian	Bahan	Tulangan			
Plat	Bondek	wiremesh M8-75			
Tangga	Anak tangga dengan bata	-			

Besar penghematan biaya awal sebagai berikut

Besar penghematan biaya awal = Rp 71.153.095 - Rp 63.253.115

= Rp7.899.980

Besar penghematan biaya awal (%) = $\frac{\text{Rp7.899.980}}{\text{Rp.71.153.095}} \times 100\%$

= 11.10279178 %

Waktu pengerjaan pekerjaan plat konvensional dan plat bondek dengan menggunakan 1 OH didapat durasi selama 52,450 hari dan 10,368 hari. Pada plat konvensional pekerjaan penulangan dan bekisting memakan waktu yang lama, sedangkan plat menggunakan bondek kedua item pekerjaan tersebut dapat direduksi durasi pekerjaannya. Sedangkan tangga eksisting dan tangga VE selama 33,371 dan 30,928 hari.